圆心角圆周角练习题
初三数学圆周角和圆心角的关系试题
初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是⊙O的直径, ,∠A=25°,则∠BOD的度数为________.【答案】50°【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵,∠A=25°∴∠BOD=50°.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.3.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.9.如图,AB为半圆O的直径,弦AD、BC相交于点P,若CD=3,AB=4,求tan∠BPD的值【答案】【解析】连接BD, 根据圆周角定理可得∠ADB=90°,证得△PCD ∽△PAB,根据相似三角形的性质结合余弦的定义可得∠BPD的余弦值,再结合勾股定理即可求得结果.连接BD,∵AB是直径,∴∠ADB=90°.∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴.在Rt△PBD中,cos∠BPD==,设PD=3x,PB=4x,则BD=,∴tan∠BPD=.【考点】圆周角定理,相似三角形的判定和性质,勾股定理,三角函数点评:本题综合性强,知识点较多,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)【答案】让乙射门较好【解析】根据圆周角定理结合三角形外角的性质分析即可得到结论.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B处对MN的张角较大,在B处射门射中的机会大些.【考点】圆周角定理,三角形外角的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.。
圆的基础知识点及习题
圆基础训练题1一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角 ;圆周 角 ; (2)如图,已知∠AOB=50度,则∠ACB= 度; (3)在下图中,若AB 是圆O 的直径,则∠AOB= 度;题2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条 的直线;圆是中心对称图形,对称中心为 .(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如上图,∵CD 是圆O 的直径,CD ⊥AB 于E∴ = , =3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例:已知圆的半径r 等于5厘米,点到圆心的距离为d ,(1)当d =2厘米时,有d r ,点在圆 (2)当d =7厘米时,有d r ,点在圆 (3)当d =5厘米时,有d r ,点在圆4、直线和圆的位置关系有三种:相 、相 、相 .例:已知圆的半径r 等于12厘米,圆心到直线l 的距离为d , (1)当d =10厘米时,有d r ,直线l 与圆 (2)当d =12厘米时,有d r ,直线l 与圆 (3)当d =15厘米时,有d r ,直线l 与圆5、圆与圆的位置关系:例3:已知⊙O 1的半径为6厘米,⊙O 2的半径为8厘米,圆心距为 d , 则:R+r= , R -r= ;(1)当d =14厘米时,因为d R+r ,则⊙O 1和⊙O 2位置关系是:OACB EOAB D(2)当d =2厘米时, 因为d R -r ,则⊙O 1和⊙O 2位置关系是: (3)当d =15厘米时,因为 ,则⊙O 1和⊙O 2位置关系是: (4)当d =7厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: (5)当d =1厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: 6、切线性质:例:(1)如图,PA 是⊙O 的切线,点A 是切点,则∠PAO= 度(2)如图,PA 、PB 是⊙O 的切线,点A 、B 是切点, 则 = ,∠ =∠ ;6题7、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点; 例:画出下列三角形的外心或内心(1)画三角形ABC 的内切圆, (2)画出三角形DEF 的外接圆, 并标出它的内心; 并标出它的外心二、练习: (一)填空题1、如图,弦AB 分圆为1:3两段,则»AB 的度数= 度, ¼ACB 的度数等于 度;∠AOB= 度,∠AC B = 度,第1小题2、如图,已知A 、B 、C 为⊙O 上三点,若»AB 、»CA 、»BC 的 度数之比为1∶2∶3,则∠AOB= ,∠AOC= , ∠AC B = ,3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○ ,则 ⊙O 的半径等于=_________cm .4、⊙O 的半径为5,圆心O 到弦AB 的距离OD=3,则AD= ,AB 的长为 ;5、如图,已知⊙O 的半径OA=13㎝,弦AB =24㎝,则OD= ㎝。
圆周角的练习题初三
圆周角的练习题初三圆周角是指以圆心为顶点的角,它的度数等于所对弧的度数。
在初三的几何学中,圆周角是一个重要的概念,掌握圆周角的计算方法对于解决几何题目至关重要。
本文将为大家提供一些圆周角的练习题,帮助初三学生巩固和掌握这一知识点。
练习题一:已知直径AB的圆上一点C,连结AC和BC两条弦。
求∠ACB的度数。
解析:根据圆的性质可知,在圆上以弦为底的两个圆周角是等角,所以∠ACB = ∠AEB。
而直径AB是圆上的一条直径,它对应的圆周角为180度。
因此,∠ACB = ∠AEB = 180度。
练习题二:已知弧AC与弧BC分别是圆上的两个等分弧,且∠ACB = 20度。
求弧AC的度数。
解析:根据题目可知,∠ACB为圆周角,而弧AC和弧BC是等分弧,所以它们所对应的圆周角也相等,即∠ACB = ∠AEB。
而∠ACB 已知为20度,所以∠AEB = 20度。
而直径AB上的圆周角为180度,所以弧AC的度数为180度减去∠AEB的度数,即弧AC = 180度 - 20度 = 160度。
练习题三:已知直径AB的圆上一点C与D,连结AC和BD两条弦,交于点E。
若∠AEB = 70度,求证:∠ACD = 35度。
解析:要证明∠ACD = 35度,可以利用等角的性质。
根据题目已知,∠AEB = ∠AED = 70度。
而由圆周角的性质可知,∠ACD =∠AEB = 70度。
又∠ACD和∠ACB是同弦内角和对应的圆周角,所以有∠ACD = 180度 - ∠ACB。
将已知条件带入,∠ACD = 180度 - 70度= 110度。
由此可知,∠ACD的度数为35度。
练习题四:已知弦AB的长为8cm,圆心角∠AOB的度数为60度,求弦AB所对应的弧长。
解析:弦AB所对应的弧可以通过圆心角的度数与圆周长的比例来求解。
已知圆心角∠AOB的度数为60度,而整个圆的圆心角为360度,所以∠AOB所对应的弧所占圆周长的比例为60度/360度= 1/6。
圆周角定理练习题
圆周角定理练习题在数学中,圆周角定理是一个非常重要的定理,它关于圆周角和圆心角的关系进行了阐述。
理解和掌握这个定理对于解决与圆相关的问题非常有帮助。
那么,现在我们来进行一些圆周角定理的练习题,以便加深对该定理的理解和运用能力。
练习题一:已知半径为r的圆上的弧AB所对的圆周角为θ,求弧AB的长度。
解答:根据圆周角定理可知,圆周角θ所对的弧的长度等于半径r乘以圆周角的弧度。
即弧AB的长度为rθ。
练习题二:已知弧CD的长度为s,求弧CD所对的圆周角。
解答:根据圆周角定理可知,弧CD所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题三:已知圆O的半径为r,圆弧AB所对的圆周角为θ,求圆O的周长。
解答:根据圆周角定理可知,圆周角θ所对的弧AB的长度为rθ。
因为圆O的周长等于圆周率π乘以直径d,而直径d等于半径r的两倍,所以圆O的周长为2πr。
练习题四:已知半径为r的圆上的弧AB的长度为s,求弧AB所对的圆周角。
解答:根据圆周角定理可知,弧AB所对的圆周角的弧度等于弧长s除以半径r。
即圆周角θ等于s/r。
练习题五:已知圆O的半径为r,圆上的弧AB所对的圆周角为θ,求弧AB所对的圆心角。
解答:根据圆周角定理可知,圆周角θ所对的圆心角的度数为360°乘以θ/2π。
通过以上练习题,我们可以更好地理解和应用圆周角定理。
掌握这个定理对于解决与圆有关的各种问题非常重要。
希望通过练习能够加深你对圆周角定理的理解,并培养你的数学思维和解题能力。
圆周角与圆心角、直线和圆的位置关系练习题
ABCD EPO圆周角与圆心角、确定圆的条件、直线和圆的位置关系周检测题一、知识点:1、圆周角定理:同弧所对的圆周角等于它所对的圆心角的一半。
2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
3、圆心角度数定理:圆心角的度数和它所对的弧的度数相等。
4、圆内接四边形的对角互补;外角等于它的内对角.5、圆的切线性质:圆的切线垂直于过切线的半径。
常用辅助线:见切线,连半径,得垂直。
6、圆的切线判定定理:经过半径的外端且垂直于半径的直线是圆的切线。
证切线,常用辅助线:有交点,连半径,证垂直。
二、根底训练:1.下面命题中,正确的命题个数为〔〕(1)顶点在圆周上的角是圆周角.(2)圆周角的度数等于圆心角度数的一半.(3)90°的圆周角所对的弦是直径.(4)圆周角相等,那么它们所对的弧也相等.A.1个B.2个C.3个D.4个2、如图1,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.假设AB=8,CD=2,那么EC的长为〔〕A.2B.8C.2D.23、如图2,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AD=6,那么DC=.图1 图24.如图5,A、B、C是⊙O上的三点,以BC为一边,作∠CBD=∠ABC,过BC上一点P,作PE∥AB交BD于点E.假设∠AOC=60°,BE=3,那么点P到弦AB的距离为。
5.在⊙O中,同弦所对的圆周角〔〕A.相等B.互补C.相等或互补D.都不对6.以下说法正确的选项是〔〕A.顶点在圆上的角是圆周角B.两边都和圆相交的角是圆周角。
C.圆心角是圆周角的2倍。
D.圆周角度数等于它所对圆心角度数的一半7.以下说法错误的选项是〔 〕A .等弧所对圆周角相等 B .同弧所对圆周角相等C .同圆中,相等的圆周角所对弧也相等.D .同圆中,等弦所对的圆周角相等8、以下说法:①在同圆或等圆中,相等的弦所对的弧相等; ②同圆或等圆中,同弦或等弦所对的圆周角相等; ③等弧所对的圆周角相等; ④圆心角相等,所对的弦相等,其中正确的说法有〔 〕A .1个B .2个C .3个D .4个9、如图,AB 是⊙O 的直径,弦CD 交AB 于点E ,且AE =CD =8,∠ BAC =∠ BOD ,那么⊙O 的半径为 。
圆的定义圆心角圆周角训练题(含答案)
圆的定义圆心角圆周角训练题一、单选题(共17题;共34分)1.(2020九上·江苏月考)下列说法错误的是()A. 长度相等的两条弧是等弧B. 直径是圆中最长的弦C. 面积相等的两个圆是等圆D. 半径相等的两个半圆是等弧2.(2019九上·台安期中)下列说法中,不正确的个数是()①优弧一定比劣弧长;②面积相等的两个圆是等圆;③长度相等的弧是等弧;④经过圆心的一个定点可以作无数条弦;⑤经过圆内一定点可以作无数条直径.A. 1个B. 2个C. 3个D. 4个3.(2019九上·沭阳月考)下列命题:①直径相等的两个圆是等圆;②等弧是长度相等的弧;③圆中最长的弦是通过圆心的弦;④一条弦把圆分为两条弧,这两条弧不可能是等弧.其中真命题是( )A. ①③B. ①③④C. ①②③D. ②④4.(2019九上·贾汪月考)下列说法中,错误的是()A. 半圆是弧B. 半径相等的圆是等圆C. 过圆心的线段是直径D. 直径是弦5.(2018九上·下城期末)下列命题中是真命题的为()A. 弦是直径B. 直径相等的两个圆是等圆C. 平面内的任意一点不在圆上就在圆内D. 一个圆有且只有一条直径6.(2020九上·浙江期中)如图,是的直径,,,则的度数是().A. 52°B. 57°C. 66°D. 78°7.(2019九上·柳江月考)如图,AB是⊙O的直径,,∠COD=34°,则∠AOE的度数是( )A. 51°B. 56°C. 68°D. 78°8.(2019九上·邯郸月考)如图,AB是O的直径, ,∠BOC=40°,则∠AOE的度数为()A. 30°B. 40°C. 50°D. 60°9.(2019九上·余杭期中)如图,在△ABC中,∠C=90°,的度数为α,以点C为圆心,BC长为半径的圆交AB于点D,交AC于点E,则∠A的度数为()A. 45º-αB. αC. 45º+αD. 25º+α10.(2020九下·南召月考)如图,四边形ABCD内接于⊙O,AC平分∠BAD,则下列结论正确的是()A. AB=ADB. BC=CDC.D. ∠BCA=∠DCA11.(2020九上·无锡月考)在半径为的圆中,长度等于的弦所对的弧的度数为()A. B. C. 或 D. 或12.(2020·西湖模拟)如图,已知点A,B,C,D,E是⊙O的五等分点,则∠BAD的度数是()A. 36°B. 48°C. 72°D. 96°13.(2020·衢州模拟)如图,在⊙O中,=,∠A=40°,则∠B的度数是()A. 60°B. 40°C. 50°D. 70°14.(2020·乾县模拟)如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=70°,∠C=50°,则∠ADB 的度数是()A. 70°B. 80°C. 82°D. 85°15.(2019九上·龙湖期末)如图,在⊙O中,若点C是的中点,∠A=50°,则∠BOC=( )A. 40°B. 45°C. 50°D. 60°16.(2019九上·道外期末)如图,,是的直径,,若,则的度数是()A. 32°B. 60°C. 68°D. 64°17.(2019九上·光明期中)如图,已知AB是⊙O的直径,∠CBA=25°,则∠D的度数为()A. B. C. D.参考答案一、单选题1.【答案】A【解析】【解答】解:A、等弧就是指能完全重合的两段弧,所以长度相等的弧的度数不一定是等弧,故错误;B、直径是圆中最长的弦,正确;C、面积相等的两个圆是等圆,正确;D、半径相等的两个半圆是等弧,正确.故答案为:A.2.【答案】C【解析】【解答】在同圆或等圆中,优弧一定比劣弧长,所以①错误;面积相等的两个圆半径相等,则它们是等圆,所以②正确;能完全重合的弧是等弧,所以③错误;经过圆内一个定点可以作无数条弦,所以④正确;经过圆内一定点可以作无数条直径或一条直径,所以⑤错误.故答案为:C.3.【答案】A【解析】【解答】解:①直径相等的两个圆能重合,所以是等圆,①是真命题;②长度相等的弧不一定能重合,所以不一定是等弧,②是假命题;③圆中最长的弦是直径,通过圆心的弦是直径,③是真命题;④一条弦把圆分成两条弧,这两条弧可以是半圆,所以可能是等弧,④是假命题.故答案为:A.4.【答案】C【解析】【解答】解:A、半圆是弧,所以A选项的说法正确;B、半径相等的圆是等圆,所以B选项的说法正确;C、过圆心的弦为直径,所以C选项的说法错误;D、直径是弦,所以D选项的说法正确.故答案为:C.5.【答案】B【解析】【解答】解:弦不一定是直径,A是假命题;直径相等的两个圆是等圆,B是真命题;平面内的任意一点在圆上、圆内或圆外,C是假命题;一个圆有无数条直径,D是假命题;故选:B.6.【答案】C【解析】【解答】解:∵AB是⊙O的直径,,∠COD=38°,∴∠BOC=∠COD=∠DOE=38°.∴∠BOE=114°,∴∠AOE=180°-114°=66°.故答案为:C.7.【答案】D【解析】【解答】解:∵,∠COD=34°,∴∠BOC=∠COD=∠DOE=34°,∴∠AOE=180°-∠BOC-∠COD-∠DOE=180°-34°-34°-34°= 78° .故答案为:D.8.【答案】D【解析】【解答】解:∵,∠BOC=40°∴∠BOC=∠COD=∠EOD=40°∴∠BOE=120°∴∠AOE=180°-∠BOE=60°.9.【答案】A【解析】【解答】解:如图,连接CD,∵的度数为,∴∠DCE= ,∵BC=CD,∴∠CBD=∠BDC= ,∵∠C=90°,∴∠CBD+∠A=90°,∴,∴;故选择:A.10.【答案】B【解析】【解答】解:A.∵∠ACB与∠ACD的大小关系不确定,∴AB与AD不一定相等,故本选项错误;B.∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=CD,故本选项正确;C.∵∠ACB与∠ACD的大小关系不确定,∴与不一定相等,故本选项错误;D.∠BCA与∠DCA的大小关系不确定,故本选项错误。
圆周角定理练习题
圆周角定理练习题一、选择题1. 圆周角定理指出,圆周角的度数是它所对弧的中心角的度数的多少?A. 1/2B. 1/3C. 2倍D. 3倍2. 在圆中,如果一个圆周角的度数是30°,那么它所对的弧的中心角的度数是多少?A. 60°B. 90°C. 120°D. 180°3. 已知圆的半径为5,圆周角为40°,求该圆周角所对的弦长。
A. 4B. 5C. 8D. 10二、填空题4. 若圆周角α的度数为60°,则它所对的弧的中心角的度数为______。
5. 在圆中,如果圆周角的度数是中心角度数的一半,那么该圆周角所对的弧长是半径的______倍。
6. 已知圆的半径为r,圆周角为θ,根据圆周角定理,该圆周角所对的弦长为______。
三、判断题7. 圆周角定理只适用于圆的内部角。
(对/错)8. 如果一个圆周角的度数是90°,那么它所对的弧的中心角的度数是180°。
(对/错)9. 圆周角定理同样适用于圆的外部角。
(对/错)四、简答题10. 解释圆周角定理的含义,并给出一个实际应用的例子。
11. 如何利用圆周角定理计算圆内接四边形的对角线长度?五、计算题12. 在半径为10的圆中,有一个圆周角为60°,求该圆周角所对的弧长。
13. 已知圆的半径为8,圆周角为120°,求该圆周角所对的弦长。
14. 一个圆周角的度数是45°,求它所对的弧的中心角的度数,并计算该圆周角所对的弦长,如果圆的半径为15。
六、证明题15. 证明:如果两个圆周角所对的弧相等,那么这两个圆周角的度数也相等。
16. 证明:在同一个圆中,相等的圆周角所对的弧长也相等。
七、应用题17. 在一个半径为7的圆中,有一个圆周角为80°,求该圆周角所对的弦长,并计算该弦所对的圆心角的度数。
18. 如果在一个圆中,有一个圆周角的度数是圆心角度数的1/3,求这个圆周角的度数,如果圆心角的度数是120°。
浙教版九年级数学上册《圆心角、圆周角》练习题
2022-2023学年浙教版九年级数学上册《3.4圆心角、3.5圆周角》优生辅导综合练习题(附答案)一.选择题1.如图,AB为⊙O的直径,点C,D在⊙O上,若∠ADC=130°,则∠BAC的度数为()A.25°B.30°C.40°D.50°2.如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40°B.30°C.20°D.15°3.如图,C,D是⊙O上直径AB两侧的两点,设∠ABC=15°,则∠BDC=()A.85°B.75°C.70°D.65°4.如图,AB是⊙O的直径,∠D=32°,则∠AOC等于()A.158°B.58°C.64°D.116°5.如图,△ABC的两顶点A,B在⊙O上,点C在圆外,∠C=46°,边AC交⊙O于点D,DE∥BC经过圆心交⊙O于点E,则的度数为()A.44°B.80°C.88°D.92°6.一副学生三角板放在一个圈里恰好如图所示,顶点D在圆圈外,其他几个顶点都在圆圈上,圆圈和AD交于点E,已知AC=8cm,则这个圆圈上的弦CE长是()A.6cm B.6cm C.4cm D.cm 二.填空题7.如图,AB为⊙O的直径,点C、D在⊙O上.若∠ACD=50°,则∠BAD的大小为°.8.如图所示,在△ABC中,AB=AC,以AB为直径作半圆O,交BC于点D,交AC于点E.若∠BAC=44°,BD=2,则弧AE的度数是,DC的长为.9.如图,在△ABC中,∠ACB=90°,∠A=30°,AB=4,以点B为圆心,BC长为半径画弧,交边AB于点D,则CD的长为.10.在半径为r的圆中,长度为r的弦所对的圆周角的度数是.11.如图,在⊙O中,∠BAC=15°,∠ADC=20°,则∠ABO的度数为.12.如图,A,B,C,D都是⊙O上的点,OA⊥BC,垂足为E,若∠OBC=20°,则∠ADC 等于度.13.如图,矩形ABCD中,AB=6,以点D为圆心,CD长为半径的圆弧与以BC为直径的半圆O相交于点E,若的度数为60°,则直径BC长为.14.如图,边长为2的正方形ABCD的顶点A、B在一个半径为2的圆上,顶点C、D在该圆内.将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C旋转到C′,则∠C′AB=°.15.如图,OA、OB是⊙O的半径且OA=OB=1,AB=,在⊙O上一点C,使BC=,则∠BAC的度数为.三.解答题16.如图,在下列4×4(边长为1)的网格中,已知△ABC的三个顶点A,B,C在格点上,请分别按不同要求在网格中描出一个格点D,并写出点D的坐标.(1)将△ABC绕点C顺时针旋转90°,画出旋转后所得的三角形,点A旋转后落点为D;(2)经过A,B,C三点有一条抛物线,请找到点D,使点D也落在这条抛物线上;(3)经过A,B,C三点有一个圆,请找到一个横坐标为2的点D,使点D也落在这个圆上,①点D的坐标为;②点D的坐标为;③点D的坐标为.17.如图,在⊙O中,B,C是的三等分点,弦AC,BD相交于点E.(1)求证:AC=BD;(2)连接CD,若∠BDC=25°,求∠BEC的度数.18.如图,AB是⊙O的直径,弦CD⊥AB于点M,连接CO,CB.(1)若AM=2,BM=8,求CD的长度;(2)若CO平分∠DCB,求证:CD=CB.19.如图所示,已知AB为⊙O的直径,CD是弦,且AB⊥CD于点E,连接AC、OC、BC.(1)求证:∠ACO=∠BCD;(2)若EB=8,CD=24,求⊙O的直径.20.如图,AB是⊙O的直径,点C,E都在⊙O上,OC⊥AB,=2,DE∥AB交OC 于点D,延长OC至点F,使FC=OC,连接EF.(1)求证:CD=OD.(2)若⊙O的直径是4,求EF的长.21.如图,AD为⊙O的直径,∠BAD=∠CAD,连接BC.点E在⊙O上,AB=BE,求证:(1)BC平分∠ACE;(2)AB∥CE.22.如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.23.如图,AB为⊙O的直径,C,D为⊙O上不同于A,B的两点,且OC平分∠ACD,延长AC与DB交于点E,过点C作CF⊥OC交DE于点F.(1)求证:∠A=∠E.(2)若BF=5,,求⊙O的半径.24.如图,Rt△ABC中,AC=CB,点E,F分别是AC,BC上的点,△CEF的外接圆交AB 于点Q,D.(1)如图1,若点D为AB的中点,求证:∠DEF=∠B;(2)在(1)问的条件下:①如图2,连接CD,交EF于H,AC=4,若△EHD为等腰三角形,求CF的长度.②如图2,△AED与△ECF的面积之比是3:4,且ED=3,求△CED与△ECF的面积之比(直接写出答案).(3)如图3,连接CQ,CD,若AE+BF=EF,求证:∠QCD=45°.参考答案一.选择题1.解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,∵∠ADC=130°,∴∠B=180°﹣130°=50°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC=90°﹣∠B=40°.故选:C.2.解:连接CO,如图:∵在⊙O中,=,∴∠AOC=∠AOB,∵∠AOB=40°,∴∠AOC=40°,∴∠ADC=∠AOC=20°,故选:C.3.解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=15°,∴∠CAB=75°,∴∠BDC=∠CAB=75°,故选:B.4.解:∵∠D=32°,∴∠BOC=2∠D=64°,∴∠AOC=180°﹣64°=116°.故选:D.5.解:∵DE||BC,∴∠C=∠ADE=46°,∴的度数是92°,∴的度数为180°﹣92°=88°.故选:C.6.解:作AH⊥CE于H,如图,∠ACB=90°,∠ABC=∠BAC=45°,∠BAD=30°,∴∠BCE=∠BAD=30°,∴∠ACE=60°,在Rt△ACH中,CH=AC=×8=4cm,∴AH=CH=4cm,∵∠AEC=∠ABC=45°,∴AH=HE=4cm,∴CE=CH+HE=(4+4)cm.故选:C.二.填空题7.解:连接BD,∵BD是直径,∴∠ADB=90°,∵∠ABD和∠ACD所对的弧都是,∴∠ABD=∠ACD=50°,∴∠BAD=90°﹣∠ABD=90°﹣50°=40°,故答案为:40.8.解:连接OE,AD,∵OA=OE,∠BAC=44°,∴∠BAC=∠OEA=44°,∴∠AOE=92°,∴弧AE的度数是92°,∵AB为半圆O的直径,∴∠ADB=90°,∵AB=AC,∴AD是△ABC的中线,∴BD=CD,∵BD=2,∴CD=2.故答案为:92°,2.9.解:连接CD,∵∠ACB=90°,∠A=30°,AB=4,∴∠B=60°,BC=AB=2,∵以点B为圆心,BC长为半径画弧,交边AB于点D,∴△BCD是等边三角形,∴CD=BC=2,故答案为:2.10.解:如图,作OD⊥AB,垂足为D,则由垂径定理知,点D是AB的中点,∴AD=AB=r,∴∠AOD=45°,∴∠AOB=2∠AOD=90°,∴∠ACB=∠AOB=45°,∵A、C、B、E四点共圆,∴∠ACB+∠AEB=180°,∴∠AEB=135°,故答案为:45°或135°.11.解:连接AO,CO,则∠AOC=2∠ADC,∠BOC=2∠BAC,∴∠AOB=∠BOC+∠AOC=2∠BAC+2∠ADC=2×15°+2×20°=70°,∵OA=OB,∴∠ABO=(180°﹣∠AOB)=55°,故答案为:55°.12.解:∵OA⊥BC,∴∠OEB=90°,∵∠OBC=20°,∴∠AOB=90°﹣∠OBC=70°,∴的度数是70°,∵OA⊥BC,OA过圆心O,∴=,∴的度数是70°,∴圆周角∠ADC==35°,故答案为:35.13.解:如图,连接BE,EC.∵BC是直径,∴∠BEC=90°,∵的度数=60°,∴∠BCE=×60°=30°,∵四边形ABCD是矩形,∴AB=CD=6,∠DCB=90°,∴∠DCE=90°﹣30°=60°,∵DE=DC,∴△DEC是等边三角形,∴EC=CD=6,∴BC=4.故答案为:.14.解:如图,分别连接OA、OB、OD′、OC、OC′;∵OA=OB=AB,∴△OAB是等边三角形,∴∠OAB=60°;同理可得△OAD′为等边三角形,∴∠OAD′=60°,∴∠D′AB=60°+60°=120°;∵AC′为正方形AB′C′D′的对角线,∴∠D′AC′=45°,∴∠C′AB=∠D′AB﹣∠D′AC′=120°﹣45°=75°.故答案为75.15.解:如图,作OH⊥BC于H.连接AC.∵OH⊥BC,∴BH=CH=,∴∠OBH=30°,∵OA=OB=1,AB=,∴AB2=OA2+OB2,∴∠AOB=90°,∴∠ACB=∠AOB=45°,∵∠ABC=∠ABO+∠OBC=45°+30°=75°,∴∠BAC=180°﹣75°﹣45°=60°,作点C关于直线OB的对称点C′,连接AC′,BC′,CC′,∵∠OBC=∠OBC′=30°,∴∠CBC′=60°,∵BC=BC′,∴△BCC′是等边三角形,∴∠BCC′=60°,∴∠BAC′=180°﹣60°=120°,故答案为60°或120°.三.解答题16.解:(1)如图,点B的对应点为B′,点A的对应点为点D(4,2);故①答案为:(4,2);(2)抛物线的对称轴在BC的中垂线上,则点D、A关于函数对称轴对称,故点D(3,2),故②的答案为:(3,2);(3)AB中垂线的表达式为:y=x,BC的中垂线为:x=,则圆心O为:(,),设点D(2,m),则OD=OB,()2+()2=(2﹣)2+(m﹣)2,解得:m=0或3(舍去0),故点D(2,3);故③的答案为(2,3).17.(1)证明:∵B,C是的三等分点,∴==,∴+=+,∴=,∴AC=BD;(2)解:如图,连接CD,AD,∵∠BDC=25°,==,∴∠CAD=∠BDA=∠BDC=25°,∵∠AED+∠CAD+∠BDA=180°,∴∠AED=180°﹣∠CAD﹣∠BDA=130°,∴∠BEC=∠AED=130°.18.解:(1)∵AB是⊙O的直径,弦CD⊥AB,∴CM=DM,∵AM=2,BM=8,∴AB=10,∴OA=OC=5,在Rt△OCM中,OM2+CM2=OC2,∴CM==4,∴CD=8;(2)过点O作ON⊥BC,垂足为N,∵CO平分∠DCB,∴OM=ON,∴CB=CD.19.(1)证明:∵AB⊥CD,∴,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:设⊙O的半径为r,则OC=r,OE=OA﹣BE=r﹣8,∵AB⊥CD,∴CE=DE=CD=×24=12,在Rt△OCE中,122+(r﹣8)2=r2,解得r=13,∴⊙O的直径=2r=26.20.(1)证明:连接OE、CE,如图,∵OC⊥AB,∴∠AOC=90°,∵=2,∴∠COE=2∠AOE,∴∠COE=60°,而OE=OC,∴△OCE为等边三角形,∵DE∥AB,OC⊥AB,∴DE⊥OC,∴CD=OD;(2)解:∵⊙O的直径是4,∴OE=OC=CF=2,CD=OD=1,在Rt△ODE中,DE==,在Rt△EFD中,EF===2.21.证明:(1)∵AB=BE,∴,∴∠ACB=∠BCE,∴BC平分∠ACE;(2)连接OC、OB,∵OA、OB、OC是⊙O半径,∴OA=OB=OC,∴∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAD=∠CAD,∴∠ABO=∠ACO,∵OB=OC,∴∠OBC=∠OCB,∴∠OBA+∠OBC=∠OCA+∠OCB,∴∠ABC=∠ACB,∴AB=AC,∵AB=BE,∴AC=BE,∴,∴∠ABC=∠ECB,∴AB∥CE.22.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.23.(1)证明:由题意∠ACO=∠A=∠D.∵OC平分∠ACD,∴∠ACO=∠OCD,∴∠OCD=∠D.∴OC∥DE,∴∠E=∠ACO,∴∠E=∠A.(2)解:∵,∴设BD=3x,OB=4x,由(1)得∠E=∠A=∠CDE,OC∥DE.∵CF⊥OC,∴CF⊥DE,∴EF=DF=3x+5.∴BE=3x+10,∵∠E=∠A,∴AB=BE,即3x+10=8x,解得x=2∴半径OB=4x=8.24.(1)证明:连接CD.在Rt△ABC中,∵AC=CB,∴∠A=∠B=45°,∵CD=DB,∴∠DCB=∠B=45°,∵∠DEF=∠DCB,∴∠DEF=∠B.(2)解:①如图2﹣1中,当EH=HD,可证四边形CFDE是正方形CF=2.如图2﹣2中,当EH=ED时,∠EDH=∠EHD=67.5°,∵∠EDF=∠CDB=90°,∴∠EDH=∠BDF=67.5°,∴∠BFD=180°﹣45°﹣67.5°=67.5°,∴∠BDF=∠BFD,∴BD=BF,∵AC=BC=4,∠ACB=90°,∴AB==4,∴BD=BF=2,∴CF=4﹣2.如图2﹣3中,当DA=FH时,点E于A重合,点H与C重合,CF=0.综上所述,满足条件的CF的值为0或2或4﹣2.②如图2﹣4中,作DM⊥AC于M,DN⊥BC于N,连接DF.∵CA=CB,AD=DB,∠ACB=90°,∴CD⊥AB,∠ACD=∠BCD=45°,CD=DA=DB∴DE=DF,∵∠ADC=∠EDF=90°,∴∠ADE=∠CDF,∴△ADE≌△CDF(SAS),∴AE=CF,S△ADE=S△CDF,∵DC平分∠ACB,DM⊥AC,DN⊥BC,∴DM=DN,可得四边形DMCN是正方形,∴DM=CM=CN=DN,∵====,∴可以假设DN=3k,EC=4k,则AC=BC=6k,AE=CF=2k,∴==.(3)证明:连接OD,OQ,作ER⊥AB,OH⊥AB,FK⊥AB.∵ER∥OH∥FK,EO=OF,∴RH=HK∴OH=(ER+FK),∵ER=AE,FK=FB,∴OH=(AE+BF)=EF=OE=OQ,∴∠OQD=∠ODQ=45°,∴∠QOD=90°,∴∠QCD=45°.。
圆心角与圆周角的关系(1)
O.
B
y= -
1 x 2
+900
D
2.如图,在⊙O中,点A、B、C在圆上, ∠C=300,AB=4cm. C 求⊙O的半径. .
O A B
作
二、能力提升:
业
一、基础演练: 课本P111习题3.4
在圆中,若一条弦所对的圆心角是500 ,求其所 对的圆周角.
三、问题解决: 当球员站在B,D, E的位置(点B、D、E在 同一个圆上)射球时,对 球门AC的张角的大小相 等吗?
练一练(一) 1.下列各图形中的角是不是圆周角? 请说明理由.
A
B
C D
D
2.点A、B、C、D在同一个 圆上,AC、BD交于点E,请找 A 出图中的圆周角.
C E
B
做一做:
在圆上确定一条劣弧,画出它所对的圆 心角与圆周角。 A
A C C A C O
O B ① B ②
O
B
③
猜一猜:
∠ABC与∠AOC有什么等量关系?
1 ∠ABC= ∠AOC。 2
证明: 作直径BD ∵ ∠AOD是△ABO的外角
A D O C
∴ ∠AOD=∠A+∠ABO
∵ OA=OB
∴ ∠A=∠ABO
1 ∴ ∠ABO= ∠AOD 2 1 同理 ∠CBO= ∠COD 2 1 2 1 即∠ABC= ∠AOC 2
B ②
∴ ∠ABO +∠CBO=
( ∠AOD+ ∠COD)
如图,在射门游戏中,球员射中球门的
难易与他所处的位置(如点B)对球门AC的
张角(∠ABC)有关.
当他站在B,D,E的位置(点B、D、E 在同一个圆上)射球时,对球门AC的张角的大 小相等吗?
弦、弧、圆心角、圆周角
第1题. (2005 大连课改)如图,A C B 、、是O 上三点,若40AOC ∠=,则的度数是 ( )A.10B.20C.40D.80答案:B第2题. (2005 泉州课改)如图,O 为ABC △的外接圆,AB 为直径,AC BC =,则A ∠的度数为( )A.30 B.40C.45D.60答案:C第3题. (2005 桂林课改)如图,已知AB ,CD 是O 的两条直径且50AOC ∠=,过A 作AE CD ∥交O 于E ,则 AE 的度数为( )A.65 B.70 C.75 D.80答案:D第4题. (2005 南宁课改)如图,在O 中,50BOC OC AB ∠= ,∥.则BDC ∠的度数为 . 答案:75第5题. (2005 江西课改)如图,在90O AOB ACB ∠=∠=中,,则度.答案:135第6题. (2005 聊城课改)如图,圆心角∠AOB =120︒,P 是AB 上任一点(不与A ,B 重合),点C 在AP 的延长线上,则∠BPC 等于 ( )A.45︒B.60︒C.75︒D.85︒ 答案:BABC ∠A ED OCBB第7题. (2005 成都课改)如图,点D 在以AC 为直径的O 上,如果20BDC ∠=,那么ACB ∠= .答案:70第8题. (2005 海淀课改)如图,C O 是上一点,O 是圆心.若35C ∠= ,则AOB ∠的度数为 A.35 B.70 C.105 D.150答案:B第9题. (2005 安徽课改)下列图中能够说明12∠>∠的是( )ABCD答案:B第10题.(2005 泉州大纲)如图,点A ,B ,C ,D 在O 上,若30BDC ∠=,则BAC ∠=_________度. 答案:30第11题. (2005 吉林大纲)如图,AB 是O 的直径,60CAB ∠=, 则D ∠= 度.答案:30第12题. (2005江西大纲)如图,在2 1 1 2 CO AB O OC AB O C 中,弦等于的半径,⊥交于,则ABC ∠= 度. 答案:15第13题. (2005滨州大纲)如图,在O 的内接四边形ABCD 中,110BCD ∠= , 则BOD ∠= .答案:140第14题. (2005济南大纲)如图,用不同颜色的马赛克片覆盖一个圆形的台面,估计15 圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面( ) A.5~6箱 B.6~7箱 C.7~8箱 D.8~9箱 答案:B第15题. (2005青岛大纲)如图,在100O AOB C AB ∠= 中,,为优弧的中点,则CAB ∠=.答案:65第16题.(2005山西大纲)如图,AB 为O 的直径,点P 为其半圆上任意一点(不含A 、B ),点Q 为另一半圆上一定点,若POA ∠为x 度,PQB ∠为y 度.则y 与x 的函数关系是 .答案:1902y x =-+第17题. (2005 天津大纲)如图,已知圆心角AOB ∠的度数为100,则圆周角ACB ∠等于__________(度).CCA答案:130(j63_1_2006-3-8_1101)第18题. (2005 芜湖课改)如图,已知在半圆AOB 中,30AD DC CAB =∠= ,,AC =AD 的长度.解:答案:解:AB 为直径,90ACB ∴∠= ,13060..2CAB ABC BC AC ∠=∴∠=∴= ,1.2AD DC AD DC AC BC AD =∴==∴= ,.BC AD ∴=. 在ABC Rt △中30CAB AC ∠== ,且tan BC AC CAB =∠ .tan302BC ∴== .2AD ∴=.第19题. (2005 成都课改)如图,AD 是O 的直径,120AB AC BAC =∠= ,,根据以上条件写出三个正确的结论(OA OB OC OD ===除外): ① ; ② ; ③ .答案:①60BDC ∠= 或120BOC ∠=,OBAOBAAD②四边形ABOC 是菱形,③Rt Rt ABD ACD △≌△(j63_1_2006-4-4_1)第20题. (2005 福州马尾区课改)如图,在O 中,弦 1.8AB =cm ,圆周角30ACB ∠=︒,则O 的直径为 cm .答案:3.6第21题. (2005 常德大纲)有一个未知圆心的圆形工件.现只允许用一块直角三角板(注:不允许用三角板上的刻度)画出该工件表面上的一根直径并定出圆心.要求在图上保留画图痕迹,写出画法.答案:略第22题. (2005 江西淮安大纲)如果点O 为△ABC 的外心,∠BOC =70°,那么∠BAC 等于( )A .35°B .110°C .145°D .35°或145° 答案:D第23题. (2005 四川自贡)如图,AB 是O 的直径,C D ,是半圆的三等分点,则_______C E D ∠+∠+∠=.答案:120第24题. (2005 南平课改)如图,AB 是O 的直径,C D ,是O 上的点,35D ∠=︒,则BOC ∠的度数是________.答案:110︒第25题. (2005 南平课改)O 上有两点A B ,,AOB ∠是小于A BA平角的角,将AOB ∠绕着圆心O 旋转,当点B 旋转到A 时,点A 旋转到C ,如果点C 和旋转前的点B 关于圆心O 成中心对称,则AOB ∠=( ) A.45︒ B.60︒ C.90︒ D.135︒ 答案:C第26题. (2005 哈尔滨)半径为6的圆中,圆心角α的余弦值为12,则角α所对的弦长等于( )A.B.10C.8D.6答案:D第27题. 如图,ABC △内接于O ,30B ∠=,2AC =cm则O 半径的长为 cm .答案:2第28题. 如图,已知OB 是O 的半径,点C 、D 在O 上,40DCB ∠= ,则DOB ∠= 度.答案:80B。
完整版)圆心角圆周角练习题
完整版)圆心角圆周角练习题知识点三:弧、弦、圆心角与圆周角1.定义圆心角为顶点在圆心的角。
2.在同圆或等圆中,弧、弦、圆心角之间的关系:两个圆心角相等,圆心角所对的弧相等(无论是优弧还是劣弧),圆心角所对的弦相等。
3.一个角是圆周角必须满足两个条件:(1)角的顶点在圆上;(2)角的两边都与圆有除顶点外的交点。
4.同一条弧所对的圆周角有两个。
5.圆周角定理:圆周角等于圆心角的一半。
6.圆周角定理的推论:(1)同弦或等弦所对的圆周角相等;(2)半圆或直径所对的圆周角相等;(3)90°的圆周角所对的弦是直径。
需要注意的是,“同弦或等弦”改为“同弧或等弧”结论就不一定成立了,因为一条弦所对的圆周角有两类,它们是相等或互补关系。
7.圆内接四边形定义为所有顶点都在圆上的多边形,圆心即为这个圆内接四边形的交点。
圆内接四边形的对角线相互垂直,且交点为对角线的中点。
夯实基础1.如果两个圆心角相等,则它们所对的弧相等,选项B正确。
2.不正确的语句为③,因为圆不一定是轴对称图形,只有圆上的任何一条直径所在直线才是它的对称轴。
3.错误的说法是D,相等圆心角所对的弦不一定相等。
4.根据圆心角的性质,∠A=2∠B,所以∠A=140°。
5.∠BAC与∠BCD互补,∠BCD与∠CBD相等,所以与∠BAC相等的角有2个,即∠CBD和∠ABD。
6.因为∠CAB为30°,所以∠ABC为60°,由正弦定理可得BC=5√3.7.根据圆周角定理,∠ACB=40°。
8.设∠A=3x,∠B=4x,∠C=6x,则∠D=360°-3x-4x-6x=120°。
9.∠DCE=∠A。
1、如图,AB是⊙O的直径,C,D是BE上的三等分点,∠AOE=60°,求证∠COE=80°。
证明:由三等分点的性质可知,BC=CD=DE,又∠AOE=60°,所以∠AOC=120°。
圆心角与圆周角练习题
圆心角与圆周角练习题一、选择题(每题3分,共30分)1. 在同圆或等圆中,如果圆心角相等,那么对应的圆周角:A. 相等B. 不相等C. 无法确定D. 可能相等2. 已知圆的半径为5,圆心角为30°,求圆周角的度数:A. 15°B. 30°C. 45°D. 60°3. 在圆中,圆心角的度数是圆周角度数的:A. 2倍B. 1/2倍C. 1/4倍D. 4倍4. 如果一个圆周角的度数是60°,那么它所对的圆心角是:A. 120°B. 60°C. 30°D. 180°5. 在同圆或等圆中,圆心角和圆周角的关系是:A. 相等B. 互补C. 互余D. 没有固定关系6. 已知圆的半径为10,圆心角为45°,求圆周角的度数:A. 22.5°B. 45°C. 90°D. 无法确定7. 圆心角和圆周角的关系可以用以下哪个公式表示:A. 圆心角= 2 × 圆周角B. 圆周角= 2 × 圆心角C. 圆心角 = 圆周角D. 圆周角 = 圆心角 / 28. 如果一个圆周角的度数是90°,那么它所对的圆心角是:A. 45°B. 90°C. 180°D. 270°9. 在圆中,圆心角和圆周角的度数之和:A. 总是等于180°B. 总是等于360°C. 总是小于360°D. 总是大于360°10. 已知圆的半径为8,圆心角为60°,求圆周角的度数:A. 30°B. 60°C. 90°D. 120°二、填空题(每题2分,共20分)11. 在同圆或等圆中,如果圆心角是圆周角度数的2倍,那么圆周角的度数是圆心角的________倍。
12. 圆心角的度数是圆周角度数的________倍。
圆周角圆心角练习题
圆周角圆心角练习题一、选择题1. 圆周角定理指出,圆周角的度数是同弧所对圆心角的度数的______。
A. 1/2B. 2倍C. 3倍D. 4倍2. 若圆心角为40°,则同弧所对的圆周角为______。
A. 20°B. 40°C. 80°D. 120°3. 在圆中,若一条弦所对的圆心角为60°,则这条弦所对的圆周角是______。
A. 30°B. 45°C. 60°D. 90°4. 圆内接四边形ABCD中,若∠A=60°,则∠B的度数为______。
A. 60°B. 120°C. 180°D. 240°5. 已知圆的半径为5,圆心角为120°,那么这个圆心角所对的弧长为______。
A. 5πB. 10πC. 15πD. 20π二、填空题6. 若圆周角为45°,则同弧所对的圆心角为______。
7. 在圆中,若弦AB所对的圆心角为100°,则弦AB所对的圆周角为______。
8. 已知圆的半径为10,圆心角为150°,则这个圆心角所对的弧长为______。
9. 圆内接四边形ABCD中,若∠A=90°,则∠B的度数为______。
10. 若圆的半径为8,圆心角为90°,则这个圆心角所对的弧长为______。
三、简答题11. 解释什么是圆周角,并说明它与圆心角的关系。
12. 给出一个圆内接四边形的例子,并说明其对角互补的性质。
13. 解释如何计算一个圆心角所对的弧长。
14. 在圆中,如果知道圆周角的度数,如何计算同弧所对的圆心角的度数?15. 圆内接四边形的对角互补性质在实际问题中有哪些应用?四、解答题16. 已知圆的半径为6,圆心角为60°,求这个圆心角所对的弧长。
17. 在圆中,若弦AB所对的圆心角为120°,求弦AB所对的圆周角的度数。
圆心角、圆周角专题
A C DBOE A BC第1题O DE圆心角与圆周角专题【考点一】圆心角与圆周角的关系及弧、弦、圆心角的关系认识与运用 例1:如图,△ABC 内接于⊙O ,∠A=40°,则∠BOC 的度数为( )例2:如图 AB 为圆O 的直径,AB=AC,BC 交圆O 与点D,AC 交圆O 于点E, ∠BAC=45°给出以下五个结论:(1)∠EBC=22.5°; (2)BD=DC; (3)AE=2EC; (4)劣弧AE 是劣弧DE 的2倍;(5)AE=BC,其中正确的序号是 。
变式:1. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数2.如图,AB 是⊙O 的直径,弦DC 与AB 相交于点E ,若∠ACD=60°,∠ADC=50°,则 ∠ABD= ,∠CEB= 。
3.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )垂径定理的运用例1:如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC 、BC ,若∠BAC =60º,CD =6cm . (1)求∠BCD 的度数;: (2)求⊙O 的直径.变式训练:1.如图,已知⊙O 的直径AB ⊥弦CD 于点E .下列结论中一定..正确的是() A .AE =OE B .CE =DE C .OE =12 CE D .∠AOC =60°A CB OA B C D EP OA CB(第4题) OC BD A 2. 如图,⊙O 过点B 、C 。
圆心O 在等腰直角△ABC 的内部,∠BAC =900,OA =1,BC =6,则⊙O 的半径为( )【基础训练】:1. 如图,⊙O 的直径CD ⊥AB ,∠AOC =50°,则∠CDB 大小为 ( )2. 如图,圆O 的直径AB 的长为10,弦AC 长为6,∠AC'B 的平 分线交圆O 于D ,则CD长为 ( )3. 如图,AB 是 O 的直径,点D 在 O 上∠AOD=130°,BC ∥OD 交 O 于C,则∠A= .4. 如图,点C 在⊙O 上,将圆心角∠AOB 绕点O 按逆时针方向旋转到∠A O B ''',旋转角为(0180)αα︒<<︒。
圆心角与圆周角的专题练习2
圆周角和圆心角的练习题一、选择题1.圆周角是24°,那么它所对的弧是________ A.12°;B.24°;C.36°;D.48°.2.在⊙O中,∠AOB=84°,那么弦AB所对的圆周角是________A.42°;B.138°;C.84°;D.42°或138°.3.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.〔〕A.1对;B.2对;C.3对;D.4对.4.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥C D.如果∠BAC=32°,那么∠AOD=___[ ] A.16°;B.32°;C.48°;D.64°.二、计算题6.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠AB C.求AC的长.7.:△DBC和等边△ABC都内接于⊙O,BC=a,∠BCD=75°〔如图〕.求BD的长.8.如图,半圆的直径AB =13cm ,C 是半圆上一点,CD ⊥AB 于D ,并且CD =6cm .求AD 的长.、9.如图,圆内接△ABC 的外角∠MAB 的平分线交圆于E ,EC =8cm .求BE 的长.10.:如图,AD 平分∠BAC ,DE ∥AC ,且AB =a .求DE 的长.11.如图,在⊙O 中,F ,G 是直径AB 上的两点,C ,D,E 是半圆上的三点,如果弧AC 的度数为60°,弧BE 的度数为20°,∠CFA =∠DFB ,∠DGA =∠EG B .求∠FDG 的大小. 12.如图,⊙O 的内接正方形ABCD 边长为1,P 为圆周上与A ,B ,C ,D 不重合的任意点.求PA 2+PB 2+PC 2+PD 2的值.13.如图,在梯形ABCD 中,AD ∥BC ,∠BAD =135°,以A 为圆心,AB 为半径作⊙A 交AD ,BC 于E ,F 两14.如图,⊙O 的半径为R ,弦AB =a ,弦BC ∥OA ,求AC 的长.15.如图,在△ABC 中,∠BAC ,∠ABC ,∠BCA 的平分线交△ABC 的外接圆于D ,E 和F ,如果,,分别为m °,n °,p °,求△ABC 的三个内角.16.如图,在⊙O 中,BC ,DF 为直径,A ,E 为⊙O 上的点,AB =AC ,EF =21DF .求∠ABD +∠CBE 的值.17.如图,等腰三角形ABC 的顶角为50°,AB =AC ,以数.第二页18.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.19.如图,△ABC中,∠B=60°,AC=3cm,⊙O为△ABC的外接圆.求⊙O的半径.20.以△ABC的BC边为直径的半圆,交AB于D,交AC于E,EF⊥BC于F,AB=8cm,AE=2cm,BF∶FC=5∶1〔如图〕.求CE的长.21.等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD 的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE 的度数.27.:如图,在△ABC 中,∠C =90°,∠A =38°,以C 为圆心,BC 为半径作圆,交AB 于D ,求的度数.第三页28.如图,△ABC 内接于圆O ,AD 为BC 边上的高.假设AB =4cm ,AC =3cm ,AD =2.5cm ,求⊙O 的半径.29.设⊙O 的半径为1,直径AB ⊥直径CD ,E 是OB 的中点,弦CF 过E 点〔如图〕,求EF 的长.30.如图,在⊙O 中直径AB ,CD 互相垂直,弦CH 交AB 于K ,且AB =10cm ,CH =8cm .求BK ∶AK 的值.31.如图,⊙O 的半径为40cm ,CD 是弦,A 为的中点,弦AB 交CD 于F .假设AF =20cm ,BF =40cm ,求O 点到弦CD 的弦心距.32.如图,四边形ABCD 内接于以AD 为直径的圆O ,且AD =4cm ,AB =CB =1cm ,求CD 的长. 三、证明题33.如图,△ABC 内接于半径为R 的⊙O ,A 为锐角. 求证:ABCsin =2R34.:如图,在△ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.35.如图,D为等边三角形ABC外接圆上的上的一点,AD交BC边于E.求证:AB为AD和AE的比例中项.36.:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D.求证:D为BC的中点.第四页37.:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OA D.38.:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.:如图,圆内接四边形ABCD中,BC=C D.求证:AB·AD+BC2=AC2.40.:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EO A.42.:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FM C.43.:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AE D.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.第五页46.:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.47.:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.〔1〕求证:△ADE是等边三角形;〔2〕求S△ABC∶S△ADE.48.:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.〔1〕求证:AC⊥BE;〔2〕求AB的长.一、填空题:1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),那么∠ADC 的度数是________.DCBAO(1) (2) (3)2,四边形ABCD 的四个顶点都在⊙O 上,且AD ∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形. 3.,如图3,∠BAC 的对角∠BAD=100°,那么∠BOC=_______度. 4,A 、B 、C 为⊙O 上三点,假设∠OAB=46°,那么∠ACB=_______度.BAA(4) (5) (6)5,AB 是⊙O 的直径, BC BD ,∠A=25°,那么∠BOD 的度数为________.第六页 6,AB 是半圆O 的直径,AC=AD,OC=2,∠CAB= 30 °, 那么点O 到CD 的距离OE=______. 二、选择题: 7,圆心角∠BOC=100°,那么圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DCBA(7) (8) (9) (10)8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )9,D 是AC 的中点,那么图中与∠ABD 相等的角的个数是( )10,∠AOB=100°,那么∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,那么该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°12.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC=140°, ∠CBD 的度数是( )A.40°B.50°C.70°D.110°三、解答题:13.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.A14.如图,A、B、C、D四点都在⊙O上,AD是⊙O的直径,且AD=6cm,假设∠ABC= ∠CAD,求弦AC的长.15.如图,AB为半圆O的直径,弦AD、BC相交于点P,假设CD=3,AB=4,求tan∠BPD的值.16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.第七页17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B,如下图,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素) 18.钳工车间用圆钢做方形螺母,现要做边长为a的方形螺母, 问下料时至少要用直径多大的圆钢?。
初三数学圆周角和圆心角的关系试题
初三数学圆周角和圆心角的关系试题1.已知,如图,∠BAC的对角∠BAD=100°,则∠BOC=_______度.【答案】160°【解析】由∠BAD=100°可得∠BAC的度数,再根据圆周角定理即可求得结果.∵∠BAD=100°∴∠BAC=80°∴∠BOC=160°.【考点】邻补角定理,圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.2.如图,AB是半圆O的直径,AC="AD,OC=2,∠CAB=30°," 则点O到CD的距离OE=____.【答案】【解析】由AC=AD,∠CAB=30°可得∠CDO的度数,即可得到∠EOD、∠COE的度数,判断出△COE的形状再结合勾股定理即可求得结果.∵AC=AD,∠CAB=30°,OA=OC∴∠CDO=75°,∠COD=60°∴∠EOD=15°∴∠COE=45°∴△COE为等腰直角三角形∵OC=2∴OE=.【考点】三角形内角和定理,勾股定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.3.如图,已知圆心角∠BOC=100°,则圆周角∠BAC的度数是( )A.50°B.100°C.130°D.200°【答案】A【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵∠BOC=100°∴∠BAC=50°故选A.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.4.如图,A、B、C、D四个点在同一个圆上,四边形ABCD的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对【答案】C【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.相等的角有∠ADB=∠ACB,∠BAC=∠BDC,∠CAD=∠CBD,∠ACD=∠ABC4对,故选C.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.5.如图,D是弧AC的中点,则图中与∠ABD相等的角的个数是( )A.4个B.3个C.2个D.1个【答案】B【解析】圆周角定理:同弧或等弧所对的圆周角相等,均等于所对圆心角的一半.∵D是弧AC的中点∴∠ABD=∠ACD=∠CBD=∠CAD故选B.【考点】圆周角定理点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.6.如图, ,则∠A+∠B等于( )A.100°B.80°C.50°D.40°【答案】C【解析】连接CO并延长交圆于点D,根据圆周角定理即可得到结果.连接CO并延长交圆于点D由图可得∠A+∠B=∠AOD+∠BOD=∠AOB=50°故选C.【考点】圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.7.在半径为R的圆中有一条长度为R的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120°【答案】B【解析】根据圆的性质可得这条弦与半径围成的三角形为等边三角形,再根据圆周角定理即可求得结果.由题意得这条弦与半径围成的三角形为等边三角形则该弦所对的圆周角的度数是30°或150°故选B.【考点】圆周角定理点评:特殊三角形的性质的应用是初中数学平面图形中极为重要的知识点,与各个知识点结合极为容易,是中考中的热点,在各种题型中均有出现,需多加关注.8.如图,A、B、C三点都在⊙O上,点D是AB延长线上一点,∠AOC="140°," ∠CBD的度数是( )A.40°B.50°C.70°D.110°【答案】C【解析】先求得弧ABC所对的圆周角的度数,再根据圆内接四边形的对角互补可得∠ABC的度数,即可求得结果.∵∠AOC=140°∴弧ABC所对的圆周角的度数为70°∴∠ABC=110°∴∠CBD=70°故选C.【考点】圆周角定理,圆内接四边形的性质点评:本题是圆周角定理的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,属于基础题,难度不大.9.如图,⊙O的直径AB=8cm,∠CBD=30°,求弦DC的长.【答案】4cm【解析】连接OC、OD,根据圆周角定理可得∠COD=60°,即可得到△COD是等边三角形,根据等边三角形的性质即可求得结果.连接OC、OD,则OC=OD=4cm,∠COD=60°,故△COD是等边三角形,从而CD=4cm.【考点】圆周角定理,等边三角形的判定和性质点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.10.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.【答案】(1)相等;(2)∠CP′D+∠COB=180°【解析】(1)连接OD,根据垂径定理可得∠COB=∠DOB,再结合圆周角定理即可得到结果;(2)连接P′P,则可得∠P′CD=∠P′PD,∠P′PC=∠P′DC.即可得∠P′CD+∠P′DC=∠CPD,从而可以得到结果.从而∠CP′D+∠COB=180°.(1)连接OD,∵AB⊥CD,AB是直径,∴,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD.(2)连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC.∴∠P′CD+∠P′DC=∠P′PD+∠P′PC=∠CPD.∴∠C P′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB,从而∠CP′D+∠COB=180°.【考点】垂径定理,圆周角定理点评:辅助线问题是初中数学学习中的难点,能否根据具体情况正确作出恰当的辅助线往往能够体现一个学生对图形的理解能力,因而这类问题在中考中比较常见,在各种题型中均有出现,一般难度较大,需多加关注.。
圆周角和圆心角的关系-练习题
第3章第4节圆周角和圆心角的关系同步检测一.选择题1.如图,正方形ABCD的四个顶点分别在⊙O上,点P在CD上不同于点C的任意一点,则∠BPC的度数是()A.45°B.60°C.75°D.90°答案:A解析:解答:连接OB,OC,∵正方形ABCD的四个顶点分别在⊙O上,:∴∠BOC=90°,∴∠BPC=12∠BOC=45°.故选A.分析:首先连接OB,OC,由正方形ABCD的四个顶点分别在⊙O上,可得∠BOC=90°,然后由圆周角定理,即可求得∠BPC的度数.2.如图,都是⊙O的弦,且AB⊥CD.若∠CDB=62°,则∠ACD的大小为()A.28°B.31°C.38°D.62°答案:A解析:解答:∵AB⊥CD,∴∠DPB=90°,'∵∠CDB=62°,∴∠B=180°-90°-62°=28°,∴∠ACD=∠B=28°.故选A.分析:利用垂直的定义得到∠DPB=90°,再根据三角形内角和定理求出∠B=180°-90°-62°=28°,然后根据圆周角定理即可得到∠ACD的度数.3.如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°答案:B解析:解答::∵AB是⊙O的直径,、∴∠ACB=90°,∵∠BAC=35°,∴∠ABC=180°-90°-35°=55°,∴∠ADC=∠ABC=55°.故选B.分析:先根据圆周角定理求出∠ACB=90°,再由三角形内角和定理得出∠ABC的度数,根据圆周角定理即可得出结论.4.下列命题中,正确的命题个数是()①顶点在圆周上的角是圆周角;②圆周角度数等于圆心角度数的一半;③90°的圆周角所对的弦是直径;④圆周角相等,则它们所对的弧也相等.A.1个B.2个C.3个D.4个…答案:A解析:解答:解:①中,该角还必须两边都和圆相交才行.错误;②中,必须是同弧或等弧所对,错误;③正确;④中,必须在同圆或等圆中,错误.故选A.分析:根据圆周角的概念和定理,逐条分析判断.5.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C)答案:A解析:解答:如图,由圆周角定理可得:∠AOB=2∠C.故选:A.分析:圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.根据圆周角定理,可得∠AOB=2∠C.6.如图,⊙O的弦CD与直径AB相交,若∠ACD=35°,则∠BAD=()A.55°B.40°C.35°D.30°答案:A解析:解答:∵∠ACD与∠B是AD对的圆周角,∴∠B=∠ACD=35°,~∵AB是⊙O的直径,∴∠ADB=90°,∴∠BAD=90°-∠B=55°.故选A.分析:由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B的度数,又由AB 是⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠ADB=90°,继而可求得∠BAD的度数.7.如图,⊙O是△ABC的外接圆,若∠ABC=40°,则∠AOC的度数为()A.20°B.40°C.60°D.80°答案:D 解析:解答:∵⊙O 是△ABC 的外接圆,∠ABC =40°,!∴∠AOC =2∠ABC =80°.故选:D .分析:由⊙O 是△ABC 的外接圆,若∠ABC =40°,根据圆周角定理,即可求得答案.8.如图所示,边长为1的小正方形构成的网格中,半径为1的⊙O 的圆心O 在格点上,则∠AED 的正切值等于( )A .55B . 255C .2D .12答案:D解析:解答:∵∠E=∠ABD ,∴tan ∠AED=tan ∠ABD=12AC AB . 故选D .、分析:根据同弧或等弧所对的圆周角相等来求解.9.如图,△ABC 的顶点均在⊙O 上,若∠ABC+∠AOC=90°,则∠AOC 的大小是( )A .30°B .45°C .60°D .70°答案:C解析:解答:∵∠ABC=12∠AOC , 而∠ABC+∠AOC=90°,∴12∠AOC+∠AOC=90°,∴∠AOC=60°.故选:C.】分析:先根据圆周角定理得到∠ABC=12∠AOC,由于∠ABC+∠AOC=90°,所以12∠AOC+∠AOC=90°,然后解方程即可.10.如图,AB是⊙O的直径,CD是⊙O的弦,连接,若∠CAB=35°,则∠ADC的度数为()A.35°B.45°C.55°D.65°答案:C解析:解答:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠CAB=35°,》∴∠B=55°,∴∠ADC=55°.故选C.分析:连接BC,推出Rt△ABC,求出∠B的度数,即可推出∠ADC的度数.11.若四边形ABCD是⊙O的内接四边形,且∠A:∠B:∠C=1:3:8,则∠D的度数是()A.10°B.30°C.80°D.120°答案:D解析:解答:设∠A=x,则∠B=3x,∠C=8x,因为四边形ABCD为圆内接四边形,所以∠A+∠C=180°,:即:x+8x=180,∴x=20°,则∠A=20°,∠B=60°,∠C=160°,所以∠D=120°,故选D.分析:本题可设∠A=x,则∠B=3x,∠C=8x;利用圆内接四边形的对角互补,可求出∠A.∠C 的度数,进而求出∠B和∠D的度数,由此得解.12.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是()A.115°B.l05°C.100°D.95°答案:B`解析:解答:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.分析:根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.13.如图,⊙C过原点,且与两坐标轴分别交于点A.点B,点A的坐标为(0,3),M是第三象限内OB上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.2、答案:C解析:解答:∵四边形ABMO 是圆内接四边形,∠BMO =120°,∴∠BAO =60°,∵AB 是⊙C 的直径,∴∠AOB =90°,∴∠ABO =90°-∠BAO =90°-60°=30°,∵点A 的坐标为(0,3),∴OA =3,∴AB =2OA =6,{∴⊙C 的半径长=2AB =3. 故选:C . 分析:先根据圆内接四边形的性质求出∠OAB 的度数,由圆周角定理可知∠AOB =90°,故可得出∠ABO 的度数,根据直角三角形的性质即可得出AB 的长,进而得出结论.14.如图,四边形ABCD 内接于⊙O ,若它的一个外角∠DCE =70°,则∠BOD =( ) A .35° B .70° C .110° D .140°答案:D解析:解答:∵四边形ABCD 内接于⊙O ,∴∠A =∠DCE =70°,∴∠BOD =2∠A =140°.}故选D . 分析:由圆内接四边形的外角等于它的内对角知,∠A =∠DCE =70°,由圆周角定理知,∠BOD =2∠A =140°.15.如图,已知经过原点的⊙P 与轴分别交于两点,点C 是劣弧OB 上一点,则∠ACB =( )A.80°B.90°C.100°D.无法确定答案:B解析:解答:∵∠AOB与∠ACB是优弧AB所对的圆周角,∴∠AOB=∠ACB,∵∠AOB=90°,∴∠ACB=90°.、故选B.分析:由∠AOB与∠ACB是优弧AB所对的圆周角,根据圆周角定理,即可求得∠ACB=∠AOB=90°.二.填空题16.如图,△ABC的顶点均在⊙O上,∠OAC=20°,则∠B的度数是答案:70°解析:解答:解:∵OA=OC,∠OAC=20°,∴∠ACO=∠OAC=20°,∴∠AOC=180°-∠ACO-∠OAC=180°-20°-20°=140°,∴∠B=12∠AOC=12×140°=70°.}故答案为:70°.分析:先根据等腰三角形的性质求出∠ACO的度数,再由三角形内角和定理求出∠AOC的度数,由圆周角定理∠B的度数即可.17.如图,△ABC内接于⊙O,∠ABC=70°,∠CAB=50°,点D在⊙O上,则∠ADB的大小为.答案:60°解析:解答:∵∠ABC=70°,∠CAB=50°,∴∠ACB=180°-∠ABC-∠CAB=60°,∴∠ADB=∠ACB=60°.故答案为60°.&分析:先根据三角形内角和定理计算出∠ACB的度数,然后根据圆周角定理求解.18.如图,都在⊙O上,∠B=130°,则∠AOC的度数是答案:100°解析:解答:∵都在⊙O上,即四边形ABCD为⊙O内接四边形,∴∠D+∠B=180°,又∠B=130°,∴∠D=180°-∠B=180°-130°=50°,又∠D为⊙O的圆周角,∠AOC为⊙O的圆心角,且两角所对的弧都为,则∠AOC=2∠D=100°.故答案为:100°;分析:由四个点都在圆O上,得到四边形ABCD为圆O的内接四边形,根据圆内接四边形的对角互补得到∠B与∠D互补,由∠B的度数求出∠D的度数,∠D为圆O的圆周角,所求的角∠AOC是圆O的圆心角,且两角所对的弧为同一条弧,根据同弧所对的圆心角等于所对圆周角的2倍,由∠D的度数可求出∠AOC的度数.19.如图,四点在⊙O上,OC⊥AB,∠AOC=40°,则∠BDC的度数是答案:20°解析:解答:∵OC⊥AB,∴AC BC∴∠CDB=12∠AOC,而∠AOC=40°,∴∠CDB=20°.故答案为20°.;分析:由OC⊥AB,根据垂径定理得到弧AC=弧BC,再根据圆周角定理得∠CDB=12∠AOC,而∠AOC=40°,即可得到∠BDC的度数.20.如图,在△ABC中,∠B=60°,∠C=70°,若AC与以AB为直径的⊙O相交于点D,则∠BOD 的度数是度.答案:100解析:解答:∵在△ABC中,∠B=60°,∠C=70°,∴∠A=50°,∵∠BOD=2∠A,∴∠BOD=100°.故答案为:100.分析:先根据三角形内角和定理求出∠A的度数,再根据圆周角定理即可求得∠BOD的度数.$三.解答题21.请用科学的方法证明圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.答案:①如图(1),当点O在∠BAC的一边上时,∵OA=OC,∴∠A=∠C,∵∠BOC=∠A+∠C,∴∠BAC=12∠BOC;②如图(2)当圆心O在∠BAC的内部时,延长BO交⊙O于点D,连接CD,则—∠D=∠A(同弧或等弧所对的圆周角都相等),∵OC=OD,∴∠D=∠OCD,∵∠BOC=∠D+∠OCD(三角形的一个外角等于与它不相等的两个内角的和),∴∠BOC=2∠A,即∠BAC=12∠BOC.③如图(3),当圆心O在∠BAC的外部时,延长BO交⊙O于点E,连接CE,则∠E=∠A(同弧或等弧所对的圆周角都相等),∵OC=OE,∴∠E=∠OCE,/∵∠BOC=∠E+∠OCE(三角形的一个外角等于与它不相邻的两个内角的和),∴∠BOC=2∠A,即∠BAC=12∠BOC.解析:分析:分别从当点O在∠BAC的一边上时,当圆心O在∠BAC的内部时与当圆心O 在∠BAC的外部时,去分析证明,即可证得结论.22.如图所示,∠BAC是⊙O的圆周角,且∠BAC=45°,BC=22,试求⊙O的半径大小.答案:∵∠BAC=45°,∴∠B0C=90°,∵BC2∴OB=OC=2..即⊙O的半径为2.解析:分析:根据圆周角定理,可求∠B0C=90°,即可知△BOC为等腰直角三角形,故可求0B=OC=1.23.已知⊙O中,弦AB的长等于⊙O的半径,求弦所对的圆心角和圆周角的度数.答案:画出图形:连接,∵AB=OA=OB,∴∠AOB=60°.分两种情况:①在优弧上任取一点C,连接CA,CB,{则∠C=12∠AOB=30°,②在劣弧上任取一点D,连接,∵四边形ADB C是⊙O的内接四边形,∴∠C+∠ADB=180°,∴∠ADB=180°-∠C=150°.综上所述,弦AB所对的圆心角是60°,圆周角是30°或150°.解析:分析:根据已知条件得出△OAB是等边三角形,则∠AOB=60°,再根据弦AB所对的弧有两段,一段是优弧,一段是劣弧,然后分类讨论,即可得出答案.24.如图,在⊙O中,弦AB=3cm,圆周角∠ACB=60°,求⊙O的直径.答案:3$解析:解答:过A点作直径AD,连接BD,如图,∠ABD=90°,又∵∠ADB=∠ACB=60°,∴∠BAD=30°,而AB=3cm,∴BD=3,∴AD=2BD=23(cm),即⊙O的直径为23cm.故答案为:23.分析:过A点作直径AD,则∠ABD=90°,∠ADB=∠ACB=60°,在Rt△ABD中,AB=3cm,利用三边的数量关系可求出AD.25.如图,在半径为6cm的圆中,弦AB长63cm,试求弦AB所对的圆周角的度数.答案:如图,设弦AB在优弧上所对的圆周角为∠P,劣弧上所对的圆周角为∠P′,连接OA,OB,过O点作OC⊥AB,垂足为C,由垂径定理,得AC=12AB3,在Rt△AOC中,OA=6,sin∠AOC=33362 ACOA==,解得∠AOC=60°,所以,∠AOB=2∠AOC=120°,根据圆周角定理,得∠P =12∠AOB =60°, 又APBP ′为圆内接四边形,所以,∠P′=180°-∠P=120°,故弦AB 所对的圆周角的度数为60°或120°解析:分析:设弦AB 在优弧上所对的圆周角为∠P ,劣弧上所对的圆周角为∠P ′,连接OA ,OB ,过O 点作OC ⊥AB ,垂足为C ,由垂径定理可知AC =12AB ,解直角三角形得∠AOC 的度数,由垂径定理可知,∠AOB =2∠AOC ,由圆周角定理得∠P =12∠AOB ,利用∠P 与∠P ′的互余关系求∠P ′.|。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆心角圆周角练习题
圆心角和圆周角是圆内角的一种特殊形式,它们在几何学中具有重要的地位。
本文将介绍关于圆心角和圆周角的一些练习题,帮助读者加深对这一概念的理解。
一、选择题
1. 在同一个圆中,圆心角和对应的圆周角的关系是:
A. 圆心角大于对应的圆周角
B. 圆心角等于对应的圆周角
C. 圆心角小于对应的圆周角
2. 已知在同一个圆中,圆心角的度数为56°,则对应的圆周角的度数为:
A. 56°
B. 112°
C. 224°
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数为:
A. 30°
B. 60°
C. 120°
4. 若∠ACD是圆O中的圆心角,且其度数为72°,则弧AB所对应
的圆周角的度数为:
A. 72°
B. 144°
C. 288°
5. 在同一个圆中,圆心角和对应的弧所对应的圆周角之间的关系是:
A. 圆心角小于对应的圆周角
B. 圆心角等于对应的圆周角
C. 圆心角大于对应的圆周角
二、填空题
1. 在同一圆中,一条弧的度数等于其所对应的圆周角的度数,则这
条弧所对应的圆心角的度数为________。
2. 在圆O中,已知∠ACB是圆心角,则它所对应的圆周角的度数
为________。
3. 在同一个圆中,圆心角的度数等于所对应的弧所对应的圆周角的
度数,则该弧所对应的圆周角的度数为________。
三、解答题
1. 在同一个圆中,圆心角和对应的圆周角的关系是什么?为什么?
2. 已知在同一个圆中,圆心角的度数为60°,则对应的圆周角的度数是多少?并通过计算或推理进行解答。
3. 在圆O中,∠ACB是圆心角,则它所对应的圆周角的度数是多少?并通过计算或推理进行解答。
4. 若∠ACD是圆O中的圆心角,且其度数为90°,则弧AB所对应的圆周角的度数是多少?并通过计算或推理进行解答。
总结:
本文通过选择题、填空题和解答题的形式,对圆心角和圆周角的概念进行了练习和探讨。
圆心角和对应的圆周角之间具有一定的数学关系,在解答题过程中,我们需要灵活运用几何知识和计算方法,以便准确地求解出相应的角度。
希望通过这些练习题,读者能够更加深入地理解和应用圆心角和圆周角的概念。