华东师大版八年级数学《分式》期末复习题
八年级数学下第17章《分式》水平测试(二)华东师大版
华师版八年级下第17章《分式》水平测试(二)一、(本大题共10小题,每题3分,共30分. 在每题所给出的四个选项中,只有一项是符合题意的.把所选项前的字母代号填在题后的括号内. 相信你一定会选对!)1.在代数式:213a ,m n π-,5a b -,2x y y 中,分式有( ). (A )1个 (B )2个 (C )3个 (D )4个2.若x 、y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )(A )y x 23 (B )223y x (C )y x 232 (D )2323yx 3.下列分式中是最简分式的是( ).(A )2ab bc - (B )211x x -- (C )221x x + (D )122y y -- 4.下列等式中,不成立的是( )(A )22x y x y x y -=-- (B )222x xy y x y x y-+=-- (C )2xy y x xy x y=-- (D )22y x y x xy x y -=- 5.纳米是一种长度单位:1纳米=910-米,已知某种植物花粉的直径约为35 000•纳米,那么用科学记数法并精确到千万分位表示该种花粉的直径为( ).(A )3.50×104米 (B )3.50×10-5米 (C )3.50×10-9米 (D )3.50×10-13米6.若关于x 的分式方程2344m x x=+--有增根,则m 的值为( ). (A )-2 (B )2 (C )±2 (D )47.已知14x x -=,则221x x+的值为( ). (A )6 (B )16 (C )14 (D )188.下列运算正确的是( ).(A )3()x --·25()x x ---= (B )6a ·326(5)5a a --=- (C )24m ·20(2)(4)0m ----= (D )431()()()y x x y y x -÷-=-- 我会选择9.一项工程,甲单独做a 小时完成,乙单独做b 小时完成,甲乙两人一起完成这项工程所需的时间为( )(A )11()a b +小时 (B )()a b +小时 (C )a b ab +小时 (D )ab a b +小时 10.A 、B 两地相距1350km ,两辆汽车从A 开往B 地,大汽车比小汽车晚到30min ,已知小汽车与大汽车的速度之比为5:3,求两车的速度,设大汽车的速度为3/x km h ,小汽车的速度为5/x km h ,所列方程是( )(A )135011350325x x += (B )135011350325x x -= (C )135013503035x x -= (D )135013503035x x+= 二、细心填一填:(本大题共有8小题,每题3分,共24分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,积极思考,相信你一定会填对的!)11.计算:02229-+-=________________. 12.若分式11||--x x 的值为零,则x 的值等于 . 13.观察下面一列有规律的数:13,28,315,424,535,648,…….根据其规律可知第n个数应是___(n 为正整数).14.已知222222M xy y x y x y x y x y--=+--+,则M =________. 15.已知113a b +=,则32a ab b a ab b-+=++___________. 16.若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 17.汛期将至,我军机械化工兵连的官兵为驻地群众办实事,计划加固驻地附近20千米的河堤.根据气象部门预测,今年的汛期有可能提前,因此官兵们发扬我军不怕苦,不怕累的优良传统,找出晚归,使实际施工速度提高到计划的1.5倍,结果比计划提前10天完成,问该连实际每天加固河堤多少千米?列方程解此应用题时,若计划每天加固河堤x 千米,则实际每天加固1.5x 千米,根据题意可列方程为 _____________ .18.我国是一个水资源贫乏的国家,每一个公民都应自觉养成节约用水的意识和习惯,为提高水资源的利用效率,某住宅小区安装了循环用水装置.经测算,原来a 天需用水m 吨,现在这些水可多用5天,现在每天比原来少用水________________吨.三、认真答一答:(本大题共4小题,每小题10分,共40分. 只要你认真思考, 仔细运算, 一定会解答正确的!)19.化简:22(1)(2)442a a a a a a a +-⎡⎤-⎢⎥-+-⎣⎦÷2a a -. 20. 在解题目:“当1949x =时,求代数式2224421142x x x x x x x-+-÷-+-+的值”时,聪聪认为x 只要任取一个使原式有意义的值代入都有相同结果.你认为他说的有理吗?请说明理由.21. 符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bad bc c d =-,请你根据上述规定求出下列等式中x 的值.2111111x x =--22.(课本题变形)如图,有两条支路的并联电路中,总电阻是R ,两个支路的分电阻是12R R 和,总电阻的倒数等于两个分电阻的倒数之和,请用12R R 和的代数式来表示R .四、动脑想一想:(本大题共有2小题,每小题13分,共26分. 只要你认真探索,仔细思考,你一定会获得成功的!)23. 2008年5月12日14时28分我国四川汶川发生了8.0级大地震,地震发生后,我市某中学全体师生踊跃捐款,支援灾区,其中九年级甲班学生共捐款1800元,乙班学生共捐款1560元.已知甲班平均每人捐款金额是乙班平均每人捐款金额的1.2倍,乙班比甲班多2人,那么这两个班各有多少人?24. 某一项工程,在工程招标时,接到甲、乙两个工程队的投标书,施工一天,需付甲工程队工程款1.5万元, 乙工程队工程款1.1万元,工程领导小组根据甲乙两队的投标书测算,可有三种施工方案:(1)甲队单独完成这项工程刚好如期完成;(2)乙队单独完成这项工程要比规定日期多用5天;(3)若甲、乙两队合作4天,余下的工程由乙队单独也正好如期完成.在不耽误工期的情况下,你觉得那一种施工方案最节省工程款?参考答案:1.B ;2.A ;3.C ;4.A ;5.B ;6.A ;7.D ;8.C ;9.D ;10.B ; 11.74-; 12.-1;13. ()211nn +-; 14.2x ;提示:2222222()()()xy y x y xy y x y x y x y x y x y ---+-+=-++-=22222x M x y x y=--. 15.0;16. 17. xx 5.1201020=-; 18. 255m a a+; 19.1;20.解:聪聪说的有理.2224421142x x x x x x x -+-÷-+-+2(2)211(2)(2)(2)x x x x x x x -+=⨯-++--111x x=-+1=. ∴只要使原式有意义,无论x 取何值,原式的值都相同,为常数1.21. 解:2111111x x =-- 整理得:2×11-x -x-11=1 12-x +11-x =1 解之得:x =422. 解:121212111R R R R R R R +=+=,所以1212R R R R R =+. 23. 解:设甲班有x 人,则乙班有(x +2)人,根据题意,得x 1800=21560+x ×1.2 解这个方程,得 x =50 经检验,x =50是所列方程的根.所以,甲班有50人,乙班有52人.24.解:设这项工程的工期为x 天,则甲需x 天完成,乙需(5x +)天完成,根据题意得415x x x +=+, 解此方程得x=20.经检验知x=20.是原分式方程得解且符合题意.方案(1)中需付工程款1.52030⨯=万元);方案(2)将耽误工期;方案(3)中需付工程款1.54 1.12028⨯+⨯=(万元);答:第三种方案不耽误工期且工程款最节省.。
华东师大版数学八年级下期末复习 第16章 分式
2
A.
2
B. 2 2
C.- 2 2
2
D.-
2
9. 关于 x 的分式方程 a 1 ,下列说法正确的是(
)
x3
A. 方程的解是 x a 3
B. 当 a 3 时,方程的解是正数
C. 当 a 3 时,方程的解为负数
D. 以上答案都是正确
10. 某服装专卖店销售的 A 款品牌西服去年销售总额为 50000 元,今年该款西服每件售价
4x2 x2
2x 2x 1
,其中
x
的值从不等式组
2 x 3 2x 4 1的
整数解中选取.
重难点 2 解分式方程
例 2 解方程: x 2x 1 x 1 3x 3
ห้องสมุดไป่ตู้ 变式训练
3.
分式方程 5 3 x 的解是 x x 1 x 1
。
4. 解分式方程: 1 1 2 6x 2 2 1 3x
0 0
C
50000 x 400
50000
1 x
20
0 0
D.
50000 x
50000 1 20 x 400
0
0
2、填空题(每小题 3 分,共 15 分)
11. 某颗粒物的直径是 0.0000025,把 0.0000025 用科学计数法表示为
。
1
12. 要使分式 xx 1 有意义,则 x 应满足
重难点 1 分式的运算
分式
例
1:先化简: 1
x
1
2
x2
x 1 4x
4
,再从
2022-2023学年华东师大新版八年级下册数学期末复习试卷(含解析)
2022-2023学年华东师大新版八年级下册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.关于反比例函数y=的图象,下列说法错误的是( )A.经过点(2,3)B.分布在第一、三象限C.关于原点对称D.x的值越大越靠近x轴2.若横坐标为3的点一定在( )A.与y轴平行,且与y轴的距离为3的直线上B.与x轴平行,且与x轴的距离为3的直线上C.与x轴正半轴相交,与y轴平行,且与y轴的距离为3的直线上D.与y轴正半轴相交,且与x轴的距离为3的直线上3.据科学研究表明,新型冠状病毒体直径的大小约为125纳米,1纳米就是0.000000001米.那么125纳米用科学记数法表示为( )A.125×10﹣9米B.1.25×10﹣8米C.1.25×10﹣7米D.1.25×10﹣6米4.“科学用眼,保护视力”是青少年珍爱生命的具体表现,某班50名同学的视力检查数据如表,其中有两个数据被遮盖.视力 4.6以下 4.6 4.7 4.8 4.9 4.9以上人数■■791411下列关于视力的统计量中,与被遮盖的数据均无关的是( )A.中位数,众数B.中位数,方差C.平均数,方差D.平均数,众数5.如图,正方形ABCD的边长为2,点E;F分别为边AD,BC上的点,点G,H分别为AB,CD边上的点,连接GH,若线段GH与EF的夹角为45°,GH=,则EF的长为( )A.B.C.D.6.如图,已知AB=DC,AD=BC,E,F是DB上两点且BF=DE,若∠AEB=100°,∠ADB =30°,则∠BCF的度数为( )A.150°B.40°C.80°D.70°7.直线y=ax+b经过第一、二、四象限,则直线y=bx+a的图象只能是图中的( )A.B.C.D.8.如图,四边形ABCD、CEFG均为正方形,其中正方形CEFG面积为36cm2,若图中阴影部分面积为10cm2,则正方形ABCD面积为( )A.6B.16C.26D.469.如图,点A在双曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,AB∥x轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值( )A.﹣6B.﹣8C.﹣10D.﹣1210.如图,正方形ABCD的边长为2,点P是对角线BD上一点,PE⊥BC于点E,PF⊥CD 于点F,连接EF,给出下列五个结论:①PB=AB;②AP=EF且AP⊥EF;③∠PFE=∠BAP;④EF的最小值为;⑤PB2+PD2=2PA2,其中正确的结论是( )A.①②③④B.②③④C.③④⑤D.②③④⑤二.填空题(共6小题,满分24分,每小题4分)11.某公司招聘一名公关人员,对甲进行了笔试和面试,面试和笔试的成绩分别为85分和90分,面试成绩和笔试成绩的权分别是6和4,则甲的平均成绩为 .12.如图所示,在▱ABCD中,∠BAD的平分线AE交BC于E,且AD=a,AB=b,用含a,b的代数式表示EC,则EC= .13.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的,这时增加了乙队,两队又共同工作了半个月,总工程全部完成,求乙队单独施工完成次工程需要几个月?设乙队单独施工需要x个月,则列方程为: .14.已知关于x的分式方程的解是负数,则m的取值范围是 .15.已知直线y1=x+与y2=﹣4x﹣1相交于点P,则满足y1>y2的x的取值范围是 .16.写出一个与y=﹣x图象平行的一次函数: .三.解答题(共9小题,满分86分)17.(8分)解方程:.18.(8分)化简求值:(﹣),其中a满足a2+2a=2021.19.(8分)一次函数的图象过点A(﹣1,2)和点B(1,﹣4).(1)求该一次函数表达式;(2)若点C(a,8)也在直线AB上,求a的值;(3)若点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,求n1﹣n2的值.20.(8分)如图,在平行四边形ABCD中,E、F是对角线AC上的两点,且AF=CE.(1)求证:△ADE≌△CBF.(2)若AC平分∠BAD,则四边形BEDF的形状是 .21.(8分)如图,在平面直角坐标系中,直线l1:y=kx+b与直线l2:y=mx+n交于点A (1,2),直线l2与y轴交于点B(0,3),直线l1与x轴交于点C(﹣1,0).(1)求直线l1、l2的函数表达式;(2)连接BC,直接写出△ABC的面积.22.(10分)我校举行八年级汉字听写大赛,每班各派五名同学参加(满分为100分).其中八(1)班和八(2)班五位参赛同学的成绩如图所示:(1)根据条形统计图完成表格平均数中位数众数八(1)班83 90八(2)班 85 (2)已知八(1)班参赛选手成绩的方差为56分2,请计算八(2)班参赛选手成绩的方差,并分析哪一个班级的成绩比较稳定.23.(10分)如图,反比例函数y=(k≠0)与一次函数y=﹣x+b的图象交于点A(1,5)和点B(m,1).(1)求m,b的值.(2)结合图象,直接写出不等式<﹣x+b成立时x的取值范围.(3)若Q为y轴上的一点,使QA+QB最小,求点Q的坐标.24.(12分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示国外品牌国内品牌进价(万元/部)0.440.2售价(万元/部)0.50.25该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(14分)综合与实践【问题背景】矩形纸片ABCD中,AB=6,BC=10,点P在AB边上,点Q在BC边上,将纸片沿PQ 折叠,使顶点B落在点E处.【初步认识】(1)如图1,折痕的端点P与点A重合.①当∠CQE=50°时,∠AQB= °;②若点E恰好在线段QD上,则BQ的长为 ;【深入思考】(2)若点E恰好落在边AD上.①请在图2中用无刻度的直尺和圆规作出折痕PQ(不写作法,保留作图痕迹);②如图3,过点E作EF∥AB交PQ于点F,连接BF.请根据题意,补全图3并证明四边形PBFE是菱形;③在②的条件下,当AE=3时,菱形PBFE的边长为 ,BQ的长为 ;【拓展提升】(3)如图4,若DQ⊥PQ,连接DE,若△DEQ是以DQ为腰的等腰三角形,则BQ的长为 .参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.解:A、反比例函数y=,当x=2时y=3,故本选项不符合题意;B、反比例函数y=中的6>0,则该函数图象经过第一、三象限,故本选项不符合题意;C、反比例函数y=的图象关于原点对称,故本选项不符合题意;D、反比例函数y=,不是单调函数,当x<0时,x的值越大越远离x轴,故错误,故本选项符合题意.故选:D.2.解:A.与y轴平行,且距离为3的直线上的点的横坐标为3或﹣3,故原说法不对;B.与x轴平行,且距离为3的直线上的点的纵坐标为3或﹣3,故原说法不对;C.与x轴正半轴相交,与y轴平行,且距离为3的直线上,说法正确;D.与y轴正半轴相交,与x轴平行,且距离为3的直线上的点的纵坐标为3,故原说法不对.故选:C.3.解:∵1纳米=1×10﹣9米.∴125纳米=125×10﹣9米=1.25×102×10﹣9米=1.25×10﹣7米.故选:C.4.解:由表格数据可知,成绩为4.6、4.6以下的人数为50﹣(7+9+14+11)=19(人),视力为4.9出现次数最多,因此视力的众数是4.9,视力从小到大排列后处在第25、26位的两个数都是4.7,因此中位数是4.7,因此中位数和众数与被遮盖的数据无关,故选:A.5.解:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH=,∵线段GH与EF的夹角为45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,∴∠ABN=∠CBM,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,过点K作KP⊥BN于P,∵∠KBN=45°,∴△BKP是等腰直角三角形,设EF=BK=x,则BP=KP=BK=x,∵tan N==,∴=,解得x=,所以EF=.解法二:如图,过点B作BK∥EF交AD于K,作BM∥GH交CD于M,则BK=EF,BM=GH,∵线段GH与EF的夹角为45°,∴∠KBM=45°,∴∠ABK+∠CBM=90°﹣45°=45°,作∠KBN=45°交DA的延长线于N,则∠ABN+∠ABK=45°,在△ABN和△CBM中,,∴△ABN≌△CBM(ASA),∴BN=BM,AN=CM,在Rt△BCM中,CM===1,∴DM=1,在△KBN和△KBM中,,∴△KBN≌△KBM(SAS),∴KM=KN设AK为x,则KM=KN=x+1,KD=2﹣x,连接KM,在Rt△KDM中,DK2+DM2=KM2,∴(2﹣x)2+12=(x+1)2,∴x=,∴AK=,∴BK===,∴EF=BK=,故选:B.6.解:在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠ADE=∠CBF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS),∴∠BCF=∠DAE,∵∠DAE=∠AEB﹣∠ADE=100°﹣30°=70°,∴∠BCF=70°.故选:D.7.解:∵直线y=ax+b经过第一、二、四象限,∴a<0,b>0,∴直线y=bx+a的图象经过第一、三、四象限,故选:D.8.解:∵阴影部分面积=DE×(BC+CG),∴阴影部分面积=×(CE﹣DC)(BC+CG)=(CE2﹣BC2),∵正方形CEFG面积为36cm2,图中阴影部分面积为10cm2,∴10=×(36﹣S正方形ABCD),∴S正方形ABCD=16,故选:B.9.解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A双在曲线y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.10.解:连接PC,延长AP交EF于点H,如图所示:∵点P是对角线BD上一点,∴PB和AB的大小不能确定,故①选项不符合题意;在正方形ABCD中,AD=CD,∠ADP=∠CDP=45°,PD=PD,∴△ADP≌△CDP(SAS),∴AP=CP,∠PAD=∠PCD,∵PE⊥BC,PF⊥CD,∴∠PFC=∠PEC=90°,∵∠C=90°,∴四边形PECF是矩形,∴EF=PC,∴AP=EF,∵∠ADC=∠PFC=90°,∴AD∥PF,∴∠DAP=∠FPH,在矩形PECF中,∠PCD=∠EFC,∴∠FPH=∠EFC,∵∠EFC+∠EFP=90°,∴∠FPH+∠EFP=90°,∴AP⊥EF,故②选项符合题意;在矩形PECF中,∠PFE=∠PCE,∵△ADP≌△CDP,∴∠DAP=∠DCP,∴∠BAP=∠PCB,∴∠BAP=∠PFE,故③选项符合题意;∵AB=AD=2,根据勾股定理得BD=2,当AP⊥BD时,AP最小,此时AP最小值为BD=,∵AP=EF,∴EF的最小值为,故④选项符合题意;根据勾股定理,得PB2=2PE2,PD2=2PF2,∴PB2+PD2=2(PE2+PF2)=2EF2=2PA2,故⑤选项符合题意;综上,正确的选项有②③④⑤,故选:D.二.填空题(共6小题,满分24分,每小题4分)11.解:甲的平均成绩为=87(分),故答案为:87分.12.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=b,∵BC=AD=a,∴EC=BC﹣BE=a﹣b.故填空答案:a﹣b.13.解:由题意可得,+()×=1,故答案为:+()×=1.14.解:,m﹣3=x+1,∴x=m﹣4.∵关于x的分式方程的解是负数,∴m﹣4<0且m﹣4+1≠0.∴m<4且m≠3.故答案为:m<4且m≠3.15.解:∵y1>y2,∴x+>﹣4x﹣1,解得:x>﹣,故答案为:x>﹣.16.解:由题意得,k=﹣1,则可出一次函数y=﹣x+1,答案不唯一.三.解答题(共9小题,满分86分)17.解:方程两边同乘(x﹣3),得:2x﹣1=x﹣3+1,整理解得:x=﹣1,经检验:x=﹣1是原方程的解.18.解:原式====,∵a2+2a=2021,则原式=.19.解:(1)设一次函数表达式为:y=kx+b,∵一次函数的图象过点A(﹣1,2)和点B(1,﹣4),∴,解得:,∴一次函数表达式为:y=﹣3x﹣1;(2)∵点C(a,8)在直线AB上,∴﹣3a﹣1=8,解得a=﹣3;(3)∵点P(m﹣1,n1)和点Q(m+1,n2)在该一次函数的图象上,∴,解得:n1﹣n2=6.20.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AF=CE.∴AF﹣EF=CE﹣EF,∴AE=CF,∴△ADE≌△CBF(SAS);(2)四边形BEDF的形状是菱形,理由如下:∵AC平分∠BAD,∴∠DAC=∠BAC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAC=∠BCA,∴∠BAC=∠BCA,∴BA=BC,∴AD=AB,∵AE=AE,∴△ADE≌△ABE(SAS),∴DE=BE,∵△ADE≌△CBF,∴DE=BF,∠DEA=∠BFC,∴∠DEF=∠BFE,∴DE∥BF,∴四边形BEDF是平行四边形,∵DE=BE,∴平行四边形BEDF是菱形.故答案为:菱形.21.解:(1)根据题意得,,解得,∴直线l1:y=x+1,解得,∴直线l2:y=﹣x+3;(2)设直线l1与y轴的交点为D,则D(0,1),∴BD=3﹣1=2,∴S△ABC=S△ABD+S△BCD=+×1=2.22.解:(1)八(1)班的成绩从大到小排列为70,80,85,90,90,处于第三位的是85,因此中位数为85,八(2)班平均数为(70+85+85+90+95)÷5=85,出现次数最多的数是85,所以表格中依次填写85,85,85.(2)八(2)班的方差:S2=[(95﹣85)2+(70﹣85)2+(90﹣85)2+(85﹣85)2+(85﹣85)2]=70,∵56<70,∴八(1)班成绩比较稳定,答:八(1)班成绩比较稳定.23.解:(1)将点A的坐标代入y=(k≠0)得:5=,解得:k=5,∴反比例函数为y=,将点B的坐标代入y=得1=,解得:m=5,∴点B(5,1),∵一次函数y=﹣x+b的图象过点A(1,5),∴5=﹣1+b,解得b=6;(2)从函数图象看,不等式<﹣x+b成立时x的取值范围是1<x<5或x<0;(3)作A关于y轴的对称点A′,连接A′B,与y轴的交点即为Q点,此时AQ+BQ 的和最小,∵A(1,5),∴A关于y轴的对称点A′的坐标为(﹣1,5),设直线A′B的解析式为y=mx+n,∴,解得,∴直线A′B的解析式为y=﹣x+,令x=0,则y=,∴Q(0,).24.解:(1)设商场计划购进国外品牌手机x部,国内品牌手机y部,由题意,得:,解得,答:商场计划购进国外品牌手机20部,国内品牌手机30部;(2)设国外品牌手机减少a部,则国内手机品牌增加3a部,由题意,得:0.44(20﹣a)+0.2(30+3a)≤15.6,解得:a≤5,设全部销售后获得的毛利润为w万元,由题意,得:w=0.06(20﹣a)+0.05(30+3a)=0.09a+2.7,∵k=0.09>0,∴w随a的增大而增大,∴当a=5时,w最大=3.15,答:当该商场购进国外品牌手机15部,国内品牌手机45部时,全部销售后获利最大,最大毛利润为3.15万元.25.(1)解:①∵∠CQE=50°,∴∠BQE=130°,由折叠可知,∠AQB=∠BQE=65°,故答案为:65;②解:由折叠可知,AB=AE,∠ABE=∠AEQ=90°,BQ=QE,∵AB=6,BC=10,∴AE=6,∴DE=8,在Rt△CDQ中,(8+QE)2=62+(10﹣QE)2,∴QE=2,∴BQ=2,故答案为:2;(2)解:①连接BE,作BE的垂直平分线交AB于P,交BC于Q,则PQ为所求;②证明:∵EF∥AB,∴∠BPF=∠EFP,由折叠可知,PB=PE,∠BPF=∠EPF,∴∠EFP=∠EPF,∴PE=EF,∴PB=EF,∴四边形PBFE是平行四边形,∵PE=EF,∴四边形PBFE是菱形;③解:由折叠可知PB=PE,∵AB=6,∴AP=6﹣PE,在Rt△APE中,PE2=(6﹣PE)2+32,∴PE=,∴菱形PBFE的边长为,由折叠可知,EQ=BQ,∵AE=3,∴BG=3,在Rt△EGQ中,BQ2=62+(BQ﹣3)2,∴BQ=,故答案为:,;(3)解:由折叠可知BQ=EQ,设BQ=m,则EQ=m,CQ=10﹣m,①当DQ=EQ时,在Rt△CDQ中,62+(10﹣m)2=m2,∴m=,∴BQ=;②当DE=DQ时,过点D作DF⊥EQ交于F,∴FQ=EQ=m,由折叠可知∠PQB=∠PQE,∵DQ⊥PQ,∴∠PQB+∠CQD=90°=∠PQE+∠FQD,∴∠CQD=∠FQD,∴△CDQ≌△FDQ(AAS),∴CQ=FQ,∴10﹣m=m,∴m=,∴BQ=;综上所述:BQ的长为或,故答案为:或.。
华东师大版八年级数学上册期末试卷及答案【完整版】
华东师大版八年级数学上册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=()A.30°B.35°C.45°D.60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a ﹣b|+2()a b +的结果是________.2.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A ,且另三个锐角顶点B ,C ,D 在同一直线上.若AB=2,则CD=________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--.2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数. (1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图,在长方形OABC 中,O 为平面直角坐标系的原点,点A 坐标为(a ,0),点C 的坐标为(0,b ),且a 、b 4a -+|b ﹣6|=0,点B 在第一象限内,点P 从原点出发,以每秒2个单位长度的速度沿着O ﹣C ﹣B ﹣A ﹣O 的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D5、A6、C7、B8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、﹣2b2、3.3、2x(x﹣1)(x﹣2).415、26、15.三、解答题(本大题共6小题,共72分)x=1、22、3.3、(1)1;(2)m>2;(3)-2<2m-3n<184、(1)略;(2)45°;(3)略.5、(1)4,6,(4,6);(2)点P在线段CB上,点P的坐标是(2,6);(3)点P移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
最新华师大版数学八年级下华东师大版17.1 分式及其基本性质练习
17.1 分式及其基本性质选择题1.下列各式中,分式的个数为:( )3x y -,21a x -,1x π+,3a b -,12x y +,12x y +,2123x x =-+; A 、5个; B 、4个; C 、3个; D 、2个;2.下列各式正确的是( )A 、c c a b a b =----;B 、c c a b a b=---+; C 、c c a b a b =--++; D 、c c a b a b-=---- 3.下列分式是最简分式的是( )A 、11m m --;B 、3xy y xy -;C 、22x y x y -+;D 、6132m m-; 4.将分式2x x y+中的x 、y 的值同时扩大2倍,则扩大后分式的值( ) A 、扩大2倍; B 、缩小2倍; C 、保持不变; D 、无法确定;5.若分式1x 2x x 2+--的值为零,那么x 的值为( ) A .x =-1或x =2 B .x =0C .x =2D .x =-16.下列各式正确的是( )A .0yx y x =++ B .22x y x y = C .1y x y x =--+- D .yx 1y x 1--=+- 7.若c 11b b11a -=-=,,则用a 表示c 的代数式为( ) A .b11c -= B .c 11a -=C .a a 1c -=D .a 1a c -= 二.填空题1.若分式33x x --的值为零,则x = ; 2.分式2x y xy +,23y x ,26x y xy -的最简公分母为 3.从甲地到乙地全长S 千米,某人步行从甲地到乙地t 小时可以到达,现为了提前半小时到达,则每小时应多走 千米(结果化为最简形式)4.当x________时,分式1x 3-有意义;当x________时,分式3x 9x 2--的值为0. 5.当x________时,分式1x 1--的值为正数. 6.某人上山的速度为1v ,所用时间为1t ;按原路返回时,速度为2v ,所用时间为2t ,则此人上下山的平均速度为________.7.若解分式方程4x m 4x 1x +=+-产生增根,则m =________. 8.已知25a 1a =+,则a1a -=________. 9.观察下列关系式:212111+=,613121+=,1214131+=…,请你归纳出一般结论________. 10. 不改变分式的值,把下列各分式的分子和分母中各项的系数化为整数分式,则42.05.0-+x y x = 11.不改变分式的值,使分式的分子和分母的最高次项的系数为正数,则mm m m +---223= 。
华东师大版八年级下《第16章分式》单元复习测试(有答案)(数学)
第16章分式复习试题1.下列各式中,属于分式的个数有( )①1x ;②-x 2;③2xy x +y ;④2x -x 3;⑤14(x 2+1). A .1个 B .2个 C .3个 D .4个2.如果分式3x -1有意义,那么x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >13.下列计算不正确的一项是( )A .b 2x =by 2xyB .ax bx =a bC .3x 2y ÷6y 2x =x 32yD .2a a 2-4-1a -2=1a +24.方程2x +1x -1=3的解是( ) A .-45 B .45C .-4D .4 5.计算:⎝ ⎛⎭⎪⎫a b -b a ÷a -b a 的结果为( ) A .a +b b B .a -b b C .a -b a D .a +b a6.分式方程xx -1-1=3(x -1)(x +2)的解为( ) A .x =1 B .x =-1 C .无解 D .x =-27.电动车每小时比自行车多行驶了25千米,自行车行驶30千米比电动车行驶40千米多用了1小时,求两车的平均速度各为多少?设自行车的平均速度为x 千米/时,应列方程为( )A .30x -1=40x -25B .30x -1=40x +25C .30x +1=40x -25D .30x +1=40x +258.已知14m 2+14n 2=n -m -2,则1m -1n的值是( ) A .1 B .0 C .-1 D .-149.当x =6,y =3时,代数式⎝ ⎛⎭⎪⎫x x +y +2y x +y ·3xy x +2y的值是( ) A .2 B .3 C .6 D .910.关于x 的分式方程2x -a x +1=1的解是正数,则字母a 的取值范围为( ) A .a ≥-1 B .a >-1 C .a ≤-1 D .a <-111.分式方程x x -1=32(x -1)-2的解为________. 12.计算:⎝ ⎛⎭⎪⎫a a +b +2b a +b ·a a +2b=________. 13.人体内某种细胞可近似地看作球体,它的直径为0.000 000 156 m ,将0.000 000 156用科学记数法表示为________.14.已知实数m 满足m 2-3m +1=0,则代数式m 2+19m 2+2的值等于________.15.甲、乙二人做某种机械零件,已知甲每小时比乙多做4个,甲做60个所用的时间与乙做40个所用的时间相等,则乙每小时所做的零件的个数为________.16.对于正数x ,规定f (x )=x x +1,例如f (3)=33+1=34,f ⎝ ⎛⎭⎪⎫13=1313+1=14,计算:f (2 018)+f (2 017)+…+f (1)+f ⎝ ⎛⎭⎪⎫11+f ⎝ ⎛⎭⎪⎫12+…+f ⎝ ⎛⎭⎪⎫12 018=________. 17.计算:(1)⎝ ⎛⎭⎪⎫-a b 2×⎝ ⎛⎭⎪⎫-b a 3÷(-ab 4); (2)⎝ ⎛⎭⎪⎫-110-3+(-2 018)0-(-3)3×0.3-1;(3)(-1.4×10-10)÷(7×105)(结果用科学记数法表示).18.解下列分式方程:(1)3x -1=4x ; (2)xx +1-4x 2-1=1.19.先化简,再求值:⎝ ⎛⎭⎪⎫1-2x +1÷x 2-1x 2+x ,其中x =2.20.化简:⎝ ⎛⎭⎪⎫x 2-2x x 2-4x +4-3x -2÷x -3x 2-4,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21.某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22.为了提高产品的附加值,某公司计划将研发生产的1 200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两间工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.23.商场经营的某品牌童装,4月的销售额为20 000元,为扩大销量,5月份商场对这种童装打9折销售,结果销量增加了50件,销售额增加了7 000元.(1)求该童装4月份的销售单价;(2)若4月份销售这种童装获利8 000元,6月全月商场进行“六一儿童节”促销活动.童装在4月售价的基础上一律打8折销售,若该童装的成本不变,则销量至少为多少件,才能保证6月的利润比4月的利润至少增长25%?参考答案1.B 2.B 3.A 4.D 5.A 6.C 7.B 8.C 9.C 10.B11.x =76 12.aa +b 13.1.56×10-7 14.9 15.8 16.2 01817.(1)1a 2b 3 (2)-909 (3)-2×10-1618.(1)x =4 (2)x =-319.原式=xx +1 23 20.原式=x +2 当x =4时,原式=621.75个22.甲工厂每天加工40件产品,乙工厂每天加工60件产品23.(1)4月份的销售单价为200元 (2)销量至少为250件。
华师大版八年级下册数学分式全章复习及测试小结
第17章分式全章小结第一课时综合复习一、知识结构二、重要知识与规律总结(一)概念1、分式:AB(A、B为整式,B≠0)2、有理式:整式和分式统称有理式。
3、最简公分母:各分母所有因式的最高次幂的积。
4、分式方程:分母中含有未知数的方程。
(二)性质1、分式基本性质:A A M A MB B M B M⨯÷==⨯÷(M是不等于零的整式)2、幂的性质:零指数幂:0a=1(a≠0)负整指数幂:1nnaa-=(a≠0,n为正整数)科学记数法:a ×10n,1≤| a |<10,n是一个整数。
(三)分式运算法则分式乘法:将分子、分母分别相乘,即a c acb d bd=分式除法:将除式的分子、分母颠倒位置后,与被除式相乘,即a c a d adb d bc bc ÷=⨯=分式的加减:(1)同分母分式相加减:a c a cb b b±±=;(2)异分母分式相加减:a c ad bc ad bcb d bd bd bd±±=±=分式乘方:()n nna ab b=(b≠0)=(a≥0,b>0)(四)分式方程解法1、解题思想:分式方程转化为整式方程。
2、转化方法:去分母(特殊的用换元法)。
3、转化关键:正确找出最简公分母。
4、注意点:注意验根。
三、学习方法点拨1、两个整数不能整除时,出现了分数;类似地,两个分式不能整除时,就出现了分式。
因此,整式的除法是引入分式概念的基础。
2、分式的基本性质及分式的运算与分数的情形类似,因而在学习过程中,要注意不断地与分数的情形进行类比,以加深对新知识的理解。
3、解分式方程的思想是把含有未知数的分母去掉,从而将分式方程转化为整式方程来解,这时可能会出现增根,必须进行检验。
学习时,要理解增根产生的原因,认识到检验的必要性,并会进行检验。
4、由于引进了零指数幂和负整指数幂,绝对值较小的数也可以用科学记数法来表示。
【华东师大版】初二数学上期末试题(带答案)(1)
一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数 2.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 3.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( ) A .1个 B .2个C .3个D .4个 4.为推进垃圾分类,推动绿色发展,宜宾天原化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台,两种型号机器人的单价和为140万元.若设乙型机器人每台x 万元,根据题意,所列方程正确的是( )A .4605801x 140x -=-B .4605801140x x =--C .4605801x 140x =+-D .4605801140x x-=- 5.当代数式2()2020x y ++的值取到最小..时,代数式222||2||x y x y -+-=……( ) A .0 B .2-C .0或2-D .以上答案都不对 6.下列运算正确的是( ). A .()2326ab a b = B .()325a a = C .236a a a ⋅= D .347a a a +=7.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .5 8.下列运算正确的是( )A .x 2·x 3=x 6B .(x 3)2=x 6C .(-3x)3=27x 3D .x 4+x 5=x 99.如图,在ABC ∆中,DE 垂直平分BC 交AB 于点,D 交BC 于点E .若10,8AB cm AC cm ==,则ACD ∆的周长是( )A .12cmB .18cmC .16cmD .14cm10.如图,在ABC 中,AB AC =,D 为BC 的中点,AD AE =,若40BAD ∠=︒,则CDE ∠的度数为( )A .10︒B .20︒C .30D .40︒ 11.如图,OM 、ON 、OP 分别是AOB ∠,BOC ∠,AOC ∠的角平分线,则下列选项成立的( )A .AOP MON ∠>∠B .AOP MON ∠=∠C .AOP MON ∠<∠D .以上情况都有可能 12.以下列各组线段为边,能组成三角形的是( )A .1,2,3B .1,3,5C .2,3,4D .2,6,10 二、填空题13.甲、乙两同学的家与学校的距离均为3000米,甲同学先步行600米然后乘公交车去学校,乙同学骑自行车去学校,已知甲步行的速度是乙骑自行车速度的12,公交车速度是乙骑自行车速度的2倍.甲乙两同学同时从家出发去学校结果甲同学比乙同学早到2分钟,若甲同学到达学校时,乙同学离学校还有m 米,则m =________.14.计算:20120192-⎛⎫-= ⎪⎝⎭______.15.2007200820092()(1.5)(1)3⨯÷-=_____.16.计算:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭________ 17.如图,在△ABC 中,点D 是BC 上一点,∠BAD =80°,AB =AD =DC ,则∠C =________18.如图,ABC ∆中,AB AC =,点D 、E 、F 分别在AB 、BC 、CA 边上,且BE CF =,BD CE =,如果44A ∠=︒,则EDF ∠的度数为__.19.如图,AB 与CD 相交于点O ,OC =OD .若要得到△AOC ≌△BOD ,则应添加的条件是__________.(写出一种情况即可)20.如图,将纸片ABC 沿DE 折叠,点A 落在点P 处,已知12124+∠=∠︒,A ∠=___________.三、解答题21.计算:(1)222221538x y y x ⎛⎫⋅ ⎪⎝⎭.(2)2222324424x x x x x x x ⎛⎫-+-÷ ⎪-+--⎝⎭. 22.(1)计算:1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭; (2)先化简,再求值:(3)(2)()x x y x y x y +-++,其中1x =-,2y =. 23.如果关于x 的多项式2x a +与22x bx --的乘积展开式中没有二次项,且常数项为10,求2+a b 的值.24.如图,在ABC 中,50B C ∠=∠=︒,点D 在BC 边上,点E 在AC 边上,连接DE ,且ADE AED ∠=∠,当60BAD ∠=︒时,求CDE ∠的度数.25.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .26.如图,已知长方形ABCD 中,10cm AD =,6cm DC =,点F 是DC 的中点,点E 从A 点出发在AD 上以每秒1cm 的速度向D 点运动,运动时间设为t 秒.(假定0t 10<<)(1)当5t =秒时,求阴影部分(即三角形BEF )的面积;(2)用含t 的式子表示阴影部分的面积;并求出当三角形EDF 的面积等于3时,阴影部分的面积是多少?(3)过点E 作//EG AB 交BF 于点G ,过点F 作//FH BC 交BE 于点H ,请直接写出在E 点运动过程中,EG 和FH 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3.C解析:C【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案.【详解】 解:分式方程122x a x -=-,去分母,得:2(x-a )=x-2,解得:x=2a-2,∵分式方程的解为非负数,∴2a-2≥0,且2a-2≠2,解得a≥1且a≠2,∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个,故选:C .【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.4.B解析:B【分析】设乙型机器人每台x 万元,由两种型号机器人的单价和为140万元得甲型机器人每台()140x -万元,根据用460万元购买甲型机器人比用580万元购买乙型机器人的台数少一台列得方程.【详解】解:设乙型机器人每台x 万元,则甲型机器人每台()140x -万元,根据题意,可得4605801140x x=--. 故选:B.【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程解决实际问题是解题的关键.5.A解析:A【分析】由题意,当0x y +=时,代数式取到最小值,则有x y =-,根据绝对值的意义进行化简,即可得到答案.【详解】解:根据题意,∵2()0x y +≥,∴当0x y +=时,代数式2()2020x y ++的值取到最小值2020,∴x y =-, ∴x y =-, ∴0x y --=, ∴22,x y x y ==,∴222||2||0x y x y -+-=;故选:A .【点睛】本题考查了乘方的定义,绝对值的意义,以及求代数式的值,解题的关键是掌握运算法则,正确得到0x y +=和x y =-. 6.A解析:A【分析】分别根据同底数幂的乘法、幂的乘方与积的乘方的法则进行逐一计算即可.【详解】A 选项:()2326ab a b =,正确,符合题意;B 选项:()326a a =,错误,不符合题意; C 选项:235a a a ⋅=,错误,不符合题意;D 选项:347a a a +≠,错误,不符合题意.故选:A .【点睛】本题主要考查了同底数幂的乘法、幂的乘方与积的乘方,熟练掌握性质和法则是解题的关键.7.A解析:A【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5第2次输出的结果是16第3次输出的结果是8第4次输出的结果是4第5次输出的结果是2第6次输出的结果是1第7次输出的结果是4……综上可得,从第4次开始,每三个一循环由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等故选:A【点睛】本题实为代数式求值问题,解题的关键是通过计算特殊结果发现一般规律8.B解析:B【分析】根据幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,逐项判断即可.【详解】∵x 2•x 3=x 5,∴选项A 不符合题意;∵(x 3)2=x 6,∴选项B 符合题意;∵(−3x )3=−27x 3,∴选项C 不符合题意;∵x 4+x 5≠x 9,∴选项D 不符合题意.故选:B .【点睛】此题主要考查了幂的乘方与积的乘方的运算方法,同底数幂的乘法的运算方法,以及合并同类项的方法,要熟练掌握.9.B解析:B【分析】由题意可知BD=CD ,因此ACD ∆的周长= AB+AC ,据此可解.【详解】解:∵DE 垂直平分BC ,∴BD=CD ,∴ACD ∆的周长=AD+CD+AC= AD+BD+AC= AB+AC=10+8=18(cm),故选:B .【点睛】本题主要考查线段垂直平分线的性质,关键在于求出BD=CD .10.B解析:B【分析】根据AB AC =,D 为BC 的中点,∠CAD=40BAD ∠=︒,∠C=50︒,由AD AE =,得到∠AED =70︒,再根据∠AED=∠C+∠CDE 求得答案.【详解】∵AB AC =,D 为BC 的中点,∴∠CAD=40BAD ∠=︒,∠BAC=802BAD ∠=︒,∴∠B=∠C=50︒,∵AD AE =,∴∠AED=∠ADE=70︒,∵∠AED=∠C+∠CDE ,∴CDE ∠=20︒,故选:B .【点睛】此题考查等腰三角形的性质:等边对等角求角的度数以及三线合一,三角形的内角和定理,三角形外角的性质,熟记并熟练运用等腰三角形的性质是解题的关键.11.B解析:B【分析】根据角平分线的定义可得∠AOP=12∠AOC ,∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC ,进而可得∠MON=12∠AOB+12∠BOC=12∠AOC ,从而可得∠AOP=∠MON .【详解】解:∵OP 平分∠AOC ,∴∠AOP=12∠AOC , ∵OM 、ON 分别是∠AOB 、∠BOC 的平分线, ∴∠AOM=∠MOB=12∠AOB ,∠CON=∠BON=12∠BOC , ∴∠MON=12∠AOB+12∠BOC=12∠AOC , ∴∠AOP=∠MON .故选B .【点睛】此题主要考查了角平分线的定义,关键是掌握角平分线把角分成相等的两部分. 12.C解析:C【分析】根据三角形三边关系逐一进行判断即可.【详解】A 、1+2=3,不能构成三角形,故不符合题意;B 、1+3=4<5,不能构成三角形,故不符合题意;C 、2+3=5>4,可以构成三角形,故符合题意;D 、2+6=8<10,不能构成三角形,故不符合题意,故选:C .【点睛】本题主要考查三角形的三边关系,比较简单,熟记三边关系定理是解决本题的关键.二、填空题13.600【分析】设乙骑自行车的速度为x 米/分钟则甲步行速度是x 米/分钟公交车的速度是2x 米/分钟根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟列方程即可得到乙的速度甲同学到达学校时乙解析:600【分析】设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意找到等量关系:甲步行的时间+甲公车时间=乙的时间-2分钟,列方程即可得到乙的速度,甲同学到达学校时,乙同学离学校还有2x 米,即可得到结论;【详解】解:设乙骑自行车的速度为x 米/分钟,则甲步行速度是12x 米/分钟,公交车的速度是2x 米/分钟,根据题意得 600300060030002122x x x -+=- , 解得:x=300米/分钟,经检验x=300是方程的根,则乙骑自行车的速度为300米/分钟.那么甲同学到达学校时,乙同学离学校还=2×300=600米.故答案为:600.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键. 14.-3【分析】根据零指数幂和负指数幂法则计算即可【详解】解:原式=1-4=-3故答案为:-3【点睛】本题考查了零指数幂和负指数幂法则熟练掌握运算法则是解决本题的关键解析:-3【分析】根据零指数幂和负指数幂法则计算即可.【详解】解:原式=1-4=-3,故答案为:-3.【点睛】本题考查了零指数幂和负指数幂法则,熟练掌握运算法则是解决本题的关键.15.-15【分析】首先把分解成再根据积的乘方的性质的逆用解答即可【详解】解:原式===﹣15故答案为-15【点睛】本题考查有理数的乘方运算逆用积的乘方法则是解题关键解析:-1.5【分析】首先把20081.5分解成20071.5 1.5⨯,再根据积的乘方的性质的逆用解答即可.【详解】 解:原式=()200720072 1.5 1.513⎛⎫⨯⨯÷- ⎪⎝⎭=()20072 1.5 1.513⎛⎫⨯⨯⨯- ⎪⎝⎭=﹣1.5,故答案为-1.5 .【点睛】 本题考查有理数的乘方运算,逆用积的乘方法则是解题关键.16.【分析】运用平方差公式进行计算即可【详解】解:====故答案为:【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用熟练掌握运算法则以及平方差公式是解答此题的关键 解析:1120【分析】运用平方差公式进行计算即可.【详解】 解:2221111112310⎛⎫⎛⎫⎛⎫-⨯-⨯⋯⋯⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ =1111111+1111122331010⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⨯-⨯+⨯-⨯⨯+⨯- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =132491122331010⨯⨯⨯⨯⨯⨯ =111210⨯=1120. 故答案为:1120. 【点睛】此题主要考查了有理数的混合运算以及平方差公式的应用,熟练掌握运算法则以及平方差公式是解答此题的关键.17.25°【分析】先根据AB=AD 利用三角形内角和定理求出∠B 和∠ADB 的度数再根据三角形外角的性质即可求出∠C 的大小【详解】解:∵AB=AD ∴∠B=∠ADB ∵∠BAD=80°∴∠B=∠ADB==50°解析:25°【分析】先根据AB=AD ,利用三角形内角和定理求出∠B 和∠ADB 的度数,再根据三角形外角的性质即可求出∠C 的大小.【详解】解:∵AB=AD ,∴∠B=∠ADB ,∵∠BAD=80°,∴∠B=∠ADB =180802︒︒-=50°, ∵AD=DC ,∴∠C=∠ACD ,∴∠C=12∠ADB=25°, 故答案为:25°.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,解答此题的关键是利用三角形一个外角等于与它不相邻的两个内角的和.18.56°【分析】根据AB=AC 可证明又因为∠A=44°可求出∠ABC=∠ACB=68°根据利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:∵BE=CFBD=CE ∴在和中是等腰三角形;∴∠BDE解析:56°【分析】根据AB=AC 可证明DBE CEF ∆≅∆,又因为∠A=44°,可求出∠ABC=∠ACB=68°,根据DBE CEF ∆≅∆,利用三角形内角和定理即可求出∠EDF 的度数;【详解】解:AB AC =,ABC ACB ∴∠=∠,∵BE=CF ,BD=CE ,∴在DBE ∆和CEF ∆中BE CF ABC ACB BD CE =⎧⎪∠=∠⎨⎪=⎩,()DBE CEF SAS ∴∆≅∆,DE EF ∴=,DEF ∴∆是等腰三角形;DBE CEF ∆≅∆,∴∠BDE=∠CEF ,∠DEB=∠CFE ,180A B C ∠+∠+∠=︒,∠A=44°,1(18044)682B ∴∠=︒-︒=︒ ∴∠BDE+∠DEB=112°∴∠CEF +∠DEB=112°180112=68DEF ∴∠=︒-︒︒,18068562EDF ︒-︒∴∠==︒. 故答案为:56︒.【点睛】本题主要考查了等腰三角形的判定和性质的掌握,以及三角形的内角和定理和平角是180°,因此有一定的难度,属于中档题;19.OA=OB (答案不唯一)【分析】全等三角形的判定方法有SASASAAASSSS 只要添加一个符合的条件即可【详解】解:OA=OB 理由是:在△AOC 和△BOD 中∴△AOC ≌△BOD (SAS )故答案为:O解析:OA=OB .(答案不唯一)【分析】全等三角形的判定方法有SAS ,ASA ,AAS ,SSS ,只要添加一个符合的条件即可.【详解】解:OA=OB ,理由是:在△AOC 和△BOD 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC ≌△BOD (SAS ).故答案为:OA=OB .(答案不唯一)【点睛】本题考查了全等三角形的判定的应用,通过做此题培养了学生的发散思维能力和对全等三角形的判定方法的灵活运用能力,题目答案不唯一,是一道比较好的题目.20.【分析】根据折叠得到由此得到利用计算得出再根据三角形的内角和定理求出结果【详解】解:∵∴∴∵∴∴故答案为:【点睛】此题考查折叠的性质三角形内角和定理正确理解折叠的性质得到对应角相等是解题的关键 解析:62︒.【分析】根据折叠得到ADE EDP ∠=∠,AED DEP ∠=∠,由此得到122()360ADE AED ∠+∠+∠+∠=︒,利用12124+∠=∠︒,计算得出118ADE AED ∠+∠=︒,再根据三角形的内角和定理求出结果.【详解】解:∵ADE EDP ∠=∠,AED DEP ∠=∠,∴1222180180ADE AED ∠+∠+∠+∠+︒=︒,∴122()360ADE AED ∠+∠+∠+∠=︒,∵12124+∠=∠︒,∴118ADE AED ∠+∠=︒,∴180()62A ADE AED ∠=︒-∠+∠=︒.故答案为:62︒.【点睛】此题考查折叠的性质,三角形内角和定理,正确理解折叠的性质得到对应角相等是解题的关键.三、解答题21.(1)256y ;(2)3x - 【分析】(1)先算乘方,再算乘法即可;(2)根据分式混合运算的法则进行计算即可.【详解】 (1)原式224241598x y y x =⋅256y =; (2)()()()()22322222x x x x x x x ⎡⎤-+=-÷⎢⎥-+--⎢⎥⎣⎦ 31222x x x x ⎛⎫=-÷ ⎪---⎝⎭()3232x x x x -=⨯-=-- 【点睛】本题考查的是分式的混合运算,熟知分式混合运算的法则是解答此题的关键.22.(1)10;(2)22x y --;-5【分析】(1)实数的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号,先算小括号里面的;(2)整式的混合运算,注意先算乘法,然后再算加减进行合并同类项的化简计算,最后代入求值【详解】解:(1)1301|6|(2)(2)3π-⎛⎫-÷--⨯- ⎪⎝⎭=63(8)1÷--⨯=2+8=10(2)(3)(2)()x x y x y x y +-++=2223(22)x xy x xy xy y +-+++=222323x xy x xy y +---=22x y --当1x =-,2y =时,原式=22(1)2145---=--=-【点睛】本题考查实数的混合运算,整式的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.10-【分析】先根据多项式的乘法法则计算,然后根据展开式中没有二次项,且常数项为10列方程组求解即可.【详解】解:∵()()2322222242x a x bx x bx x ax abx a +--=--+-- ()()322242x b a x ab x a =---+-,∵乘积展开式中没有二次项,且常数项为10,∴20210a b a -=⎧⎨-=⎩, 解得:5a =-,52b =-, ∴5252102a b ⎛⎫+=-+⨯-=- ⎪⎝⎭. 【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.也考查了二元一次方程组的解法.24.30∠=︒CDE .【分析】根据等腰三角形的性质,求得DAE ∠,利用ADE AED ∠=∠,确定AED ∠的度数,在三角形DEC 中,利用三角形外角性质计算即可.【详解】∵50B C ∠=∠=︒,∴18080BAC B C ∠=︒-∠-∠=︒.∵60BAD ∠=︒,∴20DAE BAC BAD ∠=∠-∠=︒, ∴18020802ADE AED ︒-︒∠=∠==︒. ∵AED CDE C ∠=∠+∠, ∴805030CDE AED C ∠=∠-∠=︒-︒=︒.【点睛】本题主要考查了等腰三角形的顶角计算,底角的计算,熟记等腰三角形的性质和三角形外角性质是解题的关键.25.见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.26.(1)4522cm ;(2)23302t cm ⎛⎫- ⎪⎝⎭;218cm ;(3)53EG FH = 【分析】 (1)由长方形的性质得出10cm BC AD ==,6cm AB DC ==,由5t =得AE=5,DE=10-5=5,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形即可求解;(2)由题意得AE=t ,DE=10-t ,根据ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形表示出阴影部分的面积;由12EDF S DE DF =⋅△求出t 的值,代入计算即可; (3)由长方形ABCD 得AD CD ⊥,根据平行线的性质得EG HF ⊥,根据平行线间的距离相等可得DE ,AE ,DF ,CF 分别等于,,,EGF EGB EHF BHF △△△△的高,由BEF S的面积即可得出结论.【详解】解:(1)∵长方形ABCD 中,10cm AD =,6cm DC =,∴10cm BC AD ==,6cm AB DC ==,∵点F 是DC 的中点,∴3cm DF CF ==,当5t =秒时,AE=5cm ,DE=10-5=5 cm ,∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()()1111066510353222⨯-⨯-⨯-⨯ =156015152--- =4522cm ; (2)由题意得AE=t ,DE=10-t , ∵ABCD BEF BE BCF DEF S S S S S =---△△A △△长方形 =()()1111066103310222t t ⨯-⨯-⨯-⨯⨯- =360315152t t ---+ =3302t -, ∴用含t 的式子表示阴影部分的面积为:23302t cm ⎛⎫-⎪⎝⎭; 当三角形EDF 的面积等于3时,12EDF S DE DF =⋅△=()13102t ⨯⨯-=3, 解得:8t =,8t =时,38=30=182S ⨯-阴影2cm ; (3)∵长方形ABCD ∴AD CD ⊥,//,//AB CD AD BC ,∵//EG AB ,//FH BC ,∴EG HF ⊥,,AD EG CD HF ⊥⊥,∴DE ,AE 分别等于,EGF EGB △△的EG 边上的高,DF ,CF 分别等于,EHF BHF △△的FH 边上的高, ∴11112222BEF S EG DE EG AE HF DF HF CF =⋅+⋅=⋅+⋅△, ∴()()1122EG DE AE HF DF CF +=+,即EG AD HF CD ⋅=⋅, ∵10cm AD =,6cm DC =,∴106EG HF =,即53EG FH =.【点睛】本题是一个动点问题,考查了平行线间的距离,三角形面积的计算,解题的关键是熟练掌握平行线的性质和三角形面积的计算方法.。
数学八年级下华东师大版第十七章 分式 期末复习卷.
第十七章 分式 期末复习卷班级__________ 座号_________ 姓名____________ 成绩____________一、填空题。
〔每题2分,共24分〕1. (-5)0 =_____________;2. 3-2 =____________;3. 当x_________时,分式 1x+1有意义; 4. 写出等式中未知的式子:〔 〕c 2+7c = 1c+7; 5. 约分:10a 2b 4ab 2=______________; 6. 分式:1x-1 、1x-2的最简公分母为:____________________; 7. 假设方程x x-4 =2 + a x-4有增根,那么增根为x=__________________; 8. 当x=______________时,分式32x-1的值为1 ; 9. 假设x=2是方程 x-a x+1 = 13的解,那么a=_____________; 10. 某种感冒病毒的直径是0.00000034米,用科学记数法表示为__________________米;11. 公式:1R = 1R 1 + 1R 2,假设R 1 =10,R 2=15,那么R=___________; 12. 观察以下各式:22-4 + 66-4 =2,55-4 + 33-4 =2,77-4 + 11-4 =2,1010-4 + -2-2-4=2,依照以上各式形成的规律,在括号内填入正确的数,使等式2020-4 + 〔 〕〔 〕-4=2成立 二、选择题。
〔每题3分,共18分〕13. 以下关于x 的方程中,是分式方程的是…………………………………………〔 〕A. 3x=12B. 1x =2C. x+25 = 3+x 4D.3x-2y=1 14. 以下各式中,成立的是…………………………………………………………… 〔 〕A. = y xyB. m 6m 2 = m 3C. a 2x bx = a 2bD. a+ 12a- 12= a+1a-1 15. 要把分式方程:32〔x-2〕 = 1x化为整数方程,方程两边需同时乘以…………〔 〕 A. 2〔x-2〕 B.x C. 2x-4 D. 2x 〔x-2〕16. -(-2)0的运算结果为……………………………………………………………〔 〕A. -1B. 1C. 0D. 217. 化简a 2 - b 2a 2 + ab的结果为…………………………………………………………〔 〕 A. a-b a+ab B. a-b a C. a+b a D. a-b a+b18. 假设有m 人a 天可完成某项工程,且每个人的工作效率是一样的,那么这样的〔m+n 〕人完成这项工程所需的天数为…………………………………………………〔 〕A. a + mB. am m+nC. a m+nD. m+n am三、解答以下各题。
华东师大版八年级下册数学期末综合复习培优卷
期末综合复习培优卷姓名:___________班级:___________考号:___________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题1.分式有意义的条件是()A.x≠0 B.y≠0 C.x≠3 D.x≠﹣32.在平面直角坐标系中,若P(m﹣2,m+1)在第三象限,则m的取值范围是()A.m<﹣1 B.m>2 C.﹣1<m<2 D.m>﹣13.小颖和其他10位同学一起参加“我爱读书”演讲比赛他们的分数互不相同,并取6位同学进人决赛,小颖知道了自己的分数后,要想知道自己是否进人决赛,还需要知道此次演讲比赛成绩的()A..平均数B.方差C.中位数D.最低分4.正方形具有而菱形不一定具有的性质是()A.四边相等B.对角线相等C.对角相等D.对角线互相垂直5.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为()A.33元B.36元C.40元D.42元6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BO的长为()A.5 B.8 C.10 D.117.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则矩形的面积为()A.2B.4C.D.38.在同一平面直角坐标系中,函数y=x﹣1与函数y=的图象可能是()A.B.C.D.9.如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是()A.B.1+C.D.210.正方形A 1B 1C 1A 2,A 2B 2C 2A 3,A 3B 3C 3A 4,…,按如图所示的方式放置,点A 1A 2A 3,…和点B 1B 2B 3,…分别在直线y =x +1和x 轴上,则点C 2020的纵坐标是( )A .22020B .22019C .22020﹣1D .22019﹣1第Ⅱ卷(非选择题)二.填空题11.环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.12.某服装店为调动营业员的积极性,决定实行目标管理,根据每月销售目标完成情况发放奖金.该店统计了每位营业员前半年的月均销售额,并算出所得数据的平均数、众数、中位数,分别为22,15,18(单位:万元).若想让一半左右的营业员都能达到月销售目标,则月销售额定为万元较为合适.13.如图,点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,分别与函数y=(x>0)的图象交于点A、B,则△AOB的面积为.14.如图,已知菱形ABCD的边长是10,点O是对角线的交点,过O点的三条直线将菱形分成阴影和空白部分,若菱形一条对角线长为12,则图中阴影部分的面积为.15.如图,在平面直角坐标系中,直线y=x﹣1与函数y=(k>0,x>0)的图象交于点A,与x轴交于点B,与y轴交于点C.若点B为AC的中点,则k的值为.16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,点G 是EF 的中点,连接CG 、BG 、BD 、DG ,下列结论:①BC =DF ,②∠DGF =135°;③BG ⊥DG ,④若3AD =4AB ,则4S △BDG =25S △DGF ;正确的是 (只填番号).三.解答题17.先化简,再求值:(m +2+)÷,其中m =﹣1.18.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A 、B 、C 三个出口处,对离开园区的游客进行调查,其中在A 出口调查所得的数据整理后绘成如下图所示统计图: 表一:出口BC人均购买饮料数量(瓶)32(1)在A 出口的被调查游客中,购买瓶装饮料的数量的中位数是 瓶、众数是 瓶、平均数是 瓶;(2)已知A 、B 、C 三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.19.关于x的方程:﹣=1.(1)当a=3时,求这个方程的解;(2)若这个方程有增根,求a的值.20.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,作∠ADC和∠ABC的平分线,分别交AC于点G,H,延长DG交AB于点E,延长BH交CD于点F.(1)求证:△ADG≌△CBH;(2)若BD平分∠CDE,则四边形DEBF是什么特殊四边形?请说明理由.21.如图,已知一次函数y=kx+b的图象交反比例函数y=的图象于点A(2,﹣4)和点B(h,﹣2),交x轴于点C.(1)求这两个函数的解析式;(2)连接OA、OB.求△AOB的面积;(3)请直接写出不等式kx+b>的解集.22.如图,在四边形ABCD中,AD∥BC,AD=BC=2AB,F是AD的中点,作CE⊥AB,垂足E 在线段AB上,连接EF、CF.(1)若∠ADC=80°,求∠ECF;(2)求证:∠ECF=∠CEF.23.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B 品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2.1元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共8000个,在这批口罩全部出售后所获利润不低于3000元.则最少购进B品牌口罩多少个?24.如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴的正半轴上,顶点C在y 轴的正半轴上,D是BC边上的一点,OC:CD=5:3,DB=6.反比例函数y=(k≠0)在第一象限内的图象经过点D,交AB于点E,AE:BE=1:2.(1)求这个反比例函数的表达式;(2)动点P在矩形OABC内,且满足S△PAO =S四边形OABC.①若点P在这个反比例函数的图象上,求点P的坐标;②若点Q是平面内一点使得以A、B、P、Q为顶点的四边形是菱形求点Q的坐标.参考答案一.选择题1.解:根据分式有意义的条件,得x﹣3≠0解得x≠3.故选:C.2.解:由题意知,解得:m<﹣1,故选:A.3.解:因为6位同学的成绩一定是10位同学中最高的,而且不同的分数按从小到大排序后,中位数及中位数之后的共有6个数,故只要知道自己的分数和中位数就可以知道是否能参加决赛了.故选:C.4.解:正方形的性质有:四条边相等;对角线互相垂直平分且相等;菱形的性质有:四条边相等;对角线互相垂直平分;因此正方形具有而菱形不一定具有的性质是:对角线相等.故选:B.5.解:当行驶里程x≥8时,设y=kx+b,将(8,12)、(11,18)代入,得:,解得:,∴y=2x﹣4,当x=22时,y=2×22﹣4=40,∴如果小明某次打车行驶里程为22千米,则他的打车费用为40元;故选:C.6.解:∵四边形ABCD是平行四边形,∴AO=CO=AC=3,∵AB⊥AC,AB=4,∴BO===5,故选:A.7.解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选:B.8.解:在同一平面直角坐标系中,函数y=x﹣1与函数y=的图象可能是,故选:C.9.解:延长DC交EF于G,如图所示:则CG⊥EF,∴∠CGF=∠CGE=90°,∵四边形ABCD是正方形,四边形BEFC是菱形,∴∠FCG=∠ACD=45°,CD=BC=CF=EF=1,∴△CFG是等腰直角三角形,∴CG=FG=CF=,∴DG =CD +CG =1+,GE =EF ﹣FG =1﹣,在Rt △DEG 中,由勾股定理得:DE ===; 故选:C .10.解:当x =0时,y =x +1=1,∴点A 1的坐标为(0,1).∵四边形A 1B 1C 1A 2为正方形,∴点C 1的纵坐标为1,当x =1时,y =x +1=2,∴点A 2的坐标为(1,2).∵A 2B 2C 2A 3为正方形,∴点C 2的纵坐标为2.同理,可知:点A 3的坐标为(3,4),点C 3的纵坐标为4.∴点∁n 的纵坐标为2n ﹣1∴点C 2020的纵坐标为22019.故选:B .二.填空题(共6小题)11.解:0.000 0025=2.5×10﹣6;故答案为:2.5×10﹣6.12.解:想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适. 因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标;故答案为:18.13.解:作AD ⊥x 轴于D ,设PB ⊥x 轴于E ,∵点P为函数y=(x>0)图象上一点,过点P作x轴、y轴的平行线,∴设P(m,),则A(5m,),B(m,),∵点A、B在函数y=(x>0)的图象上,∴S△OBE =S△OAD,∵S△AOB =S四边形ABOD﹣S△OAD=S四边形ABOD﹣S△OBE=S梯形ABED,∴S△AOB=(+)(5m﹣m)=24,故答案为24.14.解:∵O是菱形两条对角线的交点,菱形ABCD是中心对称图形,∴△OEG≌△OFH,四边形OMAH≌四边形≌四边形ONCG,四边形OEDM≌四边形OFBN,∵菱形ABCD的边长是10,菱形一条对角线长为12,∴可得菱形的另一对角线长为:16,∴阴影部分的面积=S菱形ABCD=××12×16=48.故答案为:48.15.解:y=x﹣1与x轴交于点B,与y轴交于点C,∴B(1,0),C(0,﹣1),设A(m,n),∵点B为AC的中点,∴m=2,n=1,∴k=2,故答案为2;16.解:∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠BAD=∠ABC=∠BCD=∠ADC=90°,AC=BD,∵AE平分∠BAD,∴∠BAE=∠DAE=45°,∴∠F=∠FAD,∴AD=DF,∴BC=DF,故①正确;∵∠EAB=∠BEA=45°,∴AB=BE=CD,∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形,∵点G为EF的中点,∴CG=EG,∠FCG=45°,CG⊥AG,∴∠BEG=∠DCG=135°,在△DCG和△BEG中,,∴△DCG≌△BEG(SAS).∴∠BGE=∠DGC,BG=DG,∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°,∵∠CGF=90°,∴∠DGF<135°,故②错误;∵∠BGE=∠DGC,∴∠BGE+∠DGA=∠DGC+∠DGA,∴∠CGA=∠DGB=90°,∴BG⊥DG,故③正确;过点G作GH⊥CD于H,∵3AD=4AB,∴设AD=4x=DF,AB=3x,∴CF=CE=x,BD==5x,∵△CFG,△GBD是等腰直角三角形,∴HG=CH=FH=x,DG=GB=x,∴S△DGF =×DF×HG=x2,S△DGB=DG×GB=x2,∴4S△BDG =25S△DGF;故④正确;故答案为①③④.三.解答题(共8小题)17.解:(m+2+)÷,=(﹣),=,=,=﹣2(m+3),=﹣2m﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.18.解:(1)在A出口的被调查游客中,购买瓶装饮料的数量的中位数是2瓶、众数是1瓶、平均数是=2瓶;故答案为:2,1,2;(2)设A、B、C三个出口的游客量为2a,2a,a,∴50×=120万瓶饮料,答:这一天购买的饮料的总数是120万瓶;(3)120×0.5=60万元,答:该日需要花费60万元钱处理这些饮料瓶;建议:希望游客不要乱扔饮料瓶,保护环境.19.解:(1)当a=3时,原方程为﹣=1,方程两边同时乘以(x﹣1)得:3x+1+2=x﹣1,解这个整式方程得:x=﹣2,检验:将x=﹣2代入x﹣1=﹣2﹣1=﹣3≠0,∴x=﹣2是原方程的解;(2)方程两边同时乘以(x﹣1)得ax+1+2=x﹣1,若原方程有增根,则x﹣1=0,解得:x=1,将x=1代入整式方程得:a+1+2=0,解得:a=﹣3.20.(1)证明:∵四边形ABCD是平行四边形,∴AD=CB,AD∥CB,∠ADC=∠ABC,∴∠DAG=∠BCH,∵DE,BF分别是∠ADC和∠ABC的平分线,∴,∴∠ADG=∠CBH,在△ADG和△CBH中,,∴△ADG≌△CBH(ASA);(2)解:四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AD=CB,AB=CD,AB∥CD,∠DAB=∠BCD,在△CBF和△ADE中,,∴△CBF≌△ADE(ASA),∴AE=CF,∴AB﹣AE=CD﹣CF,即EB=DF,又∵AB∥CD,∴四边形DEBF是平行四边形,∵BD平分∠CDE,∴∠CDB=∠BDE,又∵AB∥CD,∴∠CDB=∠DBA,∴∠BDE=∠DBA,∴ED=EB,∴平行四边形DEBF是菱形.21.解:(1)把A(2,﹣4)的坐标代入y=得:m=﹣8,∴反比例函数的解析式是y=﹣;把B(h,﹣2)的坐标代入y=﹣得:﹣2=﹣,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b,得:,解得:,∴一次函数解析式为y=x﹣6;(2)∵y=x﹣6,∴当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=△AOC的面积﹣三角形BOC的面积=×6×4﹣×6×2=12﹣6=6;(3)由图象知,kx+b>的解集为0<x<2或x>4.22.解:(1)∵AD∥BC,AD=BC,∴四边形ABCD是平行四边形,∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF=(180°﹣80°)=50°,∵CE⊥AB,∴CE⊥CD,∴∠DCE=90°,∴∠ECF=90°﹣50°=40°;(2)如图,延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=EM=FE,∴∠ECF=∠CEF.23.解:(1)设A种品牌的口罩每个的进价为x元,根据题意得:,解得x=1.8,经检验x=1.8是原方程的解,x+1.8=2.5(元),答:A种品牌的口罩每个的进价为1.8元,B种品牌的口罩每个的进价为2.5元.(2)设购进B种品牌的口罩m个,根据题意得,(2.1﹣1.8)(8000﹣m)+(3﹣2.5)m≥3000,解得m≥3000,∵m为整数,∴m的最小值为3000.答:最少购进种品牌的口罩3000个.24.解:(1)设点B的坐标为(m,n),则点E的坐标为(m,n),点D的坐标为(m ﹣6,n).∵点D,E在反比例函数y=(k≠0)的图象上,∴k=mn=(m﹣6)n,∴m=9.∵OC:CD=5:3,∴n:(m﹣6)=5:3,∴n=5,∴k=mn=×9×5=15,∴反比例函数的表达式为y=.(2)∵S△PAO =S四边形OABC,∴OA•y P=OA•OC,∴y P=OC=4.①当y=4时,=4,解得:x=,∴若点P在这个反比例函数的图象上,点P的坐标为(,4).②由(1)可知:点A的坐标为(9,0),点B的坐标为(9,5),∵y P=4,y A+y B=5,∴y P≠,∴AP≠BP,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(9﹣t)2+(4﹣0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,4).又∵P1Q1=AB=5,∴点Q1的坐标为(6,9);(ii)当BP=AB时,(9﹣t)2+(5﹣4)2=52,解得:t3=9﹣2,t4=9+2(舍去),∴点P2的坐标为(9﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(9﹣2,﹣1).综上所述:点Q的坐标为(6,9)或(9﹣2,﹣1).。
第16章 分式 华东师大版八年级数学下册期末综合复习训练题(含解析)
牛奶和酸奶全部售出后共获利 2150 元,求有多少箱酸奶打九折出售
参考答案
1.解:0.0000000002 = 2 × 10―10,
故选:C.
2.解:由分式的定义判断,仅有 ―
1
3
, + 属于分式,其余各项均不满足分式的定义,
为每秒传输 x 兆数据,依题意,可列方程是(
500
A.10 ―
500
= 45
500
B.
500
― 10 = 45
二、填空题
|| ― 4
9.当 = _____时,分式 + 4 的值为零.
)
5000
C. 10 =
500
+45
500
D.10 +
500
= 45
1
10.计算: 9 + ( ― 2023)0 ― ― 3
三、解答题
17.化简:
(1)
―2
2
2
⋅ ― 32 ;
2
2
(2)( + )·2 ― 2 + ―
18.先化简再求值:
(1)
3
―1
――1 ÷
2 ― 4 + 4
,其中
―1
3 + 6
(2)2 ― 6 + 9 ÷ ( + 2) ―
2 + 3
2 ― 9
1
―2
= _________.
3 ― ― 3
1
11.已知 ― = 2,则分式2 + ― 2的值为______.
期末专项+(一)分式课件-2023-2024学年华东师大版数学八年级下册
…………第四步 …………第五步 .…………第六步
任务一:① 以上化简步骤中,第____步是进行分式的通分,通分的依据是___________________________________________________________________________________________.
(1)按上面的规律归纳出一个一般的结论;(用含 的等式表示, 为正整数)
解:观察规律,得 .
(2)请运用分式的有关知识,推理说明这个结论是正确的.
解: , .
14.[2023鸡西中考]2023年5月30日上午9时31分,神舟十六号载人飞船在酒泉卫星发射中心发射升空,某中学组织毕业班的同学到当地电视台演播大厅观看现场直播,学校准备为同学们购进 , 两款文化衫,每件 款文化衫比每件 款文化衫多10元,用500元购进 款和用400元购进 款文化衫的数量相同.
D
A. B. C. D.
【解析】 , , ,故A,B,C选项不符合题意; ,故D选项符合题意.
2.[2022河北中考]若 和 互为倒数,则 的值是( )
B
A.1 B.2 C.3 D.4
【解析】 和 互为倒数, .
3.[2023绥化中考]某运输公司运送一批货物,甲车每天运送货物总量的 ,在甲车运送1天货物后,公司增派乙车运送货物,两车又共同运送货物 天,运完全部货物.求乙车单独运送这批货物需多少天.设乙车单独运送这批货物需 天,由题意列方程,正确的是( )
任务二: 请直接写出该分式化简后的正确结果_ ______.
任务三: 除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.
分式(基础篇)专项练习-【挑战满分】 八年级数学下册期末复习精选精练(华东师大版)【附解析】
专题16.1 分式(基础篇)专项练习一、单选题1.下列各式是最简分式的是( )A .48aB .a 2b aC .x x−yD .b−ab 2−a 22.下列式子中,不属于分式的是A .2-73x x + B .2-5a a C .2--2πx x D .222xy x y + 3.分式1a b +,222a a b -,b b a-的最简公分母为( ) A .22()()()a b a b b a -+- B .22()()a b a b -+C .22()()a b b a --D .22a b - 4.已知x≠0,y≠0,对下列各个分式的约分,正确的是( )A .2631x x x= B .3222x x x x x --= C .223222x y x y y = D .22x x y y = 5.若分式3x 12x-有意义,则x 的取值范围是( ) A .x 0≠ B .1x 2≠ C .1x 2> D .1x 2< 6.下列各式正确的是A .c -a-b =-c a-bB .c -a-b =-c a b +C .c -a b +=-c a b +D .c -a-b =--c a-b 7.如果把分式x 2x+3y 中的x 和y 都扩大2倍,则分式的值( )A .扩大2倍B .扩大4倍C .不变D .缩小2倍 8.若分式2-1x 与1互为相反数,则x 的值为 A .-2B .1C .-1D .2 9.分式方程11(1)(2)x m x x x -=--+有增根,则m 的值为( ) A .0和3 B .1 C .1和2- D .3 10.一份工作,甲单独做需a 天完成,乙单独做需b 天完成,则甲乙两人合作一天的工作量是( )A .a+bB .1a b +C .2a b +D .11a b + 二、填空题11.如果a b =2,则a−b a+b 的值为__________ .12.观察下列分式:-212,x x ,-3448,x x ,-516x ,…,根据你的发现,它的第8项是_____________.13.函数y =中,自变量________的取值范围是________. 14.若关于x 的分式方程x 3a 2x 12x 2=---有非负数解,则a 的取值范围是___. 15.当x =2时,分式x k x m -+的值为0,则k 、m 必须满足的条件是________. 16.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__. 17.如图,设k =甲图中的阴影面积乙图中的阴影面积(a >b >0),则k =________.18.某商店销售一种衬衫,四月份的营业额为5 000元,为扩大销售,五月份将每件衬衫按原价的8折销售,销售量比四月份增加了40件,营业额比四月份增加了600元,求四月份每件衬衫的售价.解决这个问题时,若设四月份的每件衬衫的售价为x 元,由题意可列方程为_______.19.当1<x <2,化简1212x x x x --+--的值是________.20.不改变分式的值,把分子分母的系数化为整数:0.50.20.3a b a b+=-____________.21.当1时,代数式222111x x x x x x x-+-÷+++的值是 .三、解答题22.计算:(1)22x --284x -; (2)22441m m m -+-÷21m m --+21m -. 23.解分式方程: (1)23x x x ++=1; (2)224-1-1x x =. 24.若关于x 的分式方程21-1-1x m x x +-=1的解是负数,求m 的取值范围. 25.已知2a x +与2b x -的和等于244x x -,求,a b 之值. 26.解方程:222222111115325671292011708x x x x x x x x x x x x ++++=++++++++++-. 27.比邻而居的蜗牛神和蚂蚁王相约,第二天上午8时结伴出发,到相距16米的银杏树下参加探讨环境保护问题的微型动物首脑会议.蜗牛神想到“笨鸟先飞”的古训,于是给蚂蚁王留下一纸便条后提前2小时独自先行,蚂蚁王按既定时间出发,结果它们同时到达.已知蚂蚁王的速度是蜗牛神的4倍,求它们各自的速度.28.我们把分子为1的分数叫做单位分数,如12,13,14,….任何一个单位分数都可以拆分成两个不同的单位分数的和,如12=13+16,13=14+112,14=15+120,…. (1)根据对上述式子的观察,你会发现1115=+□○.请写出□,○所表示的数. (2)进一步思考,单位分数1n (n 是不小于2的正整数)=11+△☆,请写出△,☆所表示的代数式,并加以验证.参考答案1.C【分析】根据最简分式的定义即可判断.【详解】A. 48a还有公因式4,不是最简分式;B. a2ba还有公因式a,不是最简分式;C. xx−y没有公因式,是最简分式;D. b−ab2−a2=b−a(b+a)(b−a)还有公因式(b−a),不是最简分式;故选C.【点拨】此题主要考查最简分式的定义,解题的关键是判断分子分母是否有公因式.2.C【分析】根据分式的定义分析即可.【详解】A、B、D中的分母都含有字母,是分式;C中的分母含有圆周率π,π是常数,故C不是分式.故选C.【点拨】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.3.D【分析】根据进行判断即可.解:由题意可知:a+b、a2- b 2、b-a的最简公分母为(a-b)(a+b)=a2- b 2.故本题正确答案为D.【点拨】本题主要考查最简公分母的定义.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母, 这样的公分母叫做最简公分母.4.C【解析】【分析】根据分式的基本性质, 找到分式的分子, 分母的公因式, 进行约分, 对四个选项依次判断即可.解: A 、错误, 应为2641x x x=; B 、错误, 应为32122x x x x --=; C 、正确;D 、22x x y y=不能再约分, 错误. 故选C.【点拨】本题考查了分式的约分, 解题的关键是熟悉分式的基本性质, 分式的分子分母同乘或同除以一个不为0的数或因式, 分式仍成立.本题属于基础题.5.B【详解】分析:根据分母不为零,即120x ≠-求解即可. 详解:由题意得,120x ≠-,∴x ≠12. 故选B.点拨:本题考查了分式有意义的条件,熟记分母≠0时分式有意义是解答本题的关键. 6.B【解析】本题考查的是分式的基本性质根据分式的基本性质对各项分析即可.A 、,故本选项错误; B 、c c a b a b =---+,正确; C 、,故本选项错误; D 、,故本选项错误;故选B .7.C【解析】【分析】分式x 2x+3y 中的x 和y 都扩大2倍变为一个新的分式再进行约分,比较与原分式的大小变化即可.【详解】分式x 2x+3y 中的x 和y 都扩大2倍变为2x 4x+6y =2x 2(2x+3y)=x 2x+3y ,所以大小不变,选C.【点拨】此题主要考查分式的性质,解题的关键是对分式进行正确的约分判断.8.C【解析】【分析】根据互为相反数相加得零列式求解即可.【详解】由题意得 2-1x +1=0, 解之得x =-1.经检验x =-1是原方程的根.故选C.【点拨】本题考查了相反数的应用及分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.9.D【分析】等式两边同乘以最简公分母后,化简为一元一次方程,因为有增根可能为x 1=1或x 2=﹣2分别打入一元一次方程后求出m ,再验证m 取该值时是否有根即可.【详解】∵分式方程-1x x -1=(-1)(2)m x x 有增根, ∴x ﹣1=0,x+2=0,∴x 1=1,x 2=﹣2.两边同时乘以(x ﹣1)(x+2),原方程可化为x (x+2)﹣(x ﹣1)(x+2)=m ,整理得,m=x+2,当x=1时,m=1+2=3;当x=﹣2时,m=﹣2+2=0,当m=0,方程无解,∴m=3.故选D .10.D【分析】甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.【详解】∵一项工程,甲单独做需要a 天完成,乙单独做需要b 天完成,∴甲一天的工作量为1a ,乙一天的工作量为1b, ∴甲、乙合作,一天可以完成的工作量为1a +1b . 故答案选D.【点拨】本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用. 11.13【解析】【分析】由a b =2,可得a=2b ,代入a−b a+b 即可求得.【详解】∵a b =2,∴a=2b ,∴a−b a+b =2b−b 2b+b =b 3b =13 【点拨】此题主要考查分式的化简,解题的关键是将已知条件变形再代入所求.12.8128x 【解析】【分析】根据所给代数式探索出分子、分母及符号变与不变的规律,根据规律求解即可.【详解】∵第1项()01112-1x x-=⨯, 第2项()122222-1x x=⨯, 第3项()233342--1x x=⨯, 第4项()344482-1x x=⨯, …∴第n 项()12-1n nn x -⨯, ∴第8项()78882128-1=x x ⨯, 故答案为:8128x . 【点拨】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.此题注意分别观察各部分的符号规律. 13.2x ≥-且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x 的范围.【详解】解:根据题意得:20{10x x +≥-≠计算得出: x≥-2且x≠1.故答案是: x≥-2且x≠1.【点拨】本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识. 14.4a 3≥-且2a 3≠ 【详解】分式方程去分母得:2x=3a ﹣4(x ﹣1),解得:3a 4x 6+=,。
华东师大版八年级数学《分式》期末复习题
八年级数学 《分式》期末复习题、填空题:(每小题2分,共20 分)6、人体中成熟的红细胞的平均直径为 O.0000077米,用科学记数法表示为7、 一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这 项工程需要 ___________ 小时。
8、 __________________________________________ 要使一^与一^的值相等,贝Ux= 。
x —1 x-229、 ______________________________________________________________ 若关于x 的分式方程 —无解,则m 的值为 _________________________________ 。
x — 3x — 31若丄• x = 3,则 x、选择题:(每小题3分,共30分)1x -3时分式的值为零。
2、 时,分式1——2x 有意义。
3、5xy碍3°)a 2 -44、约分:①5ab20a 2b②# —x -6x 95、若分式 的值为负数,则x 的取值范围是3x —2 10、 1、下列各式: -1 -X5)个2xA、2B、32、下列判断中,正确的是()A、分式的分子中一定含有字母C、4 D、5AB、当B=0时,分式一无意义Bx48 48 x 4 x -4-948 48 4 x 4 -x-9-9疋7、若把分式-—y 中的x 和y 都扩大3倍,那么分式的值( ) 2xy9、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地 逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在 静水中的速度为x 千米/时,则可列方程( )3、4、5、 C 、当A=0时,分式 F 列各式正确的是( 倉的值为 B 为整式) D 、分数一定是分式2y ~2 xna,a = 0 man n -a m m 「a下列各分式中,最简分式是( 2 y34x-y A 、85(x + y ) B 、 x y x 2PFxy2 2 x - y 2x y下列约分正确的是(m . m A 、 1 —m +3 3B 、9b3bC 、6a 3 2a 1x a -b x y b _ay6、在一段坡路,小明骑自行车上坡的速度为每小时 V i 千米, 每小时V 2千米,则他在这段路上、下坡的平均速度是每小时 下坡时的速度为( )。
分式章末八大题型总结(培优篇)(华东师大版)(原卷版) 八年级数学下册
专题16.8分式章末八大题型总结(培优篇)【华东师大版】【题型1分式有意义的条件】 (1)【题型2利用分式的基本性质解决问题】 (1)【题型3分式的化简求值】 (2)【题型4比较分式的大小】 (2)【题型5解分式方程的一般方法】 (3)【题型6裂项相消法解分式方程】 (4)【题型7利用通分或约分代入求分式的值】 (5)【题型8利用倒数法求分式的值】 (5)【题型1分式有意义的条件】【例1】(2023下·河南南阳·八年级校联考阶段练习)下列各式中,无论取何值,分式都有意义的是()A.12+5B.53r2C.3r12D.2K1【变式1-1】(2023下·山西太原·八年级统考期末)下列x的值中,使分式K2K3无意义的是()A.=3B.=−3C.=2D.=−2【变式1-2】(2023下·河南南阳·八年级统考期中)当=2时,分式r3r没有意义,则m的值等于()A.−2B.−3C.2D.3【变式1-3】(2023上·上海浦东新·八年级上海市民办新竹园中学校考阶段练习)已知=12+2K,无论取任何实数,这个式子都有意义,则c的取值范围.【题型2利用分式的基本性质解决问题】【例2】(2023下·河南南阳·八年级统考期中)下列代数式变形正确的是()A.2r1r1=2B.−K r=−r r C.0.20.1r2=2r2D.=22【变式2-1】(2023下·重庆万州·八年级重庆市万州第一中学校联考期中)把分式2r32−2的x、y均缩小为原来的10倍后,则分式的值()A.为原分式值的110B.为原分式值的1100C.为原分式值的10倍D.不变【变式2-2】(2023上·重庆北碚·八年级统考期末)将0.2−0.5+0.010.03=1的分母化为整数,得()A.2−0.5+0.013=1B.5−50+3=100C.20−0.5+0.013=100D.5−50+3=1【变式2-3】(2023下·江苏南京·八年级校联考期末)若分式22K的值为6,当x、y都扩大2倍后,所得分式的值是.【题型3分式的化简求值】【例3】(2023下·江苏盐城·+÷K12−2r1,其中x满足2+2−2026=0【变式3-1】(2023上·湖南岳阳·八年级统考期中)先化简,+÷r12−2r1,其中−1≤<2且x为整数.请你选一个合适的x值代入求值.【变式3-2】(2013·重庆·÷x−4x2−4x+4,其中x是不等式3x+7>1的负整数解.【变式3-3】(2023上·广西柳州·八年级校考期中)已知2−10+25与−3⋅2+2−2B3÷2−2r的值.【题型4比较分式的大小】【例4】(2023·河北石家庄·统考二模)要比较=2r1与=r12中的大小(x是正数),知道−的正负就可以判断,则下列说法正确的是()A.≥B.>C.≤D.<【变式4-1】(2023下·江苏扬州·八年级南海中学阶段练习)已知:=r1r2,=r3r4(1)若=1−r2,求m的值;(2)当a取哪些整数时,分式B的值为整数;(3)若a>0,比较A与B的大小关系.【变式4-2】(2023上·河北唐山·=1+3+与13的大小,下列正确的是()A.当=−3时,=13B.当=0时,≠13C.当<−3时,>13D.当<0时,<13【变式4-3】(2023下·江苏泰州·八年级校考阶段练习)已知等式B−2−2=0(1)①用含的代数式表示;②若、均为正整数,求、的值;(2)设=4(1−2)+(2−2),=1+22,1、2分别是分式2K2中的取1、2(2>1>2)时所对应的值,试比较、的大小,说明理由.【题型5解分式方程的一般方法】【例5】(2023上·湖北恩施·八年级统考期末)解下列方程:(1)2K3=3;(2)K1−1=【变式5-1】(2023下·浙江绍兴·八年级统考期末)如图所示的解题过程中,第①步出现错误,但最后所求得的值与原题的正确结果一样.则图中被污染掉的的值是.【变式5-2】(2023上·湖南怀化·八年级校考期中)解下列分式方程(1)40r5=20;(2)K2+12−4=1.【变式5-3】(2023上·河南省直辖县级单位·八年级校联考期末)同学们,在学习路上,我们犯各种各样的错误是在所难免的.其实,这些错误并不是我们学习路上的绊脚石.相反,如果我们能够聚焦错误、分析错误、发散错误以及归类错误,那么我们就能够以错误为梯,补齐短板,进而大幅提升学习效益.小王在复习时发现一道这样的错题:解方程:1−r32K2=21−解:1K1=−2K1①1−+3=−4②1−−3=−4③−+4=−1+3④3=2⑤=23⑥(1)请你帮他找出这道题从第_______步开始出错;(2)请完整地解答此分式方程;(3)通过解分式方程,你获得了哪些活动经验?(至少要写出两条)【题型6裂项相消法解分式方程】【例6】(2023上·广东珠海·八年级统考期末)李华在计算时,探究出了一个“裂项”的方法,如:11×2+12×3+13×4= 1−12+12−13+13−14=1−14=34,利用上面这个运算规律解决以下问题:(1)求15×6+16×7+17×8的值;(2)证明:11×2+12×3+13×4+⋯+1(K1)+1or1)<1;(3)解方程:13+115+135+163=1r1.=32r18.【变式6-1】(2023下·安徽滁州·【变式6-2】(2023下·安徽六安·八年级六安市第九中学校考阶段练习)解方程:1or2)+1(r2)(r4)+⋯+1(r98)(r100)=2r100.【变式6-3】(2023上·上海浦东新·八年级校考阶段练习)化简下式:(1(2)12−4r312−112+4r312+8r1512=1的解是_________(请直接写出答案)(3【题型7利用通分或约分代入求分式的值】【例7】(2023下·江苏泰州·八年级校考阶段练习)已知1−2=3,则分式2r3B−44B−3r6的值为.【变式7-1】(2023·湖南·武冈市第二中学八年级阶段练习)若122+3r7的值为18,则142+6K9的值为()A.12B.−12C.17D.−17.【变式7-2】(2023·湖南邵阳·八年级期末)已知12+1=2,那么分式4K5B+2B−2K的值是______.【变式7-3】(2023下·安徽宿州·八年级统考期末)已知1−1=3,求3r3B−3K2B−分式的值为.【题型8利用倒数法求分式的值】【例8】(2023上·湖北咸宁·八年级统考期末)【阅读理解】阅读下面的解题过程:已知:2+1=13,求24+1的值.解:由2+1=13知≠0,∴2+1=3,即+1=3①∴4+12=2+12=+−2=32−2=7②,故24+1的值为17.(1)第①步由2+1=3得到+1=3逆用了法则:______;第②步2+12=+−2运用了公式:______;(法则,公式都用式子表示)【类比探究】(2)上题的解法叫做“倒数法”,请你利用“倒数法”解决下面的问题:已知2−3r1=−1,求24−72+1的值;【拓展延伸】(3)已知1+1=16,1+1=19,1+1=115,求B B+B+B的值.【变式8-1】(2023·山东滨州·八年级期末)(1)已知实数满足+1=5,求分式32+5r3的值.(2)已知实数满足+1r1=9,求分式r12+5r5的值.【变式8-2】(2023下·江苏苏州·八年级校考开学考试)利用“倒数法”解下面的题目:已知:2+1=14,求:(1)代数式+1的值.(2)代数式24+1的值.【变式8-3】(2023上·山东烟台·八年级统考期中)若2−1=1,求48−34+1的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学《分式》期末复习题
一、填空题:(每小题2分,共20分)
1、分式3
9
2--x x 当x __________时分式的值为零。
2、当x __________时,分式x
x
2121-+有意义。
3、①
())0(,10 53≠=a axy xy a ②()
1
422=
-+a a 。
4、约分:①=b
a ab
2205__________,②=+--9692
2x x x __________。
5、若分式
2
31
-+x x 的值为负数,则x 的取值范围是__________。
6、人体中成熟的红细胞的平均直径为0.0000077米,用科学记数法表示为__________。
7、一项工程,甲单独做x 小时完成,乙单独做y 小时完成,则两人一起完成这项工程需要__________小时。
8、要使
2
4
15--x x 与
的值相等,则x =__________。
9、若关于x 的分式方程3232
-=--x m x x 无解,则m 的值为__________。
10、若=++=+1
,312
4
2
x x x x x 则__________。
二、选择题:(每小题3分,共30分)
1、下列各式:()x
x x x y x x x 2
225 ,1,2 ,34 ,151+---π其中分式共有( )个。
A 、2
B 、3
C 、4
D 、5
2、下列判断中,正确的是( )
A 、分式的分子中一定含有字母
B 、当B=0时,分式B
A
无意义
C 、当A=0时,分式B
A
的值为0(A 、B 为整式) D 、分数一定是分式
3、下列各式正确的是( )
A 、11++=++b a x b x a
B 、22x y x y =
C 、()0,≠=a ma na m n
D 、a m a
n m n --=
4、下列各分式中,最简分式是( )
A 、()()y x y x +-8534
B 、y x x y +-22
C 、2222xy y x y x ++
D 、()
222y x y x +- 5、下列约分正确的是( )
A 、313m m m +=+
B 、212y
x y x -=-+
C 、
1
23369+=
+a b
a b D 、()()y x a b y b a x =-- 6、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千米,则他在这段路上、下坡的平均速度是每小时( )。
A 、
2
2
1v v +千米 B 、2121v v v v +千米 C 、21212v v v v +千米 D 无法确定
7、若把分式xy
y
x 2+中的x 和y 都扩大3倍,那么分式的值( )
A 、扩大3倍
B 、不变
C 、缩小3倍
D 、缩小6倍
8、若0≠-=y x xy ,则分式
=-x
y 1
1( ) A 、
xy
1
B 、x y -
C 、1
D 、-1 9、A 、B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( )
A 、9448448=-++x x
B 、9448448=-++x x
C 9448=+x
D 94
96
496=-++x x
10、已知b a b
a b a ab b a -+>>=+则且,0622的值为( )
A 、2
B 、2±
C 、2
D 、2±
二、计算题:(每小题5分,共20分)
1、22221106532x y x y y x ÷⋅
2、m
n n
n m m m n n m -+
-+--2
3、1
111-÷⎪⎭⎫ ⎝⎛
--x x x 4、2
2224421y xy x y x y x y x ++-÷+--
三、解下列分式方程:(每小题6分,共12分)
1、132+=x x
2、131
32=-+--x
x x
四、先化简,后求值:(每小题6分,共12分)
1、16
8422+--x x x x ,其中x =5.
2、3,3
2,1)()2(222222-==+--+÷+---b a b a a b a a b ab a a b a a 其中
五、(6分)列分式方程解应用题:甲、乙两组学生去距学校4.5千米的敬老院打扫卫生,甲组学生步行出发半
小时后,乙组学生骑自行车开始出发,结果两组学生同时到达敬老院,如果步行的速度是骑自行车的速度的3
1
,求步行和骑自行车的速度各是多少?
六、附加题:(每小题10分,共20分)
1、若.1
,11,11的值求b
ab a c c b +=+=+
.
1
11 ,24,2002,2001.2000 .2222的值求且已知c
b a a
c b ab c bc a abc x c x b x a ---++==+=+=+。