2014全国中考一次函数 二次函数 反比例函数

合集下载

2014中考总复习第13讲反比例函数

2014中考总复习第13讲反比例函数

知识回顾
重点解析
探究拓展
真题演练
5 1. (2013·兰州)当 x>0 时, 函数 y=- x 的图象在(
)
A. 第四象限 C. 第二象限
B. 第三象限 D. 第一象限
5 【解析】 ∵函数 y=- x 中 k=-5<0, ∴其图象位于第二、四象限, 当 x>0 时, 其图
象位于第四象限. 【答案】 A
知识回顾
重点解析
探究拓展
真题演练
∵O E =2, ∴C E =3, ∴点 C 的坐标是( -2, 3) .
6 ∴k=-2× 3=-6, ∴y=- x .
( 2) 设直线 AB 的解析式为 y=kx+b( k≠0) .
1 k b 2 2 则 4k b 0 , 解得 . b 2
第一部分
复习目标
知识回顾
重点解析
探究拓展
真题演练
一、反比例函数的有关概念 1. 反比例函数的定义: 形如 y= 量, y是 x的函数. 2. 反比例函数的解析式的三种形式: ( 1) y= 0, k为常数) . ( k≠0, k为常数) ; ( 2) y= ( k≠0, k为常数) ; ( 3) xy=k( k≠ ( k≠0, k为常数) 的函数叫做反比例函数, 其中 x是自变
BD 1 1 1 ∴ OD = 3 , BD = 4 BO . 又∵S△AB O =1, ∴ 2 B D ·B A=1, 8 ∴B O ·B A=8. 设 A 点坐标为 A ( x, y) , 由 xy=8, 得 y= x . 8 【答案】y= x ( x>0)
第一部分
k
.
复习目标
知识回顾
重点解析

2014年全国各地中考数学真题分类解析汇编(13)二次函数

2014年全国各地中考数学真题分类解析汇编(13)二次函数

二次函数一、选择题1. (2014•广东,第10题3分)二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<,y随x的增大而减小D.当﹣1<x<2时,y>0考点:二次函数的性质.分析:根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,进而判断C;根据图象,当﹣1<x<2时,抛物线落在x轴的下方,则y<0,从而判断D.解答:解:A、由抛物线的开口向下,可知a<0,函数有最小值,正确,故本选项不符合题意;B、由图象可知,对称轴为x =,正确,故本选项不符合题意;C、因为a>0,所以,当x <时,y随x的增大而减小,正确,故本选项不符合题意;D、由图象可知,当﹣1<x<2时,y<0,错误,故本选项符合题意.故选D.点评:本题考查了二次函数的图象和性质,解题的关键是利用数形结合思想解题.2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx +与反比例函数y =在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx+的图象过第二、三、四象限,反比例函数y=分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年四川资阳,第10题3分)二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c<2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1),其中正确结论的个数是()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.解答:解:∵抛物线和x轴有两个交点,∴b2﹣4ac>0,∴4ac﹣b2<0,∴①正确;∵对称轴是直线x﹣1,和x轴的一个交点在点(0,0)和点(1,0)之间,∴抛物线和x轴的另一个交点在(﹣3,0)和(﹣2,0)之间,∴把(﹣2,0)代入抛物线得:y=4a﹣2b+c>0,∴4a+c>2b,∴②错误;∵把(1,0)代入抛物线得:y=a+b+c<0,∴2a+2b+2c<0,∵b=2a,∴3b,2c<0,∴③正确;∵抛物线的对称轴是直线x=﹣1,∴y=a﹣b+c的值最大,即把(m,0)(m≠0)代入得:y=am2+bm+c<a﹣b+c,∴am2+bm+b<a,即m(am+b)+b<a,∴④正确;即正确的有3个,故选B.点评:此题主要考查了二次函数图象与系数的关系,在解题时要注意二次函数的系数与其图象的形状,对称轴,特殊点的关系,也要掌握在图象上表示一元二次方程ax2+bx+c=0的解的方法.同时注意特殊点的运用.4.(2014年天津市,第12 题3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x 的一元二次方程ax2+bx+c﹣m=0没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2.其中,正确结论的个数是()A.0 B.1C.2D.3考点:二次函数图象与系数的关系.分析:由图象可知二次函数y=ax2+bx+c与x轴有两个交点,进而判断①;先根据抛物线的开口向下可知a<0,由抛物线与y轴的交点判断c与0的关系,根据对称轴在y轴右侧得出b与0的关系,然后根据有理数乘法法则判断②;一元二次方程ax2+bx+c﹣m=0没有实数根,则可转化为ax2+bx+c=m,即可以理解为y=ax2+bx+c和y=m没有交点,即可求出m的取值范围,判断③即可.解答:解:①∵二次函数y=ax2+bx+c与x轴有两个交点,∴b2﹣4ac>0,故①正确;②∵抛物线的开口向下,∴a<0,∵抛物线与y轴交于正半轴,∴c>0,∵对称轴x=﹣>0,∴ab<0,∵a<0,∴b>0,∴abc<0,故②正确;③∵一元二次方程ax2+bx+c﹣m=0没有实数根,∴y=ax2+bx+c和y=m没有交点,由图可得,m>2,故③正确.故选D.点评:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.5.(2014•新疆,第6题5分)对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()﹣,的顶点坐标是(﹣,6.(2014•舟山,第10题3分)当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为()或C或或﹣或,.y=2x2,y=﹣2x2,共有的性质是()=<﹣>﹣﹣<﹣>﹣﹣8.(2014•孝感,第12题3分)抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为()=1=1﹣9.(2014·台湾,第26题3分)已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10,8)两点.若a<0,0<h<10,则h之值可能为下列何者?() A.1 B.3 C.5 D.7分析:先画出抛物线的大致图象,根据顶点式得到抛物线的对称轴为直线x=h,由于抛物线过(0,5)、(10,8)两点.若a<0,0<h<10,则点(0,5)到对称轴的距离大于点(10,8)到对称轴的距离,所以h﹣0>10﹣h,然后解不等式后进行判断.解:∵抛物线的对称轴为直线x=h,而(0,5)、(10,8)两点在抛物线上,∴h﹣0>10﹣h,解得h>5.故选D.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.10.(2014·浙江金华,第9题4分)如图是二次函数2y x 2x 4=-++的图象,使y 1≤成立的x 的取值范围是【 】A .1x 3-≤≤B .x 1≤-C .x 1≥D .x 1≤-或x 3≥【答案】D . 【解析】试题分析:由图象可知,当y 1≤时,x 1≤-或x 3≥. 故选D . 考点:1.曲线上点的坐标与方程的关系;2.数形结合思想的应用11.(2014•浙江宁波,第12题4分)已知点A (a ﹣2b ,2﹣4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )﹣=12.(2014•菏泽第8题3分)如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,C、D两点不重合,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()....,13.(2014•济宁,第8题3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是()14.(2014年山东泰安,第17题3分)已知函数y=(x﹣m)(x﹣n)(其中m<n)的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A.B C D.分析:根据二次函数图象判断出m<﹣1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.解:由图可知,m<﹣1,n=1,所以,m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.点评:本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.15.(2014年山东泰安,第20题3分)二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表:下列结论:(1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为()A.4个B.3个C.2个D.1个分析:根据表格数据求出二次函数的对称轴为直线x=1.5,然后根据二次函数的性质对各小题分析判断即可得解.解:由图表中数据可得出:x=1时,y=5值最大,所以二次函数y=ax2+bx+c开口向下,a <0;又x=0时,y=3,所以c=3>0,所以ac<0,故(1)正确;∵二次函数y=ax2+bx+c开口向下,且对称轴为x==1.5,∴当x>1.5时,y的值随x 值的增大而减小,故(2)错误;∵x=3时,y=3,∴9a+3b+c=3,∵c=3,∴9a+3b+3=3,∴9a+3b=0,∴3是方程ax2+(b ﹣1)x+c=0的一个根,故(3)正确;∵x=﹣1时,ax2+bx+c=﹣1,∴x=﹣1时,ax2+(b﹣1)x+c=0,∵x=3时,ax2+(b﹣1)x+c=0,且函数有最大值,∴当﹣1<x<3时,ax2=(b﹣1)x+c>0,故(4)正确.故选B.点评:本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.16.(2014•滨州,第9题3分)下列函数中,图象经过原点的是()==二.填空题1. (2014•安徽省,第12题5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:根据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,根据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了根据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.2.(2014年云南,第16题3分)抛物线y=x2﹣2x+3的顶点坐标是.考点:二次函数的性质.专题:计算题.分析:已知抛物线的解析式是一般式,用配方法转化为顶点式,根据顶点式的坐标特点,直接写出顶点坐标.解答:解:∵y=x2﹣2x+3=x2﹣2x+1﹣1+3=(x﹣1)2+2,∴抛物线y=x2﹣2x+3的顶点坐标是(1,2).点评:此题考查了二次函数的性质,二次函数y=a(x﹣h)2+k的顶点坐标为(h,k),对称轴为x=h,此题还考查了配方法求顶点式.3.(2014•浙江湖州,第16题4分)已知当x1=a,x2=b,x3=c时,二次函数y=x2+mx对应的函数值分别为y1,y2,y3,若正整数a,b,c恰好是一个三角形的三边长,且当a<b<c 时,都有y1<y2<y3,则实数m的取值范围是.分析:根据三角形的任意两边之和大于第三边判断出a最小为2,再根据二次函数的增减性和对称性判断出对称轴在2、3之间偏向2,即不大于2.5,然后列出不等式求解即可.解:∵正整数a,b,c恰好是一个三角形的三边长,且a<b<c,∴a最小是2,∵y1<y2<y3,∴﹣<2.5,解得m>﹣.故答案为:m>﹣.点评:本题考查了二次函数图象上点的坐标特征,三角形的三边关系,判断出a最小可以取2以及对称轴的位置是解题的关键.4. (2014•株洲,第16题,3分)如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是a<﹣5.=<﹣轴的正半轴相交.因此5. (2014年江苏南京,第16题,2分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:则当y<5时,x的取值范围是.考点:二次函数与不等式分析:根据表格数据,利用二次函数的对称性判断出x=4时,y=5,然后写出y<5时,x的取值范围即可.解答:由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y<5时,x的取值范围为0<x<4.故答案为:0<x<4.点评:本题考查了二次函数与不等式,观察图表得到y=5的另一个x的值是解题的关键.6. (2014•扬州,第16题,3分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为0.(第3题图)7.(2014•菏泽,第12题3分)如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则= _______.,,的横坐标相同,为2=3,,﹣=﹣.8. (2014•珠海,第9题4分)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.=三.解答题1. (2014•安徽省,第22题12分)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后根据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类讨论的思想,考查了阅读理解能力.而对新定义的正确理解和分类讨论是解决第二小题的关键.2. (2014•福建泉州,第22题9分)如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?OA OB(+的图象经过原点OA=,﹣的顶点.)的顶点坐标为(﹣),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:<﹣时,﹣取得最小值,即顶<﹣时,时,3. (2014•福建泉州,第25题12分)如图,在锐角三角形纸片ABC中,AC>BC,点D,E,F分别在边AB,BC,CA上.(1)已知:DE∥AC,DF∥BC.①判断四边形DECF一定是什么形状?②裁剪当AC=24cm,BC=20cm,∠ACB=45°时,请你探索:如何剪四边形DECF,能使它的面积最大,并证明你的结论;(2)折叠请你只用两次折叠,确定四边形的顶点D,E,C,F,使它恰好为菱形,并说明你的折法和理由.=12=12====6 =124. (2014•广东,第25题9分)如图,在△ABC中,AB=AC,AD⊥AB于点D,BC=10cm,AD=8cm.点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C时,点P与直线m同时停止运动,设运动时间为t 秒(t>0).(1)当t=2时,连接DE、DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.考点:相似形综合题.分析:(1)如答图1所示,利用菱形的定义证明;(2)如答图2所示,首先求出△PEF的面积的表达式,然后利用二次函数的性质求解;(3)如答图3所示,分三种情形,需要分类讨论,分别求解.解答:(1)证明:当t=2时,DH=AH=2,则H为AD的中点,如答图1所示.又∵EF⊥AD,∴EF为AD的垂直平分线,∴AE=DE,AF=DF.∵AB=AC,AD⊥AB于点D,∴AD⊥BC,∠B=∠C.∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴∠AEF=∠AFE,∴AE=AF,∴AE=AF=DE=DF,即四边形AEDF为菱形.(2)解:如答图2所示,由(1)知EF∥BC,∴△AEF∽△ABC,∴,即,解得:EF=10﹣t.S△PEF=EF•DH=(10﹣t)•2t=﹣t2+10t=﹣(t﹣2)2+10∴当t=2秒时,S△PEF存在最大值,最大值为10,此时BP=3t=6.(3)解:存在.理由如下:①若点E为直角顶点,如答图3①所示,此时PE∥AD,PE=DH=2t,BP=3t.∵PE∥AD,∴,即,此比例式不成立,故此种情形不存在;②若点F为直角顶点,如答图3②所示,此时PE∥AD,PF=DH=2t,BP=3t,CP=10﹣3t.∵PF∥AD,∴,即,解得t=;③若点P为直角顶点,如答图3③所示.过点E作EM⊥BC于点M,过点F作FN⊥BC于点N,则EM=FN=DH=2t,EM∥FN∥AD.∵EM∥AD,∴,即,解得BM=t,∴PM=BP﹣BM=3t﹣t=t.在Rt△EMP中,由勾股定理得:PE2=EM2+PM2=(2t)2+(t)2=t2.∵FN∥AD,∴,即,解得CN=t,∴PN=BC﹣BP﹣CN=10﹣3t﹣t=10﹣t.在Rt△FNP中,由勾股定理得:PF2=FN2+PN2=(2t)2+(10﹣t)2=t2﹣85t+100.在Rt△PEF中,由勾股定理得:EF2=PE2+PF2,即:(10﹣t)2=(t2)+(t2﹣85t+100)化简得:t2﹣35t=0,解得:t=或t=0(舍去)∴t=.综上所述,当t=秒或t=秒时,△PEF为直角三角形.点评:本题是运动型综合题,涉及动点与动线两种运动类型.第(1)问考查了菱形的定义;第(2)问考查了相似三角形、图形面积及二次函数的极值;第(3)问考查了相似三角形、勾股定理、解方程等知识点,重点考查了分类讨论的数学思想.5. (2014•珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.OF点右边时,所求三角形为两三角形的差.得关系式再代入,=2,=3=,,,x=﹣,,,,﹣x﹣,x<.①当﹣,﹣••••••[x(x(﹣+时,,﹣•)﹣•..,<﹣x+,解得﹣<<,<.6. 2014•广西贺州,第26题12分)二次函数图象的顶点在原点O,经过点A(1,14);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM 平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.考点:二次函数综合题.专题:综合题.分析:(1)根据题意可设函数的解析式为y=ax2,将点A代入函数解析式,求出a的值,继而可求得二次函数的解析式;(2)过点P作PB⊥y轴于点B,利用勾股定理求出PF,表示出PM,可得PF=PM,∠PFM=∠PMF,结合平行线的性质,可得出结论;(3)首先可得∠FMH=30°,设点P的坐标为(x,14x2),根据PF=PM=FM,可得关于x的方程,求出x的值即可得出答案.解答:(1)解:∵二次函数图象的顶点在原点O,∴设二次函数的解析式为y=ax2,将点A(1,14)代入y=ax2得:a=14,∴二次函数的解析式为y=14x2;(2)证明:∵点P在抛物线y=14x2上,∴可设点P的坐标为(x,14x2),过点P作PB⊥y轴于点B,则BF=14x2﹣1,PB=x,∴Rt△BPF中,PF==14x2+1,∵PM⊥直线y=﹣1,∴PM=14x2+1,∴PF=PM,∴∠PFM=∠PMF,又∵PM∥x轴,∴∠MFH=∠PMF,∴∠PFM=∠MFH,∴FM平分∠OFP;(3)解:当△FPM是等边三角形时,∠PMF=60°,∴∠FMH=30°,在Rt△MFH中,MF=2FH=2×2=4,∵PF=PM=FM,∴14x2+1=4,解得:x=±2,∴14x2=14×12=3,∴满足条件的点P的坐标为(2,3)或(﹣2,3).点评:本题考查了二次函数的综合,涉及了待定系数法求函数解析式、角平分线的性质及直角三角形的性质,解答本题的关键是熟练基本知识,数形结合,将所学知识融会贯通.7. (2014•广西玉林市、防城港市,第26题12分)给定直线l:y=kx,抛物线C:y=ax2+bx+1.(1)当b=1时,l与C相交于A,B两点,其中A为C的顶点,B与A关于原点对称,求a 的值;(2)若把直线l向上平移k2+1个单位长度得到直线r,则无论非零实数k取何值,直线r与抛物线C都只有一个交点.①求此抛物线的解析式;②若P是此抛物线上任一点,过P作PQ∥y轴且与直线y=2交于Q点,O为原点.求证:OP=PQ.=0中,若不能使其结果为﹣x),∴顶点(﹣,﹣=1﹣.==,==0=xx xx==﹣(﹣x8.(2014年四川资阳,第22题9分)某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的,且空调采购单价不低于1200元,问该商家共有几种进货方案?(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.考点:二次函数的应用;一元一次不等式组的应用.分析:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.解答:解:(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,由题意得,,解不等式①得,x≥11,解不等式②得,x≤15,所以,不等式组的解集是11≤x≤15,∵x为正整数,∴x可取的值为11、12、13、14、15,所以,该商家共有5种进货方案;(2)设总利润为W元,y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,则W=(1760﹣y1)x1+(1700﹣y2)x2,=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),=1760x+20x2﹣1500x+10x2﹣800x+12000,=30x2﹣540x+12000,=30(x﹣9)2+9570,当x>9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),答:采购空调15台时,获得总利润最大,最大利润值为10650元.点评:本题考查了二次函数的应用,一元一次不等式组的应用,(1)关键在于确定出两个不等关系,(2)难点在于用空调的台数表示出冰箱的台数并列出利润的表达式.9.(2014年四川资阳,第24题12分)如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A (3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.考点:二次函数综合题.分析:(1)根据对称轴可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),根据待定系数法可得抛物线的解析式为y=﹣x2+2x+3.(2)分三种情况:①当MA=MB时;②当AB=AM时;③当AB=BM时;三种情况讨论可得点M的坐标.(3)平移后的三角形记为△PEF.根据待定系数法可得直线AB的解析式为y=﹣x+3.易得直线EF的解析式为y=﹣x+3+m.根据待定系数法可得直线AC的解析式.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.分二种情况:①当0<m≤时;②当<m<3时;讨论可得用m的代数式表示S.解答:解:(1)由题意可知,抛物线y=ax2+bx+c与x轴的另一个交点为(﹣1,0),则,解得.故抛物线的解析式为y=﹣x2+2x+3.(2)①当MA=MB时,M(0,0);②当AB=AM时,M(0,﹣3);③当AB=BM时,M(0,3+3)或M(0,3﹣3).所以点M的坐标为:(0,0)、(0,﹣3)、(0,3+3)、(0,3﹣3).(3)平移后的三角形记为△PEF.设直线AB的解析式为y=kx+b,则,解得.则直线AB的解析式为y=﹣x+3.△AOB沿x轴向右平移m个单位长度(0<m<3)得到△PEF,易得直线EF的解析式为y=﹣x+3+m.设直线AC的解析式为y=k′x+b′,则,解得.则直线AC的解析式为y=﹣2x+6.连结BE,直线BE交AC于G,则G(,3).在△AOB沿x轴向右平移的过程中.①当0<m≤时,如图1所示.设PE交AB于K,EF交AC于M.则BE=EK=m,PK=P A=3﹣m,联立,解得,即点M(3﹣m,2m).故S=S△PEF﹣S△P AK﹣S△AFM=PE2﹣PK2﹣AF•h=﹣(3﹣m)2﹣m•2m=﹣m2+3m.②当<m<3时,如图2所示.设PE交AB于K,交AC于H.因为BE=m,所以PK=P A=3﹣m,又因为直线AC的解析式为y=﹣2x+6,所以当x=m时,得y=6﹣2m,所以点H(m,6﹣2m).故S=S△P AH﹣S△P AK=P A•PH﹣P A2=﹣(3﹣m)•(6﹣2m)﹣(3﹣m)2=m2﹣3m+.综上所述,当0<m≤时,S=﹣m2+3m;当<m<3时,S=m2﹣3m+.点评:考查了二次函数综合题,涉及的知识点有:抛物线的对称轴,待定系数法求抛物线的解析式,待定系数法求直线的解析式,分类思想的应用,方程思想的应用,综合性较强,有一定的难度.10.(2014•温州,第21题10分)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNE的面积之比.=))11.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x 刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.,则=12.(2014•舟山,第24题12分)如图,在平面直角坐标系中,A是抛物线y=x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED 的面积为S.(1)当m=时,求S的值.(2)求S关于m(m≠2)的函数解析式.(3)①若S=时,求的值;②当m>2时,设=k,猜想k与m的数量关系并证明.=====k,代入即可得出k的值;②可得====22;=,即的面积为,,===========13.(2014年广东汕尾,第25题10分)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.分析:(1)令y=0,解方程x2﹣x﹣3=0可得到A点和D点坐标;令x=0,求出y=﹣3,可确定C点坐标;(2)根据抛物线的对称性,可知在在x轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x轴上方,存在两个点,这两个点分别到x轴的距离等于点C到x轴的距离;(3)根据梯形定义确定点P,如图所示:①若BC∥AP1,确定梯形ABCP1.此时P1与D点重合,即可求得点P1的坐标;②若AB∥CP2,确定梯形ABCP2.先求出直线CP2的解析式,再联立抛物线与直线解析式求出点P2的坐标.解:(1)∵y=x2﹣x﹣3,∴当y=0时,x2﹣x﹣3=0,解得x1=﹣2,x2=4.当x=0,y=﹣3.∴A点坐标为(4,0),D点坐标为(﹣2,0),C点坐标为(0,﹣3);(2)∵y=x2﹣x﹣3,∴对称轴为直线x==1.∵AD在x轴上,点M在抛物线上,∴当△MAD的面积与△CAD的面积相等时,分两种情况:①点M在x轴下方时,根据抛物线的对称性,可知点M与点C关于直线x=1对称,∵C点坐标为(0,﹣3),∴M点坐标为(2,﹣3);。

2014年中考数学一轮复习讲义:反比例函数

2014年中考数学一轮复习讲义:反比例函数

2014年中考数学一轮复习讲义:反比例函数【考纲要求】1.理解反比例函数的概念,能根据已知条件确定反比例函数的解析式. 2.会画反比例函数图象,根据图象和解析式探索并理解其基本性质. 3.能用反比例函数解决简单实际问题. 【命题趋势】反比例函数是中考命题热点之一,主要考查反比例函数的图象、性质及解析式的确定,也经常与一次函数、二次函数及几何图形等知识综合考查.考查形式以选择题、填空题为主.【知识梳理】 一、反比例函数的概念 一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

二、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

三、反比例函数的性质 反比例函数 )0(≠=k xky k 的符号k>0k<0图像性质①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k>0时,函数图像的两个分支分别 在第一、三象限。

在每个象限内,y 随x 的增大而减小。

①x 的取值范围是x ≠0, y 的取值范围是y ≠0;②当k<0时,函数图像的两个分支分别 在第二、四象限。

在每个象限内,y 随x 的增大而增大。

四、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数k ,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

五、反比例函数中反比例系数的几何意义 过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM ∙PN=xy x y =∙。

2014年中考真题反比例函数答案(好)

2014年中考真题反比例函数答案(好)

2014年中考真题训练反比例函数答案一、选择题1、(2014湖北孝感)在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )AA .k >3B .k >0C .k <3D . k <0 2、(2014河北省)某反比例函数的图像过点M (2-,1),则此反比例函数 表达式为( )BA .2y x =B .2y x =-C .12y x =D .12y x=-3、(2014山东临沂)已知反比例函数xky =的图象在第二、第四象限内,函数图象上有两点A (72,y 1)、B (5,y 2),则y 1与y 2的大小关系为( )。

AA 、y1>y 2 B 、y 1=y 2 C 、y 1<y 2 D 、无法确定 4、(2014山东青岛)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( ).C A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 35、(2014山东枣庄)反比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( )D (A)2 (B)-2 (C)4 (D)-46、(2014江西省)对于反比例函数2y x=,下列说法不正确...的是( )C A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小7、(2014浙江丽水)已知反比例函数2y x=,则这个函数的图象一定经过( )A A . (2,1) B . (2,-1) C . (2,4) D . (-12,2) 8、(2014湖南岳阳)在下图中,反比例函数xk y 12+=的图象大致是( )D9、(2014四川绵阳)若A (a 1,b 1),B (a 2,b 2)是反比例函数xy 2-=图象上的两个点,且a 1<a 2,则b 1与b 2的大小关系是( )D A .b1<b 2B .b 1 = b 2C .b 1>b 2D .大小不确定10、(2014江苏南京)反比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )CA.第一、二象限 B.第一、三象限 C.第二、四角限D.第三、四象限11、(2014浙江义乌)已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____.-3 12、(2014四川德阳)若反比例函数1y x=-的图象上有两点1(1)A y ,,2(2)B y ,,则1y ______2y (填“>”或“=”或“<”). <13、(2014湖北潜江)如图,反比例函数xy 5=的图象与直线)0(>=k kx y 相交于B 两点,AC ∥y 轴,BC ∥x 轴,则△ABC 的面积等于 个面积单位. 1014、(2014陕西)在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 .B 三、解答题15、(2014四川资阳)如图6,已知A (-4,2)、B (n ,-4)是一次函数y =kx +b 的图象与反比例函数myx=的图象的两个交点.(1) 求此反比例函数和一次函数的解析式;(2) 根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.解:(1) ∵ 点A (-4,2)和点B (n ,-4)都在反比例函数y =xm的图象上, 图6∴2,44.m m n ⎧=⎪⎪-⎨⎪-=⎪⎩解得8,2.m n =-⎧⎨=⎩又由点A (-4,2)和点B (2,-4)都在一次函数y =kx +b 的图象上, ∴42,2 4.k b k b -+=⎧⎨+=-⎩ 解得1,2.k b =-⎧⎨=-⎩∴ 反比例函数的解析式为8y x=-,一次函数的解析式为y =-x -2 . (2) x 的取值范围是x >2或-4<x <0 .16、(2014四川成都)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.解:(1)∵点(21)A -,在反比例函数my x=的图象上, (2)12m =-⨯=-∴.∴反比例函数的表达式为2y x=-. ∵点(1)B n ,也在反比例函数2y x=-的图象上,2n =-∴,即(12)B -,. 把点(21)A -,,点(12)B -,代入一次函数y kx b =+中,得212k b k b -+=⎧⎨+=-⎩,,解得11k b =-⎧⎨=-⎩,.∴一次函数的表达式为1y x =--. (2)在1y x =--中,当0y =时,得1x =-.∴直线1y x =--与x 轴的交点为(10)C -,.∵线段OC 将AOB △分成AOC △和BOC △,1113111212222AOB AOC BOC S S S =+=⨯⨯+⨯⨯=+=△△△∴.17.(2014年云南省,第17题6分)将油箱注满k 升油后,轿车科行驶的总路程S (单位:千米)与平均耗油量a (单位:升/千米)之间是反比例函数关系S =(k 是常数,k ≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米. (1)求该轿车可行驶的总路程S 与平均耗油量a 之间的函数解析式(关系式); (2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米? 解答: 解:(1)由题意得:a =0.1,s =700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;18.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入得解得时,19.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A (2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.20.(2014•浙江宁波,第22题10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.,=,==1=的图象上.。

新北师大版2014届中考基础复习第一轮课件_反比例函数

新北师大版2014届中考基础复习第一轮课件_反比例函数

命题角度: 1. 求一次函数的表达式,利用一次函数的性质求最大或 最小值; 2. 利港]
我市某医药公司把一批药品运往外
地,现有两种运输方式可供选择. 方式一:使用快递公司的邮车运输,装卸收费400元,另 外每公里再加收4元; 方式二:使用快递公司的火车运输,装卸收费820元,另 外每公里再加收2元; (1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运 输路程x(公里)之间的函数关系式; (2)你认为选用哪种运输方式较好,为什么?
第12讲┃ 归类示例
解:(1)填表如下: 档次 第一档 第二档 第三档 每月用电 0<x≤140 140<x≤230 x>230 量x度 (2)54 (3)设y与x的关系式为y=kx+b, ∵点(140,63)和(230,108)在y=kx+b的图象上,
63=140k+b, ∴ 108=230k+b, k=0.5, 解得 b=-7.
第12讲┃ 归类示例
结合函数图象及性质,弄清图象上的一些特殊点的实 际意义及作用,寻找解决问题的突破口,这是解决一次函 数应用题常见的思路.“图形信息”题是近几年的中考热 点考题,解此类问题应做到三个方面:(1)看图找点,(2)见 形想式,(3)建模求解.
第12讲┃ 回归教材
回归教材
“分段函数”模型应用广
第12讲┃ 归类示例
此类问题多以分段函数的形式出现,正确理解分 段函数是解决问题的关键, 一般应从如下几方面入手: (1)寻找分段函数的分段点;(2)针对每一段函数关系, 求解相应的函数关系式;(3)利用条件求未知问题.
第12讲┃ 归类示例 ► 类型之三 利用一次函数解决其他生活实际问题
命题角度: 函数图象在实际生活中的应用.
第12讲┃ 归类示例

2014一次函数与反比例函数辅导

2014一次函数与反比例函数辅导

2014全国中考真题汇编 一次函数与反比例函数的综合一、选择题1. (四川凉山)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )2. (山东青岛)已知一次函数y 1=kx+b 与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )A .x <﹣1或0<x <3B .﹣1<x <0或x >3C .﹣1<x <0D .x >33、(杭州)如图,函数y 1=x -1和函数 y 2=2x 的图象相交于点M (2,m ),N (-1,n ),若y 1>y 2,则x 的取值范围是( )A .x <-1或0<x <2B .x <-1或x >2C .-1<x <0或0<x <2D .-1<x <0或x >24.(浙江台州)如图,双曲线y =mx与直线y =kx +b 交于点M .N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程mx=kx +b 的解为( )A .﹣3,1B .﹣3,3C .﹣1,1D .﹣1,3ABDC5. (宜昌)如图,直线y=x+2与双曲线y=3m x-在第二象限有两个交点,那么m 的取值范围在数轴上表示为( )考点:反比例函数与一次函数的交点问题;在数轴上表示不等式的解集。

A 、B 、C 、D 、6. (贵州毕节)一次函数)0(≠+=k k kx y 和反比例函数)0(≠=k xky 在同一直角坐标系中的图象大致是( )7.(广西百色)二次函数的图象如图,则反比例函数y =﹣xa与一次函数y =bx +c 的图象在同一坐标系内的图象大致是( ).A 二、填空题1.(湖北黄石)若一次函数y=kx+1的图象与反比例函数xy 1=的图象没有公共点,则实数k 的取值范围是2. (浙江宁波)正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =x2(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数y =x2(x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .3. (2011浙江衢州,15,4分)在直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,si n ∠AOB =35,反比例函数(0)ky k x=>的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为 .4. 如图,已知双曲线(0)ky k x=<经过直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(6-,4),则△AOC 的面积为 三、解答题1. (山西)如图,在平面直角坐标系中,一次函数y =k x +b 的图象分别交x 轴、y 轴于A 、B 两点,与反比例函数xmy =的图象交于C 、D 两点,DE ⊥x 轴于点E ,已知C 点的坐标是(6,-1),DE =3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x 为何值时,一次函数的值大于反比例函数的值?2. (重庆綦江)如图,已知A (4,a ),B (-2,-4)是一次函数y =kx +b 的图象和反比例函数y =-xm的图象的交点. (1)求反比例函数和一次函数的解祈式; (2)求△A0B 的面积..3.(重庆)如图,在平面直角坐标系x 0y 中,一次函数y =kx +b (k ≠0)的图象与反比例函数my x(m ≠0)的图象交于二、四象限内的A 、B 两点,与x 轴交于C 点,点B 的坐标为(6,n ).线段OA =5,E 为x 轴上一点,且sin ∠AOE =45.(1)求该反比例函数和一次函数的解析式; (2)求△AOC 的面积.。

综合题:一次函数二次函数反比例函数中考综合题复习

综合题:一次函数二次函数反比例函数中考综合题复习

第一部分:一次函数考点归纳:一次函数:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0)直线位置与k ,b 的关系:(1)k >0直线向上的方向与x 轴的正方向所形成的夹角为锐角; (2)k <0直线向上的方向与x 轴的正方向所形成的夹角为钝角; (3)b >0直线与y 轴交点在x 轴的上方; (4)b =0直线过原点;(5)b <0直线与y 轴交点在x 轴的下方;平移1,直线x y 31=向上平移1个单位,再向右平移1个单位得到直线 。

2, 直线143+-=x y 向下平移2个单位,再向左平移1个单位得到直线________方法:直线y=kx+b ,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

练习:直线m:y=2x+2是直线n 向右平移2个单位再向下平移5个单位得到的,而(2a,7)在直线n 上,则a=____________;函数图形的性质例题:1.下列函数中,y 是x 的正比例函数的是( )A.y=2x-1 B.y=3xC.y=2x2 D.y=-2x+12,一次函数y=-5x+3的图象经过的象限是()A.一、二、三 B.二、三、四C.一、二、四 D.一、三、四3,若函数y=(2m+1)x2+(1-2m)x(m为常数)是正比例函数,则m的值为()A.m>12B.m=12C.m<12D.m=-124、直线y kx b=+经过一、二、四象限,则直线y bx k=-的图象只能是图4中的()5,若一次函数y=(3-k)x-k的图象经过第二、三、四象限,则k的取值范围是()A.k>3 B.0<k≤3 C.0≤k<3 D.0<k<36,已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为()A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-17,已知关于x的一次函数27y mx m=+-在15x-≤≤上的函数值总是正数,则m的取值范围是()A.7m>B.1m>C.17m≤≤D.都不对8、如图,两直线1y kx b=+和2y bx k=+在同一坐标系内图象的位置可能是()9,一次函数y=ax+b与y=ax+c(a>0)在同一坐标系中的图象可能是()xyo xyoxyoxyoA B C D10,,已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点?函数解析式的求法:正比例函数设解析式为: ,一个点的坐标带入求k. 一次函数设解析式为: ;两点带入求k,b1,已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB(1) 求两个函数的解析式;(2)求△AOB 的面积;第二部分:二次函数(待讲)课前小测:1,抛物线3)2x (y 2-+=的对称轴是( )。

2014二次函数中考复习

2014二次函数中考复习

绝密★启用前2014二次函数中考复习一、选择题1.将抛物线23x y =先向上平移3个单位,再向左平移2个单位所得的解析式为( )A .2)3(32-+=x yB .2)3(32++=x yC .3)2(32++=x yD .3)2(32+-=x y 2.函数432-+=x x y 是( )(A )一次函数 (B )二次函数 (C )正比例函数 (D )反比例函数3.将函数y=2x 2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是( )A .2y 2(x 1)5=+-B .2y 2(x 1)5=++C .2y 2(x 1)5=--D .2y 2(x 1)5=-+4.二次函数2(1)2y x =++的最小值是( ).A 、2B 、1C 、-3D 、5.抛物线21y x kx =++与2y xx k =--相交,有一个交点在x 轴上,则k 的值为( ).A .0B . 2C .-1D 6.抛物线y =x 2-4x -5的顶点在第_____象限.( )A .一B .二C .三D .四7.已知点A (-1,0)在抛物线y =ax 2+2上,则此抛物线的解析式为A .y =x 2+2B .y =x 2-2C .y =-x 2+2D .y =-2x 2+28.若二次函数62+-=mx x y 配方后为k x y +-=2)2(,则k m ,的值分别为( )A 、0,6B 、0,2C 、4,6D 、4,29.若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是 ( )A .m =lB .m >lC .m ≥l D.m ≤l10.如果抛物线y=-x2+2(m -1)x+m+1与x 轴交于A 、B 两点,且A 点在x 轴正半轴上,B 点在x 轴的负半轴上,则m 的取值范围应是( )A.m>1B.m>-1C.m<-1D.m<1二、填空题11.点A (x 1,y 1)、B (x 2,y 2)在二次函数2y x 4x 1=--的图象上,若x 2>x 1≥m,有y 2>y 1,则m 的取值范围为 .12.将二次函数2x y =的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是 _。

一次函数 二次函数反比例函数必记知识点

一次函数 二次函数反比例函数必记知识点

一次函数二次函数反比例函数必记知识点1. 一次函数的解析式.正比例函数解析式.反比例函数解析式.2.一次函数的图象是一条. 正比例函数图象是一条经过点的. 反比例函数的图象是.3.确定以上函数的解析式通常用.这种方法首先要设出他们的.对于确定一次函数的解析式需条件, 确定正比例或反比例函数的解析式需条件, 确定二次函数的解析式需条件.4.画一次函数的图象通常取与的交点,他们的坐标是. 画正比例函数的图象通常取。

5. 一次函数的增减性取决于解析式中的,当时,y随x的增大而增大, 当时,y随x的增大而减小. 反比例函数的增减性取决于解析式中的,当时,在每个象限内,y随x的增大而增大, 当时, 在每个象限内y随x的增大而减小.6. 二次函数的解析式共有3种,其一般式是. 其顶点式是,其中顶点坐标为,对称轴是直线。

其两根式是,其中与x轴交点坐标表示为。

7.二次函数y=ax2+bx+c的图象是.它的基本特征是:有,其坐标可表示为;有轴,其解析式为.有方向,由来决定. 二次函数的图象与y轴的交点坐标为( , ).与x轴的交点决定于一元二次方程的,当时,有个交点, 当时,有个交点, 当时,有个交点.所以画图时要体现以上特征.7.二次函数y=ax2+bx+c的值恒大于0的条件为.二次函数y=ax2+bx+c的值恒小于0的条件为.8. 反比例函数的图象关于对称,它与x,y轴永无交点,原因是.判断一点是否在反比例函数的图象上的方法. 9. 二次函数的最值是其顶点的. 当时,它有最值.在x= 时, 最值为. 当时,它有最值.在x= 时, 最值为.10.两个量成正比例关系,则它们的是一个.设y与x成正比例关系,则有关系式. 两个量反成比例关系,则它们的是一个.设y与x成反比例关系,则有关系式.11.设二次函数y=ax2+bx+c与x轴有交点A(x1 , ),B(x2, ),则x1, x2是一元二次方程ax2+bx+c=0的.其中A,B两点关于轴是一对,且x1+ x2= . 两交点AB的距离可表示为.14.在下列坐标系内画出符合要求的一次函数的草图.k>0,b=0 k>0,b>0 k>0,b<0k<0,b=0 k<0,b>0 k<0,b<015.在下列坐标系内画出符合要求的反比例函数的草图.==三角形k>0 k<016.在下列坐标系内画出符合要求的二次函数的草图.y=ax2(a>0) y=ax2(a<0) y=x2与y=-x2 22222y=a(x-h)2(a<0,h>0) y=a(x-h)2(a<0,h<0) y=a(x-h)2+k (y>0)。

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练

中考数学《一次函数》《二次函数》《反比例函数》考点分析及专题训练函数及其图象1、坐标与象限定义1:我们把有顺序的两个数a与b所组成的数对,叫做有序数对,记作(a,b)。

定义2:平面直角坐标系即在平面内画互相垂直,原点重合的两条数轴。

水平的数轴称为x轴或横轴,取向右方向为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向。

两坐标轴的交点为平面直角坐标系的原点。

建立平面直角坐标系后,坐标平面被两条坐标轴分成了四个部分,每个部分称为象限,分别叫做第一象限、第二象限、第三象限、第四象限,坐标轴上的点不属于任何象限。

2、函数与图象定义1:在一个变化过程中,我们称数值发生变化的量为变量,数值始终不变的量为常量。

定义2:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

定义3:一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象。

定义4:用关于自变量的数学式子表示函数与自变量之间的关系,是描述函数的常用方法。

这种式子叫做函数的解析式。

表示函数的方法:解析式法、列表法和图象法。

解析式法可以明显地表示对应规律;列表法直接给出部分函数值;图象法能直观地表示变化趋势。

画函数图象的方法——描点法:第1步,列表。

表中给出一些自变量的值及其对应的函数值;第2步,描点。

在直角坐标系中,以自变量的值为横坐标、相应的函数值为纵坐标,描出表格中数值对应的各点;第3步,连线。

按照横坐标由小到大的顺序,把所描出的各点用平滑曲线连接起来。

1、结合实例进一步体会用有序数对可以表示物体的位置。

2、理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标。

反比例函数一次函数二次函数性质及图像

反比例函数一次函数二次函数性质及图像

反比例函数1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交K≠0..2、性质:1.当k>0时;图象分别位于第一、三象限;同一个象限内;y随x的增大而减小;当k<0时;图象分别位于二、四象限;同一个象限内;y随x的增大而增大..2.k>0时;函数在x<0上同为减函数、在x>0上同为减函数;k<0时;函数在x<0上为增函数、在x>0上同为增函数..定义域为x≠0;值域为y≠0..3.因为在y=k/xk≠0中;x不能为0;y也不能为0;所以反比例函数的图象不可能与x轴相交;也不可能与y轴相交..4. 在一个反比例函数图象上任取两点P;Q;过点P;Q分别作x轴;y轴的平行线;与坐标轴围成的矩形面积为S1;S2则S1=S2=|K|5. 反比例函数的图象既是轴对称图形;又是中心对称图形;它有两条对称轴y=x y=-x即第一三;二四象限角平分线;对称中心是坐标原点..6.若设正比例函数y=mx与反比例函数y=n/x交于A、B两点m、n同号;那么A B两点关于原点对称..7.设在平面内有反比例函数y=k/x和一次函数y=mx+n;要使它们有公共交点;则n^2+4k·m≥不小于0..8.反比例函数y=k/x的渐近线:x轴与y轴..9.反比例函数关于正比例函数y=x;y=-x轴对称;并且关于原点中心对称.10.反比例上一点m向x、y分别做垂线;交于q、w;则矩形mwqoo为原点的面积为|k|11.k值相等的反比例函数重合;k值不相等的反比例函数永不相交..12.|k|越大;反比例函数的图象离坐标轴的距离越远..13.反比例函数图象是中心对称图形;对称中心是原点一次函数(一)函数1、确定函数定义域的方法:1关系式为整式时;函数定义域为全体实数; 2关系式含有分式时;分式的分母不等于零;3关系式含有二次根式时;被开放方数大于等于零; 4关系式中含有指数为零的式子时;底数不等于零;5实际问题中;函数定义域还要和实际情况相符合;使之有意义.. (二)一次函数 1、一次函数的定义一般地;形如y kx b =+k ;b 是常数;且0k ≠的函数;叫做一次函数;其中x 是自变量..当0b =时;一次函数y kx =;又叫做正比例函数..⑴一次函数的解析式的形式是y kx b =+;要判断一个函数是否是一次函数;就是判断是否能化成以上形式. ⑵当0b =;0k ≠时;y kx =仍是一次函数.⑶当0b =;0k =时;它不是一次函数.⑷正比例函数是一次函数的特例;一次函数包括正比例函数. 2、正比例函数及性质一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数.注:正比例函数一般形式 y=kx k 不为零 ① k 不为零 ② x 指数为1 ③ b 取零当k>0时;直线y=kx 经过三、一象限;从左向右上升;即随x 的增大y 也增大;当k<0时;•直线y=kx 经过二、四象限;从左向右下降;即随x 增大y 反而减小.(1) 解析式:y=kxk 是常数;k ≠0 (2) 必过点:0;0、1;k(3) 走向:k>0时;图像经过一、三象限;k<0时;•图像经过二、四象限 (4) 增减性:k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小 (5) 倾斜度:|k|越大;越接近y 轴;|k|越小;越接近x 轴 3、一次函数及性一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;y=kx +b 即y=kx;所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx+b k 不为零 ① k 不为零 ②x 指数为1 ③ b 取任意实数一次函数y=kx+b 的图象是经过0;b 和-kb;0两点的一条直线;我们称它为直线y=kx+b;它可以看作由直线y=kx 平移|b|个单位长度得到.当b>0时;向上平移;当b<0时;向下平移 1解析式:y=kx+bk 、b 是常数;k ≠0 2必过点:0;b 和-kb;0 3走向: k>0;图象经过第一、三象限;k<0;图象经过第二、四象限 b>0;图象经过第一、二象限;b<0;图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><00b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<00b k 直线经过第二、三、四象限4增减性: k>0;y 随x 的增大而增大;k<0;y 随x 增大而减小.5倾斜度:|k|越大;图象越接近于y 轴;|k|越小;图象越接近于x 轴.6图像的平移: 当b>0时;将直线y=kx 的图象向上平移b 个单位;当b<0时;将直线y=kx 的图象向下平移b 个单位.一次函数()0k kx b k =+≠k ;b 符号 0k >0k < 0b > 0b < 0b = 0b >0b <0b = 图象Ox yyx OOx yyx OOx yyxO性质y 随x 的增大而增大y 随x 的增大而减小4、一次函数y=kx +b 的图象的画法.根据几何知识:经过两点能画出一条直线;并且只能画出一条直线;即两点确定一条直线;所以画一次函数的图象时;只要先描出两点;再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:0;b;.即横坐标或纵坐标为0的点.b>0 b<0 b=0k>0经过第一、二、三象限 经过第一、三、四象限 经过第一、三象限图象从左到右上升;y 随x 的增大而增大k<0 经过第一、二、四象限 经过第二、三、四象限 经过第二、四象限图象从左到右下降;y 随x 的增大而减小5、正比例函数与一次函数之间的关系一次函数y=kx +b 的图象是一条直线;它可以看作是由直线y=kx 平移|b|个单位长度而得到当b>0时;向上平移;当b<0时;向下平移6、正比例函数和一次函数及性质正比例函数 一次函数概 念 一般地;形如y=kxk 是常数;k≠0的函数叫做正比例函数;其中k 叫做比例系数 一般地;形如y=kx +bk;b 是常数;k≠0;那么y 叫做x 的一次函数.当b=0时;是y=kx;所以说正比例函数是一种特殊的一次函数.自变量 范 围X 为全体实数图 象 一条直线必过点 0;0、1;k 0;b 和-k b ;0 走 向 k>0时;直线经过一、三象限; k<0时;直线经过二、四象限 k >0;b >0;直线经过第一、二、三象限 k >0;b <0直线经过第一、三、四象限 k <0;b >0直线经过第一、二、四象限 k <0;b <0直线经过第二、三、四象限 增减性 k>0;y 随x 的增大而增大;从左向右上升 k<0;y 随x 的增大而减小..从左向右下降 倾斜度 |k|越大;越接近y 轴;|k|越小;越接近x 轴 图像的 平 移 b>0时;将直线y=kx 的图象向上平移b 个单位;b<0时;将直线y=kx 的图象向下平移b 个单位.7、直线11b x k y +=01≠k 与22b x k y +=02≠k 的位置关系 1两直线平行⇔21k k =且21b b ≠ 2两直线相交⇔21k k ≠3两直线重合⇔21k k =且21b b = 4两直线垂直⇔121-=k k8、用待定系数法确定函数解析式的一般步骤:1根据已知条件写出含有待定系数的函数关系式;2将x 、y 的几对值或图象上的几个点的坐标代入上述函数关系式中得到以待定系数为未知数的方程; 3解方程得出未知系数的值;4将求出的待定系数代回所求的函数关系式中得出所求函数的解析式.9、一元一次方程与一次函数的关系任何一元一次方程到可以转化为ax+b=0a;b 为常数;a ≠0的形式;所以解一元一次方程可以转化为:当某个一次函数的值为0时;求相应的自变量的值. 从图象上看;相当于已知直线y=ax+b 确定它与x 轴的交点的横坐标的值.10、一次函数与一元一次不等式的关系任何一个一元一次不等式都可以转化为ax+b>0或ax+b<0a;b 为常数;a ≠0的形式;所以解一元一次不等式可以看作:当一次函数值大小于0时;求自变量的取值范围.11、一次函数与二元一次方程组1以二元一次方程ax+by=c 的解为坐标的点组成的图象与一次函数y=bcx b a +-的图象相同. (2)二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解可以看作是两个一次函数y=1111b cx b a +-和y=2222b c x b a +-的图象交点.二次函数一、二次函数概念:1.二次函数的概念:一般地;形如2y ax bx c =++a b c ,,是常数;0a ≠的函数;叫做二次函数.. 这里需要强调:和一元二次方程类似;二次项系数0a ≠;而b c ,可以为零.二次函数的定义域是全体实数. 2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数;右边是关于自变量x 的二次式;x 的最高次数是2. ⑵ a b c ,,是常数;a 是二次项系数;b 是一次项系数;c 是常数项.二、二次函数的基本形式① 一般式:()()20f x ax bx c a =++≠ ② 顶点式:()()()20f x a x m n a =++≠ ③ 零点式:()()()()120f x a x x x x a =--≠当240b ac∆=->时;二次函数的图像和x轴有两个交点()11,0M x;()22,0M x;线段1212M M x xa a=-==.当240b ac∆=-=时;二次函数的图像和x轴有两个重合的交点,02bMa⎛⎫-⎪⎝⎭.特别地;当且仅当0b=时;二次函数()()20f x ax bx c a=++≠为偶函数.1. 二次函数基本形式:2y ax=的性质:a 的绝对值越大;抛物线的开口越小..2. 2y ax c=+的性质:上加下减..3. ()2y a x h=-的性质:左加右减..4.()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+;确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变;将其顶点平移到()h k ,处;具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移;负左移;k 值正上移;负下移”. 概括成八个字“左加右减;上加下减”.方法二:⑴c bx ax y ++=2沿y 轴平移:向上下平移m 个单位;c bx ax y ++=2变成m c bx ax y +++=2或m c bx ax y -++=2⑵c bx ax y ++=2沿轴平移:向左右平移m 个单位;c bx ax y ++=2变成c m x b m x a y ++++=)()(2或c m x b m x a y +-+-=)()(2四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看;()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式;后者通过配方可以得到前者;即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭;其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+;确定其开口方向、对称轴及顶点坐标;然后在对称轴两侧;左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,;()20x ,若与x 轴没有交点;则取两组关于对称轴对称的点.画草图时应抓住以下几点:开口方向;对称轴;顶点;与x 轴的交点;与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时;抛物线开口向上;对称轴为2bx a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a <-时;y 随x 的增大而减小;当2b x a >-时;y 随x 的增大而增大;当2bx a =-时;y 有最小值244ac b a -.2. 当0a <时;抛物线开口向下;对称轴为2b x a =-;顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时;y 随x 的增大而增大;当2b x a >-时;y 随x 的增大而减小;当2bx a=-时;y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++a ;b ;c 为常数;0a ≠;2. 顶点式:2()y a x h k =-+a ;h ;k 为常数;0a ≠;3. 两根式:12()()y a x x x x =--0a ≠;1x ;2x 是抛物线与x 轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式;但并非所有的二次函数都可以写成交点式;只有抛物线与x 轴有交点;即240b ac -≥时;抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中;a 作为二次项系数;显然0a ≠.⑴ 当0a >时;抛物线开口向上;a 的值越大;开口越小;反之a 的值越小;开口越大;⑵ 当0a <时;抛物线开口向下;a 的值越小;开口越小;反之a 的值越大;开口越大.总结起来;a 决定了抛物线开口的大小和方向;a 的正负决定开口方向;a 的大小决定开口的大小.2. 一次项系数b在二次项系数a 确定的前提下;b 决定了抛物线的对称轴.⑴ 在0a >的前提下;当0b >时;02ba-<;即抛物线的对称轴在y 轴左侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba->;即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下;结论刚好与上述相反;即 当0b >时;02ba->;即抛物线的对称轴在y 轴右侧; 当0b =时;02ba-=;即抛物线的对称轴就是y 轴; 当0b <时;02ba-<;即抛物线对称轴在y 轴的左侧. ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ;在y 轴的右侧则0<ab ;概括的说就是“左同右异”3. 常数项c⑴ 当0c >时;抛物线与y 轴的交点在x 轴上方;即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时;抛物线与y 轴的交点为坐标原点;即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时;抛物线与y 轴的交点在x 轴下方;即抛物线与y 轴交点的纵坐标为负. 总结起来;c 决定了抛物线与y 轴交点的位置. 总之;只要a b c ,,都确定;那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式;通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点;选择适当的形式;才能使解题简便.一般来说;有如下几种情况:1. 已知抛物线上三点的坐标;一般选用一般式;2. 已知抛物线顶点或对称轴或最大小值;一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标;一般选用两根式;4. 已知抛物线上纵坐标相同的两点;常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况;可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后;得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后;得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后;得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后;得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后;得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后;得到的解析式是()2y a x h k =-+-;4. 关于顶点对称即:抛物线绕顶点旋转180° 2y ax bx c =++关于顶点对称后;得到的解析式是222b y ax bx c a =--+-; ()2y a x h k =-+关于顶点对称后;得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后;得到的解析式是()222y a x h m n k =-+-+-根据对称的性质;显然无论作何种对称变换;抛物线的形状一定不会发生变化;因此a 永远不变.求抛物线的对称抛物线的表达式时;可以依据题意或方便运算的原则;选择合适的形式;习惯上是先确定原抛物线或表达式已知的抛物线的顶点坐标及开口方向;再确定其对称抛物线的顶点坐标及开口方向;然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系二次函数与x 轴交点情况:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况.图象与x 轴的交点个数:① 当240b ac ∆=->时;图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠;其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-=. ② 当0∆=时;图象与x 轴只有一个交点;③ 当0∆<时;图象与x 轴没有交点.1' 当0a >时;图象落在x 轴的上方;无论x 为任何实数;都有0y >;2' 当0a <时;图象落在x 轴的下方;无论x 为任何实数;都有0y <.2. 抛物线2y ax bx c =++的图象与y 轴一定相交;交点坐标为(0;)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标;需转化为一元二次方程;⑵ 求二次函数的最大小值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ;b ;c 的符号;或由二次函数中a ;b ;c 的符号判断图象的位置;要数形结合;⑷ 二次函数的图象关于对称轴对称;可利用这一性质;求和已知一点对称的点坐标;或已知与x 轴的一个交点坐标;可由对称性求出另一个交点坐标.二次函数与一元二次方程、一元二次不等式的关系从函数观点来看;一元二次不等式()200ax bx c a ++>≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点的横坐标的集合;一元二次不等式()200ax bx c a ++<≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点的横坐标的集合;一元二次不等式()200ax bx c a ++≥≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴上方的点和与x 轴的交点的横坐标的集合;一元二次不等式()200ax bx c a ++≤≠的解集就是二次函数()()20f x ax bx c a =++≠的图像上;位于x 轴下方的点和与x 轴的交点的横坐标的集合.一元二次方程()200ax bx c a ++=≠的解就是二次函数()()20f x ax bx c a =++≠的图像上;与x 轴的交点的横坐标.。

2014届人教版中考数学复习方案(12)反比例函数(20页)

2014届人教版中考数学复习方案(12)反比例函数(20页)

一、三象限 (x,y同号)
k<0
二、四象限 (x,y异号)
在每个回归教材
第12课时┃ 反比例函数
(3)反比例函数比例系数k的几何意义:
推导:如图 12-1,过双曲线上任一点作 x 轴, y 轴的垂线 PM,PN 所得的矩形 PMON 的面积 S k =PM· PN=|y|· |x|=|xy|.∵y=x,∴xy=k,∴S=|k|. k 的几何意义:反比例函数图象上的点(x,y) 具有两坐标之积(xy=k)为常数这一特点, 即过双曲 线上任意一点,向两坐标轴作垂线,两条垂线与坐 标轴所围成的矩形的面积为常数|k|. 规律:过双曲线上任意一点,向两坐标轴作垂 线,一条垂线与坐标轴、原点所围成的三角形的面 1 积为常数 |k|. 2
考点聚焦 归类探究 回归教材
第12课时┃ 反比例函数
10 将 A (2,m)代入 y= 中,得 m=5,∴A(2,5). x 将 A (2,5),B(-5,-2)的坐标代入 y=ax+b 中,
则一次函数的解析式为 y=x+3. (2)由 y=x+3 得 C(-3,0),即 OC=3. ∵S △BCE=S △BCO ,∴CE =OC=3, ∴OE =6,即 E(-6,0).
考点聚焦 归类探究 回归教材
图12-1
第12课时┃ 反比例函数
考点3 反比例函数的应用
利用待定系数法确定反比例函数:
求函数解析式 的方法步骤
k ; x ②代入图象上一个点的坐标,即x,y的一对对
①根据两变量之间的反比例关系,设y=
应值,求出k的值;
③写出关系式
反比例函数 与一次函数的 图象的交点的 求法
第12课时
反比例函数
第12课时┃ 反比例函数

精品 2014年中考数学总复习--函数

精品 2014年中考数学总复习--函数

三 函数3.1 一次函数 反比例函数例1.阅读以下材料:对于三个数a,b,c 用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如: {}123412333M -++-==,,;min{-1,2,3}=-1;⎩⎨⎧->--≤=-)1(1)1(},2,1min{a a a a. 解决下列问题:(1)填空:min{sin30o ,sin45o ,tan30o}= ;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x ;②根据①,你发现了结论“如果M{a,b,c}= min{a,b,c},那么 (填a,b,c 的大小关系)”. ③运用②的结论,填空:M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}若,则x+y= .(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x 的图象(不需列表描点).通过观察图象,填空:min{x+1, (x-1)2,2-x}的 最大值为 .例2.已知一次函数物图象经过A(-2,-3),B(1,3)两点. (1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.函数的概念概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数. 自变量的取值范围:正比例函数的一般形式:y=kx(k ≠0),一次函数的一般形式:y=kx+b(k ≠0). 一次函数y kx b =+的图象是经过 (k b -,0)和(0,b )两点的一条直线.反比例函数:一般地,如果两个变量关于坐标轴、原点对称的点的坐标的特征:点P (a,b )关于x 轴的对称点是),(1b a P -;),(2b a P -,(3ba P --例3.已知一次函数)4()23(b x a y --+=,求字母a 、b 为何值时:(1)y 随x 的增大而增大;(2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3;(5)图象与y 轴交点在x 轴下方.例4.已知21y y y +=,y 1与 x 成正比例,y 2与x 成反比例,并且当x=2时,y=6;当 x=3时,y=5,求y 与x 的函数关系式。

2014年全国中考数学试题分类汇编12 反比例函数(含解析)

2014年全国中考数学试题分类汇编12 反比例函数(含解析)

反比例函数一、选择题1. (2014•福建泉州,第7题3分)在同一平面直角坐标系中,函数y=mx+m与y =(m≠0)的图象可能是()B C D.=的图象可知2. (2014•广西贺州,第10题3分)已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.考点:二次函数的图象;一次函数的图象;反比例函数的图象.分析:先根据二次函数的图象得到a>0,b<0,c<0,再根据一次函数图象与系数的关系和反比例函数图象与系数的关系判断它们的位置.解答:解:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x=﹣>0,∴b<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴一次函数y=cx +的图象过第二、三、四象限,反比例函数y =分布在第二、四象限.故选B.点评:本题考查了二次函数的图象:二次函数y=ax2+bx+c(a、b、c为常数,a≠0)的图象为抛物线,当a>0,抛物线开口向上;当a<0,抛物线开口向下.对称轴为直线x=﹣;与y轴的交点坐标为(0,c).也考查了一次函数图象和反比例函数的图象.3.(2014年天津市,第9 题3分)已知反比例函数y =,当1<x<2时,y的取值范围是()A.0<y<5 B.1<y<2 C.5<y<10 D.y>10考点:反比例函数的性质.菁优网分析:将x=1和x=2分别代入反比例函数即可确定函数值的取值范围.解答:解:∵反比例函数y=中当x=1时y=10,当x=2时,y=5,∴当1<x<2时,y的取值范围是5<y<10,故选C.点评:本题考查了反比例函数的性质:(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.4.(2014•新疆,第11题5分)若点A(1,y1)和点B(2,y2)在反比例函数y=图象上,则y1与y2的大小关系是:y1y2(填“>”、“<”或“=”).的图象上,=1,>5.(2014•温州,第10题4分)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y 轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()AB•AB•ADAB•AD6.(2014•四川自贡,第9题4分)关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()...D.7.(2014·云南昆明,第8题3分)左下图是反比例函数)0(≠=k k xky 为常数,的图像,则一次函数k kx y -=的图像大致是( )8. (2014•湘潭,第8题,3分)如图,A 、B 两点在双曲线y =上,分别经过A 、B 两点向轴作垂线段,已知S 阴影=1,则S 1+S 2=( )(第1题图)DC BA9. (2014•益阳,第6题,4分)正比例函数y=6x的图象与反比例函数y=的图象的交点位于()根据反比例函数与一次函数的交点问题解方程组得或的图象的交点坐标为(10. (2014•株洲,第4题,3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()11. (2014•扬州,第3题,3分)若反比例函数y=(k≠0)的图象经过点P(﹣2,3),则该函数的图象的点是()(二.填空题1. (2014•广西玉林市、防城港市,第18题3分)如图,OABC是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是①④(把所有正确的结论的序号都填上).||ON,所以有|=(||ON=||((2.(2014年天津市,第14题3分)已知反比例函数y=(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为1.考点:反比例函数的性质.菁优网专题:开放型.分析:反比例函数y=(k为常数,k≠0)的图象在第一,三象限,则k>0,符合上述条件的k的一个值可以是1.(正数即可,答案不唯一)解答:解:∵反比例函数的图象在一、三象限,∴k>0,只要是大于0的所有实数都可以.例如:1.故答案为:1.点评:此题主要考查反比例函数图象的性质:(1)k>0时,图象是位于一、三象限;(2)k<0时,图象是位于二、四象限.3.(2014•武汉,第15题3分)如图,若双曲线y=与边长为5的等边△AOB的边OA,AB分别相交于C,D两点,且OC=3BD,则实数k的值为.x坐标为(,﹣,x﹣=故答案为:4.(2014•邵阳,第13题3分)若反比例函数的图象经过点(﹣1,2),则k的值是﹣2 .5.(2014•孝感,第17题3分)如图,Rt△AOB的一条直角边OB在x轴上,双曲线y=经过斜边OA的中点C,与另一直角边交于点D.若S△OCD=9,则S△OBD的值为6.==.,=kk三角形的面积是6.(2014•浙江湖州,第15题4分)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为.分析:设OC=a,根据点D在反比例函数图象上表示出CD,再根据相似三角形对应边成比例列式求出AC,然后根据中点的定义表示出点B的坐标,再根据点B在反比例函数图象上表示出a、k的关系,然后用a表示出点B的坐标,再利用待定系数法求一次函数解析式解答.解:设OC=a,∵点D在y=上,∴CD=,∵△OCD∽△ACO,∴=,∴AC==,∴点A(a,),∵点B是OA的中点,∴点B的坐标为(,),∵点B在反比例函数图象上,∴=,解得,a2=2k,∴点B的坐标为(,a),设直线OA的解析式为y=mx,则m•=a,解得m=2,所以,直线OA的解析式为y=2x.故答案为:y=2x.点评:本题考查了相似三角形的性质,反比例函数图象上点的坐标特征,用OC的长度表示出点B的坐标是解题的关键,也是本题的难点.7.(2014年江苏南京,第11题,2分)已知反比例函数y=的图象经过点A(﹣2,3),则当x=﹣3时,y=.考点:反比例函数分析:先把点A(﹣2,3)代入y=求得k的值,然后将x=﹣3代入,即可求出y的值.解答:∵反比例函数y=的图象经过点A(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数解析式为y=﹣,∴当x=﹣3时,y=﹣=2.故答案是:2.点评:本题考查了反比例函数图象上点的坐标特征.利用待定系数法求得反比例函数解析式是解题的关键.8.(2014•滨州,第17题4分)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6 .=,解得9.(2014•菏泽,第13题3分)如图,Rt△ABO中,∠AOB=90°,点A在第一象限、点B在第四象限,且AO:BO=1:,若点A(x0,y0)的坐标x0,y0满足y0=,则点B(x,y)的坐标x,y所满足的关系式为y=﹣2x.))10.(2014•济宁,第14题3分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=的图象上,OA=1,OC=6,则正方形ADEF的边长为2.,设,=(三.解答题1. (2014•福建泉州,第26题14分)如图,直线y=﹣x+3与x,y轴分别交于点A,B,与反比例函数的图象交于点P(2,1).(1)求该反比例函数的关系式;(2)设PC⊥y轴于点C,点A关于y轴的对称点为A′;①求△A′BC的周长和sin∠BA′C的值;②对大于1的常数m,求x轴上的点M的坐标,使得sin∠BMC=.,然后把点=.的图象上,.=3+BC3=3.+.==.的坐标为(的坐标为(﹣=═=′=﹣+﹣,)和(﹣﹣+(﹣联想到点2. (2014•广东,第23题9分)如图,已知A(﹣4,),B(﹣1,2)是一次函数y=kx+b 与反比例函数y=(m≠0,m<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?(2)求一次函数解析式及m的值;(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.考点:反比例函数与一次函数的交点问题.分析:(1)根据一次函数图象在上方的部分是不等式的解,观察图象,可得答案;(2)根据待定系数法,可得函数解析式;(3)根据三角形面积相等,可得答案.解答:解:(1)由图象得一次函数图象在上的部分,﹣4<x<﹣1,当﹣4<x<﹣1时,一次函数大于反比例函数的值;(2)设一次函数的解析式为y=kx+b,y=kx+b的图象过点(﹣4,),(﹣1,2),则,解得一次函数的解析式为y=x+,反比例函数y=图象过点(﹣1,2),m=﹣1×2=﹣2;(3)连接PC、PD,如图,设P(x,x+)由△PCA和△PDB面积相等得(x+4)=|﹣1|×(2﹣x﹣),x=﹣,y=x+=,∴P点坐标是(﹣,).点评:本题考查了反比例函数与一次函数的交点问题,利用了函数与不等式的关系,待定系数法求解析式.3. (2014•珠海,第19题7分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.的图象过点﹣,解得.,解得4.(2014年四川资阳,第20题8分)如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.菁优网分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.5.(2014年云南省,第17题6分)将油箱注满k升油后,轿车科行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?考点:反比例函数的应用.分析:(1)将a=0.1,s=700代入到函数的关系S=中即可求得k的值,从而确定解析式;(2)将a=0.08代入求得的函数的解析式即可求得s的值.解答:解:(1)由题意得:a=0.1,s=700,代入反比例函数关系S=中,解得:k=sa=70,所以函数关系式为:s=;(2)将a=0.08代入s=得:s===875千米,故该轿车可以行驶多875米;点评:本题考查了反比例函数的应用,解题的关键是从实际问题中抽象出反比例函数模型.6.(2014•舟山,第22题10分)实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=﹣200x2+400x 刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=(k>0)刻画(如图所示).(1)根据上述数学模型计算:①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.,则>7.(2014•襄阳,第22题6分)如图,一次函数y1=﹣x+2的图象与反比例函数y2=的图象相交于A,B两点,与x轴相交于点C.已知tan∠BOC=,点B的坐标为(m,n).(1)求反比例函数的解析式;(2)请直接写出当x<m时,y2的取值范围.= =,﹣=,=,即得﹣8.(2014•四川自贡,第22题12分)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入得,时,9.(2014•浙江湖州,第20题分)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.分析:(1)根据待定系数法,可得答案;(2)根据三角形的面积公式,可得答案.解:(1)把A(2,5)分别代入y=和y=x+b,得,解得k=10b=3;(2)作AC⊥x轴与点C,,由(1)得直线AB的解析式为y=x+3,∴点B的坐标为(﹣3,0),OB=3,点A的坐标是(2,5),∴AC=5,∴=5=.点评:本题考查了反比例函数与一次函数的交点问题,利用了待定系数法,三角形的面积公式.10.(2014•浙江宁波,第22题10分)如图,点A、B分别在x,y轴上,点D在第一象限内,DC⊥x轴于点C,AO=CD=2,AB=DA=,反比例函数y=(k>0)的图象过CD的中点E.(1)求证:△AOB≌△DCA;(2)求k的值;(3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,是判断点G是否在反比例函数的图象上,并说明理由.=的图象上.,=,==1=的图象上.11. (2014•泰州,第26题,14分)平面直角坐标系xOy中,点A、B分别在函数y1=(x >0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(第1题图)(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.的纵坐标分别为、﹣((﹣))(﹣﹣=0=(,),﹣,然后比较﹣(﹣,而××的纵坐标分别为、﹣)))))﹣(=0)=0=(),,﹣,﹣(﹣)(12.(2014•呼和浩特,第23题8分)如图,已知反比例函数y=(x>0,k是常数)的图象经过点A(1,4),点B(m,n),其中m>1,AM⊥x轴,垂足为M,BN⊥y轴,垂足为N,AM与BN的交点为C.(1)写出反比例函数解析式;(2)求证:△ACB∽△NOM;(3)若△ACB与△NOM的相似比为2,求出B点的坐标及AB所在直线的解析式.==,再根据反比例函数解析式可得=,则,而=,可得=,再由(;==上,===,=)x.13.(2014•德州,第21题10分)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.,得:,得:=2)代入得:,=)=,得到14.(2014•菏泽,第17题7分)(2)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数y=(x>0)的图象相交于点B(2,1).①求m的值和一次函数的解析式;②结合图象直接写出:当x>0时,不等式kx+b>的解集.,15.(2014年山东泰安,第26题)如图①,△OAB中,A(0,2),B(4,0),将△AOB向右平移m个单位,得到△O′A′B′.(1)当m=4时,如图②.若反比例函数y=的图象经过点A′,一次函数y=ax+b的图象经过A′、B′两点.求反比例函数及一次函数的表达式;(2)若反比例函数y=的图象经过点A′及A′B′的中点M,求m的值.分析:(1)根据题意得出:A′点的坐标为:(4,2),B′点的坐标为:(8,0),进而利用待定系数法求一次函数解析式即可;(2)首先得出A′B′的中点M的坐标为:(m+4﹣2,1)则2m=m+2,求出m的值即可.解:(1)由图②值:A′点的坐标为:(4,2),B′点的坐标为:(8,0),∴k=4×2=8,∴y=,把(4,2),(8,0)代入y=ax+b得:,解得:,∴经过A′、B′两点的一次函数表达式为:y=﹣x+4;(2)当△AOB向右平移m个单位时,A′点的坐标为:(m,2),B′点的坐标为:(m+4,0)则A′B′的中点M的坐标为:(m+4﹣2,1)∴2m=m+2,解得:m=2,∴当m=2时,反比例函数y=的图象经过点A′及A′B′的中点M.点评:此题主要考查了待定系数法求一次函数解析式以及坐标的平移等知识,得出A′,B′点坐标是解题关键.。

备战2014年中考“二次函数”分类汇编(含答案

备战2014年中考“二次函数”分类汇编(含答案

近年全国各地 二次函数 中考题汇编要点一、二次函数的表达式 一、选择题1、(2012·芜湖中考)二次函数y =ax 2+bx +c 的图象如图所示,反比例函数y = ax 与正比例函数y =(b+c )x 在同一坐标系中的大致图象可能是( )2、(2012·安徽中考)若二次函数52++=bx x y 配方后为k x y +-=2)2(则b 、k 的值分别为( )A .0 5B .0. 1 C.-4. 5 D.-4. 13、(2009·庆阳中考)图(1)是一个横断面为抛物线形状的拱桥,当水面在l 时,拱顶(拱桥洞的最高点)离水面2m ,水面宽4m .如图(2)建立平面直角坐标系,则抛物线的关系式是( ) A .22y x =- B .22y x = C .212y x =-D .212y x =4、(2013·济宁中考)已知二次函数的图象如图所示,则这个二次函数的表达式为( )A .223y x x =-+B .223y x x =--C .223y x x =+-D .223y x x =++5.(2013·庆阳中考) 若2y ax bx c =++,则由表格中信息可知y 与x 之间的函数关系式是( )x1-12ax1图(1) 图(2)2ax bx c ++8 3A.243y x x =-+B.234y x x =-+C.233y x x =-+D.248y x x =-+6、(2013·巴中中考)巴人广场中心标志性建筑处有高低不同的各种喷泉,其中一支高为1米的喷水管喷水最大高度为3米,此时喷水水平距离为12米,在如图4所示的坐标系中,这支喷泉满足的函数关系式是( )A )21()32y x =--+ (B )213()12y x =-+(C )218()32y x =--+ (D )218()32y x =-++二、填空题7、(2010·襄樊中考)抛物线2y x bx c =-++的图象如图所示,则此抛物线的解析式为 .8、(2009·安徽中考)已知二次函数的图象经过原点及点(12-,14-),且图象与x 轴的另一交点到原点的距离为1,则该二次函数的解析式为 .9、(2012·苏州中考)初三数学课本上,用“描点法”画二次函数2y ax bx c =++的图象时,列了如下表格:x… 2- 1- 0 1 2 …y…162- 4- 122- 2- 122- …根据表格上的信息回答问题:该二次函数2y ax bx c =++在3x =时,y = .三、解答题10、(2013∙宁波中考)如图,已知二次函数c bx x y ++-=221的图象经过A (2,0)、B (0,-6)两点。

2014年全国中考数学试题汇编《一次函数》(02)

2014年全国中考数学试题汇编《一次函数》(02)

全国中考数学试题汇编《一次函数》(02)选择题31.(2007•宁波)如图是一次函数y=kx+b 与反比例函数y=的图象,则关于x 的方程﹣kx=b 的解是( )32.(2007•龙岩)函数y=x+m 与(m ≠0)在同一坐标系内的图象可以是( ).CD .33.(2007•兰州)已知k 1<0<k 2,则函数y=k 1x 和的图象大致是( ) .CD .34.(2007•大连)将函数y=kx+k 与函数的大致图象画在同一坐标系中,正确的函数图象是( ).CD .35.(2007•防城港)已知函数y=﹣x+5,y=,它们的共同点是:①函数y 随x 的增大而减少;②都有部分图象在第36.(2007•滨州)如图,点P 为反比例函数上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y=kx﹣1的图象为( ).CD .37.(2009•攀枝花)已知二次函数y=ax 2+bx+c 的图象如图所示,则在同一坐标系中,一次函数y=ax+c 和反比例函数y=的图象大致是( ).CD ..CD .39.(2007•烟台)下列图中阴影部分的面积相等的是( )40.(2007•双柏县)在同一平面直角坐标系中,一次函数y=ax+b 和二次函数y=ax 2+bx 的图象可能为( ).CD .41.(2007•随州)下列四个命题:①点(﹣2,3)在第二象限;②直线y=x ﹣2与y 轴交于点(0,﹣2);③直线y=﹣x 与双曲线y=有两个交点;④抛物线y=x 2﹣3x+4与x 轴没有交点.其中正确命题是( )42.(2007•衢州)如图,已知直线l 的解析式是y=x ﹣4,并且与x 轴、y 轴分别交于A 、B 两点.一个半径为1.5的⊙C ,圆心C 从点(0,1.5)开始以每秒0.5个单位的速度沿着y 轴向下运动,当⊙C 与直线l 相切时,则该圆运动的时间为( )43.(2007•丽水)如图,直线y=﹣x+4与x 轴,y 轴分别交于A ,B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是( )填空题 44.(2007•绍兴)如图,矩形ABCD 的边AB 在x 轴上,且AB 的中点与原点重合,AB=2,AD=1,过定点Q (0,2)和动点P (a ,0)的直线与矩形ABCD 的边有公共点,则实数a 的取值范围是 _________ .45.(2007•张家界)若有意义,则函数y=kx﹣1的图象不经过第_________象限.46.(2007•益阳)某函数的图象经过(1,﹣1),且函数y的值随自变量x的值增大而增大.请你写出一个符合上述条件的函数关系式:_________.47.(2007•贵港)在一次函数y=x+2中,y的值随x值的增大而_________.48.(2007•白银)若一次函数y=kx+b的图象经过点(0,﹣2)和(﹣2,0),则y随x的增大而_________.49.(2007•钦州)请写出直线y=6x上的一个点的坐标:_________.50.(2007•哈尔滨)直线y=kx+b经过点A(﹣2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为_________.51.(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是_________.52.(2007•常州)已知一次函数y=kx+b的图象经过点A(0,﹣2),B(1,0),则b=_________,k=_________.53.(2007•上海)如图,正比例函数图象经过点A,该函数解析式是_________.55.(2007•孝感)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是_________.56.(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是_________.(结果保留根号)57.(2007•南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式_________.58.(2007•江西)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(升)的函数关系式是_________.59.(2007•巴中)2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下:行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y(元)与乘车距离x(千米)x>3之间的函数关系式为_________.60.(2007•南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是_________.2007年全国中考数学试题汇编《一次函数》(02)参考答案与试题解析选择题31.(2007•宁波)如图是一次函数y=kx+b与反比例函数y=的图象,则关于x 的方程﹣kx=b的解是()的图象交于点(﹣变形为:y=y=﹣y=32.(2007•龙岩)函数y=x+m与(m≠0)在同一坐标系内的图象可以是().C D.y=的图象可知的图象可知的图象可知33.(2007•兰州)已知k1<0<k2,则函数y=k1x和的图象大致是().C D.34.(2007•大连)将函数y=kx+k与函数的大致图象画在同一坐标系中,正确的函数图象是().C D.35.(2007•防城港)已知函数y=﹣x+5,y=,它们的共同点是:①函数y随x的增大而减少;②都有部分图象在第y=过一、三象限,故都有部分图象在第一象限,正确;36.(2007•滨州)如图,点P为反比例函数上的一动点,作PD⊥x轴于点D,△POD的面积为k ,则函数y=kx ﹣1的图象为().C D.y=xy=×37.(2009•攀枝花)已知二次函数y=ax2+bx+c的图象如图所示,则在同一坐标系中,一次函数y=ax+c和反比例函数y=的图象大致是().C D.y=.C D.==39.(2007•烟台)下列图中阴影部分的面积相等的是()2.C D.>>41.(2007•随州)下列四个命题:①点(﹣2,3)在第二象限;②直线y=x﹣2与y轴交于点(0,﹣2);③直线y=﹣x与双曲线y=有两个交点;④抛物线y=x2﹣3x+4与x轴没有交点.其中正确命题是()有两个交点,直线过的是二四象限,双曲线在一三象限,所以没有交点,错误;42.(2007•衢州)如图,已知直线l的解析式是y=x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l相切时,则该圆运动的时间为()x×=2.543.(2007•丽水)如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是()x+4填空题44.(2007•绍兴)如图,矩形ABCD的边AB在x轴上,且AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则实数a的取值范围是﹣2≤a≤2.45.(2007•张家界)若有意义,则函数y=kx﹣1的图象不经过第二象限.≥46.(2007•益阳)某函数的图象经过(1,﹣1),且函数y的值随自变量x的值增大而增大.请你写出一个符合上述条件的函数关系式:y=x﹣2.47.(2007•贵港)在一次函数y=x+2中,y的值随x值的增大而增大.48.(2007•白银)若一次函数y=kx+b的图象经过点(0,﹣2)和(﹣2,0),则y随x的增大而减小.解:根据题意,得:.49.(2007•钦州)请写出直线y=6x上的一个点的坐标:(0,0).50.(2007•哈尔滨)直线y=kx+b经过点A(﹣2,0)和y轴正半轴上的一点B,如果△ABO(O为坐标原点)的面积为2,则b的值为2.的面积是51.(2014•常州)在平面直角坐标系xOy中,已知一次函数y=kx+b(k≠0)的图象过点P(1,1),与x轴交于点A,与y轴交于点B,且tan∠ABO=3,那么点A的坐标是(﹣2,0)或(4,0).就是已知一次函数的一次项系数是或﹣±.时,求可得;时,求可得.x+或x+52.(2007•常州)已知一次函数y=kx+b的图象经过点A(0,﹣2),B(1,0),则b=﹣2,k=2.,.53.(2007•上海)如图,正比例函数图象经过点A,该函数解析式是y=3x.55.(2007•孝感)如图,一次函数y=ax+b的图象经过A、B两点,则关于x的不等式ax+b<0的解集是x<2.56.(2007•泰州)直线y=﹣x,直线y=x+2与x轴围成图形的周长是.(结果保留根号)解得,则由三个点所围成三角形得底边的交点为:BA=BO=,+=2+2.57.(2007•南宁)随着海拔高度的升高,大气压强下降,空气中的含氧量也随之下降,即含氧量y(g/m3)与大气压强x(kPa)成正比例函数关系.当x=36(kPa)时,y=108(g/m3),请写出y与x的函数关系式y=3x.58.(2007•江西)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(升)的函数关系式是y=4.75x.59.(2007•巴中)2007年4月,巴中市出租车收经费方式全面调整,具体收费方式如下:行驶距离在3千米以内(包括3千米)付起步价3元,超过3千米后,每多行驶1千米加收1.4元,试写出乘车费用y(元)与乘车距离x(千米)x>3之间的函数关系式为y=1.4x﹣1.2.60.(2007•南平)如图,直线y=x+4与x轴、y轴分别交于A、B两点,点C在OB上,若将△ABC沿AC折叠,使点B恰好落在x轴上的点D处,则点C的坐标是(0,1.5).。

一次函数反比例函数二次函数

一次函数反比例函数二次函数

函数函数的定义:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数函数有三种表示形式:(1)列表法(2)图像法(3)解析式法一、一次函数与正比例函数:◆公式:y=kx+b (k,b为常数,且k≠0)当b =0时,y=kx+b 即为y=kx,所以正比例函数,是一次函数的特例.◆一次函数与正比例函数的图形与性质图像:正比例函数:经过原点的一条直线正比例函数(y=kx)一次函数(y=kx+b )性质:正比例函数:y=kx (k≠0)当k>0时, 经过一、三象限,即随着x的增大(或减小)y也增大(或减小);当k<0时, 经过二、四象限,即随着x的增大(或减小)y反而减小(或增大)。

一次函数:当k>0时,经过一、三象限,y随x的增大(或减小)而增大(或减小);当k<0时,经过二、四象限,y随x的增大(或减小)而减小(或增大). 二、反比例函数◆公式:(k为常数,k≠0)◆反比例函数的图像与性质反比例函数k的符号k>0 k<0图像性质①x的取值范围0x≠y的取值范围0y≠②当k>0时,图像在一、三①x的取值范围0x≠y的取值范围0y≠②当k<0时,图像在二、四象限,y随x的增大而增大三、二次函数◆ 公式:y=+bx+c(a,b,c 是常数a ≠0)二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

◆ 抛物线的主要特征:①有开口方向;②有对称轴;③有顶点。

◆ 二次函数解析式二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点(1)一般一般式:)0,,(2≠++=a c b a c bx ax y 是常数,(2)两根当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。

一次函数,二次函数,反比例函数性质总结

一次函数,二次函数,反比例函数性质总结

一次函数、二次函数、反比例函数性质总结1.一次函数一次函数)0(≠+=k b kx y ,当0=x 时,得到的y 的值也即b 叫做图象与坐标轴的纵截距,当0=y 时,得到的x 的值,叫做图象与坐标轴的横截距。

(1)当0=b 时,一次函数的解析式变为)0(≠=k kx y ,也称为正比例函数,此函数图象恒过原点)0,0(O ,且横,纵截距都为0。

且0>k 时,函数图象过一、三象限,0>k 时,图象过二、四象限。

(2)当0≠b 时,)0(≠+=k b kx y 的图象及性质为① ②k 象限③ ④<k 象限2.二次函数二次函数的一般形式为)0(2≠++=a c bx ax y ,且a 决定开口方向和大小,当0>a 时,抛物线开口向上,有最小值,值域为),44[2+∞-a b ac 当0<a ,抛物线开口向下,有最大值,值域为]44,(2ab ac --∞。

(1)当0,0==c b 时,函数的解析式变为)0(≠=a ax y ,则 ①0>a 时 ②0<a 时(2)b a ,决定二次函数的对称轴和开口方向①当0,0,0=>>c b a 时 ②0,0,0=<>c b a 时③0,0,0=><c b a 时 ④0,0,0=<<c b a 时(3)c a ,决定开口方向和与y 轴的截距①0,0,0=>>b c a 时 ②0,0,0=<>b c a 时yyOxxxxyy OOyOxxOy O③0,0,0=><b c a 时(3)对于一般的二次函数,c b a ,,共同来决定其函数图像和性质,故通常采用配方的方法)0(2≠++=a c bx ax yc aba b x a b x a c x a b x a +-++=++=))2()2(()(2222 c a b a b x a +-+=]4)2[(222=c a b a b x a +-+4)2(22=ab ac a b x a 44)2(22-++ 我们称abx 2-=为二次函数的对称轴,坐标)44,2(2a b ac a b --为二次函数的顶点坐标,此时我们也称其解析式为二次函数的顶点式,并可设其解析式为)0()(2≠+-=a k h x a y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014全国一次函数二次函数反比例函数5一.选择题(共7小题)1.(2011•孝感模拟)如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,则其旋转中心可能是()2.有两个完全重合的矩形,其中一个始终保持不动,另一个绕其对称中心O按顺时针方向旋转,每次均旋转45°第1次旋转后得到图1,第2次旋转得到图2…则第2013次旋转后得到的图形与图1至图4中哪个图形相同()3.如图,在一个4×4的正方形网格中,若两个阴影部分的三角形绕某点旋转一定的角度后能互相重合,则其旋转中心可能是图中的()4.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()5.(2014•南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(﹣,(﹣,,)(﹣,,6.(2014•南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(),,,,﹣7.(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()二.填空题(共4小题)8.如图绕着中心最小旋转_________能与自身重合.9.如图,是两个正方形,将其中的一个旋转后能与另一个重合,那么图形所在的平面上可以作为旋转中心的点共有_________个.10.(2014•滨州)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为_________.11.(2014•湖州)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为_________.三.解答题(共16小题)12.(1)如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有_________个.(2)如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有_________个.(3)如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有_________个.(4)如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有_________个.(5)拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合平面内可以作为旋转中心的点有多少个?(直接写结论)13.已知:如图,若线段CD是由线段AB经过旋转变换得到的.求作:旋转中心O点.14.(2014•福州)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=_________,S△ABP=_________;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.15.(2014•梅州)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.16.(2014•南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据_________,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF 和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若_________,则△ABC≌△DEF.17.(2014•南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为_________km/h;他途中休息了_________h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?18.(2014•南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.19.(2014•南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2.20.(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.21.(2014•宜宾)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.22.(2014•遂宁)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.23.(2014•白银)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)24.(2014•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.25.(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.26.(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结_________∵S五边形ACBED=_________又∵S五边形ACBED=_________∴_________∴a2+b2=c2.27.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.2014全国一次函数二次函数反比例函数5参考答案与试题解析一.选择题(共7小题)1.(2011•孝感模拟)如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕着某点旋转一定的角度得到的,则其旋转中心可能是()2.有两个完全重合的矩形,其中一个始终保持不动,另一个绕其对称中心O按顺时针方向旋转,每次均旋转45°第1次旋转后得到图1,第2次旋转得到图2…则第2013次旋转后得到的图形与图1至图4中哪个图形相同()3.如图,在一个4×4的正方形网格中,若两个阴影部分的三角形绕某点旋转一定的角度后能互相重合,则其旋转中心可能是图中的()4.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()5.(2014•南京)如图,在矩形AOBC中,点A的坐标是(﹣2,1),点C的纵坐标是4,则B、C两点的坐标分别是()(﹣,(﹣,,)(﹣,,∴OE=(AF=OE=﹣,,6.(2014•南充)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(),,,,﹣OE=AD=,的坐标为(﹣7.(2014•温州)如图,矩形ABCD的顶点A在第一象限,AB∥x轴,AD∥y轴,且对角线的交点与原点O重合.在边AB从小于AD到大于AD的变化过程中,若矩形ABCD的周长始终保持不变,则经过动点A的反比例函数y=(k≠0)中k的值的变化情况是()AB AD=abk=AB•二.填空题(共4小题)8.如图绕着中心最小旋转90°能与自身重合.9.如图,是两个正方形,将其中的一个旋转后能与另一个重合,那么图形所在的平面上可以作为旋转中心的点共有3个.10.(2014•滨州)如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为﹣6.的图象上,2=,解得11.(2014•湖州)如图,已知在Rt△OAC中,O为坐标原点,直角顶点C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过OA的中点B,交AC于点D,连接OD.若△OCD∽△ACO,则直线OA的解析式为y=2x.上,CD=,∴,AC=,)的坐标为(,∴,的坐标为(三.解答题(共16小题)12.(1)如图1是两个有一边重合的正三角形,那么由其中一个正三角形绕平面内某一点旋转后能与另一个正三角形重合,平面内可以作为旋转中心的点有3个.(2)如图2是两个有一边重合的正方形,那么由其中一个正方形绕平面内某一点旋转后能与另一个正方形重合,平面内可以作为旋转中心的点有3个.(3)如图3是两个有一边重合的正五边形,那么由其中一个正五边形绕平面内某一点旋转后能与另一个正五边形重合,平面内可以作为旋转中心的点有5个.(4)如图4是两个有一边重合的正六边形,那么由其中一个正六边形绕平面内某一点旋转后能与另一个正六边形重合,平面内可以作为旋转中心的点有5个.(5)拓展探究:两个有一边重合的正n(n≥3)边形,那么由其中一个正n边形绕平面内某一点旋转后能与另一个正n边形重合平面内可以作为旋转中心的点有多少个?(直接写结论)13.已知:如图,若线段CD是由线段AB经过旋转变换得到的.求作:旋转中心O点.14.(2014•福州)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.(1)当t=秒时,则OP=1,S△ABP=;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ•BP=3.t=×=1×==PD=×=tt(t=t=t=t=.,∴PE=∴15.(2014•梅州)如图,已知抛物线y=x2﹣x﹣3与x轴的交点为A、D(A在D的右侧),与y轴的交点为C.(1)直接写出A、D、C三点的坐标;(2)若点M在抛物线上,使得△MAD的面积与△CAD的面积相等,求点M的坐标;(3)设点C关于抛物线对称轴的对称点为B,在抛物线上是否存在点P,使得以A、B、C、P四点为顶点的四边形为梯形?若存在,请求出点P的坐标;若不存在,请说明理由.,解方程﹣y=x时,xy=x=1时,﹣=1+,,,,y=xx+nxy=﹣∴﹣x 16.(2014•南京)【问题提出】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据HL,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF 和△ABC不全等.(不写作法,保留作图痕迹)(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若∠B≥∠A,则△ABC≌△DEF.17.(2014•南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为15km/h;他途中休息了0.1h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?18.(2014•南充)如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.,就有∴∴∴;∴﹣∴,∴AD=∴∴19.(2014•南充)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象相交于点A(2,5)和点B,与y轴相交于点C(0,7).(1)求这两个函数的解析式;(2)当x取何值时,y1<y2..,.)由题意,得:或,20.(2014•宜宾)如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.,得出=∴,,∵=,=,∴,21.(2014•宜宾)如图,一次函数y=﹣x+2的图象与反比例函数y=﹣的图象交于A、B两点,与x轴交于D点,且C、D两点关于y轴对称.(1)求A、B两点的坐标;(2)求△ABC的面积.)根据反比例函数与一次函数的交点问题得到方程组)根据题意得,解方程组得,3+×22.(2014•遂宁)已知:直线l:y=﹣2,抛物线y=ax2+bx+c的对称轴是y轴,且经过点(0,﹣1),(2,0).(1)求该抛物线的解析式;(2)如图①,点P是抛物线上任意一点,过点P作直线l的垂线,垂足为Q,求证:PO=PQ.(3)请你参考(2)中结论解决下列问题:(i)如图②,过原点作任意直线AB,交抛物线y=ax2+bx+c于点A、B,分别过A、B两点作直线l的垂线,垂足分别是点M、N,连结ON、OM,求证:ON⊥OM.(ii)已知:如图③,点D(1,1),试探究在该抛物线上是否存在点F,使得FD+FO取得最小值?若存在,求出点F的坐标;若不存在,请说明理由.轴,就可以得出﹣,a PE=QP=PO=)23.(2014•白银)D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?(直接写出答案,不需要说明理由.)DE=BC24.(2014•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.y=∴25.(2014•温州)如图,在平面直角坐标系中国,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围.时和当BC=t=OE=+3=,∴,即,∴=t=,∴,t=,∴即=,②或时,﹣,t=在范围内,∴,),∴26.(2014•温州)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=b2+ab.又∵S四边形ADCB=S△ADB+S△DCB=c2+a(b﹣a)∴b2+ab=c2+a(b﹣a)∴a2+b2=c2请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.求证:a2+b2=c2证明:连结过点B作DE边上的高BF,则BF=b﹣a,∵S五边形ACBED=S△ACB+S△ABE+S△ADE=ab+b2+ab,又∵S五边形ACBED=S△ACB+S△ABD+S△BDE=ab+c2+a(b﹣a),∴ab+b2+ab=ab+c2+a(b﹣a),∴a2+b2=c2.=b abab+c+∴ab+ab=ab+c a27.(2014•温州)如图,抛物线y=﹣x2+2x+c与x轴交于A,B两点,它的对称轴与x轴交于点N,过顶点M作ME⊥y轴于点E,连结BE交MN于点F,已知点A的坐标为(﹣1,0).(1)求该抛物线的解析式及顶点M的坐标.(2)求△EMF与△BNF的面积之比.∴((。

相关文档
最新文档