人教全国中考数学二次函数的综合中考真题汇总及详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、二次函数真题与模拟题分类汇编(难题易错题)
1.如图1,对称轴为直线x=1的抛物线y=
1 2 x
2+bx+c,与x轴交于A、B两点(点A在点B
的左侧),且点A坐标为(-1,0).又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与抛物线对称轴交于点E,点C与坐标原点O关于该对称轴成轴对称.
(1)求点B 的坐标和抛物线的表达式;
(2)当AE:EP=1:4 时,求点E 的坐标;
(3)如图 2,在(2)的条件下,将线段 OC 绕点 O 逆时针旋转得到OC ′,旋转角为α(0°<α<90°),连接C ′D、C′B,求C ′B+
2
3
C′D 的最小值.
【答案】(1)B(3,0);抛物线的表达式为:y=
1
2
x2-x-
3
2
;(2)E(1,6);(3)C′B+2
3
C′D
4
10
3
【解析】
试题分析:(1)由抛物线的对称轴和过点A,即可得到抛物线的解析式,令y=0,解方程可得B的坐标;
(2)过点P作PF⊥x轴,垂足为F.由平行线分线段弄成比例定理可得
AE
AP
=
AG
AF
=
EG
PF
=
1
5
,从而求出E的坐标;
(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,得到D(0,3).
如图,取点M(0,
4
3
),连接MC′、BM.则可求出OM,BM的长,得到
△MOC′∽△C′OD.进而得到MC′=
2
3
C′D,由C′B+
2
3
C′D=C′B+MC′≥BF可得到结论.
试题解析:解:(1)∵抛物线y=
1
2
x2+bx+c的对称轴为直线x=1,∴-1
2
2
b
=1,∴b=-1.∵抛物线过点A(-1,0),∴
1
2
-b+c=0,解得:c=-
3
2
,
即:抛物线的表达式为:y=1
2
x2-x-
3
2
.
令y=0,则1
2
x2-x-
3
2
=0,解得:x1=-1,x2=3,即B(3,0);
(2)过点P作PF⊥x轴,垂足为F.
∵EG∥PF,AE:EP=1:4,∴AE
AP =
AG
AF
=
EG
PF
=
1
5
.
又∵AG=2,∴AF=10,∴F(9,0).
当x=9时,y=30,即P(9,30),PF=30,∴EG=6,∴E(1,6).
(3)由E(1,6)、A(-1,0)可得AP的函数表达式为y=3x+3,则D(0,3).∵原点O与点C关于该对称轴成轴对称,∴EG=6,∴C(2,0),∴OC′=OC=2.
如图,取点M(0,4
3
),连接MC′、BM.则OM=
4
3
,BM=22
4
3()
3
+=
97
.
∵
4
2
3
'23
OM
OC
==,
'2
3
OC
OD
=,且∠DOC′=∠C′OD,∴△MOC′∽△C′OD.∴
'2
'3
MC
C D
=,
∴MC′=2
3C′D,∴C′B+
2
3
C′D=C′B+MC′≥BM=
4
10
3
,∴C′B+
2
3
C′D的最小值为
4
10
3
.
点睛:本题是二次函数的综合题,解答本题主要应用了待定系数法求二次函数的解析式,相似三角形的性质和判定,求得AF的长是解答问题(2)的关键;和差倍分的转化是解答问题(3)的关键.
2.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件.
(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?
(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?
【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【解析】
【分析】
(1)根据售量与售价x (元/件)之间的关系列方程即可得到结论.
(2)设每星期利润为W 元,构建二次函数利用二次函数性质解决问题.
【详解】
解:(1)根据题意得,(60﹣x )×10+100=3×100,
解得:x =40,
60﹣40=20元,
答:这一星期中每件童装降价20元;
(2)设利润为w ,
根据题意得,w =(x ﹣30)[(60﹣x )×10+100]=﹣10x 2+1000x ﹣21000
=﹣10(x ﹣50)2+4000,
答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.
【点睛】
本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.
3.已知,m ,n 是一元二次方程x 2+4x +3=0的两个实数根,且|m |<|n |,抛物线y =x 2+bx +c 的图象经过点A (m ,0),B (0,n ),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x 轴的另一个交点为抛物线的顶点为D ,求出点C ,D 的坐标,并判断△BCD 的形状;
(3)点P 是直线BC 上的一个动点(点P 不与点B 和点C 重合),过点P 作x 轴的垂线,交抛物线于点M ,点Q 在直线BC 上,距离点P 为2个单位长度,设点P 的横坐标为t ,△PMQ 的面积为S ,求出S 与t 之间的函数关系式.
【答案】(1)223y x x =--;(2)C (3,0),D (1,﹣4),△BCD 是直角三角形;