高中数学第一章集合与函数概念1-2函数及其表示1-2-1函数的概念优化练习新人教A版必修1
数学必修一浙江省高中新课程作业本答案
数学必修一浙江省高中新课程作业本答案答案与提示仅供参考第一章集合与函数概念1.1集合1 1 1集合的含义与表示列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.,12,2.1 1 2集合间的基本关系,{-1},{1},{-1,1}.5. .6.①③⑤.= ,{1},{2},{1,2}},B∈A.=b=1.1 1 3集合的基本运算(一)或x≥5}.∪B={-8,-7,-4,4,9}..11.{a|a=3,或-22<a<22}.提示:∵A∪B=A,∴B A.而A={1,2},对B进行讨论:①当B= 时,x2-ax+2=0无实数解,此时Δ=a2-8<0,∴-22<a<22.②当B≠时,B={1,2}或B={1}或B={2};当B={1,2}时,a=3;当B={1}或B={2}时,Δ=a2-8=0,a=±22,但当a=±22时,方程x2-ax+2=0的解为x=±2,不合题意.1 1 3集合的基本运算(二)或x≤1}.或或x≤2}.={2,3,5,7},B={2,4,6,8}.,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3,4 }.=4,b=2.提示:∵A∩綂UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩綂UB={2},∴-6 綂UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂UB,而2∈綂UB,满足条件A∩綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2},∴2 綂UB,与条件A∩綂UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一),且x≠-3}.略.(2) 2 1函数的概念(二)且x≠-1}.5.[0,+∞)..,-13,-12,.(1)y|y≠25.(2)[-2,+∞).9.(0,1].∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)略.8.x1234y9.略. 2 2函数的表示法(二)略.(x)=2x(-1≤x<0),-2x+2(0≤x≤1).(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.=(0<x≤20),(20<x≤40),(40<x≤60),(60<x≤80).11.略.1.3函数的基本性质1 3 1单调性与最大(小)值(一)略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.≥-1.11.设-1<x1<x2<1,则f(x1)-f(x2)=x1x21-1-x2x22-1=(x1x2+1)(x2-x1)(x21-1)(x22-1),∵x21-1<0,x22-1<0,x1x2+1<0,x2-x1>0,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)>0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x>12.且日均销售量应为440-(x-13)·40>0,即x<23,总利润y=(x-12)[440-(x-13)·40]-600(12<x<23),配方得y=-40(x-18)2+840,所以当x=18∈(12,23)时,y取得最大值840元,即定价为18元时,日均利润最大.1 3 2奇偶性答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.(x)=x(1+3x)(x≥0),x(1-3x)(x<0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2 a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)<3,∴4(2b-1)+12b<3 2b-32b<0 0<b<32.∵a,b,c∈Z,∴b=1,∴a=1.单元练习只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×1 3=,f=5×+×=,f=5×+1×+×6 5=.(2)f(x)=(0≤x≤5),(5<x≤6),(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1<x2,都有f(x1)>f(x2)成立,即(x1-x2)2+ax1x2>0,只要a<-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a<-2,即a的取值范围是(-∞,-2).第二章基本初等函数(Ⅰ)2.1指数函数2 1 1指数与指数幂的运算(一)原式=|x-2|-|x-3|=-1(x<2),2x-5(2≤x≤3),1(x>3).原式=2yx-y=2.11.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立.2 1 1指数与指数幂的运算(二)且x≠.原式=52-1+116+18+110=14380.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab.11.原式=1-2-181+2-181+2-141+2-121-2-18=12-827.2 1 1指数与指数幂的运算(三)由8a=23a=14=2-2,得a=-23,所以f(27)=27-23= 7288,0 0885.10.提示:先由已知求出x-y=-(x-y)2=-(x+y)2-4xy=-63,所以原式=x-2xy+yx-y=-33..2 1 2指数函数及其性质(一).(1,0).>图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当x=2时,y有最小值0;当x=4时,y有最大值当a>1时,x2-2x+1>x2-3x+5,解得{x|x>4};当0<a <1时,x2-2x+1<x2-3x+5,解得{x|x<4}.2 1 2指数函数及其性质(二),或y<-1}.<略.+a-m>an+a-n.2 1 2指数函数及其性质(三)向右平移12个单位.6.(-∞,0).7.由已知得x≤,由于所以x≥,所以2h后才可驾驶.8.(1-a)a>(1-a)b>(1-b)人).10.指数函数y=ax满足f(x)·f(y)=f(x+y);正比例函数y=kx(k ≠0)满足f(x)+f(y)=f(x+y).,57.2.2对数函数2 2 1对数与对数运算(一)所以x=(z2y)2=z4y(z>0,且z≠1).(2)由x+3>0,2-x<0,且2-x ≠1,得-3<x<2,且x≠1.10.由条件得lga=0,lgb=-1,所以a=1,b=110,则a-b=910.11.左边分子、分母同乘以ex,去分母解得e2x=3,则x=12ln3.2 2 1对数与对数运算(二)原式=log2748×12÷142=log212=-12.8.由已知得(x-2y)2=xy,再由x>0,y>0,x>2y,可求得xy=.略..11.由已知得(log2m)2-8log2m=0,解得m=1或16.2 2 1对数与对数运算(三)提示:注意到1-log63=log62以及log618=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.,4)..2 2 2对数函数及其性质(一)分钟.5.①②③..≤x≤.提示:注意对称关系.9.对loga(x+a)<1进行讨论:①当a>1时,0<x+a<a,得-a<x<0;②当0<a<1时,x+a>a,得x>0.:a=32,C2:a=3,C3:a=110,C4:a=25.11.由f(-1)=-2,得lgb=lga-1①,方程f(x)=2x即x2+lga·x+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=100,继而b=10.2 2 2对数函数及其性质(二)4<<.<logba<.(1)由2x-1>0得x>0.(2)x>lg3lg2.9.图略,y=log12(x+2)的图象可以由y=log12x的图象向左平移2个单位得到.10.根据图象,可得0<p<q<.(1)定义域为{x|x≠1},值域为R.(2)a=2.2 2 2对数函数及其性质(三),(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2x.10.可以用求反函数的方法得到,与函数y=loga(x+1)关于直线y=x对称的函数应该是y=ax-1,和y=logax+1关于直线y=x对称的函数应该是y=ax-1.11.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f12+f(1)=0.猜想:f(-x)+f(-1+x)=0,证明略.2 3幂函数图象略,由图象可得f(x)≤1的解集x∈[-1,1].9.图象略,关于y=x对称.∈0,3+.定义域为(-∞,0)∪(0,∞),值域为(0,∞),是偶函数,图象略.单元练习8.提示:先求出h=10.15.(1)-1.(2)1.∈R,y=12x=1+lga1-lga>0,讨论分子、分母得-1<lga<1,所以a∈110,10.17.(1)a=2.(2)设g(x)=log12(10-2x)-12x,则g(x)在[3,4]上为增函数,g(x)>m对x∈[3,4]恒成立,m<g(3)=-178.18.(1)函数y=x+ax(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=x+cx(c>0)在[1,2]上是减函数,所以当x=1时,y有最大值1+c;当x=2时,y有最小值2+c2.=(ax+1)2-2≤14,当a>1时,函数在[-1,1]上为增函数,ymax=(a+1)2-2=14,此时a=3;当0<a<1时,函数[-1,1]上为减函数,ymax=(a-1+1)2-2=14,此时a=13.∴a=3,或a=13.20.(1)F(x)=lg1-xx+1+1x+2,定义域为(-1,1).(2)提示:假设在函数F(x)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(x1,y),B(x2,y)(x1≠x2),则f(x1)-f(x2)=0,而f(x1)-f(x2)=lg1-x1x1+1+1x1+2-lg1-x2x2+1-1x2+2=lg(1-x1)(x2 +1)(x1+1)(1-x2)+x2-x1(x1+2)(x2+2)=①+②,可证①,②同正或同负或同为零,因此只有当x1=x2时,f(x1)-f(x2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)第三章函数的应用3 1函数与方程3 1 1方程的根与函数的零点如:f(a)f(b)≤函数的零点为-1,1,2.提示:f(x)=x2(x-2)-(x-2)=(x-2)(x-1)(x+1).8.(1)(-∞,-1)∪(-1,1).(2)m=12.9.(1)设函数f(x)=2ax2-x-1,当Δ=0时,可得a=-18,代入不满足条件,则函数f(x)在(0,1)内恰有一个零点.∴f(0)·f(1)=-1×(2a-1-1)<0,解得a>1.(2)∵在[-2,0]上存在x0,使f(x0)=0,则f(-2)·f(0)≤0,∴(-6m-4)×(-4)≤0,解得m≤-23.10.在(-2,-1 5),(-0 5,0),(0,0 5)内有零点.11.设函数f(x)=3x-2-xx+1.由函数的单调性定义,可以证明函数f(x)在(-1,+∞)上是增函数.而f(0)=30-2=-1<0,f(1)=31-12=52>0,即f(0)·f(1)<0,说明函数f(x)在区间(0,1)内有零点,且只有一个.所以方程3x=2-xx+1在(0,1)内必有一个实数根.3 1 2用二分法求方程的近似解(一),2 5].提示:先画一个草图,可估计出零点有一个在区间(2,3)内,取2与3的平均数2 5,因f(2 5)=0 25>0,且f(2)<0,则零点在(2,2 5)内,再取出2 25,计算f(2 25)=-0 4375,则零点在(2 25,2 5)内.以此类推,最后零点在(2 375,2 4375)内,故其近似值为2 4375.4296875.11.设f(x)=x3-2x-1,∵f(-1)=0,∴x1=-1是方程的解.又f(-0 5)=-0 125<0,f(-0 75)=0 078125>0,x2∈(-0 75,-0 5),又∵f(-0 625)=0 005859>0,∴x2∈(-0 625,-0 5).又∵f(-0 5625)=-0 05298<0,∴x2∈(-0 625,-0 5625),由|+|<,故x2=是原方程的近似解,同理可得x3=1 5625.3 1 2用二分法求方程的近似解(二)画出图象,经验证可得x1=2,x2=4适合,而当x<0时,两图象有一个交点,∴根的个数为3.9.对于f(x)=x4-4x-2,其图象是连续不断的曲线,∵f(-1)=3>0,f(2)=6>0,f(0)<0,∴它在(-1,0),(0,2)内都有实数解,则方程x4-4x-2=0在区间[-1,2]内至少有两个实数根.=0,或m=92.11.由x-1>0,3-x>0,a-x=(3-x)(x-1),得a=-x2+5x-3(1<x<3),由图象可知,a>134或a≤1时无解;a=134或1<a≤3时,方程仅有一个实数解;3<a<134时,方程有两个实数解.3 2函数模型及其应用3.2.1几类不同增长的函数模型(1)设一次订购量为a时,零件的实际出厂价恰好为51元,则a=100+=550(个).(2)p=f(x)=60(0<x≤100,x∈N*),62-x50(100<x<550,x∈N*),51(x≥550,x∈N*).8.(1)x年后该城市人口总数为y=100×(1+%)x.(2)10年后该城市人口总数为y=100×(1+%)10=100×≈(万). (3)设x年后该城市人口将达到120万人,即100×(1+%)x=120,x==(年).9.设对乙商品投入x万元,则对甲商品投入9-x万元.设利润为y万元,x∈[0,9].∴y=110(9-x)+25x=110(-x+4x+9)=110[-(x-2)2+13],∴当x=2,即x=4时,ymax=.所以,投入甲商品5万元、乙商品4万元时,能获得最大利润万元.10.设该家庭每月用水量为xm3,支付费用为y元,则y=8+c,0≤x≤a,①8+b(x-a)+c,x>a.②由题意知0<c<5,所以8+c<13.由表知第2、3月份的费用均大于13,故用水量15m3,22m3均大于am3,将15,22分别代入②式,得19=8+(15-a)b+c,33=8+(22-a)b+c,∴b=2,2a=c+19.③再分析1月份的用水量是否超过最低限量,不妨设9>a,将x=9代入②,得9=8+2(9-a)+c,2a=c+17与③矛盾,∴a≥月份的付款方式应选①式,则8+c=9,c=1,代入③,得a=10.因此a=10,b=2,c=1. (第11题)11.根据提供的数据,画出散点图如图:由图可知,这条曲线与函数模型y=ae-n接近,它告诉人们在学习中的遗忘是有规律的,遗忘的进程不是均衡的,而是在记忆的最初阶段遗忘的速度很快,后来就逐渐减慢了,过了相当长的时间后,几乎就不再遗忘了,这就是遗忘的发展规律,即“先快后慢”的规律.观察这条遗忘曲线,你会发现,学到的知识在一天后,如果不抓紧复习,就只剩下原来的13.随着时间的推移,遗忘的速度减慢,遗忘的数量也就减少.因此,艾宾浩斯的实验向我们充分证实了一个道理,学习要勤于复习,而且记忆的理解效果越好,遗忘得越慢.3 2 2函数模型的应用实例汽车在5h内行驶的路程为360km.;越大.7.(1)1 5m/s.(2).从2015年开始.9.(1)应选y=x(x-a)2+b,因为①是单调函数,②至多有两个单调区间,而y=x(x-a)2+b可以出现两个递增区间和一个递减区间.(2)由已知,得b=1,2(2-a)2+b=3,a>1,解得a=3,b=1.∴函数解析式为y=x(x-3)2+1.10.设y1=f(x)=px2+qx+r(p≠0),则f(1)=p+q+r=1,f(2)=4p+2q+r=1 2,f(3)=9p+3q+r=1 3,解得p=-0 05,q=0 35,r=0 7,∴f(4)=-0 05×42+0 35×4+0 7=1 3,再设y2=g(x)=abx+c,则g(1)=ab+c=1,g(2)=ab2+c=1 2,g(3)=ab3+c=1 3,解得a=-0 8,b=0 5,c=1 4,∴g(4)=-0 8×0 54+1 4=1 35,经比较可知,用y=-0 8×(0 5)x+1 4作为模拟函数较好.11.(1)设第n年的养鸡场的个数为f(n),平均每个养鸡场养g(n)万只鸡,则f(1)=30,f(6)=10,且点(n,f(n))在同一直线上,从而有:f(n)=34-4n(n=1,2,3,4,5,6).而g(1)=1,g(6)=2,且点(n,g(n))在同一直线上,从而有:g(n)=n+45(n=1,2,3,4,5,6).于是有f(2)=26,g(2)=(万只),所以f(2)·g(2)=(万只),故第二年养鸡场的个数是26个,全县养鸡万只.(2)由f(n)·g(n)=-45n-942+1254,得当n=2时,[f(n)·g(n)]max=.故第二年的养鸡规模最大,共养鸡万只.单元练习,y2,y1.15.令x=1,则12-0>0,令x=10,则1210×10-1<0.选初始区间[1,10],第二次为[1,],第三次为[1,],第四次为[,],第五次为[,],所以存在实数解在[2,3]内.(第16题)16.按以下顺序作图:y=2-xy=2-|x|y=2-|x-1|.∵函数y=2-|x-1|与y=m的图象在0<m≤1时有公共解,∴0<m≤1.17.两口之家,乙旅行社较优惠,三口之家、多于三口的家庭,甲旅行社较优惠.18.(1)由题意,病毒总数N关于时间n的函数为N=2n-1,则由2n-1≤108,两边取对数得(n-1)lg2≤8,n≤,即第一次最迟应在第27天时注射该种药物.(2)由题意注入药物后小白鼠体内剩余的病毒数为226×2%,再经过n天后小白鼠体内病毒数为226×2%×2n,由题意,226×2%×2n≤108,两边取对数得26lg2+lg2-2+nlg2≤8,得x≤,故再经过6天必须注射药物,即第二次应在第33天注射药物.19.(1)f(t)=300-t(0≤t≤200),2t-300(200<t≤300),g(t)=1200(t-150)2+100(0≤t≤300).(2)设第t天时的纯利益为h(t),则由题意得h(t)=f(t)-g(t),即h(t)=-1200t2+12t+1752(0≤t≤200),-1200t2+72t-10252(200<t≤300).当0≤t≤200时,配方整理得h(t)=-1200(t-50)2+100,∴当t=50时,h(t)在区间[0,200]上取得最大值100;当200<t≤300时,配方整理得h(t)=-1200(t-350)2+100,∴当t=300时,h(t)取得区间[200,300]上的最大值.综上,由100>可知,h(t)在区间[0,300]上可以取得最大值100,此时t=50,即从2月1日开始的第50天时,西红柿纯收益最大.20.(1)由提供的数据可知,描述西红柿种植成本Q与上市时间t的变化关系的函数不可能是常数函数,从而用函数Q=at+b,Q=a·bt,Q=a·logbt中的任何一个进行描述时都应有a≠0,而此时上述三个函数均为单调函数,这与表格提供的数据不吻合.所以选取二次函数Q=at2+bt+c进行描述.将表格所提供的三组数据分别代入Q=at2+bt+c,得到150=2500a+50b+c,108=12100a+110b+c,150=62500a+250b+c.解得a=1200,b=-32,c=4252.∴描述西红柿种植成本Q与上市时间t的关系的函数为:Q=1200t2-32t+4252.(2)当t=150时,西红柿种植成本最低为Q=100(元/100kg). 综合练习(一)且x≠2}.略.(2)[-1,0]和[2,5].20.略.21.(1)∵f(x)的定义域为R,设x1<x2,则f(x1)-f(x2)=a-12x1+1-a+12x2+1=2x1-2x2(1+2x1)(1+2x2),∵x1<x2,∴2x1-2x2<0,(1+2x1)(1+2x2)>0.∴f(x1)-f(x2)<0,即f(x1)<f(x2),所以不论a取何值,f(x)总为增函数.(2)∵f(x)为奇函数,∴f(-x)=-f(x),即a-12-x+1=-a+12x+1,解得a=12.∴f(x)=12-12x+1.∵2x+1>1,∴0<12x+1<1,∴-1<-12x+1<0,∴-12<f(x)<12,所以f(x)的值域为-12,12.综合练习(二)和(5,5)..19.(1)由a(a-1)+x-x2>0,得[x-(1-a)]·(x-a)<0.由2∈A,知[2-(1-a)]·(2-a)<0,解得a∈(-∞,-1)∪(2,+∞). (2)当1-a>a,即a<12时,不等式的解集为A={x|a<x<1-a};当1-a<a,即a>12时,不等式的解集为A={x|1-a<x<a}.20.在(0,+∞)上任取x1<x2,则f(x1)-f(x2)=ax1-1x1+1-ax2-1x2+1=(a+1)(x1-x2)(x1+1)(x2+1),∵0<x1<x2,∴x1-x2<0,x1+1>0,x2+1>0,所以要使f(x)在(0,+∞)上递减,即f(x1)-f(x2)>0,只要a+1<0即a<-1,故当a<-1时,f(x)在区间(0,+∞)上是单调递减函数.21.设利润为y万元,年产量为S百盒,则当0≤S≤5时,y=当S>5时,y=5×利润函数为y=-S22+),+12(S>5,S∈N*).当0≤S≤5时,y=-122+,∵S∈N*,∴当S=5时,y有最大值10 75万元;当S>5时,∵y=+12单调递减,∴当S=6时,y有最大值10 50万元.综上所述,年产量为500盒时工厂所得利润最大.22.(1)由题设,当0≤x≤2时,f(x)=12x·x=12x2;当2<x<4时,f(x)=12·22·22-12(x-2)·(x-2)-12·(4-x)·(4-x)=-(x-3)2+3;当4≤x≤6时,f(x)=12(6-x)·(6-x)=12(x-6)2.∴f(x)=12x2(0≤x≤2),-(x-3)2+3(2<x<4),12(x-6)2(4≤x≤6).(2)略.(3)由图象观察知,函数f(x)的单调递增区间为[0,3],单调递减区间为[3,6],当x=3时,函数f(x)取最大值为3.。
2014秋入学高中数学必修一第一章_集合与函数概念分节详解及练习
§1.1.1 集合的含义与表示¤知识要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描述法表示下列集合:(1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B .【例3】试选择适当的方法表示下列集合:(1)一次函数3y x =+与26y x =-+的图象的交点组成的集合;(2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x=的自变量的值组成的集合.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .§1.1.2 集合间的基本关系¤知识要点:1. 一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 如果集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 与集合B 的元素是一样的,因此集合A 与集合B 相等,记作A B =.3. 如果集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ).4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}.A BB A A B A B A . B .C .D .【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 与B 关系的是( ).【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,求实数x 的值.§1.1.3 集合的基本运算(一)¤知识要点:集合的基本运算有三种,即交、并、补,学习时先理解概念,并掌握符号等,再结合解题的训练,而达到B (读作“B (读作“{|B x x ={|B x x =¤例题精讲:【例1】设集合,{|15},{|39},,()U U R A x x B x x A B A B ==-≤≤=<<求ð.\【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()ABC ; (2)()A A BC ð.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C AB ,()()U U C A C B , ()()U U C A C B ,并比较它们的关系.§1.1.3 集合的基本运算(二)¤知识要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和掌握各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发现一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在研究集合问题时,常常用到分类讨论思想、数形结合思想等. 也常由新的定义考查创新思维. ¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9AB =,求实数a 的值.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求AB , AB .(教材P 14B 组题2)【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a的值.【例4】对集合A 与B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= .§1.2.1 函数的概念¤知识要点:1. 设A 、B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间; {x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间.符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则{|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 决定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1)121y x =+-;(2)y =.【例2】求下列函数的定义域与值域:(1)3254x y x+=-; (2)22y x x =-++.【例3】已知函数1()1xf x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式【例4】已知函数22(),1x f x x R x =∈+.(1)求1()()f x f x +的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.§1.2.2 函数的表示法¤知识要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反应变化趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法与意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,如果按某一个确定的对应法则f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______..【例2】已知f (x )=33x x-+⎪⎩ (,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.【例3】画出下列函数的图象: (1)|2|y x =-;(2)|1||24|y x x =-++.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当(2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.§1.3.1 函数的单调性¤知识要点:1. 增函数:设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3. 判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.【例4】已知31()2x f x x +=+,指出()f x 的单调区间.§1.3.1 函数最大(小)值¤知识要点:1. 定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224()24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac ba-.3. 单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件. 现在他采用提高售出价,减少进货量的办法增加利润,已知这种商品每件提价1元,其销售量就要减少10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.【例3】求函数2y x =的最小值.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--.§1.3.2 函数的奇偶性¤知识要点:1. 定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ).2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x .【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满足不等式22(33)(32)f a a f a a +-<-,求实数a 的取值范围.复习【例1】已知a ,b 为常数,若22()43,()1024f x x x f ax b x x =+++=++,则5a b -= .【例2】已知()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并加以证明.【例3】集合{|17}A x x =-≤≤,{|231}B x m x m =-<<+,若A B B =,求实数m 的取值范围.【例4】设a 为实数,函数2()||1f x x x a =+-+,x ∈R .。
高中数学人教版A版必修一课时作业及解析:第一章1-2函数及其表示
高中数学人教版A版必修一第一章集合与函数概念§1.2函数及其表示1.2.1 函数的概念课时目标 1.理解函数的概念,明确函数的三要素.2.能正确使用区间表示数集,表示简单函数的定义域、值域.3.会求一些简单函数的定义域、值域.1.函数(1)设A、B是非空的数集,如果按照某种确定的__________,使对于集合A中的____________,在集合B中都有________________和它对应,那么就称f:________为从集合A到集合B的一个函数,记作__________________.其中x 叫做________,x的取值范围A叫做函数的________,与x的值相对应的y值叫做________,函数值的集合{f(x)|x∈A}叫做函数的________.(2)值域是集合B的________.2.区间(1)设a,b是两个实数,且a<b,规定:①满足不等式__________的实数x的集合叫做闭区间,表示为________;②满足不等式__________的实数x的集合叫做开区间,表示为________;③满足不等式________或________的实数x的集合叫做半开半闭区间,分别表示为______________.(2)实数集R可以用区间表示为__________,“∞”读作“无穷大”,“+∞”读作“__________”,“-∞”读作“________”.我们把满足x≥a,x>a,x≤b,x<b的实数x的集合分别表示为________,________,________,______.一、选择题1.对于函数y=f(x),以下说法正确的有()①y 是x 的函数②对于不同的x ,y 的值也不同③f (a )表示当x =a 时函数f (x )的值,是一个常量 ④f (x )一定可以用一个具体的式子表示出来 A .1个B .2个 C .3个D .4个2.设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},那么下面的4个图形中,能表示集合M 到集合N 的函数关系的有( )A .①②③④B .①②③C .②③D .②3.下列各组函数中,表示同一个函数的是( ) A .y =x -1和y =x 2-1x +1B .y =x 0和y =1C .f (x )=x 2和g (x )=(x +1)2D .f (x )=(x )2x 和g (x )=x(x )24.若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“孪生函数”,那么函数解析式为y =2x 2-1,值域为{1,7}的“孪生函数”共有( )A .10个B .9个C .8个D .4个 5.函数y =1-x +x 的定义域为( )A .{x |x ≤1}B .{x |x ≥0}C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1} 6.函数y =x +1的值域为( ) A .[-1,+∞) B .[0,+∞) C .(-∞,0] D .(-∞,-1]二、填空题7.已知两个函数f (x )和g (x )的定义域和值域都是{1,2,3},其定义如下表:8.如果函数f (x )满足:对任意实数a ,b 都有f (a +b )=f (a )f (b ),且f (1)=1,则f (2)f (1)+f (3)f (2)+f (4)f (3)+f (5)f (4)+…+f (2011)f (2010)=________. 9.已知函数f (x )=2x -3,x ∈{x ∈N |1≤x ≤5},则函数f (x )的值域为______________.10.若函数f (x )的定义域是[0,1],则函数f (2x )+f (x +23)的定义域为________. 三、解答题11.已知函数f (1-x1+x )=x ,求f (2)的值.能力提升12.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11∶00到12∶00他骑了多少千米?(5)他在9∶00~10∶00和10∶00~10∶30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?13.如图,某灌溉渠的横断面是等腰梯形,底宽为2m,渠深为1.8m,斜坡的倾斜角是45°.(临界状态不考虑)(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数;(2)确定函数的定义域和值域;(3)画出函数的图象.1.函数的判定判定一个对应关系是否为函数,关键是看对于数集A 中的任一个值,按照对应关系所对应数集B 中的值是否唯一确定,如果唯一确定,就是一个函数,否则就不是一个函数.2.由函数式求函数值,及由函数值求x ,只要认清楚对应关系,然后对号入座就可以解决问题.3.求函数定义域的原则:①当f (x )以表格形式给出时,其定义域指表格中的x 的集合;②当f (x )以图象形式给出时,由图象范围决定;③当f (x )以解析式给出时,其定义域由使解析式有意义的x 的集合构成;④在实际问题中,函数的定义域由实际问题的意义确定.§1.2 函数及其表示 1.2.1 函数的概念知识梳理1.(1)对应关系f 任意一个数x 唯一确定的数f (x ) A →B y =f (x ),x ∈A 自变量 定义域 函数值 值域 (2)子集2.(1)①a ≤x ≤b [a ,b ] ②a <x <b (a ,b ) ③a ≤x <b a <x ≤b [a ,b ),(a ,b ] (2)(-∞,+∞) 正无穷大 负无穷大 [a ,+∞) (a ,+∞) (-∞,b ] (-∞,b ) 作业设计1.B [①、③正确;②不对,如f (x )=x 2,当x =±1时y =1;④不对,f (x )不一定可以用一个具体的式子表示出来,如南极上空臭氧空洞的面积随时间的变化情况就不能用一个具体的式子来表示.]2.C [①的定义域不是集合M ;②能;③能;④与函数的定义矛盾.故选C.] 3.D [A 中的函数定义域不同;B 中y =x 0的x 不能取0;C 中两函数的对应关系不同,故选D.]4.B [由2x 2-1=1,2x 2-1=7得x 的值为1,-1,2,-2,定义域为两个元素的集合有4个,定义域为3个元素的集合有4个,定义域为4个元素的集合有1个,因此共有9个“孪生函数”.]5.D [由题意可知⎩⎨⎧1-x ≥0,x ≥0,解得0≤x ≤1.]6.B 7.3 2 1解析 g [f (1)]=g (2)=3,g [f (2)]=g (3)=2, g [f (3)]=g (1)=1. 8.2010解析 由f (a +b )=f (a )f (b ),令b =1,∵f (1)=1, ∴f (a +1)=f (a ),即f (a +1)f (a )=1,由a 是任意实数,所以当a 取1,2,3,…,2010时,得f (2)f (1)=f (3)f (2)=…=f (2011)f (2010)=1.故答案为2010. 9.{-1,1,3,5,7}解析 ∵x =1,2,3,4,5,∴f (x )=2x -3=-1,1,3,5,7. 10.[0,13]解析 由⎩⎪⎨⎪⎧0≤2x ≤1,0≤x +23≤1,得⎩⎪⎨⎪⎧0≤x ≤12,-23≤x ≤13,即x ∈[0,13].11.解 由1-x 1+x=2,解得x =-13,所以f (2)=-13.12.解 (1)最初到达离家最远的地方的时间是12时,离家30千米. (2)10∶30开始第一次休息,休息了半小时. (3)第一次休息时,离家17千米. (4)11∶00至12∶00他骑了13千米.(5)9∶00~10∶00的平均速度是10千米/时;10∶00~10∶30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.13.解 (1)由已知,横断面为等腰梯形,下底为2m ,上底为(2+2h )m ,高为h m ,∴水的面积A=[2+(2+2h)]h2=h2+2h(m2).(2)定义域为{h|0<h<1.8}.值域由二次函数A=h2+2h(0<h<1.8)求得.由函数A=h2+2h=(h+1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大,∴0<A<6.84.故值域为{A|0<A<6.84}.(3)由于A=(h+1)2-1,对称轴为直线h=-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h<1.8,∴A=h2+2h的图象仅是抛物线的一部分,如下图所示.1.2.2 函数的表示法 第1课时 函数的表示法课时目标 1.掌握函数的三种表示方法——解析法、图象法、列表法.2.在实际情境中,会根据不同的需要选择恰当方法表示函数.函数的三种表示法(1)解析法——用____________表示两个变量之间的对应关系; (2)图象法——用______表示两个变量之间的对应关系; (3)列表法——列出______来表示两个变量之间的对应关系.一、选择题1.一个面积为100cm 2的等腰梯形,上底长为x cm ,下底长为上底长的3倍,则把它的高y 表示成x 的函数为( ) A .y =50x (x >0) B .y =100x (x >0)C .y =50x (x >0)D .y =100x (x >0)2.一水池有2个进水口,1个出水口,进出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.(至少打开一个水口)给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.则正确论断的个数是( ) A .0B .1C .2D .33.如果f (1x )=x1-x,则当x ≠0时,f (x )等于( )A.1xB.1x -1C.11-xD.1x-1 4.已知f (x )=2x +3,g (x +2)=f (x ),则g (x )等于( )A .2x +1B .2x -1C .2x -3D .2x +75.若g (x )=1-2x ,f [g (x )]=1-x 2x 2,则f (12)的值为( ) A .1B .15C .4D .306.在函数y =|x |(x ∈[-1,1])的图象上有一点P (t ,|t |),此函数与x 轴、直线x =-1及x =t 围成图形(如图阴影部分)的面积为S ,则S 与t 的函数关系图可表示为( )二、填空题7.一个弹簧不挂物体时长12cm ,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例.如果挂上3kg 物体后弹簧总长是13.5cm ,则弹簧总长y (cm)与所挂物体质量x (kg)之间的函数关系式为________________________________________________________________________.8.已知函数y =f (x )满足f (x )=2f (1x )+x ,则f (x )的解析式为____________. 9.已知f (x )是一次函数,若f (f (x ))=4x +8,则f (x )的解析式为__________________.三、解答题10.已知二次函数f (x )满足f (0)=f (4),且f (x )=0的两根平方和为10,图象过(0,3)点,求f (x )的解析式.11.画出函数f (x )=-x 2+2x +3的图象,并根据图象回答下列问题: (1)比较f (0)、f (1)、f (3)的大小;(2)若x 1<x 2<1,比较f (x 1)与f (x 2)的大小; (3)求函数f (x )的值域.能力提升12.某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于..6·时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10] B .y =[x +310]C .y =[x +410]D .y =[x +510]13.设f (x )是R 上的函数,且满足f (0)=1,并且对任意实数x ,y ,有f (x -y )=f (x )-y (2x -y +1),求f (x )的解析式.1.如何作函数的图象一般地,作函数图象主要有三步:列表、描点、连线.作图象时一般应先确定函数的定义域,再在定义域内化简函数解析式(可能有的要表示为分段函数),再列表描出图象,并在画图象的同时注意一些关键点,如与坐标轴的交点、分段函数的区间端点等. 2.如何求函数的解析式求函数的解析式的关键是理解对应关系f 的本质与特点(对应关系就是对自变量进行对应处理的操作方法,与用什么字母表示无关),应用适当的方法,注意有的函数要注明定义域.主要方法有:代入法、待定系数法、换元法、解方程组法(消元法).1.2.2 函数的表示法 第1课时 函数的表示法知识梳理(1)数学表达式 (2)图象 (3)表格 作业设计1.C [由x +3x2·y =100,得2xy =100.∴y =50x (x >0).]2.B [由题意可知在0点到3点这段时间,每小时进水量为2,即2个进水口同时进水且不出水,所以①正确;从丙图可知3点到4点水量减少了1,所以应该是有一个进水口进水,同时出水口也出水,故②错;当两个进水口同时进水,出水口也同时出水时,水量保持不变,也可由题干中的“至少打开一个水口”知③错.]3.B [令1x =t ,则x =1t ,代入f (1x )=x1-x,则有f (t )=1t 1-1t=1t -1,故选B.] 4.B [由已知得:g (x +2)=2x +3,令t =x +2,则x =t -2,代入g (x +2)=2x +3,则有g (t )=2(t -2)+3=2t -1,故选B.]5.B [令1-2x =12,则x =14,∴f (12)=1-(14)2(14)2=15.] 6.B [当t <0时,S =12-t 22,所以图象是开口向下的抛物线,顶点坐标是(0,12);当t >0时,S =12+t 22,开口是向上的抛物线,顶点坐标是(0,12).所以B 满足要求.]7.y =12x +12解析 设所求函数解析式为y =kx +12,把x =3,y =13.5代入,得13.5=3k+12,k =12.所以所求的函数解析式为y =12x +12.8.f (x )=-x 2+23x (x ≠0)解析 ∵f (x )=2f (1x )+x ,①∴将x 换成1x ,得f (1x )=2f (x )+1x .②由①②消去f (1x ),得f (x )=-23x -x3,即f (x )=-x 2+23x (x ≠0).9.f (x )=2x +83或f (x )=-2x -8 解析 设f (x )=ax +b (a ≠0), 则f (f (x ))=f (ax +b )=a 2x +ab +b .∴⎩⎨⎧a 2=4ab +b =8,解得⎩⎪⎨⎪⎧a =2b =83或⎩⎨⎧a =-2b =-8.10.解 设f (x )=ax 2+bx +c (a ≠0).由f (0)=f (4)知⎩⎨⎧f (0)=c ,f (4)=16a +4b +c ,f (0)=f (4),得4a +b =0.① 又图象过(0,3)点, 所以c =3.②设f (x )=0的两实根为x 1,x 2,则x 1+x 2=-b a ,x 1·x 2=ca . 所以x 21+x 22=(x 1+x 2)2-2x 1x 2=(-b a)2-2·c a=10.即b 2-2ac =10a 2.③由①②③得a =1,b =-4,c =3.所以f (x )=x 2-4x +3.11.解 因为函数f (x )=-x 2+2x +3的定义域为R ,列表:x … -2 -1 0 1 2 3 4 … y … -5 0 3 4 3 0 -5 …连线,描点,得函数图象如图:(1)根据图象,容易发现f (0)=3,f (1)=4,f (3)=0, 所以f (3)<f (0)<f (1).(2)根据图象,容易发现当x 1<x 2<1时,有f (x 1)<f (x 2). (3)根据图象,可以看出函数的图象是以(1,4)为顶点,开口向下的抛物线,因此,函数的值域为(-∞,4].12.B [方法一 特殊取值法,若x =56,y =5,排除C 、D ,若x =57,y =6,排除A ,所以选B.方法二 设x =10m +α(0≤α≤9),0≤α≤6时, [x +310]=[m +α+310]=m =[x 10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1, 所以选B.]13.解 因为对任意实数x ,y ,有 f (x -y )=f (x )-y (2x -y +1), 所以令y =x ,有f (0)=f (x )-x (2x -x +1),即f (0)=f (x )-x (x +1).又f (0)=1, ∴f (x )=x (x +1)+1=x 2+x +1.第2课时分段函数及映射课时目标 1.了解分段函数的概念,会画分段函数的图象,并能解决相关问题.2.了解映射的概念.1.分段函数(1)分段函数就是在函数定义域内,对于自变量x的不同取值范围,有着不同的____________的函数.(2)分段函数是一个函数,其定义域、值域分别是各段函数的定义域、值域的______;各段函数的定义域的交集是空集.(3)作分段函数图象时,应_____________________________________.2.映射的概念设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A 中的任意一个元素x,在集合B中____________确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的__________.一、选择题1.已知,则f(3)为()A.2B.3C.4D.52.下列集合A到集合B的对应中,构成映射的是()3.一旅社有100间相同的客房,经过一段时间的经营实践,发现每间客房每天的定价与住房率有如下关系:A.100元B.90元C.80元D.60元4.已知函数,使函数值为5的x的值是()A.-2B.2或-5 2C.2或-2D.2或-2或-5 25.某单位为鼓励职工节约用水,作出了如下规定:每位职工每月用水不超过10立方米的,按每立方米m元收费;用水超过10立方米的,超过部分按每立方米2m元收费.某职工某月缴水费16m元,则该职工这个月实际用水为() A.13立方米B.14立方米C.18立方米D.26立方米6.已知集合P={x|0≤x≤4},Q={y|0≤y≤2},下列不能表示从P到Q的映射的是()A.f:x→y=12x B.f:x→y=13xC.f:x→y=23x D.f:x→y=x二、填空题7.已知,则f(7)=____________.8.设则f {f [f (-34)]}的值为________,f (x )的定义域是______________.9.已知函数f (x )的图象如下图所示,则f (x )的解析式是__________________.三、解答题 10.已知,(1)画出f (x )的图象; (2)求f (x )的定义域和值域.11.如图,动点P从边长为4的正方形ABCD的顶点B开始,顺次经C、D、A绕周界运动,用x表示点P的行程,y表示△APB的面积,求函数y=f(x)的解析式.能力提升12.设f:x→x2是集合A到集合B的映射,如果B={1,2},则A∩B一定是() A.∅B.∅或{1}C.{1}D.∅13.在交通拥挤及事故多发地段,为了确保交通安全,规定在此地段内,车距d是车速v(公里/小时)的平方与车身长S(米)的积的正比例函数,且最小车距不得小于车身长的一半.现假定车速为50公里/小时,车距恰好等于车身长,试写出d关于v的函数关系式(其中S为常数).1.全方位认识分段函数(1)分段函数是一个函数而非几个函数.分段函数的定义域是各段上“定义域”的并集,其值域是各段上“值域”的并集.(2)分段函数的图象应分段来作,特别注意各段的自变量取区间端点处时函数的取值情况,以决定这些点的实虚情况.2.对映射认识的拓展映射f:A→B,可理解为以下三点:(1)A中每个元素在B中必有唯一的元素与之对应;(2)对A中不同的元素,在B中可以有相同的元素与之对应;(3)A中元素与B中元素的对应关系,可以是:一对一、多对一,但不能一对多.3.函数与映射的关系映射f:A→B,其中A、B是两个“非空集合”;而函数y=f(x),x∈A为“非空的实数集”,其值域也是实数集,于是,函数是数集到数集的映射.由此可知,映射是函数的推广,函数是一种特殊的映射.第2课时 分段函数及映射知识梳理1.(1)对应关系 (2)并集 (3)分别作出每一段的图象 2.都有唯一 一个映射 作业设计 1.A [∵3<6,∴f (3)=f (3+2)=f (5)=f (5+2)=f (7)=7-5=2.] 2.D3.C [不同的房价对应着不同的住房率,也对应着不同的收入,因此求出4个不同房价对应的收入,然后找出最大值对应的房价即可.] 4.A [若x 2+1=5,则x 2=4,又∵x ≤0,∴x =-2, 若-2x =5,则x =-52,与x >0矛盾,故选A.]5.A [该单位职工每月应缴水费y 与实际用水量x 满足的关系式为y =⎩⎨⎧mx , 0≤x ≤10,2mx -10m ,x >10. 由y =16m ,可知x >10.令2mx -10m =16m ,解得x =13(立方米).]6.C [如果从P 到Q 能表示一个映射,根据映射的定义,对P 中的任一元素,按照对应关系f 在Q 中有唯一元素和它对应,选项C 中,当x =4时,y =23×4=83∉Q ,故选C.] 7.6解析 ∵7<9,∴f (7)=f [f (7+4)]=f [f (11)]=f (11-3)=f (8). 又∵8<9,∴f (8)=f [f (12)]=f (9)=9-3=6. 即f (7)=6.8.32 {x |x ≥-1且x ≠0}解析 ∵-1<-34<0,∴f (-34)=2×(-34)+2=12.而0<12<2,∴f (12)=-12×12=-14.∵-1<-14<0,∴f (-14)=2×(-14)+2=32.因此f {f [f (-34)]}=32.函数f (x )的定义域为{x |-1≤x <0}∪{x |0<x <2}∪{x |x ≥2}={x |x ≥-1且x ≠0}.9.f (x )=⎩⎨⎧ x +1, -1≤x <0,-x ,0≤x ≤1解析 由图可知,图象是由两条线段组成,当-1≤x <0时,设f (x )=ax +b ,将(-1,0),(0,1)代入解析式,则⎩⎨⎧ -a +b =0,b =1.∴⎩⎨⎧a =1,b =1.当0<x <1时,设f (x )=kx ,将(1,-1)代入,则k =-1. 10.解 (1)利用描点法,作出f (x )的图象,如图所示.(2)由条件知,函数f (x )的定义域为R .由图象知,当-1≤x ≤1时,f (x )=x 2的值域为[0,1],当x >1或x <-1时,f (x )=1,所以f (x )的值域为[0,1].11.解 当点P 在BC 上运动,即0≤x ≤4时,y =12×4x =2x ;当点P 在CD 上运动,即4<x ≤8时,y =12×4×4=8;当点P 在DA 上运动,即8<x ≤12时,y =12×4×(12-x )=24-2x .综上可知,f (x )=⎩⎨⎧ 2x , 0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12.12.B [由题意可知,集合A 中可能含有的元素为:当x 2=1时,x =1,-1;当x 2=2时,x =2,- 2. 所以集合A 可为含有一个、二个、三个、四个元素的集合.无论含有几个元素,A ∩B =∅或{1}.故选B.]13.解 根据题意可得d =k v 2S .∵v =50时,d =S ,代入d =k v 2S 中,解得k =12500.∴d =12500v 2S .当d =S 2时,可解得v =25 2.∴d =⎩⎪⎨⎪⎧ S 2 (0≤v <252)12500v 2S (v ≥252).§1.2习题课课时目标 1.加深对函数概念的理解,加深对映射概念的了解.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.通过具体实例,理解简单的分段函数,并能简单应用.1.下列图形中,不可能作为函数y=f(x)图象的是()2.已知函数f:A→B(A、B为非空数集),定义域为M,值域为N,则A、B、M、N的关系是()A.M=A,N=B B.M⊆A,N=BC.M=A,N⊆B D.M⊆A,N⊆B3.函数y=f(x)的图象与直线x=a的交点()A.必有一个B.一个或两个C.至多一个D.可能两个以上4.已知函数,若f(a)=3,则a的值为()A.3B.- 3C.±3D.以上均不对5.若f(x)的定义域为[-1,4],则f(x2)的定义域为()A.[-1,2]B.[-2,2]C.[0,2]D.[-2,0]6.函数y=xkx2+kx+1的定义域为R,则实数k的取值范围为() A.k<0或k>4B.0≤k<4C.0<k<4D.k≥4或k≤0一、选择题1.函数f (x )=xx 2+1,则f (1x )等于( )A .f (x )B .-f (x )C.1f (x )D.1f (-x )2.已知f (x 2-1)的定义域为[-3,3],则f (x )的定义域为( )A .[-2,2]B .[0,2]C .[-1,2]D .[-3,3]3.已知集合A ={a ,b },B ={0,1},则下列对应不是从A 到B 的映射的是()4.与y =|x |为相等函数的是( )A .y =(x )2B .y =x 2C .D .y =3x 35.函数y =2x +1x -3的值域为( )A .(-∞,43)∪(43,+∞)B .(-∞,2)∪(2,+∞)C .RD .(-∞,23)∪(43,+∞)6.若集合A ={x |y =x -1},B ={y |y =x 2+2},则A ∩B 等于( )A .[1,+∞)B .(1,+∞)C .[2,+∞)D .(0,+∞)二、填空题7.设集合A=B={(x,y)|x∈R,y∈R},点(x,y)在映射f:A→B的作用下对应的点是(x-y,x+y),则B中点(3,2)对应的A中点的坐标为____________.8.已知f(x+1)=x+2x,则f(x)的解析式为___________________________________.9.已知函数,则f(f(-2))=______________________________.三、解答题10.若3f(x-1)+2f(1-x)=2x,求f(x).11.已知,若f(1)+f(a+1)=5,求a的值.能力提升12.已知函数f(x)的定义域为[0,1],则函数f(x-a)+f(x+a)(0<a<12)的定义域为()A.∅B.[a,1-a] C.[-a,1+a]D.[0,1]13.已知函数(1)求f(-3),f[f(-3)];(2)画出y=f(x)的图象;(3)若f(a)=12,求a的值.1.函数的定义域、对应关系以及值域是构成函数的三个要素.事实上,如果函数的定义域和对应关系确定了,那么函数的值域也就确定了.两个函数是否相同,只与函数的定义域和对应关系有关,而与函数用什么字母表示无关.求函数定义域时,要注意分式的字母不能为零;偶次根式内的被开方式子必须大于或等于零.2.函数图象是描述函数两个变量之间关系的一种重要方法,它能够直观形象地表示自变量、函数值的变化趋势.函数的图象可以是直线、光滑的曲线,也可以是一些孤立的点、线段或几段曲线等.3.函数的表示方法有列举法、解析法、图象法三种.根据解析式画函数的图象时,要注意定义域对函数图象的制约作用.函数的图象既是研究函数性质的工具,又是数形结合方法的基础.§1.2习题课双基演练1.C[C选项中,当x取小于0的一个值时,有两个y值与之对应,不符合函数的定义.]2.C[值域N应为集合B的子集,即N⊆B,而不一定有N=B.]3.C[当a属于f(x)的定义域内时,有一个交点,否则无交点.]4.A[当a≤-1时,有a+2=3,即a=1,与a≤-1矛盾;当-1<a<2时,有a2=3,∴a=3,a=-3(舍去);当a≥2时,有2a=3,∴a=32与a≥2矛盾.综上可知a = 3.]5.B [由-1≤x 2≤4,得x 2≤4,∴-2≤x ≤2,故选B.]6.B [由题意,知kx 2+kx +1≠0对任意实数x 恒成立,当k =0时,1≠0恒成立,∴k =0符合题意.当k ≠0时,Δ=k 2-4k <0,解得0<k <4,综上,知0≤k <4.]作业设计1.A [f (1x )=1x 1x 2+1=x 1+x 2=f (x ).] 2.C [∵x ∈[-3,3],∴0≤x 2≤3,∴-1≤x 2-1≤2,∴f (x )的定义域为[-1,2].]3.C [C 选项中,和a 相对应的有两个元素0和1,不符合映射的定义.故答案为C.]4.B [A 中的函数定义域与y =|x |不同;C 中的函数定义域不含有x =0,而y =|x |中含有x =0,D 中的函数与y =|x |的对应关系不同,B 正确.]5.B [用分离常数法.y =2(x -3)+7x -3=2+7x -3. ∵7x -3≠0,∴y ≠2.] 6.C [化简集合A ,B ,则得A =[1,+∞),B =[2,+∞).∴A ∩B =[2,+∞).]7.(52,-12)解析 由题意⎩⎨⎧ x -y =3x +y =2,∴⎩⎪⎨⎪⎧ x =52y =-12.8.f (x )=x 2-1(x ≥1)解析 ∵f (x +1)=x +2x=(x )2+2x +1-1=(x +1)2-1,∴f (x )=x 2-1. 由于x +1≥1,所以f (x )=x 2-1(x ≥1).9.4解析 ∵-2<0,∴f (-2)=(-2)2=4,又∵4≥0,∴f (4)=4,∴f (f (-2))=4.10.解 令t =x -1,则1-x =-t ,原式变为3f (t )+2f (-t )=2(t +1),①以-t 代t ,原式变为3f (-t )+2f (t )=2(1-t ),②由①②消去f (-t ),得f (t )=2t +25. 即f (x )=2x +25.11.解 f (1)=1×(1+4)=5,∵f (1)+f (a +1)=5,∴f (a +1)=0.当a +1≥0,即a ≥-1时,有(a +1)(a +5)=0,∴a =-1或a =-5(舍去).当a +1<0,即a <-1时,有(a +1)(a -3)=0,无解.综上可知a =-1.12.B [由已知,得⎩⎨⎧ 0≤x +a ≤1,0≤x -a ≤1⇒⎩⎨⎧-a ≤x ≤1-a ,a ≤x ≤1+a . 又∵0<a <12,∴a ≤x ≤1-a ,故选B.]13.解 (1)∵x ≤-1时,f (x )=x +5,∴f (-3)=-3+5=2,∴f [f (-3)]=f (2)=2×2=4.(2)函数图象如右图所示.(3)当a ≤-1时,f (a )=a +5=12,a =-92≤-1; 当-1<a <1时,f (a )=a 2=12,a =±22∈(-1,1); 当a ≥1时,f (a )=2a =12,a =14∉[1,+∞),舍去. 故a 的值为-92或±22.。
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)
第一部分集合与函数的概念知识点整理第一章集合与函数概念一:集合的含义与表示1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个整体。
把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。
2、集合的中元素的三个特性:(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。
(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。
(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合3、集合的表示:{…}(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。
a、列举法:将集合中的元素一一列举出来 {a,b,c……}b、描述法:①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。
{x R| x-3>2} ,{x| x-3>2}②语言描述法:例:{不是直角三角形的三角形}③Venn图:画出一条封闭的曲线,曲线里面表示集合。
4、集合的分类:(1)有限集:含有有限个元素的集合(2)无限集:含有无限个元素的集合(3)空集:不含任何元素的集合5、元素与集合的关系:(1)元素在集合里,则元素属于集合,即:a∈A(2)元素不在集合里,则元素不属于集合,即:a¢A注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+整数集Z有理数集Q实数集R6、集合间的基本关系(1).“包含”关系(1)—子集定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。
记作:BA⊆(或B⊇A)注意:BA⊆有两种可能(1)A是B的一部分;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/ B或B⊇/A(2).“包含”关系(2)—真子集如果集合BA⊆,但存在元素x∈B且x¢A,则集合A是集合B的真子集如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)读作A真含与B(3).“相等”关系:A=B“元素相同则两集合相等”如果A⊆B 同时 B⊆A 那么A=B(4). 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
高一数学练习册答案:第一章集合与函数概念
2019高一数学练习册答案:第一章集合与函数概念1.1集合1 1 1集合的含义与表示1.D.2.A.3.C.4.{1,-1}.5.{x|x=3n+1,n∈N}.6.{2,0,-2}.7.A={(1,5),(2,4),(3,3),(4,2),(5,1)}.8.1.9.1,2,3,6. 10.列举法表示为{(-1,1),(2,4)},描述法的表示方法不唯一,如可表示为(x,y)|y=x+2,y=x2.11.-1,12,2.1 1 2集合间的基本关系1.D.2.A.3.D.4. ,{-1},{1},{-1,1}.5. .6.①③⑤.7.A=B.8.15,13.9.a≥4.10.A={ ,{1},{2},{1,2}},B∈A.11.a=b=1.1 1 3集合的基本运算(一)1.C.2.A.3.C.4.4.5.{x|-2≤x≤1}.6.4.7.{-3}.8.A∪B={x|x3,或x≥5}.9.A∪B={-8,-7,-4,4,9}.10.1.11.{a|a=3,或-221 1 3集合的基本运算(二)1.A.2.C.3.B.4.{x|x≥2,或x≤1}.5.2或8.6.x|x=n+12,n∈Z.7.{-2}.8.{x|x6,或x≤2}.9.A={2,3,5,7},B={2,4,6,8}.10.A,B的可能情形有:A={1,2,3},B={3,4};A={1,2,4},B={3,4};A={1,2,3,4},B={3 ,4}.11.a=4,b=2.提示:∵A∩ 綂 UB={2},∴2∈A,∴4+2a-12=0 a=4,∴A={x|x2+4x-12=0}={2,-6},∵A∩ 綂 UB={2},∴-6 綂 UB,∴-6∈B,将x=-6代入B,得b2-6b+8=0 b=2,或b=4.①当b=2时,B={x|x2+2x-24=0}={-6,4},∴-6 綂 UB,而2∈ 綂 UB,满足条件A∩ 綂UB={2}.②当b=4时,B={x|x2+4x-12=0}={-6,2}, ∴2 綂 UB,与条件A∩ 綂 UB={2}矛盾.1.2函数及其表示1 2 1函数的概念(一)1.C.2.C.3.D.4.22.5.-2,32∪32,+∞.6.[1,+∞).7.(1)12,34.(2){x|x≠-1,且x≠-3}.8.-34.9.1.10.(1)略.(2)72.11.-12,234.1 2 1函数的概念(二)1.C.2.A.3.D.4.{x∈R|x≠0,且x≠-1}.5.[0,+∞).6.0.7.-15,-13,-12,13.8.(1)y|y≠25.(2)[-2,+∞).9.(0,1].10.A∩B=-2,12;A∪B=[-2,+∞).11.[-1,0).1 2 2函数的表示法(一)1.A.2.B.3.A.4.y=x100.5.y=x2-2x+2.6.1x.7.略.8.x1234y828589889.略.10.1.11.c=-3.1 2 2函数的表示法(二)1.C.2.D.3.B.4.1.5.3.6.6.7.略.8.f(x)=2x(-1≤x0),-2x+2(0≤x≤1).9.f(x)=x2-x+1.提示:设f(x)=ax2+bx+c,由f(0)=1,得c=1,又f(x+1)-f(x)=2x,即a(x+1)2+b(x+1)+c-(ax2+bx+c)=2x,展开得2ax+(a+b)=2x,所以2a=2,a+b=0,解得a=1,b=-1.10.y=1.2(02.4(203.6(404.8(601.3函数的基本性质1 3 1单调性与最大(小)值(一)1.C.2.D.3.C.4.[-2,0),[0,1),[1,2].5.-∞,32.6.k12.7.略.8.单调递减区间为(-∞,1),单调递增区间为[1,+∞).9.略.10.a≥-1.11.设-10,∴(x1x2+1)(x2-x1)(x21-1)(x22-1)0,∴函数y=f(x)在(-1,1)上为减函数.1 3 1单调性与最大(小)值(二)1.D.2.B.3.B.4.-5,5.5.25.6.y=316(a+3x)(a-x)(011.日均利润最大,则总利润就最大.设定价为x元,日均利润为y元.要获利每桶定价必须在12元以上,即x12.且日均销售量应为440-(x-13)·400,即x23,总利润y=(x-12)[440-(x-13)·40]-600(121 3 2奇偶性1.D.2.D.3.C.4.0.5.0.6.答案不唯一,如y=x2.7.(1)奇函数.(2)偶函数.(3)既不是奇函数,又不是偶函数.(4)既是奇函数,又是偶函数.8.f(x)=x(1+3x)(x≥0),x(1-3x)(x0).9.略.10.当a=0时,f(x)是偶函数;当a≠0时,既不是奇函数,又不是偶函数.11.a=1,b=1,c=0.提示:由f(-x)=-f(x),得c=0,∴f(x)=ax2+1bx,∴f(1)=a+1b=2a=2b-1.∴f(x)=(2b-1)x2+1bx.∵f(2)3,∴4(2b-1)+12b32b-32b0 0单元练习1.C.2.D.3.D.4.D.5.D.6.B.7.B.8.C.9.A.10.D.11.{0,1,2}.12.-32.13.a=-1,b=3.14.[1,3)∪(3,5].15.f1217.T(h)=19-6h(0≤h≤11),-47(h11).18.{x|0≤x≤1}.19.f(x)=x只有唯一的实数解,即xax+b=x(*)只有唯一实数解,当ax2+(b-1)x=0有相等的实数根x0,且ax0+b≠0时,解得f(x)=2xx+2,当ax2+(b-1)x=0有不相等的实数根,且其中之一为方程(*)的增根时,解得f(x)=1.20.(1)x∈R,又f(-x)=(-x)2-2|-x|-3=x2-2|x|-3=f(x),所以该函数是偶函数.(2)略.(3)单调递增区间是[-1,0],[1,+∞),单调递减区间是(-∞,-1],[0,1].21.(1)f(4)=4×13=5.2,f(5.5)=5×1.3+0.5×3.9=8.45,f(6.5)=5×1.3+1×3.9+ 0.5×6 5=13.65.(2)f(x)=1.3x(0≤x≤5),3.9x-13(56.5x-28.6(622.(1)值域为[22,+∞).(2)若函数y=f(x)在定义域上是减函数,则任取x1,x2∈(0,1]且x1f(x2)成立,即(x1-x2)2+ax1x20,只要a-2x1x2即可,由于x1,x2∈(0,1],故-2x1x2∈(-2,0),a-2,即a的取值范围是(-∞,-2).(实习编辑:邓杉)。
蝶变笔记高中数学目录
蝶变笔记高中数学目录必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.3.1二元一次不等式(组)与平面区域3.3.2简单的线性规划问题3.4基本不等式选修1-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1椭圆2.2双曲线2.3抛物线第三章导数及其应用3.1变化率与导数3.2导数的计算3.3导数在研究函数中的应3.4生活中的优化问题举例选修1-2第一章统计案例1.1 回归分析的基本思想及其初步应用1.2 独立性检验的基本思想及其初步应用第二章推理与证明2.1 合情推理与演绎证明2.2 直接证明与间接证明第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算第四章框图4.1流程图4.2结构图选修2-1第一章常用逻辑用语1.1 命题及其关系1.2 充分条件与必要条件1.3 简单的逻辑联结词1.4 全称量词与存在量词第二章圆锥曲线与方程2.1 曲线与方程2.2 椭圆2.3 双曲线2.4 抛物线第三章空间向量与立体几何3.1 空间向量及其运算3.2 立体几何中向量方法选修2-2第一章导数及其应用1.1 变化率与导数1.2 导数的计算1.3 导数在研究函数中的应用1.4 生活中优化问题举例1.5 定积分的概念1.6 微积分基本定理1.7 定积分的简单应用第二章推理与证明2.1 合情推理与演绎推理2.2 直接证明与间接证明2.3 数学归纳法第三章数系的扩充与复数的引入3.1 数系的扩充和复数的概念3.2 复数代数形式的四则运算第一章计数原理1.1 分类加法计数原理与分步乘法计数原理1.2 排列与组合1.3 二项式定理第二章随机变量及其分布2.1 离散型随机变量及其分布列2.2 二项分布及其应用2.3 离散型随机变量的均值与方差2.4 正态分布第三章统计案例3.1 回归分析的基本思想及其初步应用3.2 独立性检验的基本思想及其初步应用选修3-1第一讲早期的算术与几何第二讲古希腊数学第三讲中国古代数学瑰宝第四讲平面解析几何的产生第五讲微积分的诞生第六讲近代数学两巨星第七讲千古谜题第八讲对无穷的深入思考选修3-3第一讲从欧氏几何看球面第二讲球面上的距离和角第三讲球面上的基本图形第四讲球面三角形第五讲球面三角形的全等第六讲球面多边形与欧拉公式第七讲球面三角形边角关系第八讲欧氏几何与非欧几何选修3-4第一讲平面图形的对称群第二讲代数学中的对称与抽象群的概念第三讲对称与群的故事选修4-1第一讲相似三角形的判定及有关性质第二讲直线与圆位置关系第三讲圆锥曲线性质探讨选修4-2第一讲线性变换与二阶矩阵第二讲变换的复合与二阶矩阵的乘法第三讲逆变换与逆矩阵第四讲变换的不变量与矩阵的特征向量选修4-3选修4-4第一讲坐标系第二讲参数方程选修4-5第一讲不等式和绝对值不等式第二讲证明不等式的基本方法第三讲柯西不等式与排序不等式第四讲数学归纳法证明不等式选修4-6第一讲整数的整除第二讲同余与同余方程第三讲一次不定方程第四讲数伦在密码中的应选修4-7第一讲优选法第二讲试验设计初步。
2020学年高中数学第一章集合与函数概念1.2.2函数的表示法第二课时分段函数与映射课时作业新人教A版必修1
第二课时分段函数与映射选题明细表基础巩固1.(2019·江苏省盱眙中学、泗洪中学高一上第一次联考)函数f(x)=则f(f(-2 018))等于( B )(A)1 (B)-1 (C)2 018 (D)-2 018解析:由题意可得f(-2 018)=1,所以f(f(-2 018))=f(1)=1-2=-1.故选B.2.函数f(x)=|x-1|的图象是( B )解析:由绝对值的意义可知当x≥1时y=x-1,当x<1时,y=1-x.故选B.3.集合A的元素按对应法则“先乘再减1”和集合B中的元素对应,在这种对应所成的映射f:A →B.若集合B={1,2,3,4,5},那么集合A不可能是( C )(A){4,6,8} (B){4,6}(C){2,4,6,8} (D){10}解析:按对应法则“先乘再减1”,结合集合B={1,2,3,4,5}可知A中的元素可以为{4,6,8,10,12}.但是不可能为2.故选C.4.若A={某中学高一年级学生},B={男,女},从A→B的对应法则f1:A中的每一个元素,在集合B 中对应其性别.又C=D=R,从C→D的对应法则f2:x→x的倒数.则以下说法正确的是( B )(A)f1,f2都是映射(B)f1是映射,f2不是映射(C)f1不是映射,f2是映射(D)f1,f2都不是映射解析:A中的每一个元素在B中都有唯一元素与其对应;C中的数0在D中没有对应元素,故f1是映射,f2不是映射.故选B.5.(2019·重庆巴蜀中学高一上期中)已知函数f(x)=若f[f(0)]=a2+1,则实数a 等于( D )(A)-1 (B)2(C)3 (D)-1或3解析:由题意得f(0)=20+1=2,所以f[f(0)]=f(2)=2a+4,又f[f(0)]=a2+1,所以2a+4=a2+1,即a2-2a-3=0,解得a=-1或a=3.故选D.6.(2019·河南林州第一中学高一调研)设f(x)=则f(5)的值为( B )(A)10 (B)11 (C)12 (D)13解析:因为f(11)=11-2=9,所以f(5)=f[f(5+6)]=f[f(11)]=f(9),因为f(15)=15-2=13,所以f(9)=f[f(9+6)]=f[f(15)]=f(13)=13-2=11.所以f(5)=11.7.(2017·山东卷)设f(x)=若f(a)=f(a+1),则f()等于( C )(A)2 (B)4 (C)6 (D)8解析:因为y=(0<x<1)和y=2(x-1)(x≥1),都是单调函数,所以0<a<1,由f(a)=f(a+1)得=2(a+1-1),所以a=,所以f()=f(4)=2×(4-1)=6.故选C.8.下列函数图象可能是分段函数图象的序号是.解析:②中的图象是y=x2的图象,④中不是函数图象.答案:①③能力提升9.国家规定个人稿费纳税办法:不超过800元的不纳税;超过800元而不超过4 000元的按超过800元部分的14%纳税;超过4 000元的按全部稿酬的11.2%纳税.已知某人出版一本书,共纳税420元,则这个人应得稿费(扣税前)为( C )(A)2 800元(B)3 000元(C)3 800元(D)3 818元解析:设纳税额为y元,稿费(扣税前)为x元,由题意,知纳税额y元与稿费(扣税前)x元之间的函数关系式为y=由于此人纳税420元,所以当800<x≤4 000时,则(x-800)×0.14=420,解得x=3 800,符合题意;当x>4 000时,0.112x=420,解得x=3 750(舍去),故这个人应得稿费(扣税前)为3 800元.故选C.10.(2019·江苏南菁高级中学高一上第一次测试)设f(x)=则使得f(m)=1成立的m值是( D )(A)10 (B)0,10(C)1,-1,11 (D)0,-2,10解析:当m<1时,f(m)=(m+1)2=1,所以m=-2或m=0,当m≥1时,f(m)=4-=1,所以m=10.综上可知,m的取值为-2,0,10.故选D.11.若f:x→x2+1是从集合A到集合B的映射,且A={-3,-2,-1,0,1,2,3},则集合B中至少有个元素.解析:因为x=±3时,y=x2+1=10,x=±2时,y=x2+1=5,x=0时,y=x2+1=1,x=±1时,y=x2+1=2,因此在对应关系f的作用下,集合B中至少含有元素1,2,5,10.答案:412.(2019·湖南浏阳六校高一期中联考)某汽配厂生产某种零件,每个零件的出厂单价为60元,为了鼓励更多销售商订购,该厂决定当一次订购超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不低于51元.(1)当一次订购量最少为多少时,零件的实际出厂单价恰好为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式.解:(1)设一次订购量最少为a件时,零件的实际出厂单价恰好为51元.a=100+,所以a=550(件).(2)0<x≤100且x∈N,f(x)=60,100<x<550且x∈N,f(x)=60-(x-100)×0.02=62-0.02x,x≥550且x∈N,f(x)=51,所以P=f(x)=探究创新13.(2019·广东华南师范大学附中高一上期中)设函数f(x)=若对任意的x都满足x·f(x)≤g(x)成立,则函数g(x)可以是( B )(A)g(x)=x (B)g(x)=|x|(C)g(x)=x2(D)不存在这样的函数解析:当x为无理数时,f(x)=0,xf(x)≤g(x)⇔0≤g(x),当x为有理数时,f(x)=1,xf(x)≤g(x)⇔x≤g(x),若g(x)=x,当x=-时,g(x)<0,即A不正确;若g(x)=|x|,已知对任意实数,x≤|x|,且|x|≥0,故当x为有理数或无理数时,不等式恒成立,即B正确;若g(x)=x2,当x=,则g()=,>,即C不正确.故选B.。
高中数学第一章集合与函数概念1.2函数及其表示1.2.2函数的表示法第2课时分段函数与映射课件
A.0
B.π
C.π2 D.9
解析:f(f(-3))=f(0)=π.
答案:B
||
2.函数 f(x)=x+ 的图象是(
||
解析:f(x)=x+
答案:C
)
)
+ 1, > 0,
=
是分段函数.
-1, < 0
当堂检测
探究一
探究二
探究三
探究四
思想方法
当堂检测
3.已知A=R,B={x|x≥1},映射f:A→B,且A中元素x与B中元素y=x2+1
解:(1)函数 y=
探究一
探究二
探究三
探究四
思想方法
当堂检测
反思感悟 1.因为分段函数在定义域的不同区间内解析式不一样,
所以它的图象也由几部分构成,有的可以是光滑的曲线段,有的也
可以是一些孤立的点或几段线段,画图时要特别注意区间端点处对
应点的实虚之分.
2.对含有绝对值的函数,要作出其图象,第一根据绝对值的意义去
通过图象得出实数根的个数.但要注意这种方法一般只求根的个数,
不需知道实数根的具体数值.
探究一
探究二
探究三
探究四
思想方法
当堂检测
变式训练 讨论关于x的方程|x2-4x+3|=a(a∈R)的实数解的个数.
解:作函数y=|x2-4x+3|及y=a的图象如图所示,
方程|x2-4x+3|=a的实数解就是两个函数图象的交点(纵坐标相等)
自己的身高;
③A={非负实数},B=R,f:x→y= 3 .
A.0个 B.1个 C.2个D.3个
必修一第一章集合与函数概念同步练习(含答案)
第一章 集合与函数概念同步练习1.1.1 集合的含义与表示 一. 选择题:1.下列对象不能组成集合的是( )A.小于100的自然数B.大熊猫自然保护区C.立方体内若干点的全体D.抛物线2x y =上所有的点 2.下列关系正确的是( )A.N 与+Z 里的元素都一样B.},,{},,{c a b c b a 与为两个不同的集合C.由方程0)1(2=-x x 的根构成的集合为}1,1,0{D.数集Q 为无限集 3.下列说法不正确的是( )A.*0N ∈B.Z ∉1.0C.N ∈0D.Q ∈24.方程⎩⎨⎧-=-=+3212y x y x 的解集是( )A.}1,1{-B.)1,1(-C.)}1,1{(-D.1,1-二.填空题:5.不大于6的自然数组成的集合用列举法表示______________.6.试用适当的方式表示被3除余2的自然数的集合____________.7.已知集合}7,3,2,0{=M ,由M 中任取两个元素相乘得到的积组成的集合为 ________. 8.已知集合}012{2=++∈=x ax R x M 只含有一个元素,则实数=a ______,若M 为空集,可a 的取值范围为_________.三.解答题:9.代数式}{)8(2x x x ∈-- ,求实数x 的值。
10.设集合A=},,2),{(N y x x y y x ∈+-=,试用列举法表示该集合。
11.已知}33,2{12+++∈x x x 试求实数x 的值。
1.1.2 集合的含义与表示一. 选择题:1.集合Φ与}0{的关系,下列表达正确的是( ) A.φ=}0{ B.φ⊆}0{ C.}0{∈φ D.φ}0{⊇2.已知集合A=}3,2,1{,则下列可以作为A 的子集的是( )A.}4,1{B.}3,2{C.}4,2{D.}4,3,1{ 3.集合},,{c b a 的非空真子集个数是( )A.5B.6C.7D.8 4.已知集合M={正方形},N={菱形},则( )A.N M =B.N M ∈C.M ≠⊂ND.N ≠⊂M二.填空题5.用适当的符号填空①},2_____{0Z n n x x ∈=②}_____{1质数③},,_____{}{c b a a ④}0))((_____{},{=--b x a x x b a ⑤},12______{},14{++∈+=∈+=N k k x x N k k x x 6.写出集合}1{2=x x 的所有子集_______________________7.设集合}{},63{a x x B x x A <=≤<-=,且满足A ≠⊂,B 则实数a 的取值范围是_________三.解答题8.已知集合B 满足}2,1{≠⊂B ⊆}5,4,3,2,1{,试写出所有这样的集合 9.已知}5{>=x x A ,}3{x x B <=,试判断A 与B 的关系 10.已知A=}3,4,1{},2,1{a B a =+,且B A ⊆,求a 的值1.1.3集合的基本运算(一)一.选择题1.已知集合A=}4,3,2,1{,}6,4,1{=B ,则=B A I ( ) A.}4,2,1{ B.}6,4,3,2,1{ C.}4,1{ D.}4,3,1{2.设A=}2{->x x ,}21{<<-=x x B ,则=B A Y ( ) A.R B.}2{<x x C.}1{->x x D.}2{->x x3.设{=A 等腰三角形} ,B={等边三角形},C={直角三角形},=C B A I Y )(( ) A.{等腰三角形} B.{直角三角形} C.φ D.{等腰直角三角形}4.已知集合}90{<<∈=x Z x M ,},2{+∈==N n n x x N ,则=N M I ( )A.{}6,4,2B.{}8,6,4,2C.{}7,6,5,4,3,2D.{}8,7,6,5,4,3,2,1 二.填空题5.{偶数}I {奇数}=__________.6.已知集合}31{<≤-=x x A ,}13{≤<-=x x B ,则=B A I __________.7.若集合A B A =I ,则=B A Y ___________.8.已知集合}33{<≤-=x x A ,}2{≤=x x B ,则=B A Y ___________.三.解答题9.集合},,523),{(R y x y x y x A ∈=-=},,132),{(R y x y x y x B ∈-=+=,求 B A I 10.已知集合},3,1{a A =,}1,1{2+-=a a B ,且A B A =Y ,求a 的值 11.已知集合},02{2=+-∈=b ax x R x A }05)2(6{2=++++∈=b x a x R x B且}21{=B A I ,求B A Y1.1.3集合的基本运算(二)一.选择题1.已知全集R U =,集合}1{<=x x M ,则M C u 为( ) A.}1{≥x x B.}1{>x x C.}1{<x x D.}1{≤x x2.设全集}4,3,2{=U ,}2,3{-=a A ,}3{=A C u ,则a 的值是( ) A.7 B.1- C.17-或 D.71-或3.已知全集R U =,集合}32{<≤-=x x A ,则A C u =( )A.}32{≥-≤x x x 或B.}32{>-≤x x x 或C.}32{>-<x x x 或D.}32{≥-<x x x 或 4.已知全集}8,7,6,5,4,3,2,1{=U ,集合}5,4,3{=A ,}6,3,1{=B ,那么集合 C={2,7,8}可以表示为( )A.B C uB.B A IC.B C A C u u ID.B C A C u u Y二.填空题5.设全集R U =,}62{<≤=x x A ,}4{≤=x x B ,则B A I =__,__=B C A u I ,__=B A C u I .6.全集=U {三角形},=A {直角三角形},则A C u =____________.7.设全集}4,3,2,1,0{=U }3,2,1,0{=A ,}4,3,2{=B ,则=B A C u I ____8.已知全集},2,1,0{=U 且}2{=A C u ,则A 的真子集共有___个.三.解答题9.设全集R U =,集合},43{R x x x M ∈<≤-=,},51{R x x x N ∈≤<-=,求①N M Y ②N C M C u u I10.设全集=U {1,2,3,4,5,6,7,8,9},集合}2{=B A I ,}9,1{=B C A C u u I ,}8,6,4{=B A C u I ,求B A ,11.已知}1,4,2{2+-=x x U ,}1,2{+=x B ,}7{=B C u ,求x 的值1.2.1函数的概念(一)一.选择题1.函数13)(+=x x f 的定义域为( )A.)31,(--∞B.),31(+∞- C.),31[+∞- D.]31,(--∞2.已知函数q px x x f ++=2)(满足0)2()1(==f f ,则)1(-f 的值为( ) A.5 B.5- C.6 D.6-3.下列函数中)()(x g x f 与表示同一函数的是( )A.1)()(0==x g x x f 与 B.xx x g x x f 2)()(==与C.22)1()()(+==x x g x x f 与D.33)()(x x g x x f ==与 4.下列各图象中,哪一个不可能为)(x f y =的图象( )二.填空题5.已知x x x f 2)(2-=,则=)2(f ______________.6.已知12)1(2+=+x x f ,则=)(x f ______________.7.已知)(x f 的定义域为],4,2[则)23(-x f 的定义域为_______________. 8.函数11)(22---=x x x f 的定义域为______________.三.解答题9.设⎩⎨⎧≥+<-=)0(22)0(12)(2x x x x x f ,求)2(-f 和)3(f10.求下列函数的定义域 (1)321)(+=x x f (2)x x x g -++=1)10()(011.已知)(x f 为一次函数,且34)]([+=x x f f ,求)(x fx(D)(B)(C) (A)x1.2.1函数的概念(二)一、 选择题1.函数x x y 22-=的定义域为}3,2,1,0{,其值域为( ) A.}3,0,1{- B.}3,2,1,0{ C.}31{≤≤-y y D.}30{≤≤y y2.函数)(11)(2R x xx f ∈+=的值域是( ) A.)1,0( B.]1,0( C.)1,0[ D.]1,0[ 3.下列命题正确的有( ) ①函数是从其定义域到值域的映射②x x x f -+-=23)(是函数③函数)(2N x x y ∈=的图象是一条直线④x x g xx x f ==)()(2与是同一函数 A.1个 B.2个 C.3个 D.4个 4.函数xx x y -+=)32(的定义域为( )A.⎭⎬⎫⎩⎨⎧-≠<230x x x 且B.{}0<x xC.{}0>x xD.⎭⎬⎫⎩⎨⎧-≠≠∈230x x R x 且二.填空题5.已知函数⎪⎩⎪⎨⎧≥<<--≤+=2,221,1,2)(2x x x x x x x f ,若3)(=x f ,则x 的值为__________.6.设函数33)(2+-=x x x f ,则)()(a f a f --等于____________.7.设函数x x x f --=1)(,则=)]1([f f ____________.8.函数[]3,1,322∈+-=x x x y 的值域是________________.三.解答题9.求函数242x x y --=的值域10.已知函数1122---=x x y ,求20072008y x +的值 11.已知函数bax xx f +=)((a .0≠a ,b 且为常数)满足1)2(=f ,x x f =)(有唯一解,求函数)(x f y =的解析式和)]3([-f f 的值.1.2.2 函数表示法(一) 一、 选择题1.设集合{}c b a A ,,=,集合B=R ,以下对应关系中,一定能成建立A 到B 的映射的是( )A.对A 中的数开B.对A 中的数取倒数C.对A 中的数取算术平方D.对A 中的数开立方2.某人从甲村去乙村,一开始沿公路乘车,后来沿小路步行,图中横轴表示走的时间,纵轴表示某人与乙村的距离,则较符合该人走法的图是( )3.已知函数23)12(+=+x x f ,且2)(=a f ,则a 的值等于( )A.8B.1C.5D.1-4.若x xx f -=1)1(,则当10≠≠x x 且时,)(x f 等于( )A.x 1B.11-xC.x -11D.11-x二.填空题5.若[]36)(+=x x g f ,且12)(+=x x g ,则=)(x f ______________.6.二次函数的图象如图所示,则此函数的解析式为___________.ttt ABDC7.已知函数⎩⎨⎧<≥=0,0,)(2x x x x x f 则=-)2(f ________,)4(f =_______8.集合}5,3,1{-=B ,12)(-=x x f 是A 到B 的函数,则集合 A 可以表示为____________________三.解答题9.已知函数)(x f 是一次函数,且14)]([-=x x f f ,求)(x f 的解析式10.等腰三角形的周长为24,试写出底边长y 关于腰长x 的函数关系式,并画出它的图象 11.作出函数31--+=x x y 的图象,并求出相应的函数值域1.2.2 函数表示法(二) 一、 选择题1.已知集合{}{}20,40≤≤=≤≤=y y B x x A ,按对应关系f ,不能成为从A 至B 的映射的一个是( ) A.x y x f 21:=→ B.2:-=→x y x f C.x y x f =→: D.2:-=→x y x f2.如图,函数1+=x y 的图象是( )y3.设}8,6,2,1,0,21{},4,2,1,0{==B A ,下列对应关系能构成A 到B 的映射的是( )A.1:3-→x x fB.2)1(:-→x x fC.12:-→x x fD.x x f 2:→4.已知函数⎩⎨⎧>+-≤+=1,31,1)(x x x x x f ,则⎥⎦⎤⎢⎣⎡)25(f f =( ) A.21 B.23 C.25 D.29 二.填空题5.设函数⎪⎪⎩⎪⎪⎨⎧≥<≤-<≤-+=2,320,2101,22)(x x x x x x f ,则)43(-f 的值为______, )(x f 的定义域为_____.6.)(x f 的图象如图,则)(x f =____________.7.对于任意R x ∈都有)(2)1(x f x f =+,当10≤≤x 时,)5.1-的值是____________.8.23)1(+=+x x f ,且2)(=a f ,则a 的值等于____________.三.解答题9.作出下列函数的图象(1)x y -=1,)2(≤∈x Z x 且 (2)3422--=x x y ,)30(<≤xA B CD10.已知函数⎩⎨⎧<+≥-=4),3(4,4)(x x f x x x f ,求)1(-f 的值11.求下列函数的解析式(1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f (2)已知x x f x f 5)()(3=-+,求)(x f1.3.1 函数单调性与最大(小)值(一) 一.选择题1.若),(b a 是函数)(x f y =的单调递增区间,()b a x x ,,21∈,且21x x <,( ) A.)()(21x f x f < B.)()(21x f x f = C.)()(21x f x f > D.以上都不正确2.下列结论正确的是( )A.函数x y -=在R 上是增函数B.函数2x y =在R 上是增函数C.x y =在定义域内为减函数D.xy 1=在)0,(-∞上为减函数 3.函数111--=x y ( ) A.在),1(+∞-内单调递增 B.在),1(+∞-内单调递减 C.在),1(+∞内单调递增 D.在),1(+∞内单调递减 4.下列函数在区间),0(+∞上为单调增函数的是( ) A.x y 21-= B.x x y 22+= C.2x y -= D.xy 2=二.填空题5.已知函数)(x f 在),0(+∞上为减函数,那么)1(2+-a a f 与)43(f 的大小关系是________.6.函数)(x f y =7.已知13)(22-+-=a ax ax x f )0(<a ,则3(f ______.8.函数342+--=x x y 的单调递增区间为_______,当=x _______时,y 有最______值为____.三.解答题9.已知)(x f y =在定义域)1,1(-上为减函数,且)1()1(2-<-a f a f 求a 的取值范围。
高中数学 第一章 集合与函数概念 12 函数及其表示 121 函数的概念学案(含解析)新人教版必修1
§1.2函数及其表示1.2.1 函数的概念学习目标 1.理解函数的概念(重点、难点).2.了解构成函数的三要素(重点).3.正确使用函数、区间符号(易错点).知识点1 函数的概念(1)函数的概念概念设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域x的取值X围值域与x对应的y的值的集合{f(x)|x∈A}如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等.【预习评价】(正确的打“√”,错误的打“×”)(1)函数的定义域和值域一定是无限集合.( )(2)根据函数的定义,定义域中的任何一个x可以对应着值域中不同的y.( )(3)在函数的定义中,集合B是函数的值域.( )提示(1)×函数的定义域和值域也可能是有限集,如f(x)=1;(2)×根据函数的定义,对于定义域中的任何一个x,在值域中都有唯一确定的y与之对应;(3)×在函数的定义中,函数的值域是集合B的子集.知识点2 区间及有关概念(1)一般区间的表示.设a,b∈R,且a<b,规定如下:定义 名称 符号 数轴表示{x |a ≤x ≤b } 闭区间 [a ,b ] {x |a <x <b }开区间 (a ,b ){x |a ≤x <b }半开半闭区间 [a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示. 定义 R {x |x ≥a } {x |x >a } {x |x ≤a } {x |x <a } 符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )【预习评价】已知全集U =R ,A ={x |1<x ≤3},则∁U A 用区间表示为________. 解析 ∁U A ={x |x ≤1或x >3},用区间可表示为(-∞,1]∪(3,+∞). 答案 (-∞,1]∪(3,+∞)题型一 函数关系的判定【例1】 (1)下列图形中,不能确定y 是x 的函数的是( )(2)下列各题的对应关系是否给出了实数集R 上的一个函数?为什么? ①f :把x 对应到3x +1;②g :把x 对应到|x |+1; ③h :把x 对应到1x;④r :把x 对应到x .(1)解析 任作一条垂直于x 轴的直线x =a ,移动直线,根据函数的定义可知,此直线与函数图象至多有一个交点.结合选项可知D 不满足要求,因此不表示函数关系. 答案 D(2)解 ①是实数集R 上的一个函数.它的对应关系f 是:把x 乘3再加1,对于任意x ∈R ,3x +1都有唯一确定的值与之对应,如当x =-1时,有3x +1=-2与之对应. 同理,②也是实数集R 上的一个函数. ③不是实数集R x =0时,1x的值不存在.④不是实数集R x <0时,x 的值不存在.(1)任取一条垂直于x 轴的直线l ; (2)在定义域内平行移动直线l ;(3)若l 与图形有且只有一个交点,则是函数;若在定义域内没有交点或有两个或两个以上的交点,则不是函数.【训练1】 设M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( )解析 ①错,x =2时,在N 中无元素与之对应,不满足任意性.②对,同时满足任意性与唯一性.③错,x =2时,对应元素y =3∉N ,不满足任意性.④错,x =1时,在N 中有两个元素与之对应,不满足唯一性. 答案 B题型二 相等函数【例2】(1)下列各组函数:①f (x )=x 2-xx,g (x )=x -1;②f (x )=x x ,g (x )=x x;③f (x )=(x +3)2,g (x )=x +3; ④f (x )=x +1,g (x )=x +x 0;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是________(填上所有正确的序号).(2)试判断函数y =x -1·x +1与函数y =(x +1)(x -1)是否相等,并说明理由. (1)解析 ①f (x )与g (x )的定义域不同,不是相等函数;②f (x )与g (x )的解析式不同,不是相等函数;③f (x )=|x +3|,与g (x )的解析式不同,不是相等函数;④f (x )与g (x )的定义域不同,不是相等函数;⑤f (t )与g (x )的定义域、值域、对应关系皆相同,故是相等函数. 答案 ⑤y =x -1·x +1,由⎩⎪⎨⎪⎧x -1≥0,x +1≥0,解得x ≥1,故定义域为{x |x ≥1},对于函数y =(x +1)(x -1),由(x +1)(x -1)≥0解得x ≥1或x ≤-1,故定义域为{x |x ≥1或x ≤-1},显然两个函数定义域不同,故不是相等函数. 规律方法 判断两个函数为相等函数应注意的三点(1)定义域、对应关系两者中只要有一个不相同就不是相等函数,即使定义域与值域都相同,也不一定是相等函数.(2)函数是两个数集之间的对应关系,所以用什么字母表示自变量、因变量是没有限制的. (3)在化简解析式时,必须是等价变形.【训练2】 判断以下各组函数是否表示相等函数: (1)f (x )=(x )2;g (x )=x 2.(2)f (x )=x 2-2x -1;g (t )=t 2-2t -1.解 (1)由于函数f (x )=(x )2的定义域为{x |x ≥0},而g (x )=x 2的定义域为{x |x ∈R },它们的定义域不同,所以它们不表示相等函数.(2)两个函数的定义域和对应关系都相同,所以它们表示相等函数. 题型三 求函数值【例3】 已知f (x )=11+x (x ∈R ,且x ≠-1),g (x )=x 2+2(x ∈R ).(1)求f (2),g (2)的值; (2)求f (g (3))的值.解 (1)∵f (x )=11+x ,∴f (2)=11+2=13.又∵g (x )=x 2+2,∴g (2)=22+2=6. (2)∵g (3)=32+2=11, ∴f (g (3))=f (11)=11+11=112. 规律方法 求函数值的方法及关注点(1)方法:①已知f (x )的解析式时,只需用a 替换解析式中的x 即得f (a )的值;②求f (g (a ))的值应遵循由里往外的原则.(2)关注点:用来替换解析式中x 的数a 必须是函数定义域内的值,否则函数无意义. 【训练3】 已知函数f (x )=x +1x +2. (1)求f (2);(2)求f (f (1)). 解 (1)∵f (x )=x +1x +2,∴f (2)=2+12+2=34. (2)f (1)=1+11+2=23,f (f (1))=f ⎝ ⎛⎭⎪⎫23=23+123+2=58.【例4-1】 求下列函数的定义域: (1)y =(x +1)2x +1-1-x ;(2)y =5-x |x |-3.解 (1)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧x +1≠0,1-x ≥0.解得x ≤1,且x ≠-1,即函数定义域为{x |x ≤1,且x ≠-1}.(2)要使函数有意义,自变量x 的取值必须满足⎩⎪⎨⎪⎧5-x ≥0,|x |-3≠0,解得x ≤5,且x ≠±3,即函数定义域为{x |x ≤5,且x ≠±3}. 规律方法 求函数定义域的实质及结果要求(1)求函数的定义域实质是解不等式(组),即将满足的条件转化为解不等式(组)的问题,要求把满足条件的不等式列全.(2)结果要求:定义域的表达形式可以是集合形式,也可以是区间形式. 方向2 求抽象函数的定义域【例4-2】 (1)设函数f (x )=x ,则f (x +1)等于什么?f (x +1)的定义域是什么? (2)若函数y =f (x )的定义域是[0,+∞),那么函数y =f (x +1)的定义域是什么? 解 (1)f (x +1)=x +1.令x +1≥0,解得x ≥-1,所以f (x +1)=x +1的定义域为[-1,+∞).(2)函数y =f (x )的定义域是[0,+∞),所以令x +1≥0,解得x ≥-1,所以函数y =f (x +1)的定义域是[-1,+∞).【例4-3】 若函数y =f (x +1)的定义域是[1,2],根据函数定义域的定义,这里的“[1,2]”是指谁的取值X 围?使对应关系f 有意义的自变量t =x +1的X 围是什么?函数y =f (x )的定义域是什么?解 这里的“[1,2]”是自变量xx ∈[1,2],所以x +1∈[2,3],所以使对应关系f 有意义的自变量t =x +1的X 围是[2,3],所以函数y =f (x )的定义域是[2,3].【例4-4】 (1)已知函数y =f (x )的定义域为[-2,3],求函数y =f (2x -3)的定义域; (2)已知函数y =f (2x -3)的定义域是[-2,3],求函数y =f (x +2)的定义域.解 (1)因为函数y =f (x )的定义域为[-2,3],即x ∈[-2,3],函数y =f (2x -3)中2x -3的X 围与函数y =f (x )中x 的X 围相同,所以-2≤2x -3≤3,解得12≤x ≤3,所以函数y =f (2x -3)的定义域为⎣⎢⎡⎦⎥⎤12,3. (2)因为x ∈[-2,3],所以2x -3∈[-7,3],即函数y =f (x )的定义域为[-7,3]. 令-7≤x +2≤3,解得-9≤x ≤1,所以函数y =f (x +2)的定义域为[-9,1]. 规律方法 两类抽象函数的定义域的求法(1)已知f (x )的定义域,求f (g (x ))的定义域:若f (x )的定义域为[a ,b ],则f (g (x ))中a ≤g (x )≤b ,从中解得x 的取值集合即为f (g (x ))的定义域.(2)已知f (g (x ))的定义域,求f (x )的定义域:若f (g (x ))的定义域为[a ,b ],即a ≤x ≤b ,求得g (x )的取值X 围,g (x )的值域即为f (x )的定义域.课堂达标1.下列图象中表示函数图象的是( )解析 根据函数的定义,对定义域中任意的一个x 都存在唯一的y 与之对应,而A ,B ,D 都存在一对多,只有C 满足函数的定义.故选C. 答案 C2.下列各组函数中表示相等函数的是( ) A.f (x )=x 与g (x )=(x )2B.f (x )=|x |与g (x )=x (x >0)C.f (x )=2x -1与g (x )=2x +1(x ∈N *)D.f (x )=x 2-1x -1与g (x )=x +1(x ≠1)解析 选项A ,B ,C 中两个函数的定义域均不相同,故选D. 答案 Df (x )=x -4+1x -5的定义域是________.解析 ∵函数f (x )=x -4+1x -5,∴⎩⎪⎨⎪⎧x -4≥0,x -5≠0,解得x ≥4,且x ≠5.∴函数f (x )的定义域是[4,5)∪(5,+∞). 答案 [4,5)∪(5,+∞)f (x )的定义域为(0,2),则f (x -1)的定义域为________.解析 由题意知0<x -1<2,解得1<x <3,故f (x -1)的定义域为(1,3). 答案 (1,3)f (x )=x 2+x -1.(1)求f (2),f ⎝ ⎛⎭⎪⎫1x ;(2)若f (x )=5,求x 的值. 解 (1)f (2)=22+2-1=5, f ⎝ ⎛⎭⎪⎫1x =1x 2+1x-1=1+x -x 2x 2.(2)∵f (x )=x 2+x -1=5,∴x 2+x -6=0, ∴x =2或x =-3.课堂小结1.函数的本质:两个非空数集间的一种确定的对应关系.由于函数的定义域和对应关系一经确定,值域随之确定,所以判断两个函数是否相等只须两个函数的定义域和对应法则一样即可.2.f (x )是函数符号,f 表示对应关系,f (x )表示x 对应的函数值,绝对不能理解为f 与xff (x )表示外,还可用g (x ),F (x )等表示.基础过关1.下列函数中,与函数y =x 相等的是( ) A.y =(x )2B.y =x 2C.y =⎩⎪⎨⎪⎧x ,x >0-x ,x <0D.y =3x 3解析 函数y =x 的定义域为R ;y =(x )2的定义域为[0,+∞);y =x 2=|x |,对应关系不同;y =⎩⎪⎨⎪⎧x ,x >0,-x ,x <0,对应关系不同;y =3x 3=x ,且定义域为R .故选D.答案 D2.下列四个图象中,是函数图象的是( )A.①B.①③④C.①②③D.③④解析 由每一个自变量x 对应唯一一个f (x )可知②不是函数图象,①③④是函数图象. 答案 By =1-x +x 的定义域为( )A.{x |x ≤1}B.{x |x ≥0}C.{x |x ≥1或x ≤0}D.{x |0≤x ≤1}解析 由题意可知⎩⎪⎨⎪⎧1-x ≥0,x ≥0,解得0≤x ≤1.答案 Df (x )=2x -1,g (x )=x 2,则g (f (2)-1)=________.解析 f (2)-1=2×2-1-1=2,所以g (f (2)-1)=g (2)=22=4. 答案 45.用区间表示下列集合: (1){x |-12≤x <5}=________;(2){x |x <1或2<x ≤3}=________.解析 (1)注意到包括不包括区间的端点与不等式含不含等号对应,则{x |-12≤x <5}=⎣⎢⎡⎭⎪⎫-12,5. (2)注意到集合中的“或”对应区间中的“∪”,则{x |x <1或2<x ≤3}=(-∞,1)∪(2,3].答案 (1)⎣⎢⎡⎭⎪⎫-12,5 (2)(-∞,1)∪(2,3]f (x )=x +5+1x -2.(1)求函数的定义域;(2)求f (-4),f ⎝ ⎛⎭⎪⎫23的值. 解 (1)使根式x +5有意义的实数x 的取值集合是{x |x ≥-5},使分式1x -2有意义的实数x 的取值集合是{x |x ≠2},所以这个函数的定义域是{x |x ≥-5}∩{x |x ≠2}={x |x ≥-5且x ≠2}. (2)f (-4)=-4+5+1-4-2=1-16=56. f ⎝ ⎛⎭⎪⎫23=23+5+123-2=173-34=513-34.f (x )=x 21+x2.(1)求f (2)+f ⎝ ⎛⎭⎪⎫12,f (3)+f ⎝ ⎛⎭⎪⎫13的值; (2)求证f (x )+f ⎝ ⎛⎭⎪⎫1x 是定值.(1)解 ∵f (x )=x 21+x2, ∴f (2)+f ⎝ ⎛⎭⎪⎫12=221+22+⎝ ⎛⎭⎪⎫1221+⎝ ⎛⎭⎪⎫122=1. f (3)+f ⎝ ⎛⎭⎪⎫13=321+32+⎝ ⎛⎭⎪⎫1321+⎝ ⎛⎭⎪⎫132=1. (2)证明 f (x )+f ⎝ ⎛⎭⎪⎫1x =x 21+x 2+⎝ ⎛⎭⎪⎫1x 21+⎝ ⎛⎭⎪⎫1x 2 =x 21+x 2+1x 2+1=x 2+1x 2+1=1. 能力提升f (x )=ax 2-1,a 为一个正常数,且f (f (-1))=-1,那么a 的值是( )A.1B.0解析 f (-1)=a ·(-1)2-1=a -1,f (f (-1))=a ·(a -1)2-1=a 3-2a 2+a -1=-1. ∴a 3-2a 2+a =0,∴a =1或a =0(舍去). 答案 Af (x )=x -4mx 2+4x +3的定义域为R ,则实数m 的取值X 围是( )A.(-∞,+∞)B.⎝ ⎛⎭⎪⎫0,43C.⎝ ⎛⎭⎪⎫43,+∞ D.⎣⎢⎡⎭⎪⎫0,43 解析 (1)当m =0时,分母为4x +3,此时定义域不为R ,故m =0不符合题意.(2)当m ≠0时,由题意,得⎩⎪⎨⎪⎧m ≠0,Δ=16-4×3m <0,解得m >43. 由(1)(2)知,实数m 的取值X 围是⎝ ⎛⎭⎪⎫43,+∞. 答案 Cf (x )的定义域为(-1,1),则函数g (x )=f ⎝ ⎛⎭⎪⎫x 2+f (x -1)的定义域是________. 解析 由题意知⎩⎪⎨⎪⎧-1<x 2<1,-1<x -1<1,即⎩⎪⎨⎪⎧-2<x <2,0<x <2.从而0<x <2, 于是函数g (x )的定义域为(0,2).答案 (0,2)f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,则f (175)=________.解析 ∵f (x )满足f (x )+f (y )=f (xy ),且f (5)=m ,f (7)=n ,∴把x =5,y =7代入得f (5)+f (7)=f (35),∴m +n =f (35),把x =5,y =35代入得f (5)+f (35)=f (175),∴m +m +n =f (175),即2m +n =f (175),∴f (175)=2m +n .答案 2m +n数的定义域:(1)y =(x +1)0x +2; (2)y =2x +3-12-x +1x . 解 (1)由于00无意义,故x +1≠0,即x ≠-1.又x +2>0,x >-2,所以x >-2且x ≠-1.所以函数y =(x +1)0x +2的定义域为{x |x >-2,且x ≠-1}. (2)要使函数有意义,需⎩⎪⎨⎪⎧2x +3≥0,2-x >0,x ≠0,解得-32≤x <2,且x ≠0,所以函数y =2x +3-12-x +1x 的定义域为⎩⎨⎧⎭⎬⎫x |-32≤x <2,且x ≠0. 13.(选做题)已知甲地到乙地的高速公路长1 500 km ,现有一辆汽车以100 km/h 的速度从甲地驶往乙地,写出汽车离开甲地的距离s (单位:km)与时间t (单位:h)的函数解析式,并求出函数的定义域.解 ∵汽车在甲、乙两地之间匀速行驶,∴s =100 t .∵汽车行驶速度为100 km/h ,两地之间的距离为1 500 km ,∴从甲地到乙地所用时间为15小时.∴所求函数解析式为s =100t ,0≤t ≤15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第一章集合与函数概念1-2函数及其表示1-2-1函数的概念优化练习新人教A版必修1
[课时作业]
[A组基础巩固]
1.函数y=f(x)的图象与直线x=1的公共点有( )
A.0个B.1个
C.0或1个D.无数个
解析:当x=1在函数f(x)的定义域内时,函数y=f(x)的图象与直线x=1有一个公共点
(1,f(1));当x=1不在定义域内时,函数y=f(x)的图象与直线x=1没有公共点.
答案:C
2.已知四组函数:
①f(x)=x,g(x)=()2;②f(x)=x,g(x)=;③f(n)=2n-1,
g(n)=2n+1(n∈N);④f(x)=x2-2x-1,g(t)=t2-2t-1.
其中是同一函数的为( )
A.没有B.仅有②
C.②④ D.②③④
解析:对于第一组,定义域不同;对于第三组,对应法则不同;对于第二、四组,定义域与对应法则都相同.故选C.
答案:C
3.y=x2(-1≤x≤2)的值域是( )
A.[1,4] B.[0,1]
C.[0,4] D.[0,2]
解析:由图可知f(x)=x2(-1≤x≤2)的值域是[0,4].
答案:C
4.函数y=的定义域为( )
A.(-∞,2] B.(-∞,2)
C.(-∞,1)∪(1,2) D.(-∞,1)∪(1,2]
解析:要使函数y=有意义,则解得x≤2且x≠1,所以所求函数的定义域为(-∞,1)∪(1,2].
答案:D
5.图中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象的是( )
解析:根据函数的定义,在定义域[0,1]内任意一个元素都有唯一的函数值与它对应,同样,对于值域[0,1]中的任意一个函数值,在定义域内也一定有自变量和它对应.A中函数值域不是[0,1],B中函数定义域不是[0,1],故可排除A,B;再结合函数的定义,可知对于集合M中的任意一个x,N中都有唯一的元素与之对应,故排除D.故选C.
答案:C
6.下列说法正确的有________.(只填序号)
①函数值域中的每一个数都有定义域中的一个数与之对应;②函数的定义域和值域一定是无限集合;③若函数的定义域只有一个元素,则值域也只有一个元素;④对于任何一个函数,如果x不同,那么y的
值也不同;⑤f(a)表示当x =a 时,函数f(x)的值,这是一个常量. 解析:函数是一个数集与另一个数集间的特殊对应关系,所给出的对应是否可以确定为y 是x 的函数,主要是看其是否满足函数的三个特征.①是正确的.函数值域中的每一个数一定有定义域中的一个数与之对应,但不一定只有一个数与之对应.②是错误的.函数的定义域和值域不一定是无限集合,也可以是有限集,但一定不是空集,如函数f(x)=1,x =1的定义域为{1},值域为{1}.③是正确的.根据函数的定义,定义域中的每一个元素都能在值域中找到唯一元素与之对应.④是错误的.当x 不同时,函数值y 的值可能相同,如函数y =x2,当x =1和-1时,y 都为1.⑤是正确的.f(a)表示当x =a 时,函数f(x)的值是一个常量.故填①③⑤. 答案:①③⑤
7.已知函数f(x)=,若f(x)的定义域为R ,则m 的取值范围是________.
解析:由已知得2x2-mx +3≥0对x∈R 恒成立,即Δ=m2-24≤0,∴-2≤m≤2. 答案:[-2,2]
8.若函数f(x)的定义域为[2a -1,a +1],值域为[a +3,4a],则a 的取值范围为________. 解析:由区间的定义知
⎩⎪⎨⎪⎧ 2a -1<a +a +3<4a
⇒1<a<2.
答案:(1,2)
9.若f(x)的定义域为[-3,5],求φ(x)=f(-x)+f(x)的定义域.
解析:由f(x)的定义域为[-3,5],得φ(x)的定义域需满足
⎩⎪⎨⎪⎧
-3≤-x≤5,-3≤x≤5
即解得-3≤x≤3.
所以函数φ(x)的定义域为[-3,3]. 10.试求下列函数的定义域与值域:
(1)f(x)=(x -1)2+1,x∈{-1,0,1,2,3}; (2)f(x)=(x -1)2+1; (3)f(x)=; (4)f(x)=x -.
解析:(1)函数的定义域为{-1,0,1,2,3},则f(-1)=[(-1)-1]2+1=5,同理可得f(0)=2,f(1)=1,f(2)=2,f(3)=5,所以函数的值域为{1,2,5}.
(2)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y|y≥1}.
(3)函数的定义域是{x|x≠1},y ==5+,所以函数的值域为{y|y≠5}. (4)要使函数式有意义,需x +1≥0,即x≥-1,故函数的定义域是{x|x≥-1}.设t =,则x =t2-1(t≥0),于是f(t)=t2-1-t =2-.又t≥0,故f(t)≥-.所以函数的值域是.
[B 组 能力提升]
1.函数y =的值域为( ) A .(-∞,3) B .[3,+∞) C .[0,9]
D .[0,3]
解析:由函数性质可得5+4x -x2≥0的值域开方即是.结合函数图象
(图略)可得y∈[0,3],故选D.
答案:D
2.已知f(x)的定义域是[0,+∞),则函数(x-2)0+f(x-1)的定义域是( )
A.[0,2)∪(2,+∞) B.[1,2)∪(2,+∞)
C.[-1,2)∪(2,+∞) D.[1,+∞)
解析:得1≤x且x≠2.
答案:B
3.已知函数f(x),g(x)分别由下表给出:
则f(g(1))的值为的x的值是________.
解析:g(1)=3,f(g(1))=f(3)=1;
f(g(1))=1,f(g(2))=3,
f(g (3))=1,g(f(1))=3,
g(f(2))=1,g(f(3))=3,
∴满足f(g(x))>g(f(x))的x值为x=2.
答案:1 2
4.在实数的原有运算中,我们定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)-(2⊕x),x∈[-2,2],则函数f(x)的值域为________.
解析:由题意知,f(x)=⎩⎪⎨
⎪⎧
-1,x∈[-2,
x2-2,
,2].
当x∈[-2,1]时,f(x)=-1; 当x∈(1,2]时,f(x)∈(-1,2]. ∴当x ∈[-2,2]时,f(x)∈[-1,2]. 答案:[-1,2]
5.如图,某灌溉渠的横断面是等腰梯形,底宽为 2 m ,渠深为 1.8 m ,斜坡的倾斜角是45°.(临界状态不考虑)
(1)试将横断面中水的面积A(m2)表示成水深h(m)的函数; (2)确定函数的定义域和值域; (3)画出函数的图象.
解析:(1)由已知,横断面为等腰梯形,下底为 2 m ,上底为(2+2h)m ,高为h m ,∴水的面积A ==h2+2h(m2).
(2)定义域为{h|0<h<1.8}.值域由二次函数A =h2+2h(0<h <1. 8)求得.
由函数A =h2+2h =(h +1)2-1的图象可知,在区间(0,1.8)上函数值随自变量的增大而增大, ∴0<A <6.84.
故值域为{A|0<A <6.84}.
(3)由于A =(h +1)2-1,对称轴为直线h =-1,顶点坐标为(-1,-1),且图象过(0,0)和(-2,0)两点,又考虑到0<h <1.8,∴A=h2+2h 的图象仅是抛物线的一部分,如图所示.
6.对于函数f(x),若f(x)=x ,则称x 为f(x)的“不动点”,若f(f(x))=x ,则称x 为f(x)的“稳定点”,函数f(x)的“不动点”和
“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}.
(1)求证:A⊆B;
(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.
解析:(1)若A=∅,则A⊆B显然成立.
若A≠∅,设t∈A,
则f(t)=t,f(f(t))=t,t∈B,
从而A⊆B,故A⊆B成立.
(2)∵A={-1,3},
∴f(-1)=-1,且f(3)=3.
即,∴,
∴,∴f(x)=x2-x-3.
∵B={x|f(f(x))=x},
∴(x2-x-3)2-(x2-x-3)-3=x,
∴(x2-x-3)2-x2=0,
即(x2-3)(x2-2x-3)=0,
∴(x2-3)(x+1)(x-3)=0,
∴x=±或x=-1或x=3.
∴B={-,-1,,3}.。