2018年全国中考数学分类汇编:解直角三角形
中考总复习解直角三角形
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
2018届中考数学考点直角三角形与勾股定理
2018届中考数学考点直角三角形与勾股定理课标呈现指引方向1.了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。
掌握有两个角互余的三角形是直角三角形。
2.探索勾股定理及其逆定理,并能运用它们解决一些简单的实际问题。
考点梳理夯实基础1.直角三角形的性质:(1)直角三角形的两个锐角;【答案】互余(2)勾股定理:若直角三角形的两条直角边分别为a,b,斜边为c,那么;【答案】a2+b2=c2(3)直角三角形斜边上的中线等于;【答案】斜边的一半(4)直角三角形中,30°角所对的直角边等于.【答案】斜边的一半2.直角三角形的判定:(1)勾股定理逆定理:如果三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形;(2)如果三角形一边上的中线等于这边的,那么这个三角形是直角三角形.【答案】一半3.勾股数:可以构成直角三角形三边的一组正整数.常见的勾股数有:(3,4,5)、(5,12,13)、(7,24,25)、(8,15,17)…以及(3n,4n,5n)、(5n,12n,13n)、(7n,24n,25n)、(8n,15n,17n)…(n为正整数)考点精析专项突破考点一勾股定理和勾股定理的逆定理【例1】(1)(2016临沂)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为_____________.【答案】6解题点拨:本题考查矩形的性质,折叠的性质,勾股定理等,根据勾股定理列出方程是解题的关键.①先利用矩形的性质和折叠的性质得出∠B=90°,AF=FC;②然后利用勾股定理列方程求出BF的长;③再用三角形面积公式求出三角形的面积.(2)(2016武汉)如图,在四边形ABCD 中,∠ABC =90°,AB =3,BC =4,CD =10,DA =,则BD 的长为___________【答案】解题点拨:连接AC ,过点D 作BC 边上的高,交BC 延长线于点H .在Rt △ABC 中,AB =3,BC =4,∴AC =5,又CD =10,DA =5,可知△ACD 为直角三角形,且∠ACD =90°,易证△ABC ∽△CHD .则CH =6,DH =8,从而在Rt △BHD 中易求BD .考点二 性质“直角三角形斜边上的中线等于斜边的一半”的运用【例3】如图,在四边形ABCD 中,AD ∥BC ,DE ⊥BC ,垂足为点E .连接AC 交DE 于点F ,点G 为AF 的中点.∠ACD =2∠ACB .若DG =3,EC =1.求DE 的长.解题点拨:综合考查了勾股定理、等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD =DG =3.555鼹:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE=.考点三性质“直角三角形中,30°角所对的直角边等于斜边的一半”的运用【例4】(2016西宁)如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=.【答案】2解题点拨:作PE⊥OB于E,根据角平分线的性质可得PE=PD.根据平行线的性质可得∠BCP=∠AOB=30°,由直角三角形中30°的角所对的直角边等于斜边的一半,可求得PE,即可求得PD.课堂训练当堂检测1.(2016南京)下列长度的三条线段能组成直角三角形的是( )A .3,4,4B .3,4,5C .3,4,6D .3,4,7【答案】B2.(2015滨州)如图,在直角∠O 的内部有一滑动杆AB ,当端点A 沿直线AO 向下滑动时,端点B 会随之自动地沿直线OB 向左滑动,如果滑动杆从图中AB 处滑动到处,那么滑动杆的中点C 所经过的路径是 ( )A .直线的一部分B .圆的一部分C .双曲线的一部分D .抛物线的一部分第2题【答案】B3.(2016黄冈)如图,在矩形ABCD 中,点E ,F 分别在边CD ,BC 上,且DC =3DE =3a ,将矩形沿直线EF 折叠,使点C 恰好落在AD 边上的点P 处,则FP = .【答案】A B ⅱ第3题4.(2015重庆A )如图1,在△ABC 中,∠ACB = 90°,∠BAC =60°,点E 是∠BAC 角平分线上一点,过点E 作AE 的垂线,过点A 作AB 的垂线,两垂线交于点D ,连接DB ,点F 是BD 的中点,DH ⊥AC ,垂足为H ,连接EF ,HF .(1)如图1,若点H 是AC 的中点,AC =,求AB ,BD 的长:(2)如图1,求证:HF =EF ;(3)如图2,连接CF,CE ,猜想:△CEF 是否是等边三角形?若是,请证明;若不是,请说明理由,图1 图2第4题【答案】解:(1)∵在△ABC 中,∠ACB =90°,∠BAC =60°,AC = ∴AB ==.cos ACBAC Ð2∵AD ⊥AB .∴∠DAH =30°.∵点H 是AC 的中点,∴AH =AC.∴在△ADH 中.AD ==2.∴在△ADB中,根据勾股定理,得BD.(2)如答图1,连接AF ,易证:△DAE ≌△ADH (AAS ),∴DH =AE .∵∠FDH =∠FDA -∠HDA =∠FDA -60°=(90°-∠FBA )-60°=30°-∠FBA ,∴∠EAF =∠FDH .又∵点F 是BD 的中点,即AF 是Rt △ABD 斜边上的中线,∴AF =DF . ∴△DHF ≌△AEF (SAS ).∴HF =EF .(3)△CEF 为等边三角形,证明如下:如答图2,取AB 的中点M ,连接CM 、FM ,在Rt △ADE 中,AD =2AE ,∵FM 是△ABD 的中位线.∴AD =2FM .∴FM =AE .易证△ACM 为等边三角形,∴AC =CM ,∠ACM =60°.∵∠CAE =∠CAB =30°, ∠CMF =∠AMF -∠AMC =30°,∴∠CAE =∠CMF .12cos AHCAH Ð12∴△ACE≌△MCF(SAS).∴CE=CF,∠ACE=∠MCF.∴∠ECF=∠ECM+∠MCF=∠ECM+∠ACE=60°.∴△CEF为等边三角形.图1 图2第4题答案图中考达标模拟自测A组基础训练一、选择题1.(2016连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45 ,S5=11,S6=14,则S3+S4= ( ) A.8 B.64 C.54 D.48图1 图2第1题【答案】C2.(2016海南)如图,AD 是△ABC 的中线,∠ADC =45°,把△ADC 沿着直线AD 对折,点C 落在点E 的位置.如果BC =6,那么线段BE 的长度为 ( )A .6B .C ..第2题【答案】D3.如图,在△ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线,若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是( )A .B .4C .D .5 125245第3题【答案】C4.(2015泰安)如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE .延长BG 交CD 于点F .若AB =6,BC =,则FD 的长为( ) A.2 B .4 C .BD .第4题【答案】B二、填空题5.(2016随州)如图,在△ABC 中,∠ACB =90°,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使CD =BD ,连接DM 、DN 、MN .若AB =6,则DN = .13第5题 【答案】36.(2016温州)七巧板是我们祖先的一项卓越创造,被誉为“东方魔板”,小明利用七巧板(如图1所示)中各板块的边长之间的关系拼成一个凸六边形(如图2所示),则该凸六边形的周长是cm .图1 图2第6题 【答案】+16)7.(2016连云港)如图1,将正方形纸片ABCD 对折,使AB 与CD 重合,折痕为EF .如图2,展开后再折叠一次,使点C 与点E 重合,折痕为GH ,点B 的对应点为点M .EM 交AB 于N .若AD =2.则MN =图1 图2 第7题【答案】三、解答题8.已知,如图,在△ABC 中,∠ACB =90°,点D 为AB 中点,连接CD .点E 为边AC 上一点,过点E 作EF ∥AB ,交CD 于点F ,连接EB ,取EB 的中点G ,连接DG 、FG .. (1)求证:EF =CF ; (2)求证:FG ⊥DG .第8题【答案】证明:(1)∵在R △ACB 中,D 为AB 中点 ∴DA =DC =DB ∴∠A =∠1 ∵EF ∥AB ∴∠2=∠A ∴∠1=∠2 ∴CF = EF .(2)延长FG ,交AB 于点H ∵EF ∥AB ∴∠FEG =∠GBH ∵G 为EB 中点13∴EG=GB又∵∠FGE=∠HGB∴△EFG≌△BHG∴FG=GH,EF=HB=CF∴DC-CF=DB-HB即DF=DH∴DG⊥FG.第8题答案图9.(2016黄石)在△ABC中,AB=AC,∠BAC=2∠DAE= 90°.(1)如图1,若点D关于直线AE的对称点为F,求证:DE2=BD2+CE2:(2)如图2,点E在BC的延长线上,则等式DE2=BD2+CE2还能成立吗?请说明理由.图1 图2第9题【答案】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∵∠BAC =90°, ∴∠BAD =90°-∠CAD ,∠CAF =∠DAE +∠EAF -∠CAD =45°+45°-∠CAD =90°-∠CAD , ∴∠BAD =∠CAF , 在△ABD 和△ACF中,∴△ABD ≌△ACF (SAS ), ∴CF =BD ,∠ACF =∠B , ∵△ABC 是等腰直角三角形, ∴∠B =∠ACB =45°,∴∠ECF =∠ACB +∠ACF =45°+45°=90°, 在Rt △CEF 中,由勾股定理得,EF 2=CF 2 +CE 2, 所以,DE 2=BD 2+CE 2; (2) DE 2=BD 2+CE 2还能成立.理由如下:作点D 关于AE 的对称点F ,连接EF 、CF , 由轴对称的性质得,EF =DE ,AF =AD , ∵∠BAC =90°, ∴∠BAD =90°-∠CAD ,∠CAF =∠DAE +∠EAF -∠CAD =45°+45°-∠CAD =90°-∠CAD , ∴∠BAD =∠CAF , 在△ABD 和△ACF中,AB ACBAD CAFAD AF ì=ïï??íï=ïîAB AC BAD CAFAD AF ì=ïï??íï=ïî∴△ABD ≌△ACF (SAS ), ∴CF =BD ,∠ACF =∠B , ∵△ABC 是等腰直角三角形, ∴∠B =∠ACB =45°,∴∠ECF =∠ACB +∠ACF =45°+45°=90°, 在Rt △CEF 中,由勾股定理得,EF 2= CF 2+CE 2, 所以,DE 2=BD 2+CE 2.第9题答案图B 组 提高练习10.(2016东营)在△ABC 中,AB =10,AC =BC边上的高AD=6,则另一边BC 等于 ( )A .10 B.8 C .6或10 D .8或10【答案】C (提示:在图①中,由勾股定理,得BD =8;CD =2;∴BC =BD +CD=8+2=10.在图②中,由勾股定理,得BD 8;CD=2;∴BC =BD -CD =8-2=6.)图① 图②11.(2016资阳)如图,在等腰直角△ABC 中,∠ACB =90°,CO ⊥AB 于点O ,点D 、E 分别在边AC 、BC 上,且AD = CE ,连结DE 交CO 于点P ,给出以下结论:①△DOE 是等腰直角三角形:②∠CDE =∠COE ;③若AC =1,则四边形CEOD 的面积为,其中所有正确结论的序号是.【答案】①②③(提示:①如图,∵∠ACB =90°,AC =BC ,CO ⊥AB ,∴AO =OB =OC ,∠A =∠B =∠ACO =∠BCO =45°,∴△ADO ≌△CEO ,∴DO = OE ,∠AOD =∠COE ,∴∠AOC = ∠DOE =90°,∴△DOE 是等腰直角三角形.故①正确.②∵∠DCE +∠DOE =180°,∴D 、C 、E 、O 四点共圆,∴∠CDE =∠COE ,故②正确.③∵AC =BC =1,∴S △ABC=×1×1=,S 四边形DCEO =S △DOC +S △CEO = S △CDO +S △ADO =S △AOC =S △ABC =,故③正确.)12.△ABC 中,∠BAC =90°,AB =AC ,点D 为直线BC 上一动点(点D1412121214不与B,C重合),以AD为边在AD右侧作正方形ADEF.连接CF.(1)观察猜想如图1.当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=,CD=BC,请求出GE的长.图 1 图 2 图3第12题【答案】解:(1)垂直,BC=CD+CF.(2)不成立,BC=CD-CF.∵正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,14∵AD =AF ,AB =AC ,∴△DAB ≌△FAC ,∴∠ABD =∠ACF ,CF =BD ∴∠ACF -∠ACB =90°,即CF ⊥BD ; ∵BC =CD -BD ,∴BC =CD -CF .(3)过A 作AH ⊥BC 于H ,过E 作EM ⊥BD 于M ,EN ⊥CF 于N , ∵∠BAC =90°,AB =AC , ∴BCAB =4,AH =BC =2,∴CD =BC=1,CH =BC =2,∴DH=3.由(2)证得BC ⊥CF ,CF =BD =5, ∵四边形ADEF 是正方形,∴AD =DE ,∠ADE =90°,∵BC ⊥CF ,EM ⊥BD ,EN ⊥CF , ∴四边形CMEN 是矩形,∴NE =CM ,EM =CN , ∵∠AHD =∠ADE =∠EMD =90°, ∴∠ADH +∠EDM =∠EDM +∠DEM =90°, ∴∠ADH =∠DEM ,∴△ADH ≌△DEM ,∴EM =DH =3,DM =AH =2,∴CN =EM =3,EN =CM =3, ∵∠ABC = 45°,∴∠BGC =45°, ∴△BCG 是等腰直角三角形, ∴CG =BC =4,∴GN =1, ∴EG .121412第12题答案图。
2018年中考数学呼和浩特专题突破课件—专题三 解直角三角形的应用
图ZT3-4
专题三┃ 解直角三角形的应用
解:(1)在Rt△DCE中,DC=4,∠DCE= 30°,∠DEC=90°, 1 ∴DE= DC=2,即斜坡的高度为2米. 2
专题三┃ 解直角三角形的应用
3.[2016· 海南]如图ZT3-4,在大楼AB的正前方有一斜 坡CD,CD的长度为4米,坡角∠DCE=30°,小红在斜坡下 的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼 顶B的仰角为45°,其中点A,C,E在同一直线上. (2)求大楼AB的高度(结果保留根号).
专题三┃ 解直角三角形的应用 类型1 仰角、俯角问题
例1 [2017· 呼和浩特]如图ZT3-1,地面上小山的两侧有A, B两地,为了测量A,B两地的距离,让一热气球从小山西侧A地 出发沿与AB成30°角的方向,以每分钟40米的速度直线飞行, 10分钟后到达C处,此时热气球上的人测得CB与AB成70°角, 请你用测得的数据求A,B两地的距离.(结果用含非特殊角的三 角函数和根式表示即可)
图ZT3-1
专题三┃ 解直角三角形的应用
解
析
过点C作CM⊥AB交AB的延长线于点M,通过
解直角△ACM得到AM的长度,通过解直角△BCM得到BM 的长度,则AB=AM-BM.
专题三┃ 解直角三角形的应用
解:过点C作CM⊥AB交AB的延长线于点M,
由题意得AC=40×10=400. 在直角△ACM中,∵∠A=30°, 1 3 ∴CM= AC=200,AM= AC=200 2 2 BM 在直角△BCM中,∵tan20°= , CM 200tan20°=200( 3-tan20°), 因此A,B两地的距离为200( 3-tan20°)米.
图ZT3-2ຫໍສະໝຸດ 专题三┃ 解直角三角形的应用
中考数学解直角三角形试题汇编
中考数学解直角三角形试题分类汇编含答案一、选择题1、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )350m(B )100 m(C )150m (D )3100m解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos30°=ADAB,所以,AD =503,CD =200-50=150,在Rt △ADC 中, AC =22AD CD +=22(503)150+=1003,故选(D )。
2、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )AA.82米B.163米C.52米D.70米3、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B (A )30海里 (B )40海里 (C )50海里 (D )60海里4、(2007江苏盐城)利用计算器求sin30°时,依次按键则计算器上显示的结果是( )AA .0.5B .0.707C .0.866D .15、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )150m(B )350m(C )100 m(D )3100m6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米图145︒30︒BAD C(注:数据3 1.732≈,2 1.414≈供计算时选用)B二、填空题1、(2007山东济宁)计算45tan 30cos 60sin -的值是 。
2018年中考数学真题汇编28解直角三角形
解直角三角形一、选择题1.(2018•山东淄博•4分)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.【考点】T9:解直角三角形的应用﹣坡度坡角问题;T6:计算器—三角函数.【分析】先利用正弦的定义得到sinA=0.15,然后利用计算器求锐角α.【解答】解:sinA===0.15,所以用科学计算器求这条斜道倾斜角的度数时,按键顺序为故选:A.【点评】本题考查了计算器﹣三角函数:正确使用计算器,一般情况下,三角函数值直接可以求出,已知三角函数值求角需要用第二功能键.2.(2018年湖北省宜昌市3分)如图,要测量小河两岸相对的两点P,A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=100米,∠PCA=35°,则小河宽PA等于()A.100sin35°米 B.100sin55°米 C.100tan35°米 D.100tan55°米【分析】根据正切函数可求小河宽PA的长度.【解答】解:∵PA⊥PB,PC=100米,∠PCA=35°,∴小河宽PA=PCtan∠PCA=100tan35°米.故选:C.【点评】考查了解直角三角形的应用,解直角三角形的一般过程是:①将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).②根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.3. (2018四川省绵阳市)一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是(结果保留小数点后两位)(参考数据:)()A. 4.64海里B. 5.49海里C. 6.12海里D. 6.21海里【答案】B【考点】三角形内角和定理,等腰三角形的性质,解直角三角形的应用﹣方向角问题【解析】【解答】解:根据题意画出图如图所示:作BD⊥AC,取BE=CE,∵AC=30,∠CAB=30°∠ACB=15°,∴∠ABC=135°,又∵BE=CE,∴∠ACB=∠EBC=15°,∴∠ABE=120°,又∵∠CAB=30°∴BA=BE,AD=DE,设BD=x,在Rt△ABD中,∴AD=DE= x,AB=BE=CE=2x,∴AC=AD+DE+EC=2 x+2x=30,∴x= = ≈5.49,故答案为:B.【分析】根据题意画出图如图所示:作BD ⊥AC ,取BE=CE ,根据三角形内角和和等腰三角形的性质得出BA=BE ,AD=DE ,设BD=x ,Rt △ABD 中,根据勾股定理得AD=DE=x ,AB=BE=CE=2x ,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案. 二.填空题1. (2018·重庆(A)·4分)如图,把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG ,得到30∠=︒AGE,若==AE EG ABC 的边BC 的长为 厘米。
中考数学真题分类汇编(第三期)专题28 解直角三角形试题(含解析)-人教版初中九年级全册数学试题
解直角三角形一.选择题1.(2018·某某市B卷)5.坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()【分析】作BM⊥ED交ED的延长线于M,⊥DM于N.首先解直角三角形Rt△CDN,求出,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,⊥DM于N.在Rt△CDN中,∵==,设=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴=8,DN=6,∵四边形BMNC是矩形,∴BM==8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.2.(2018·某某某某·3分)如图,某地修建高速公路,要从A地向B地修一条隧道(点A.B在同一水平面上).为了测量A.B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A.B两地之间的距离为()A.800sinα米B.800tanα米C.米D.米【分析】在Rt△ABC中,∠CAB=90°,∠B=α,AC=800米,根据tanα=,即可解决问题;【解答】解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==.故选:D.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是熟练掌握基本知识,属于中考常考题型.3.(2018·某某某某·2分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.【分析】如图,连接AD.只要证明∠AOB=∠ADO,可得sin∠AOB=sin∠ADO==;【解答】解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.【点评】本题考查圆周角定理、直径的性质、锐角三角函数等知识,解题的关键是学会用转化的思想思考问题,属于中考创新题目.二.填空题1. (2018·某某江汉·3分)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1+)n mile 处,则海岛A,C之间的距离为18n mile.【分析】作AD⊥BC于D,根据正弦的定义、正切的定义分别求出BD.CD,根据题意列式计算即可.【解答】解:作AD⊥BC于D,设AC=x海里,在Rt△ACD中,AD=AC×sin∠ACD=x,则CD=x,在Rt△ABD中,BD=x,则x+x=18(1+),解得,x=18,答:A,C之间的距离为18海里.故答案为:182. (2018·某某荆州·3分)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A处测得塔顶的仰角为30°,再向古塔方向行进a米后到达B处,在B处测得塔顶的仰角为45°(如图所示),那么a的值约为米(≈1.73,结果精确到0.1).【解答】解:如图,设CD为塔身的高,延长AB交CD于E,则CD=40,DE=7,∴CE=33,∵∠CBE=45°=∠BCE,∠CAE=30°,∴BE=CE=33,∴AE=a+33,∵tanA=,∴tan30°=,即33=a+33,解得a=33(﹣1)≈24.1,∴a的值约为24.1米,故答案为:24.1.3.(2018·某某省某某市) 如图,某景区的两个景点A.B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C 处时、测得景点A的俯角为45°,景点B的俯角为知30°,此时C到地面的距离CD为100米,则两景点A.B间的距离为100+100米(结果保留根号).【解答】解:∵∠MCA=45°,∠NCB=30°,∴∠ACD=45°,∠DCB=60°,∠B=30°.∵CD=100米,∴AD=CD=100米,D B=米,∴AB=AD+DB=100+100(米).故答案为:100+100.4. (2018·某某某某·3分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为_____m(结果保留整数,≈1.73).【答案】300【解析】【分析】在Rt△ABD中,根据正切函数求得BD=AD•tan∠BAD,在Rt△ACD中,求得CD=AD•tan∠CAD,再根据BC=BD+CD,代入数据计算即可.【详解】如图,∵在Rt△ABD中,AD=110,∠BAD=45°,∴BD= AD•tan45° =110(m),∵在Rt△ACD中,∠CAD=60°,∴CD=AD•tan60°=110×≈190(m),∴BC=BD+CD=110+190=300(m),即该建筑物的高度BC约为300米,故答案为:300.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,熟练应用锐角三角函数关系是解题关键.5.(2018·某某某某·3分)如图,小明为了测量校园里旗杆AB的高度,将测角仪CD竖直放在距旗杆底部B点6m的位置,在D处测得旗杆顶端A的仰角为53°,若测角仪的高度是1.5m,则旗杆AB的高度约为m.(精确到0.1m.参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)解:过D作DE⊥AB,∵在D处测得旗杆顶端A的仰角为53°,∴∠ADE=53°.∵BC=DE=6m,∴AE=DE•tan53°≈6×1.33≈7.98m,∴AB=AE+BE=AE+CD=7.98+1.5=9.48m≈9.5m.故答案为:9.5.三.解答题1. (2018·某某贺州·8分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)【解答】解:过点C作CM⊥AB,垂足为M,在Rt△ACM中,∠MAC=90°﹣45°=45°,则∠MCA=45°,∴AM=MC,由勾股定理得:AM2+MC2=AC2=(20×2)2,解得:AM=CM=40,∵∠ECB=15°,∴∠BCF=90°﹣15°=75°,∴∠B=∠BCF﹣∠MAC=75°﹣45°=30°,在Rt△BCM中,tanB=tan30°=,即=,∴BM=40,∴AB=AM+BM=40+40≈40+40×1.73≈109(海里),答:A处与灯塔B相距109海里.2. (2018·某某某某·8分)随着人们生活水平的不断提高,旅游已成为人们的一种生活时尚.为开发新的旅游项目,我市对某山区进行调查,发现一瀑布.为测量它的高度,测量人员在瀑布的对面山上D点处测得瀑布顶端A点的仰角是30°,测得瀑布底端B点的俯角是10°,AB与水平面垂直.又在瀑布下的水平面测得CG=27m,GF=17.6m(注:C.G、F三点在同一直线上,CF⊥AB于点F).斜坡CD=20m,坡角∠ECD=40°.求瀑布AB的高度.(参考数据:≈1.73,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin10°≈0.17,cos10°≈0.98,tan10°≈0.18)【分析】过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,在Rt△CMD中,通过解直角三角形可求出CM的长度,进而可得出MF、DN的长度,再在Rt△BDN、Rt△ADN中,利用解直角三角形求出BN、AN的长度,结合AB=AN+BN即可求出瀑布AB的高度.【解答】解:过点D作DM⊥CE,交CE于点M,作DN⊥AB,交AB于点N,如图所示.在Rt△CMD中,CD=20m,∠DCM=40°,∠CMD=90°,∴CM=CD•cos40°≈15.4m,DM=CD•sin40°≈12.8m,∴DN=MF=CM+CG+GF=60m.在Rt△BDN中,∠BDN=10°,∠BND=90°,DN=60m,∴BN=DN•tan10°≈10.8m.在Rt△ADN中,∠ADN=30°,∠AND=90°,DN=60m,∴AN=DN•tan30°≈34.6m.∴AB=AN+BN=45.4m.答:瀑布AB的高度约为45.4米.【点评】本题考查了解直角三角形的应用中的仰角俯角问题及坡度坡角问题,通过解直角三角形求出AN、BN的长度是解题的关键.3. (2018·某某某某·7分)如图,一艘海轮位于灯塔C的北偏东45方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔C的南偏东30°方向上的B处,求此时船距灯塔的距离(参考数据:≈1.414,≈1.732,结果取整数).【分析】过C作CD垂直于AB,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.【解答】解:过C作CD⊥AB,在Rt△ACD中,∠A=45°,∴△ACD为等腰直角三角形,∴AD=CD=AC=50海里,在Rt△BCD中,∠B=30°,∴BC=2CD=100海里,根据勾股定理得:BD=50海里,则AB=AD+BD=50+50≈193海里,则此时船锯灯塔的距离为193海里.【点评】此题考查了解直角三角形﹣方向角问题,熟练掌握各自的性质是解本题的关键.4.(2018·某某省某某·7分)小婷在放学路上,看到隧道上方有一块宣传“中国﹣南亚博览会”的竖直标语牌CD.她在A点测得标语牌顶端D处的仰角为42°,测得隧道底端B处的俯角为30°(B,C,D在同一条直线上),AB=10m,隧道高6.5m(即BC=65m),求标语牌CD的长(结果保留小数点后一位).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90,≈1.73)【分析】如图作AE⊥BD于E.分别求出BE.DE,可得BD的长,再根据CD=BD﹣BC计算即可;【解答】解:如图作AE⊥BD于E.在Rt△AEB中,∵∠EAB=30°,AB=10m,∴BE=AB=5(m),AE=5(m),在Rt△ADE中,DE=AE•tan42°=7.79(m),∴BD=DE+BE=12.79(m),∴CD=BD﹣BC=12.79﹣6.5≈6.3(m),答:标语牌CD的长为6.3m.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线面构造直角三角形解决问题.5.(2018·某某省某某·8分)图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,X角∠HAC 为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)【分析】作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,则EF=AH=3.4m,∠HAF=90°,再计算出∠CAF=28°,则在Rt△ACF中利用正弦可计算出CF,然后计算CF+EF 即可.【解答】解:作CE⊥BD于F,AF⊥CE于F,如图2,易得四边形AHEF为矩形,∴EF=AH=3.4m,∠HAF=90°,∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,在Rt△ACF中,∵sin∠CAF=,∴CF=9sin28°=9×0.47=4.23,∴CE=CF+EF=4.23+3.4≈7.6(m),答:操作平台C离地面的高度为7.6m.【点评】本题考查了解直角三角形的应用:先将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题),然后利用勾股定理和三角函数的定义进行几何计算.6.(2018·某某省某某市)两栋居民楼之间的距离CD=30米,楼AC和B D均为10层,每层楼高3米.(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.【解答】解:(1)延长BG,交AC于点F,过F作FH⊥BD于H,由图可知,FH=CD=30m.∵∠BFH=∠α=30°.在Rt△BFH中,BH=,,答:此刻B楼的影子落在A楼的第5层;(2)连接BC\1BD=3×10=30=CD,∴∠BCD=45°,答:当太阳光线与水平面的夹角为45度时,B楼的影子刚好落在A楼的底部.7.(2018·某某省某某市)(12.00分)如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A.B.C.D.M、N均在同一平面内,CM∥AN).(1)求灯杆CD的高度;(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈060,cos37°≈0.80,tan37°≈0.75)【分析】(1)延长DC交AN于H.只要证明BC=CD即可;(2)在Rt△BCH中,求出BH、CH,在Rt△ADH中求出AH即可解决问题;【解答】解:(1)延长DC交AN于H.∵∠DBH=60°,∠DHB=90°,∴∠BDH=30°,∵∠CBH=30°,∴∠CBD=∠BDC=30°,∴BC=CD=10(米).(2)在Rt△BCH中,CH=BC=5,BH=5≈8.65,∴DH=15,在Rt△ADH中,AH===20,∴AB=AH﹣BH=20﹣8.65=11.4(米).【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.8. (2018•呼和浩特•8分)如图,一座山的一段斜坡BD的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B到D时,其升高的高度与水平前进的距离之比).已知在地面B处测得山顶A的仰角为33°,在斜坡D处测得山顶A的仰角为45°.求山顶A到地面BC的高度AC是多少米?(结果用含非特殊角的三角函数和根式表示即可)解:作DH⊥BC于H.设AE=x.∵DH:BH=1:3,在Rt△BDH中,DH2+(3DH)2=6002,∴DH=60,BH=180,在Rt△ADE中,∵∠ADE=45°,∴DE=AE=x,∵又HC=ED,EC=DH,∴HC=x,EC=60,在Rt△ABC中,tan33°=,∴x=,∴AC=AE+EC=+60=.答:山顶A到地面BC的高度AC是米9. (2018•某某•8分)据调查,超速行驶是引发交通事故的主要原因之一.小强用所学知识对一条笔直公路上的车辆进行测速,如图所示,观测点C到公路的距离CD=200m,检测路段的起点A位于点C的南偏东60°方向上,终点B位于点C的南偏东45°方向上.一辆轿车由东向西匀速行驶,测得此车由A处行驶到B处的时间为10s.问此车是否超过了该路段16m/s的限制速度?(观测点C离地面的距离忽略不计,参考数据:≈1.41,≈1.73)【分析】根据直角三角形的性质和三角函数得出DB,DA,进而解答即可.【解答】解:由题意得:∠DCA=60°,∠DCB=45°,在Rt△CDB中,tan∠DCB=,解得:DB=200,在Rt△CDA中,tan∠DCA=,解得:DA=200,∴AB=DA﹣DB=200﹣200≈146米,轿车速度,答:此车没有超过了该路段16m/s的限制速度.【点评】本题考查了解直角三角形的应用﹣方向角问题,解答本题的关键是利用三角函数求出AD与BD的长度,难度一般.10. (2018•莱芜•9分)在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C.E.D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠×0.9=0.72,AF=AB•cos∠×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴≈1.7,答:小水池的宽DE为1.7米.【点评】此题考查的知识点是解直角三角形的应用﹣仰角俯角问题,关键是本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.11.(2018·某某某某·6分)如图,校园内有两幢高度相同的教学楼AB,CD,大楼的底部B,D在同一平面上,两幢楼之间的距离BD长为24米,小明在点E(B,E,D在一条直线上)处测得教学楼AB顶部的仰角为45°,然后沿EB方向前进8米到达点G处,测得教学楼CD 顶部的仰角为30°.已知小明的两个观测点F,H距离地面的高度均为1.6米,求教学楼AB 的高度AB长.(精确到0.1米)参考值:≈1.41,≈1.73.【解答】解:延长HF交CD于点N,延长FH交AB于点M,如右图所示,由题意可得,MB=HG=FE=ND=1.6m,HF=GE=8m,MF=BE,HN=GD,MN=BD=24m,设AM=xm,则=xm,在Rt△AFM中,MF=,在Rt△H中,HN=,∴HF=MF+HN﹣MN=x+x﹣24,即8=x+x﹣24,解得,x≈11.7,∴AB=11.7+1.6=13.3m,答:教学楼AB的高度AB长13.3m.12.(2018·某某某某·8分)京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A.B和点C.D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).【分析】过D作DE⊥AB,可得四边形CHED为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH与直角三角形BDE中,设CH=DE=xm,利用锐角三角函数定义表示出AH与BE,由AH+HE+EB=AB列出方程,求出方程的解即可得到结果.【解答】解:过D作DE⊥AB,可得四边形CHED为矩形,∴HE=CD=40m,设CH=DE=xm,在Rt△BDE中,∠DBA=60°,∴BE=xm,在Rt△ACH中,∠BAC=30°,∴AH=xm,由AH+HE+EB=AB=160m,得到x+40+x=160,解得:x=30,即CH=30m,则该段运河的河宽为30m.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.。
5.14三角形综合题(第5部分)2018年中考数学试题分类汇编(山东四川word解析版)
第五部分图形的性质5.14 三角形综合题【一】知识点清单三角形综合题【二】分类试题汇编及参考答案与解析一、选择题1.(2018年山东省东营市-第10题-3分)如图,点E在△DBC的边DB上,点A在△DBC内部,∠DAE=∠BAC=90°,AD=AE,AB=AC.给出下列结论:①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正确的是()A.①②③④B.②④C.①②③D.①③④【知识考点】全等三角形的判定与性质;勾股定理;等腰直角三角形.【思路分析】只要证明△DAB≌△EAC,利用全等三角形的性质即可一一判断;【解答过程】解:∵∠DAE=∠BAC=90°,∴∠DAB=∠EAC∵AD=AE,AB=AC,∴△DAB≌△EAC,∴BD=CE,∠ABD=∠ECA,故①正确,∴∠ABD+∠ECB=∠ECA+∠ECB=∠ACB=45°,故②正确,∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=45°+45°=90°,∴∠CEB=90°,即CE⊥BD,故③正确,∴BE2=BC2﹣EC2=2AB2﹣(CD2﹣DE2)=2AB2﹣CD2+2AD2=2(AD2+AB2)﹣CD2.故④正确,故选:A.【总结归纳】本题考查全等三角形的判定和性质、勾股定理、等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考选择题中的压轴题.2.(2018年四川省绵阳市-第11题-3分)如图,△ACB和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ACB的顶点A在△ECD的斜边DE上,若的面积为()A B.3C1D.3【知识考点】全等三角形的判定与性质;等腰直角三角形.【思路分析】如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.想办法求出△AOB 的面积.再求出OA与OB的比值即可解决问题;【解答过程】解:如图设AB交CD于O,连接BD,作OM⊥DE于M,ON⊥BD于N.∵∠ECD=∠ACB=90°,∴∠ECA=∠DCB,∵CE=CD,CA=CB,∴△ECA≌△DCB,∴∠E=∠CDB=45°,AE=BD=,∵∠EDC=45°,∴∠ADB=∠ADC+∠CDB=90°,在Rt△ADB中,AB==2,∴AC=BC=2,∴S△ABC=×2×2=2,∵OD平分∠ADB,OM⊥DE于M,ON⊥BD于N,∴OM=ON,∵====,∴S△AOC=2×=3﹣,故选:D.【总结归纳】本题考查全等三角形的判定和性质、等腰直角三角形的性质、勾股定理、角平分线的性质等知识,解题的关键是学会利用面积法确定线段之间的关系,属于中考选择题中的压轴题.3.(2018年四川省达州市-第8题-3分)如图,△ABC的周长为19,点D,E在边BC上,∠ABC 的平分线垂直于AE,垂足为N,∠ACB的平分线垂直于AD,垂足为M,若BC=7,则MN的长度为()A.32B.2 C.52D.3【知识考点】等腰三角形的判定与性质;三角形中位线定理.【思路分析】证明△BNA≌△BNE,得到BA=BE,即△BAE是等腰三角形,同理△CAD是等腰三角形,根据题意求出DE,根据三角形中位线定理计算即可.【解答过程】解:∵BN平分∠ABC,BN⊥AE,∴∠NBA=∠NBE,∠BNA=∠BNE,在△BNA和△BNE中,∴△BNA≌△BNE,∴BA=BE,∴△BAE是等腰三角形,同理△CAD是等腰三角形,∴点N是AE中点,点M是AD中点(三线合一),∴MN是△ADE的中位线,∵BE+CD=AB+AC=19﹣BC=19﹣7=12,∴DE=BE+CD﹣BC=5,∴MN=DE=.故选:C.【总结归纳】本题考查的是三角形中位线定理、等腰三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题1.(2018年四川省绵阳市-第18题-3分)如图,在△ABC中,AC=3,BC=4,若AC,BC边上的中线BE,AD垂直相交于O点,则AB=.【知识考点】三角形的重心;勾股定理.【思路分析】利用三角形中线定义得到BD=2,AE=,且可判定点O为△ABC的重心,所以AO=2OD,OB=2OE,利用勾股定理得到BO2+OD2=4,OE2+AO2=,等量代换得到BO2+AO2=4,BO2+AO2=,把两式相加得到BO2+AO2=5,然后再利用勾股定理可计算出AB的长.【解答过程】解:∵AD、BE为AC,BC边上的中线,∴BD=BC=2,AE=AC=,点O为△ABC的重心,∴AO=2OD,OB=2OE,∵BE⊥AD,∴BO2+OD2=BD2=4,OE2+AO2=AE2=,∴BO2+AO2=4,BO2+AO2=,∴BO2+AO2=,∴BO2+AO2=5,∴AB==.故答案为.【总结归纳】本题考查了重心的性质:重心到顶点的距离与重心到对边中点的距离之比为2:1.也考查了勾股定理.2.(2018年四川省泸州市-第16题-3分)如图,等腰△ABC的底边BC=20,面积为120,点F在边BC上,且BF=3FC,EG是腰AC的垂直平分线,若点D在EG上运动,则△CDF周长的最小值为.【知识考点】轴对称﹣最短路线问题;线段垂直平分线的性质;等腰三角形的性质.【思路分析】如图作AH⊥BC于H,连接AD.由EG垂直平分线段AC,推出DA=DC,推出DF+DC=AD+DF,可得当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长;【解答过程】解:如图作AH⊥BC于H,连接AD.∵EG垂直平分线段AC,∴DA=DC,∴DF+DC=AD+DF,∴当A、D、F共线时,DF+DC的值最小,最小值就是线段AF的长,∵•BC•AH=120,∴AH=12,∵AB=AC,AH⊥BC,∴BH=CH=10,∵BF=3FC,∴CF=FH=5,∴AF===13,∴DF+DC的最小值为13.故答案为13.【总结归纳】本题考查轴对称﹣最短问题、线段的垂直平分线的性质、等腰三角形的性质等知识,解题的关键是学会利用轴对称,解决最短问题,属于中考常考题型.3.(2018年四川省德阳市-第16题-3分)如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=34,③∠ECD=∠DCB,④若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的番号).【知识考点】角平分线的性质;等边三角形的性质;解直角三角形.【思路分析】由题意可得△BCE是含有30°的直角三角形,根据含有30°的直角三角形的性质可判断①②③,易证四边形PMCN是矩形,可得d12+d22=MN2=CP 2,根据垂线段最短,可得CP的值即可求d12+d22的最小值,即可判断④.【解答过程】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④【总结归纳】本题考查了解直角三角形,等边三角形的性质和判定,利用垂线段最短求d12+d22的最小值是本题的关键.三、解答题1.(2018年山东省日照市-第22题-13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=12 AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=12AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【知识考点】三角形综合题.【思路分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答过程】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【总结归纳】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.2.(2018年山东省淄博市-第23题-9分)(1)操作发现:如图①,小明画了一个等腰三角形ABC,其中AB=AC,在△ABC的外侧分别以AB,AC为腰作了两个等腰直角三角形ABD,ACE,分别取BD,CE,BC的中点M,N,G,连接GM,GN.小明发现了:线段GM与GN的数量关系是;位置关系是.(2)类比思考:如图②,小明在此基础上进行了深入思考.把等腰三角形ABC换为一般的锐角三角形,其中AB>AC,其它条件不变,小明发现的上述结论还成立吗?请说明理由.(3)深入研究:如图③,小明在(2)的基础上,又作了进一步的探究.向△ABC的内侧分别作等腰直角三角形ABD,ACE,其它条件不变,试判断△GMN的形状,并给与证明.【知识考点】三角形综合题.【思路分析】(1)利用SAS判断出△ACD≌△AEB,得出CD=BE,∠ADC=∠ABE,进而判断出∠BDC+∠DBH=90°,即:∠BHD=90°,最后用三角形中位线定理即可得出结论;(2)同(1)的方法即可得出结论;(3)同(1)的方法得出MG=NG,最后利用三角形中位线定理和等量代换即可得出结论.【解答过程】解:(1)连接BE,CD相较于H,∵△ABD和△ACE都是等腰直角三角形,∴AB=AD,AC=AE,∠BAD=∠CAE=90°∴∠CAD=∠BAE,∴△ACD≌△AEB(SAS),∴CD=BE,∠ADC=∠ABE,∴∠BDC+∠DBH=∠BDC+∠ABD+∠ABE=∠BDC+∠ABD+∠ADC=∠ADB+∠ABD=90°,∴∠BHD=90°,∴CD⊥BE,∵点M,G分别是BD,BC的中点,∴MG CD,同理:NG BE,∴MG=NG,MG⊥NG,故答案为:MG=NG,MG⊥NG;(2)连接CD,BE,相较于H,同(1)的方法得,MG=NG,MG⊥NG;(3)连接EB,DC,延长线相交于H,同(1)的方法得,MG=NG,同(1)的方法得,△ABE≌△ADC,∴∠AEB=∠ACD,∴∠CEH+∠ECH=∠AEH﹣∠AEC+180°﹣∠ACD﹣∠ACE=∠ACD﹣45°+180°﹣∠ACD﹣45°=90°,∴∠DHE=90°,同(1)的方法得,MG⊥NG.【总结归纳】此题是三角形综合题,主要考查等腰直角三角形的性质,全等三角形的判定和性质,平行线的判定和性质,三角形的中位线定理,正确作出辅助线用类比的思想解决问题是解本题的关键.3.(2018年四川省自贡市-第25题-12分)如图,已知∠AOB=60°,在∠AOB的平分线OM上有一点C,将一个120°角的顶点与点C重合,它的两条边分别与直线OA、OB相交于点D、E.(1)当∠DCE绕点C旋转到CD与OA垂直时(如图1),请猜想OE+OD与OC的数量关系,并说明理由;(2)当∠DCE绕点C旋转到CD与OA不垂直时,到达图2的位置,(1)中的结论是否成立?并说明理由;(3)当∠DCE绕点C旋转到CD与OA的反向延长线相交时,上述结论是否成立?请在图3中画出图形,若成立,请给于证明;若不成立,线段OD、OE与OC之间又有怎样的数量关系?请写出你的猜想,不需证明.【知识考点】几何变换综合题.【思路分析】(1)先判断出∠OCE=60°,再利用特殊角的三角函数得出OD=OC,同OE=OC,即可得出结论;(2)同(1)的方法得OF+OG=OC,再判断出△CFD≌△CGE,得出DF=EG,最后等量代换即可得出结论;(3)同(2)的方法即可得出结论.【解答过程】解:(1)∵OM是∠AOB的角平分线,∴∠AOC=∠BOC=∠AOB=30°,∵CD⊥OA,∴∠ODC=90°,∴∠OCD=60°,∴∠OCE=∠DCE﹣∠OCD=60°,在Rt△OCD中,OD=OE•cos30°=OC,同理:OE=OC,∴OD+OD=OC;(2)(1)中结论仍然成立,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=OD+DF=OD+EG,OG=OE﹣EG,∴OF+OG=OD+EG+OE﹣EG=OD+OE,∴OD+OE=OC;(3)(1)中结论不成立,结论为:OE﹣OD=OC,理由:过点C作CF⊥OA于F,CG⊥OB于G,∴∠OFC=∠OGC=90°,∵∠AOB=60°,∴∠FCG=120°,同(1)的方法得,OF=OC,OG=OC,∴OF+OG=OC,∵CF⊥OA,CG⊥OB,且点C是∠AOB的平分线OM上一点,∴CF=CG,∵∠DCE=120°,∠FCG=120°,∴∠DCF=∠ECG,∴△CFD≌△CGE,∴DF=EG,∴OF=DF﹣OD=EG﹣OD,OG=OE﹣EG,∴OF+OG=EG﹣OD+OE﹣EG=OE﹣OD,∴OE﹣OD=OC.【总结归纳】此题是几何变换综合题,主要考查了角平分线的定义和定理,全等三角形的判定和性质,特殊角的三角函数直角三角形的性质,正确作出辅助线是解本题的关键.4.(2018年四川省阿坝州/甘孜州-第27题-10分)如图,△ABC中,AB=AC,∠BAC=90°,点D,E分别在AB,BC上,∠EAD=∠EDA,点F为DE的延长线与AC的延长线的交点.(1)求证:DE=EF;(2)判断BD和CF的数量关系,并说明理由;(3)若AB=3,BD的长.【知识考点】三角形综合题.【思路分析】(1)只要证明EA=ED,EA=EF即可解决问题;(2)结论:BD=CF.如图2中,在BE上取一点M,使得ME=CE,连接DM.想办法证明DM=CF,DM=BD即可;(3)如图3中,过点E作EN⊥AD交AD于点N.设BD=x,则DN=,DE=AE=,由∠B=45°,EN⊥BN.推出EN=BN=x+=,在Rt△DEN中,根据DN2+NE2=DE2,构建方程即可解决问题;【解答过程】(1)证明:如图1中,∵∠BAC=90°,∴∠EAD+∠CAE=90°,∠EDA+∠F=90°,∵∠EAD=∠EDA,∴∠EAC=∠F,∴EA=ED,EA=EF,∴DE=EF.(2)解:结论:BD=CF.理由:如图2中,在BE上取一点M,使得ME=CE,连接DM.∵DE=EF.∠DEM=∠CEF,EM=EC.∴△DEM≌△FEC,∴DM=CF,∠MDE=∠F,∴DM∥CF,∴∠BDM=∠BAC=90°,∵AB=AC,∴∠DBM=45°,∴BD=DM,∴BD=CF.(3)如图3中,过点E作EN⊥AD交AD于点N.∵EA=ED,EN⊥AD,∴AN=ND,设BD=x,则DN=,DE=AE=,∵∠B=45°,EN⊥BN.∴EN=BN=x+=,在Rt△DEN中,∵DN2+NE2=DE2,∴()2+()2=()2解得x=1或﹣1(舍弃)∴BD=1.【总结归纳】本题考查三角形综合题、等腰三角形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.5.(2018年四川省乐山市-第25题-12分)已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:(1)如图1,若k=1,则∠APE的度数为;(2)如图2,若k=试问(1)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE 的度数.(3)如图3,若k=D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【知识考点】三角形综合题.【思路分析】(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;【解答过程】解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴AF=AC,∵∠FAC=∠C=90°,∴△FAE≌△ACD,∴EF=AD=BF,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EHD,∵AD∥BF,∴∠EFB=90°,∵EF=BF,∴∠FBE=45°,∴∠APE=45°,故答案为:45°.(2)(1)中结论不成立,理由如下:如图2,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,∴BD=AF,BF=AD,∵AC=BD,CD=AE,∴,∵BD=AF,∴,∵∠FAC=∠C=90°,∴△FAE∽△ACD,∴=,∠FEA=∠ADC,∵∠ADC+∠CAD=90°,∴∠FEA+∠CAD=90°=∠EMD,∵AD∥BF,∴∠EFB=90°,在Rt△EFB中,tan∠FBE=,∴∠FBE=30°,∴∠APE=30°,(3)(2)中结论成立,如图3,作EH∥CD,DH∥BE,EH,DH相交于H,连接AH,∴∠APE=∠ADH,∠HEC=∠C=90°,四边形EBDH是平行四边形,∴BE=DH,EH=BD,∵AC=BD,CD=AE,∴,∵∠HEA=∠C=90°,∴△ACD∽△HEA,∴,∠ADC=∠HAE,∵∠CAD+∠ADC=90°,∴∠HAE+∠CAD=90°,∴∠HAD=90°,在Rt△DAH中,tan∠ADH==,∴∠ADH=30°,∴∠APE=30°.【总结归纳】此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.6.(2018年四川省攀枝花市-第23题-12分)如图,在△ABC中,AB=7.5,AC=9,S△ABC=814.动点P从A点出发,沿AB方向以每秒5个单位长度的速度向B点匀速运动,动点Q从C点同时出发,以相同的速度沿CA方向向A点匀速运动,当点P运动到B点时,P、Q两点同时停止运动,以PQ为边作正△PQM(P、Q、M按逆时针排序),以QC为边在AC上方作正△QCN,设点P运动时间为t秒.(1)求cosA的值;(2)当△PQM与△QCN的面积满足S△PQM=94S△QCN时,求t的值;(3)当t为何值时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【知识考点】三角形综合题.【思路分析】(1)如图1中,作BE⊥AC于E.利用三角形的面积公式求出BE,利用勾股定理求出AE即可解决问题;(2)如图2中,作PH⊥AC于H.利用S△PQM=S△QCN构建方程即可解决问题;(3)分两种情形①如图3中,当点M落在QN上时,作PH⊥AC于H.②如图4中,当点M在CQ上时,作PH⊥AC于H.分别构建方程求解即可;【解答过程】解:(1)如图1中,作BE⊥AC于E.∵S△ABC=•AC•BE=,∴BE=,在Rt△ABE中,AE==6,∴coaA===.(2)如图2中,作PH⊥AC于H.∵PA=5t,PH=3t,AH=4t,HQ=AC﹣AH﹣CQ=9﹣9t,∴PQ2=PH2+HQ2=9t2+(9﹣9t)2,∵S△PQM=S△QCN,∴•PQ2=וCQ2,∴9t2+(9﹣9t)2=×(5t)2,整理得:5t2﹣18t+9=0,解得t=3(舍弃)或.∴当t=时,满足S△PQM=S△QCN.(3)①如图3中,当点M落在QN上时,作PH⊥AC于H.易知:PM∥AC,∴∠MPQ=∠PQH=60°,∴PH=HQ,∴3t=(9﹣9t),∴t=.②如图4中,当点M在CQ上时,作PH⊥AC于H.同法可得PH=QH,∴3t=(9t﹣9),∴t=,综上所述,当t=s或s时,△PQM的某个顶点(Q点除外)落在△QCN的边上.【总结归纳】本题考查三角形综合题、等边三角形的性质、勾股定理锐角三角函数、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.。
中考数学专题 解直角三角形含答案
4、在 ABC 中, C 1350 ,a 2,b 2 求:①c 的长 ②sinA 的值 ③求 AB 边上的高 h
5、如图 8,在 ABC 中,已知 C 900 , AC 6 3,BAC 的平分线 AD=12,求 ABC 其余各边的长,各角的度数和 ABC 的内切圆的半径的长。
6、如图 9,要测铁塔的高 AB,从与铁塔底部在同一水平直线上的 C、D 两处,用测 角仪器测得铁塔顶 B 的仰角分别为 300 和 450 ,C、D 间距离为 14 米,测角仪器的
2
A、 >600
B、 <600
C、 >300
D、 <300
13、若 00< <1800,且 cos 3 ,则角 的度数是:
2
A、300
B、600
C、1500
D、300 或 1500
14、在 ABC 中, A 900 ,AD⊥BC,若 AB=2AC,则 BC 与 DC 之间的关系为:
A、BC=2DC
A、12, 3 3
B、12, 3
C、 4 3, 3 3
D、 4 3, 3
11、若 , 互为补角,那么以下四个关系式中,不一定成立的是:
A、 sin sin >0
B、cos -cos >0
C、 sin sin =0
D、cos +cos =0
12、 是直角三角形的一个锐角, cos > 1 则:
为:
A、16 和 9
B、9 和 16
C、16 和 12
D、12 和 16
三、解答题
1、已知 00< <1800,00<θ <1800,且 cos 3 ,sin 1 ,
2
2
求 tg ctg 的值。
2、 RtABC 中, C =900,c=17,内切圆半径 r=3,求两条直角边 a、b。
11.3解直角三角形(分类精讲)·数学中考分类精粹
ɦ11.3㊀解直角三角形㊀运用直角三角形中边角关系㊁三边关系㊁三角关系解决一些实际问题.一㊁选择题1.(2012 浙江杭州)如图,在R t әA B O 中,斜边A B =1.若O C ʊB A ,øA O C =36ʎ,则(㊀㊀).A.点B 到A O 的距离为s i n 54ʎB .点B 到A O 的距离为t a n 36ʎC .点A 到O C 的距离为s i n 36ʎs i n 54ʎD.点A 到O C 的距离为c o s 36ʎs i n 54ʎ(第1题)㊀㊀(第2题)2.(2012 浙江嘉兴)如图,A ㊁B 两点在河的两岸,要测量这两点之间的距离,测量者在与A 同侧的河岸边选定一点C ,测出A C =a 米,øA =90ʎ,øC =40ʎ,则A B 等于(㊀㊀).A.a s i n 40ʎ米㊀㊀㊀㊀㊀㊀㊀㊀B .a c o s 40ʎ米C .a t a n 40ʎ米D.a t a n 40ʎ米3.(2012 湖北宜昌)在 测量旗杆的高度 的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为27ʎ,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为(㊀㊀).A.24米B .20米C .16米D.12米(第3题)㊀㊀(第4题)4.(2012 广东深圳)小明想测量一棵树的高度,他发现树的影子恰好落在地面和一斜坡上,如图,此时测得地面上的影长为8米,坡面上的影长为4米.已知斜坡的坡角为30ʎ,同一时刻,一根长为1米㊁垂直于地面放置的标杆在地面上的影长为2米,则树的高度为(㊀㊀).A.(6+3)米B .12米C .(4-23)米D.10米5.(2012 四川广安)如图,某水库堤坝横断面迎水坡A B 的坡比是1ʒ3,堤坝高B C =50m ,则应水坡面A B 的长度是(㊀㊀).A.100mB .1003mC .150mD.503m(第5题)㊀㊀(第6题)6.(2012 湖北孝感)如图,在塔A B 前的平地上选择一点C ,测出看塔顶的仰角为30ʎ,从点C 向塔底走100米到达点D ,测出看塔顶的仰角为45ʎ,则塔A B 的高为(㊀㊀).A.503米B .1003米C .1003+1米D.1003-1米7.(2012 贵州黔西南)兴义市进行城区规划,工程师需测某楼A B 的高度,工程师在点D 用高2m 的测角仪C D ,测得楼顶端A 的仰角为30ʎ,然后向楼前进30m 到达E ,又测得楼顶端A 的仰角为60ʎ,楼A B 的高为(㊀㊀).A.(103+2)m B .(203+2)mC .(53+2)mD.(153+2)m(第7题)㊀㊀(第8题)8.(2012 福建福州)如图,从热气球C 处测得地面A ㊁B 两点的俯角分别是30ʎ㊁45ʎ,如果此时热气球C 处的高度C D为100米,点A ㊁D ㊁B 在同一直线上,则A ㊁B 两点的距离是(㊀㊀).A.200mB .2003mC .2203m D.100(3+1)m二㊁填空题9.(2012 广西柳州)已知:在әA B C 中,A C =a ,A B 与B C 所在直线成45ʎ角,A C 与B C 所在直线形成的夹角的余弦值为255(即c o s C =255),则边A C 上的中线长是㊀㊀㊀㊀.10.(2012 湖北咸宁)如图,某公园入口处原有三级台阶,每级台阶高为18c m ,深为30c m ,为方便残疾人士,拟将台阶改为斜坡,设台阶的起点为A ,斜坡的起始点为C ,现设计斜坡B C 的坡度i =1ʒ5,则A C 的长度是㊀㊀㊀㊀c m .第十一章㊀解直角三角形(第10题)㊀(第11题)11.(2012 福建南平)如图,在山坡A B上种树,已知øC=90ʎ,øA=28ʎ,A C=6米,则相邻两树的坡面距离A Bʈ㊀㊀㊀㊀米.(精确到0.1米)12.(2012 湖南株洲)数学实践探究课中,老师布置同学们测量学校旗杆的高度.小民所在的学习小组在距离旗杆底部10米的地方,用测角仪测得旗杆顶端的仰角为60ʎ,则旗杆的高度是㊀㊀㊀㊀米.13.(2012 辽宁大连)如图,为了测量电线杆A B的高度,小明将测量仪放在与电线杆的水平距离为9m的D处.若测角仪C D的高度为1.5m,在C处测得电线杆顶端A的仰角为36ʎ,则电线杆A B的高度约为㊀㊀㊀㊀m.(精确到0.1m)(参考数据:s i n36ʎʈ0.59,c o s36ʎʈ0.81,t a n36ʎʈ0.73)(第13题)㊀㊀(第14题)14.(2012 辽宁铁岭)如图,在东西方向的海岸线上有A㊁B两个港口,甲货船从A港沿北偏东60ʎ的方向以4海里/小时的速度出发,同时乙货船从B港沿西北方向出发,2小时后相遇在点P处,问乙货船每小时航行㊀㊀㊀㊀海里.三㊁解答题15.(2012 四川巴中)一副直角三角板如图放置,点C在F D 的延长线上,A BʊC F,øF=øA C B=90ʎ,øE=30ʎ,øA=45ʎ,A C=122,试求C D 的长.(第15题)16.(2012 湖南张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图(1)所示,小明据此构造出该岛的一个数学模型如图(2)所示,其中øB=øD=90ʎ,A B=B C=15千米,C D=32千米,请据此解答如下问题:(1)求该岛的周长和面积;(结果保留整数,参考数据:2ʈ1.41,3ʈ1.73,6ʈ2.45)(2)求øA C D的余弦值.(1)㊀(2)(第16题)17.(2012 新疆)如图,跷跷板A B的一端B碰到地面时,A B 与地面的夹角为15ʎ,且O A=O B=3m.(1)求此时另一端A离地面的距离;(精确到0.1m) (2)若跷动A B,使端点A碰到地面,请画出点A运动的路线(不写画法,保留画图痕迹),并求出点A运动路线的长.(参考数据:s i n15ʎʈ0.26,c o s15ʎʈ0.97,t a n15ʎʈ0.27)(第17题)18.(2012 山东青岛)如图,某校教学楼A B的后面有一建筑物C D,当光线与地面的夹角是22ʎ时,教学楼在建筑物的墙上留下高2米的影子C E;而当光线与地面夹角是45ʎ时,教学楼顶A在地面上的影子F与墙角C有13米的距离.(点B㊁F㊁C在一条直线上)(1)求教学楼A B的高度;(2)学校要在A㊁E之间挂一些彩旗,请你求出A㊁E之间的距离.(结果保留整数)(参考数据:s i n22ʎʈ38,c o s22ʎʈ1516,t a n22ʎʈ25)(第18题)19.(2012 湖北黄冈)新星小学门口有一直线马路,为方便学生过马路,交警在路口设有一定宽度的斑马线,斑马线的宽度为4米,为安全起见,规定车头距斑马线后端的水平距离不得低于2米,现有一旅游车在路口遇红灯刹车停下,汽车里司机与斑马线前后两端的视角分别为øF A E=15ʎ和øF A D=30ʎ,司机距车头的水平距离为0.8米,试问该旅游车停车是否符合上述安全标准?(E㊁D㊁C㊁B四点在平行于斑马线的同一直线上)(参考数据:t a n15ʎ=2-3,s i n15ʎ=6-24,c o s15ʎ=6+24,3ʈ1.732,2ʈ1.414)(第19题)20.(2012 江苏苏州)如图,已知斜坡A B长60米,坡角(即øB A C)为30ʎ,B CʅA C,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线C A的平台D E和一条新的斜坡B E.(请将下面2小题的结果都精确到0.1米,参考数据:3ʈ1.732)(1)若修建的斜坡B E的坡角(即øB E F)不大于45ʎ,则平台D E的长最多为㊀㊀㊀㊀米;(2)一座建筑物G H距离坡角点A27米远(即A G=27米),小明在点D测得建筑物顶部H的仰角(即øHDM)为30ʎ.点B㊁C㊁A㊁G㊁H在同一个平面内,点C㊁A㊁G在同一条直线上,且H GʅC G,问建筑物G H高为多少米?(第20题)21.(2012 四川内江)水利部门为加强防汛工作,决定对某水库大坝进行加固,大坝的横截面是梯形A B C D.如图所示,已知迎水坡面A B的长为16米,øB=60ʎ,背水坡面C D的长为163米,加固后大坝的横截面积为梯形AGB E D,C E的长为8米.(1)已知需加固的大坝长为150米,求需要填土石方多少立方米?(2)求加固后的大坝背水坡面D E的坡度.(第21题)22.(2012 浙江台州)如图,为测量江两岸码头B㊁D之间的距离,从山坡上高度为50米的A处测得码头B的仰角øE A B为15ʎ,码头D的仰角øE A D为45ʎ,点C在线段B D的延长线上,A CʅB C,垂足为C,求码头B㊁D的距离.(结果保留整数,s i n15ʎʈ0.26,c o s15ʎʈ0.97, t a n15ʎʈ0.27)(第22题)23.(2012 天津)如图,甲楼A B的高度为123m,自甲楼楼顶A处,测得乙楼顶端C处的仰角为45ʎ,测得乙楼底部D 处的俯角为30ʎ,求乙楼C D的高度.(结果精确到0.1m,3取1.73)(第23题)第十一章㊀解直角三角形24.(2012 内蒙古呼和浩特)如图,线段A B ㊁D C 分别表示甲㊁乙两建筑物的高.某初三课外兴趣活动小组为了测量两建筑物的高,用自制测角仪在B 外测得D 点的仰角为α,在A 处测得D 点的仰角为β.已知甲㊁乙两建筑物之间的距离B C 为m .请你通过计算用含α,β,m 的式子分别表示出甲㊁乙两建筑物的高度.(第24题)25.(2012 四川资阳)小强在教学楼的点P 处观察对面的办公大楼.为了测量点P 到对面办公大楼上部A D 的距离,小强测得办公大楼顶部点A 的仰角为45ʎ,测得办公大楼底部点B 的俯角为60ʎ,已知办公大楼高46米,C D=10米.求点P 到A D 的距离.(用含根号的式子表示)(第25题)26.(2012 江苏盐城)如图所示,当小华站立在镜子E F 前A 处时,他看自己的脚在镜中的像的俯角为45ʎ.若小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30ʎ.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3ʈ1.73)(第26题)27.(2012 江苏泰州)如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60ʎ,然后他从P 处沿坡角为45ʎ的山坡向上走到C 处,这时,P C =30m ,点C 与点A 在同一水平线上,A ㊁B ㊁P ㊁C 在同一平面内.(1)求居民楼A B 的高度;(2)求C ㊁A 之间的距离.(精确到0.1m ,参考数据:2ʈ1.41,3ʈ1.73,6ʈ2.45)(第27题)28.(2012 广西南宁)如图,山坡上有一棵树A B ,树底部B 点到山脚C 点的距离B C 为63米,山坡的坡角为30ʎ.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪E F 的水平距离C F =1米,从E 处测得树顶部A 的仰角为45ʎ,树底部B 的仰角为20ʎ,求树A B 的高度.(参考数值:s i n 20ʎʈ0.34,c o s 20ʎʈ0.94,t a n 20ʎʈ0.36)(第28题)29.(2012 江苏扬州)如图,一艘巡逻艇航行至海面B 处时,得知正北方向上距B 处20海里的C 处有一渔船发生故障,就立即指挥港口A 处的救援艇前往C 处营救.已知C 处位于A 处的北偏东45ʎ的方向上,港口A 位于B 的北偏西30ʎ的方向上.求A ㊁C 之间的距离.(结果精确到0.1海里,参考数据:2ʈ1.41,3ʈ1.73)(第29题)30.(2012 浙江温州)某海滨浴场东西走向的海岸线可近似看作直线l(如图).救生员甲在A处的瞭望台上观察海面情况,发现其正北方向的B处有人发出求救信号.他立即沿A B方向径直前往救援,同时通知正在海岸线上巡逻的救生员乙.乙马上从C处入海,径直向B处游去.甲在乙入海10秒后赶到海岸线上的D处,再向B处游去.若C D=40米,B在C的北偏东35ʎ方向,甲㊁乙的游泳速度都是2米/秒.问谁先到达B处?请说明理由.(参考数据:s i n55ʎʈ0.82,c o s55ʎʈ0.57,t a n55ʎʈ1.43)(第30题)31.(2012 辽宁丹东)南中国海是中国固有领海,我渔政船经常在此海域执勤巡察.一天我渔政船停在小岛A北偏西37ʎ方向的B处,观察A岛周边海域.据测算,渔政船距A岛的距离A B长为10海里.此时位于A岛正西方向C 处的我渔船遭到某国军舰的袭扰,船长发现在其北偏东50ʎ的方向上有我方渔政船,便发出紧急求救信号.渔政船接警后,立即沿B C航线以每小时30海里的速度前往救助,问渔政船大约需多少分钟能到达渔船所在的C 处?(参考数据:s i n37ʎʈ0.60,c o s37ʎʈ0.80,s i n50ʎʈ0.77,c o s50ʎʈ0.64,s i n53ʎʈ0.80,c o s53ʎʈ0.60,s i n40ʎʈ0.64,c o s40ʎʈ0.77)(第31题)32.(2012 江苏连云港)已知B港口位于A观测点北偏东53.2ʎ方向,且其到A观测点正北方向的距离B D的长为16k m,一艘货轮从B港口以40k m/h的速度沿如图所示的B C方向航行,15m i n后达到C处,现测得C处位于A观测点北偏东79.8ʎ方向,求此时货轮与A观测点之间的距离A C的长.(精确到0.1k m)(参考数据:s i n53.2ʎʈ0.80,c o s53.2ʎʈ0.60,s i n79.8ʎʈ0.98,c o s79.8ʎʈ0.18,t a n26.6ʎʈ0.50,2ʈ1.41,5ʈ2.24)(第32题)33.(2012 辽宁本溪)如图,әA B C是学生小金家附近的一块三角形绿化区的示意图,为增强体质,他每天早晨都沿着绿化区周边小路A B㊁B C㊁C A跑步(小路的宽度不计).观测得点B在点A的南偏东30ʎ方向上,点C在点A的南偏东60ʎ的方向上,点B在点C的北偏西75ʎ方向上, A C间距离为400米.问小金沿三角形绿化区的周边小路跑一圈共跑了多少米?(参考数据:2ʈ1.414,3ʈ1.732)(第33题)ɦ11.3㊀解直角三角形1.C㊀2.C㊀3.D㊀4.A㊀5.A㊀6.D㊀7.D㊀8.D 9.8510a或510a㊀10.210㊀11.6.8㊀12.10313.8.1㊀14.2215.过点B作B MʅF D于点M,在әA C B中,øA C B=90ʎ,øA=45ʎ,A C=122.ʑ㊀B C=A C=122.ȵ㊀A BʊC F,ʑ㊀B M=B Cˑs i n45ʎ=122ˑ22=12,C M=B M=12.在әE F D中,øF=90ʎ,øE=30ʎ,ʑ㊀øE D F=60ʎ.ʑ㊀MD=B Mːt a n60ʎ=43.ʑ㊀C D=C M-MD=12-43.16.(1)连接A C.ȵ㊀A B=B C=15千米,øB=90ʎ,ʑ㊀øB A C=øA C B=45ʎ,A C=152千米.又㊀øD=90ʎ,C D=33千米,ʑ㊀A D=A C2-C D2=(152)2-(32)2=123(千米).ʑ㊀周长=A B+B C+C D+D A=30+32+123ʈ30+4.23+20.76ʈ55(千米),面积=SәA B C+SәA C D=12ˑ15ˑ15+12ˑ123ˑ32ʈ157(平方千米).(2)c o søA C D =C D A C=32152=15.17.(1)过点A作A DʅB C于点D.(第17题)ȵ㊀O A=O B=3m,ʑ㊀A B=3+3=6m.ʑ㊀A D=A B s i n15ʎʈ6ˑ0.26ʈ1.6m.(2)如图所示,点A的运动路线是以点O为圆心,以O A 的长为半径的A D︵的长.连接O D.ȵ㊀O是A B的中点,ʑ㊀O D=O A=O B.ʑ㊀øA O D=2øB=30ʎ.ʑ㊀点A运动路线长=30ˑπˑ3180=π2.18.(1)过点E作E MʅA B,垂足为M.(第18题)设A B为x米.在R tәA B F中,øA F B=45ʎ,ʑ㊀B F=A B=x.ʑ㊀B C=B F+F C=x+13.在R tәA E M中,øA E M=22ʎ,AM=A B-B M=A B-C E=x-2,t a n22ʎ=AM M E,则x-2x+13ʈ25,解得xʈ12.故教学楼A B的高度约为12米.(2)由(1)可得M E=B C=x+13=12+13=25.在R tәAM E中,c o s22ʎ=M E A E,ʑ㊀A E=M Ec o s22ʎʈ251516ʈ27.故A㊁E之间的距离约为27米.19.ȵ㊀øF A E=15ʎ,øF A D=30ʎ,ʑ㊀øE A D=15ʎ.ȵ㊀A F ʊB E ,ʑ㊀øA E D =øF A E =15ʎ,øA D B =øF A D =30ʎ.设A B =x .则在R t әA E B 中,E B =A B t a n 15ʎ=x t a n 15ʎ.ȵ㊀E D =4,E D +B D =E B ,ʑ㊀B D =xt a n 15ʎ-4.在R t әA D B 中,B D =A B t a n 30ʎ=x ta n 30ʎ.ʑ㊀x t a n 15ʎ-4=x t a n 30ʎ,即12-3-133æèçöø÷x =4,解得x =2.ʑ㊀B D =2t a n 30ʎ=23.ȵ㊀B D =C D +B C =C D +0.8,ʑ㊀C D =23-0.8ʈ2ˑ1.732-0.8ʈ2.7>2.故该旅游车停车符合规定的安全标准.20.(1)ȵ㊀修建的斜坡B E 的坡角(即øB E F )不大于45ʎ,ʑ㊀øB E F 最大为45ʎ.当øB E F =45ʎ时,E F 最短,此时E D 最长.ȵ㊀øD A C =øB D F =30ʎ,A D =B D =30,ʑ㊀B F =E F =12B D =15,D F =153.故D E =D F -E F =15(3-1)ʈ11.0(m ).(2)过点D 作D P ʅA C ,垂足为P .在R t әD P A 中,D P =12A D =12ˑ30=15,P A =A D c o s 30ʎ=30ˑ32=153.在矩形D P G M 中,M G =D P =15,DM =P G =153+27.在R t әDMH 中,HM =DM t a n 30ʎ=(153+27)ˑ33=15+93.G H =HM +M G =15+93+15ʈ45.6(m ).故建筑物G H 高约为45.6米.21.(1)分别过点A ㊁D 作A F ʅB C ,D G ʅB C ,垂点分别为点F ㊁G ,如图所示.(第21题)在R t әA B F 中,A B =16,øB =60ʎ,s i n B =A F A B,ʑ㊀A F =16ˑ32=83,D G =83.ʑ㊀S әD C E =12ˑC E ˑD G =12ˑ8ˑ83=323.需要填方150ˑ323=48003(立方米).(2)在直角三角形D G C 中,D C =163.ʑ㊀G C =D C 2-D G2=24.ʑ㊀G E =G C +C E =32.ʑ㊀坡度i =D G GE =8332=34.22.ȵ㊀A E ʊB C ,ʑ㊀øA D C =øE A D =45ʎ.又㊀A C ʅC D ,ʑ㊀C D =A C =50.ȵ㊀A E ʊB C ,ʑ㊀øA B C =øE A B =15ʎ.又㊀t a n øA B C =A CB C,ʑ㊀B C =A Ct a n 15ʎʈ185.2.ʑ㊀B D =185.2-50ʈ135.故码头B ㊁D 的距离约为135米.23.过点A 作A E ʅC D 于点E ,(第23题)根据题意,øC A E =45ʎ,øD A E =30ʎ.ȵ㊀A B ʅB D ,C D ʅB D ,ʑ㊀四边形A B D E 为矩形.ʑ㊀D E =A B =123.在R t әA D E 中,t a n øD A E =D E A E ,ʑ㊀A E =D E t a n øD A E =123t a n 30ʎ=1233.在R t әA C E 中,øC A E =45ʎ,ʑ㊀C E =A E =1233.ʑ㊀C D =C E +D E =123(3+1)ʈ335.8.故乙楼C D 的高度约为335.8m .24.过点A 作AM ʅC D 于点M ,在R t әB C D 中,t a n α=C D B C,ʑ㊀C D =B C t a n α=m t a n α.在R t әAMD 中,t a n β=DM AM ,ʑ㊀DM =AM t a n β=m t a n β,ʑ㊀A B =C D -DM =m (t a n α-t a n β).故甲建筑物的高度为m (t a n α-t a n β),乙建筑物的高度为m t a n α.(第25题)25.连接P A ㊁P B ,过点P 作P M ʅA D 于点M ;延长B C ,交P M 于点N .则øA P M =45ʎ,øB P M =60ʎ,NM =10.设P M =x 米,在R t әP MA 中,AM =P M ˑt a n øA P M =x t a n 45ʎ=x .在R t әP N B 中,B N =P N ˑt a n øB P M =(x -10)t a n 60ʎ=(x -10)3.由AM +B N =46,得x +(x -10)3=46.解得x =46+1031+3.ʑ㊀点P 到A D 的距离为46+1031+3米.(结果分母有理化为(183-8)米也可)26.ȵ㊀当小华站立在镜子E F 前A 处时,他看自己的脚在镜中的像的俯角为45ʎ.ʑ㊀A C =A A 1.ȵ㊀若小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30ʎ,ʑ㊀A B =A 1B 1=0.5,øD B 1B =30ʎ.ʑ㊀t a n 30ʎ=B D B B 1=B D A B +A 1B 1+AA 1=B D 1+B D =33,解得B D =3+12ʈ1.4.故小华的眼睛到地面的距离为1.4米.27.(1)过点C 作C E ʅB P 于点E ,(第27题)在R t әC P E 中,ȵ㊀P C =30,øC P E =45ʎ,s i n 45ʎ=C E P C,ʑ㊀C E =P C s i n 45ʎ=30ˑ22=152.ȵ㊀点C 与点A 在同一水平线上,ʑ㊀A B =C E =152ʈ21.2.故居民楼A B 的高度约为21.2m .(2)在R t әA B P 中,ȵ㊀øA P B =60ʎ,ʑ㊀t a n 60ʎ=A BB P.ʑ㊀B P =1523=56.ȵ㊀P E =C E =152,ʑ㊀A C =B E =152+56ʈ33.4.故C ㊁A 之间的距离约为33.4m .28.ȵ㊀底部B 点到山脚C 点的距离B C 为63米,山坡的坡角为30ʎ,ʑ㊀D C =B C c o s 30ʎ=6332=9.ȵ㊀C F =1,ʑ㊀D F =9+1=10.ʑ㊀G E =10.ȵ㊀øA E G =45ʎ.ʑ㊀A G =E G =10,在R t әB G E 中,B G =G E t a n 20ʎ=10ˑ0.36=3.6,ʑ㊀A B =A G -B G =10-3.6=6.4.故树高约为6.4米.29.作A D ʅB C ,垂足为D ,(第29题)由题意得,øA C D =45ʎ,øA B D =30ʎ,设C D =x ,在R t әA C D 中,可得A D =x ,在R t әA B D 中,可得B D =3x ,又㊀B C =20,即x +3x =20,解得x =10(3-1).ʑ㊀A C =2x ʈ10.3(海里).故A ㊁C 之间的距离为10.3海里.30.由题意得øB C D =55ʎ,øB D C =90ʎ.ȵ㊀t a n øB C D =B DCD ,ʑ㊀B D =C D t a n øB C D =40ˑt a n 55ʎʈ57.2.ȵ㊀c o s øB C D =C D B C,ʑ㊀B C =C D c o s øB C D =40c o s 55ʎʈ70.2.ʑ㊀t 甲=57.22+10=38.6(秒),t 乙=70.22=35.1(秒).ʑ㊀t 甲>t乙,故乙先到达B 处.31.过点B 作B D ʅA C 于点D .(第31题)根据题意,得øA B D =øB A M =37ʎ,øC B D =øB C N =50ʎ,在R t әA B D 中,ȵ㊀c o s øA B D =B D A B ,ʑ㊀c o s 37ʎ=B D10ʈ0.80.ʑ㊀B D ʈ10ˑ0.8=8(海里).在R t әC B D 中,ȵ㊀c o s øC B D =B D B C,ʑ㊀c o s 50ʎ=8B Cʈ0.64.ʑ㊀B C ʈ8ː0.64=12.5(海里),ʑ㊀12.5ː30=512(小时).ʑ㊀512ˑ60=25(分钟).故渔政船约25分钟到达渔船所在的C 处.32.B C =40ˑ1560=10,在R t әA D B 中,s i n øD A B =D B A B,s i n 53.2ʎʈ0.8,ʑ㊀A B =D Bs i n øD A B ʈ160.8=20,如图,过点B 作B H ʅA C ,交A C 的延长线于点H ,(第32题)在R t әAH B 中,øB AH =øD A C -øD A B =79.8ʎ-53.2ʎ=26.6ʎ,t a n øB AH =B H AH,0.5=B H AH ,AH =2B H ,B H 2+AH 2=A B 2,B H 2+(2B H )2=202,B H =45,ʑ㊀AH =85.在R t әB C H 中,B H 2+C H 2=B C 2,C H =25,ʑ㊀A C =AH -C H =85-25=65ʈ13.4.故此时货轮与A 观测点之间的距离A C 约为13.4k m .33.作C D ʅA B 的延长线于点D ,(第33题)根据题意得øB A C =30ʎ,øB C A =15ʎ,ʑ㊀øD B C =øD C B =45ʎ.在R t әA D C 中,ȵ㊀A C =400米,øB A C =30ʎ,ʑ㊀C D =B D =200(米).ʑ㊀B C =2002(米),A D =2003(米).ʑ㊀A B =A D -B D =(2003-200)(米).ʑ㊀三角形A B C 的周长为400+2002+(2003-200)ʈ829米.故小金沿三角形绿化区的周边小路跑一圈共跑了829米.。
初三中考一轮复习(15)解直角三角形题型分类含答案(全面非常好)
教学过程解直角三角形【基础知识回顾】一、锐角三角函数定义:在Rtz\ABCt\ /C=9d, /A、ZEk /C的对边分别为a、b、c,则/A的正弦可表示为:sinA= , /A的余弦可表示为cosA= /A的正切: tanA= ,它们统称为/ A的锐角三角函数二、特殊角的三角函数值:三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在图上标上仰角和俯角i视线水平线⑵坡度坡角:如图:斜坡AB的垂直度h和水平宽度l的比叫做坡度,用i表示, 即1= 坡面与水平面得夹角为用字母%表示,则i=tan %=上。
11 T⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA^Z K OB 表木OC 表木O味示(也可称东南方向)北_ A南例2 在Rtz\ABOt\ /C=90° , AB=2BC现给出下歹U结论:①sinA= § ;②cosB=■1 ;③tanA=殍;④tanB=#,其中正确的结论是(只需填上正确结论的序号)解:如图所示:故答案为:②③④.对应训练2.计算6tan45 -2cos60 °的结果是()A. 4 3B. 4C. 5 3D. 52. D考点三:化斜三角形为直角三角形例3 在△ABC^, AB=AC=5 sin /ABC=0.8,贝U BC=故答案为:6.对应训练3.如图,四边形ABCD勺对角线AG BD相交于点Q且B阡分AC若BD=8 AC=6/BOC=120,则四边形ABCD勺面积为 .(结果保留根号)3.12 .3考点四:解直角三角形的应用4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AR现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,/PAB=38.5 , / PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A, B为参照点,结果精确到0.1米)(参考数据:sin38.5 =0.62 , cos38.5 =0.78 , tan38.5 =0.80 , sin26.5 =0.45, cos26.5 =0.89 , tan26.5 =0.50)4.解:设PD=x^,・.PDL AB,・•・/ADPN BDP=90 ,在Rt^PAD中,tan / PAD=^ ,AD・•・ AD=-—= 5x, tan38.5o0.8 4在RtWBD中,tan/PBD-DB又.78=80.0 米,55x+2x=80.0 ,4解得:x=24.6,即P[> 24.6 米,・•. DB=2x=492答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.【聚焦中考】1.6cos30 °的值是1,但22.河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:收,则AB的长为( )A.12B.4石米C. 5痣米D. 673米B2. A3.一渔船在海岛A南偏东20°方向的B处遇险,测得海岛A与B的距离为20海里,渔船将险情报告给位于A处的救援船后,沿北偏西80方向向海岛C靠近,同时,从A处出发的救援船沿南偏西10°方向匀速航行,20分钟后,救援船在海岛C处处,望见渔船D在南偏东60方向,若海监船的速度为50海里/小时,则A, B之间的距离为(取4=1.7,结果精确到0.1海里).5. 67.56.如图,有一艘渔船在捕鱼作业时出现故障,急需抢修,调度中心通知附近两个小岛A、B上的观测点进行观测,从A岛测得渔船在南偏东37方向C处,B岛在南偏东66°方向,从B岛测得渔船在正西方向,已知两个小岛间的距离是72海里, A岛上维修船的速度为每小时20海里,B岛上维修船的速度为每小时28.8海里,为及时赶到维修,问调度中心应该派遣哪个岛上的维修船?(参考数据:cos37 =0.8, sin37 =0.6, sin66 =0.9, cos66 =0.4)6.解:如图,作ADLBC的延长线于点D.北D C B在Rt^ADB中,AD=ABcos/BAD=72< cos66 =72X 0.4=28.8 (海里),BD=ABsin / BAD=72 sin66 =72X 0.9=64.8 (海里).在Rt/XADC^, AC=—AD— ^88- 空=36(海里),cos DAC cos37o0.8CD=ACsin / CAD=36 sin37 =36X 0.6=21.6 (海里).BC=BD-CD=64.8-21.6=43.2 (海里).A岛上维修船需要时间t A=^ ^=1.8 (小时).20 20B岛上维修船需要时间t B=坨432=1.5 (小时).28.8 28.8- t A> t B,.•・调度中心应该派遣B岛上的维修船.10.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CDW l垂直,测得CD的长等于21米,在l上点D的同侧取点A B,使/ CAD=30 , / CBD=60 .(1)求AB的长(精确到0.1米,参考数据:石=1.73, 72=1.41 );(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒, 这辆校车是否超速?说明理由.S DC10.解:(1)由题意得,在Rtz\ADC^, AD= CD”马=21 阴=36.33 (米),tan30o .33在Rt^BDC^ , BD=_CD V=Z1 =75/3 = 12.11 (米),tan60 3贝U AB=AD-BD=36.33-12.11=24.22= 24.2 (米)。
2018年中考数学试题分类汇编 知识点37 解直角三角形及其应用
知识点37 解直角三角形及其应用一、选择题1. (2018四川绵阳,10,3分) 一艘在南北航线上的测量船,于A 点处测得海岛B 在点A 的南偏东30°方向,继续向南航行30海里到达C 点时,测得海岛B 在C 点的北偏东15°方向,那么海岛B 离此航线的最近距离是(结果保留小数点后两位)(参考数据:732.13≈,414.12≈) A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里【答案】B.【解析】解:如图所示,由题意知,∠BAC=30°、∠ACB=15°,作BD ⊥AC 于点D ,以点B 为顶点、BC 为边,在△ABC 内部作∠CBE=∠ACB=15°, 则∠BED=30°,BE=CE , 设BD=x ,则AB=BE=CE=2x ,AD=DE=3x ,∴AC=AD+DE+CE =23x +2x , ∵AC=30, ∴23x +2x=30,解得:x=21315-≈5.49. 故选B.【知识点】解直角三角形的应用——方向角问题,勾股定理的应用,三角形的外角性质,等腰三角形的判定,含30°角直角三角形的性质,垂线段最短的应用2.(2018·重庆B卷,9,4)如图,AB是一垂直于水平面的建筑物.某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1﹕0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)()A.21.7米 B.22.4米 C.27.4米 D.28.8米【答案】A.【解析】过点C作CN⊥DE于点N,延长AB交ED的延长线于点M,则BM⊥DE于点M,则MN=BC=20米.∵斜坡CD的坡比i=1﹕0.75,∴令CN=x,则DN=0.75x.在Rt△CDN中,由勾股定理,得x2+(0.75x)2=102,解得x =8,从而CN=8米,DN=6米.∵DE=40米,∴ME=MN+ND+DE=66米,AM=(AB+8)米.在Rt△AME中,tan E=AM EM,即8tan2466AB+=︒,从而0.45=866AB+,解得AB=21.7,故选A.【知识点】解直角三角形坡度1.(2018·重庆A卷,10,4)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底面E处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1﹕0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度为(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)()A.12.6米 B.13.1米 C.14.7米 D.16.3米【答案】B.【解析】过点C作CN⊥DE于点N,延长AB交ED的延长线于点M,则BM⊥DE于点M,则MN=BC=1米.N M 教学楼EDCB A∵斜坡CD 的坡比i =1﹕0.75,∴令CN =x ,则DN =0.75x .在Rt △CDN 中,由勾股定理,得x 2+(0.75x )2=22,解得x =1.6,从而DN =1.2米.∵DE =7米,∴ME =MN +ND +DE =9.2米,AM =(AF +1.6)米.在Rt △AME 中,tan ∠AEM =AM EM ,即 1.6tan 589.2AB +=︒,从而1.6= 1.69.2AB +,解得AB =13. 12≈13.1(米),故选B . 【知识点】解直角三角形 坡度二、填空题1. (2018山东潍坊,18,3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A 处测得岛礁P在东北方向上,继续航行1.5小时后到达B 处,此时测得岛礁P 在北偏东30°方向,同时测得岛礁P 正东方向上的避风港M 在北偏东60°方向.为了在台风到来之前用最短时间到达M 处,渔船立刻加速以75海里/小时的速度继续航行 小时即可到达.(结果保留根号)【答案】185+ 【思路分析】过点P 作PQ ⊥AB ,垂足为Q ,过点M 作MN ⊥AB ,垂足为M . 设PQ =MN =x ,解Rt △APQ 和Rt △BPQ 求得x 的值,再解Rt △BMN 求出BM 的长度,利用路程÷速度=时间解答即可. 【解题过程】过点P 作PQ ⊥AB ,垂足为Q ,过点M 作MN ⊥AB ,垂足为M .AB =60×1.5=90海里设PQ =MN =x ,由点P 在点A 的东北方向可知,∠PAQ =45°,∴AQ =PQ =x ,BQ =x -90 在Rt △PBQ 中,∠PBQ =90°-30°=60°tan 6090xx ︒==-解得:135x =+在Rt △BMN 中,∠MBN =90°-60°=30°∴BM =2MN =2x=2135270⨯+=+(∴航行时间为=小时.【知识点】解直角三角形的应用2. (2018山东省济宁市,14,3)如图,在一笔直的海岸线L 上有相距2km 的A ,B 两个观测站,B 站在A 站的正东方向上,从A 站测得船C 在北偏东60°的方向上.从B 站测得船C 在北偏东30°的方向上,则船C 到海岸线L 的距离是_______km.【解析】首先由题意可得:△ACB 是等腰三角形,可求得BC 的长为2km ,然后由点C 作CD ⊥AB 于点D ,构造直角三角形CBD ,应用边角之间的三角函数关系确定CD=BC •sin60°,求得结果.过点C 作CD ⊥AB 于点D ,根据题意得:∠CAD=90°-60°=30°,∠CBD=90°-30°=60°, ∴∠ACB=∠CBD-∠CAD=30°,∴∠CAB=∠ACB ,∴BC=AB=2km ,在Rt △CBD 中,CD=BC •sin60°=2km )【知识点】方位角、等腰三角形、解直角三角形3. (2018宁波市,16题,10分) 如图某高速公路建设中需要测量某条江的宽度AB ,飞机上的测量人员在C处测得A ,B 两点的俯角分别为45°和30°若飞机离地面的高度CH 为1200米,且点H ,A ,B 在同一水平直线上,则这条江的宽度AB 为 米(结果保留根号). 【答案】【解析】解:∵CD ∥HB∴∠CAH=45°;∠HBC =30° 在Rt △CHA 中, ∴AH=CH=1200 在Rt △CHB 中, ∴HB=∴AB=HB-AH=【知识点】解直角三角形1. (2018湖北荆州,T14,F3值)荆州市滨江公园旁的万寿宝塔始建于明嘉靖年间,周边风景秀丽.现在塔底低于地面约7米,某校学生测得古塔的整体高度约为40米.其测量塔顶相对地面高度的过程如下:先在地面A 处测得塔顶的仰角为30°,再向古塔方向行进a 米后到达B 处,在B 处测得塔顶的仰角为45°(如图所示),(第16题图)那么a 的值约为_________173≈.,结果精确到0.1).【答案】33()13-【解析】如图所示,由题意可知,CD=40-7=33,在Rt ∆BCD 中,∵∠CBD=450,∴CD=BD=33,∴AD=AB+BD=a+33,在Rt ∆ACD 中tan ∠CAD·AD=CD,即33)33(33=+a ,解得,a=33()13-【知识点】锐角三角函数、特殊的直角三角形. 三、解答题1. (2018湖北鄂州,21,8分) 如图,我国一艘海监执法船进行常态化巡航,在A 处测得北偏东30°方向距离为40海里的B 处有一艘刻意船只正在向正东方向航行,我海监执法船便迅速沿北偏东75°方向前往监视巡查,经过一段时间在C 处成功拦截可疑船只. (1)求∠ABC 的度数;(2)求我海监执法船前往监视巡查的过程中形式的路程(AC 的长)?(结果精确到0.1 1.732≈,2.449≈≈)【思路分析】(1)过点B作BD⊥AD于D,根据三角形的一个外角等于与它不相邻的两个内角之和,可求出∠ABC 的度数;(2)过点B作BE⊥AC于E,过点C作CF⊥AF于F,构造直角三角形,先求出AD和AE的长,设BE=x,则AC=x,再证明△BEC∽△CFA,得到BE CECF AF=,求出CE的长,从而得出AC的长度.【解析】解:(1)如下图(1),过点B作BD⊥AD于D,则∠ADB=90°,由题意得∠DAB=30°,∴∠ABC=∠ADB+∠DAB=90°+30°=120°;(2)如下图(1),过点B作BE⊥AC于E,过点C作CF⊥AF于F,则在Rt△ABD中,∵∠DAB=30°,AB=40,∴AD=AB·cos30°=40×2=ADB=∠DAF=∠CFA=90°,∴四边形ADCF是矩形,∴CF=AD=DC∥AF,∴∠BCE=∠CAF,∵∠DAB=30°,∠DAF=75°,∴∠BAC=∠DAF-∠DAB=75°-30°=45°,∴△ABE是等腰直角三角形,∴AE=BE=AB·cos45°=40×2=,设BE=x,则AC=x,∴AFBCE=∠CAF,∠BEC=∠CFA=90°,∴△BEC∽△CFA,∴BE CECF AF=,=22=⎛⎫⎪,()(22223xx=+,28000x-+=,解得22x===±∴1x=2x=AC=x=133.42或35.86,∵AC>AB=40,∴AC≈133.42海里,即我海监执法船前往监视巡查的过程中形式的路程约为133.42海里.【知识点】解直角三角形;勾股定理,三角函数;相似三角形的判定和性质;一元二次方程的解法;矩形的判定和性质2. (2018湖北黄冈,21题,7分)如图,在大楼AB 正前方有一斜坡CD ,坡角∠DCE=30°,楼高AB=60米,在斜坡下的点C 处测得楼顶B 的仰角为60°,在斜坡上的D 处测得楼顶B 的仰角为45°,其中点A,C,E 在同一直线上.(1)求坡底C 点到大楼距离AC 的值; (2)求斜坡CD 的长度.第21题图【思路分析】(1)在Rt △ABC 中,已知∠ACB 和AB ,利用三角函数可求得AC ;(2)设CD=x ,在Rt △BDF 和△DCE 中,利用三角函数表示出BF 、DF 和DE 、CE ,【解析】(1)在Rt △ABC 中,AB=60米,∠ACB=60°,所以tan 60ABAC ==C 点到大楼距离AC 长(2)过点D 作DF ⊥AB 于点F ,则四边形FAED 为矩形,所以AF=DE ,DF=AE ,设CD=x 米,在Rt △EDC 中,因为∠DCE=30°,则122DE x CE x ==米,米,在Rt △BDF 中,∠BDF=45°,所以1=602BF x -米,因为DF=AE=AC+CE ,所以1602x x =-,解得120x =米,答:斜坡CD 长120)米 【知识点】三角函数的应用3. (2018湖南郴州,21,8) 小亮在某桥附近试飞无人机,如图,为了测量无人机飞行高度AD ,小亮通过操控器指令无人机测得桥头B 、C 的俯角分别为∠EAB=60°,∠EAC=30°,且D ,B ,C 在同一水平线上,已知桥BC=30米,求无人机飞行高度AD.(精确到0.01 1.414≈ 1.732≈)【思路分析】过点A 作AD ⊥BC 于点D ,构造Rt △ACD 和Rt △ABD ,然后利用特殊角的锐角三角函数列方程,解方程可得无人机飞行高度.【解析】解:由题意,易得:AE ∥CD ,∴∠EAC=∠ACD=30°,∠EAB=∠ABD=60°,设AD=x ,在Rt △ACD 中,tan 30ADCD︒=,;在Rt △ABD 中,tan 60ADBD︒=,x ;∵CD-BD=BC ,BC=3030x =,25.98x =≈(米). 答:无人机飞行高度AD 约为25.98米. 【知识点】解直角三角形的应用4. (2018内蒙古呼和浩特,21,8分)如图,一座山的一段斜坡BD 的长度为600米,且这段斜坡的坡度i=1:3(沿斜坡从B 到D 时,其升高的高度与水平前进的距离之比),已知在地面B 处得山顶A 的仰角为33°,在斜坡D 处测定山顶A 的仰角为45°,求山顶A 到地面BC 的高度AC 是多少米?(结果用含有非特殊角的三角函数和根式表示即可)【思路分析】过点D作DF⊥BC于点F,构建直角三角形,利用斜坡的坡度i=1:3,先求出∠BD,利用sin∠DBF,cos∠DBF中比值关系。
2018中考数学之分类汇编 解直角三角形
2018中考数学之 解直角三角形(208内蒙古通辽)20.(6.00分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据≈1.732)【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【解答】解:如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵,即,∴AD=400(米),在Rt△BCD中,∵,即,∴CD=400(米),∴AC=AD+CD=400+400≈1092.8≈1093(米),答:隧道最短为1093米.(2018上海)21.(10.00分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.(2018包头)22.(8.00分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=AD,连接BD,点E在AB上,且∠BDE=15°,DE=4,DC=2.(1)求BE的长;(2)求四边形DEBC的面积.(注意:本题中的计算过程和结果均保留根号)【分析】(1)解直角三角形求出AD、AE即可解决问题;(2)作DF⊥BC于F.则四边形ABFD是矩形,解直角三角形求出CF,即可解决问题;【解答】解:(1)在四边形ABCD中,∵AD∥BC,∠ABC=90°,∴∠BAD=90°,∵AB=AD,∴∠ABD=∠ADB=45°,∵∠BDE=15°,∴∠ADE=30°,在Rt△ADE中,AE=DE×sin30=2,AD=DE•cos30°=6,∴AB=AD=6,∴BE=6﹣2.(2)作DF⊥BC于F.则四边形ABFD是矩形,∴BF=AD=6,DF=AB=6,在Rt△DFC中,FC==4,∴BC=6+4,∴S四边形DEBC=S△DEB +S△BCD=×(6﹣2)×6+(6+4)×6=36+6.【点评】本题考查矩形的性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.(2018吉林)21.(数学活动小组的同学为测量旗杆高度,先制定了如下测量方案,使用工具是测角仪和皮尺,请帮助组长林平完成方案内容,用含a,b,α的代数式表示旗杆AB的高度.数学活动方案活动时间:2018年4月2日活动地点:学校操场填表人:林平课题测量学校旗杆的高度 活动目的运用所学数学知识及方法解决实际问题 方案示意图测量步骤 (1)用 测角仪 测得∠ADE=α; (2)用 皮尺测得BC=a 米,CD=b 米.计算过程【分析】在Rt △ADE 中,求出AE ,再利用AB=AE +BE 计算即可;【解答】解:(1)用 测角仪测得∠ADE=α;(2)用 皮尺测得BC=a 米,CD=b 米.(3)计算过程:∵四边形BCDE 是矩形,∴DE=BC=a ,BE=CD=b ,在Rt △ADE 中,AE=ED•tanα=a•tanα,∴AB=AE +EB=a•tanα+b .【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.(2018浙江嘉兴)22.如图1,滑动调节式遮阳伞的立柱AC 垂直于地面AB ,P 为立柱上的滑动调节点,伞体的截面示意图为△PDE ,F 为PD 中点,AC=2.8m ,PD=2m ,CF=1m ,∠DPE=20°。
中考专题复习解直角三角形(含答案)
中考专题复习解直⾓三⾓形(含答案)中考数学专题解直⾓三⾓形第⼀节锐⾓三⾓函数1、勾股定理:直⾓三⾓形两直⾓边、的平⽅和等于斜边的平⽅。
2、如下图,在Rt△ABC中,∠C为直⾓,则∠A的锐⾓三⾓函数为(∠A可换成∠B):定义表达式取值范围关系正弦(∠A为锐⾓)余弦(∠A为锐⾓)正切(∠A为锐⾓)(倒数)余切(∠A为锐⾓)3、任意锐⾓的正弦值等于它的余⾓的余弦值;任意锐⾓的余弦值等于它的余⾓的正弦值。
4、任意锐⾓的正切值等于它的余⾓的余切值;任意锐⾓的余切值等于它的余⾓的正切值。
5、30°、45°、60°特殊⾓的三⾓函数值(重要)三⾓函数30°45°60°116、正弦、余弦的增减性:当0°≤≤90°时,sin随的增⼤⽽增⼤,cos随的增⼤⽽减⼩。
7、正切、余切的增减性:当0°<<90°时,tan随的增⼤⽽增⼤,cot随的增⼤⽽减⼩。
第⼆节解⾓直⾓三⾓形1、解直⾓三⾓形的定义:已知边和⾓(两个,其中必有⼀条边)→求所有未知的边和⾓。
依据:①边的关系:;②⾓的关系:∠A+∠B=90°;③边⾓关系:(见前⾯三⾓函数的定义)。
2、应⽤举例:(1)仰⾓:视线在⽔平线上⽅的⾓;俯⾓:视线在⽔平线下⽅的⾓。
(2)坡⾯的铅直⾼度和⽔平宽度的⽐叫做坡度(坡⽐)。
⽤字母表⽰,即。
坡度⼀般写成的形式,如等。
把坡⾯与⽔平⾯的夹⾓记作(叫做坡⾓),那么。
【重点考点例析】考点⼀:锐⾓三⾓函数的概念例1 如图所⽰,△ABC的顶点是正⽅形⽹格的格点,则sinA的值为()A.12B.55C.1010D.255对应训练1.在平⾯直⾓坐标系中,已知点A(2,1)和点B(3,0),则sin∠AOB的值等于()A.55B.52C.32D.12考点⼆:特殊⾓的三⾓函数值例2 计算:cos245°+tan30°?sin60°=.对应训练(2012?南昌)计算:sin30°+cos30°?tan60°.考点三:化斜三⾓形为直⾓三⾓形例3 如图,在△ABC中,∠A=30°,∠B=45°,AC=23,求AB的长.对应训练3.如图,在Rt △ABC中,∠BAC=90°,点D在BC边上,且△ABD是等边三⾓形.若AB=2,求△ABC 的周长.(结果保留根号)考点四:解直⾓三⾓形的应⽤例4 黄岩岛是我国南海上的⼀个岛屿,其平⾯图如图甲所⽰,⼩明据此构造出该岛的⼀个数学模型如图⼄所⽰,其中∠B=∠D=90°,AB=BC=15千⽶,CD=32千⽶,请据此解答如下问题:(1)求该岛的周长和⾯积;(结果保留整数,参考数据2≈1.414,3≈1.73 ,6≈2.45)(2)求∠ACD的余弦值.对应训练6.超速⾏驶是引发交通事故的主要原因之⼀.上周末,⼩明和三位同学尝试⽤⾃⼰所学的知识检测车速.如图,观测点设在A 处,离益阳⼤道的距离(AC)为30⽶.这时,⼀辆⼩轿车由西向东匀速⾏驶,测得此车从B处⾏驶到C处所⽤的时间为8秒,∠BAC=75°.(1)求B、C两点的距离;(2)请判断此车是否超过了益阳⼤道60千⽶/⼩时的限制速度?(计算时距离精确到1⽶,参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75°≈3.732,3≈1.732,60千⽶/⼩时≈16.7⽶/秒)【聚焦中考】1.如图,在8×4的矩形⽹格中,每格⼩正⽅形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A.13B.12C.22D.32.把△ABC三边的长度都扩⼤为原来的3倍,则锐⾓A的正弦函数值()A.不变B.缩⼩为原来的13C.扩⼤为原来的3倍D.不能确定3.计算:tan45°+ 2cos45°= .4.在△ABC中,若∠A、∠B满⾜|cosA- 12|+(sinB-22)2=0,则∠C= .5.校车安全是近⼏年社会关注的重⼤问题,安全隐患主要是超速和超载.某中学数学活动⼩组设计了如下检测公路上⾏驶的汽车速度的实验:先在公路旁边选取⼀点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21⽶,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到0.1⽶,参考数据:3=1.73,2=1.41);(2)已知本路段对校车限速为40千⽶/⼩时,若测得某辆校车从A到B⽤时2秒,这辆校车是否超速?说明理由.6.如图,某校教学楼AB的后⾯有⼀建筑物CD,当光线与地⾯的夹⾓是22°时,教学楼在建筑物的墙上留下⾼2⽶的影⼦CE;⽽当光线与地⾯夹⾓是45°时,教学楼顶A在地⾯上的影⼦F与墙⾓C有13⽶的距离(B、F、C在⼀条直线上)(1)求教学楼AB的⾼度;(2)学校要在A、E之间挂⼀些彩旗,请你求出A、E之间的距离(结果保留整数).(参考数据:sin22°≈38,cos22°≈1516,tan22°≈25)【备考真题过关】⼀、选择题1.如图,在Rt△ABC中,∠C=90°,AC=4,AB=5,则sinB的值是()A.23B.35C.34D.452.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=5,AC=6,则tanB的值是()A.45B.35C.34D.433.如图,在Rt △ABC中,∠C=90°,AB=6,cosB= 23,则BC的长为()A.4 B.25C.181313D.1213134.2cos60°的值等于()A.1 B.2C.3D.25.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.12B.22C.32D.16.如图,在Rt△ABO中,斜边AB=1.若OC∥BA,∠AOC=36°,则C( )A.点B到AO的距离为sin54°B.点B到AO的距离为tan36°C.点A到OC的距离为sin36°sin54°D.点A到OC的距离为cos36°sin54°.7.在“测量旗杆的⾼度”的数学课题学习中,某学习⼩组测得太阳光线与⽔平⾯的夹⾓为27°,此时旗杆在⽔平地⾯上的影⼦的长度为24⽶,则旗杆的⾼度约为()A.24⽶B.20⽶C.16⽶D.12⽶8.如图,某⽔库堤坝横断⾯迎⽔坡AB的坡⽐是1:3,堤坝⾼BC=50m,则应⽔坡⾯AB的长度是()A.100m B.1003m C.150m D.503m1.如图,为测量某物体AB的⾼度,在D点测得A点的仰⾓为30°,朝物体AB⽅向前进20⽶,到达点C,再次测得点A的仰⾓为60°,则物体AB的⾼度为()A.10⽶B.10⽶C.20⽶D.⽶2.⼩明想测量⼀棵树的⾼度,他发现树的影⼦恰好落在地⾯和⼀斜坡上,如图,此时测得地⾯上的影长为8⽶,坡⾯上的影长为4⽶.已知斜坡的坡⾓为30°,同⼀时刻,⼀根长为1⽶、垂直于地⾯放置的标杆在地⾯上的影长为2⽶,则树的⾼度为()A.(6+)⽶B.12⽶C.(4﹣2)⽶D.10⽶3.如图,从热⽓球C处测得地⾯A、B两点的俯⾓分别是30°、45°,如果此时热⽓球C处的⾼度CD为100⽶,点A、D、B在同⼀直线上,则AB两点的距离是()A.200⽶B.200⽶C.220⽶D.100()⽶⼆、填空题9.在△ABC中∠C=90°,AB=5,BC=4,则tanA= .10.tan60°= .11.若∠a=60°,则∠a的余⾓为,cosa的值为.12.如图,为测量旗杆AB的⾼度,在与B距离为8⽶的C处测得旗杆顶端A的仰⾓为56°,那么旗杆的⾼度约是⽶(结果保留整数).(参考数据:sin56°≈0.829,cos56°≈0.559,tan56°≈1.483)三、解答题13.如图,定义:在直⾓三⾓形ABC中,锐⾓α的邻边与对边的⽐叫做⾓α的余切,记作ctanα,即ctanα== ACBC,根据上述⾓的余切定义,解下列问题:(1)ctan30°= ;(2)如图,已知tanA=34,其中∠A为锐⾓,试求ctanA的值.14.⼀副直⾓三⾓板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.15.为促进我市经济的快速发展,加快道路建设,某⾼速公路建设⼯程中需修隧道AB,如图,在⼭外⼀点C测得BC距离为200m,∠CAB=54°,∠CBA=30°,求隧道AB的长.(参考数据:sin54°≈0.81,cos54°≈0.59,tan54°≈1.38,3≈1.73,精确到个位)16.如图,某⾼速公路建设中需要确定隧道AB的长度.已知在离地⾯1500m,⾼度C处的飞机,测量⼈员测PABQ24.5°49°41°北东南西得正前⽅A 、B 两点处的俯⾓分别为60°和45°,求隧道AB 的长.17.如图,⾃来⽔⼚A 和村庄B 在⼩河l 的两侧,现要在A ,B 间铺设⼀知输⽔管道.为了搞好⼯程预算,需测算出A ,B 间的距离.⼀⼩船在点P 处测得A 在正北⽅向,B 位于南偏东24.5°⽅向,前⾏1200m ,到达点Q 处,测得A 位于北偏东49°⽅向,B 位于南偏西41°⽅向.(1)线段BQ 与PQ 是否相等?请说明理由;(2)求A ,B 间的距离.(参考数据cos41°=0.75)练习作业:1. 已知在Rt △ABC 中,∠C =90°,根据表中的数据求其它元素的值:a b c ∠A ∠B 12 30° 4 45° 260°5 35 4 28 CD=3,AD=12,求证:AD ⊥BD .3.计算ooo5sin 302cos60tan 45-- oo o o2cos 45tan 30sin 45tan 60-+?4.如图所⽰,已知:在△ABC中,∠A=60°,∠B=45°,AB=443,?求△ABC的⾯积(结果可保留根号).例5.已知:如图所⽰,在△ABC中,AD是边BC上的⾼,E?为边AC?的中点,BC=14,AD=12,sinB=45,求:(1)线段DC的长;(2)tan∠EDC的值.例6.如图,在△ABC中,∠BAC=120°,AB=10,AC=5,求sinB?sinC的值.。
[小初高学习]全国2018年中考数学真题分类汇编 第19讲 解直角三角形(无答案)
第19讲解直角三角形知识点1 锐角三角函数的定义知识点2 特殊角的三角函数值知识点3 解直角三角形知识点4 解直角三角形的实际应用知识点1 锐角三角函数的定义(2018·滨州)(2018·孝感)答案:A(2018·云南)(2018·柳州)知识点2 特殊角的三角函数值(2018·天津)答案:B(2018·大庆)(2018·烟台)(2018·白银)计算:2018112sin 30(1)()2-+--= . (2018·烟台)知识点3 解直角三角形 (2018·荆州)答案:D(2018·哈尔滨)答案:C(2018·娄底)如图,由四个全等的直角三角形围成的大正方形的面积是169,小正方形的面积为49,则sin cos a a -=( D )A.513B.513-C.713D.713-(2018·广西六市同城)答案:C(2018·陕西)答案:C(2018·丽水)如图,两根竹竿AB和AD斜靠在墙CE上,量得∠ABC=α,∠ADC=β,则竹竿AB与AD的长度之比为( B )A. tantanαβB.sinsinβαC.sinsinαβD.coscosβα(2018·枣庄)如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则tan∠BDE的值是( A )A. B. C. D.(2018·无锡)答案:A(2018·贵阳)(2018(2018·湖州)(2018·苏州)(2018·齐齐哈尔)答案:(2018·宁波)(2018·泰安)(2018·眉山)如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD= .知识点4 解直角三角形的实际应用(2018·济宁)(2018·绵阳)(2018·重庆A卷)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58i=,DE=米,升旗台坡面CD的坡度1:0.75∠=︒,升旗台底部到教学楼底部的距离7AED坡长2CD=米,若旗杆底部到坡面CD的水平距离1︒≈,BC=米,则旗杆AB的高度约为 B(参考数据:sin580.85︒≈)cos580.53︒≈,tan58 1.6A.12.6米B.13.1米C.14.7米D.16.3米(2018·淄博)一辆小车沿着如图所示的斜坡向上行驶了100米,其铅直高度上升了15米.在用科学计算器求坡角α的度数时,具体按键顺序是()A.B.C.D.(2018·宜昌)如图,要测量小河两岸相对的两点,P A的距离,可以在小河边取PA的垂线PB上的一点C,测得PC=米,35100∠=,则小河宽PA等于( C )PCAA.100sin35米B.100sin55米C.100tan35米D.100tan55米(2018·长春)(2018·重庆B卷)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( A )A.21.7米B.22.4米C.27.4米D.28.8米(2018·苏州)(2018·枣庄)(2018·荆州)(2018·仙桃)我国海域辽阔,渔业资源丰富.如图,现有渔船B在海岛A,C附近捕鱼作业,已知海岛C位于海岛A的北偏东45°方向上.在渔船B上测得海岛A位于渔船B的北偏西30°的方向上,此时海岛C恰好位于渔船B的正北方向18(1n mile处,则海岛A,C之间的距离为 n mile.(2018·咸宁)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110m,那么该建筑物的高度BC约为 300 m.(结果保留整数, 1.733≈). (2018·黄石)如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为A、D、E在同一水平直线上,则A、B两点间的距离是____________米.(结果保留根号)(2018·广西六市同城)(2018·广州)(2018·潍坊)答案:。
【精品】初中数学中考专题《解直角三角形》真题汇编
专题16 解直角三角形真题汇编1总分数 100分时长:不限题型单选题填空题简答题综合题题量 2 3 15 4总分 4 6 60 441(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 83(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:si n15°=cos75°≈0.259).4(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.7(3分)(2017株洲中考)计算:.8(3分)(2017益阳中考)计算:.9(3分)(2017岳阳中考)计算:10(3分)(2017邵阳中考)计算:.11(3分)(2017永州中考)计算:.12(3分)(2017娄底中考)计算:.13(3分)(2017怀化中考)计算:. 14(3分)(2017张家界中考)计算:.15(3分)(2017湘西土家族苗族自治州中考)计算:16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.专题16 解直角三角形真题汇编1参考答案与试题解析1(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.【解析】本题考查坐标网格中的三角函数计算,作AB⊥x轴于点B,由勾股定理得OA=5,D 在Rt△AOB中,利用正弦函数的定义得出,故选C.【答案】C2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 8【解析】本题考查实数的运算.分别选取第一行一列,第二行二列,第三行四列,第四行三列的四个“数”,求其和为.设第三行三列,第四行二列的四个“数”,求其和为,解得x=7,故选C.【答案】C3(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:sin15°=cos75°≈0.259).【解析】本题考查圆周率的近似值的计算.当n=12时,如图所示,由题意可知,作OC⊥AB,则∠AOC=15°.在直角三角形AOC中,,所以AC≈0.259r,AB=2AC≈0.518r,L=AB≈6.216r,所以.【答案】3.114(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.【解析】本题考查正方形的性质、等边三角形的性质、三角形面积的计算.∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,又BC=BP,∠CBP=30°,∴AB=BP,∠ABP=60°.∴是等边三角形,∴,∠DAE=30°.,AE=2DE=2×2=4,,.过点P作PF⊥CD,垂足为F,则∠EPF=∠DAE=30°,,∴.【答案】5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.【解析】本题考查利用特殊的角解直角三角形,在Rt△ALR中,由∠ARL=30°,AR=40 km,得AL=20 km,,所以.【答案】6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.【解析】【名师指导】本题考查绝对值、零次幂、负指数幂的运算法则、特殊角的正弦值.根据去绝对值符号法则、零次幂、负指数幂的运算法则、特殊角的正弦值分别计算求解.【答案】解:原式=3+1-2×+3=6.7(3分)(2017株洲中考)计算:.【解析】【名师指导】本题考查有理数运算的化简与求值.【答案】解:原式.(其中:)8(3分)(2017益阳中考)计算:.【解析】【名师指导】本题考查绝对值、特殊角的三角函数值、零指数幂的计算.【答案】解:原式==-5.9(3分)(2017岳阳中考)计算:【解析】【名师指导】本题考查实数的相关计算、三角函数、负指数、零指数、绝对值. 【答案】解:原式===2.10(3分)(2017邵阳中考)计算:.【解析】【名师指导】本题考查二次根式、特殊角三角函数值的计算、负指数的计算. 【答案】解:原式===-211(3分)(2017永州中考)计算:.【解析】【名师指导】本题考查二次根式、零指数幂、特殊角的三角函数值的混合运算. 根据运算法则计算即可.【答案】解:==-1.12(3分)(2017娄底中考)计算:.【解析】【名师指导】本题考查实数的综合运算.先化简二次根式,计算负指数幂,求特殊角的三角函数值,计算零指数幂,然后进行综合运算,求出算式的结果即可.【答案】解:原式===-2.13(3分)(2017怀化中考)计算:.【解析】【名师指导】本题考查实数的计算,涉及绝对值、零指数、负指数、特殊角的三角函数值及立方根的运算.【答案】解:原式==-2.14(3分)(2017张家界中考)计算:.【解析】【名师指导】本题考查整数指数幂、三角函数值、绝对值的意义.【答案】解:原式==2.15(3分)(2017湘西土家族苗族自治州中考)计算:【解析】【名师指导】本题考查实数的相关计算、二次根式、指数幂、三角函数.【答案】解:原式=.(其中)16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解析】(1)本题考查解直角三角形的应用.根据方位角的概念得到三角形中角的度数,进而求解;(2)根据含特殊角的直角三角形的边的关系求解相关线段的长度,进而求解.【答案】(1)解:依题意得,∠PAB=30°,∠PBE=60°,∵∠PBE=∠PAB+∠APB,∴∠APB=∠PBE-∠PAB=60°-30°=30°.(2)由(1)知∠PAB=∠APB=30°,∴PB=AB=50(海里),如图,过点P作PC⊥AB于点C,在中,PC=PB·sin60°=(海里).∵>25,∴海监船继续向正东方向航行是安全的.17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)【解析】【名师指导】本题考查利用解直角三角形解决实际问题.根据已知条件可得等腰三角形ABC,从而得AB=BC,再在直角三角形中利用锐角三角函数求解或设CD为x米,锐角三角函数表示出BD,找到等量关系,建立方程求解.【答案】解法一:∵∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴AB=BC=10.4.又∵∠CDA=90°∴CD=BC·sin∠CBD=10.4×sin60°=10.4×≈9.0064,9.006 4+1.5≈10.5答:来雁塔高约10.5米.解法二:设CD为x米.∵∠CBD=60°,∠CDA=90°,∴.又∵∠CAB=30°,∴.∴10.4+x,x≈9.0064,9.006 4+1.5≈10.5(米).答:来雁塔高约10.5米.18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5.所以这架无人机的长度为5米.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于将实际问题转化到直角三角形中求解.【答案】解:过点P作PH⊥AC垂足为点H,由题意可知∠EAP=60°,∠FBP=30°,∴PAB=30°,∠PBH=60°,∴∠APB=30°,∴AB=PB=120.在,∵,∴,∵103.80>100,∴要修建的这条高速铁路不会穿越森林保护区.20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于添加辅助线构造直角三角形求解.【答案】解:过点E作EP⊥BC,交CB的延长线于点P,过点A作AQ⊥FP于点Q,在Rt△ABC中,,∴AB=CB·tan75°≈0.60×3.732≈2.239,∴四边形ABPQ是矩形,∴PQ≈2.239,又∵HE⊥FP,AQ⊥FP’∴,∴∠FAQ=∠FHE=60°,在中,,∴,∴DQ=FQ-FD≈2.165-1.35=0.815,∴DP=DQ+QP≈0.815+2.239=3.054≈3.05.答:篮筐D到地面的距离约为3.05米.21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).【解析】【名师指导】本题考查解直角三角形的应用.作垂线构造直角三角形,根据锐角三角函数求出相关线段的长度,再根据线段间的数量关系求出仙女峰的高度.【答案】解:过点B作AC的垂线,交AC的延长线于点D.设BD=x米,在中,,在中,,∵AD-CD=AC,∴,解得x=580.答:仙女峰的高度是580米.22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【解析】【名师指导】本题考查应用解直角三角形的知识解决实际问题.【答案】解:在中,∵∠DBC=45°,∴BC=DC=2.3米,在中,AC=BC·tan70.5°≈6.5米,则AD=AC-DC≈6.5-2.3=4.2(米).23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).【解析】(1)【名师指导】本题考查解直角三角形.利用在直角三角形中,30°角所对的直角边等于斜边的一半求解;(2)根据特殊角的正弦值求解相关线段的长度,进而得到结论.【答案】(1)解:在中,∵∠ABE=90°,∠BAE=30°,AE=80,∴∠AEB=60°,.答:旋转木马E处到出口B处的距离为40米.(2)在中,∵∠C=90°,∴∠CED=∠AEB=60°∵,CD=34,∴(或者).∴DB=DE+BE=40+40=80(慊蛘逥B=DE+BE=40+39=79).答:海洋球D处到出口B处的距离为80(或者79)米(其他方法参照给分).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5. 所以这架无人机的长度为5米.。
[推荐学习]2018年中考数学考点总动员系列专题36解直角三角形含解析
[推荐学习]2018年中考数学考点总动员系列专题36解直角三角形含解析考点三十六:解直角三角形聚焦考点☆温习理解一、锐角三角函数的定义在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b正弦:sinA=∠A的对边斜边=ac余弦:cos A=∠A的邻边斜边=bc余切:tanA=∠A的对边∠A的邻边=ab二、特殊角的三角函数值αsinαcosαtanα30°12323345°2222160°32123三、解直角三角形指北或指南方向线与目标方向线所成的小于90°的水平角叫做方向角名师点睛☆典例分类考点典例一、锐角三角函数的定义【例1】(2017年甘肃省兰州市西固区桃园中学中考数学模拟)如图,点A为∠α边上的任意一点,作AC⊥BC 于点C,CD⊥AB于点D,下列用线段比表示c osα的值,错误的是()A. BDBC B. BCABC. ADACD. CDAC【答案】C【解析】∵AC⊥BC,CD⊥AB,∴∠α+∠BCD=∠ACD+∠BCD,∴∠α=∠ACD,∴cosα=cos∠ACD=BDBC =BCAB=CDAC,只有选项C错误.故选C.考点:锐角三角函数的定义.【点睛】掌握锐角三角函数的算法,正弦(sin )等于对边比斜边,余弦(cos )等于邻边比斜边,正切(tan )等于对边比邻边. 【举一反三】1. (2017哈尔滨第8题)在Rt ABC △中,90C∠°,4AB ,1AC ,则cos B 的值为( )A.154B.14 C.1515 D.41717 【答案】A考点:锐角三角函数的定义.2.(2017江苏无锡第18题)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于 .【答案】3.【解析】试题解析:平移CD 到C′D′交AB 于O′,如图所示,则∠BO′D′=∠BOD , ∴tan ∠BOD=tan ∠BO′D′, 设每个小正方形的边长为a , 则22(2)5a a a+=,O′D′=22(2a)(2)22a a+=,BD′=3a,作BE ⊥O′D′于点E , 则BE=3a 232222BD O F a aO D a''=='',2222322(5)()22a a O B BE a '-=-=,∴tanBO′E=32a232BEO E a==',∴tan ∠BOD=3.考点:锐角三角函数的定义. 考点典例二、特殊角的三角函数值【例2】(甘肃省兰州市第36中学2017年九年级数学中考模拟)在△ABC 中,(tanA 32+|2cosB|=0,则∠C的度数为()A. 30°B. 45°C. 60°D. 75°【答案】D【解析】根据非负数的性质可得tanA=3,cosB=2,根据特殊角的三角函数值可得∠A=60°,∠B=45°,再由三角形的内角和定理可得∠C=75°,故选D.考点:特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方;三角形内角和定理.【点睛】利用特殊角的三角函数值进行数的运算,往往与绝对值、乘方、开方、二次根式相结合.此题考查了特殊角的三角形函数值及绝对值、偶次方的非负性,属于基础题,关键是熟记一些特殊角的三角形函数值,也要注意运用三角形的内角和定理.【举一反三】1. (山东省德州市2017年中考数学第三次模拟)计算:tan45°+sin30°=()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形一.选择题1.(2018•江苏苏州•3分)如图,某海监船以20海里/小时的速度在某海域执行巡航任务,当海监船由西向东航行至A处时,测得岛屿P恰好在其正北方向,继续向东航行1小时到达B处,测得岛屿P在其北偏西30°方向,保持航向不变又航行2小时到达C处,此时海监船与岛屿P 之间的距离(即PC的长)为()A.40海里B.60海里C.20海里D.40海里【分析】首先证明PB=BC,推出∠C=30°,可得PC=2PA,求出PA即可解决问题;【解答】解:在Rt△PAB中,∵∠APB=30°,∴PB=2AB,由题意BC=2AB,∴PB=BC,∴∠C=∠CPB,∵∠ABP=∠C+∠CPB=60°,∴∠C=30°,∴PC=2PA,∵PA=AB•tan60°,∴PC=2×20×=40(海里),故选:D.【点评】本题考查解直角三角形的应用﹣方向角问题,解题的关键是证明PB=BC,推出∠C=30°.2.(2018•江苏无锡•3分)如图,已知点E是矩形ABCD的对角线AC上的一动点,正方形EFGH 的顶点G、H都在边AD上,若AB=3,BC=4,则tan∠AFE的值()A.等于B.等于C.等于D.随点E位置的变化而变化【分析】根据题意推知EF∥AD,由该平行线的性质推知△AEH∽△ACD,结合该相似三角形的对应边成比例和锐角三角函数的定义解答.【解答】解:∵EF∥AD,∴∠AFE=∠FAG,∴△AEH∽△ACD,∴==.设EH=3x,AH=4x,∴HG=GF=3x,∴tan∠AFE=tan∠FAG===.故选:A.【点评】考查了正方形的性质,矩形的性质以及解直角三角形,此题将求∠AFE的正切值转化为求∠FAG的正切值来解答的.3. (2018·黑龙江哈尔滨·3分)如图,在菱形ABCD中,对角线AC.BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为()A .B.2 C.5 D.10【分析】根据菱形的性质得出AC⊥BD,AO=CO,OB=OD,求出OB,解直角三角形求出AO,根据勾股定理求出AB即可.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,OB=OD,∴∠AOB=90°,∵BD=8,∴OB=4,∵tan∠ABD==,∴AO=3,在Rt△AOB中,由勾股定理得:AB===5,故选:C.【点评】本题考查了菱形的性质、勾股定理和解直角三角形,能熟记菱形的性质是解此题的关键.4.(2018•贵州贵阳•3分)如图,A.B.C 是小正方形的顶点,且每个小正方形的边长为1,则tan BAC的值为( B )(A)1(B)1 (C)23(D)33【解】图解2.二.填空题1.(2018•江苏无锡•2分)已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于15或10.【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB.AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD.BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【解答】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB.AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB.AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点评】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.2.(2018•江苏苏州•3分)如图,在Rt△ABC中,∠B=90°,AB=2,BC=.将△ABC绕点A按逆时针方向旋转90°得到△AB'C′,连接B'C,则sin∠ACB′=.【分析】根据勾股定理求出AC,过C作CM⊥AB′于M,过A作AN⊥CB′于N,求出B′M、CM,根据勾股定理求出B′C,根据三角形面积公式求出AN,解直角三角形求出即可.【解答】解:在Rt△ABC中,由勾股定理得:AC==5,过C作CM⊥AB′于M,过A作AN⊥CB′于N,∵根据旋转得出AB′=AB=2,∠B′AB=90°,即∠CMA=∠MAB=∠B=90°,∴CM=AB=2,AM=BC=,∴B′M=2﹣=,在Rt△B′MC中,由勾股定理得:B′C===5,∴S△AB′C==,∴5×AN=2×2,解得:AN=4,∴sin∠ACB′==,故答案为:.【点评】本题考查了解直角三角形、勾股定理、矩形的性质和判定,能正确作出辅助线是解此题的关键.3.(2018•山东济宁市•3分)如图,在一笔直的海岸线l上有相距2km 的A,B 两个观测站,B 站在A站的正东方向上,从A站测得船C在北偏东60°的方向上,从B站测得船C 在北偏东30°的方向上,则船C到海岸线l的距离是km.【解答】解:过点C作C D⊥AB 于点D,根据题意得:∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°,∴∠CAB=∠ACB,∴BC=AB=2km,在R t△CBD 中,CD=B C•sin60°=2×= (km).故答案为:.3. (2018•广西南宁•3分)如图,从甲楼底部A处测得乙楼顶部C处的仰角是30°,从甲楼顶部B处测得乙楼底部D处的俯角是45°,已知甲楼的高AB是120m,则乙楼的高CD是40m(结果保留根号)【分析】利用等腰直角三角形的性质得出AB=AD,再利用锐角三角函数关系得出答案.【解答】解:由题意可得:∠BDA=45°,则AB=AD=120m,又∵∠CAD=30°,∴在Rt△ADC中,tan∠CDA=tan30°==,解得:CD=40(m),故答案为:40.【点评】此题主要考查了解直角三角形的应用,正确得出tan∠CDA=tan30°=是解题关键.4. (2018·黑龙江齐齐哈尔·3分)四边形ABCD中,BD是对角线,∠ABC=90°,tan∠ABD=,AB=20,BC=10,AD=13,则线段CD= 17 .【分析】作AH⊥BD于H,CG⊥BD于G,根据正切的定义分别求出AH、BH,根据勾股定理求出HD,得到BD,根据勾股定理计算即可.【解答】解:作AH⊥BD于H,CG⊥BD于G,∵tan∠ABD=,∴=,设AH=3x,则BH=4x,由勾股定理得,(3x)2+(4x)2=202,解得,x=4,则AH=12,BH=16,在Rt△AHD中,HD==5,∴BD=BH+HD=21,∵∠ABD+∠CBD=90°,∠BCH+∠CBD=90°,∴∠ABD=∠CBH,∴=,又BC=10,∴BG=6,CG=8,∴DG=BD﹣BG=15,∴CD==17,故答案为:17.【点评】本题考查的是勾股定理、锐角三角函数的定义,掌握解直角三角形的一般步骤、理解锐角三角函数的定义是解题的关键.5.(2018•贵州铜仁•4分)在直角三角形ABC中,∠ACB=90°,D.E是边AB上两点,且CE 所在直线垂直平分线段AD,CD平分∠BCE,BC=2,则AB= 4 .【分析】由CE所在直线垂直平分线段AD可得出CE平分∠ACD,进而可得出∠ACE=∠DCE,由CD平分∠BCE利用角平分线的性质可得出∠DCE=∠DCB,结合∠ACB=90°可求出∠ACE.∠A的度数,再利用余弦的定义结合特殊角的三角函数值,即可求出AB的长度.【解答】解:∵CE所在直线垂直平分线段AD,∴CE平分∠ACD,∴∠ACE=∠DCE.∵CD平分∠BCE,∴∠DCE=∠DCB.∵∠ACB=90°,∴∠ACE=∠ACB=30°,∴∠A=60°,∴AB===4.故答案为:4.三.解答题1. (2018·湖北随州·8分)随州市新㵐水一桥(如图1)设计灵感来源于市花﹣﹣兰花,采用蝴蝶兰斜拉桥方案,设计长度为258米,宽32米,为双向六车道,2018年4月3日通车.斜拉桥又称斜张桥,主要由索塔、主梁、斜拉索组成.某座斜拉桥的部分截面图如图2所示,索塔AB和斜拉索(图中只画出最短的斜拉索DE和最长的斜拉索AC)均在同一水平面内,BC在水平桥面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.(1)求最短的斜拉索DE的长;(2)求最长的斜拉索AC的长.【分析】(1)根据等腰直角三角形的性质计算DE的长;(2)作AH⊥BC于H,如图2,由于BD=DE=3,则AB=3BD=15,在Rt△ABH中,根据等腰直角三角形的性质可计算出BH=AH=15,然后在Rt△ACH中利用含30度的直角三角形三边的关系即可得到AC的长.【解答】解:(1)∵∠ABC=∠DEB=45°,∴△BDE为等腰直角三角形,∴DE=BE=×6=3.答:最短的斜拉索DE的长为3m;(2)作AH⊥BC于H,如图2,∵BD=DE=3,∴AB=3BD=5×3=15,在Rt△ABH中,∵∠B=45°,∴BH=AH=AB=×15=15,在Rt△ACH中,∵∠C=30°,∴AC=2AH=30.答:最长的斜拉索AC的长为30m.【点评】本题考查了解直角三角形的应用:将实际问题抽象为数学问题(画出平面图形,构造出直角三角形转化为解直角三角形问题).2. (2018·湖南郴州·8分)小亮在某桥附近试飞无人机,如图,为了测量无人机飞行的高度AD,小亮通过操控器指令无人机测得桥头B,C的俯角分别为∠EAB=60°,∠EAC=30°,且D,B,C在同一水平线上.已知桥BC=30米,求无人机飞行的高度AD.(精确到0.01米.参考数据:≈1.414,≈1.732)【分析】由∠EAB=60°、∠EAC=30°可得出∠CAD=60°、∠BAD=30°,进而可得出CD=AD.BD=AD,再结合BC=30即可求出AD的长度.【解答】解:∵∠EAB=60°,∠EAC=30°,∴∠CAD=60°,∠BAD=30°,∴CD=AD•tan∠CAD=AD,BD=AD•tan∠BAD=AD,∴BC=CD﹣BD=AD=30,∴AD=15≈25.98.【点评】本题考查了解直角三角形的应用中的仰角俯角问题,通过解直角三角形找出CD=AD.BD=AD是解题的关键.3.(2018•江苏宿迁•10分)如图,为了测量山坡上一棵树PQ的高度,小明在点A处利用测角仪测得树顶P的仰角为450,然后他沿着正对树PQ的方向前进10m到达B点处,此时测得树顶P和树底Q的仰角分别是600和300,设PQ垂直于AB,且垂足为C.(1)求∠BPQ的度数;(2)求树PQ的高度(结果精确到0.1m,)【答案】(1)∠BPQ=30°;(2)树PQ的高度约为15.8m.【分析】 (1)根据题意题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=100m,在Rt△PBC 中,根据三角形内角和定理即可得∠BPQ度数;(2)设CQ=x,在Rt△QBC中,根据30度所对的直角边等于斜边的一半得BQ=2x,由勾股定理得BC=x;根据角的计算得∠PBQ=∠BPQ=30°,由等角对等边得PQ=BQ=2x,用含x的代数式表示PC=PQ+QC=3x,AC=AB+BC=10+x,又∠A=45°,得出AC=PC,建立方程解之求出x,再将x值代入PQ代数式求之即可.【详解】(1)依题可得:∠A=45°,∠PBC=60°,∠QBC=30°,AB=10m,在Rt△PBC中,∵∠PBC=60°,∠PCB=90°,∴∠BPQ=30°;(2)设CQ=x,在Rt△QBC中,∵∠QBC=30°,∠QCB=90°,∴BQ=2x,BC=x,又∵∠PBC=60°,∠QBC=30°,∴∠PBQ=30°,由(1)知∠BPQ=30°,∴PQ=BQ=2x,∴PC=PQ+QC=3x,AC=AB+BC=10+x,又∵∠A=45°,∴AC=PC,即3x=10+x,解得:x=,∴PQ=2x=≈15.8(m),答:树PQ的高度约为15.8m.【点睛】本题考查了解直角三角形的应用,涉及到三角形的内角和定理、等腰三角形的性质、含30度角的直角三角形的性质等,准确识图是解题的关键.4.(2018•江苏淮安•8分)为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P 到公路l的距离.(结果保留整数,参考数据:≈1.414,≈1.732)【分析】作PD⊥AB于D,构造出Rt△APD与Rt△BPD,根据AB的长度.利用特殊角的三角函数值求解.【解答】解:作PD⊥AB于D.设BD=x,则AD=x+200.∵∠EAP=60°,∴∠PAB=90°﹣60°=30°.在Rt△BPD中,∵∠FBP=45°,∴∠PBD=∠BPD=45°,∴PD=DB=x.在Rt△APD中,∵∠PAB=30°,∴CD=tan30°•AD,即DB=CD=tan30°•AD=x=(200+x),解得:x≈273.2,∴CD=273.2.答:凉亭P到公路l的距离为273.2m.【点评】此题考查的是直角三角形的性质,解答此题的关键是构造出两个特殊角度的直角三角形,再利用特殊角的三角函数值解答.5.(2018•江苏徐州•5分)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m)参考数据:≈1.414,≈1.732【分析】利用锐角三角函数,在Rt△CDE中计算出坝高DE及CE的长,通过矩形ADEF.利用等腰直角三角形的边角关系,求出BF的长,得到坝底的宽.【解答】解:在Rt△CDE中,∴DE=sin30°×DC=×14=7(m),∵sin∠C=,cos∠C=,CE=cos30°×DC=×14=7≈12.124≈12.12,∵四边形AFED是矩形,∴EF=AD=6m,AF=DE=7m在Rt△ABF中,∵∠B=45°,∴DE=AF=7m,∴BC=BF+EF+EC≈7+6+12.12=25.12≈25.1(m)答:该坝的坝高和坝底宽分别为7m和25.1m.【点评】本题考查了解直角三角形的应用.题目难度不大,求BF的长即可利用直角等腰三角形的性质,也可利用锐角三角函数.6.(2018•江苏无锡•8分)如图,四边形ABCD内接于⊙O,AB=17,CD=10,∠A=90°,cosB=,求AD的长.【分析】根据圆内接四边形的对角互补得出∠C=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.解Rt△AEB,得出BE=AB•cos∠ABE=,AE==,那么AF=AE﹣EF=.再证明∠ABC+∠ADF=90°,根据互余角的互余函数相等得出sin∠ADF=cos∠ABC=.解Rt△ADF,即可求出AD==6.【解答】解:∵四边形ABCD内接于⊙O,∠A=90°,∴∠C=180°﹣∠A=90°,∠ABC+∠ADC=180°.作AE⊥BC于E,DF⊥AE于F,则CDFE是矩形,EF=CD=10.在Rt△AEB中,∵∠AEB=90°,AB=17,cos∠ABC=,∴BE=AB•cos∠ABE=,∴AE==,∴AF=AE﹣EF=﹣10=.∵∠ABC+∠ADC=180°,∠CDF=90°,∴∠ABC+∠ADF=90°,∵cos∠ABC=,∴sin∠ADF=cos∠ABC=.在Rt△ADF中,∵∠AFD=90°,sin∠ADF=,∴AD===6.【点评】本题考查了圆内接四边形的性质,矩形的判定与性质,勾股定理,解直角三角形,求出AF=以及sin∠ADF=是解题的关键.7.(2018•江苏宿迁•10分)如图,AB.AC分别是⊙O的直径和弦,OD⊥AC于点D,过点A作⊙O的切线与OD的延长线交于点P,PC.AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.【答案】(1)证明见解析;(2)CF=5.【分析】试题分析:(1)、连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;(2)、依据切线的性质定理可知OC⊥PE,然后通过解直角三角函数,求得OF的值,再减去圆的半径即可.试题解析:(1)、连接OC,∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC,在△OAP和△OCP中,,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP∵PA是⊙O的切线,∴∠OAP=90°.∴∠OCP=90°,即OC⊥PC∴PC是⊙O的切线.(2)、∵AB是直径,∴∠ACB=90°,∵∠CAB=30°,∴∠COF=60°,∵PC是⊙O的切线,AB=10,∴OC⊥PF,OC=OB=AB=5,∴OF==10,∴BF=OF﹣OB=5.【点睛】(1)、切线的判定与性质;(2)、解直角三角形9.(2018•山东烟台市•8分)汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,ta n35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)【分析】先求得AC=PCtan∠APC=87.BC=PCtan∠BPC=21,据此得出AB=AC﹣BC=87﹣21=66,从而求得该车通过AB段的车速,比较大小即可得.【解答】解:在Rt△APC中,AC=PCtan∠APC=30tan71°≈30×2.90=87,在Rt△BPC中,BC=PCtan∠BP C=30tan35°≈30×0.70=21,则AB=AC﹣BC=87﹣21=66,∴该汽车的实际速度为=11m/s,又∵40km/h≈11.1m/s,∴该车没有超速.【点评】此题考查了解直角三角形的应用,涉及的知识有:锐角三角函数定义,熟练掌握三角函数的定义是解本题的关键.10.(2018•山东济宁市•8分)随着我市农产品整体品牌形象“聊•胜一筹!”的推出,现代农业得到了更快发展.某农场为扩大生产建设了一批新型钢管装配式大棚,如图1.线段AB,BD分别表示大棚的墙高和跨度,AC表示保温板的长.已知墙高AB为2米,墙面与保温板所成的角∠BAC=150°,在点D处测得A点、C点的仰角分别为9°,15.6°,如图2.求保温板AC的长是多少米?(精确到0.1米)(参考数据:≈0.86,sin9°≈0.16,cos9°≈0.99,tan9°≈0.16,sin15.6°≈0.27,cos15.6°≈0.96,tan15.6°≈0.28)【分析】作CE⊥BD.AF⊥CE,设AF=x,可得AC=2x、CF=x,在Rt△ABD中由AB=EF=2知BD=,DE=BD﹣BE=﹣x,CE=EF+CF=2+x,根据tan∠CDE=列出关于x 的方程,解之可得.【解答】解:如图所示,过点C作CE⊥BD于点E,过点A作AF⊥CE于点F,则四边形ABEF是矩形,∴AB=EF、AF=BE,设AF=x,∵∠BAC=150°、∠BAF=90°,∴∠CAF=60°,则AC==2x、CF=AFtan∠CAF=x,在Rt△ABD中,∵AB=EF=2,∠A DB=9°,∴BD==,则DE=BD﹣BE=﹣x,CE=EF+CF=2+x,在Rt△CDE中,∵tan∠CDE=,∴tan15.6°=,解得:x≈0.7,即保温板AC的长是0.7米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是理解题意,构建直角三角形,并熟练掌握三角函数的应用.11.(2018•山东东营市•8分)关于x的方程2x2﹣5xsinA+2=0有两个相等的实数根,其中∠A是锐角三角形ABC的一个内角.(1)求sinA的值;(2)若关于y的方程y2﹣10y+k2﹣4k+29=0的两个根恰好是△ABC的两边长,求△ABC的周长.【分析】(1)利用判别式的意义得到△=25sin2A﹣16=0,解得sinA=;(2)利用判别式的意义得到100﹣4(k2﹣4k+29)≥0,则﹣(k﹣2)2≥0,所以k=2,把k=2代入方程后解方程得到y1=y2=5,则△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,利用三角形函数求出AD=3,BD=4,再利用勾股定理求出BC即得到△ABC的周长;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,利用三角函数求出AD得到AC的长,从而得到△ABC的周长.【解答】解:(1)根据题意得△=25sin2A﹣16=0,∴sin2A=,∴sinA=或,∵∠A为锐角,∴sinA=;(2)由题意知,方程y2﹣10y+k2﹣4k+29=0有两个实数根,则△≥0,∴100﹣4(k2﹣4k+29)≥0,∴﹣(k﹣2)2≥0,∴(k﹣2)2≤0,又∵(k﹣2)2≥0,∴k=2,把k=2代入方程,得y2﹣10y+25=0,解得y1=y2=5,∴△ABC是等腰三角形,且腰长为5.分两种情况:当∠A是顶角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=AC=5∵sinA=,∴AD=3,BD=4∴DC=2,∴BC=.∴△ABC的周长为;当∠A是底角时:如图,过点B作BD⊥AC于点D,在Rt△ABD中,AB=5,∵sinA=,∴A D=DC=3,∴AC=6.∴△ABC的周长为16,综合以上讨论可知:△ABC的周长为或16.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.也考查了解直角三角形.12.(2018•上海•10分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.【点评】此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.13. (2018•达州•6分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)【分析】过点C作CD⊥AB,设CD=x,由∠CBD=45°知BD=CD=x米,根据tanA=列出关于x的方程,解之可得.【解答】解:如图,过点C作CD⊥AB,交AB延长线于点D,设CD=x米,∵∠CBD=45°,∠BDC=90°,∴BD=CD=x米,∵∠A=30°,AD=AB+BD=4+x,∴tanA=,即=,解得:x=2+2,答:该雕塑的高度为(2+2)米.【点评】本题主要考查解直角三角形的应用﹣仰角俯角问题,解题的关键是根据题意构建直角三角形,并熟练掌握三角函数的应用.14. (2018•遂宁•10分)如图,某测量小组为了测量山BC的高度,在地面A处测得山顶B 的仰角45°,然后沿着坡度为=1:的坡面AD走了200米达到D处,此时在D处测得山顶B的仰角为60°,求山高BC(结果保留根号).【分析】作DF⊥AC于F.解直角三角形分别求出BE.EC即可解决问题;【解答】解:作DF⊥AC于F.∵DF:AF=1:,AD=200米,∴tan∠DAF=,∴∠DAF=30°,∴DF=AD=×200=100,∵∠DEC=∠BCA=∠DFC=90°,∴四边形DECF是矩形,∴EC=BF=100(米),∵∠BAC=45°,BC⊥AC,∴∠ABC=45°,∵∠BDE=60°,DE⊥BC,∴∠DBE=90°﹣∠BDE=90°﹣60°=30°,∴∠ABD=∠ABC﹣∠DBE=45°﹣30°=15°,∠BAD=∠BAC﹣∠1=45°﹣30°=15°,∴∠ABD=∠BAD,∴AD=BD=200米,在Rt△BDE中,sin∠BDE=,∴BE=BD•sin∠BDE=200×=100,∴BC=BE+EC=100+100(米).【点评】本题考查解直角三角形的应用仰角俯角问题,坡度坡角问题等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15. (2018•资阳•9分)如图是小红在一次放风筝活动中某时段的示意图,她在A处时的风筝线(整个过程中风筝线近似地看作直线)与水平线构成30°角,线段AA1表示小红身高1.5米.(1)当风筝的水平距离AC=18米时,求此时风筝线AD的长度;(2)当她从点A跑动9米到达点B处时,风筝线与水平线构成45°角,此时风筝到达点E处,风筝的水平移动距离CF=10米,这一过程中风筝线的长度保持不变,求风筝原来的高度C1D.【分析】(1)在Rt△ACD中,由AD=可得答案;(2)设AF=x米,则BF=AB+AF=9+x,在Rt△BEF中求得AD=BE==18+x,由cos∠CAD=可建立关于x的方程,解之求得x的值,即可得出AD的长,继而根据CD=ADsin ∠CAD求得CD从而得出答案.【解答】解:(1)∵在Rt△ACD中,cos∠CAD=,AC=18.∠CAD=30°,∴AD====12(米),答:此时风筝线AD的长度为12米;(2)设AF=x米,则BF=AB+AF=9+x(米),在Rt△BEF中,BE===18+x(米),由题意知AD=BE=18+x(米),∵CF=10,∴AC=AF+CF=10+x,由cos∠CAD=可得=,解得:x=3+2,则AD=18+(3+2)=24+3,∴CD=ADsin∠CAD=(24+3)×=,则C1D=CD+C1C=+=,答:风筝原来的高度C1D为米.【点评】本题主要考查解直角三角形的应用,解题的关键是掌握三角函数的定义及根据题意找到两直角三角形间的关联.16. (2018•乌鲁木齐•10分)如图,小强想测量楼CD的高度,楼在围墙内,小强只能在围墙外测量,他无法测得观测点到楼底的距离,于是小强在A处仰望楼顶,测得仰角为37°,再往楼的方向前进30米至B处,测得楼顶的仰角为53°(A,B,C三点在一条直线上),求楼CD的高度(结果精确到0.1米,小强的身高忽略不计).【分析】设CD=xm,根据AC=BC﹣AB,构建方程即可解决问题;【解答】解:设CD=xm,在Rt△ACD中,tan∠A=,∴AC=,同法可得:BC=,∵AC=BC=AB,∴﹣=30,解得x=52.3,答:楼CD的高度为52.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题.注意能借助仰角构造直角三角形并解直角三角形是解此题的关键.17. (2018•嘉兴•10分)如图1,滑动调节式遮阳伞的立柱垂直于地面,为立柱上的滑动调节点,伞体的截面示意图为,为中点, ,. ,.当点位于初始位置时,点与重合(图2).根据生活经验,当太阳光线与垂直时,遮阳效果最佳.(1)上午10:00时,太阳光线与地面的夹角为(图3),为使遮阳效果最佳,点需从上调多少距离? (结果精确到)(2)中午12:00时,太阳光线与地面垂直(图4),为使遮阳效果最佳,点在(1)的基础上还需上调多少距离? (结果精确到)(参考数据:,,,,)【答案】(1)点需从上调;(2)点在(1)的基础上还需上调【解析】【分析】(1)如图2,当点位于初始位置时,. 10:00时,太阳光线与地面的夹角为,点上调至处,.,为等腰直角三角形,,即可求出点需从上调的距离.(2)中午12:00时,太阳光线与,地面都垂直,点上调至处,过点作于点,,,根据即可求解. 【解答】(1)如图2,当点位于初始位置时,.如图3,10:00时,太阳光线与地面的夹角为,点上调至处,,,∴,∴.∵,∴.∵,∴,∴为等腰直角三角形,∴,∴,即点需从上调.(2)如图4,中午12:00时,太阳光线与,地面都垂直,点上调至处,∴.∵,∴.∵,∴.∵,得为等腰三角形,∴.过点作于点,∴,∴,∴,即点在(1)的基础上还需上调.【点评】考查等腰三角形的性质,解直角三角形,熟练运用三角函数是解题的关键.可以数形结合.18. (2018•贵州安顺•10分)如图是某市一座人行天桥的示意图,天桥离地面的高是米,坡面的倾斜角,在距点米处有一建筑物.为了方便行人推车过天桥,市政府部门决定降低坡度,使新坡面的倾斜角,若新坡面下处与建筑物之间需留下至少米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数). (参考数据:,)【答案】该建筑物需要拆除.【解析】分析:根据正切的定义分别求出AB.DB的长,结合图形求出DH,比较即可.详解:由题意得,米,米,在中,,∴,在中,,∴,∴(米),∵米米,∴该建筑物需要拆除.点睛:本题考查的是解直角三角形的应用-坡度坡角问题,掌握锐角三角函数的定义、熟记特殊角的三角函数值是解题的关键.19. (2018•广西桂林•8分)如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B 处需要等待多长时间才能得到海监船A的救援?(参考数据:,,结果精确到0.1小时)【答案】1.0小时.【解析】分析:延长AB交南北轴于点D,则AB⊥CD于点D,通过解直角三角形BDC和ADC,求出BD.CD和AD的长,继而求出AB的长,从而可以解决问题.详解:如图,因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D.∵∠BCD=45°,BD⊥CD,∴BD=CD.在Rt△BDC中,∵cos∠BCD=,BC=60海里,即cos45°=,解得CD=海里,∴BD=CD=海里.在Rt△ADC中,∵tan∠ACD=即 tan60°==,解得AD=海里,∵AB=AD-BD,∴AB=-=30()海里.∵海监船A的航行速度为30海里/小时,则渔船在B处需要等待的时间为==≈2.45-1.41=1.04≈1.0小时,∴渔船在B处需要等待约1.0小时.点睛:此题考查了方向角问题.此题难度适中,解题的关键是利用方向角构造直角三角形,然后解直角三角形,注意数形结合思想的应用.20. (2018·黑龙江大庆·6分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P 的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B处,求此时轮船所在的B处与灯塔P的距离.(参考数据:≈2.449,结果保留整数)【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB.【解答】解:作PC⊥AB于C点,∴∠APC=30°,∠BPC=45° AP=80(海里).在Rt△APC中,cos∠APC=,∴PC=PA•cos∠APC=40(海里).在Rt△PCB中,cos∠BPC=,∴PB===40≈98(海里).答:此时轮船所在的B处与灯塔P的距离是98海里.21.(2018·湖北省恩施·8分)如图所示,为测量旗台A与图书馆C之间的直线距离,小明在A处测得C在北偏东30°方向上,然后向正东方向前进100米至B处,测得此时C 在北偏西15°方向上,求旗台与图书馆之间的距离.(结果精确到1米,参考数据≈1.41,≈1.73)【分析】先根据题目给出的方向角.求出三角形各个内角的度数,过点B作BE⊥AC构造直角三角形.利用三角函数求出AE.BE,再求和即可.【解答】解:由题意知:∠WAC=30°,∠NBC=15°,∴∠BAC=60°,∠ABC=75°,∴∠C=45°过点B作BE⊥AC,垂足为E.在Rt△AEB中,∵∠BAC=60°,AB=100米∴AE=cos∠BAC×AB=×100=50(米)BE=sin∠BAC×AB=×100=50(米)在Rt△CEB中,∵∠C=45°,BE=50(米)∴CE=BE=50=86.5(米)∴AC=AE+CE=50+86.5=136.5(米)≈137米答:旗台与图书馆之间的距离约为137米.【点评】本题考查了方向角和解直角三角形.题目难度不大,过点B作AC的垂线构造直角三角形是解决本题的关键.22.(2018•贵州铜仁•10分)如图,有一铁塔AB,为了测量其高度,在水平面选取C,D两点,在点C处测得A的仰角为45°,距点C的10米D处测得A的仰角为60°,且C.D.B 在同一水平直线上,求铁塔AB的高度(结果精确到0.1米,≈1.732)【分析】根据AB和∠ADB.AB和∠ACB可以求得DB.CB的长度,根据CD=CB﹣DB可以求出AB 的长度,即可解题.【解答】解:在Rt△ADB中,DB==AB,Rt△ACB中,CB==AB,∵CD=CB﹣DB,∴AB=≈23.7(米)答:电视塔AB的高度约23.7米.23.(2018•海南•8分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A 处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A.B.C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.24.(2018•贵州遵义•8分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水平线的夹角为64°,吊臂底部A距地面1.5m.(计算结果精确到0.1m,参考数据sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4 m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,。