高中数学6种构造函数法

合集下载

构造函数的八种方法

构造函数的八种方法

构造函数的八种方法
1、响应式构造函数:响应式构造函数是指针对某种特定的对象实例而定义的构造函数,它能够根据参数的不同,生成不同的对象实例。

2、工厂模式构造函数:工厂模式构造函数是一种构造函数的实现方式,它使用一种工厂函数来简化创建对象的操作,使代码更加简洁,更容易维护。

3、函数构造函数:函数构造函数是指使用函数来构造对象实例的方式,它能够通过传入参数,创建出特定类型的对象实例。

4、构建对象构造函数:构建对象构造函数是指使用一个对象来构造另一个对象的方式,它可以动态地构造一个指定类型的实例,也可以复用已有的对象实例。

5、构造函数派生:构造函数派生是指从一个基础类型派生出另一个更加具体的子类型的方式,它可以使用基类的构造函数在子类中定义对象实例。

6、运行时参数构造函数:运行时参数构造函数是指在运行时传入参数,动态构造出一个指定类型的实例。

7、仿函数构造函数:仿函数构造函数是指使用仿函数的方式来构造对象实例,它可以更加简洁地实现一些比较复杂的对象构造操作。

8、多态构造函数:多态构造函数是指通过指定一个类型参数,在运行时执行特定的构造函数,从而实现多种类型的对象的。

几种高等数学中的构造函数法1汇总

几种高等数学中的构造函数法1汇总

几种高等数学中的构造函数法1汇总在高等数学中,构造函数法是一种常用的证明方法,它通过构造一个特定的函数来满足一些条件,从而证明定理或问题。

构造函数法在解决一些特定问题时非常有效,并且可以应用于各个数学分支,例如微积分、线性代数等。

以下是几种常见的构造函数法的应用及其原理:1.构造逼近函数法:构造逼近函数法是利用一组函数来逼近所求函数的方法。

它在证明极限存在、连续性、可导性等问题时很常用。

例如,在证明函数的极限存在时,可以通过构造一个逼近函数序列来逼近所求函数的极限。

在证明函数的连续性时,可以构造逼近函数序列使其在一定条件下逐点收敛于所求函数。

在证明函数可导性时,可以通过构造一组逼近函数,利用它们的导数性质来推导出所求函数的导函数。

2.构造反函数法:构造反函数法是通过构造函数的反函数来证明其中一种性质。

例如,在证明奇偶函数特性时,可以构造一个函数的反函数,并根据函数的特性来判断所求函数的奇偶性。

在证明函数的双射性时,可以通过构造函数的反函数来证明。

3.构造矩阵法:构造矩阵法是在线性代数中常用的一种证明方法。

它通过构造一个特定的矩阵,利用矩阵的性质来证明一些结论。

例如,在证明矩阵的逆存在时,可以构造一个矩阵来满足逆矩阵的定义,并证明其逆矩阵存在。

4.构造序列法:构造序列法是利用一组序列来证明一些定理或性质。

例如,在证明函数的一致连续性时,可以构造一组满足一致收敛条件的序列来逼近所求函数,从而证明其一致连续性。

在证明函数的可积性时,可以构造一组逼近函数序列,并利用其可积性质来推导出所求函数的可积性。

5.构造映射法:构造映射法是在集合论和离散数学中常用的一种证明方法。

它通过构造一个特定的映射关系来证明一些性质。

例如,在证明两个集合的等势时,可以构造一个双射映射来证明它们的元素个数相等。

在证明一些图的性质时,可以构造一个映射关系来对应图的元素和其相邻元素之间的关系。

以上是几种常见的构造函数法的应用及原理。

高中数学:构造函数方法

高中数学:构造函数方法

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f 或;(2))(-)()()0(0)(-)(x g x f x F x g x f 或;(3)kx x f x F k x f )()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f 或;(2))0)(()(g )()()0(0)()(-)(g )(x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f 或;(4))0(x)()()0(0)(-)(x x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n或;(6))0(x)()()0(0)(n -)(x nxx f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x或;(8))0(e)()()0(0)(-)(xxx f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx或;(10))0(e)()()0(0)(k -)(kxxx f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f 或; (12))0(sin sinx )()()0(0tan )(-)(xx f x F xx f x f 或;(13))0(cos cos )()()0(0)(tanx )(xxx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f 或;(15)()+lna ()0(0)()()xf x f x F x a f x 或;(16)()()lna ()0(0)()xf x f x f x F x a或;考点一。

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法-----构造函数法证明导数不等式的八种方法

高中数学解题方法构造函数法证明不等式的八种方法1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。

2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。

以下介绍构造函数法证明不等式的八种方法:1.移项法构造函数 2、作差法构造函数证明3、换元法构造函数证明4、从条件特征入手构造函数证明5、主元法构造函数6、构造二阶导数函数证明导数的单调性7.对数法构造函数(选用于幂指数函数不等式)8.构造形似函数1.移项法构造函数【例1】 已知函数x x x f −+=)1ln()(,求证:当1−>x 时,恒有x x x ≤+≤+−)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(−+++=x x x g ,从其导数入手即可证明。

【解】1111)(+−=−+=′x x x x f ∴当01<<−x 时,0)(>′x f ,即)(x f 在)0,1(−∈x 上为增函数当0>x 时,0)(<′x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(−,单调递减区间),0(+∞于是函数()f x 在),1(+∞−上的最大值为0)0()(max ==f x f ,因此,当1−>x 时,0)0()(=≤f x f ,即0)1ln(≤−+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(−+++=x x x g , 22)1()1(111)(+=+−+=′x x x x x g 则 当0)(,),0(;0)(,)0,1(>′+∞∈<′−∈x g x x g x 时当时 ,即)(x g 在)0,1(−∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞−上的最小值为0)0()(min ==g x g ,∴当1−>x 时,0)0()(=≥g x g ,即0111)1ln(≥−+++x x ∴111)1ln(+−≥+x x ,综上可知,当x x x x ≤+≤−+−>)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证.2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F −=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。

导数中的构造函数(最全精编)

导数中的构造函数(最全精编)

导数中的构造函数(最全精编)导数小题中构造函数的技巧函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想。

在导数题型中,构造函数的解题思路恰好是这两种思想的良好体现。

下面我将分享导数小题中构造函数的技巧。

一)利用 $f(x)$ 进行抽象函数构造1、利用 $f(x)$ 与 $x$ 构造;常用构造形式有 $xf(x)$ 和$\frac{f(x)}{x}$。

在数导数计算的推广及应用中,我们对 $u\cdot v$ 的导函数观察可得,$u\cdot v$ 型导函数中体现的是“加法”,$\frac{u}{v}$ 型导函数中体现的是“除法”。

由此,我们可以猜测,当导函数形式出现的是“加法”形式时,优先考虑构造$u\cdot v$ 型;当导函数形式出现的是“除法”形式时,优先考虑构造 $\frac{u}{v}$ 型。

我们根据得出的“优先”原则,看一看例1和例2.例1】$f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,当$x0$ 的解集为?思路点拨:出现“加法”形式,优先构造 $F(x)=xf(x)$,然后利用函数的单调性、奇偶性和数形结合求解即可。

解析】构造 $F(x)=xf(x)$,则 $F'(x)=f(x)+xf'(x)$。

当$x0$ 的解集为 $(-\infty,-4)\cup(0,4)$。

例2】设 $f(x)$ 是定义在 $\mathbb{R}$ 上的偶函数,且$f(1)=2$。

当 $x0$ 恒成立。

则不等式 $f(x)>0$ 的解集为?思路点拨:出现“除法”形式,优先构造$F(x)=\frac{f(x)}{x-f(x)}$,然后利用函数的单调性、奇偶性和数形结合求解即可。

解析】构造 $F(x)=\frac{f(x)}{x-f(x)}$,则$F'(x)=\frac{xf'(x)-2f(x)}{(x-f(x))^2}$。

因为 $xf'(x)-f(x)>0$,所以 $F'(x)>0$,$F(x)$ 在 $(-\infty,0)$ 上单调递增。

利用求导法则构造函数

利用求导法则构造函数

利用求导法则构造函数近年高考试卷中常出现一种客观题,考查导数运算法则的逆用、变形应用能力。

这种题目的背景、题设条件或所求结论中具有“f(x)±g(x)、f(x)g(x)、f(x)/g(x)”等特征式,旨在考查学生对导数运算法则的掌握程度。

解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题。

本文结合实例介绍此类问题的几种常见形式及相应解法。

常用的构造函数有:1.和与积联系:如f(x)+xf'(x),构造xf(x);2xf(x)+x^2f'(x),构造x^2f(x);3f(x)+xf'(x),同样构造x^2f(x);3f(x)+xf'(x),构造x^3f(x);………;nf(x)+xf'(x),构造x^n f(x);f'(x)+f(x),构造e^xf(x)等等。

2.减法与商联系:如xf'(x)-f(x)>0,构造F(x)=f(x)/x;x^2f'(x)-2f(x)>0,构造F(x)=f(x)/x^2;xf'(x)-nf(x)>0,构造F(x)=f(x)/x^n;f'(x)-f(x),构造F(x)=f(x)/e^x;2xe^xf'(x)-2f(x),构造F(x)=f(x)/(2xe^x)等等。

在构造函数时,有时候不唯一,关键是要合理构造函数。

给出导函数,构造原函数,本质上离不开积分知识。

一种常见形式是巧设“y=f(x)±g(x)”型可导函数。

当题设条件中存在或通过变形出现特征式“f'(x)±g'(x)”时,不妨联想、逆用“f'(x)±g'(x)=[f(x)±g(x)]'”,构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题。

数学高考知识点构造函数

数学高考知识点构造函数

数学高考知识点构造函数近年来,数学在高考中的重要性日益凸显。

高考数学试题涉及了多个知识点,其中构造函数作为重要的概念之一,经常在考试中出现。

掌握构造函数的基本概念及其应用是学生提高数学成绩的关键之一。

本文将从构造函数的定义、常见题型以及解题方法等方面进行讨论,帮助读者理解和掌握这个知识点。

什么是构造函数?简单来说,构造函数是一个能够根据给定条件构造出特定对象的函数。

在数学中,我们经常需要根据某种规律或特定的条件来构造出符合要求的函数。

例如,要求构造一个一次函数,过点(2,3),斜率为2。

我们可以通过构造函数y=2x-1来实现这个要求。

这个函数就是一个构造函数。

常见的构造函数题型包括:线性函数的构造、反比例函数的构造、复合函数的构造等。

线性函数的构造要求根据给定的条件确定斜率和截距,例如给定一个点和斜率,要求构造出线性函数。

反比例函数的构造则要求根据给定的条件,构造出满足反比例关系的函数。

复合函数的构造则需要将两个或多个简单的函数进行组合,构造出满足特定条件的复合函数。

在解决构造函数的问题时,我们可以通过观察给定条件,找到规律,进而构造出满足要求的函数。

以线性函数的构造为例,假设已知函数过点(2,3),斜率为2。

我们可以根据一次函数的一般式y=kx+b,将已知条件代入得到3=2×2+b,解方程得b=-1。

进而可以构造出满足要求的函数y=2x-1。

除了观察和找规律外,我们还可以使用数学工具和方法来解答构造函数的问题。

例如,反比例函数的构造常常用到消元法。

假设我们已知反比例函数的特点是x和y的乘积为2,并且给定了一个点(1,2)。

我们可以设反比例函数的一般式为y=k/x,将已知条件代入得2=k/1,解方程得到k=2。

进而可以构造出满足要求的函数y=2/x。

除了以上的基本构造函数题目之外,还存在一些更加复杂和有趣的构造函数问题。

例如,有时我们需要构造出满足特定性质的函数,如多个抛物线的交点等。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

构造函数的常见类型

构造函数的常见类型

构造函数的常见类型构造函数1.设函数$f'(x)$是奇函数$f(x)(x\in R)$的导函数,$f(-1)=0$,当$x>0$时,$xf'(x)-f(x)0$成立的$x$的取值范围是()答案】A解析】考虑将$f(x)$拆成奇偶部分:$f(x)=g(x)+h(x)$,其中$g(x)$是偶函数,$h(x)$是奇函数。

由于$f(x)$是奇函数,所以$h(x)$是$f(x)$的主要部分。

又因为$f(-1)=0$,所以$h(-1)=0$,$h(x)$在$x=-1$处取得极值。

又由于$f'(x)$是$h(x)$的导数,所以$f'(x)$是$h(x)$的次要部分,即$h(x)$的变化主要由$f'(x)$控制。

因此,当$x>0$时,$xf'(x)-f(x)0$。

因此,$x$的取值范围为$(\infty,-1)\cup(0,1)$,即选项A。

2.若定义在$R$上的函数$f(x)$满足$f(-1)=-1$,其导函数$f'(x)>k>1$,则下列结论中一定错误的是()A。

$f\left(\frac{1}{k}\right)<1$B。

$\frac{1}{k}<f(1)<1$C。

$f\left(\frac{1}{k-1}\right)<-1$D。

$f\left(\frac{1}{k+1}\right)<-\frac{1}{k}$答案】C解析】由题意可得,$f(x)$在$(-1,1)$上单调递增,且$f(1)>-1$。

对于选项A,由于$f(x)$单调递增,所以$f\left(\frac{1}{k}\right)<f(1)<1$,即选项A成立。

对于选项B,由于$f(x)$单调递增,所以$\frac{1}{k}<f(1)<1$,即选项B成立。

对于选项C,由于$f(x)$单调递增,所以$f\left(\frac{1}{k-1}\right)<f(-1)=-1$,即选项C不成立。

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法

构造函数证明不等式的八种方法下面将介绍构造函数证明不等式的八种常见方法:1.特殊赋值法:这种方法通过为变量赋特殊的值来构造函数,使得不等式成立。

例如,对于不等式a^2>b^2,可以构造函数f(x)=x^2,当a=2,b=1时,即f(2)>f(1),从而得到a^2>b^22.梯度法:这种方法通过构造一个变化率为正(或负)的函数来推导出不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x-a)^2-(x-b)^2,当x>(a+b)/2时,即f'(x)>0,从而得到a^2>b^23.极值法:这种方法通过构造一个函数的极大值(或极小值)来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=x^2-b^2,当x=a时,f(x)>0,从而得到a^2>b^24.差的平方法:这种方法通过构造一个差的平方形式的函数来证明不等式。

例如对于不等式a^2>b^2,可以构造函数f(x)=(x+a)^2-(x+b)^2,当x>(a+b)/2时,即f(x)>0,从而得到a^2>b^25.相似形式法:这种方法通过构造一个与要证明的不等式形式相似的函数来证明不等式。

例如对于不等式(a+b)^4 > 8(ab)^2,可以构造函数f(x) = (x+1)^4- 8(x-1)^2,令x = ab,当x > 1时,即f(x) > 0,从而得到(a+b)^4 > 8(ab)^26.中值定理法:这种方法通过应用中值定理来证明不等式。

例如对于不等式f(a)>f(b),可以构造函数g(x)=f(x)-f(b),当a>b时,存在c∈(b,a),使得g'(c)>0,从而得到f(a)>f(b)。

7.逼近法:这种方法通过构造一个逼近函数序列来证明不等式。

例如对于不等式a > b,可以构造一个逼近函数序列f_n(x) = (a+x)^n - (b+x)^n,当n 趋近于正无穷时,即lim(n→∞)(a+x)^n - (b+x)^n = ∞,从而得到a > b。

2022年高考数学利用导数构造函数解不等式

2022年高考数学利用导数构造函数解不等式

D. (-∞ ,+∞)
所以 g(x) 为 R 的单调递增函数,又因为 g(-1) = f(-1) - 2 × (-1) = 4 所以不等式的解集为 (-1,+∞)
【答案】选 A
【例9】:已知 f(x) 定义域为 (0,+∞),f(x) 为 f(x) 的导函数,且满足 f(x) < -xf(x),则不等式 f(x + 1) > (x - 1)f(x2 1) 的解集是 ( )
1
所以 f(x)g(x) < 0 的解集是 (-3,+∞)
【例3】:已知定义为 R 的奇函数 f(x) 的导函数为 f(x),当 x ≠ 0 时,f(x) +
f (x) x
> 0,若 a =
1 2
f
1 2
,b = -2f(-2) ,c
=
ln
1 2
f(ln2),则下列关于 a,b,c 的大小关系正确的是
1 4
x2 ≥ 0,即
f(x) > 0
【例6】:已知函数 f(x) 的定义域为 R,且 f(x) > 1 - f(x) ,f(0) = 4,则不等式 f(x) > 1 + eln3-x 的解集为 ( )
A. (0,+∞)
B.
1 2
,+∞
C. (1,+∞)
【解析】f(x) > 1 + eln3-x ⇒ ex f(x) > ex + eln3 ⇒ ex f(x) - ex > 3
x+1>0
x > -1
g(x + 1) > g(x2 - 1) , x2 - 1 > 0 ⇒ x > 1 或 x < -1 ⇒ x > 2

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法一、构造函数法是一种常用的数学证明方法,通过巧妙地构造函数,并对其性质进行分析,可以证明各种数学不等式。

下面就列举八种常用的构造函数法证明不等式的方法。

1.构造平方函数法:对于形如x^2≥0的不等式,可以构造f(x)=x^2,然后通过分析f(x)的性质,来证明不等式的成立。

2.构造递增函数法:对于形如a≥b的不等式,可以构造f(x)=x,然后通过分析f(x)的性质,来证明不等式的成立。

3.构造递减函数法:对于形如a≤b的不等式,可以构造f(x)=-x,然后通过分析f(x)的性质,来证明不等式的成立。

4.构造两个函数之差法:对于形如a-b≥0的不等式,可以构造f(x)=x^2和g(x)=(x-a)(x-b),然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

5. 构造函数的和法:对于形如(a+b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2+b^2+2ab,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

6.构造函数的积法:对于形如(a·b)^2≥0的不等式,可以构造f(x)=x^2和g(x)=a^2·b^2,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

7.构造函数的倒数法:对于形如1/(a·b)≥0的不等式,可以构造f(x)=1/x和g(x)=a·b,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

8.构造指数函数法:对于形如e^x≥1的不等式,可以构造f(x)=e^x 和g(x)=1,然后通过分析f(x)和g(x)的性质,来证明不等式的成立。

以上就是八种常用的构造函数法证明不等式的方法。

在实际证明过程中,需要注意选择合适的函数,并结合函数的性质进行分析,以确定不等式的成立情况。

此外,还需要注意构造的函数在给定范围内是否满足所要求的性质,以确保证明的正确性。

在导数应用中如何构造函数

在导数应用中如何构造函数

在导数应用中如何构造函数在有关导数的应用中,无论是求函数的单调性、求极值最值,证明不等式、求参数的范围,还是讨论函数的零点,都需要从给定的已知条件中构造出一个或两个函数进行研究,构造的得当能降低难度,减少运算量,下面对如何构造函数给出归类和总结.1.作差直接构造法【例1】函数f(x)=(x -2)e x +21ax 2-ax.设a=1,当x ≥0时,f(x)≥kx -2,求k 的取值范围. 分析:由f(x)≥kx -2,令g(x)=f(x)-kx+2=(x -2)e x +21x 2-x -kx+2. 2.局部构造法【例2】已知5函数f(x)=1ln -x x ax .当a=1时,判断f(x)有没有极值点. 分析:当a=1时,f(x)=1ln -x x ax ,则2)1(1ln )('---=x x x x f ,令g(x)=x -lnx -1. 【例3】已知函数f(x)=xa x )ln(-,若a=-1,证明:函数f(x)是(0,+∞)上的减函数. 分析:当a=-1时,函数f(x)的定义域是(-1,0)∪(0,+∞),所以2)1ln(1)('xx x x x f +-+=, 令g(x)=1+x x -ln(x+1). 3.作差局部构造法【例4】已知函数f(x)=ln x -a(x -1),a ∈R.当x ≥1时,f(x)≤1lnx +x 恒成立,求a 的取值. 分析:1)1(ln 1ln )(2+--=+-x x a x x x x x f ,令g(x)=xlnx -a(x 2-1)(x ≥1). 4. 分离参数构造法【例5】在【例4】中,当x≥1时,f(x)≤1lnx +x 恒成立等价于lnx -1lnx +x ≤a(x -1). 分析:(1)当x=1时,显然恒成立,所以R a ∈. (2)当x >1时,上式等价于a x x x x a x x x x ≤⎪⎭⎫ ⎝⎛-+-⇔≤-+-max221ln 1ln 1ln 1ln ,令1ln 1ln )(2-+-=x x x x x F . 【例6】已知函数f(x)=ax -xx ln ,a ∈R.若f(x)≥0,求a 的取值范围. 分析:函数的定义域为(0,+∞),由f(x)≥0得ax -x x ln ≥0,即a ≥2ln x x .令g(x)=2ln x x .5.特征构造法【例7】若x>0,证明:1)1ln(->+x e x x x . 分析:因为1)11ln(1ln 1-+-=-=-x x x x x e e e e e x ,故原不等式等价于1)11ln()1ln(-+->+x x e e x x ,令x x x f )1ln()(+=,由例3知xx x f )1ln()(+=是(0,+∞)上的减函数,故要证原不等式成立,只需证明当x>0时,x<e x -1,令h(x)=e x -x -1.注:例6的解决过程用到了二次构造函数.【例8】已知函数f(x)=xx e -ax,x ∈(0,+∞),当x 2>x 1时,不等式0)()(1221<-x x f x x f 恒成立,求实数a 范围. 分析:不等式0)()(1221<-x x f x x f ,即0)()(212211<-x x x f x x f x ,结合x 2>x 1>0可得x 1f(x 1)-x 2f(x 2)<0恒成立,即x 2f(x 2)>x 1f(x 1)恒成立,构造函数g(x)=xf(x)=e x -ax 2.6.变形、化简后构造【例9】求证:当x ∈(0,+∞)时,21ln x x e x >-. 分析:当x ∈(0,+∞)时,要证21ln x x e x >-,只需证21e x x xe >-,令F(x)=2-1-e x x xe ,则⎪⎪⎭⎫ ⎝⎛--=21)('22x e e x F x x ,由e x >x+1可得,212x e x +>,则x ∈(0,+∞)时,F’(x)>0恒成立,即F(x)在(0,+∞)上单调递增,所以F(x)>F(0)=0,即21e x x xe >-,所以21ln x x e x >-. 7.换元后构造【例10】已知函数f(x)=ln x -kx,其中k ∈R 为常数.若f(x)有两个相异零点x 1,x 2(x 1<x 2), 求证:2)(ln ln 121212>+--x x x x x x . 分析:证2)(ln ln 121212>+--x x x x x x ,即证lnx 2-lnx 1>1212)(2x x x x +-,只要证121212)(2ln x x x x x x +->, 设)1(12>=t x x t ,则只要证).1(1)1(2ln >+->t t t t 令g(t)=lnt -1)1(2+-t t .8. 放缩后局部构造【例11】已知函数xe x ax xf 1)(2-+=.证明:当1≥a 时,f(x)+e≥0. 分析:当1≥a 时,x x x x e e x x e ex x e e x ax e x f -++-+=+-+≥+-+=+)1(11)(1222.设g(x)=x 2+x -1+e x+1, 则g’(x)=2x+1+e x+1.9.作差与分离变量的综合构造法【例12】已知函数f(x)=x 2-(2a+1)x+aln x(a ∈R),g(x)=(1-a)x,若∃x 0∈[1,e]使得f(x 0)≥g(x 0)成立,求实数a 的取值范围.分析:不等式f(x)≥g(x)在区间[1,e]上有解,即x 2-2x+a(ln x -x)≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x(不同时取等号),x -ln x>0,所以x x x x a ln 22--≤在区间[1,e]上有解.令xx x x x h ln 2)(2--=. 10.主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其他变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.【例13】已知函数g(x)=xlnx,设0<a<b,证明:0<g(a)+g(b)-⎪⎭⎫ ⎝⎛+22b a g <(b -a)ln2. 分析:对g(x)=xlnx 求导,g’(x)=lnx+1.在g(a)+g(b)-⎪⎭⎫ ⎝⎛+22b a g 中以b 为主元构造函数, 设F(x)=g(a)+g(x)-⎪⎭⎫ ⎝⎛+22x a g ,则2ln ln '22)(')('x a x x a g x g x F +-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-=. 当0<x<a 时,F'(x)<0,因此F(x)在(0,a)上单调递减,当x>a 时,F'(x)>0,因此F(x)在(a,+∞)上为增函数,从而当x=a 时,F(x)有极小值F(a).因为F(a)=0,b>a,所以F(b)>0,即g(a)+g(b)-⎪⎭⎫⎝⎛+22b a g >0. 设G(x)=F(x)-(x -a)ln2,则G’(x)=lnx -2ln a x +-ln2=lnx -ln(x+a), 当x>0时,G’(x)<0.因此G(x)在(0,+∞)上为减函数. 因为G(a)=0,b>a,所以G(b)<0,即g(a)+g(b)-⎪⎭⎫⎝⎛+22b a g <(b -a)ln2. 注:本题以b 为主元构造函数,当然也可以以a 为主元构造函数.。

构造函数的八种方法

构造函数的八种方法

构造函数的八种方法
1. 默认构造函数:没有参数的构造函数,用于创建对象的初始状态。

2. 带参数构造函数:接受一个或多个参数,用于初始化对象的属性。

3. 拷贝构造函数:接受一个同类型对象的引用,创建一个新对象并进行属性的深拷贝。

4. 移动构造函数:接受一个右值引用,将传入的对象的资源转移到新对象,通常用于提高效率。

5. 复制构造函数:用于在对象的值传递时调用,创建一个新对象并进行属性的复制。

6. 复制赋值构造函数:接受一个同类型对象的引用,将传入对象的属性复制给当前对象。

7. 移动赋值构造函数:接受一个右值引用,将传入对象的资源移动给当前对象。

8. 转换构造函数:可以将其他类型的对象转换为当前类型的对象,通常使用单个参数的构造函数实现。

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题

必须掌握的7种构造函数方法——合理构造函数,巧解导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

高中数学合理构造函数,巧解导数难题

高中数学合理构造函数,巧解导数难题

文件来自数学教研QQ 群545423319 第三期精品微专题共享计划合理构造函数 巧解导数难题郑州市第四十四中学 苏明亮近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法作差构造法,是处理导数问题的最基本、最常用的方法.此法一般构造函数()()()F x f x g x =-,进而转化为求函数min ()0F x ≥(或max ()0F x ≤)即求函数的最值问题.1.直接作差构造 例1(2013年高考全国新课标Ⅰ卷理科第21题)已知函数()2f x x ax b =++, ()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(Ⅰ)求,,,a b c d 的值;(II )若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(Ⅰ)4,2,2,2a b c d ==== .(II )由(1)知,()242f x x x =++,()2(1)x g x e x =+.设函数()2()()2(1)42x F x kg x f x ke x x x =-=+---,则()'2(2)242(2)(1)x x F x ke x x x ke =+--=+-,有题设知()00F ≥且()20F -≥, 从而得21k e ≤≤.令()'120ln ,2F x x k x ==-=-得.(i ) 若211,20.k e x ≤<-<≤则从而当1(2,)x x ∈-时,()'0F x <;当1(,)x x ∈+∞时,()'0F x >,即()F x 在1(2,)x -上单调递减,在1(,)x +∞上单调递增, 故()F x 在[2,)-+∞上的最小值为()1F x .而()21111112242(2)0F x x x x x x =+---=-+≥.故当2,()0,()()x F x f x kg x ≥-≥≤时即恒成立.(ii ) 若2'22,()2(2)()x k e x e x e e -==+-则F .从而当'2,()0,()(2,)x F x F x >->-+∞时即在上单调递增,而(-2)=0,2()0,()()F x F x f x kg x ≥-≥≤故当时,即恒成立.综上,k 的取值范围为21,e ⎡⎤⎣⎦.评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造例2(山西省2015届高三第三次四校联考理科第21题(Ⅱ))设函数1()x e f x x-=.证明:对任意正数a ,存在正数x ,使不等式()1f x a -<成立. 证明:1()1x e x f x x---=,不等式()1f x a -<可化为(1)10x e a x -+-<. 令()(1)1x G x e a x =-+-,'()(1)x G x e a =-+,由'()0G x =得:ln(1)x a =+,当0ln(1)x a <<+时,'()0G x <,当ln(1)x a >+时,'()0G x >,所以min ()(ln(1))(1)ln(1)G x G a a a a =+=-++.令()ln 1t t t t ϕ=--,其中11t a =+>,易证()ln 10(1)t t t t t ϕ=--<>,即min ()(1)ln(1)0G x a a a =-++<.故存在正数ln(1)x a =+,使不等式()1f x a -<成立.评注:本题首先对()1f x a -<进行等价变形转化,构造函数()(1)1x G x e a x =-+-求其最小值,从而转化为仅仅关于字母a 的函数,再构造函数()ln 1t t t t ϕ=--(1t a =+),把一个复杂的函数不等式转化为求两个简单函数的最值问题.二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.例3(山西省太原市2015年高三模拟理科第21题(Ⅰ))已知函数1()(2)(1)2,()(,x f x a x lnx g x xe a R e -=---=∈为自然对数的底数),若不等式 ()0f x >对于一切1(0,)2x ∈恒成立,求实数a 的最小值. 解:有题意得(2)(1)2n 0a x l x --->在1(0,)2上恒成立, 即221lnx a x >--在1(0,)2上恒成立.设2()21lnx h x x =--,1(0,)2x ∈, 则'2222()(1)lnx x h x x +-=-.设2()22x lnx x ϕ=+-,1(0,)2x ∈,则'222()0x x xϕ=-<, 所以1()(0,)2x ϕ在上是减函数,从而1()()22202x ln ϕϕ>=->,所以'()0h x >, 则1()(0,)2h x 在上为增函数,所以1()()2422h x h ln <=-,即242a ln ≥-.故实数a 最小值为242ln -.评注:在用此法求解问题的关键是过好双关:第一关是转化关,即通过分离参数,先转化为()()f x g a ≥(或()()f x g a ≤)对x D ∀∈恒成立,再转化为min ()()f x g a ≥(或max ()()f x g a ≤)对x D ∀∈恒成立;第二关是求最值关,即求函数()f x 在区间D 上的最小值(或最大值).三、局部构造法若函数()F x 比较复杂,直接求导会更复杂,使解题无法进行下去,这时可将函数()F x 化成()= f ()()(f ()())F x x g x x g x +或,其中f ()()x g x 或有一个可明显判断出是否大于零,而另一个函数式又远比()F x 简单,这样就可以做局部处理,对这个函数进行求导,判断其单调性,使问题迎刃而解.1.化和局部构造例4(2014年高考全国新课标Ⅱ卷文科第21题)已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为2-.(Ⅰ)求a ;(Ⅱ)证明:当1k <时,曲线()y f x =与直线2y kx =-只有一个交点.分析:由曲线()y f x =与直线2y kx =-只有一个交点可以转化为函数32()()23(1)4g x f x kx x x k x =-+=-+-+有且只有一个零点.一般思路往 往利用导数求函数的单调区间和极值点,从而判断函数大致图像,再说明与x 轴只有一个交点即可.本题中由1k <易得'()0g x >且(1)10g k -=-<,(0)40g =>,所以()0g x =在(,0]-∞上有唯一实根.则接下来只需说明当0x >时()0g x =无实根即可,记32()3(1)4()g x x x k x h x x ϕ=-+-+=+(), 而()(1)0x k x ϕ=->,因此只需证明32()340(0)h x x x x =-+≥>即可.2.化积局部构造例5(2012年高考山东卷理科第22题)已知函数ln ()xx k f x e +=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数,证明:对任意20,()1x g x e -><+.解(Ⅰ)1k =.(Ⅱ)()f x 的单调递增区间为(0,1),单调递减区间为(1,)+∞.(Ⅲ)221ln 1()()'()()(1ln )(0)x x x x x x g x x x f x x x x x x x xe e --+=+=+=-->. 令()1ln h x x x x =--,1()(0)x x k x x e +=>,从而()()()g x h x k x =. 易求得()h x 在2(0,)e -内单调递增,在2(,)e -+∞内单调递减,所以22max ()()1h x h e e --=+;易证1(0)x e x x >+>,即101x x e +<<. 故对任意210,()(1ln )()()()1x x x g x x x x h x k x h x e e-+>=--=<≤+. 评注:本题第(Ⅲ)问的常规思路是对函数()g x 求导进而求其最大值,但求导后发现导函数'()g x 表达式非常复杂,很难找出零点,进而无法确定单调区间,于是构造函数()()()g x h x k x =,即将()g x 转化为两个函数的乘积,分别求出()()h x k x 和的上限,这样大大降低了问题的求解难度,使问题迎刃而解.化积局部构造法在处理较复杂的导数问题时应用较多,平时应注意总结.四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.例6(2013年高考陕西卷理科第21题(Ⅲ))已知函数()e ,x f x x =∈R .设a b <, 比较()()2f a f b +与()()f b f a b a --的大小, 并说明理由. 解法1:()()()()22b a b af a f b f b f a e e e e b a b a+-+--=--- 22[()22]2()2()b a b a b a ab a b a be be ae ae e e e b a e b a e b a b a --+---+==-+--+--, 设函数()22(0)x x g x xe x e x =+-+≥,则'()1x x g x xe e =+-.令()'()h x g x =,则'()0x x x x h x xe e e xe =+-=≥(当且仅当0x =时等号成立),所以'()g x 单调递增,所以当0x >时,'()'(0)0g x g >=,所以()g x 单调递增.当0x >时,()(0)0g x g >=.令x b a =-,则得()220b a b a b a eb a e ---+--+>,所以02b a b a e e e e b a +-->-, 所以()()()()2f a f b f b f a b a+->-. 解法2:可以证明()()()()2f a f b f b f a b a +->-.事实上,()()()()2f a f b f b f a b a+->⇔- 1()2221a b b a b a b a a b b a e e e e b a e e b a e b a b a e e e --+----->⇔>⇔>>-++. 令(0)x b a x =->,设函数1()(0)12x x e x x x e ϕ-=->+, 由于22221(1)'()0(1)22(1)x x x x e e x e e ϕ-=-=-<++,所以()x ϕ在(0,)+∞上递减. 因此,当0x >时,()(0)0x ϕϕ<=,即112x x e x e -<+,亦即112b a b a e b a e ----<+, 所以2a b b a e e e e b a +->-,即()()()()2f a f b f b f a b a+->-. 评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母,a b 变出统一的一种结构b a -(或b a e -),然后用辅助元t 将其代替,从而将两个变元问题转化一个变元问题,再以辅助元t 为自变量构造函数,利用导数来来求解,其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.例7(2004年高考全国卷理科第22题(Ⅱ))已知函数()ln(1)f x x x =+-,()ln g x x x =.设0a b <<,证明 :0()()2()()ln 22a b g a g b g b a +<+-<-. 分析:所证不等式中有两个变量,a b ,从中选一个为自变量,另一个看成常数,构造相应函数,通过求解函数最值证明原不等式.证明:对()ln g x x x =求导,则()ln 1g x x =+.在()()2()2a b g a g b g ++-中以b 为主元构造函数, 设()()()2()2a x F x g a g x g +=+-,则''()'()2[()]ln ln 22a x a x F x g x g x ++=-=-. 当0x a <<时,'()0F x <,因此()F x 在(0,)a 内为减函数,当x a >时,'()0F x >,因此()F x 在(,)a +∞上为增函数,从而当x a =时, ()F x 有极小值()F a .因为()0,F a b a =>,所以()0F b >,即()()2()02a b g a g b g ++->. 设()()()ln 2G x F x x a =--,则'()ln ln ln 2ln ln()2x a G x x x x a +=--=-+, 当0x >时,'()0G x <.因此()G x 在(0,)+∞上为减函数.因为()0,G a b a =>,所以()0G b <,即()()2()()ln 22a b g a g b g b a ++-<-. 评注:本题以b 为主元构造函数,当然也可以以a 为主元构造函数,方法类似,读者不妨一试.对于例6我们也可以用主元策略进行求解,解法如下:例6另解: ()()()()22b a b a f a f b f b f a e e e e b a b a +-+--=---222()b a b a b abe be ae ae e e b a +---+=- ()22b a b a b a a be be ae ae e e ϕ=+---+,()a b <,则'()(1)2(1)a b a a a ba be e a e eb a e e ϕ=--++=-+-,又''()()a a b a e ϕ=-,由b a >,有''()0a ϕ>,从而函数'()a ϕ在(,)b -∞上为增函数,所以'()'()0b b a b e e ϕϕ<=-=,故函数()a ϕ在(,)b -∞上为减函数.因此()()0a b ϕϕ>=,即()()()()2f a f b f b f a b a +->-.. 六、特征构造法1.根据条件特征构造例8(2014年高考陕西卷文科第21题(Ⅲ))设函数()ln ,m f x x m R x=+∈. 若对任意()()0,1f b f a b a b a->><-恒成立,求m 的取值范围.解:对任意的()()0,1f b f a b a b a ->><-恒成立,等价于()()f b b f a a -<-恒成立.(*) 设()()ln (0)m h x f x x x x x x=-=+->, 所以(*)等价于()h x 在(0,)+∞上单调递减. 由21'()10m h x x x =--≤在(0,)+∞上恒成立, 得2211()(0)24m x x x x ≥-+=--+>恒成立, 所以14m ≥(对14m =,'()0h x =仅在12x =时成立), 所以m 的取值范围是1[,)4+∞.评注:本题通过对()()1f b f a b a-<-进行等价变形为()()f b b f a a -<-,该不等式两边有相似的结构特征,于是构造函数()()h x f x x =-,从而转化为我们熟悉的已知函数单调性求参数的范围问题,使问题轻松得以解决.2.根据结论特征构造例9(河南八校2015届高三一联理科第21题)己知函数2()(1)ln 1f x a x ax =+++ .(Ⅰ)讨论函数f (x )的单调性;(Ⅱ)设2a ≤-,证明:对任意12,(0,)x x ∈+∞,1212()()4f x f x x x -≥-.(Ⅰ) 略 解:当0a ≥时,()f x 在(0,)+∞单调递增,当1a ≤-时,()f x 在(0,)+∞单调递减,当10a -<<时,()f x 在10,2a a ⎛⎫+- ⎪ ⎪⎝⎭单调递增,在1,2a a ⎛⎫+-+∞ ⎪ ⎪⎝⎭单调递减. (Ⅱ)证明:不妨设12x x ,而2a ≤-,由(1)知()f x 在(0,)+∞单调递减,从而对任意12(0,)x x ∈+∞、,1212()()4f x f x x x --⇔1221()()4()f x f x x x --⇔1122()4()4f x x f x x ++,令()()4g x f x x =+, (*)2221241441(21)'()240a ax x a x x x g x ax x x x x++++-+---=++=≤=≤则. 故()g x 在(0,)+∞单调递减,有(*)式成立,得证.评注:本题中观察到待证不等式1122()4()4f x x f x x ++两边有相似结构,于是构造函数()()4g x f x x =+,然后利用此函数的单调性来寻求突破口.在根据特征构造函数时,需要有较强的观察和联想能力,灵活地针对不同的特征构造出相应的函数,这也需要我们平时注意积累,掌握一些常见解题模式,再如2014年高考江苏卷第19题:比较1a e -与1e a -的大小,只需比较1a -与(1)ln e a -的大小(根据特征同时取对数),然后构造函数()(1)ln 1g x e x x =--+,研究其最值即可.七、放缩构造法如若待求的函数式较复杂(或含有参数),可先将该函数式的一部分,利用函数单调性、基本不等式、已证不等式等进行放缩(或消参),使之简化,即要证()g()f x x <⇔()()g()f x h x x <<(或()g()f x x >⇔()()g()f x h x x >>). 1.由基本不等式放缩构造例10(2012年高考辽宁卷理科第21题)设()ln(1)1(,,,)f x x x ax b a b R a b =+++++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切. (Ⅰ)求,a b 的值;(Ⅱ)证明:当02x <<时,9()6x f x x <+. 解:(Ⅰ)0,1a b ==-.(Ⅱ)由均值不等式,当0x >时,2(1)12x x +<+112x x ++. 所以()ln(1)11ln(1)2x f x x x x =++<++ 记9()ln(1)26x x h x x x =++-+, 则2221154(1536)'()12(6)2(1)(6)x x x h x x x x x +-=+-=++++. 当02x <<时,'()0h x <,所以()h x 在(0,2)内是减函数.故又由()(0)0h x h <=,所以9ln(1)26x x x x ++<+,即9ln(1)116x x x x +++<+, 故当02x <<时,9()6x f x x <+. 评注:本题第(Ⅱ)问若直接构造函数9()()6x h x f x x =-+,对()h x 进行求导,由于'()h x 中既有根式又有分式,因此'()h x 的零点及相应区间上的符号很难确定,而通过对1x +解决.112x x +<+,亦即是将抛物线弧1y x =+直线段12x y =+,而该线段正是抛物线弧1y x =+(0,1)处的切线,这种“化曲为直”的方法是我们用放缩法处理函数问题的常用方法,当然本题也可以先构造函数求导,再用基本不等式放缩.2.由已证不等式放缩构造例11(2013年高考辽宁卷理科第21题).已知函数()()()321,12cos .2x x f x x e g x ax x x -=+=+++ 当[]0,1x ∈时,(I )求证:()111x f x x-≤≤+ ; (II )若()()f x g x ≥ 恒成立,求参数 a 的取值范围.解:(I )略.(II )()()()3321(12cos )112cos 22x x x f x g x x e ax x x x ax x x --=+-+++≥----- 2(12cos )2x x a x =-+++. 设2()2cos 2x G x x =+,则'()2sin G x x x =-.记()2sin H x x x =-, 则'()12cos H x x =-.当(0,1)x ∈时,'()0H x <,于是'()G x 在[]0,1上是减函数,从而当(0,1)x ∈时,''()(0)0G x G <=,故()G x 在[]0,1上是减函数.于是()(0)2G x G ≤=,从而1()3a G x a ++≤+.所以,当3a ≤-时,()()f x g x ≥ 在[]0,1上恒成立.下面证明,当3a >-时,()()f x g x ≥ 在[]0,1上不恒成立.()()3112cos 12x f x g x ax x x x -≤----+ 32cos 12x x ax x x x -=---+ 21(2cos )12x x a x x =-++++, 记211()2cos ()121x I x a x a G x x x =+++=++++,则''21()()(1)I x G x x -=++,当(0,1)x ∈时,'()0I x <,故()I x 在[]0,1上是减函数,于是()I x 在[]0,1上的值域[12cos1,a 3]a +++.因为当3a >-时,30a +>,所以存在0(0,1)x ∈,使得0()0I x >,此时()()00f x g x <,即()()f x g x ≥ 在[]0,1上不恒成立.综上,实数a 的取值范围是(,3]-∞.评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决(笔者研究发现不能解决的原因是分离参数后,出现了“0 0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则);若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.(《数学通讯》2015年第6期)。

掌握这7种函数构造方法,巧解高考导数难题

掌握这7种函数构造方法,巧解高考导数难题

掌握这7种函数构造方法,巧解高考导数难题近几年高考数学压轴题,多以导数为工具来证明不等式或求参数的范围,这类试题具有结构独特、技巧性高、综合性强等特点,而构造函数是解导数问题的最基本方法,但在平时的教学和考试中,发现很多学生不会合理构造函数,结果往往求解非常复杂甚至是无果而终.因此笔者认为解决此类问题的关键就是怎样合理构造函数,本文以近几年的高考题和模考题为例,对在处理导数问题时构造函数的方法进行归类和总结,供大家参考.一、作差构造法1.直接作差构造评注:本题采用直接作差法构造函数,通过特殊值缩小参数范围后,再对参数进行分类讨论来求解.2.变形作差构造二、分离参数构造法分离参数是指对已知恒成立的不等式在能够判断出参数系数正负的情况下,根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量的不等式,只要研究变量不等式的最值就可以解决问题.三、局部构造法1.化和局部构造2.化积局部构造四、换元构造法换元构造法在处理多变元函数问题中应用较多,就是用新元去代替该函数中的部分(或全部)变元.通过换元可以使变量化多元为少元,即达到减元的目的.换元构造法是求解多变元导数压轴题的常用方法.评注:本题的两种解法通过将待解决的式子进行恰当的变形,将二元字母变出统一的一种结构,然后用辅助元将其代替,从而将两个变元问题转化一个变元问题,再以辅助元为自变量构造函数,利用导数来来求解。

其中解法1、解法2还分别体现了化积局部构造法和变形作差构造法.五、主元构造法主元构造法,就是将多变元函数中的某一个变元看作主元(即自变量),将其它变元看作常数,来构造函数,然后用函数、方程、不等式的相关知识来解决问题的方法.六、特征构造法1.根据条件特征构造2.根据结论特征构造七、放缩构造法1.由基本不等式放缩构造2.由已证不等式放缩构造评注:本题第二问是一道典型且难度比较大的求参问题,这类题目很容易让考生想到用分离参数的方法,但分离参数后利用高中所学知识无法解决,笔者研究发现不能解决的原因是分离参数后,出现了“0/0型”的式子,解决这类问题的有效方法就是高等数学中的洛必达法则;若直接构造函数,里面涉及到指数函数、三角函数及高次函数,处理起来难度很大.本题解法中两次巧妙利用第一问的结论,通过分类讨论和假设反正,使问题得到解决,本题也让我们再次体会了化积局部构造法的独特魅力.。

高中数学:构造函数方法(经典)

高中数学:构造函数方法(经典)

高中数学:构造函数常见构造函数方法:1.利用和差函数求导法则构造(1))()()()0(0)()(x g x f x F x g x f +=⇒<>'+'或;(2))(-)()()0(0)(-)(x g x f x F x g x f =⇒<>''或;(3)kx x f x F k x f -=⇒<>')()()(k )(或;2.利用积商函数求导法则构造(1))()()()0(0)()()(g )(x g x f x F x g x f x x f =⇒<>'+'或;(2))0)(()(g )()()0(0)()(-)(g )(≠=⇒<>''x g x x f x F x g x f x x f 或;(3))()()0(0)()(x x xf x F x f x f =⇒<>+'或;(4))0(x)()()0(0)(-)(x ≠=⇒<>'x x f x F x f x f 或;(5))()()0(0)(n )(x x f x x F x f x f n =⇒<>+'或;(6))0(x)()()0(0)(n -)(x n ≠=⇒<>'x x f x F x f x f 或;(7))(e )()0(0)()(x f x F x f x f x =⇒<>+'或;(8))0(e )()()0(0)(-)(x≠=⇒<>'x x f x F x f x f 或;(9))(e )()0(0)(k )(x f x F x f x f kx =⇒<>+'或;(10))0(e )()()0(0)(k -)(kx≠=⇒<>'x x f x F x f x f 或;(11))(sin )()0(0tanx )()(x xf x F x f x f =⇒<>'+或;(12))0(sin sinx)()()0(0tan )(-)(≠=⇒<>'x x f x F x x f x f 或;(13))0(cos cos )()()0(0)(tanx )(≠=⇒<>+'x xx f x F x f x f 或;(14))(cos )()0(0)(tanx -)(x f x F x f x f =⇒<>'或;(15)()+lna ()0(0)()()x f x f x F x a f x '><⇒=或;(16)()()lna ()0(0)()x f x f x f x F x a '-><⇒=或;考点一。

高中数学常见函数构造

高中数学常见函数构造

高中数学常见函数构造以高中数学常见函数构造为题,我们来探讨一下数学中常见的函数及其构造方法。

一、线性函数线性函数是最简单的函数之一,其表达式为f(x) = kx + b,其中k 和b为常数。

线性函数的图像是一条直线,其斜率k决定了直线的倾斜方向和斜率的大小,截距b则决定了直线与y轴的交点位置。

二、二次函数二次函数是高中数学中重要的函数之一,其表达式为f(x) = ax² + bx + c,其中a、b和c为常数且a ≠ 0。

二次函数的图像是一条抛物线,其开口方向由a的正负决定,开口向上为a > 0,开口向下为a < 0。

抛物线的顶点坐标为(-b/2a, f(-b/2a)),对称轴为x = -b/2a。

三、指数函数指数函数是以底数为常数的指数函数,其表达式为f(x) = a^x,其中a为常数且a > 0且a ≠ 1。

指数函数的图像是一条过点(0, 1)的递增曲线。

指数函数的特点是在自变量增大时,函数值以指数形式增长。

四、对数函数对数函数是指数函数的反函数,其表达式为f(x) = logₐx,其中a为常数且a > 0且a ≠ 1。

对数函数的图像是指数函数的镜像,其特点是在自变量增大时,函数值以对数形式增长。

对数函数的底数a 决定了函数的增长速度。

五、三角函数三角函数包括正弦函数、余弦函数和正切函数等。

这些函数的图像是周期性的曲线。

正弦函数的表达式为f(x) = sin(x),余弦函数的表达式为f(x) = cos(x),正切函数的表达式为f(x) = tan(x)。

三角函数的图像在一个周期内重复,其中正弦函数和余弦函数的周期为2π,正切函数的周期为π。

六、反三角函数反三角函数是三角函数的反函数,包括反正弦函数、反余弦函数和反正切函数等。

这些函数的图像是非周期性的曲线。

反三角函数的表达式为f(x) = arcsin(x),f(x) = arccos(x)和f(x) = arctan(x)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学6种构造函数法
1、几何体构造法:
几何体构造法是高中数学中常见的构造函数,即根据给定的条件,从
原点出发,通过叠加若干条定义运算,利用实际工具画出题目要求构
造的图形或者要求构造的几何体。

例如:根据给定的定义三角形ABC,在其外接圆上构造一个直角,使得构造出的四边形的一条边和三角形
的一条边等长。

2、用线段构造法:
用线段构造法是高中数学中常见的构造函数,是根据给定的条件,几
何体和直线的位置,及题目要求的其他条件,按照一定的步骤和规律
来画出要构造的几何体或其他东西。

例如:依据给定的线段AB,在其
上端点A处构造一个半径等于原线段AB一半长度的圆,使得线段AB
的端点A和圆的交点坐标相同;并在构造出的圆上构造一个到线段AB 端点B距离等于原线段AB一半长度的直线段。

3、从原点构造法:
从原点构造法是高中数学中常见的构造函数,是指从某一原点出发,
根据给定的情况,经过若干步的构造,建立若干定义关系,确定一个
几何体的形状和大小,并与给定的几何体完全相同或满足给定条件的
几何体。

例如:在原点构造一个半径等于原点O到给定点A的距离的圆,从这个圆上构造与 OA 相等的直线段,在这个直线段依次画上给
定的点B、C。

4、标准图形构造法:
标准图形构造法是在高中数学中学习的构造函数,即根据给定的它定
义的图形和要求画出的图形之间的规律,采用实际的工具画出要求的
图形。

例如:构造出与正方形相等的长方形(15cm×20cm),方法为:在
一根边长15cm的尺子上划分出4等分点,然后再在另一根尺子上划分
出5等分点,将它们相互链接,即可构造出长方形。

5、参数方程构造法:
参数方程构造法是高中数学中学习的构造函数,即根据给定的参数条
件所决定的几何体的特征,可利用参数方程的技巧,根据参数条件用
参数方程来求出构造出几何体的函数,并且利用函数求出相应的构造
过程,或者利用参数方程既定的几何图形,求出给定点的位置。

例如:求出构造出半径为 2 的半圆的函数,可以用参数方程 x = 2cos t,其中
x 为构造出的半圆的横坐标,t 为角度参数。

6、角度记法构造法:
角度记法构造法是高中必修的一种构造函数,即通过将一个几何体分
解成一系列几何图形构成的组合,利用角度记法来确定每个几何图形
的定义关系。

例如:正六边形ABCDEF满足∠AED = 60°,AE=ED;
将正六边形几何体分解成两个三角形构成,即AEF和ADF,由此可知,∠AEF = 60° ; ∠ADF = 60°。

相关文档
最新文档