数学归纳法练习题
数列与数学归纳法练习题
数列与数学归纳法练习题数学归纳法是数学中常用的一种证明方法,尤其在数列问题中被广泛应用。
通过数学归纳法,我们能够证明某个命题对所有自然数都成立,而不需要逐个验证。
本文将为大家提供数列与数学归纳法的练习题,帮助大家更好地掌握这一方法。
1. 练习题一证明下列命题对所有正整数n成立:(1) 1 + 3 + 5 + ... + (2n-1) = n^2(2) 1^2 + 2^2 + 3^2 + ... + n^2 = n(n+1)(2n+1)/6解答:(1) 首先在n=1的情况下,命题显然成立,因为左右两边都等于1。
假设当n=k时,命题成立,即1 + 3 + 5 + ... + (2k-1) = k^2。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1 + 3 + 5 + ... + (2k-1) + (2(k+1)-1) = k^2 + (2k+1)。
根据假设,我们知道前面的求和式等于k^2,因此我们只需要证明(2k+1) = (k+1)^2即可。
展开(k+1)^2,得到k^2 + 2k + 1,与2k+1相比较,左右两边相等。
因此,由数学归纳法可知,命题对所有正整数n成立。
(2) 同样,在n=1的情况下,命题显然成立。
假设当n=k时,命题成立,即1^2 + 2^2 + 3^2 + ... + k^2 = k(k+1)(2k+1)/6。
下面证明当n=k+1时,命题也成立。
当n=k+1时,左边的求和式为:1^2 + 2^2 + 3^2 + ... + k^2 + (k+1)^2 = k(k+1)(2k+1)/6 + (k+1)^2。
将右边的分数相加,得到(k^3 + 3k^2 + 2k)/6 + (k^2 + 2k + 1)。
化简并合并同类项,得到(k^3 + 3k^2 + 2k + k^2 + 2k + 1)/6 = (k^3 +4k^2 + 5k + 1)/6。
因此,我们只需要证明(k^3 + 4k^2 + 5k + 1) = (k+1)(k+2)(2k+3)即可。
高中数学练习题附带解析排列与组合的数学归纳法
高中数学练习题附带解析排列与组合的数学归纳法高中数学练习题附带解析——排列与组合的数学归纳法在高中数学中,排列与组合是一个非常重要的概念和方法。
在解决各种问题时,我们常常需要通过排列与组合的数学归纳法来进行分析与解答。
本文将通过一系列高中数学练习题,并附带解析,来探讨排列与组合的数学归纳法。
以下是一些具有代表性的练习题。
题目一:设有5个数a,b,c,d,e,其中任意3个不相等,从这5个数中任取其中2个数,求这两个数的和是奇数的概率。
解析一:首先,我们可以列出所有的可能情况:ab,ac,ad,aebc,bd,becd,cede其中,以ab为例,a和b的和为奇数的六种情况为:奇数+奇数奇数+偶数偶数+奇数偶数+奇数偶数+奇数偶数+偶数因此,每个两数和是奇数的概率都是1/2。
根据排列与组合的数学归纳法,我们可以得出结论:从5个数中任取2个数,其和为奇数的概率为1/2。
题目二:设有5个数x,y,z,m,n,其中任意2个不相等,从这5个数中任取其中3个数,求这三个数的乘积是偶数的概率。
解析二:同样地,我们先列出所有的可能情况:xyz,xym,xyn,xzm,xzn,ymz,ymn,yzn,mzn其中,以xyz为例,x、y和z的乘积是偶数的八种情况为:偶数×偶数×偶数偶数×奇数×奇数奇数×偶数×奇数奇数×奇数×偶数偶数×奇数×偶数偶数×偶数×奇数奇数×奇数×奇数偶数×偶数×奇数而在八种情况中,只有一种情况是乘积奇数,即奇数×奇数×奇数。
因此,而从5个数中任取3个数,其乘积是偶数的概率为7/8。
通过以上两个练习题,我们可以初步了解到排列与组合的数学归纳法在数学问题中的运用。
在实际解题时,我们可以通过列举所有的可能情况,并仔细分析其中的特点,从而得出问题的解答。
数列与数学归纳法的综合练习题
数列与数学归纳法的综合练习题一、数学归纳法的基本概念数学归纳法是一种证明数学命题的常用方法。
它包括两个基本步骤:基础步和归纳步。
基础步是证明命题对于某个特定的自然数成立;归纳步是假设命题对于一个自然数成立,然后证明对于下一个自然数也成立。
下面通过具体的练习题来进一步理解数学归纳法的应用。
二、练习题一:数列的定义与递推关系1. 已知数列{an}的通项公式是an = 3n - 1(n为自然数),求前5项的值。
解:将n逐个代入通项公式,有:a1 = 3 * 1 - 1 = 2;a2 = 3 * 2 - 1 = 5;a3 = 3 * 3 - 1 = 8;a4 = 3 * 4 - 1 = 11;a5 = 3 * 5 - 1 = 14。
所以,数列{an}的前5项的值分别为2,5,8,11,14。
2. 已知数列{bn}的递推关系是bn = bn-1 + 2,其中b1 = 1,求前6项的值。
解:根据递推关系,可以得到:b2 = b1 + 2 = 1 + 2 = 3;b3 = b2 + 2 = 3 + 2 = 5;b4 = b3 + 2 = 5 + 2 = 7;b5 = b4 + 2 = 7 + 2 = 9;b6 = b5 + 2 = 9 + 2 = 11。
所以,数列{bn}的前6项的值分别为1,3,5,7,9,11。
三、练习题二:数学归纳法证明1. 证明1 + 2 + 3 + ... + n = n(n+1)/2,其中n为自然数。
证明:基础步:当n=1时,等式左边为1,右边为1(1+1)/2,两边相等成立。
归纳步:假设当n=k时等式成立,即1 + 2 + 3 + ... + k = k(k+1)/2;则当n=k+1时,等式左边变为1 + 2 + 3 + ... + k + (k+1);根据归纳假设,左边可以变为k(k+1)/2 + (k+1);化简得 (k^2 + k + 2k + 2) / 2;再次化简得 (k^2 + 3k + 2) / 2;进一步化简得 (k+1)(k+2)/2;即等式右边。
小学六年级数学归纳法练习题
小学六年级数学归纳法练习题数学归纳法是一种用于证明与自然数有关的命题的方法。
对于小学六年级的同学来说,通过练习数学归纳法的相关题目,可以培养逻辑思维和推理能力。
下面我们就来一起看看一些小学六年级数学归纳法的练习题。
一、基础练习1、观察下列算式:1 + 3 = 41 + 3 + 5 = 91 + 3 + 5 + 7 = 161 + 3 + 5 + 7 + 9 = 25根据以上规律,用数学归纳法证明:1 + 3 + 5 +… +(2n 1) =n²证明:当 n = 1 时,左边= 1,右边= 1²= 1,等式成立。
假设当 n = k(k ≥ 1)时,等式 1 + 3 + 5 +… +(2k 1) = k²成立。
那么当 n = k + 1 时,左边= 1 + 3 + 5 +… +(2k 1) +(2(k + 1) 1)= k²+(2k + 1)= k²+ 2k + 1=(k + 1)²所以当 n = k + 1 时,等式也成立。
综上,对于任意正整数 n,1 + 3 + 5 +… +(2n 1) = n²成立。
2、计算:1×2 + 2×3 + 3×4 +… + n(n + 1),并用数学归纳法证明你的结论。
解:1×2 + 2×3 + 3×4 +… + n(n + 1) = 1/3 × n(n + 1)(n + 2)证明:当 n = 1 时,左边= 1×2 = 2,右边= 1/3 × 1×2×3 = 2,等式成立。
假设当 n = k(k ≥ 1)时,等式 1×2 + 2×3 + 3×4 +… + k(k + 1) = 1/3 × k(k + 1)(k + 2) 成立。
那么当 n = k + 1 时,左边= 1×2 + 2×3 + 3×4 +… + k(k + 1) +(k + 1)(k + 2)= 1/3 × k(k + 1)(k + 2) +(k + 1)(k + 2)=(k + 1)(k + 2)(1/3k + 1)= 1/3 ×(k + 1)(k + 2)(k + 3)所以当 n = k + 1 时,等式也成立。
(完整版)数学归纳法练习题
2.3数学归纳法第1课时数学归纳法1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取().A.2 B.3 C.5 D.6解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.答案 C2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N+),验证n=1时,左边应取的项是().A.1 B.1+2C.1+2+3 D.1+2+3+4解析等式左边的数是从1加到n+3.当n=1时,n+3=4,故此时左边的数为从1加到4.答案 D3.设f(n)=1+12+13+…+13n-1(n∈N+),那么f(n+1)-f(n)等于().A.13n+2B.13n+13n+1C.13n+1+13n+2D.13n+13n+1+13n+2解析∵f(n)=1+12+13+…+13n-1,∵f(n+1)=1+12+13+…+13n-1+13n+13n+1+13n+2,∴f(n+1)-f(n)=13n+13n+1+13n+2.答案 D4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)25.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.答案π6.用数学归纳法证明:1 1×2+13×4+…+1(2n-1)·2n=1n+1+1n+2+…+1n+n.证明(1)当n=1时,左边=11×2=12,右边=12,等式成立.(2)假设当n=k(k∈N*)时,等式成立,即1 1×2+13×4+…+1(2k-1)·2k=1k+1+1k+2+…+12k.则当n=k+1时,1 1×2+13×4+…+1(2k-1)·2k+1(2k+1)(2k+2)=1k+1+1k+2+…+12k+1(2k+1)(2k+2)=1k+2+1k+3+…+12k+⎝⎛⎭⎪⎫12k+1-12k+2+1k+1=1k+2+1k+3+…+12k+12k+1+12k+2=1(k+1)+1+1(k+1)+2+…+1(k+1)+k+1(k+1)+(k+1).即当n=k+1时,等式成立.根据(1)(2)可知,对一切n∈N*,等式成立.7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现知命题对n=n0(n0∈N*)时命题成立,则有().A.命题对所有正整数都成立B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立D.以上说法都不正确解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.答案 C8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为().A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.答案 B9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N+)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k+1时等式也成立.因此对于任何n∈N+等式都成立.__________________.答案缺少步骤归纳奠基,实际上当n=1时等式不成立10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.解析当n=k时,左端为:(1+1)(2+2)…(k+k),当n =k +1时,左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *).证明 (1)当n =1时,左边=12=1, 右边=1×(1+1)×(2×1+1)6=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)6那么,12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2=k (k +1)(2k +1)+6(k +1)26=(k +1)(2k 2+7k +6)6=(k +1)(k +2)(2k +3)6=(k +1)[(k +1)+1][2(k +1)+1]6,即当n =k +1时等式也成立.根据(1)和(2),可知等式对任何n ∈N *都成立.12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.a 1=S 1=12⎝ ⎛⎭⎪⎫a 1+1a 1,∴a 21=1(a n >0),∴a 1=1,又1-0=1, ∴n =1时,结论成立.(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k=12⎝⎛⎭⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k =12⎝ ⎛⎭⎪⎫a k +1+1a k +1-12⎝⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝⎛⎭⎪⎫a k +1+1a k +1-k∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.由(1)(2)可知,对n ∈N *都有a n =n -n -1.。
高二数学归纳法练习题
高二数学归纳法练习题一、选择题从A、B、C、D四个选项中选出一个正确答案。
1. 使用归纳法证明命题“对任意正整数n,当n为偶数时,2n一定是偶数”,需要进行的推理基础是:A. 列举B. 逆否命题C. 数学归纳法D. 反证法2. 已知正整数序列An满足An = An-1 + n,若A1 = 3,则A3的值为:A. 6B. 8C. 9D. 113. 使用归纳法证明命题“对任意自然数n,2^n + 1能被3整除”,需要证明的基础命题是:A. 2^1 + 1能被3整除B. 2^n能被3整除C. 2^2 + 1能被3整除D. 2^n + 1能被3整除4. 已知定义在非负整数上的函数f(n)满足f(0) = 0,且对任意非负整数n,f(n+1) = f(n) + 2n + 1。
则f(3)的值为:A. 6B. 8C. 9D. 115. 使用数学归纳法证明命题“对任意正整数n,2^n - 1能被7整除”,需要进行的推理基础是:A. 2^1 - 1能被7整除B. 2^n能被7整除C. 2^2 - 1能被7整除D. 2^n - 1能被7整除二、解答题请根据所给条件,使用归纳法完成下列问题的证明。
1. 对任意正整数n,证明下列命题成立:1 + 2 + 3 + ... + n = n(n+1)/2。
2. 已知正整数序列Bn满足Bn = Bn-1 + 2n - 1,且B1 = 1,证明Bn = n^2。
3. 对任意正整数n,证明下列命题成立:1^3 + 2^3 + 3^3 + ... + n^3= ((n(n+1))/2)^2。
4. 已知定义在非负整数上的函数g(n)满足g(0) = 1,且对任意非负整数n,g(n+1) = g(n) + 3n + 1。
证明g(n) = (n+1)^2。
5. 对任意正整数n,证明下列命题成立:1^2 + 2^2 + 3^2 + ... + n^2= (n(n+1)(2n+1))/6。
三、应用题根据所给条件,使用归纳法解决下列问题。
高中数学选择性必修二 精讲精炼 4 4 归纳法(精练)(含答案)
4.4 数学归纳法(精练)【题组一 增项问题】1.(2021·全国高二课时练习)用数学归纳法证明等式(1)(2)()213(21)n n n n n n ++⋅⋅+=⋅⋅⋅⋅-()N n *∈,从k 到1k +左端需要增乘的代数式为( ) A .21k + B .()221k + C .211k k ++ D .231k k ++ 【答案】B【解析】当n k =时,左端为()()()1232k k k k +++⋅⋅⋅当1n k =+时,左端为()()()()2322122k k k k k ++⋅⋅⋅+⋅+因为()()()()()()()()23221221232221k k k k k k k k k k ⎡⎤++⋅⋅⋅+⋅+=+++⋅⋅⋅⋅+⎣⎦所以从k 到1k +左端需要增乘的代数式为()221k +,故选:B. 2.(2021·全国高二专题练习)用数学归纳法证明“1+a +a 2+…+a 2n +1=221(1)1n a a a+-≠-”.在验证n =1时,左端计算所得项为( ) A .1+a B .1+a +a 2 C .1+a +a 2+a 3D .1+a +a 2+a 3+a 4【答案】C【解析】由21n a +知,当1n =时,等式的左边是231a a a +++.故选:C.3.(2021·全国)用数学归纳法证明“当n 为正奇数时,n n x y +能被x y +整除”时,第二步归纳假设应写成( )A .假设当()*21n k k N=+∈时成立,再推出当23n k =+时成立B .假设当()*21n k k N =-∈时成立,再推出当21n k =+时成立C .假设当()*n k k N =∈时成立,再推出当1n k =+时成立D .假设当()1n k k =≥时成立,再推出当2n k =+时成立 【答案】B【解析】第二步假设当()*21n k k =-∈N 时成立,再推出当()21121n k k =+-=+时成立.故选:B.4.(2021·全国高二课时练习)用数学归纳法证明()1111N ,22321nn n n *++++<∈≥-时,第一步需要验证的不等式是( ) A .1122+< B .111223++<C .111323++<D .11113234+++<【答案】B【解析】因为2n ≥,由数学归纳法可知:第一步需要证明2n =时该不等式成立, 所以第一步需要验证的不等式是111223++<,故选:B.5.(2021·全国高二课时练习)用数学归纳法证明:首项是a 1,公差是d 的等差数列的前n 项和公式是S n =na 1+(1)2n n -d 时,假设当n =k 时,公式成立,则S k =( ) A .a 1+(k -1)d B .1()2k k a a + C .ka 1+(1)2k k -d D .(k +1)a 1+(1)2k k + d 【答案】C【解析】假设当n =k 时,公式成立,只需把公式中的n 换成k 即可,即S k =ka 1+(1)2k k -d . 故选: C6(2021·杭州市实验外国语学校高中部高二期中)用数学归纳法证明:11112321n n ++++<-,(*,1)n n ∈>N 时,在第二步证明从n k =到1n k =+成立时,左边增加的项数是( ) A .2k B .21k - C .12k - D .21k +【答案】A【解析】从n k =到1n k =+成立时,左边增加的项为1111,,,22121k k k ++-,因此增加的项数是121212k k k +--+=,故选A .7.(2021·全国)用数学归纳法证明:()()()()1121321126n n n n n n n ⨯+⨯-+⨯-++⨯=++,当n k =时,左式为()f k ,当1n k =+时,左式为()1f k +,则()()1f k f k +-应该是( )A .()11k ⨯+B .()1231k +++++C .123k ++++D .()2k k ⨯-【答案】B【解析】由题意,()12(1)3(2)4(3)...1=⋅+-+-+-++⋅f k k k k k k ,()11(1)23(1)4(2)...2(1)1+=⋅+++-+-++⋅++⋅f k k k k k k k ,所以()()11[(1)]2[(1)]3[(1)(2)]4[(2)(3)]...(21)(1)1+-=⋅+-+⋅--+⋅---+⋅---++⋅-++⋅f k f k k k k k k k k k k k 123...(1)=++++++k k .故选:B.8.(2021·陕西省黄陵县中学高二月考(理))用数学归纳法证明“1111(2)2321n n n ++++<≥-”时,由n k =的假设证明1n k =+时,不等式左边需增加的项数为( ) A .12k - B .21k -C .2kD .21k +【答案】C【解析】当n k =时,左边11112321k =++++-, 当1n k =+时,左边11111111123212222121k k k k k ++=+++++++++-+-,所以左边增加111112212221k k k k +++++++-分母是连续的正整数所以共增加了1(21)212222k k k k k +--+=⨯-=项所以n k =的假设证明1n k =+时,不等式左边需增加的项数为2k 故选:C9.(2021·全国)用数学归纳法证明1+a +a 2+…+a n =1n(a ≠1,n ∈N *),在验证n =1时,左边计算所得的式子是( ) A .1 B .1+a C .1+a +a 2D .1+a +a 2+a 3 【答案】B【解析】当n =1时,左边计算得出1a +故选:B10.(2021·河南信阳高中高二月考(理))用数学归纳法证明242123,2n n n n N *++++⋅⋅⋅+=∈,则当1n k =+时,左端应在n k =的基础上加上( ) A .21k +B .()21k +C .()()()222121k k k +++⋅⋅⋅++D .()()24112k k +++【答案】C【解析】当n k =时,等式左端为2123k +++⋅⋅⋅+,当1n k =+时,等式左端为()()()2222123121k k k k +++⋅⋅⋅++++++⋅⋅⋅++,∴左端应在n k =的基础上加上()()()222121k k k ++++⋅⋅⋅++.故选:C.11(2021·全国高二课时练习)用数学归纳法证明1+2+3+…+(2n+1)=(n+1)(2n+1)时,从“n=k ”到“n=k+1”,左边需增添的代数式是( ) A .(2k+1)+(2k+2) B .(2k-1)+(2k+1) C .(2k+2)+(2k+3) D .(2k+2)+(2k+4)【答案】C【解析】当n=k 时,左边是共有2k+1个连续自然数相加,即1+2+3+…+(2k+1), 所以当n=k+1时,左边共有2k+3个连续自然数相加, 即1+2+3+…+(2k+1)+(2k+2)+(2k+3). 所以左边需增添的代数式是(2k+2)+(2k+3). 故选:C12.(2021·全国高二课时练习)用数学归纳法证明242123()2n n n n N *+++++=∈,则当1n k =+时,等式左边应该在n k =的基础上加上( ) A .21k + B .2(1)k +C .2(2)k +D .222(1)(2)(1)k k k ++++++【答案】D【解析】当n =k 时,等式左端2123k =++++,当n =k+1时,等式左端2123k =+++++222(1)(2)(1)k k k ++++++,增加了项222(1)(2)(1)k k k ++++++.故选:D .13.(2021·全国)用数学归纳法证明下列等式:()()()()()()()()122135712112112312nn n n n n n n +++-+-++⋯+--+-++-+=-+.要验证当1n =时等式成立,其左边的式子应为( ) A .1- B .13-+ C .135-+- D .1357-+-+【答案】C 【解析】由题意,当1n =时, 左边1213(1)(213)+=-+++-⨯+135=-+-故选:C14.(2021·全国高二课时练习)用数学归纳法证明不等式11111123422n n-++++>-(*,2n N n ∈≥)时,以下说法正确的是( )A .第一步应该验证当1n =时不等式成立B .从“n k =到1n k =+”左边需要增加的代数式是12kC .从“n k =到1n k =+”左边需要增加2k 项D .从“n k =到1n k =+”左边需要增加的代数式是1111121222k k k--+++++ 【答案】D【解析】第一步应该验证当2n =时不等式成立,所以A 不正确; 因为11111111111111()2342234221222k k k k k---++++-++++=++++, 所以从“n k =到1n k =+”左边需要增加的代数式是1111121222k k k--+++++,所以B 不正确; 所以从“n k =到1n k =+”左边需要增加12k -项,所以C 不正确. 故选:D.【题组二 等式的证明】1.(2021·全国高二课时练习)用数学归纳法证明:22212(1)1335(21)(21)2(21)n n n n n n ++++=⨯⨯-++. 【答案】见解析【解析】(1)当1n =时,左边=211133=⨯,右边=213213⨯⨯=,等式成立, (2)假设当n k =时,等式成立,即22121335+⨯⨯+…+()()22121k k k -+=()()1221k k k ++, 当1n k =+时,22121335+⨯⨯+…+()()22121k k k -++()()()221123k k k +++ ()()()()()2121212123k k k k k k ++++=++1121223k k k k k ++⎛⎫=+ ⎪++⎝⎭()()()221121223k k k k k +++=⋅++ ()()()1112211k k k +++⎡⎤⎣⎦=++⎡⎤⎣⎦,即当1n k =+时等式也成立.,由(1)(2)可知:等式对任何*n N ∈都成立, 故22212(1)1335(21)(21)2(21)n n n n n n ++++=⨯⨯-++. 2.(2021·全国)用数学归纳法证明: (1)()213521n n +++⋯+-=;(2)21122221n n -++++=-;(3)233331123(1)2n n n ⎡⎤++++=+⎢⎥⎣⎦.【答案】(1)证明见解析;(2) 证明见解析;(3) 证明见解析. 【解析】(1)当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即()213521k k +++⋯+-=,则当1n k =+时,()()()()221352121211k k k k k +++⋯+-+++==++, 故1n k =+时等式成立,综上可知,等式()213521n n +++⋯+-=成立.(2) 当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即21122221k k -++++=-,则当1n k =+时,()1121222221222211k k k k k k +-++++=-=⨯-=++-,故1n k =+时等式成立, 综上可知,等式21122221n n -++++=-成立.(3) 当1n =时,等式左边1=,右边1=,所以等式成立; 假设n k =时等式成立,即233331123(1)2k k k ⎡⎤++++=+⎢⎥⎣⎦,则当1n k =+时,()()()2333333221123111(1)1124k k k k k k k k ⎡⎤+++++=+++⎢⎛⎫++=++⎣⎪⎦ ⎝⎥⎭()()()()()22222111111212222k k k k k k ⎛⎫++++++ ⎪⎡⎤⎡⎤===⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭ ,故1n k =+时等式成立, 综上可知,等式233331123(1)2n n n ⎡⎤++++=+⎢⎥⎣⎦成立.【题组三 不等式的证明】1.(2021·全国高二课时练习)证明:不等式()*11111123422n n n N -+++++>∈,恒成立. 【答案】证明见解析. 【解析】当1n =时,112>成立 假设n k =时,不等式11111123422k k-++++⋯+>成立那么1n k =+时111111111111112342212222212k k k k k kk ----++++⋯+++++>++++++ 111212k k ->+,111222k k ->+,,1122k k=11111111111211234221222222k k k k k k k k ----+∴++++⋯+++++>+=++ 即1n k =+时,该不等式也成立综上:不等式()*11111123422n n n N -++++⋯+>∈,恒成立.2(2021·全国高三专题练习)证明:对于一切自然数1n ≥都有222n n +>.【答案】证明见解析【解析】(1)当1n =时,1222411+=>=,成立; 当2n =时,2222624+=>=,成立; 当3n =时,32221039+=>=,成立.(2)假设当(3,)n k k k =≥∈N 时不等式成立,即222k k +>,222k k >-, 当1n k =+时,()12222(1)22221k k k k k ++-+=⋅+-++()()2222222123(3)(1)k k k k k k k >-+-++=--=-+.因为3k ≥,即(3)(1)0k k -+≥, 所以1222(1)0k k ++-+>,即当1n k =+时,1222(1)k k ++>+时仍成立. 由(1)(2)所述,原不等式得证.3.(2021·全国高三专题练习)证明不等式1(n ∈N *).【答案】证明见解析【解析】当n =1时,左边=1,右边=2,左边<右边,不等式成立.假设当n =k (k ∈N *)时,不等式成立,即1< 当n =k +1时,1+<==所以当n =k +1时,不等式成立. 综上,原不等式对任意n ∈N *都成立.4.(2021·全国高二课时练习)用数学归纳法证明:1111123421++++⋯+≤-nn . 【答案】证明见解析;【解析】(1)当1n =时,左边1=,右边1=,不等式成立.(2)假设当n k =,*k N ∈时,不等式成立,即有1111123421kk ++++⋯+≤-,则当1n k =+时,左边=1111123421k ++++⋯+-112111221k k k ++⋯+++-+ k ≤+111122121k k k +++⋯++-, 又111122121k k k +++⋯++-1212k k <⋅= 即1111123421k ++++⋯+-112111221k k k ++⋯+++-+1k ≤+, 即当1n k =+时,不等式也成立.综上可得,对于任意*n N ∈,1111123421++++⋯+≤-nn 成立. 5.(2021·全国高二课时练习)试用数学归纳法证明2221111123(1)22n n ++⋯+>-++. 【答案】证明见解析【解析】(1)当1n =时,左边=14,右边=16,不等式成立;(2)假设当()*n k k N =∈时,原不等式成立,即2221111123(1)22k k ++⋯+>-++,当1n k =+时,22222111111123(1)(2)22(2)k k k k ++⋯++>-+++++ ∵()222111111111022(2)2332(2)3(2)k k k k k k k k ⎛⎫-+--=-+=> ⎪++++++++⎝⎭ ∴21111122(2)23k k k -+>-+++.即222211111123(1)(2)23k k k ++⋯++>-+++, 所以,当1n k =+时,不等式也成立.根据(1)和(2)可知,不等式对任意正整数都成立,故原不等式成立. 6.(2021·全国高二课时练习)用数学归纳法证明1+2n ≤1+111232n +++≤12+n (n ∈N *). 【答案】见解析【解析】(1)当n =1时,≤1+≤,命题成立.(2)假设当n =k (k ∈N *)时命题成立,即1+≤1+++…+≤+k , 则当n =k +1时, 1+++…++++…+>1++2k ·=1+.又1+++…++++…+<+k +2k ·=+(k +1),即n =k +1时,命题成立.由(1)和(2)可知,命题对所有n ∈N *都成立.【题组四 数列的证明】1.(2021·全国高二课时练习)已知数列{a n }满足:11a =,点*1(,)()n n a a n N +∈在直线21y x =+上.(1)求234,,a a a 的值,并猜想数列{a n }的通项公式; (2)用数学归纳法证明(1)中你的猜想.【答案】(1)23a =,37a =,415a =;21nn a =-;(2)证明见解析.【解析】(1)点*1(,)()n n a a n N +∈在直线21y x =+上可知,数列{}n a 满足: 121n n a a +=+,11a =,2343,7,15a a a ∴===.可猜得21n n a =-.(2)当1n =时,1211a =-=成立,假设当(1,)n k k k N =≥∈时,21kk a =-成立,则当1n k =+时,11212(21)121k k k k a a ++=+=-+=-成立,就是说*n N ∈,猜想正确;综上,21nn a =-.2(2021·河北曹妃甸一中高二期中)已知数列{}n a 的前n 项和为n S ,其中(21)n n S a n n =-且113a =.(1)求23,a a ;(2)猜想数列{}n a 的通项公式,并证明.【答案】(1)2115a =,3135a =,;(2)猜想1(21)(21)n a n n =-+,证明见解析.【解析】(1)由题意,数列{}n a 满足(21)n n S a n n =-,且113a =,可得21222(221)6S a a a +==⋅⨯-, 即2111515a a ==,又由312333(231)15S a a a a ++==⨯⨯-,可得31261415a a a =+=,可得3135a =. (2)由113a =,2115a =,31,35a =,猜想:1(21)(21)n a n n =-+,证明:当1n =时,由(1)可知等式成立; 假设n k =时,猜想成立,即1(21)(21)k a k k =-+,当1n k =+时,由题设可得11,(21)(1)(21)k k k k S S a a k k k k ++==-++, 所以1(21)(21)(21)(21)21k k k S k k a k k k k k -=-⋅=-++=, ()()11121k k S k k a ++=++, 又由111(1)(21)21k k k k k a S S k k a k +++=-=++-+,所以1(23)21k k k k a k ++=+, 所以()()()()1112123211211k a k k k k +==++⎡⎤⎡⎤+-++⎣⎦⎣⎦, 即当1n k =+时,命题也成立, 综上可得,命题1(21)(21)n a n n =-+对任意n *∈N 都成立. 3.(2021·安徽金安·六安一中高二月考(理))已知数列{}n a 的前n 项和n S ,满足1122n n n a S a =+-,且0n a >. (1)求1a 、2a 、3a ;(2)猜思{}n a 的通项公式,并用数学归纳法证明.【答案】(1)11a =,2a =32a =(2)猜想n a n *∈N ,证明见解析.【解析】(1)对任意的n *∈N ,1122n n n a S a =+-,且0n a >. 当1n =时,11111122a a S a ==+-,整理得211210a a +-=,且0n a >,所以11a ; 当2n =时,221221122a S a a a =+=+-,整理得22210a +-=,且0n a >,所以2a = 当3n =时,3312331122a S a a a a =++=+-,整理得23310a +-=,且0n a >,所以32a = (2)由(1)猜想n a n *∈N ,下面用数学归纳法加以证明:①当1n =时,由(1)知11a 成立;②假设当()n k k *=∈N时,k a = 当1n k =+时,11111111111222222k k k k k k k k k a a a a S S a a a ++++++⎛⎫⎛⎫=-=+--+-=+ ⎪ ⎪⎝⎭⎝⎭,所以21110k k a +++-=,且10k a +>,所以1k a +=1n k =+时猜想也成立.综上可知,猜想对一切n *∈N 都成立.4.(2021·全国高二课时练习)已知数列{}n a 的前n 项和为n S ,214a =,且()1*1122n n n a S n N n -⎛⎫=+-∈ ⎪⎝⎭. (1)求12S 、24S 、38S ; (2)由(1)猜想数列2n n S ⎧⎫⎨⎬⎩⎭的通项公式,并用数学归纳法证明. 【答案】(1)112S =,244S =,398S =;(2)()2*2n n S n n N =∈,证明见解析. 【解析】(1)()1*1122n n n a S n n -⎛⎫=+-∈ ⎪⎝⎭N , 当1n =时,1111112a S S ⎛⎫==+- ⎪⎝⎭,解得12S =,即有112S =; 当2n =时,22121121422a S S S ⎛⎫=-=+-= ⎪⎝⎭,解得216S =,则244S =; 当3n =时,2332311223a S S S ⎛⎫=-=+- ⎪⎝⎭,解得372S =,则398S =; (2)由(1)猜想可得数列2n n S ⎧⎫⎨⎬⎩⎭的通项公式为()2*2n n S n n =∈N . 下面运用数学归纳法证明.①当1n =时,由(1)可得112S =成立; ②假设()*n k k N =∈,22k k S k =成立, 当1n k =+时,1111111221k k k k k a S S S k +-+++⎛⎫=-=+- ⎪+⎝⎭, 即有()221112221221k k k k k k S S k k k +⎛⎫-=-=-=-⋅ ⎪+⎝⎭⋅, 则()()()1111221k k k S k k k +-=+-⋅+, 当1k =时,上式显然成立;当1k >时,()()221121212k k k S k k ++=+⋅=+⋅,即()21112k k S k ++=+, 则当1n k =+时,结论也成立.由①②可得对一切*n ∈N ,22n n S n =成立. 5.(2021·全国)猜想满足1a a =,1121n n n a a a ++-=的数列{}n a 的通项公式,并用数学归纳法证明你的结论.【答案】1(2)(1)n n n aa n n a ---=--,证明见解析【解析】由1121n n n a a a ++-=可得112n na a +=-, 得211122a a a ==--, 32112123222a a a a a-===----,4311322243232a a a a a a -===-----. 推测1(2)(1)n n n aa n n a ---=--.下面用数学归纳法证明:①当1n =时,左边1a a ==, 右边11(12)1(11)a a a ---==--,结论成立.②假设(*)n k n N =∈时等式成立, 有1(2)(1)k k k a a k k a ---=--,则当1n k =+时,111(1)1(2)212(1)k k k k a a k k a a k ka k k a +--===----+----故当1n k =+时,结论也成立.由①②可知,对任何*n N ∈都有1(2)(1)n n n a a n n a ---=--.【题组五 整除问题】1.(2021·陕西渭滨·(理))用数学归纳法证明:对任意正整数,4151n n n +-能被9整除.【答案】见解析【解析】证明:(1)当1n =时,4151n n +-18=,能被9整除,故当1n =时, 4151n n +-能被9整除.(2)假设当n k =时,命题成立,即4151k k +-能被9整除,则当1n k =+时,()1415(1)1441519(52)k k k k k +++-=+---也能被9整除.综合(1)(2)可得, 对任意正整数,4151n n n +-能被9整除.2.(2021·陕西碑林·西北工业大学附属中学高二月考(理))用数学归纳法证明:()21243n n n N ++++∈能被13整除.【答案】证明见解析.【解析】当1n =时,3343642791+=+=,又13791⨯=,∴()21243n n n N ++++∈能被13整除; 假设当n k =时,21243k k +++能被13整除,即()2124133k k m m N +++=∈+,那么当1n k =+时,21123321111643314364163133k k k k k k k +++++++=⨯+⨯=⨯+⨯-⨯+()()2111111643133161313313163k k k k k m m +++++=⨯+-⨯=⨯-⨯=-能被13整除;综上所述:()21243n n n N ++++∈能被13整除.3(2021·河南高二月考(理))用两种方法证明:()33*278n n n +--∈N 能被49整除.【答案】证明见解析. 【解析】证明:方法一:331278878n n n n ++--=--01112111111C 7C 7C 7C 7C 78n n nn n n n n n n n +-++++++=+++++--01112111C 7C 7C 77(1)178n n nn n n n n +-+++=++++++--()0111201121111111C 7C 7C 7C 7C 7C 49n n n n n n n n n n n n +----+++--+=+++=+++⨯因为01121111C 7C 7C n n nn n n ---++++++为整数,所以33278n n +--能被49整除.方法二:(1)当1n =时,33278641549n n +--=-=,能被49整除.(2)假设当(1)n k k =≥,33278k k +--能被49整除,那么,当(1)1n k k =+≥,()3(1)33333327(1)822715827849(1)k k k k k k k ++++-+-=⨯--=--++. 因为33278k k +--能被49整除,()491k +也能被49整除,所以()313)2718k k <++-+-能被49整除,即当(1)1n k k =+≥时命题成立,由(1)(2)知,()33*278n n n +--∈N 能被49整除.4.(2020·上海高二课时练习)求证:对于自然数*212,43n n n N ++∈+能被13整除.【答案】证明见解析;【解析】当1n =时,3343642791+=+=,91能被13整除.假设当*,n k n N =∈时结论成立,即21243k k +++能被13整除.则当1n k =+时,()21222122121114433444333k k k k k k ++++++++=⋅+⋅-⋅+⋅+()21221443331k k k +++=+⋅+⋅,由于21243k k +++能被13整除,所以()2111243k k +++++能被13整除. 所以当1n k =+时,结论成立.综上所述,对于自然数*212,43n n n N ++∈+能被13整除.5.(2022·上海高三专题练习)求证:当*n ∈N ,且2n 时,1(1)--+-n n n a nab n b 能被2()a b -整除.【答案】证明见解析;【解析】证明:当2n =时,原式为2222()a ab b a b -+=-,显然能被2()a b -整除,假设当(2)n k k =时1(1)k k k a kab k b --+-能被2()a b -整除,设上式除以2()a b -所得的商为r ,则12(1)()k k k a kab k b r a b --+-=-12(1)()k k k a kab k b r a b -∴=--+-1212(1)()k k k a ka b k ab r a b a +-∴=--+-因而11(1)k k k a k ab kb ++-++2121(1)()(1)k k k k ka b k ab r a b a k ab kb ++=--+--++122()()k kb a b r a b a -=-+-12()()k ra kb a b -=+-,∴当1n k =+时命题成立,∴当*n N ∈,且2n 时,1(1)--+-n n n a nab n b 能被2()a b -整除.6.(2022·上海高三专题练习)证明(31)71+-n n 能被9整除()*n ∈N .【答案】证明见解析;【解析】证明(1)当1n =时,(31)71(31)7127+-=+⨯-=n n 是9的倍数.命题成立.(2)假设当n k =时,命题成立,即(31)71+-k k 能被9整除.那么当1n k =+时,1[3(1)1]71(2128)71+++-=+⋅-k k k k(31)71(1827)7=+⋅-++⋅k k k k由假设(31)71k k +⋅-能被9整除,(1827)7(23)79k k k k =+⋅+⋅⋅能被9整除.所以(31)71(1827)7k k k k +⋅-++⋅能被9整除.即1n k =+是命题也成立.(3)根据(1),(2)可知()3171n n +-能被9整除.7.(2021·全国高二课时练习)用数学归纳法证明:1211112n n +-+能被133整除 ()*n N∈.【答案】见解析 【解析】证明: ①当1n =时,121211*********n n +-+=+=能被133整除,所以 1n =时结论成立,. ②假设当()*n k k N =∈时,1211112k k +-+能被133整除,那么当1n k =+时, 2211212111211111212k k k k +++-+=⨯+⨯121212121111121112111212k k k k +---=⨯+⨯-⨯+⨯()1212111111213312k k k +--=⨯++⨯.由归纳假设可知()1212111111213312k k k +--⨯++⨯能被133整除,即 2211112k k +++能被133整除.所以1n k =+时结论也成立综上,由①②得,1211112n n +-+能被133整除.。
数列与数学归纳法练习题应用数学归纳法解决数列问题
数列与数学归纳法练习题应用数学归纳法解决数列问题数列作为数学中的一种重要概念,经常在各种数学问题中出现。
数学归纳法是一种解题方法,通常用来证明数列中的某种性质对于所有的正整数成立。
本文将通过一些数列练习题的解答来展示数学归纳法在解决数列问题中的应用。
题目一:证明等差数列的和公式给定等差数列:1,4,7,10,...,其中首项为1,公差为3。
现在我们要证明等差数列的和公式Sn=n/2(2a1+(n-1)d)对于该数列成立。
解答:首先,我们假设等差数列的和公式Sn=n/2(2a1+(n-1)d)对于任意的正整数n成立,即我们假设Sn对于n为任意的正整数均成立。
接下来,我们要证明当n=k+1时,Sn+1=1/2(k+2)(2a1+kd)也成立,其中k为任意正整数。
根据等差数列的性质,我们可以推导出Sn=a1+a2+...+ak,那么Sn+1=a1+a2+...+ak+ak+1。
由于等差数列的公差为d,那么ak+1=a1+kd。
将这个结果代入Sn+1的表达式中,我们可以得到Sn+1=a1+a2+...+ak+(a1+kd)。
观察这个表达式,我们可以发现前k项是Sn的部分,而最后一项a1+kd是等差数列的第k+1项。
根据等差数列求和公式Sn=n/2(2a1+(n-1)d),我们可以将Sn+1进一步简化为Sn+1=Sn+(a1+kd)。
将Sn代入这个表达式,我们可以得到Sn+1=n/2(2a1+(n-1)d)+(a1+kd)。
进一步化简这个表达式,我们可以得到Sn+1=n/2(2a1+(n-1)d)+(a1+kd)=1/2n(2a1+k)。
根据等差数列的和公式Sn=n/2(2a1+(n-1)d),我们可以得到Sn+1=1/2(n+2)(2a1+k)。
由此可见,Sn+1的表达式满足等差数列的和公式。
综上所述,假设Sn对于任意的正整数n均成立的前提下,可以证明Sn+1也成立。
根据数学归纳法原理,等差数列的和公式Sn=n/2(2a1+(n-1)d)对于该数列成立。
高中数学选修2-2 同步练习 专题2.3 数学归纳法(原卷版)
第二章 推理与证明2.3 数学归纳法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.用数学归纳法证明“凸n 边形的内角和S =(n -2)π对于n ≥n 0的正整数n 都成立”时,第一步证明中的起始值n 0应取 A .2 B .3 C .4D .52.已知为正偶数,用数学归纳法证明时,若已假设,且为偶数时命题为真,则还需要用归纳假设再证 A .时等式成立 B .时等式成立C .时等式成立D .时等式成立 3.用数学归纳法证明“”,则当时,应当在时对应的等式的两边加上 A .B .C .D .4.设()()*111122f n n n n n=++⋅⋅⋅+∈++N ,那么()()1f n f n +-= A .121n + B .122n +C .112122n n +++ D .112122n n -++ 5.当是正整数时,用数学归纳法证明从到等号左边需要增加的代数式为 A . B . C .D .二、填空题:请将答案填在题中横线上. 6.用数学归纳法证明:()22311111n n c c c c cc c++-+++++=≠-,当1n =时,左边为__________.7.对于不等式<n+1(n ∈N *),某同学用数学归纳法证明的主要过程如下:(1)当n =1时,<1+1 ,不等式成立;(2)假设当n =k (k ∈N *)时,不等式成立,有<k+1,即k 2+k <(k+1)2, 则当n =k+1时,=<==(k+1)+1,所以当n =k+1时,不等式也成立.则下列说法中正确的有__________.(填出所有正确说法的序号) ①证明过程全部正确;②n =1的验证不正确;③n =k 的归纳假设不正确;④从n =k 到n =k+1的推理不正确. 8.用数学归纳法证明不等式()*1111223212nnn n ++++>≥∈-N ,的过程中,由“”到“”时,左边增加了__________项三、解答题:解答应写出文字说明、证明过程或演算步骤. 9.求证:++…+=1-(其中n ∈N *).10.证明:.11.求证:n3+(n+1)3+(n+2)3(n∈N*)能被9整除.12.试比较2n+2与n2的大小(n∈N*),并用数学归纳法证明你的结论.13.在数列中,,其中.(1)计算的值;(2)猜想数列的通项公式,并用数学归纳法加以证明.。
高三数学数学归纳法练习题及答案
高三数学数学归纳法练习题及答案数学归纳法是高中数学中非常重要的一种证明方法,它在数学推理和证明中具有广泛的应用。
通过运用归纳法,我们可以推出一般性的结论,从而能够解决更加复杂的数学问题。
在高三数学的学习中,熟练掌握数学归纳法的使用对于解题至关重要。
下面将为大家提供一些高三数学数学归纳法练习题及答案,希望能帮助大家更好地掌握该方法。
练习题一:证明:对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2答案一:首先,我们需要明确归纳假设的内容。
假设当n=k时,等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
然后,我们需要证明当n=k+1时,等式也成立。
即1 + 2 + 3 + ... + (k+1) = (k+1)(k + 2)/2。
根据归纳假设,1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明:1 + 2 + 3 + ... + k + (k+1) = (k+1)(k + 2)/2。
将左边的式子进行展开得到: [1 + 2 + 3 + ... + k] + (k+1)。
由归纳假设,我们可以将其中的[1 + 2 + 3 + ... + k]替换成k(k + 1)/2,得到: k(k + 1)/2 + (k+1)。
化简该式子: k(k + 1) + 2(k+1)。
再进一步化简: (k+1)(k + 2) / 2。
可以看出,我们得到了(k+1)(k + 2)/2这个形式,就证明了当n=k+1时,等式也成立。
因此,根据数学归纳法原理,对于任意正整数n,都有1 + 2 + 3 + ... + n = n(n + 1)/2。
练习题二:证明:对于任意正整数n,2^n > n^2。
答案二:同样使用数学归纳法进行证明。
首先,当n=1时,2^1 = 2,1^2 = 1,2 > 1,等式成立。
假设当n=k时,2^k > k^2 成立。
导数、数学归纳法、计数原理习题
导数、数学归纳法、计数原理练习题一.选择题(共23小题)1.定义域为R的函数f(x)对任意x都有f(2+x)=f(2﹣x),且其导函数f′(x)满足>0,则当2<a<4,有()A.f(2a)<f(log2a)<f(2)B.f(log2a)<f(2)<f(2a)C.f(2a)<f(2)<f(log2a)D.f(log2a)<f(2a)<f(2)2.已知函数y=f(x)对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.f(﹣)<f(﹣)B.f()<f()C.f(0)>2f()D.f(0)>f()3.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.[1,3)B.C.D.4.设函数f′(x)是函数f(x)(x≠0)的导函数f′(x)<,函数y=f(x)(x≠0)的零点为1和﹣2,则不等式xf(x)<0的解集为()A.(﹣∞,﹣2)∪(0,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,0)∪(0,1)D.(﹣2,0)∪(1,+∞)5.函数y=的一段大致图象是()A.B.C.D.6.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.C.y=(x2﹣2x)e x D.7.下列函数中,当0<x1<x2<1时,满足x2f(x1)<x1f(x2)的函数是()A.f(x)=﹣x3B.f(x)=lnx C.f(x)=x2+1 D.f(x)=()x8若函数f (x)=e x+4x﹣kx在区间(,+∞)上是增函数,则实数k的最大值是()A.2+e B.2+C.4+e D.4ln2+9.已知函数f(x)=2ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(1,+∞)B.(0,1)C.(﹣1,0)D.(﹣∞,﹣1)10.已知b、c、d∈R,函数f(x)=x3+bx2+cx+d在(0,1)上既有极大值又有极小值,则c2+(1+b)c的取值范围是()A.(0,)B.(0,]C.(0,)D.[0,)11.由曲线f(x)=与y轴及直线y=m(m>0)围成的图形面积为,则m=()A.2 B.3 C.1 D.812.已知a、b为正实数,直线y=x﹣a与曲线y=ln(x+b)相切,则的取值范围是()A.(0,)B.(0,1)C.(0,+∞)D.[1,+∞)13.已知函数f(x)=2e x,函数g(x)=k(x+1),若函数f(x)图象恒在函数g(x)图象的上方(没有交点),则实数的取值范围是()A.k>2 B.k≥2 C.0≤k≤2 D.0≤k<214.已知函数f(x)=xlnx,g(x)=ax3﹣x﹣,记函数f(x)与g(x)的交点坐标为(x0,f(x0)),若两函数的图象在交点(x0,f(x0))处存在公切线,则实数a的值为()A.B.C.D.15.“a≤﹣1”是“函数f(x)=lnx+ax+在[1,+∞)上是单调函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件16.设三次函数f(x)=ax3+bx2+cx+1的导函数为f′(x)=3ax(x﹣2),若函数y=f(x)共有三个不同的零点,则a的取值范围是()A.(﹣∞,﹣) B.(0,)C.(,+∞)D.(0,2)17.已知a,b,c,d均为实数,函数(a<0)有两个极值点x1,x2(x1<x2),满足f(x2)=x1.则关于实数x的方程a[f(x)]2+bf(x)+c=0的实根个数为()A.0 B.2 C.3 D.418.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),则以下说法错误的是()A.f′(1)+f′(﹣1)=0B.当x=﹣1时,函数f(x)取得极大值C.方程xf'(x)=0与f(x)=0均有三个实数根D.当x=1时,函数f(x)取得极小值19.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼梯的方法有()A.45种B.36种C.28种D.25种20.市内某公共汽车站6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是()A.48 B.54 C.72 D.8421.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图三棱柱ABC﹣A1B1C1的六个顶点上各安装一个灯泡,要求同一条线段的两端的灯泡颜色不同,则每种颜色的灯泡至少用一个的安装方法共有()A.96种B.144种C.216种D.288种22.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有()种.A.216 B.360 C.1080 D.43223.由0,1,2,3,4,5这六个数字组成的不重复的六位数中,不出现“135”与“24”的六位数的个数为()A.582 B.504 C.490 D.486二.解答题(共7小题)24.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.25.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.26.函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.27.设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.28.用数学归纳法证明(1•22﹣2•32)+(3•42﹣4•52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3).29.已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).30.已知f(n)=1+++…+.经计算得f(4)>2,f(8)>,f(16)>3,f(32)>.(Ⅰ)由上面数据,试猜想出一个一般性结论;(Ⅱ)用数学归纳法证明你的猜想.答案解析:1.定义域为R的函数f(x)对任意x都有f(2+x)=f(2﹣x),且其导函数f′(x)满足>0,则当2<a<4,有()A.f(2a)<f(log2a)<f(2)B.f(log2a)<f(2)<f(2a)C.f(2a)<f(2)<f(log2a)D.f(log2a)<f(2a)<f(2)【解答】解:∵函数f(x)对任意x都有f(2+x)=f(2﹣x),∴函数f(x)的对称轴为x=2∵导函数f′(x)满足,∴函数f(x)在(2,+∞)上单调递减,(﹣∞,2)上单调递增,∵2<a<4∴1<log2a<2<4<2a又函数f(x)的对称轴为x=2∴f(2)>f(log2a)>f(2a),故选A.2已知函数y=f(x)对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0(其中f′(x)是函数f(x)的导函数),则下列不等式成立的是()A.f(﹣)<f(﹣)B.f()<f()C.f(0)>2f()D.f(0)>f()【解答】解:构造函数g(x)=,则g′(x)==(f′(x)cosx+f(x)sinx),∵对任意的x∈(﹣,)满足f′(x)cosx+f(x)sinx>0,∴g′(x)>0,即函数g(x)在x∈(﹣,)单调递增,则g(﹣)<g(﹣),即,∴,即f(﹣)<f(﹣),故A正确.g(0)<g(),即,∴f(0)<2f(),故选:A.3.若函数f(x)=2x2﹣lnx在其定义域内的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A.[1,3)B.C.D.【解答】解:因为f(x)定义域为(0,+∞),又f′(x)=4x﹣,由f'(x)=0,得x=.当x∈(0,)时,f'(x)<0,当x∈(,+∞)时,f'(x)>0据题意,,解得1≤k<,故选:B.4.设函数f′(x)是函数f(x)(x≠0)的导函数f′(x)<,函数y=f(x)(x≠0)的零点为1和﹣2,则不等式xf(x)<0的解集为()A.(﹣∞,﹣2)∪(0,1)B.(﹣∞,﹣2)∪(1,+∞)C.(﹣2,0)∪(0,1)D.(﹣2,0)∪(1,+∞)【解答】解:由f′(x)<,得:或,令g(x)=,则xf(x)=x3g(x)<0,则g′(x)==,故g(x)在(﹣∞,0)递增,在(0,+∞)递增,而g(﹣2)=0,g(1)=0,则x∈(﹣∞,2)时:g(x)<0,x∈(﹣2,0)时:g(x)>0,x∈(0,1)时:g(x)<0,x∈(1,+∞)时:g(x)>0,由xf(x)<0得:x3g(x)<0,∴或,∴x3g(x)<0的解集是(﹣2,0)∪(0,1),故选:C.5.函数y=的一段大致图象是()A.B.C.D.【解答】解:根据函数为奇函数,排除B、C两项;又,所以,函数在(﹣∞,0),(0,+∞)上均为减函数,D不正确.故选:A.6.如图可能是下列哪个函数的图象()A.y=2x﹣x2﹣1 B.C.y=(x2﹣2x)e x D.【解答】解:根据函数的图象得出:当x<0时,y=2x﹣x2﹣1有负值,故A不正确,y=有无数个零点,故B不正确,y=,y′=,y′==0,x=ey′=>0,x>ey′=<0,0<x<e故(0,1),(1,e)上单调递减,(e,+∞)单调递增,x=e时,y=e>0,∴y=的图象在(1,+∞)位于x轴上方,在(0,1)在x轴下方,间断.故D不正确,排除A,B,D故选:C7.下列函数中,当0<x1<x2<1时,满足x2f(x1)<x1f(x2)的函数是()A.f(x)=﹣x3B.f(x)=lnx C.f(x)=x2+1 D.f(x)=()x【解答】解:当0<x1<x2<1时,满足x2f(x1)<x1f(x2)即为<,由单调性定义可得,y=在(0,1)为增函数.对于A,=﹣x2在(0,1)递减,不满足条件;对于B,=的导数为,在(0,1)内导数为正,即有在(0,1)递增,满足条件;对于C,=x+的导数为1﹣,在(0,1)内导数为负,即有在(0,1)递减,不满足条件;对于D,=的导数为,在(0,1)内导数为负,即有在(0,1)递减,不满足条件.故选:B.8.若函数f (x)=e x+4x﹣kx在区间(,+∞)上是增函数,则实数k的最大值是()A.2+e B.2+C.4+e D.4ln2+【解答】解:函数f(x)=e x+4x﹣kx的导数为f′(x)=e x+4x ln4﹣k,由题意可得f′(x)≥0在区间(,+∞)上恒成立,即有k≤e x+4x ln4在区间(,+∞)上恒成立.令g(x)=e x+4x ln4,则g(x)为(,+∞)的增函数,即有g(x)>+2ln4=4ln2+.则k≤4ln2+.故k的最大值为4ln2+.故选D.9.已知函数f(x)=2ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()A.(1,+∞)B.(0,1)C.(﹣1,0)D.(﹣∞,﹣1)【解答】解:若a=0,则函数f(x)=﹣3x2+1,有两个零点,不满足条件.若a≠0,函数的f(x)的导数f′(x)=6ax2﹣6x=6ax(x﹣),若f(x)存在唯一的零点x0,且x0>0,若a>0,由f′(x)>0得x>或x<0,此时函数单调递增,由f′(x)<0得0<x<,此时函数单调递减,故函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若x0>0,此时还存在一个小于0的零点,此时函数有两个零点,不满足条件.若a<0,由f′(x)>0得<x<0,此时函数递增,由f′(x)<0得x<或x>0,此时函数单调递减,即函数在x=0处取得极大值f(0)=1>0,在x=处取得极小值f(),若存在唯一的零点x0,且x0>0,则f()>0,即2a()3﹣3()2+1>0,()2<1,即﹣1<<0,解得a<﹣1,故选:D10.已知b、c、d∈R,函数f(x)=x3+bx2+cx+d在(0,1)上既有极大值又有极小值,则c2+(1+b)c的取值范围是()A.(0,)B.(0,]C.(0,)D.[0,)【解答】解:函数f(x)=x3+bx2+cx+d,f′(x)=x2+bx+c,由极值点处导数值为0,即f′(x)=0,故有x2+bx+c=0,要使其有两个不同的实数解,需要△=b2﹣4c>0,可解得4c<b2①又两个实数解分别是x1=,和x2=,都在(0,1)区间,即:>0,可推得:b<0 且c>0 ②<1,可推得:b>﹣2 且c+b+1>0 ③由②③式可知﹣2<b<0 ④由①可得c<,则c2+(1+b)c=c(c+1+b)<(+1+b)=•=(b2+2b)2=[(b+1)2﹣1]2,由﹣2<b<0,可知[(b+1)2﹣1]2∈(0,].即有0<c2+(1+b)c<.故选A.11.由曲线f(x)=与y轴及直线y=m(m>0)围成的图形面积为,则m=()A.2 B.3 C.1 D.8【解答】解:由题意,由曲线f(x)=与y轴及直线y=m(m>0)围成的图形面积为,即,整理得m3=8,解得m=2;故选A.12.已知a、b为正实数,直线y=x﹣a与曲线y=ln(x+b)相切,则的取值范围是()A.(0,)B.(0,1)C.(0,+∞)D.[1,+∞)【解答】解:函数的导数为y′==1,x=1﹣b,切点为(1﹣b,0),代入y=x﹣a,得a+b=1,∵a、b为正实数,∴a∈(0,1),则=,令g(a)=,则g′(a)=,则函数g(a)为增函数,∴∈(0,).故选:A13.已知函数f(x)=2e x,函数g(x)=k(x+1),若函数f(x)图象恒在函数g(x)图象的上方(没有交点),则实数的取值范围是()A.k>2 B.k≥2 C.0≤k≤2 D.0≤k<2【解答】解:若函数f(x)图象恒在函数g(x)图象的上方(没有交点),即f(x)﹣g(x)>0恒成立,即2e x﹣k(x+1)>0,即2e x>k(x+1),若k=0,满足条件,若k<0,则不满足条件.则当k>0时,g(x)=k(x+1)过定点(﹣1,0),函数f(x)的导数为f′(x)=2e x,设切点为(a,b),则对应的切线斜率k=f′(a)=2e a,则对应的切线方程为y﹣2e a=2e a(x﹣a),∵直线过点(﹣1,0),∴﹣2e a=2e a(﹣1﹣a),解得a=0,此时切线斜率k=f′(0)=2,即此时k=2,则解得0<k<2,综上0≤k<2,故选:D14.已知函数f(x)=xlnx,g(x)=ax3﹣x﹣,记函数f(x)与g(x)的交点坐标为(x0,f(x0)),若两函数的图象在交点(x0,f(x0))处存在公切线,则实数a的值为()A.B.C.D.【解答】解:由题意可得交点为(x0,x0lnx0),函数f(x)=xlnx的导数为f′(x)=lnx+1,g(x)=ax3﹣x﹣的导数为g′(x)=3ax2﹣,由题意可得,1+lnx0=3ax02﹣,且x0lnx0=ax03﹣x0﹣,消去a,可得1+ex0lnx0=0,令h(x)=1+exlnx,h′(x)=e(lnx+1),当x>时,h′(x)>0,h(x)递增;当0<x<时,h′(x)<0,h(x)递减.即有x=处h(x)取得极小值,也为最小值,且为0.则1+ex0lnx0=0,解得x0=,代入1+lnx0=3ax02﹣,可得a=e2.故选B.15.“a≤﹣1”是“函数f(x)=lnx+ax+在[1,+∞)上是单调函数”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【解答】解:若函数f(x)=lnx+ax+在[1,+∞)上是单调函数,则函数的导数f′(x)满足不变号,即f′(x)≤0或f′(x)≥0在[1,+∞)上恒成立,∵f′(x)=+a﹣,∴若函数f(x)单调递减,则f′(x)=+a﹣≤0,即a≤﹣+=(﹣)2﹣恒成立,设g(x)=(﹣)2﹣,∵x≥1,∴0<≤1,则当=时,g(x)取得最小值﹣,此时a≤﹣,∴若函数f(x)单调递增,则f′(x)=+a﹣≥0,即a≥﹣+=(﹣)2﹣恒成立,设g(x)=(﹣)2﹣,∵x≥1,∴0<≤1,则﹣≤g(x)≤0,此时a≥0,综上若函数f(x)=lnx+ax+在[1,+∞)上是单调函数,则a≥0或a≤﹣,则“a≤﹣1”是“函数f(x)=lnx+ax+在[1,+∞)上是单调函数”的充分不必要条件,故选:A.16.设三次函数f(x)=ax3+bx2+cx+1的导函数为f′(x)=3ax(x﹣2),若函数y=f(x)共有三个不同的零点,则a的取值范围是()A.(﹣∞,﹣) B.(0,)C.(,+∞)D.(0,2)【解答】解:∵f(x)=ax3+bx2+cx+1的导函数为f′(x)=3ax2+2bx+c=3ax(x﹣2)=3ax2﹣6ax,∴2b=﹣6a,c=0,即b=﹣3a,c=0,则f(x)=ax3﹣3ax2+1,①若a>0,则由f′(x)=3ax(x﹣2)>0得x>2或x<0,由f′(x)<0得0<x<2,则函数在x=0时取得极大值f(0)=1,在x=2时,函数取得极小值f(2)=8a﹣12a+1=1﹣4a,若函数y=f(x)共有三个不同的零点,则f(2)=1﹣4a<0,解得a>.②若若a<0,则由f′(x)=3ax(x﹣2)<0得x>2或x<0,由f′(x)>0得0<x<2,则函数在x=0时取得极小值f(0)=1,在x=2时,函数取得极大值f(2)=8a﹣12a+1=1﹣4a,则此时函数y=f(x)只有1个零点,不满足条件.综上a>,故选:C17.已知a,b,c,d均为实数,函数(a<0)有两个极值点x1,x2(x1<x2),满足f(x2)=x1.则关于实数x的方程a[f(x)]2+bf(x)+c=0的实根个数为()A.0 B.2 C.3 D.4【解答】解:∵f′(x)=ax2+bx+c,由题意知x1,x2是方程ax2+bx+c=0的两根,即x1,x2是函数的两个极值点,x2>x1,从而关于f(x)的方程a[f(x)]2+b[f(x)]+c=0有两个根,所以f(x)=x1,或f(x)=x2根据题意画图,所以f(x)=x1有两个不等实根,f(x)=x2只有一个不等实根,综上方程a[f(x)]2+bf(x)+c=0的不同实根个数为3个.故选:C.18.已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数),则以下说法错误的是()A.f′(1)+f′(﹣1)=0B.当x=﹣1时,函数f(x)取得极大值C.方程xf'(x)=0与f(x)=0均有三个实数根D.当x=1时,函数f(x)取得极小值【解答】解:由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.综上所述,函数f(x)大致图象是,故f′(1)=0,f′(﹣1)=0,所以A、B、D正确;故选C.19.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼梯的方法有()A.45种B.36种C.28种D.25种【解答】解:由题意可知一步上一级,有6步;一步上两级有2步;所以一步2级不相邻有C72=21种,一步2级相邻的走法有:7种;共有21+7=28种.故选C.20.市内某公共汽车站6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是()A.48 B.54 C.72 D.84【解答】解:根据题意,先把三名乘客全排列,有种排法,产生四个空,再将2个连续空座位和一个空座位插入四个空中,有种排法,则共有=72种候车方式.故答案为C.21.某人有4种颜色的灯泡(每种颜色的灯泡足够多),要在如图三棱柱ABC﹣A1B1C1的六个顶点上各安装一个灯泡,要求同一条线段的两端的灯泡颜色不同,则每种颜色的灯泡至少用一个的安装方法共有()A.96种B.144种C.216种D.288种【解答】解:根据题意,每种颜色的灯泡都至少用一个,即用了四种颜色的灯进行安装,分3步进行,第一步,为A、B、C三点选三种颜色灯泡共有A43种选法;第二步,在A1、B1、C1中选一个装第4种颜色的灯泡,有3种情况;第三步,为剩下的两个灯选颜色,假设剩下的为B1、C1,若B1与A同色,则C1只能选B点颜色;若B1与C同色,则C1有A、B处两种颜色可选.故为B1、C1选灯泡共有3种选法,即剩下的两个灯有3种情况,则共有A43×3×3=216种方法.故选C.22.现有7件互不相同的产品,其中有4件次品,3件正品,每次从中任取一件测试,直到4件次品全被测出为止,则第三件次品恰好在第4次被测出的所有检测方法有()种.A.216 B.360 C.1080 D.432【解答】解:由题意知本题是一个分类计数问题,包括三种情况,一是第五次就测出所有的次品,二是第六次测出所有的次品,三是最后一次测出第四件次品,当第五次就测出所有的次品,共有4×3×A33C31=216,当第六次测出所有的次品,共有4×3×A32A32=432当第七次测出所有的次品,共有4×3×A32A33=432∴根据分类计数原理得到共有216+432+432=1080故选C.23.由0,1,2,3,4,5这六个数字组成的不重复的六位数中,不出现“135”与“24”的六位数的个数为()A.582 B.504 C.490 D.486【解答】解:首位不是0的数字有A66﹣A55=600个,含有“135”的数字,可以将“135”看成一个整体,加上另外的0,2,4共“4”个数字,有A44﹣A33=18个,含有“24”的数字A55﹣A44=96个另外重复135024,135240,240135,241350这4个数字所以总数是600﹣18﹣96+4=490故选C.二.解答题(共7小题)24.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).25.设函数f(x)=e mx+x2﹣mx.(1)证明:f(x)在(﹣∞,0)单调递减,在(0,+∞)单调递增;(2)若对于任意x1,x2∈[﹣1,1],都有|f(x1)﹣f(x2)|≤e﹣1,求m的取值范围.【解答】解:(1)证明:f′(x)=m(e mx﹣1)+2x.若m≥0,则当x∈(﹣∞,0)时,e mx﹣1≤0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1≥0,f′(x)>0.若m<0,则当x∈(﹣∞,0)时,e mx﹣1>0,f′(x)<0;当x∈(0,+∞)时,e mx﹣1<0,f′(x)>0.所以,f(x)在(﹣∞,0)时单调递减,在(0,+∞)单调递增.(2)由(1)知,对任意的m,f(x)在[﹣1,0]单调递减,在[0,1]单调递增,故f(x)在x=0处取得最小值.所以对于任意x1,x2∈[﹣1,1],|f(x1)﹣f(x2)|≤e﹣1的充要条件是即设函数g(t)=e t﹣t﹣e+1,则g′(t)=e t﹣1.当t<0时,g′(t)<0;当t>0时,g′(t)>0.故g(t)在(﹣∞,0)单调递减,在(0,+∞)单调递增.又g(1)=0,g(﹣1)=e﹣1+2﹣e<0,故当t∈[﹣1,1]时,g(t)≤0.当m∈[﹣1,1]时,g(m)≤0,g(﹣m)≤0,即合式成立;当m>1时,由g(t)的单调性,g(m)>0,即e m﹣m>e﹣1.当m<﹣1时,g(﹣m)>0,即e﹣m+m>e﹣1.综上,m的取值范围是[﹣1,1]26函数f(x)=ax3+3x2+3x(a≠0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)在区间(1,2)是增函数,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=ax3+3x2+3x,∴f′(x)=3ax2+6x+3,令f′(x)=0,即3ax2+6x+3=0,则△=36(1﹣a),①若a≥1时,则△≤0,f′(x)≥0,∴f(x)在R上是增函数;②因为a≠0,∴当a≤1,△>0,f′(x)=0方程有两个根,x1=,x2=,当0<a<1时,则当x∈(﹣∞,x2)或(x1,+∞)时,f′(x)>0,故函数在(﹣∞,x2)或(x1,+∞)是增函数;在(x2,x1)是减函数;当a<0时,则当x∈(﹣∞,x1)或(x2,+∞),f′(x)<0,故函数在(﹣∞,x1)或(x2,+∞)是减函数;在(x1,x2)是增函数;(Ⅱ)当a>0,x>0时,f′(x)=3ax2+6x+3>0 故a>0时,f(x)在区间(1,2)是增函数,当a<0时,f(x)在区间(1,2)是增函数,当且仅当:f′(1)≥0且f′(2)≥0,解得﹣,a的取值范围[)∪(0,+∞).27.设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f(1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.【解答】解:(1)f′(x)=(x>0),∵曲线y=f(x)在点(1,f(1))处的切线斜率为0,∴f′(1)=a+(1﹣a)×1﹣b=0,解得b=1.(2)函数f(x)的定义域为(0,+∞),由(1)可知:f(x)=alnx+,∴=.①当a时,则,则当x>1时,f′(x)>0,∴函数f(x)在(1,+∞)单调递增,∴存在x0≥1,使得f(x0)<的充要条件是,即,解得;②当a<1时,则,则当x∈时,f′(x)<0,函数f(x)在上单调递减;当x∈时,f′(x)>0,函数f(x)在上单调递增.∴存在x0≥1,使得f(x0)<的充要条件是,而=+,不符合题意,应舍去.③若a>1时,f(1)=,成立.综上可得:a的取值范围是.28.用数学归纳法证明(1•22﹣2•32)+(3•42﹣4•52)+…+[(2n﹣1)(2n)2﹣2n(2n+1)2]=﹣n(n+1)(4n+3).【解答】证明:当n=1时,左边=﹣14,右边=﹣1•2•7=﹣14,等式成立假设当n=k时等式成立,即有(1•22﹣2•32)+(3•42﹣4•52)++[(2k﹣1)(2k)2﹣2k(2k+1)2]=﹣k(k+1)(4k+3)那么当n=k+1时,(1•22﹣2•32)+(3•42﹣4•52)++[(2k﹣1)(2k)2﹣2k(2k+1)2]+[(2k+1)(2k+2)2﹣(2k+2)(2k+3)2]=﹣k(k+1)(4k+3)﹣2(k+1)[4k2+12k+9﹣4k2﹣6k﹣2]=﹣(k+1)[4k2+3k+2(6k+7)]=﹣(k+1)[4k2+15k+14]=﹣(k+1)(k+2)(4k+7)=﹣(k+1)[(k+1)+1][4(k+1)+3].这就是说,当n=k+1时等式也成立.根据以上论证可知等式对任何n∈N都成立.29.已知函数.(I)当a=1时,求f(x)在x∈[1,+∞)最小值;(Ⅱ)若f(x)存在单调递减区间,求a的取值范围;(Ⅲ)求证:(n∈N*).【解答】解:(I),定义域为(0,+∞).∵,∴f(x)在(0,+∞)上是增函数.当x≥1时,f(x)≥f(1)=1;(3分)(Ⅱ)∵,∵若f(x)存在单调递减区间,∴f′(x)<0有正数解.即ax2+2(a﹣1)x+a<0有x>0的解.(5分)①当a=0时,明显成立.②当a<0时,y=ax2+2(a﹣1)x+a为开口向下的抛物线,ax2+2(a﹣1)x+a<0总有x>0的解;③当a>0时,y=ax2+2(a﹣1)x+a开口向上的抛物线,即方程ax2+2(a﹣1)x+a=0有正根.因为x1x2=1>0,所以方程ax2+2(a﹣1)x+a=0有两正根.,解得.综合①②③知:.(9分)(Ⅲ)(法一)根据(Ⅰ)的结论,当x>1时,,即.令,则有,∴.∵,第21页(共21页)∴. (12分)(法二)当n=1时,ln (n+1)=ln2.∵3ln2=ln8>1,∴,即n=1时命题成立.设当n=k 时,命题成立,即.∴n=k+1时,.根据(Ⅰ)的结论,当x >1时,,即. 令,则有, 则有,即n=k+1时命题也成立.因此,由数学归纳法可知不等式成立. (12分)30.已知f (n )=1+++…+.经计算得f (4)>2,f (8)>,f (16)>3,f (32)>. (Ⅰ)由上面数据,试猜想出一个一般性结论;(Ⅱ)用数学归纳法证明你的猜想.【解答】解:(Ⅰ)由题意知,,.… 由此得到一般性结论:.(或者猜测也行).(Ⅱ)利用数学归纳法证明:(1)当n=1时,,所以结论成立. (2)假设n=k (k ≥1,k ∈N )时,结论成立,即, 那么,n=k+1时,,.所以当n=k+1时,结论也成立.综上所述,上述结论对n ≥1,n ∈N 都成立,所以猜想成立.。
初中数学数列与数学归纳法练习题
初中数学数列与数学归纳法练习题数列与数学归纳法是初中数学中的重要概念,通过练习题的形式可以巩固对这两个知识点的理解和应用。
本文将为大家提供一些初中数学数列与数学归纳法练习题,并附带详细解答,帮助读者加深对这两个概念的掌握。
1. 数列练习题题目一:已知数列{an}的通项公式为an = 3n + 2,求该数列的前5项。
解答:根据通项公式an = 3n + 2,将n依次代入1、2、3、4、5,求得数列的前5项为5、8、11、14、17。
题目二:已知数列{bn}的前n项和Sn的表达式为Sn = 2n^2 + 5n,求该数列的通项公式。
解答:根据已知的前n项和表达式Sn = 2n^2 + 5n,我们可以通过分析和推导来求解数列的通项公式。
首先求出前几项的和,得到数列的差分,可以发现差分数列的通项为2n + 5。
再对差分数列进行求和,得到原数列的通项公式为bn = n^2 + 5n + C,其中C为常数。
通过代入前几项的值,可以得到C的值为0,所以数列的通项公式为bn = n^2 + 5n。
题目三:数列{cn}的通项公式为cn = 2^n,求该数列的前6项。
解答:将n依次代入1、2、3、4、5、6,求得数列的前6项为2、4、8、16、32、64。
2. 数学归纳法练习题题目一:利用数学归纳法证明1 + 2 + 3 + ... + n = n(n + 1)/2,其中n为正整数。
解答:首先,我们验证当n = 1时等式是否成立。
代入n = 1,左边的等式为1,右边的等式为1,所以当n = 1时等式成立。
接下来,假设当n = k时等式成立,即1 + 2 + 3 + ... + k = k(k + 1)/2。
我们需要证明当n = k + 1时等式也成立。
根据归纳假设,我们有1 + 2 + 3 + ... + k = k(k + 1)/2。
将右边的等式升级为k + 1,得到1 + 2 + 3 + ... + k + (k + 1) = (k +1)(k + 2)/2。
高二数学选修2-2(B版)_同步练习:数学归纳法2
数学归纳法一、选择题1.用数学归纳法证明1+q +q 2+…+q n +1=q n +2-qq -1(n ∈N *,q ≠1),在验证n=1等式成立时,等式左边的式子是( )A .1B .1+qC .1+q +q 2D .1+q +q 2+q 3[答案] C[解析] 左边=1+q +q 1+1=1+q +q 2.故选C.2.用数学归纳法证明(n +1)(n +2)(n +3)…(n +n )=2n ·1·3·…·(2n -1)(n ∈N *),从n =k 到n =k +1,左边的式子之比是( )A.12k +1B .122k +1C.2k +1k +1D .2k +3k +1[答案] B [解析] k +1k +2k +3…k +k k +1+1k +1+2…k +1+k +1=k +1k +2k +3…2k k +2k +3…2k 2k +12k +2=122k +1.故选B.3.用数学归纳法证明1n +1+1n +2+…+12n >1314(n ≥2,n ∈N *)的过程中,由n =k 递推到n =k +1时不等式左边( )A .增加了一项12k +1B .增加了两项12k +1+12k +2C .增加了B 中两项但减少了一项1k +1D .以上各种情况均不对 [答案] C[解析] n =k 时,左边=1k +1+1k +2+…+12k ,n =k +1时,左边=1k +2+1k +3+…+12k +12k +1+12k +2∴增加了12k +1+12k +2,减少了一项1k +1. 故选C.4.用数学归纳法证明1+a +a 2+…+a n +1=1-an +21-a(n ∈N *,a ≠1),在验证n=1时,左边所得的项为( )A .1B .1+a +a 2C .1+aD .1+a +a 2+a 3[答案] B[解析] 因为当n =1时,a n +1=a 2,所以此时式子左边=1+a +a 2.故应选B.5.某个与正整数n 有关的命题,如果当n =k (k ∈N *)时该命题成立,则可推得n =k +1时该命题也成立,现已知n =5时命题不成立,那么可推得( )A .当n =4时该命题不成立B .当n =6时该命题不成立C .当n =4时该命题成立D .当n =6时该命题成立 [答案] A[解析] 由命题及其逆否命题的等价性知选A. 6.等式12+22+32+…+n 2=12(5n 2-7n +4)( ) A .n 为任何正整数都成立 B .仅当n =1,2,3时成立C .当n =4时成立,n =5时不成立D .仅当n =4时不成立 [答案] B[解析] 经验证,n =1,2,3时成立,n =4,5,…不成立.故选B.7.用数学归纳法证明某命题时,左式为12+cosα+cos3α+…+cos(2n-1)α(α≠kπ,k∈Z,n∈N*),在验证n=1时,左边所得的代数式为()A.1 2B.12+cosαC.12+cosα+cos3αD.12+cosα+cos3α+cos5α[答案] B[解析]令n=1,左式=12+cosα.故选B.8.用数学归纳法证明“n3+(n+1)3+(n+2)3(n∈N*)能被9整除”,要利用归纳假设证n=k+1时的情况,只需展开()A.(k+3)3B.(k+2)3C.(k+1)3D.(k+1)3+(k+2)3[答案] A[解析]因为从n=k到n=k+1的过渡,增加了(k+1)3,减少了k3,故利用归纳假设,只需将(k+3)3展开,证明余下的项9k2+27k+27能被9整除.二、填空题9.用数学归纳法证明“1+2+22+…+2n-1=2n-1(n∈N+)”的过程中,第二步n=k时等式成立,则当n=k+1时应得到________.[答案]1+2+22+…+2k-1+2k=2k+1-110.用数学归纳法证明当n∈N+时,1+2+22+23+…+25n-1是31的倍数时,当n=1时原式为__________,从k→k+1时需增添的项是________.[答案]1+2+22+23+2425k+25k+1+25k+2+25k+3+25k+411.使不等式2n>n2+1对任意n≥k的自然数都成立的最小k值为________.[答案] 5[解析]25=32,52+1=26,对n≥5的所有自然数n,2n>n2+1都成立,自己用数学归纳法证明之.三、解答题12.用数学归纳法证明:(n+1)(n+2)…(n+n)=2n·1·3·5·…·(2n-1)(n∈N*).[证明](1)当n=1时,等式左边=2,右边=2×1=2,∴等式成立.(2)假设n=k (k∈N*)时等式成立.即(k+1)(k+2)…(k+k)=2k·1·3·5·…·(2k-1)成立.那么当n=k+1时,(k+2)(k+3)…(k+k)(2k+1)(2k+2)=2(k+1)·(k+2)·(k+3)·…·(k+k)·(2k+1)=2k+1·1·3·5·…·(2k-1)[2·(k+1)-1]即n=k+1时等式成立.由(1)、(2)可知,对任何n∈N*等式均成立.一、选择题1.用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3…(2n-1)(n∈N+)”,则“从k到k+1”左端需乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时左式=(k+1)(k+2)(k+3)n=k+1时左式=(k+2)(k+3)…(2k+1)(2k+2)故“从k到k+1”左端需乘2k+12k+2k+1=2(2k+1).故选B.2.已知数列{a n},a1=1,a2=2,a n+1=2a n+a n-1(k∈N*),用数学归纳法证明a4n能被4整除时,假设a4k能被4整除,应证()A.a4k+1能被4整除B.a4k+2能被4整除C.a4k+3能被4整除D.a4k+4能被4整除[答案] D[解析]在数列{a4n}中,相邻两项下标差为4,所以a4k后一项为a4k+4.故选D.3.凸n边形有f(n)条对角线,则凸n+1边形的对角线的条数f(n+1)为() A.f(n)+n+1 B.f(n)+nC.f(n)+n-1 D.f(n)+n-2[答案] C[解析]由凸n边形变为凸n+1边形后,应加一项,这个顶点与不相邻的(n -2)个顶点连成(n-2)条对角线,同时,原来的凸n边形的那条边也变为对角线,故有f(n+1)=f(n)+(n-2)+1.故选C.4.用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1)(n∈N*)时,从“n =k到n=k+1”左边需增乘的代数式为()A.2k+1 B.2(2k+1)C.2k+1k+1D.2k+3k+1[答案] B[解析]n=k时,等式为(k+1)(k+2)…(k+k)=2k·1·3·…·(2k-1),n=k+1时,等式左边为(k+1+1)(k+1+2)…(k+1+k+1)=(k+2)(k+3)…(2k)·(2k+1)·(2k+2),右边为2k+1·1·3·…·(2k-1)(2k+1).左边需增乘2(2k+1),故选B.二、填空题5.用数学归纳法证明关于n的恒等式时,当n=k时,表达式为1×4+2×7+…+k(3k+1)=k(k+1)2,则当n=k+1时,待证表达式应为________.[答案]1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)26.用数学归纳法证明:1+2+22+…+2n-1=2n-1(n∈N*)的过程如下:①当n=1时,左边=20=1,右边=21-1=1,不等式成立;②假设n=k时,等式成立,即1+2+22+…+2k-1=2k-1.则当n=k+1时,1+2+22+…+2k-1+2k=1-2k+11-2=2k+1-1,所以n=k+1时等式成立.由此可知对任意正整数n,等式都成立.以上证明错在何处?____________. [答案] 没有用上归纳假设[解析] 由数学归纳法证明步骤易知其错误所在.7.设S 1=12,S 2=12+22+12,…,S n =12+22+32+…+n 2+…+22+12.用数学归纳法证明S n =n 2n +12时,第二步从k 到k +1应添加的项为________.[答案]k +2·2k +12[解析] S k +1-S k =k +12k +1+12-k 2k +12=k +2·2k +12.三、解答题8.在数列{a n }中,a 1=a 2=1,当n ∈N *时,满足a n +2=a n +1+a n ,且设b n =a 4n ,求证:{b n }的各项均为3的倍数.[证明] (1)∵a 1=a 2=1, 故a 3=a 1+a 2=2,a 4=a 3+a 2=3.∴b 1=a 4=3,当n =1时,b 1能被3整除. (2)假设n =k 时,即b k =a 4k 是3的倍数. 则n =k +1时,b k +1=a 4(k +1)=a (4k +4)=a 4k +3+a 4k +2 =a 4k +2+a 4k +1+a 4k +1+a 4k =3a 4k +1+2a 4k .由归纳假设,a 4k 是3的倍数,故可知b k +1是3的倍数. ∴n =k +1时命题正确.综合(1)、(2)可知,对于任意正整数n ,数列{b n }的各项都是3的倍数. 9.数列{a n }满足S n =2n -a n (n ∈N *). (1)计算a 1、a 2、a 3,并猜想a n 的通项公式; (2)用数学归纳法证明(1)中的猜想.[证明] (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1; 当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74. 由此猜想a n =2n -12n -1(n ∈N *)(2)证明:①当n =1时,a 1=1结论成立, ②假设n =k (k ≥1,且k ∈N *)时结论成立, 即a k =2k -12k -1,当n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,∴2a k +1=2+a k ∴a k +1=2+a k 2=2k +1-12k =2k +1-12k +1-1,∴当n =k +1时结论成立,于是对于一切的自然数n ∈N *,a n =2n -12n -1成立.。
2.3 数学归纳法(3)
例7、平面内有n条直线,其中任何两条不平行,任何 平面内有n条直线,其中任何两条不平行, 三条不过同一点,求证交点个数是f(n)= 2 n(n三条不过同一点,求证交点个数是f(n)= 1 n(n-1).
证明: 证明:1)n=2时:两条直线交点个数为1, n=2时 两条直线交点个数为1, (2∴命题成立 命题成立。 而f(2)= 1 ×2×(2-1)=1, ∴命题成立。
3
时公式仍成立。 ∴ 当n=k+1时公式仍成立。 时公式仍成立
3
由1)、 2)可知,对一切 ∈N ,均有 S n )、 )可知,对一切n∈N
n ( 2 n 2 + 1) = 3
。
■ 数学归纳法在整除问题、几何问题、归纳猜想问题 数学归纳法在整除问题、几何问题、 及不等式问题中的应用。 及不等式问题中的应用。
练习6.用数学归纳法证明:对任意自然数 , 练习 用数学归纳法证明:对任意自然数n,数11n+2+122n+1是 用数学归纳法证明 133的倍数 的倍数 证明: 当 证明:(1)当n=1时,11n+2+122n+1=113+123=23×133 时 × 能被133整除 整除, ∴23×133能被 整除,即n=1时命题成立 × 能被 时命题成立 (2)假设 假设n=k时,11k+2+122k+1能被 能被133整除 假设 时 整除 那么11 那么 (k+1)+2+122(k+1)+1=11⋅11k+2+122⋅122k+1 ⋅ =11⋅(11k+2+122k+1)−11×122k+1+122⋅122k+1 ⋅ − × =11⋅(11k+2+122k+1)+ 122k+1(144−11) ⋅ − = 11⋅(11k+2+122k+1)+ 122k+1⋅133 ⋅ 由归纳假设知11 都能被133整除 由归纳假设知 k+2+122k+1及122k+1⋅133都能被 整除 都能被 能被133整除,即n=k+1时命题也成立 整除, 整除 时命题也成立 ∴11(k+1)+2+122(k+1)+1能被 由(1)、(2),可知命题对一切自然数 都成立 、 ,可知命题对一切自然数n都成立
数学归纳法练习题
数学归纳法练习题1. 用数学归纳法证明:(1) 1×4+2×7+3×10+…+n(3n +1)=n(n +1)2 (n ∈N *)。
(2) 1+3+9+…+3)13(211-=-n n (n ∈N *)2.用数学归纳法证明下述不等式:).2,(10931312111≥∈>+++++++*n N n n n n n 且3.试比较2n 与(n +1)2的大小(n ∈N *),并用证明你的结论。
4. (1)用数学归纳法证明:)(53*∈+N n n n 能被6 整除.(2)求证 n 333)2()1(++++n n (n ∈N *)能被9整除.5.数列{a n}满足S n=2n-a n(n∈N*).(1)计算a1,a2,a3,a4,并由此猜想通项公式a n;(2)用数学归纳法证明(1)中的猜想.6. 已知数列{b n }是等差数列,b 1=1,b 1+b 2+…+b 10=145.(1)求数列{b n }的通项公式b n ;(2)设数列{a n }的通项a n =log a (1+nb 1)(其中a >0且a ≠1), 记S n 是数列{a n }的前n 项和,试比较S n 与31log a b n +1的大小,并证明你的结论.参考答案1(1)、证明(1)当n=1时,左边=1×4=4,右边= 1×(1+1)2=4, 左边=右边,命题成立.(2)假设当)2(≥=k k n 时,命题成立,即: 1×4+2×7+3×10+…+k(3k +1)=k(k +1)2,则当n=k+1时, 1×4+2×7+3×10+…+k(3k +1)+(k+1)(3k+4)=k(k +1)2+(k+1)(3k+4)=(k+1)(k 2+4k+4)=(k+1)(k+2)2,即n=k+1命题成立. 根据(1)(2)可知等式对任意的n ∈N *成立.(2)、证明(1)当n=1时,左边=1,右边=21(31-1)=1, 左边=右边,命题成立. (2)假设当)2(≥=k k n 时,命题成立,即:1+3+9+…3k-1=21(3k -1), 则当n=k+1时,1+3+9+…+3k-1+3k =21(3k -1)+3k =21(3k+1-1),即n=k+1命题成立. 根据(1)(2)可知等式对任意的n ∈N *成立.2.证明:(1)当n =2时,左边1096054605761514131=>=+++==右边,∴当n =2时,不等式正确; ︒2. 假设当)2(≥=k k n 不等式正确,即109312111>+++++k k k , 则 当1+=k n 时,左边331231131313121+++++++++++=k k k k k k >+-+++++++++++++=11331231131)31312111(k k k k k k k k 109)331231()331131(109332231131109>+-+++-++=+-++++k k k k k k k , ∴当1+=k n 时不等式也正确;根据︒︒2,1知对任意的*∈N n ,且2≥n ,不等式都正确. 3.解:当1n =时,224,2(1)n n <∴<+;2249,2(1)n n n =<∴<+当时,; 23816,2(1)n n n =<∴<+当时,;241625,2(1)n n n =<∴<+当时,253236,2(1)n n n =<∴<+当时,;266449,2(1)n n n =>∴>+当时, 2712864,2(1)n n n =>∴>+当时,,所以,252(1)n n n ≤<+当时,;262(1)n n n ≥>+当时,猜想 。
数学归纳法(1)
数学归纳法(1)考情分析1、理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.2、初步能用数学归纳法证明整除和不等式问题。
1. 若f(n)=1+12+13+…+12n +1(n ∈N ),则n =1时,f(n)=________. 2. (选修22P 88练习题3改编)用数学归纳法证明不等式“2n >n 2+1对于n ≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取为________.3. 设f(n)=1+12+13+14+…+13n -1(n ∈N *),则f(k +1)-f(k)=________.1. 由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法.2. 对某些与正整数有关的数学命题常采用下面的方法来证明它们的正确性:先证明当n 取第1个值n 0时,命题成立;然后假设当n =k(k ∈N ,k ≥n 0)时命题成立;证明当n =k +1时,命题也成立,这种证明方法叫做数学归纳法.3. 用数学归纳法证明一个与正整数有关的命题时,其步骤为:(1) 归纳奠基:证明凡取第一个自然数n 0时命题成立;(2) 归纳递推:假设n =k(k ∈N ,k ≥n 0)时命题成立,证明当n =k +1时,命题成立;(3) 由(1)(2)得出结论.例1 用数学归纳法证明:f(n)=(2n +7)·3n +9(n ∈N *)能被36整除.证明:(1) 当n =1时,f(1)=(2×1+7)×3+9=36,能被36整除.(2) 假设n =k 时,f(k)能被36整除,则当n =k +1时,f(k +1)=[2(k +1)+7]·3k +1+9=3[(2k +7)·3k +9]+18(3k -1-1),由归纳假设3[(2k +7)·3k +9]能被36整除,而3k -1-1是偶数,所以18(3k -1-1)能被36整除.所以n =k +1时,f(n)能被36整除.由(1)(2) 知,对任何n ∈N ,f(n)能被36整除.变式练习若5n +2×3n -1+1(n ∈N *)能被正整数m 整除,请写出m 的最大值,并给予证明.解:当n =1时,51+2×30+1=8,∴m ≤8.下证5n +2×3n -1+1(n ∈N *)能被8整除.①当n =1时已证;②假设当n =k(k ∈N *)时命题成立,即5k +2×3k -1+1能被8整除.则当n =k +1时,5k +1+2×3k +1=5·5k +6·3k -1+1=(5k +2×3k -1+1)+4(5k +3k -1).∵5k +2×3k -1+1能被8整除,而5k +3k -1为偶数,∴4(5k +3k -1)也能被8整除,即当n =k +1时命题也成立.由①②,得m 的最大值为8.例2 用数学归纳法证明:(n +1)+(n +2)+…+(n +n)=n (3n +1)2(n ∈N *). 证明:(1) 当n =1时,左边=2,右边=1×(3+1)2=2=左边,等式成立. (2) 假设n =k 时等式成立,即(k +1)+(k +2)+…+(k +k)=k (3k +1)2.则当n =k +1时,左边(k +2)+(k +3)+…+(k +k)+(k +k +1)+(k +k +2)=[(k +1)+(k +2)+…+(k +k)]+3k +2=k (3k +1)2+3k +2=3k 2+7k +42=(k +1)(3k +4)2=(k +1)[3(k +1)+1]2,∴n =k +1时,等式成立.由(1)和(2)知对任意n ∈N *,等式成立.变式练习证明:对任意的正整数n 都有()()61213212222++=++++n n n n K 成立。
数列与数学归纳法的练习题
数列与数学归纳法的练习题1. 问题描述考虑以下数列的规律:a1 = 1a2 = 3a3 = 6a4 = 10a5 = 15...请使用数学归纳法回答以下问题:问题1:求第n项的表达式。
问题2:证明数列的通项公式。
问题3:求前n项的和的表达式。
问题4:证明数列的和的公式。
2. 解答问题1:求第n项的表达式。
观察数列,我们可以发现每一项的值都是前一项的值加上它的下标。
即an = an-1 + n-1问题2:证明数列的通项公式。
首先,我们需要证明递推关系对于所有大于等于5的正整数都成立。
假设关系对于某个正整数k成立,即ak = ak-1 + k-1我们来证明关系对于k+1也成立。
即a(k+1) = a(k+1)-1 + (k+1)-1= ak + k= ak-1 + (k-1) + k= ak-1 + k-1 + k所以,关系对于所有大于等于5的正整数都成立。
此外,由于a1 = 1, a2 = 3, a3 = 6, a4 = 10,我们可以使用数学归纳法证明关系对于1、2、3、4也成立。
这里略去证明过程。
因此,我们可以得出结论,数列的通项公式是an = an-1 + n-1问题3:求前n项的和的表达式。
我们可以通过将数列的每一项相加得到前n项的和。
即S(n) = a1 + a2 + a3 + ... + an将数列的通项公式代入上式,并对相同项进行合并,可以得到:S(n) = 1 + (1+2) + (1+2+3) + ... + (1+2+3+...+n-1) + (1+2+3+...+n)通过观察括号中的式子,我们可以发现,每一项的和可以用等差数列的前n项和来表示。
因此,上式可以进一步化简为:S(n) = 1*1 + 2*3 + 3*6 + ... + (n-1)*n问题4:证明数列的和的公式。
为了证明数列的和的公式,我们需要求解S(n) = 1*1 + 2*3 + 3*6 + ... + (n-1)*n。
(完整版)数学归纳法练习题
数学归纳法练习题一、选择题1. 用数学归纳法证明121*11(,1)1n n a a a an N a a++-++++=∈≠-L ,在验证1n =成立时,左边所得的项为( ) A. 1 B. 1+a C. 21a a ++ D. 231a a a +++ 2. 用数学归纳法证明111111111234212122n n n n n-+-++-=+++-++L L *()n N ∈,则从k 到k+1时,左边所要添加的项是( )A.121k + B. 112224k k -++ C. 121k -+ D. 112122k k -++ 3. 用数学归纳法证明“当n 为正奇数时,nnx y +能被x y +整除”第二步的归纳假设应写成( )A. 假设*21()n k k N =+∈正确,再推23n k =+正确; B. 假设*21()n k k N =-∈正确,再推21n k =+正确; C. 假设*()n k k N =∈正确,再推1n k =+正确; D. 假设(1)n k k =≥正确,再推2n k =+正确.二、填空题4. 数列{}n a 中,111,21n n n a a a a +==+,则数列的前5项为 , 猜想它的通项公式是 5. 猜想1=1, 1-4=-(1+2), 1-4+9=1+2+3, ……的第n 个式子为 6. 用数学归纳法证明“当*2351,12222n n N -∈+++++L 时是31的倍数”时,1n =时的原式是 ,从k 到1k +时需添加的项是三、解答题7. 求证:对于整数0n ≥时,2211112n n +++能被133整除. 8. 若*n N ∈,求证:23sin coscoscoscos 22222sin2n nnαααααα=L .9. 若*n N ∈,且2n ≥,求证:1111312224n n n +++>++L . 10. 数列{}n a 满足,2n n S n a =-*n N ∈,先计算前4项后,猜想n a 的表达式,并用数学归纳法证明.11. 是否存在自然数m ,使得 ()(27)39nf n n =+⋅+ 对于任意*n N ∈都能被m 整除,若存在,求出m ;若不存在,请说明理由.12. 正数数列{}n a 中,11()2n n nS a a =+.⑴ 求123a a a 、、;⑵ 猜想n a 的表达式并证明. 13. 设*n N ∈,试比较 3(1)!nn +和 的大小.【答案】一、选择题1. C2. D3. B 二、填空题4. 11111,,,,23456. 11n a n =+(*n N ∈)5. 12114916(1)(1)(1234)n n n n ++-+-++-=-+++++L L6. 23412222++++, 55152535422222kk k k k ++++++++.三、解答题(略解)7. ① 0n =时,原式=21112133+=能被133整除;② 设n k =时,2211112k k +++ 能被133整除1n k =+时,原式=3232212123111211(1112)111212k k k k k k +++++++=+-⋅+=2212111(1112)12133k k k +++++⋅能被133整除.8. ① 1n =时,左=cos2α, 右=sin cos22sin2ααα=,左=右② 设n k =时, 23sin coscoscoscos 22222sin2k k kαααααα=L1n k =+时, 2311sin (coscoscoscos )cos cos2222222sin2k k k k kαααααααα++⋅=⋅L=111111sin sin cos22sincos2sin222k k k k k k αααααα++++++⋅=9. ① 2n =时,左=11713341224+=>② 设n k =时, 1111312224k k k +++>++L 1n k =+时, 左=1111222122k k k k +++++++L =111111()12212122k k k k k k +++-+++++++L ∵111110*********k k k k k -++=->+++++,∴左>1324.10. 计算得: 123437151,,,248a a a a ====.猜想 1212n n n a --=① 1n =时,计算得11a =,结论成立;② 设n k =时, 1212k k k a --=, 则1n k =+时, 11111121[2(1)](2)2k k k k k k k k a S S k a k a a +++++--=-=+---=-∴11212k k ka ++-=.11. (1)36,(2)108,(3)360f f f ===.猜想m 的值应为其最大公约数36. ① 1n =显然正确.② 设n k =正确即 ()(27)39kf k k =+⋅+ 能被36整除. 则1n k =+时 ,11(1)[2(1)7]393[(27)39]27239k k k f k k k +++=++⋅+=+⋅+-+⋅+13[(27)39]18(31)k k k -=+⋅++-能被36整除.12. ⑴ 11a =,21a =,3a = ⑵ 猜想: n a =① 1n =显然正确. ② 设n k =正确即n a =则 1n k =+ 时111111[()2k k k k k a S S a a ++++=-=+--21110k k a ++⇒+-=,解得(取正值) 1k a +=13. 3=31>(1+1)!=2, 9=32>(2+1)!=6, 27=33>(3+1)!=24, 81=34<(4+1)!=120, ……猜想: 1,2,3n = 时,3(1)!nn >+; 当 4n ≥ 时, 3(1)!nn <+① 4n = 时,显然成立;② 设n k =时,结论成立, 即 3(1)!kk <+ 则 1n k =+ 时1333(1)!3(1)!(2)(2)!k k k k k k +=⋅<+⋅<+⋅+=+ (∵4,32k k ≥∴<+ )即 13(11)!k k +<++。
6-7第七节 数学归纳法(理)练习题(2015年高考总复习)
第七节 数学归纳法(理)时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.已知f (n )=1n +1n +1+1n +2+…+1n 2,则( ) A .f (n )中共有n 项,当n =2时,f (2)=12+13B .f (n )中共有n +1项,当n =2时,f (2)=12+13C .f (n )中共有n 2-n 项,当n =2时,f (2)=12+13 D .f (n )中共有n 2-n +1项,当n =2时,f (2)=12+13+14解析 总项数为n 2-n +1,f (2)=12+13+14.故选D.答案 D2.用数学归纳法证明不等式1+12+14+…+12n -1>12764(n ∈N *)成立,其初始值至少应取( )A .7B .8C .9D .10解析 1+12+14+…+12n -1=1-12n 1-12>12764, 整理得2n >128,解得n >7.∴初始值至少应取8.答案 B3.用数学归纳法证明等式1+3+5+…+(2n +1)=(n +1)2(n ∈N *)的过程中,第二步假设n =k 时等式成立,则当n =k +1时应得到( )A .1+3+5+…+(2k +1)=k 2B .1+3+5+…+(2k +3)=(k +2)2C .1+3+5+…+(2k +1)=(k +2)2D .1+3+5+…+(2k +3)=(k +3)2解析 当n =k +1时,等式左边=1+3+5+…+(2k +1)+(2k +3)=(k +1)2+(2k +3)=(k +2)2.答案 B4.某个命题与自然数n 有关,若n =k (k ∈N *)时命题成立,那么可推得当n =k +1时该命题也成立.现已知当n =5时,该命题不成立,那么可推得( )A .当n =6时,该命题不成立B .当n =6时,该命题成立C .当n =4时,该命题不成立D .当n =4时,该命题成立解析 因为当n =k 时命题成立可推出n =k +1时成立,所以n =5时命题不成立,则n =4时命题也一定不成立.答案 C5.在数列{a n }中,a 1=13,且S n =n (2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为( )A.1(n -1)(n +1)B.12n (2n +1)C.1(2n -1)(2n +1)D.1(2n +1)(2n +2)解析 由a 1=13,S n =n (2n -1)a n ,得S2=2(2×2-1)a2,即a1+a2=6a2.∴a2=115=13×5,S3=3(2×3-1)a3,即13+115+a3=15a3.∴a3=135=15×7,同理可得a4=17×9.答案 C6.下列代数式(其中k∈N*)能被9整除的是()A.6+6·7k B.2+7k-1C.2(2+7k+1) D.3(2+7k)解析(1)当k=1时,显然只有3(2+7k)能被9整除.(2)假设当k=n(n∈N*)时,命题成立,即3(2+7n)能被9整除,那么3(2+7n+1)=21(2+7n)-36.这就是说,k=n+1时命题也成立.由(1)(2)可知,命题对任意k∈N*都成立.故选D.答案 D二、填空题(本大题共3小题,每小题5分,共15分)7.用数学归纳法证明“当n为正奇数时,x n+y n能被x+y整除”,当第二步假设n=2k-1(k∈N*)命题为真时,进而需证n=________时,命题亦真.解析∵n为正奇数,假设n=2k-1成立后,需证明的应为n =2k+1时成立.答案2k+18.若f(n)=12+22+32+…+(2n)2,则f(k+1)与f(k)的递推关系是__________.解析∵f(k)=12+22+…+(2k)2,f(k+1)=12+22+…+(2k)2+(2k+1)2+(2k+2)2,∴f (k +1)=f (k )+(2k +1)2+(2k +2)2.答案 f (k +1)=f (k )+(2k +1)2+(2k +2)29.在数列{a n }中,a 1=1,且S n ,S n +1,2S 1成等差数列(S n 表示数列{a n }的前n 项和),则S 2,S 3,S 4分别为__________,由此猜想S n =__________.解析 由S n ,S n +1,2S 1成等差数列,得2S n +1=S n +2S 1, ∵S 1=a 1=1,∴2S n +1=S n +2.令n =1,则2S 2=S 1+2=1+2=3,∴S 2=32.同理,分别令n =2,n =3,可求得S 3=74,S 4=158.由S 1=1=21-120,S 2=32=22-121,S 3=74=23-122,S 4=158=24-123,猜想S n =2n -12n -1. 答案 32,74,158 2n -12n -1 三、解答题(本大题共3小题,每小题10分,共30分)10.用数学归纳法证明:12+32+52+…+(2n -1)2=13n (4n 2-1). 证明 (1)当n =1时,左边=12=1,右边=13×1×(4-1)=1,等式成立.(2)假设当n =k (k ∈N *)时等式成立,即12+32+52+…+(2k -1)2=13k (4k 2-1).则当n =k +1时,12+32+52+…+(2k -1)2+(2k +1)2 =13k (4k 2-1)+(2k +1)2=13k (4k 2-1)+4k 2+4k +1=13k [4(k +1)2-1]-13k ·4(2k +1)+4k 2+4k +1 =13k [4(k +1)2-1]+13(12k 2+12k +3-8k 2-4k )=13k [4(k +1)2-1]+13[4(k +1)2-1]=13(k +1)[4(k +1)2-1].即当n =k +1时等式也成立.由(1),(2)可知,对一切n ∈N *,等式都成立.11.已知数列{a n }中,a 1=12,a n +1=sin ⎝ ⎛⎭⎪⎫π2a n (n ∈N *),求证:0<a n <a n +1<1.证明 ①n =1时,a 1=12,a 2=sin(π2a 1)=sin π4=22.∴0<a 1<a 2<1,故结论成立.②假设n =k 时结论成立,即0<a k <a k +1<1, 则0<π2a k <π2a k +1<π2.∴0<sin(π2a k )<sin(π2a k +1)<1,即0<a k +1<a k +2<1.也就是说n =k +1时,结论也成立. 由①②可知,对一切n ∈N *均有0<a n <a n +1<1成立.12.数列{a n }满足S n =2n -a n (n ∈N *).(1)计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ;(2)用数学归纳法证明(1)中的猜想.解 (1)当n =1时,a 1=S 1=2-a 1,∴a 1=1.当n =2时,a 1+a 2=S 2=2×2-a 2,∴a 2=32.当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴a 3=74.当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴a 4=158.由此猜想a n =2n -12-(n ∈N *).(2)证明:①当n =1时,a 1=1,结论成立. ②假设n =k (k ≥1且k ∈N *)时,结论成立,即a k =2k -12k -1, 那么n =k +1(k ≥1且k ∈N *)时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1.∴2a k +1=2+a k =2+2k -12k -1=2k +1-12k -1.∴a k +1=2k +1-12k ,由①②可知,对n ∈N *,a n =2n -12n -1都成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3数学归纳法
第1课时数学归纳法
1.用数学归纳法证明“2n>n2+1对于n≥n0的自然数n都成立”时,第一步证明中的起始值n0应取
().A.2 B.3 C.5 D.6
解析当n取1、2、3、4时2n>n2+1不成立,当n=5时,25=32>52+1=26,第一个能使2n>n2+1的n值为5,故选C.
答案 C
2.用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)
2(n∈N+),验证n
=1时,左边应取的项是
().A.1 B.1+2
C.1+2+3 D.1+2+3+4
解析等式左边的数是从1加到n+3.
当n=1时,n+3=4,故此时左边的数为从1加到4.
答案 D
3.设f(n)=1+1
2+
1
3+…+
1
3n-1
(n∈N+),那么f(n+1)-f(n)等于
().
A.
1
3n+2
B.
1
3n+
1
3n+1
C.
1
3n+1
+
1
3n+2
D.
1
3n+
1
3n+1
+
1
3n+2
解析∵f(n)=1+1
2+
1
3+…+
1
3n-1
,
∵f(n+1)=1+1
2+
1
3+…+
1
3n-1
+
1
3n+
1
3n+1
+
1
3n+2
,
∴f(n+1)-f(n)=1
3n+
1
3n+1
+
1
3n+2
.
答案 D
4.用数学归纳法证明关于n的恒等式,当n=k时,表达式为1×4+2×7+…
+k(3k+1)=k(k+1)2,则当n=k+1时,表达式为________.
答案1×4+2×7+…+k(3k+1)+(k+1)(3k+4)=(k+1)(k+2)2
5.记凸k边形的内角和为f(k),则凸k+1边形的内角和f(k+1)=f(k)+________.
解析由凸k边形变为凸k+1边形时,增加了一个三角形图形,故f(k+1)=f(k)+π.
答案π
6.用数学归纳法证明:
1 1×2+
1
3×4
+…+
1
(2n-1)·2n
=
1
n+1
+
1
n+2
+…+
1
n+n
.
证明(1)当n=1时,左边=
1
1×2
=
1
2,右边=
1
2,等式成立.
(2)假设当n=k(k∈N*)时,等式成立,即
1 1×2+
1
3×4
+…+
1
(2k-1)·2k
=
1
k+1
+
1
k+2
+…+
1
2k.
则当n=k+1时,
1 1×2+
1
3×4
+…+
1
(2k-1)·2k
+
1
(2k+1)(2k+2)
=
1
k+1
+
1
k+2
+…+
1
2k+
1
(2k+1)(2k+2)
=
1
k+2
+
1
k+3
+…+
1
2k+⎝
⎛
⎭
⎪
⎫
1
2k+1
-
1
2k+2+
1
k+1
=
1
k+2
+
1
k+3
+…+
1
2k+
1
2k+1
+
1
2k+2
=
1
(k+1)+1
+
1
(k+1)+2
+…+
1
(k+1)+k
+
1
(k+1)+(k+1)
.即当n=k+1时,
等式成立.
根据(1)(2)可知,对一切n∈N*,等式成立.
7.若命题A(n)(n∈N*)在n=k(k∈N*)时命题成立,则有n=k+1时命题成立.现
知命题对n=n0(n0∈N*)时命题成立,则有
().A.命题对所有正整数都成立
B.命题对小于n0的正整数不成立,对大于或等于n0的正整数都成立
C.命题对小于n0的正整数成立与否不能确定,对大于或等于n0的正整数都成立
D.以上说法都不正确
解析由已知得n=n0(n0∈N*)时命题成立,则有n=n0+1时命题成立;在n =n0+1时命题成立的前提下,又可推得n=(n0+1)+1时命题也成立,依此类推,可知选C.
答案 C
8.用数学归纳法证明(n+1)(n+2)(n+3)…(n+n)=2n·1·3·…·(2n-1)(n∈N*),从n=k到n=k+1,左边增加的代数式为
().A.2k+1 B.2(2k+1)
C.2k+1
k+1
D.
2k+3
k+1
解析n=k时,左边=(k+1)(k+2)…(2k);n=k+1时,左边=(k+2)(k+
3)…(2k+2)=2(k+1)(k+2)…(2k)(2k+1),故选B.
答案 B
9.分析下述证明2+4+…+2n=n2+n+1(n∈N+)的过程中的错误:证明假设当n=k(k∈N
+
)时等式成立,即2+4+…+2k=k2+k+1,那么2+4+…+2k+2(k+1)=k2+k+1+2(k+1)=(k+1)2+(k+1)+1,即当n=k
+1时等式也成立.因此对于任何n∈N
+
等式都成立.__________________.
答案缺少步骤归纳奠基,实际上当n=1时等式不成立
10.用数学归纳法证明(1+1)(2+2)(3+3)…(n+n)=2n-1·(n2+n)时,从n=k到n =k+1左边需要添加的因式是________.
解析当n=k时,左端为:(1+1)(2+2)…(k+k),
当n =k +1时,
左端为:(1+1)(2+2)…(k +k )(k +1+k +1), 由k 到k +1需添加的因式为:(2k +2). 答案 2k +2 11.用数学归纳法证明
12+22+…+n 2=n (n +1)(2n +1)6(n ∈N *
).
证明 (1)当n =1时,左边=12=1, 右边=
1×(1+1)×(2×1+1)
6
=1,
等式成立.
(2)假设当n =k (k ∈N *)时等式成立,即 12+22+…+k 2=k (k +1)(2k +1)
6
那么,
12+22+…+k 2+(k +1)2 =k (k +1)(2k +1)6+(k +1)2
=k (k +1)(2k +1)+6(k +1)26
=(k +1)(2k 2+7k +6)6
=(k +1)(k +2)(2k +3)6
=
(k +1)[(k +1)+1][2(k +1)+1]
6
,
即当n =k +1时等式也成立.
根据(1)和(2),可知等式对任何n ∈N *都成立.
12.(创新拓展)已知正数数列{a n }(n ∈N *)中,前n 项和为S n ,且2S n =a n +1
a n ,用数学归纳法证明:a n =n -n -1. 证明 (1)当n =1时.
a 1=S 1=12⎝ ⎛
⎭⎪⎫a 1+1a 1,
∴a 21=1(a n >0),
∴a 1=1,又1-0=1, ∴n =1时,结论成立.
(2)假设n =k (k ∈N *)时,结论成立, 即a k =k -k -1. 当n =k +1时, a k +1=S k +1-S k
=12⎝ ⎛⎭
⎪⎫a k +1+1a k +1-12⎝ ⎛⎭⎪⎫a k +1a k
=12⎝ ⎛
⎭⎪⎫a k +1+1a k +1-12⎝
⎛⎭⎪⎫k -k -1+1k -k -1 =12⎝ ⎛
⎭
⎪⎫a k +1+1a k +1-k ∴a 2k +1+2k a k +1-1=0,解得a k +1=k +1-k (a n >0), ∴n =k +1时,结论成立.
由(1)(2)可知,对n ∈N *都有a n =n -n -1.。