中考数学试题及答案(word版)36

合集下载

2020山西省中考数学试题(word版,含答案)(共3套)

2020山西省中考数学试题(word版,含答案)(共3套)
3.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心称图形但是不是轴对称图形的是()
4.如图,在△ABC中,点D,E分别是边AB,BC的中点,若
△DBE的周长是6,则△的周长是()。
A.8 B.10 C.12 D.14
5.我们解一元二次方程 时,可以运用因式分解法,将
此方程化为 ,从而得到两 个一元一次方程:
山西省中考数学参考答案
山西省中考数学试题(二)
一、选择题(本大题共10小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)
1.(2016·山西) 的相反数是()
A. B.-6C.6D.
2.(2016·山西)不等式组 的解集是()
A.x>5B.x<3C.-5<x<3D.x<5
且点B的横坐标为1.过点A作AC⊥y轴交反比例函数 (k≠0)的图象于
点C,连接BC。
(1)求反比例函 数的表达式。
(2)求△ABC的面积。
20.(本题8分)
随着互联网、移动终端的迅速发展,数字化阅读
越来越普及,公交、地铁上的“低头族”越来越多。
某研究机构针对“您如何看待数字化阅读”问题进
行了随机问卷调查(问卷调查表如右图所示),并将
调查结果绘制成图1和图2所示的统计图(均不完整)。
请根据统计图中提供的信息,解答下列问题:
(1补充完整
(3)在扇形统计图中,观点E的百分比是,表示观点B的扇形的圆心角度为度。
(4)假如你是该研究机构的成员,请根据以上调查结果,就 人们如何对待数字化阅读提出建议。
任务一:如图1,有一块矩形纸板,长是宽的2倍,要将其

word版中考数学试题及答案

word版中考数学试题及答案

word版中考数学试题及答案Word是一款广泛使用的文字处理软件,除了撰写文章和制作报告外,也可以用来编辑和整理试题及答案。

本文将介绍如何使用Word来编写中考数学试题,并提供试题及答案的示范。

1. 试题格式设置在Word中,我们可以使用表格来排版试题。

根据实际需要设置表格的行数和列数,以适应试题的各个部分。

试题的标题可以使用大号字体居中显示,使得试题整体更加突出。

2. 单项选择题单项选择题是中考数学试题中常见的题型之一。

在Word中,我们可以使用多选框和文字来表示选项,如下所示:题目:下列选项中,哪个不是正方形的特点?A. 4个边相等B. 4个角相等C. 对角线相等D. 1个内角为90°在这个例子中,我们使用了多选框来表示选项,而选项的文字则直接输入在相应的单元格中。

3. 填空题填空题是另一种常见的数学试题题型。

在Word中,我们可以使用下划线或占位符来表示需要填写答案的地方,如下所示:题目:根据公式A = π * r^2,计算半径为___的圆的面积。

在这个例子中,我们使用了三个下划线来表示需要填写答案的地方。

4. 解答题解答题通常需要较长的文字描述和计算步骤。

在Word中,我们可以使用分段落来区分不同的问题和解答步骤,如下所示:题目:已知等差数列{an}的公差为d,首项为a1。

求证:an = a1 + (n-1)d。

解答:首先,我们可以通过计算得到等差数列的通项公式:an = a1 + (n-1)d接下来,我们需要证明该公式成立。

(这里可以填写具体的证明步骤和文字描述)通过以上的解答过程,我们可以得出结论:an = a1 + (n-1)d。

5. 答案部分在题目之后,我们可以单独设置一个部分来填写答案。

可以使用表格或普通文本形式来展示答案,具体格式可以根据实际需要进行调整。

例如:解答部分:1. 单项选择题:答案:D2. 填空题:答案:53. 解答题:解答:(具体填写答案)通过以上的设置,我们可以清晰地表达出试题的答案。

2020年吉林省中考数学试题及参考答案(word解析版)

2020年吉林省中考数学试题及参考答案(word解析版)

吉林省2020年初中毕业生学业水平考试数学试题(全卷满分120分,考试时间为120分钟)一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×1083.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.8.不等式3x+1>7的解集为.9.一元二次方程x2+3x﹣1=0根的判别式的值为.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE的面积为.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).第12题图第13题图第14题图三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.六、解答题(每小题10分,共20分)25.如图,△ABC是等边三角形,AB=4cm,动点P从点A出发,以2cm/s的速度沿AB向点B匀速运动,过点P作PQ⊥AB,交折线AC﹣CB于点Q,以PQ为边作等边三角形PQD,使点A,D在PQ异侧.设点P的运动时间为x(s)(0<x<2),△PQD与△ABC重叠部分图形的面积为y(cm2).(1)AP的长为cm(用含x的代数式表示).(2)当点D落在边BC上时,求x的值.(3)求y关于x的函数解析式,并写出自变量x的取值范围.26.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P 作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案与解析一、单项选择题(每小题2分,共12分)1.﹣6的相反数是()A.6 B.﹣6 C.D.【知识考点】相反数.【思路分析】根据相反数的定义,即可解答.【解题过程】解:﹣6的相反数是6,故选:A.【总结归纳】本题考查了相反数,解决本题的关键是熟记相反数的定义.2.国务院总理李克强2020年5月22日在作政府工作报告时说,去年我国农村贫困人口减少11090000,脱贫攻坚取得决定性成就.数据11090000用科学记数法表示为()A.11.09×106B.1.109×107C.1.109×108D.0.1109×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解题过程】解:11090000=1.109×107,故选:B.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图为()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】根据从左边看得到的图形是左视图,可得答案.【解题过程】解:从左边看第一层是一个小正方形,第二层也是一个小正方形,所以左视图是选项A,故选:A.【总结归纳】本题考查了简单组合体的三视图.解题的关键是掌握简单组合体的三视图的定义,注意:从左边看得到的图形是左视图.4.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(2a)2=2a2D.a3÷a2=a【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】根据同底数幂的乘除法、幂的乘方、积的乘方的运算法则,对各选项计算后利用排除法求解.【解题过程】解:A、a2•a3=a5,原计算错误,故此选项不符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、(2a)2=4a2,原计算错误,故此选项不符合题意;D、a3÷a2=a,原计算正确,故此选项符合题意;故选:D.【总结归纳】本题考查了整式的运算,熟练掌握运算性质和法则是解题的关键.5.将一副三角尺按如图所示的方式摆放,则∠α的大小为()A.85°B.75°C.65°D.60°【知识考点】三角形的外角性质.【思路分析】先根据直角三角板的性质得出∠ACD的度数,再由三角形内角和定理即可得出结论.【解题过程】解:如图所示,∵∠BCD=60°,∠BCA=45°,∴∠ACD=∠BCD﹣∠BCA=60°﹣45°=15°,∠α=180°﹣∠D﹣∠ACD=180°﹣90°﹣15°=75°,故选:B.【总结归纳】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,四边形ABCD内接于⊙O,若∠B=108°,则∠D的大小为()A.54°B.62°C.72°D.82°【知识考点】M5:圆周角定理;M6:圆内接四边形的性质.【思路分析】运用圆内接四边形对角互补计算即可.【解题过程】解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.【总结归纳】本题主要考查了圆内接四边形的性质,熟练掌握圆内接四边形对角互补是解答此题的关键.二、填空题(每小题3分,共24分)7.分解因式:a2﹣ab=.【知识考点】因式分解﹣提公因式法.【思路分析】直接把公因式a提出来即可.【解题过程】解:a2﹣ab=a(a﹣b).【总结归纳】本题主要考查提公因式法分解因式,准确找出公因式是a是解题的关键.8.不等式3x+1>7的解集为.【知识考点】解一元一次不等式.【思路分析】移项、合并同类项、系数化为1即可得答案.【解题过程】解:3x+1>7,移项得:3x>7﹣1,合并同类项得:3x>6,系数化为1得:x>2,故答案为:x>2.【总结归纳】此题主要考查了解一元一次不等式,关键是掌握解不等式的步骤.9.一元二次方程x2+3x﹣1=0根的判别式的值为.【知识考点】根的判别式.【思路分析】根据一元二次方程根的判别式△=b2﹣4ac即可求出值.【解题过程】解:∵a=1,b=3,c=﹣1,∴△=b2﹣4ac=9+4=13.所以一元二次方程x2+3x﹣1=0根的判别式的值为13.故答案为:13.【总结归纳】本题考查了根的判别式,解决本题的关键是掌握根的判别式.10.我国古代数学著作《算学启蒙》中有这样一个数学问题,其大意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?设快马x天可以追上慢马,根据题意,可列方程为.【知识考点】数学常识;由实际问题抽象出一元一次方程.【思路分析】设快马x天可以追上慢马,根据两马的速度之差×快马出发的时间=慢马的速度×慢马提前出发的时间,即可得出关于x的一元一次方程,此题得解.【解题过程】解:设快马x天可以追上慢马,依题意,得:(240﹣150)x=150×12.故答案为:(240﹣150)x=150×12.【总结归纳】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.11.如图,某单位要在河岸l上建一个水泵房引水到C处.他们的做法是:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是.【知识考点】垂线段最短.【思路分析】根据垂线段的性质解答即可.【解题过程】解:过点C作CD⊥l于点D,将水泵房建在了D处.这样做最节省水管长度,其数学道理是垂线段最短.故答案为:垂线段最短.【总结归纳】本题考查了垂线段的定义和性质.解题的关键是理解题意,灵活运用所学知识解决实际问题.12.如图,AB∥CD∥EF.若=,BD=5,则DF=.【知识考点】平行线分线段成比例.【思路分析】利用平行线分线段成比例定理得到=,然后根据比例性质求DF的长.【解题过程】解:∵AB∥CD∥EF,∴==,∴DF=2BD=2×5=10.故答案为10.【总结归纳】本题考查了平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例.13.如图,在△ABC中,D,E分别是边AB,AC的中点.若△ADE的面积为,则四边形DBCE 的面积为.【知识考点】三角形的面积;三角形中位线定理.【思路分析】根据三角形中位线定理得到DE∥BC,DE=BC,证明△ADE∽△ABC,根据相似三角形的性质求出△ABC的面积,即可得到答案.【解题过程】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=()2=,∵△ADE的面积为,∴△ABC的面积为2,∴四边形DBCE的面积=2﹣=,故答案为:.【总结归纳】本题考查的是三角形中位线定理、相似三角形的判定和性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.14.如图,在四边形ABCD中,AB=CB,AD=CD,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD的对角线AC,BD相交于点O.以点B为圆心,BO长为半径画弧,分别交AB,BC于点E,F.若∠ABD=∠ACD=30°,AD=1,则的长为(结果保留π).【知识考点】全等三角形的判定与性质;弧长的计算.【思路分析】利用SSS证明△ABD≌△CBD,根据全等三角形的对应角相等即可得出∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,即可求得∠ABC=60°,根据等腰三角形三线合一的性质得出BD⊥AC,且AO=CO,进一步求得∠ACB=60°,即可求得∠BCD=90°,根据含30°角的直角三角形的性质即可求得OB,然后根据弧长公式求得即可.【解题过程】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),∴∠ABD=∠CBD=30°,∠ADB=∠CDB,CD=AD=1,∴∠ABC=60°,∵AD=CD,∠ADB=∠CDB,∴BD⊥AC,且AO=CO,∴∠ACB=90°﹣30°=60°,∴∠BCD=∠ACB+∠ACD=90°,在Rt△BCD中,∵∠CBD=30°,∴BD=2CD=2,在Rt△COD中,∵∠ACD=30°,∴OD=CD=,∴OB=BD﹣OD=2﹣=,∴的长为:=,故答案为.【总结归纳】本题考查了三角形全等的判定和性质,等腰三角形的性质,直角三角形的判定和性质,含30°角的直角三角形的性质,弧长的计算等,熟练掌握性质定理是解题的关键.三、解答题(每小题5分,共20分)15.先化简,再求值:(a+1)2+a(1﹣a)﹣1,其中a=.【知识考点】整式的混合运算—化简求值.【思路分析】根据整式的混合运算顺序进行化简,再代入值即可.【解题过程】解:原式=a2+2a+1+a﹣a2﹣1=3a.当a=时,原式=3.【总结归纳】本题考查了整式的混合运算﹣化简求值,解决本题的关键是先进行整式的化简,再代入值.16.“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物.如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片,请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.【知识考点】列表法与树状图法.【思路分析】根据题意列出图表得出所有等情况数和两张卡片中含有A卡片的情况数,然后根据概率公式即可得出答案.【解题过程】解:根据题意列表如下:A B CA AA BA CAB AB BB CBC AC BC CC共有9种等可能的结果数,其中小吉同学抽出的两张卡片中含有A卡片的有5种情况,∴小吉同学抽出的两张卡片中含有A卡片的概率为.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.17.甲、乙二人做某种机械零件.已知甲每小时比乙多做6个,甲做90个所用的时间与乙做60个所用的时间相等.求乙每小时做零件的个数.【知识考点】分式方程的应用.【思路分析】设乙每小时做x个零件,甲每小时做(x+6)个零件,根据时间=总工作量÷工作效率,即可得出关于x的分式方程,解之并检验后即可得出结论.【解题过程】解:设乙每小时做x个零件,甲每小时做(x+6)个零件,根据题意得:=,解得:x=12,经检验,x=12是原方程的解,且符合题意,∴x+6=18.答:乙每小时做12个零件.【总结归纳】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.18.如图,在△ABC中,AB>AC,点D在边AB上,且BD=CA,过点D作DE∥AC,并截取DE=AB,且点C,E在AB同侧,连接BE.求证:△DEB≌△ABC.【知识考点】全等三角形的判定.【思路分析】由DE∥AC,根据平行线的性质得出∠EDB=∠A,又BD=CA,DE=AB,利用SAS即可证明△DEB≌△ABC.【解题过程】证明:∵DE∥AC,∴∠EDB=∠A.在△DEB与△ABC中,,∴△DEB≌△ABC(SAS).【总结归纳】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.四、解答题(每小题7分,共28分)19.图①、图②、图③都是3×3的正方形网格,每个小正方形的顶点称为格点.A,B,C均为格点.在给定的网格中,按下列要求画图:(1)在图①中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M,N为格点.(2)在图②中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P,Q为格点.(3)在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D,E,F为格点.【知识考点】作图﹣轴对称变换.【思路分析】(1)根据对称性在图①中,画一条不与AB重合的线段MN与AB对称即可;(2)根据对称性即可在图②中,画一条不与AC重合的线段PQ与AC对称;(3)根据对称性在图③中,画一个△DEF,使△DEF与△ABC关于某条直线对称即可.【解题过程】解:(1)如图①,MN即为所求;(2)如图②,PQ即为所求;(3)如图③,△DEF即为所求.【总结归纳】本题考查了作图﹣轴对称变换,解决本题的关键是掌握轴对称性质.20.如图,某班数学小组测量塔的高度,在与塔底部B相距35m的C处,用高1.5m的测角仪CD 测得该塔顶端A的仰角∠EDA为36°.求塔AB的高度(结果精确到1m).(参考数据:sin36°=0.59,cos36°=0.81,tan36°=0.73)【知识考点】解直角三角形的应用﹣仰角俯角问题.【思路分析】设AB与DE交于点F.在Rt△ADF中,利用三角函数定义求出AF,即可得出答案.【解题过程】解:设AB与DE交于点F,如图所示:由题意得:DF⊥AB,BE=CD=1.5m,DF=BC=35m,在Rt△ADF中,∠AFD=90°,tan∠EDA=,∴AF=DF×tan36°≈35×0.73=25.55(m),∴AB=AF+BF=25.55+1.5≈27(m);答:塔AB的高度约27m.【总结归纳】本题考查了解直角三角形的应用,能借助仰角构造直角三角形并解直角三角形是解题的关键.21.如图,在平面直角坐标系中,O为坐标原点,点A,B在函数y=(x>0)的图象上(点B 的横坐标大于点A的横坐标),点A的坐标为(2,4),过点A作AD⊥x轴于点D,过点B作BC⊥x轴于点C,连接OA,AB.(1)求k的值.(2)若D为OC中点,求四边形OABC的面积.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】(1)将点A的坐标为(2,4)代入y=(x>0),可得结果;(2)利用反比例函数的解析式可得点B的坐标,利用三角形的面积公式和梯形的面积公式可得结果.【解题过程】解:(1)将点A的坐标为(2,4)代入y=(x>0),可得k=xy=2×4=8,∴k的值为8;(2)∵k的值为8,∴函数y=的解析式为y=,∵D为OC中点,OD=2,∴OC=4,∴点B的横坐标为4,将x=4代入y=,可得y=2,∴点B的坐标为(4,2),∴S四边形OABC=S△AOD+S四边形ABCD==10.【总结归纳】本题主要考查了反比例函数的系数k的几何意义,运用数形结合思想是解答此题的关键.22.2020年3月线上授课期间,小莹、小静和小新为了解所在学校九年级600名学生居家减压方式情况,对该校九年级部分学生居家减压方式进行抽样调查.将居家减压方式分为A(享受美食)、B(交流谈心)、C(室内体育活动)、D(听音乐)和E(其他方式)五类,要求每位被调查者选择一种自己最常用的减压方式.他们将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1:小莹抽取60名男生居家减压方式统计表(单位:人)减压方式 A B C D E人数 4 6 37 8 5表2:小静随机抽取10名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 2 1 3 3 1表3:小新随机抽取60名学生居家减压方式统计表(单位:人)减压方式 A B C D E人数 6 5 26 13 10根据以上材料,回答下列问题:(1)小莹、小静和小新三人中,哪一位同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,并简要说明其他两位同学抽样调查的不足之处.(2)根据三人中能较好地反映出该校九年级居家减压方式的调查结果,估计该校九年级600名学生中利用室内体育活动方式进行减压的人数.【知识考点】抽样调查的可靠性;用样本估计总体;统计表.【思路分析】(1)根据抽取样本的原则,为使样本具有代表性、普遍性、可操作性的原则进行;(2)样本中“采取室内体育锻炼减缓压力”的占,因此估计总体600人的是采取室内体育锻炼减缓压力的人数.【解题过程】解:(1)小新同学抽样调查的数据能较好地反映出该校九年级学生居家减压方式情况,小莹同学调查的只是男生,不具有代表性,小静同学调查的人数偏少,具有片面性,对整体情况的反映容易造成偏差.(2)600×=260(人),答:该校九年级600名学生中利用室内体育活动方式进行减压的大约有260人.【总结归纳】本题考查样本估计总体的统计方法,理解选取样本的原则是正确判断的前提.五、解答题(每小题8分,共16分)23.某种机器工作前先将空油箱加满,然后停止加油立即开始工作.当停止工作时,油箱中油量为5L,在整个过程中,油箱里的油量y(单位:L)与时间x(单位:min)之间的关系如图所示.(1)机器每分钟加油量为L,机器工作的过程中每分钟耗油量为L.(2)求机器工作时y关于x的函数解析式,并写出自变量x的取值范围.(3)直接写出油箱中油量为油箱容积的一半时x的值.【知识考点】一次函数的应用.【思路分析】(1)根据函数图象中的数据,可以得到机器每分钟加油量和机器工作的过程中每分钟耗油量;(2)根据函数图象中的数据,可以得到机器工作时y关于x的函数解析式,并写出自变量x的取值范围;(3)根据(2)中的函数解析式,令函数值为30÷2,即可得到相应的x的值.【解题过程】解:(1)由图象可得,机器每分钟加油量为:30÷10=3(L),机器工作的过程中每分钟耗油量为:(30﹣5)÷(60﹣10)=0.5(L),故答案为:3,0.5;(2)当0≤x≤10时,设y关于x的函数解析式为y=kx,10k=30,得k=3,即当0≤x≤10时,y关于x的函数解析式为y=3x,当10<x≤60时,设y关于x的函数解析式为y=ax+b,,解得,,即当10<x≤60时,y关于x的函数解析式为y=﹣0.5x+35,由上可得,y关于x的函数解析式为y=;(3)当3x=30÷2时,得x=5,当﹣0.5x+35=30÷2时,得x=40,即油箱中油量为油箱容积的一半时x的值是5或40.【总结归纳】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.能够完全重合的平行四边形纸片ABCD和AEFG按图①方式摆放,其中AD=AG=5,AB=9.点D,G分别在边AE,AB上,CD与FG相交于点H.【探究】求证:四边形AGHD是菱形.【操作一】固定图①中的平行四边形纸片ABCD,将平行四边形纸片AEFG绕着点A顺时针旋转一定的角度,使点F与点C重合,如图②.则这两张平行四边形纸片未重叠部分图形的周长和为.【操作二】将图②中的平行四边形纸片AEFG绕着点A继续顺时针旋转一定的角度,使点E与点B重合,连接DG,CF,如图③,若sin∠BAD=,则四边形DCFG的面积为.【知识考点】四边形综合题.【思路分析】【探究】先由平行四边形的性质得AE∥GF,DC∥AB,进而得四边形AGHD是平行四边形,再结合邻边相等,得四边形AGHD是菱形;【操作一】这两张平行四边形纸片未重叠部分图形的周长和实际为平行四边形ABCD和平行四边形AEFG的周长和,由此求得结果便可;【操作二】证明△AMD≌△AMG得∠AMD=∠AMG=90°,解Rt△ADM得DM,再证明四边形DCFG为矩形,由矩形面积公式求得结果.【解题过程】解:【探究】∵四边形ABCD和AEFG都是平行四边形,∴AE∥GF,DC∥AB,∴四边形AGHD是平行四边形,∵AD=AG,∴四边形AGHD是菱形;【操作一】根据题意得,这两张平行四边形纸片未重叠部分图形的周长和为:ME+EF+MC+AD+DM+AM+AG+GN+AN+BN+BC+NF=(ME+AM+AG+EF+NF)+(AD+BC+DM+MC+AN+BN)=2(AE+AG)+2(AB+AD)=2×(9+5)+2×(9+5)=56,故答案为:56;【操作二】由题意知,AD=AG=5,∠DAB=∠BAG,又AM=AM,∴△AMD≌△AMG(SAS),∴DM=GM,∠AMD=∠AMG,∵∠AMD+∠AMG=180°,∴∠AMD=∠AMG=90°,∵sin∠BAD=,∴,∴DM=AD=,∴DG=,∵四边形ABCD和四边形AEFG是平行四边形,∴DC∥AB∥GF,DC=AB=GF=9,∴四边形CDGF是平行四边形,∵∠AMD=90°,∴∠CDG=∠AMD=90°,。

山东省枣庄市中考数学试卷及答案(Word解析版)

山东省枣庄市中考数学试卷及答案(Word解析版)

绝密☆启用前 试卷类型:A二○一三年枣庄市初中学业考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.下列计算,正确的是A.33--=-B.030=C.133-=-D.93=± 答案:A解析:因为30=1,3-1=13,9=3,所以,B 、C 、D 都错,选A 。

2.如图,AB //CD ,∠CDE =140︒,则∠A 的度数为 A.140︒ B.60︒ C.50︒ D.40︒ 答案:D解析:∠CDA =180°-140°=40°,由两直线平行,内错角相等,得:∠A =∠CDA =40°,选D 。

3.估计61+的值在A. 2到3之间B.3到4之间C.4到5之间D.5到6之间 答案:B第2题图解析469<<26<3,所以,36+1<4,选B 。

4.化简xxx x -+-112的结果是 A.x +1 B.1x - C.x - D.x 答案:D解析:原式=2(1)111x x x x x x x x --==---,故选D 。

5.某种商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为A.240元B.250元C.280元D.300元 答案:A解析:设进价为x 元,则3300.810%xx⨯-=,解得:x =240,故选A >6.如图,ABC △中,AB =AC =10,BC =8,AD 平分BAC ∠交BC 于点D ,点E 为AC 的中点,连接DE ,则CDE △的周长为A.20B.18C.14D.13 答案:C解析:因为AB =AC ,AD 平分∠BAC ,所以,D 为BC 中点,又E 为AC 中点,所以,DE =12AB =5,DC =4,EC =5,故所求周长为5+5+4=14。

2021年上海市中考数学试卷+答案解析,完整word版

2021年上海市中考数学试卷+答案解析,完整word版

2021年上海市中考数学试卷+答案解析,完整word版2021年上海市中考数学试卷一、选择题(共9小题,每小题4分,满分36分) 1.(2021?上海)下列运算中,计算结果正确的是()3332325336A.x?x=2x B.x÷x=x C.(x)=x D.x+x=2x 2.(2021?密云县)2021北京奥运会主会场“鸟巢”的座席数是91 000个,这个数用科学记数法表示为()5433A.0.91×10 B.9.1×10 C.91×10 D.9.1×10 3.(2021?锦州)下列图形中,既是中心对称图形又是轴对称图形的是()A. B.2C. D.4.(2021?上海)若抛物线y=(x+1)��2与x轴的正半轴相交于点A,则点A的坐标为() A.(��1��,0) B.(,0) C.(��1,��2) D.(��1+,0)5.(2021?上海)若一元二次方程4x+A.x1+x2=��,x1?x2=��2x=1的两个根分别为x1,x2,则下列结论正确的是() B.x1+x2=��,x1?x2=��1C.x1+x2=,x1?x2=D.x1+x2=,x1?x2=1 6.(2021?上海)下列结论中,正确的是() A.圆的切线必垂直于半径 B.垂直于切线的直线必经过圆心 C.垂直于切线的直线必经过切点D.经过圆心与切点的直线必垂直于切线 7.(2021?上海)一个布袋中有4个红球与8个白球,除颜色外完全相同,那么从布袋中随机摸一个球是白球的概率是()8.(2021?上海)若A.||=||是非零向量,则下列等式正确的是() B.=C.+≠0D.||+||=0A.B.C.D.9.(2021?上海)下列事件中,属必然事件的是()A.男生的身高一定超过女生的身高 B.方程4x+4=0在实数范围内无解定得满分D.两个无理数相加一定是无理数二、填空题(共12小题,每小题4分,满分48分) 10.(2021?上海)不等式2��3x>0的解集是 _________ . 11.(2021?上海)分解因式:xy��x��y+1=_________ .2C.明天数学考试,小明一12.(2021?上海)化简:13.(2021?上海)方程14.(2021?上海)函数= _________ .的根是x= _________ .的定义域是 _________ .15.(2021?上海)若反比例函数y=(k<0)的函数图象过点P(2,m)、Q(1,n),则m与n的大小关系是:m _________ n.16.(2021?上海)关于x的方程mx+mx+1=0有两个相等的实数根,那么m=_________ . 17.(2021?上海)在平面直角坐标系中,点A的坐标为(��2,3),点B的坐标为(��1,6).若点C与点A关于y轴对称,则点B与点C之间的距离为_________ . 18.(2021?上海)如图,将直线OP向下平移3个单位,所得直线的函数解析式为 _________ .219.(2021?上海)在△ABC中,过重心G且平行BC的直线交AB于点D,那么AD:DB= _________ .20.(2021?上海)如图,圆O1与圆O2相交于A、B两点,它们的半径都为2,圆O1经过点O2,则四边形O1AO2B的面积为 _________ .21.(2021?上海)如图,矩形纸片ABCD,BC=2,∠ABD=30度.将该纸片沿对角线BD 翻折,点A落在点E处,EB交DC于点F,则点F到直线DB的距离为 _________ .三、解答题(共7小题,满分78分) 22.(2021?上海)先化简,再求值:,其中a=+1,b=��1.23.(2021?上海)解方程:24.(2021?上海)如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=求:(1)cos∠DAC的值;(2)线段AD的长.,BC=26.25.(2021?上海)近五十年来,我国土地荒漠化扩展的面积及沙尘暴发生的次数情况如表1,表2所示.表1:土地荒漠化扩展的面积情况 ?? 年代 50,60年代的20年70,80年代的20年 2100 90年代的20年 2460 平均每年土地荒漠化1360 2扩展的面积(km)表2:沙尘暴发生的次数情况年代每十年沙尘暴发生次数 5 8 50年代的10年60年代的10年 70年代的10年 80年代的10年 90年代的10年 13 14 23 (1)求出五十年来平均每年土地荒漠化扩展的面积;(2)在图中画出不同年代沙尘暴发生的次数的折线图;(3)观察表2或(2)所得的折线图,你认为沙尘暴发生次数呈 _________ (选择“增加”,“稳定”或“减少”)趋势.26.(2021?上海)如图,在△ABC中,点D在边AC上,DB=BC,点E是CD的中点,点F是AB的中点.(1)求证:EF=AB;(2)过点A作AG∥EF,交BE的延长线于点G,求证:△ABE≌△AGE.27.(2021?上海)如图,在平面直角坐标系中,点O为坐标原点,以点A(0,��3)为圆心,5为半径作圆A,交x轴于B,C两点,交y轴于点D,E两点.(1)求点B,C,D的坐标;(2)如果一个二次函数图象经过B,C,D三点,求这个二次函数解析式;(3)P为x轴正半轴上的一点,过点P作与圆A相离并且与x轴垂直的直线,交上述二次函数图象于点F,当△CPF中一个内角的正切之为时,求点P的坐标.28.(2021?上海)正方形ABCD的边长为2,E是射线CD上的动点(不与点D重合),直线AE交直线BC于点G,∠BAE的平分线交射线BC于点O.(1)如图,当CE=时,求线段BG的长;(2)当点O在线段BC上时,设,BO=y,求y关于x的函数解析式;(3)当CE=2ED时,求线段BO的长.2021年上海市中考数学试卷参考答案与试题解析一、选择题(共9小题,每小题4分,满分36分) 1.(2021?上海)下列运算中,计算结果正确的是()3332325336A.x?x=2x B.x÷x=x C.(x)=x D.x+x=2x考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

海南省2021年中考数学真题试卷真题(word版,含答案与解析)

海南省2021年中考数学真题试卷真题(word版,含答案与解析)
1. 的相反数是( )
A.-5B. C. D.5
【答案】D
【解析】
【分析】根据相反数的定义解答即可.
【详解】解: 的相反数是5.
故选:D.
【点睛】本题考查了相反数的定义,属于应知应会题型,熟知概念是关键.
2.下列计算正确的是()
A. B. C. D.
【答案】C
【解析】
【分析】根据合并同类项、同底数幂的乘法、幂的乘方逐项判断即可得.
三、解答题(本大题满分68分)
17.(1)计算: ;
(2)解不等式组 并把它的解集在数轴(如图)上表示出来.
18.为了庆祝中国共产党成立100周年,某校组织了党史知识竞赛,学校购买了若干副乒乓球拍和羽毛球拍对表现优异的班级进行奖励.若购买2副乒乓球拍和1副羽毛球拍共需280元;若购买3副乒乓球拍和2副羽毛球拍共需480元.求1副乒乓球拍和1副羽毛球拍各是多少元?
【详解】解: 反比例函数 中的 ,
在 内, 随 的增大而减小,
又 点 在反比例函数 的图象上,且 ,

故答案为: .
【点睛】本题考查了反比例函数的性质,熟练掌握反比例函数的增减性是解题关键.
15.如图, 的顶点 的坐标分别是 ,且 ,则顶点A的坐标是_____.
【答案】
【解析】
【分析】根据 的坐标求得 的长度, ,利用30度角所对的直角边等于斜边的一半,求得 的长度,即点 的横坐标,易得 轴,则 的纵坐标即 的纵坐标.
A. B. C. D.
二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分)
13.分式方程 的解是____.
14.若点 在反比例函数 的图象上,则 ____ (填“>”“<”或“=”).
15.如图, 的顶点 的坐标分别是 ,且 ,则顶点A的坐标是_____.

湖北省十堰市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省十堰市2021年中考数学试卷试题真题(Word版,含答案解析)

湖北省十堰市2021年中考数学试卷一、单选题(共10题;共20分)1.−12 的相反数是( )A. -2B. 2C. −12 D. 12 【答案】 D【考点】相反数及有理数的相反数【解析】【解答】因为 (−12)+12=0 ,所以 −12 的相反数是 12 . 故答案为D【分析】根据只有符号不同的两个数互为相反数可求解.2.如图,直线 AB//CD,∠1=55°,∠2=32° ,则 ∠3= ( )A. 87°B. 23°C. 67°D. 90° 【答案】 A【考点】平行线的性质,三角形的外角性质 【解析】【解答】解:∵ AB//CD,∠1=55° , ∴ ∠C =∠1=55° , ∴ ∠3=∠2+∠C =87° , 故答案为:A.【分析】根据平行线的性质得出∠C =∠1=55° , 根据三角形外角的性质得出∠3=∠2+ ∠C ,据此计算即可.3.由5个相同的小立方体搭成的几何体如图所示,则它的俯视图为( )A.B. C. D.【答案】 A【考点】简单组合体的三视图【解析】【解答】解:该几何体从上向下看,其俯视图是,故答案为:A.【分析】俯视图:从物体上面所看的平面图形;注意:看到的棱画实线,看不到的棱画虚线,据此判断即可.4.下列计算正确的是()A. a3⋅a3=2a3B. (−2a)2=4a2C. (a+b)2=a2+b2D. (a+2)(a−2)=a2−2【答案】B【考点】同底数幂的乘法,完全平方公式及运用,平方差公式及应用,积的乘方【解析】【解答】解:A. a3⋅a3=a6,该项计算错误;B. (−2a)2=4a2,该项计算正确;C. (a+b)2=a2+2ab+b2,该项计算错误;D. (a+2)(a−2)=a2−4,该项计算错误;故答案为:B.【分析】根据同底数幂的乘法、积的乘方、完全平方公式及平方差公式分别进行计算,然后判断即可.5.某校男子足球队的年龄分布如下表则这些队员年龄的众数和中位数分别是()A. 8,15B. 8,14C. 15,14D. 15,15【答案】 D【考点】中位数,众数【解析】【解答】解:根据图表数据,同一年龄人数最多的是15岁,共8人,所以众数是15岁;22名队员中,按照年龄从小到大排列,第11名队员与第12名队员的年龄都是15岁,所以,中位数是(15+15)÷2=15岁.故答案为:D.【分析】中位数:先把数据从小到大(或从大到小)进行排列,如果数据的个数是奇数,那么最中间的那个数据就是中位数,如果数据的个数是偶数,那么最中间的那两个数据的平均数就是中位数,众数:是一组数据中出现次数最多的数据;据此求解即可.6.某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A. 400x −450x−50=1 B. 450x−50−400x=1C. 400x −450x+1=50 D. 450x+1−400x=5【答案】B【考点】分式方程的实际应用【解析】【解答】解:设现在每天生产x台,则原来可生产(x−50)台.依题意得:450x−50−400x=1.故答案为:B.【分析】设现在每天生产x台,则原来可生产(x−50)台,根据“ 生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.7.如图,小明利用一个锐角是30°的三角板测量操场旗杆的高度,已知他与旗杆之间的水平距离BC 为15m,AB为1.5m(即小明的眼睛与地面的距离),那么旗杆的高度是()A. (15√3+32)m B. 5√3m C. 15√3m D. (5√3+32)m【答案】 D【考点】解直角三角形的应用【解析】【解答】解:∵AB⊥BC,DE⊥BC,AD∥BC,∴四边形ABCD是矩形,∵BC=15m,AB=1.5m,∴AD=BC=15m,DC=AB=1.5m,在Rt△AED中,∵∠EAD=30°,AD=15m,∴ED=AD•tan30°=15× √33=5 √3,∴CE=CD+DE=(5√3+32)m.故答案为:D.【分析】证明四边形ABCD是矩形,可得AD=BC=15m,DC=AB=1.5m,在Rt△AED中,求出ED=AD•tan30°=5 √3,利用CE=CD+DE即可求出结论.8.如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD是⊙O的直径,若AD=3,则BC=()A. 2√3B. 3√3C. 3D. 4【答案】C【考点】垂径定理,圆周角定理,解直角三角形【解析】【解答】解:过点O作OF⊥BC于F,∴BF=CF=12BC,∵AB=AC,∠BAC=120°,∴∠C=∠ABC=(180°−∠BAC)÷2=30°,∵∠C与∠D是同弧所对的圆周角,∴∠D=∠C=30°,∵BD为⊙O的直径,∴∠BAD=90°,∴∠ABD=60°,∴∠OBC=∠ABD−∠ABC=30°,∵AD=3,∴BD=AD÷cos30°=3÷ √32=2 √3,∴OB=12BD=√3,∴BF=OB•cos30°=√3× √32=32,∴BC=3.故答案为:C.【分析】过点O作OF⊥BC于F,根据垂径定理求出BF=CF=12BC,利用等腰三角形的性质得出∠C=∠ABC=30°,根据圆周角定理求出∠D=∠C=30°,∠BAD=90°,从而求出∠OBC=∠ABD−∠ABC=30°,继而得出BD=AD÷cos30°=2 √3,可求出OB=12BD=√3,由BF=OB•cos30°求出BF,从而求出BC 的长.9.将从1开始的连续奇数按如图所示的规律排列,例如,位于第4行第3列的数为27,则位于第32行第13列的数是()A. 2025B. 2023C. 2021D. 2019【答案】B【考点】探索数与式的规律【解析】【解答】解:观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,∴第32行,第32列的数据为:2×32×(32-1)+1=1985,根据数据的排列规律,第偶数行从右往左的数据一次增加2,∴第32行,第13列的数据为:1985+2×(32-13)=2023,故答案为:B.【分析】观察数字的变化,发现规律:第n行,第n列的数据为:2n(n-1)+1,据此求出n=32时的数据,根据数据的排列规律,第偶数行从右往左的数据一次增加2,从而求出结论.10.如图,反比例函数y=kx(x>0)的图象经过点A(2,1),过A作AB⊥y轴于点B,连OA,直线CD⊥OA,交x轴于点C,交y轴于点D,若点B关于直线CD的对称点B′恰好落在该反比例函数图象上,则D点纵坐标为()A. 5√5−14B. 52C. 73D. 5√5+14【答案】A【考点】勾股定理,轴对称的性质,平行线分线段成比例,反比例函数图象上点的坐标特征【解析】【解答】解:∵反比例函数y=kx(x>0)的图象经过点A(2,1),∴k=2,∴直线OA的解析式为y=12x,∵CD⊥OA,∴设直线CD的解析式为y=−2x+b,则D(0,b),设点B关于直线CD的对称点B′(a,2a),则(b−1)2=a2+(2a−b)2①,且BB′//OA,即2a−1a=12,解得a=√5−1,代入①可得b=5√5−14,故答案为:A.【分析】将点A 坐标代入反比例函数解析式求出k=2,即得y =2x , 利用待定系数法求出直线OA 的解析式为 y =12x ,由CD ⊥OA 可设直线CD 的解析式为 y =−2x +b , 可得D(0,b) , 可设B ′(a,2a ) , 利用勾股定理可得(b −1)2=a 2+(2a −b)2①,由 BB ′//OA ,可得2a−1a=12 ,求出a 值,然后将a 值代入①求出b 值即可.二、填空题(共5题;共6分)11.已知 xy =2,x −3y =3 ,则 2x 3y −12x 2y 2+18xy 3= ________. 【答案】 36【考点】因式分解的应用【解析】【解答】∵ xy =2,x −3y =3 , ∴原式= 2xy(x −3y)2=2×2×32=36 , 故答案是:36.【分析】利用因式分解将原式变形为2xy(x −3y)2 , 然后整体代入计算即可.12.如图,O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点.若AB=5,AD=12,则四边形ABOM 的周长为________ .【答案】 20【考点】矩形的性质,三角形的中位线定理【解析】【解答】解:∵O 是矩形ABCD 的对角线AC 的中点,M 是AD 的中点,∴OM=12CD=12AB=2.5, ∵AB=5,AD=12, ∴AC= √52+122=13,∵O 是矩形ABCD 的对角线AC 的中点, ∴BO=12AC=6.5,∴四边形ABOM 的周长为AB+AM+BO+OM=5+6+6.5+2.5=20, 故答案为:20.【分析】根据题意可知OM 是△ADC 的中位线,所以OM 的长可求;根据勾股定理可求出AC 的长,利用直角三角形斜边上的中线等于斜边的一半可求出BO 的长,进而求出四边形ABOM 的周长.13.对于任意实数a、b,定义一种运算:a⊗b=a2+b2−ab,若x⊗(x−1)=3,则x的值为________.【答案】-1或2【考点】因式分解法解一元二次方程,定义新运算【解析】【解答】解:根据新定义内容可得:x⊗(x−1)=x2+(x−1)2−x(x−1)=3,整理可得x2−x−2=0,解得x1=−1,x2=2,故答案为:-1或2.【分析】利用定义新运算可得x⊗(x−1)=x2+(x−1)2−x(x−1)=3,然后求出方程的解即可.14.如图,在边长为4的正方形ABCD中,以AB为直径的半圆交对角线AC于点E,以C为圆心、BC 长为半径画弧交AC于点F,则图中阴影部分的面积是________.【答案】3π-6【考点】三角形的面积,正方形的性质,扇形面积的计算【解析】【解答】连接BE,∵在正方形ABCD中,以AB为直径的半圆交对角线AC于点E,∴∠AEB=90°,即:AC⊥BE,∵∠CAB=45°,∴△ABE是等腰直角三角形,即:AE=BE,∴弓形BE的面积= 14π×22−12×2×2=π−2,∴阴影部分的面积=弓形BE的面积+扇形CBF的面积- △BCE的面积= π−2+ 45×π×42360- 12×12×4×4=3 π-6.故答案是:3π-6.【分析】连接BE,可求出△ABE是等腰直角三角形,可得AE=BE,由于阴影部分的面积=弓形BE的面积+扇形CBF的面积- △BCE的面积,利用扇形的面积公式及三角形的面积公式进行计算即可.15.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点P是平面内一个动点,且AP=3,Q 为BP的中点,在P点运动过程中,设线段CQ的长度为m,则m的取值范围是________.【答案】72≤m≤ 132【考点】三角形三边关系,勾股定理,三角形的中位线定理,直角三角形斜边上的中线【解析】【解答】解:作AB的中点M,连接CM、QM.∵AP=3,∴P在以A为圆心,3为半径的圆上运动,在直角△ABC中,AB=√AC2+BC2=√82+62=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵Q是BP的中点,M是AB的中点,∴MQ=12AP=32.∴在△CMQ中,5− 32≤CQ≤ 32+5,即72≤m≤ 132.故答案是:72≤m≤ 132.【分析】作AB的中点M,连接CM、QM,在直角△ABC中,利用勾股定理求出AB=10,利用直角三角形斜边中线的性质得出CM=12AB=5,根据三角形中位线的定理可得MQ=12AP=32,在△CMQ中,CM− MQ≤CQ≤ MQ+CM,据此即可求出结论.三、解答题(共9题;共90分)16.计算:√2cos45°+(13)−1−|−3|.【答案】解:原式=√2×√22+3−3=1.【考点】实数的运算,特殊角的三角函数值【解析】【分析】利用特殊角三角函数值、负整数幂的性质、绝对值的性质分别进行计算,再合并即可.17.化简:(a+2a2−2a −a−1a2−4a+4)÷a−4a.【答案】解:原式= (a+2a(a−2)−a−1(a−2)2)⋅aa−4= ((a+2)(a−2)a(a−2)2−a(a−1)a(a−2)2)⋅aa−4= a2−4−a2+aa(a−2)2⋅a a−4= a−4a(a−2)2⋅a a−4= 1(a−2)2【考点】分式的混合运算【解析】【分析】将括号内通分并利用同分母分式减法法则计算,再将除法转化为乘法,进行约分即可化简.18.为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动.赛后随机抽取了部分学生的成绩,按得分划分为A、B、C、D四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中a=________;扇形统计图中,C等级所占的百分比是________;D等级对应的扇形圆心角为________度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有________人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率【答案】(1)20;30%;42°;450(2)解:列表如下:共有12种情况,其中甲、乙两人至少有1人被选中的有10种,∴P(甲、乙两人至少有1人被选中) =1012=56【考点】用样本估计总体,统计表,扇形统计图,列表法与树状图法【解析】【解答】解:(1)总人数为15÷90360=60人,∴a=60−15−18−7=20,C等级所占的百分比1860×100%=30%,D等级对应的扇形圆心角760×360=42°,若全校共有1800名学生参加了此次知识竞赛活动,成绩为A等级的学生共有1800×1560=450人;【分析】(1)先求出抽取总人数,再利用总人数分别减去A、C、D等级人数,即得a值;利用C等级人数除以总人数,再乘以100%即得C等级的百分比;利用D等级的百分比乘以360°即得D等级对应的扇形圆心角度数;利用样本中A等级百分比乘以1800,即得结论;(2)利用列表法列举出共有12种等可能情况,其中甲、乙两人至少有1人被选中的有10种,然后利用概率公式计算即可.19.已知关于x的一元二次方程x2−4x−2m+5=0有两个不相等的实数根.(1)求实数m的取值范围;(2)若该方程的两个根都是符号相同的整数,求整数m的值.【答案】(1)解:∵一元二次方程x2−4x−2m+5=0有两个不相等的实数根,∴Δ=16−4(−2m+5)>0,解得m>12(2)解:设该方程的两个根为x1、x2,∵该方程的两个根都是符号相同的整数,∴x1x2=−2m+5>0,x1+x2=4,∴12<m<52,∴m的值为1或2,当m=1时,方程两个根为x1=1、x2=3;当m=2时,方程两个根x1与x2不是整数;∴m的值为1【考点】一元二次方程根的判别式及应用,一元二次方程的根与系数的关系【解析】【分析】(1)根据一元二次方程x2−4x−2m+5=0有两个不相等的实数根,可得△>0,据此解答即可;(2)设该方程的两个根为x1、x2,根据根与系数关系及方程的两个根都是符号相同的整数,可得x1x2=−2m+5>0,x1+x2=4,可得m的范围,然后求出其整数解即可.20.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF//BC交DE于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)证明:∵AF//BC,∴∠FAD=∠ECD,∵D是AC的中点,DE⊥AC,∴∠FDA=∠EDC,AD=CD,∴△ADF≌△CDE,∴AF=CE,∴四边形AECF是平行四边形,∵DE⊥AC,∴平行四边形AECF是菱形(2)解:∵AECF是菱形,∴AF=CF=2,∴AD=AF⋅cos30°=√3,∴AC=2AD=2√3,过点A作AM⊥BC,∴AM=AC⋅sin30°=√3,=√6∴AB=AMsin45°【考点】菱形的判定与性质,解直角三角形,三角形全等的判定(ASA)【解析】【分析】(1)利用平行线的性质可证得∠FAD=∠ECD,利用垂直的定义和线段中点的定义可证得∠FDA=∠EDC,AD=CD,利用ASA可证得△ADF≌△CDE,利用全等三角形的性质可证得AF=CE;再利用一组对边平行且相等的四边形是平行四边形,可证得四边形AECF是平行四边形,根据对角线互相垂直的平行四边形是菱形,可证得结论.(2)利用菱形的性质可求出AF的长,利用解直角三角形求出AD的长,即可求出AC的长;过点A作AM⊥BC,利用解直角三角形求出AM,AB的长.21.如图,已知AB是⊙O的直径,C为⊙O上一点,∠OCB的角平分线交⊙O于点D,F在直线AB上,且DF⊥BC,垂足为E,连接AD、BD.(1)求证:DF是⊙O的切线;(2)若tan∠A=1,⊙O的半径为3,求EF的长.2【答案】(1)证明:连接OD,,∵OD=OC,∴∠OCD=∠ODC,∵CD平分∠OCB,∴∠OCD=∠BCD,∴∠ODC=∠BCD,∴OD//BC,∵DF⊥BC∴OD⊥DF,∴DF是⊙O的切线(2)解:∵ ∠ADO +∠BDO =90° , ∠FDB +∠BDO =90° ,∴ ∠ADO =∠FDB ,∵ ∠ADO =∠OAD ,∴ ∠OAD =∠FDB ,∴ △ADF ∽△DBF ,∴ DB AD =DF AF =BF DF =tan ∠A =12 ,∴ DF =12AF =2BF ,即 12(BF +6)=2BF ,解得 BF =2 , DF =4 ,∵ OD ⊥DF , BE ⊥DF ,∴ △ODF ∽△BEF ,∴ EF DF =BF OF =22+3 ,解得 EF =85【考点】切线的判定,相似三角形的判定与性质,解直角三角形【解析】【分析】(1)连接OD ,利用角平分线的定义和平行线的性质可证得∠ODC=∠BCD ,可推出OD ∥BC ,结合已知条件可得到OD ⊥DF ,然后利用切线的判定定理可证得结论.(2)利用余角的性质可证得∠ADO=∠FDB ,再证明∠OAD=∠FDB ,可证得△ADF ∽△DBF ,利用相似三角形的性质及锐角三角函数的定义可证得DF=2BF ,由此可求出BF ,DF 的长;再证明△ODF ∽△BEF ,利用相似三角形的对应边成比例可求出EF 的长.22.某商贸公司购进某种商品的成本为20元/ kg ,经过市场调研发现,这种商品在未来40天的销售单价y (元/ kg )与时间x (天)之间的函数关系式为: y ={0.25x +30(1≤x ≤20)35(20<x ≤40)且x 为整数,且日销量 m() 与时间x (天)之间的变化规律符合一次函数关系,如下表:填空: (1)m 与x 的函数关系为________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售 1kg 商品就捐赠n 元利润( n <4 )给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x 的增大而增大,求n 的取值范围.【答案】 (1)m=-2x+144(2)解:当 1≤x ≤20 时,销售利润 W =my −20m =(−2x +144)(0.25x +30−20)=−12(x −16)2+1568 ,当x=16时,销售利润最大为1568元;当20<x≤40时,销售利润W=my−20m=−30x+2160,当x=21时,销售利润最大为1530元;综上所述,第16天销售利润最大,最大为1568元(3)解:在前20天中,每天扣除捐赠后的日销售利润为:W′=my−20m−nm=(0.25x+10−n)(−2x+144)=−12x2+(16+2n)x+1440−144n,∵1≤x≤20时,W′随x的增大而增大,∴对称轴16+2n≤20,解得0<n≤2【考点】二次函数与一次函数的综合应用,二次函数的实际应用-销售问题【解析】【解答】解:(1)设m=kx+b,将(1,142),(3,138)代入可得:{142=k+b138=3k+b,解得{k=−2b=144,∴m=−2x+144;【分析】(1)利用待定系数法求出m与x的函数解析式.(2)当1≤x≤20,根据W=my,可得到W与x之间的函数解析式,将其函数解析式转化为顶点式,利用二次函数的性质可求出销售利润最大值;当20<x≤40,根据W=my,可得到W与x之间的函数解析式,利用一次函数的性质求出销售利润的最大值,即可求解.(2)由题意可知W'=my-2m-nm,列出函数解析式,利用二次函数的性质可求解.23.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.(1)如图1,直接写出线段AP与BQ的数量关系;(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√34,求线段AP的长度.【答案】(1)证明:∵线段CP绕点C逆时针方向旋转60°得到CQ,∴CP=CQ,∠PCQ=60°,∵在等边三角形ABC中,∠ACB=60°,AC=BC,∴∠ACP=∠BCQ,∴△ACP≌△BCQ,∴AP= BQ(2)解:∵AP=AC,CA⊥l,∴△ACP是等腰直角三角形,∵△ACP≌△BCQ,∴△BCQ是等腰直角三角形,∠CBQ=90°,∵在等边三角形ABC中,AC=AB,∠BAC=∠ABC=60°,∴AB=AP,∠BAP=90°-60°=30°,∴∠ABP=∠APB=(180°-30°)÷2=75°,∴∠CBD=180°-75°-60°=45°,∴PD平分∠CBQ,∴直线PB垂直平分线段CQ(3)解:过点B作BE⊥l,过点Q作QF⊥l,由(1)小题,可知:△ACP≌△BCQ,∴AP=BQ,∠CAP=∠CBQ=90°,∵∠ACB=60°,∠CAM=90°,∴∠AMB=360°-60°-90°-90°=120°,即:∠BME=∠QMF=60°,∵∠BAE=90°-60°=30°,AB=4,∴BE= 12AB=2,∴BM=BE÷sin60°=2÷ √32= 43√3,设AP=x,则BQ=x,MQ=x- 43√3,QF= MQ×sin60°=( x- 43√3)× √32,∵△APQ的面积等于√34,∴ 12 AP×QF= √34 ,即: 12 x×( x- 43√3 )× √32 = √34 ,解得: x =23√3+√213 或 x =23√3−√213 (不合题意,舍去),∴AP= 23√3+√213【考点】解直角三角形,旋转的性质,三角形的综合【解析】【分析】(1)利用旋转的性质可证得CP=CQ ,∠PCQ=60°,利用等边三角形的性质去证明∠ACP=∠BCQ ,利用SAS ,可证得△ACP ≌△BCQ ,利用全等三角形的性质可证得结论.(2)利用已知条件易证△ACP 是等腰直角三角形,利用全等三角形的性质可证得△BCQ 是等腰直角三角形,再利用等边三角形的性质去证明AB=AP ,同时可求出∠BAP ,∠ABP ,∠CBD 的度数,由此可证得结论.(3)利用全等三角形的性质可证得AP=BQ ,∠CAP=∠CBQ=90°,再证明∠QMF=∠BAE=60°,同时可求出∠BAE 的度数;利用直角三角形的性质可求出BE 的长,利用解直角三角形求出BM 的长,设AP=x ,则BQ=x ,可表示出MQ ,QF 的长;再利用△PAQ 的面积= √34 ,建立关于x 的方程,解方程求出符合题意的x 的值,即可得到AP 的长.24.已知抛物线 y =ax 2+bx −5 与x 轴交于点 A(−1,0) 和 B(−5,0) ,与y 轴交于点C ,顶点为P ,点N 在抛物线对称轴上且位于x 轴下方,连 AN 交抛物线于M ,连 AC 、 CM .(1)求抛物线的解析式;(2)如图1,当 tan ∠ACM =2 时,求M 点的横坐标;(3)如图2,过点P 作x 轴的平行线l ,过M 作 MD ⊥l 于D ,若 MD =√3MN ,求N 点的坐标.【答案】 (1)解:将点 A(−1,0) 和点 B(−5,0) 代入 y =ax 2+bx −5 得{a −b −5=025a −5b −5=0,解得: {a =−1b =−6 ∴y =−x 2−6x −5(2)解:点A 作 AE ⊥AC 交CM 的延长线于点E ,过 E 作 EF ⊥x 轴于 E, 如下图∵EF ⊥x 轴, AE ⊥AC∴∠EFA =∠EAC =90°∴∠FAE +∠OAC =90°又 ∴∠ACO +∠OAC =90°∴∠EAF =∠ACO∴ΔAOC ∽ΔEFA∴AC EA =AO EF =CO AF∵tan ∠ACM =2 即 AE AC =2∴AC EA =AO EF =CO AF =12当 x =0 时, y =−5∴C(0,−5) 即 OC =5∴EF =2,AF =10 即 E(−11,−2)∴ 设直线CE 的解析式为 y =kx +b(k ≠0) ,并将C 、E 两点代入得{−11k +b =−2b =−5 解得 {k =−311b =−5∴y =−311x −5∵ 点M 是直线CE 与抛物线交点∴{y =−311x −5y =−x 2−6x −5解得 x 1=−6311,x 2=0 (不合题意,舍去) ∴ 点M 的横坐标为 −6311(3)解:设过点M 垂直于L 的直线交x 轴于点H ,对称轴交x 轴于点Q ,M 的横坐标为m则OH=−m∴AH=−1−m∵y=−x2−6x−5∴对称轴x=−b2a=−3∴P、Q、N的横坐标为−3,即OQ=3∴AQ=OQ−OA=2∴当x=−3时,y=−(−3)2−(−3)×6−5=4∴P(−3,4)∴点D的纵坐标为4∴MD=4−(−m2−6m−5)=m2+6m+9=(m+3)2∵HM//NQ∴ΔAHM∽ΔAQN∴AHAQ =HMQN即−1−m2=m2+6m+5QN∴QN=−2m−10∴N(−3,2m+10)∴MN2=(m−3)2+[−m2−6m−5−2m−10]2=3(m+3)2[(m+5)2+1]∵MD=√3MN∴MD2=3MN2,即(m+3)4=3(m+3)2[(m+5)2+1],∵m+3=0,m=−3不符合题意,舍去,当m+3≠0时,∴2m2+24m+69=0,解得m=−12±√62,由题意知m=−12−√62∴N(−3,−2−√6)【考点】待定系数法求二次函数解析式,二次函数的实际应用-几何问题【解析】【分析】(1)将点A,B的坐标代入函数解析式,建立关于a,b的方程组,解方程组求出a,b 的值,可得到二次函数解析式.(2)过点A作AE⊥AC交CM的延长线于点E,过E作EF⊥x轴于E,利用垂直的定义及余角的性质可证得∠EAF=∠ACO,∠EFA=∠EAC,可推出△AOC∽△EFA,利用相似三角形的性质,可证得对应边成比例;再利用锐角三角函数的定义可得到AE与AC的比值,再利用函数解析式求出点C的坐标,可得到OC,EF,AF的长,由此可求出点E的坐标;利用点C,E的坐标可求出直线CE的函数解析式;将直线CE的解析式和抛物线额解析式联立方程组,求出点M的坐标.(3)设过点M垂直于L的直线交x轴于点H,对称轴交x轴于点Q,M的横坐标为m ,可得到OH,AH 的长,利用函数解析式可求出抛物线的对称轴,即可得到点P,Q,N的横坐标及OQ的长,由此可求出AQ的长;将x=-3代入二次函数解析式,求出y的值,可得到点P的坐标;再用含m的代数式表示出MD 的长;再证明△AHM∽△AQN,利用相似三角形的性质,可表示出MN2的长,利用MD2=3MN2,建立关于m的方程,解方程求出m的值,可得到点N的坐标.。

浙江省湖州市2021年中考数学试卷试题真题(Word版,含答案解析)

浙江省湖州市2021年中考数学试卷试题真题(Word版,含答案解析)

浙江省湖州市2021年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)(共10题;共30分)1.实数-2的绝对值是()A. -2B. 2C. 12D. −12【答案】B【考点】实数的绝对值【解析】【解答】解:实数-2的绝对值2.故答案为:B.【分析】利用负数的绝对值等于它的相反数,可得答案.2.化简√8的正确结果是()A. 4B. ±4C. 2√2D. ±2√2【答案】C【考点】二次根式的性质与化简【解析】【解答】解:√8=2√2.故答案为:C.【分析】利用二次根式的性质进行化简.3.不等式3x−1>5的解集是()A. x>2B. x<2C. x>43D. x<43【答案】A【考点】解一元一次不等式【解析】【解答】解:3x-1>53x>6解之:x>2.故答案为:A.【分析】先移项,再合并同类项,然后将x的系数化为1.4.下列事件中,属于不可能事件的是()A. 经过红绿灯路口,遇到绿灯B. 射击运动员射击一次,命中靶心C. 班里的两名同学,他们的生日是同一天D. 从一个只装有白球和红球的袋中摸球,摸出黄球【答案】 D【考点】事件发生的可能性【解析】【解答】解:A、经过红绿灯路口,遇到绿灯,此事件是随机事件,故A不符合题意;B、射击运动员射击一次,命中靶心,此事件是随机事件,故B不符合题意;C、班里的两名同学,他们的生日是同一天,此事件是随机事件,故C不符合题意;D、从一个只装有白球和红球的袋中摸球,摸出黄球,此事件是不可能事件,故D符合题意;故答案为:D.【分析】不可能事件就是在一定的条件下一定不发生的事件,再对各选项逐一判断.5.将如图所示的长方体牛奶包装盒沿某些棱剪开,且使六个面连在一起,然后铺平,则得到的图形可能是()A. B.C. D.【答案】A【考点】几何体的展开图【解析】【解答】解:根据题意可知只有A符合题意.故答案为:A.【分析】利用长方体的展开图中的141,可得答案.6.如图,已知点O是△ABC的外心,∠A=40°,连结BO,CO,则∠BOC的度数是()A. 60°B. 70°C. 80°D. 90°【答案】C【考点】圆周角定理,三角形的外接圆与外心【解析】【解答】解:∵点O 是△ABC 的外心,∠A=40°,∴∠BOC=2∠A=2×40°=80°.故答案为:C.【分析】利用一条弧所对的圆心角等于圆周角的2倍,可求出结果.7.已知 a , b 是两个连续整数, a <√3−1<b ,则 a , b 分别是( )A. -2,-1B. -1,0C. 0,1D. 1,2【答案】 C【考点】估算无理数的大小【解析】【解答】解:∵1<√3<2∴0<√3−1<1∵ a <√3−1<b ,∴a=0,b=1.故答案为:C.【分析】利用估算无理数的大小,可知1<√3<2 , 再利用不等式的性质,可求出a ,b 的值. 8.如图,已知在△ABC 中,∠ABC<90°,AB≠BC ,BE 是AC 边上的中线。

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷及答案(Word解析版)

湖北省襄阳市中考数学试卷参考答案与试题解析一、选择题(3*12=36分)1.(3分)(•襄阳)2的相反数是()A.﹣2 B.2C.D.考点:相反数.分析:根据相反数的表示方法:一个数的相反数就是在这个数前面添上“﹣”号.解答:解:2的相反数是﹣2.故选A.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(•襄阳)四川芦山发生7.0级地震后,一周内,通过铁路部门已运送救灾物资15810吨,将15810吨,将15180用科学记数法表示为()A.1.581×103B.1.581×104C.15.81×103D.15.81×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:15180=1.581×104,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(•襄阳)下列运算正确的是()A.4a﹣a=3 B.a•a2=a3C.(﹣a3)2=a5D.a6÷a2=a3考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、4a﹣a=3a,选项错误;B、正确;C、(﹣a3)2=a6,选项错误;D、a6÷a2=a4,选项错误.故选B.点评:本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.4.(3分)(•襄阳)如图,在△ABC中,D是BC延长线上一点,∠B=40°,∠ACD=120°,则∠A等于()A.60°B.70°C.80°D.90°考点:三角形的外角性质.分析:根据三角形的一个外角等于与它不相邻的两个内角的和,知∠ACD=∠A+∠B,从而求出∠A的度数.解答:解:∵∠ACD=∠A+∠B,∴∠A=∠ACD﹣∠B=120°﹣40°=80°.故选C.点评:本题主要考查三角形外角的性质,解答的关键是沟通外角和内角的关系.5.(3分)(•襄阳)不等式组的解集在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:根据不等式组的解法求出不等式组的解集,再根据>,≥向右画;<,≤向左画,在数轴上表示出来,从而得出正确答案.解答:解:,由①得:x≤1,由②得:x>﹣3,则不等式组的解集是﹣3<x≤1;故选D.点评:此题考查了一元一次不等式组的解法和在数轴上表示不等式的解集,掌握不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线是解题的关键.6.(3分)(•襄阳)如图,BD平分∠ABC,CD∥AB,若∠BCD=70°,则∠ABD的度数为()A.55°B.50°C.45°D.40°考点:平行线的性质.分析:首先根据平行线的性质可得∠ABC+∠DCB=180°,进而得到∠BCD的度数,再根据角平分线的性质可得答案.解答:解:∵CD∥AB,∴∠ABC+∠DCB=180°,∵∠BCD=70°,∴∠ABC=180°﹣70°=110°,∵BD平分∠ABC,∴∠ABD=55°,故选:A.点评:此题主要考查了平行线的性质以及角平分线定义,关键是掌握两直线平行,同旁内角互补.7.(3分)(•襄阳)分式方程的解为()A.x=3 B.x=2 C.x=1 D.x=﹣1考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x+1=2x,解得:x=1,经检验x=1是分式方程的解.故选C点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.8.(3分)(•襄阳)如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A.B.C.D.考点:简单组合体的三视图.分析:判断出组合体的左视图、主视图及俯视图,即可作出判断.解答:解:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形.故选D.点评:本题考查了简单组合体的三视图,属于基础题,注意理解三视图观察的方向.9.(3分)(•襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是()A.18 B.28 C.36 D.46考点:平行四边形的性质.分析:由平行四边形的性质和已知条件计算即可,解题注意求平行四边形ABCD的两条对角线的和时要把两条对角线可作一个整体.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,∵△OCD的周长为23,∴OD+OC=23﹣5=18,∵BD=2DO,AC=2OC,∴平行四边形ABCD的两条对角线的和=BD+AC=2(DO+OC)=36,故选C.点评:本题主要考查了平行四边形的基本性质,并利用性质解题.平行四边形的基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.10.(3分)(•襄阳)二次函数y=﹣x2+bx+c的图象如图所示:若点A(x1,y1),B(x2,y2)在此函数图象上,x1<x2<1,y1与y2的大小关系是()A.y1≤y2B.y1<y2C.y1≥y2D.y1>y2考点:二次函数图象上点的坐标特征.分析:对于二次函数y=﹣x2+bx+c,根据a<0,抛物线开口向下,在x<0的分支上y随x的增大而增大,故y1<y2.解答:解:∵a<0,x1<x2<1,∴y随x的增大而增大∴y1<y2.故选:B.点评:此题主要考查了二次函数图象上点的坐标特征,本题的关键是(1)找到二次函数的对称轴;(2)掌握二次函数y=ax2+bx+c(a≠0)的图象性质.11.(3分)(•襄阳)七年级学生完成课题学习“从数据谈节水”后,积极践行“节约用水,从我做起”,下表是从七年级400名学生中选出10名学生统计各自家庭一个月的节水情况:节水量(m3)0.2 0.25 0.3 0.4 0.5家庭数(个) 1 2 2 4 1那么这组数据的众数和平均数分别是()A.0.4和0.34 B.0.4和0.3 C.0.25和0.34 D.0.25和0.3考点:众数;加权平均数.分析:根据众数及平均数的定义,结合表格信息即可得出答案.解答:解:将数据从新排列为:0.2,0.25,0.25,0.3,0.3,0.4,0.4,0.4,0.4,0.5,则中位数为:0.4;平均数为:(0.2+0.25+0.25+0.3+0.3+0.4+0.4+0.4+0.4+0.5)=0.34.故选A.点评:本题考查了众数及平均数的知识,解答本题的关键是熟练掌握中位数及平均数的定义.12.(3分)(•襄阳)如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E、B,E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A.B.C.D.考点:扇形面积的计算;弧长的计算.分析:首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可.解答:解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=30°,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选:D.点评:此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出∴△BOE和△ABE面积相等是解题关键.二、填空题(3*5=15分)13.(3分)(•襄阳)计算:|﹣3|+=4.考点:实数的运算;零指数幂.分析:分别进行绝对值及零指数幂的运算,然后合并即可得出答案.解答:解:原式=3+1=4.故答案为:4.点评:本题考查了实数的运算,涉及了零指数幂绝对值,掌握各部分的运算法则是关键.14.(3分)(•襄阳)使代数式有意义的x的取值范围是x≥且x≠3.考点:二次根式有意义的条件;分式有意义的条件.分析:根据被开方数大于等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,2x﹣1≥0且3﹣x≠0,解得x≥且x≠3.故答案为:x≥且x≠3.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.15.(3分)(•襄阳)如图,水平放置的圆柱形排水管道的截面直径是1m,其中水面的宽AB为0.8m,则排水管内水的深度为0.2 m.考点:垂径定理的应用;勾股定理.分析:过O作OC垂直于AB,利用垂径定理得到C为AB的中点,在直角三角形AOC中,由水面高度与半径求出OC的长,即可得出排水管内水的深度.解答:解:过O作OC⊥AB,交AB于点C,可得出AC=BC=AB=0.4m,由直径是1m,半径为0.5m,在Rt△AOC中,根据勾股定理得:OC===0.3(m),则排水管内水的深度为:0.5﹣0.3=0.2(m).故答案为:0.2.点评:此题考查了垂径定理的应用,以及勾股定理,熟练掌握定理是解本题的关键.16.(3分)(•襄阳)襄阳市辖区内旅游景点较多,李老师和刚初中毕业的儿子准备到古隆中、水镜庄、黄家湾三个景点去游玩.如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选择古隆中为第一站的概率是.考点:列表法与树状图法.专题:图表型.分析:可以看做是李老师先选择第一站,然后儿子再进行选择,画出树状图,再根据概率公式解答.解答:解:李老师先选择,然后儿子选择,画出树状图如下:一共有9种情况,都选择古隆中为第一站的有1种情况,所以,P(都选择古隆中为第一站)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(•襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是6或2.考点:图形的剪拼;勾股定理.分析:先根据题意画出图形,此题要分两种情况,再根据勾股定理求出斜边上的中线,最后根据直角三角形中,斜边上的中线等于斜边的一半即可求出斜边的长.解答:解:①如图所示:,连接CD,CD==,∵D为AB中点,∴AB=2CD=2;②如图所示:,连接EF,EF==3,∵E为AB中点,∴AB=2EF=6,故答案为:6或2.点评:此题考查了图形的剪拼,解题的关键是能够根据题意画出图形,在解题时要注意分两种情况画图,不要漏解.三、解答题(69分)18.(6分)(•襄阳)先化简,再求值:,其中,a=1+,b=1﹣.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再把a、b的值代入进行计算即可解答:解:原式=÷=÷=×=﹣,当a=1+,b=1﹣时,原式=﹣=﹣=﹣.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.(6分)(•襄阳)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度,站在教学楼上的C处测得旗杆低端B的俯角为45°,测得旗杆顶端A的仰角为30°,如旗杆与教学楼的水平距离CD为9m,则旗杆的高度是多少?(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,在Rt△BCD中,∵tan∠BCD=,∴tan45°=,∴BD=9m,∴AB=AD+BD=3+9(m).答:旗杆的高度是(3+9)m.点评:此题考查了解直角三角形的应用﹣仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.20.(6分)(•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?(2)如果不及时控制,第三轮将又有多少人被传染?考点:一元二次方程的应用.分析:(1)设每轮传染中平均每人传染了x人,根据经过两轮传染后共有64人患了流感,可求出x,(2)进而求出第三轮过后,又被感染的人数.解答:解:(1)设每轮传染中平均每人传染了x人,1+x+x(x+1)=64x=7或x=﹣9(舍去).答:每轮传染中平均一个人传染了7个人;(2)64×7=448(人).答:第三轮将又有448人被传染.点评:本题考查了一元二次方程的应用,先求出每轮传染中平均每人传染了多少人数是解题关键.21.(6分)(•襄阳)某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第三小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数;概率公式.分析:(1)首先求得总人数,然后求得第四组的人数,即可作出统计图;(2)利用总人数260乘以所占的比例即可求解;(3)利用概率公式即可求解.解答:解:(1)总人数是:10÷20%=50(人),第四组的人数是:50﹣4﹣10﹣16﹣6﹣4=10,,中位数位于第三组;(2)该校九年级女生“一分钟跳绳”成绩为优秀的人数是:×260=104(人);(3)成绩是优秀的人数是:10+6+4=20(人),成绩为满分的人数是4,则从成绩为优秀的女生中任选一人,她的成绩为满分的概率是=0.2.点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题22.(6分)(•襄阳)平行四边形ABCD在平面直角坐标系中的位置如图所示,其中A(﹣4,0),B(2,0),C(3,3)反比例函数y=的图象经过点C.(1)求此反比例函数的解析式;(2)将平行四边形ABCD沿x轴翻折得到平行四边形AD′C′B,请你通过计算说明点D′在双曲线上;(3)请你画出△AD′C,并求出它的面积.考点:反比例函数综合题.分析:(1)把点C(3,3)代入反比例函数y=,求出m,即可求出解析式;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,根据线段之间的数量关系进一步求出点D的坐标,再点D′与点D关于x轴对称,求出D′坐标,进而判断点D′是不是在双曲线;(3)根据C(3,3),D′(﹣3,﹣3)得到点C和点D′关于原点O中心对称,进一步得出D′O=CO=D′C,由S△AD′C=2S△AOC=2×AO•CE求出面积的值.解答:解:(1)∵点C(3,3)在反比例函数y=的图象上,∴3=,∴m=9,∴反比例函数的解析式为y=;(2)过C作CE⊥x轴于点E,过D作DF⊥x轴于点F,则△CBE≌△DAF,∴AF=BE,DF=CE,∵A(﹣4,0),B(2,0),C(3,3),∴DF=CE=3,OA=4,OE=3,OB=2,∴OF=OA﹣AF=OA﹣BE=OA﹣(OE﹣OB)=4﹣(3﹣2)=3,∴D(﹣3,3),∵点D′与点D关于x轴对称,∴D′(﹣3,﹣3),把x=﹣3代入y=得,y=﹣3,∴点D′在双曲线上;(3)∵C(3,3),D′(﹣3,﹣3),∴点C和点D′关于原点O中心对称,∴D′O=CO=D′C,∴S△AD′C=2S△AOC=2×AO•CE=2××4×3=12,即S△AD′C=12.点评:本题主要考查反比例函数综合题的知识点,解答本题的关键是熟练掌握反比例函数的性质以及点的对称性等知识点,此题难度不大,是一道不错的中考试题.23.(7分)(•襄阳)如图1,点A是线段BC上一点,△ABD和△ACE都是等边三角形.(1)连结BE,CD,求证:BE=CD;(2)如图2,将△ABD绕点A顺时针旋转得到△AB′D′.①当旋转角为60度时,边AD′落在AE上;②在①的条件下,延长DD’交CE于点P,连接BD′,CD′.当线段AB、AC满足什么数量关系时,△BDD′与△CPD′全等?并给予证明.考点:全等三角形的判定与性质;等边三角形的性质;旋转的性质.专题:几何综合题.分析:(1)根据等边三角形的性质可得AB=AD,AE=AC,∠BAD=∠CAE=60°,然后求出∠BAE=∠DAC,再利用“边角边”证明△BAE和△DAC全等,根据全等三角形对应边相等即可得证;(2)①求出∠DAE,即可得到旋转角度数;②当AC=2AB时,△BDD′与△CPD′全等.根据旋转的性质可得AB=BD=DD′=AD′,然后得到四边形ABDD′是菱形,根据菱形的对角线平分一组对角可得∠ABD′=∠DBD′=30°,菱形的对边平行可得DP∥BC,根据等边三角形的性质求出AC=AE,∠ACE=60°,然后根据等腰三角形三线合一的性质求出∠PCD′=∠ACD′=30°,从而得到∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PD′C=30°,然后利用“角边角”证明△BDD′与△CPD′全等.解答:(1)证明:∵△ABD和△ACE都是等边三角形.∴AB=AD,AE=AC,∠BAD=∠CAE=60°,∴∠BAD+∠DAE=∠CAE+∠DAE,即∠BAE=∠DAC,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴BE=CD;(2)解:①∵∠BAD=∠CAE=60°,∴∠DAE=180°﹣60°×2=60°,∵边AD′落在AE上,∴旋转角=∠DAE=60°;②当AC=2AB时,△BDD′与△CPD′全等.理由如下:由旋转可知,AB′与AD重合,∴AB=BD=DD′=AD′,∴四边形ABDD′是菱形,∴∠ABD′=∠DBD′=∠ABD=×60°=30°,DP∥BC,∵△ACE是等边三角形,∴AC=AE,∠ACE=60°,∵AC=2AB,∴AE=2AD′,∴∠PCD′=∠ACD′=∠ACE=×60°=30°,又∵DP∥BC,∴∠ABD′=∠DBD′=∠BD′D=∠ACD′=∠PCD′=∠PD′C=30°,在△BDD′与△CPD′中,,∴△BDD′≌△CPD′(ASA).故答案为:60.点评:本题考查了全等三角形的判定与性质,等边三角形的性质,以及旋转的性质,综合性较强,但难度不大,熟练掌握等边三角形的性质与全等三角形的判定是姐提到过.24.(9分)(•襄阳)某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.考点:一次函数的应用.分析:(1)根据购买费用=单价×数量建立关系就可以表示出y A、y B的解析式;(2)分三种情况进行讨论,当y A=y B时,当y A>y B时,当y A<y B时,分别求出购买划算的方案;(3)分两种情况进行讨论计算求出需要的费用,再进行比较就可以求出结论.解答:解:(1)由题意,得y A=(10×30+3x)×0.9=2.7x+270,y B=10×30+3(x﹣20)=3x+240,(2)当y A=y B时,2.7x+270=3x+240,得x=100;当y A>y B时,2.7x+270>3x+240,得x<100;当y A<y B时,2.7x+270=3x+240,得x>100∴当2≤x<100时,到B超市购买划算,当x=100时,两家超市一样划算,当x>100时在A 超市购买划算.(3)由题意知x=15×10=150>100,∴选择A超市,y A=2.7×150+270=675元,先选择B超市购买10副羽毛球拍,送20个羽毛球,然后在A超市购买剩下的羽毛球(10×15﹣20)×30.9=351元,共需要费用10×30+351=651(元).∵651<675,∴最佳方案是先选择B超市购买10副羽毛球拍,然后在A超市购买130个羽毛球.点评:本题考查了一次函数的解析式的运用,分类讨论的数学思想的运用,方案设计的运用,解答时求出函数的解析式是关键.25.(10分)(•襄阳)如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O 于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.考点:切线的性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质.专题:证明题.分析:(1)连结OD,由AB为⊙O的直径,根据圆周角定理得AB为⊙O的直径得∠ACB=90°,再由ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB;(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD==5;由△ACE为等腰直角三角形,得到AE=CE==3,在Rt△AED中利用勾股定理计算出DE=4,则CD=7,易证得∴△PDA∽△PCD,得到===,所以PA=PD,PC=PD,然后利用PC=PA+AC可计算出PD.解答:(1)证明:连结OD,如图,∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB为等腰直角三角形,∴DO⊥AB,∵PD为⊙O的切线,∴OD⊥PD,∴DP∥AB;(2)解:在Rt△ACB中,AB==10,∵△DAB为等腰直角三角形,∴AD==5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE===3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵AB∥PD,∴∠PDA=∠DAB=45°,∴∠PAD=∠PCD,而∠DPA=∠CPD,∴△PDA∽△PCD,∴===,∴PA=PD,PC=PD,而PC=PA+AC,∴PD+6=PD,∴PD=.点评:本题考查了切线的性质:圆的切线垂直于过切点的半径.也考查了圆周角定理定理、等腰直角三角形的性质和三角形相似的判定与性质.26.(13分)(•襄阳)如图,已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.(1)求抛物线与x轴的另一个交点B的坐标;(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.已知以AB为一底边的梯形ABCD 的面积为9.求此抛物线的解析式,并指出顶点E的坐标;(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.①当t为2秒时,△PAD的周长最小?当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)根据抛物线的轴对称性可得抛物线与x轴的另一个交点B的坐标;(2)先根据梯形ABCD的面积为9,可求c的值,再运用待定系数法可求抛物线的解析式,转化为顶点式可求顶点E的坐标;(3)①根据轴对称﹣最短路线问题的求法可得△PAD的周长最小时t的值;根据等腰三角形的性质可分三种情况求得△PAD是以AD为腰的等腰三角形时t的值;②先证明△APN∽△PDM,根据相似三角形的性质求得PN的值,从而得到点P的坐标.解答:解:(1)由抛物线的轴对称性及A(﹣1,0),可得B(﹣3,0).(2)设抛物线的对称轴交CD于点M,交AB于点N,由题意可知AB∥CD,由抛物线的轴对称性可得CD=2DM.∵MN∥y轴,AB∥CD,∴四边形ODMN是矩形.∴DM=ON=2,∴CD=2×2=4.∵A(﹣1,0),B(﹣3,0),∴AB=2,∵梯形ABCD的面积=(AB+CD)•OD=9,∴OD=3,即c=3.∴把A(﹣1,0),B(﹣3,0)代入y=ax2+bx+3得,解得.∴y=x2+4x+3.将y=x2+4x+3化为顶点式为y=(x+2)2﹣1,得E(﹣2,﹣1).(3)①当t为2秒时,△PAD的周长最小;当t为4或4﹣或4+秒时,△PAD是以AD为腰的等腰三角形.②存在.∵∠APD=90°,∠PMD=∠PNA=90°,∴∠PDM+∠APN=90°,∠DPM+∠PDM=90°,∴∠PDM=∠APN,∵∠PMD=∠ANP,∴△APN∽△PDM,∴=,∴=,∴PN2﹣3PN+2=0,∴PN=1或PN=2.∴P(﹣2,1)或(﹣2,2).故答案为:2;4或4﹣或4+.点评:考查了二次函数综合题,涉及的知识点为:抛物线的轴对称性,梯形的面积计算,待定系数法求抛物线的解析式,抛物线的顶点式,轴对称﹣最短路线问题,等腰三角形的性质,相似三角形的判定和性质,综合性较强,有一定的难度.。

潍坊市中考数学试卷及答案(Word解析版)

潍坊市中考数学试卷及答案(Word解析版)

潍坊市初中学业水平考试数学试题一、选择题(本题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记0分.) 1.实数0.5的算术平方根等于( ).A.2B.2C.22 D.21 答案:C .考点:算术平方根。

点评:理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.2.下面的图形是天气预报中的图标,其中既是轴对称图形又是中心对称图形的是( ).A. B. C. D.答案:A .考点:轴对称图形与中心对称图形的特征。

点评:此题主要考查了轴对称图形与中心对称图形的概念,二者既有联系又有区别。

. 3.,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制资金达865.4亿元.数据“865.4亿元”用科学记数法可表示为( )元.A.810865⨯ B.91065.8⨯ C.101065.8⨯ D.1110865.0⨯答案:C .考点: 科学记数法的表示。

点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.如图是常用的一种圆顶螺杆,它的俯视图正确的是( ).答案:B .考点:根据实物原型画出三视图。

点评:本题考查了俯视图的知识,注意俯视图是从上往下看得到的视图.5.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( ).A.众数B.方差C.平均数D.中位数答案:D .考点:统计量数的含义.点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑.与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度. 6.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限 答案:A .考点:反比例函数的性质与一次函数的位置.点评:由反比例函数y 随x 增大而增大,可知k <0,而一次函数在k <0,b <0时,经过二三四象限,从而可得答案.7.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).答案:C .考点:变量间的关系,函数及其图象.点评:容器上粗下细,杯子里水面的高度上升应是先快后慢。

2020海南省中考数学试卷(WORD精校版带标准答案及解析)

2020海南省中考数学试卷(WORD精校版带标准答案及解析)

2020年海南省中考数学试卷一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)实数3的相反数是()A.3 B.-3 C.±3 D.1 32.(3分)从海南省可再生能源协会2020年会上获悉,截至4月底,今年我省风电、光伏及生物质能的新能源发电量约772 000 000千瓦时.数据772 000 000可用科学记数法表示为()A.772×106B.77.2×107C.7.72×108D.7.72×1093.(3分)如图是由4个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.4.(3分)不等式x-2<1的解集为()A.x<3 B.x<-1 C.x>3 D.x>25.(3分)在学校开展的环保主题实践活动中,某小组的5位同学捡拾废弃塑料袋的个数分别为:5,3,6,8,6.这组数据的众数、中位数分别为()A.8,8 B.6,8 C.8,6 D.6,66.(3分)如图,已知AB∥CD,直线AC和BD相交于点E,若∠ABE=70°,∠ACD=40°,则∠AEB等于()A.50°B.60°C.70°D.80°7.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A 逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.3cm D.23cm8.(3分)分式方程3x-2=1的解是()A.x=-1 B.x=1 C.x=5 D.x=29.(3分)下列各点中,在反比例函数y=8x图象上的是()A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)10.(3分)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°11.(3分)如图,在□ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC 的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为()A.16 B.17 C.24 D.2512.(3分)如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=12AD,则图中阴影部分的面积为()A.25 B.30 C.35 D.40二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分)13.(4分)因式分解:x2-2x=.14.(4分)正六边形的一个外角等于度.15.(4分)如图,在△ABC中,BC=9,AC=4,分别以点A、B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC边于点D,连接AD,则△ACD的周长为.16.(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).三、解答题(本大题满分68分)17.(12分)计算:(1)|-8|×2-1-16+(-1)2020;(2)(a+2)(a-2)-a(a+1).18.(10分)某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?19.(8分)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是(填写“全面调查”或“抽样调查”),n=;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是;(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“4≤t<5”范围的初中生有名.20.(10分)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图,隧道AB在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P处测得点A的俯角为30°,继续飞行1500米到达点Q处,测得点B的俯角为45°.(1)填空:∠A=度,∠B=度;(2)求隧道AB的长度(结果精确到1米).(参考数据:2≈1.414,3≈1.732)21.(13分)四边形ABCD是边长为2的正方形,E是AB的中点,连结DE,点F是射线BC 上一动点(不与点B重合),连结AF,交DE于点G.(1)如图1,当点F是BC边的中点时,求证:△ABF≌△DAE;(2)如图2,当点F与点C重合时,求AG的长;(3)在点F运动的过程中,当线段BF为何值时,AG=AE?请说明理由.22.(15分)抛物线y=x2+bx+c经过点A(-3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.2020年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分36分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑.1.(3分)实数3的相反数是()A.3 B.-3 C.±3 D.【解答】解:实数3的相反数是:-3.故选:B.2.(3分)从海南省可再生能源协会2020年会上获悉,截至4月底,今年我省风电、光伏及生物质能的新能源发电量约772000000千瓦时.数据772000000可用科学记数法表示为()A.772×106B.77.2×107C.7.72×108D.7.72×109【解答】解:772000000=7.72×108.故选:C.3.(3分)如图是由4个相同的小正方体组成的几何体,则它的俯视图是()A.B.C.D.【解答】解:从上面看该几何体,选项B的图形符合题意,故选:B.4.(3分)不等式x-2<1的解集为()A.x<3 B.x<-1 C.x>3 D.x>2【解答】解:∵x-2<1∴解得:x<3.故选:A.5.(3分)在学校开展的环保主题实践活动中,某小组的5位同学捡拾废弃塑料袋的个数分别为:5,3,6,8,6.这组数据的众数、中位数分别为()A.8,8 B.6,8 C.8,6 D.6,6【解答】解:这组数据中出现次数最多的是数据6,所以这组数据的众数为6,将数据重新排列为3,5,6,6,8,则这组数据的中位数为6,故选:D.6.(3分)如图,已知AB∥CD,直线AC和BD相交于点E,若∠ABE=70°,∠ACD=40°,则∠AEB等于()A.50°B.60°C.70°D.80°【解答】解:∵AB∥CD,∴∠BAE=∠C=40°.∵∠AEB+∠EAB+∠EBA=180°,∴∠AEB=70°.故选:C.7.(3分)如图,在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,将Rt△ABC绕点A 逆时针旋转得到Rt△AB'C',使点C'落在AB边上,连接BB',则BB'的长度是()A.1cm B.2cm C.cm D.2cm【解答】解:∵在Rt△ABC中,∠C=90°,∠ABC=30°,AC=1cm,∴AC=AB,则AB=2AC=2cm.又由旋转的性质知,AC′=AC=AB,B′C′⊥AB,∴B′C′是△ABB′的中垂线,∴AB′=BB′.根据旋转的性质知AB=AB′=BB′=2cm.故选:B.8.(3分)分式方程=1的解是()A.x=-1 B.x=1 C.x=5 D.x=2【解答】解:去分母,得x-2=3,移项合并同类项,得x=5.检验:把x=5代入x-2≠0,所以原分式方程的解为:x=5.故选:C.9.(3分)下列各点中,在反比例函数y=图象上的是()A.(-1,8)B.(-2,4)C.(1,7)D.(2,4)【解答】解:A、∵-1×8=-8≠8,∴该点不在函数图象上,故本选项错误;B、∵-2×4=-8≠8,∴该点不在函数图象上,故本选项错误;C、∵1×7=7≠8,∴该点不在函数图象上,故本选项错误;D、2×4=8,∴该点在函数图象上,故本选项正确.故选:D.10.(3分)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=∠BCD=36°,∴∠ABD=∠ADB-∠DAB=90°-36°=54°.故选:A.11.(3分)如图,在▱ABCD中,AB=10,AD=15,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,若BG=8,则△CEF的周长为()A.16 B.17 C.24 D.25【解答】解:∵在▱ABCD中,CD=AB=10,BC=AD=15,∠BAD的平分线交BC于点E,∴AB∥DC,∠BAF=∠DAF,∴∠BAF=∠F,∴∠DAF=∠F,∴DF=AD=15,同理BE=AB=10,∴CF=DF-CD=15-10=5;∴在△ABG中,BG⊥AE,AB=10,BG=8,可得:AG=6,∴AE=2AG=12,∴△ABE的周长等于10+10+12=32,∵四边形ABCD是平行四边形,∴△CEF∽△BEA,相似比为5:10=1:2,∴△CEF的周长为16.故选:A.12.(3分)如图,在矩形ABCD中,AB=6,BC=10,点E、F在AD边上,BF和CE交于点G,若EF=AD,则图中阴影部分的面积为()A.25 B.30 C.35 D.40【解答】解:过点G作GN⊥AD于N,延长NG交BC于M,∵四边形ABCD是矩形,∴AD =BC ,AD ∥BC , ∵EF =AD , ∴EF =BC ,∵AD ∥BC ,NG ⊥AD , ∴△EFG ∽△CBG ,GM ⊥BC , ∴GN :GM =EF :BC =1:2, 又∵MN =BC =6, ∴GN =2,GM =4, ∴S △BCG =×10×4=20,∴S △EFG =×5×2=5,S 矩形ABCD =6×10=60, ∴S 阴影=60-20-5=35. 故选:C .二、填空题(本大题满分16分,每小题4分,其中第16小题每空2分) 13.(4分)因式分解:x 2-2x = x (x -2) . 【解答】解:原式=x (x -2), 故答案为:x (x -2)14.(4分)正六边形的一个外角等于 60 度. 【解答】解:∵正六边形的外角和是360°, ∴正六边形的一个外角的度数为:360°÷6=60°, 故答案为:60.15.(4分)如图,在△ABC 中,BC =9,AC =4,分别以点A 、B 为圆心,大于AB 的长为半径画弧,两弧相交于点M 、N ,作直线MN ,交BC 边于点D ,连接AD ,则△ACD 的周长为 13 .【解答】解:根据作图过程可知:MN 是AB 的垂直平分线,∴AD =BD ,∴△ACD 的周长=AD +DC +AC =BD +DC +AC =BC +AC =9+4=13. 故答案为:13.16.(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有41个菱形,第n个图中有2n2-2n+1个菱形(用含n的代数式表示).【解答】解:∵第1个图中菱形的个数1=12+02,第2个图中菱形的个数5=22+12,第3个图中菱形的个数13=32+22,第4个图中菱形的个数25=42+32,∴第5个图中菱形的个数为52+42=41,第n个图中菱形的个数为n2+(n-1)2=n2+n2-2n+1=2n2-2n+1,故答案为:41,2n2-2n+1.三、解答题(本大题满分68分)17.(12分)计算:(1)|-8|×2-1-+(-1)2020;(2)(a+2)(a-2)-a(a+1).【解答】解:(1)|-8|×2-1-+(-1)2020,=8×-4+1,=4-4+1,=1;(2)(a+2)(a-2)-a(a+1),=a2-4-a2-a,=-4-a.18.(10分)某村经济合作社决定把22吨竹笋加工后再上市销售,刚开始每天加工3吨,后来在乡村振兴工作队的指导下改进加工方法,每天加工5吨,前后共用6天完成全部加工任务,问该合作社改进加工方法前后各用了多少天?【解答】解:设改进加工方法前用了x天,改进加工方法后用了y天,依题意,得:,解得:.答:该合作社改进加工方法前用了4天,改进加工方法后用了2天.19.(8分)新冠疫情防控期间,全国中小学开展“停课不停学”活动.某市为了解初中生每日线上学习时长t(单位:小时)的情况,在全市范围内随机抽取了n名初中生进行调查,并将所收集的数据分组整理,绘制了如图所示的不完整的频数分布直方图和扇形统计图.根据图中信息,解答下列问题:(1)在这次调查活动中,采取的调查方式是抽样调查(填写“全面调查”或“抽样调查”),n=500;(2)从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是0.3;(3)若该市有15000名初中生,请你估计该市每日线上学习时长在“4≤t<5”范围的初中生有1200名.【解答】解:(1)在这次调查活动中,采取的调查方式是抽样调查,n=100÷20%=500,故答案为:抽样调查,500;(2)∵每日线上学习时长在“3≤t<4”范围的人数为500-(50+100+160+40)=150(人),∴从该样本中随机抽取一名初中生每日线上学习时长,其恰好在“3≤t<4”范围的概率是=0.3;故答案为:0.3;(3)估计该市每日线上学习时长在“4≤t<5”范围的初中生有15000×=1200(人),故答案为:1200.20.(10分)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图,隧道AB在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P处测得点A的俯角为30°,继续飞行1500米到达点Q处,测得点B的俯角为45°.(1)填空:∠A=30度,∠B=45度;(2)求隧道AB的长度(结果精确到1米).(参考数据:≈1.414,≈1.732)【解答】解:(1)∵点P处测得点A的俯角为30°,点Q处测得点B的俯角为45°.∴∠A=30度,∠B=45度;故答案为:30,45;(2)如图,过点P作PM⊥AB于点M,过点Q作QN⊥AB于点N,则PM=QN=450,MN=PQ=1500,在Rt△APM中,∵tan A=,∴AM===450,在Rt△QNB中,∵tan B=,∴NB===450,∴AB=AM+MN+NB=450+1500+450≈2729(米).答:隧道AB的长度约为2729米.21.(13分)四边形ABCD是边长为2的正方形,E是AB的中点,连结DE,点F是射线BC 上一动点(不与点B重合),连结AF,交DE于点G.(1)如图1,当点F是BC边的中点时,求证:△ABF≌△DAE;(2)如图2,当点F与点C重合时,求AG的长;(3)在点F运动的过程中,当线段BF为何值时,AG=AE?请说明理由.【解答】(1)证明:∵四边形ABCD是正方形,∴∠B=∠DAE=90°,AB=AD=BC,∵点E,F分别是AB、BC的中点,∴AE=AB,BF=BC,∴AE=BF,∴△ABF≌△DAE(SAS);(2)在正方形ABCD中,AB∥CD,∠ADC=90°,AD=CD=2,∴AC===2,∵AB∥CD,∴△AGE∽△CGD,∴=,即=,∴AG=;(3)当BF=时,AG=AE,理由如下:如图所示,设AF交CD于点M,若使AG=AE=1,则有∠1=∠2,∵AB∥CD,∴∠1=∠4,又∵∠2=∠3,∴∠3=∠4,∴DM=MG,在Rt△ADM中,AM2-DM2=AD2,即(DM+1)2-DM2=22,解得DM=,∴CM=CD-DM=2-=,∵AB∥CD,∴△ABF∽△MCF,∴=,即=,∴BF=,故当BF=时,AG=AE.22.(15分)抛物线y=x2+bx+c经过点A(-3,0)和点B(2,0),与y轴交于点C.(1)求该抛物线的函数表达式;(2)点P是该抛物线上的动点,且位于y轴的左侧.①如图1,过点P作PD⊥x轴于点D,作PE⊥y轴于点E,当PD=2PE时,求PE的长;②如图2,该抛物线上是否存在点P,使得∠ACP=∠OCB?若存在,请求出所有点P的坐标:若不存在,请说明理由.【解答】解:(1)∵抛物线y=x2+bx+c经过点A(-3,0)和点B(2,0),∴,解得:,∴抛物线解析式为:y=x2+x-6;(2)①设点P(a,a2+a-6),∵点P位于y轴的左侧,∴a<0,PE=-a,∵PD=2PE,∴|a2+a-6|=-2a,∴a2+a-6=-2a或a2+a-6=2a,解得:a1=,a2=(舍去)或a3=-2,a4=3(舍去)∴PE=2或;②存在点P,使得∠ACP=∠OCB,理由如下,∵抛物线y=x2+x-6与x轴交于点C,∴点C(0,-6),∴OC=6,∵点B(2,0),点A(-3,0),∴OB=2,OA=3,∴BC===2,AC===3,如图,过点A作AH⊥CP于H,∵∠AHC=∠BOC=90°,∠ACP=∠BCO,∴△ACH∽△BCO,∴,∴=,∴AH=,HC=,设点H(m,n),∴()2=(m+3)2+n2,()2=m2+(n+6)2,∴或,∴点H(-,-)或(-,),当H(-,-)时,∵点C(0,-6),∴直线HC的解析式为:y=-x-6,∴x2+x-6=-x-6,解得:x1=-2,x2=0(舍去),∴点P的坐标是(-2,-4);当H(-,)时,∵点C(0,-6),∴直线HC的解析式为:y=-7x-6,∴x2+x-6=-7x-6,解得:x1=-8,x2=0(舍去),∴点P的坐标是(-8,50);综上所述:点P坐标为(-2,-4)或(-8,50).。

天津市2019年中考数学试题及答案【Word版】

天津市2019年中考数学试题及答案【Word版】

2019 年天津市初中毕业生学业考试试卷数学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。

第Ⅰ卷为第1 页至第 3 页,第Ⅱ卷为第4页至第 8 页。

试卷满分120 分。

考试时间 100 分钟。

答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。

答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。

考试结束后,将本试卷和“答题卡”一并交回。

祝各你考试顺利 !第Ⅰ卷注意事项:1.每题选出答案后,用 2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。

2.本卷共 12 题,共 36 分。

一、选择题(本大题共12 小题,每小题3 分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)( 1)计算( -6 )×( -1 )的结果等于(A) 6 (B)-6 ( C)1 (D) -1 (2) cos60 o的值等于(A)1( B) 3 ( C) 3(D)32 3 2 ( 3)下列标志中,可以看作是轴对称图形的是( A)( B)( C)( D )( 4)为让市民出行更加方便,天津市政府大力发展公共交通.2019 年天津市公共交通客运量约为1608 000000 人次 . 将 1608 000 000 用科学记数法表示应为( A) 160.8 ×10789 10 ( B)16.08 × 10 ( C) 1.608 × 10( D) 0.1608 ×10( 5)如图,从左面观察这个立体图形,能得到的平面图形是(A)(B)第( 5)题(C)(D)( 6 )正六边形的边心距为 3 ,则该正六边形的边长是(A) 3 (B)2 (C)3 ( D) 2 3( 7)如图, AB 是⊙ O 的弦, AC 是⊙ O 的切线, A 为切点, BC 经过圆心 . 若∠ B = 25o,则∠ C 的大小等于( A ) 20o ( B )25o( C ) 40o ( D )50o第( 7)题( 8)如图,□ ABCD 中,点 E 是边 AD 的中点, EC 交对角线 BD 于点 F ,则 EF:FC 等 于( A )3:2 ( B )3:1( C )1:1 ( D )1:2 ( 9)已知反比例函数 y 10第( 8)题,当 1<x<2 时, y 的取值范围是x( A ) 0<y<5 ( B )1<y<2( C ) 5<y<10( D )y>10( 10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场 . 根据场地和时间等条件,赛程计划安排7 天,每天安排 4 场比赛,设比赛组织者应邀请 x 个队参赛,则 x 满足的关系式为( A ) 1x x 1 28( B ) 1x x 1 2822( C ) x x 1 28 ( D ) x x 1 28( 11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示: 候选人 甲 乙 丙 丁 测试成 面 8 99 8绩试 6 2 0 3 (百分 笔 9 8 8 9制)试3 32如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们 6 和 4 的权. 公司将录取( A )甲 ( B )乙 ( C )丙 ( D )丁( 12)已知二次函数 y=ax 2+bx+c ( a ≠ 0)的图象如下图所示,且关于 x 的一元二次方程 ax 2+bx+c-m=9 没有实数根,有下列结论:① b 2-4ac>0 ;② abc<0;③m>2.其中,正确结论的个数是(A ) 0 ( B )1(C )2( D )3X第( 12)题2019 年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。

内蒙古包头市乌兰察布市2022年中考数学试题(word版含解析)

内蒙古包头市乌兰察布市2022年中考数学试题(word版含解析)

内蒙古包头市乌兰察布市2022年中考数学试题(word版含解析)2022年内蒙古包头乌兰察布市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2022包头)在,0,﹣1,A.B.0C.﹣1D.这四个实数中,最大的是()2.(3分)(2022包头)2022年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()A.12.8某10美元B.1.28某10美元1213C.1.28某10美元D.0.128某10美元3.(3分)(2022包头)下列计算结果正确的是()A.2a+a=3aB.(﹣a)a=﹣aC.(﹣)=4D.(﹣2)=﹣14.(3分)(2022包头)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.B.3C.D.2336236﹣210115.(3分)(2022包头)一组数据5,2,某,6,4的平均数是4,这组数据的方差是()A.2B.C.10D.6.(3分)(2022包头)不等式组的最小整数解是()A.﹣1B.0C.1D.27.(3分)(2022包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.68.(3分)(2022包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件9.(3分)(2022包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.10.(3分)(2022包头)观察下列各数:1,,,的第6个数为()A.B.C.D.,…,按你发现的规律计算这列数πB.πC.πD.π11.(3分)(2022包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m+1)>b(m+1);④若|﹣某|=﹣某,则某≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④12.(3分)(2022包头)如图,已知二次函数y=a某+b某+c(a≠0)的图象与某轴交于点A(﹣1,0),对称轴为直线某=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当某>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b>8a;其中正确的结论是()2222A.①③④B.①②③C.①②④D.①②③④二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2022包头)计算:(14.(3分)(2022包头)化简:(a﹣15.(3分)(2022包头)已知关于某的一元二次方程某+2﹣)某=.)÷=.某﹣1=0有两个不相等的实数根,则k的取值范围是.16.(3分)(2022包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=.17.(3分)(2022包头)已知点A(﹣2,y1),B(﹣1,y2)和C (3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为.(用“<”连接)18.(3分)(2022包头)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径是4,inB=,则线段AC的长为.19.(3分)(2022包头)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.=,则3S△BDG=13S△DGF.其中正确的结论是.(填写所有正确结论的序号)三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2022包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.22.(8分)(2022包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.24.(10分)(2022包头)如图,AB是⊙O的直径,点D是BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE=DFDB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.2上一点,且∠BDE=∠CBE,25.(12分)(2022包头)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD 方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.①t为何值时,l经过点C?②求当l经过点D时t的值,并求出此时刻线段PQ的长.26.(12分)(2022包头)已知抛物线y=某+b某+c经过A(﹣1,0),B(3,0)两点,与y轴相交于点C,该抛物线的顶点为点D.(1)求该抛物线的解析式及点D的坐标;(2)连接AC,CD,BD,BC,设△A OC,△BOC,△BCD的面积分别为S1,S2和S3,用等式表示S1,S2,S3之间的数量关系,并说明理由;(3)点M是线段AB上一动点(不包括点A和点B),过点M作MN∥BC交AC于点N,连接MC,是否存在点M使∠AMN=∠ACM?若存在,求出点M的坐标和此时刻直线MN的解析式;若不存在,请说明理由.22022年内蒙古乌兰察布市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,每小题只有一个正确选项)1.(3分)(2022包头)在,0,﹣1,A.B.0C.﹣1D.这四个实数中,最大的是()考点:实数大小比较.分析:利用任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.解答:解:∵正实数都大于0,负实数都小于0,正实数大于一切负实数,0<<1,1<∴﹣1<0<<<2,,故选D.点评:本题主要考查了比较实数的大小,掌握任意两个实数都可以比较大小,正实数都大于0,负实数都小于0,正实数大于一切负实数,是解答此题的关键.2.(3分)(2022包头)2022年中国吸引外国投资达1280亿美元,成为全球外国投资第一大目的地国,将1280亿美元用科学记数法表示为()1011A.12.8某10美元B.1.28某10美元1213C.1.28某10美元D.0.128某10美元考点:科学记数法—表示较大的数.n分析:科学记数法的表示形式为a某10的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.11解答:解:1280亿=128000000000=1.28某10,故选:B.n点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a 某10的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2022包头)下列计算结果正确的是()A.2a+a=3aB.(﹣a)a=﹣aC.(﹣)=4D.(﹣2)=﹣1考点:同底数幂的乘法;合并同类项;幂的乘方与积的乘方;零指数幂;负整数指数幂.336236﹣20分析:根据同底数幂的乘法的性质,负整数指数幂,零指数幂,合并同类项的法则,对各选项分析判断后利用排除法求解.解答:解:A、2a+a=3a,故错误;235B、(﹣a)a=a,故错误;C、正确;D、(﹣2)=1,故错误;故选:C.点评:本题考查了合并同类项,同底数幂的乘法,负整数指数幂,零指数幂,理清指数的变化是解题的关键.4.(3分)(2022包头)在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是()A.B.3C.333D.2考点:锐角三角函数的定义;勾股定理.分析:设BC=某,则AB=3某,由勾股定理求出AC,根据三角函数的概念求出tanB.解答:解:设BC=某,则AB=3某,由勾股定理得,AC=2某,tanB===2,故选:D.点评:本题考查的是锐角三角函数的概念和勾股定理的应用,应用勾股定理求出直角三角形的边长、正确理解锐角三角函数的概念是解题的关键.5.(3分)(2022包头)一组数据5,2,某,6,4的平均数是4,这组数据的方差是()A.2B.C.10D.考点:方差;算术平均数.分析:根据平均数的公式求出某的值,根据方差公式求出方差.解答:解:由题意得,(5+2+某+6+4)=4,解得,某=3,=[(5﹣4)+(2﹣4)+(3﹣4)+(6﹣4)+(4﹣4)]=2,故选:A.点评:本题考查的是平均数和方差的计算,掌握平均数和方差的计算公式是解题的关键.方差S=[(某1﹣)+(某2﹣)+…+(某n﹣)].6.(3分)(2022包头)不等式组的最小整数解是()2222222222A.﹣1B.0C.1D.2考点:一元一次不等式组的整数解.分析:先解不等式组,求出解集,再找出最小的整数解即可.解答:解:,解①得某>﹣1,解②得某≤3,不等式组的解集为﹣1<某≤3,不等式组的最小整数解为0,故选B.点评:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.(3分)(2022包头)已知圆内接正三角形的边心距为1,则这个三角形的面积为()A.2B.3C.4D.6考点:正多边形和圆.分析:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,由等边三角形的性质得出BD=CD,∠OBD=∠ABC=30°,得出OA=OB=2OD,求出AD、BC,△ABC的面积=BCAD,即可得出结果.解答:解:如图所示:作AD⊥BC与D,连接OB,则AD经过圆心O,∠ODB=90°,OD=1,∵△ABC是等边三角形,∴BD=CD,∠OBD=∠ABC=30°,∴OA=OB=2OD=2,∴AD=3,BD=∴BC=2,某3=3;,∴△ABC的面积=BCAD=某2故选:B.点评:本题考查了圆内接正三角形的性质、解直角三角形、三角形面积的计算;熟练掌握圆内接正三角形的性质,并能进行推理计算是解决问题的关键.8.(3分)(2022包头)下列说法中正确的是()A.掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为B.“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件C.“同位角相等”这一事件是不可能事件D.“钝角三角形三条高所在直线的交点在三角形外部”这一事件是随机事件考点:随机事件;列表法与树状图法.分析:根据概率的意义,可判断A;根据必然事件,可判断B、D;根据随机事件,可判断C.解答:解:A、掷两枚质地均匀的硬币,“两枚硬币都是正面朝上”这一事件发生的概率为,故A错误;B、“对角线相等且相互垂直平分的四边形是正方形”这一事件是必然事件,故B正确;C、同位角相等是随机事件,故C错误;D、“钝角三角形三条高所在直线的交点在三角形外部”这一事件是必然事件,故D错误;故选:B.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.9.(3分)(2022包头)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为,则图中阴影部分的面积为()A.πB.πC.πD.π考点:扇形面积的计算;勾股定理的逆定理;旋转的性质.分析:根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.解答:解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==,故选:A.点评:本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.10.(3分)(2022包头)观察下列各数:1,,,的第6个数为()A.B.C.D.,…,按你发现的规律计算这列数考点:规律型:数字的变化类.分析:观察数据,发现第n个数为,再将n=6代入计算即可求解.解答:解:观察该组数发现:1,,,,…,第n个数为,当n=6时,==.故选C.点评:本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为11.(3分)(2022包头)已知下列命题:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB;②四条线段a,b,c,d中,若=,则ad=bc;③若a>b,则a(m+1)>b(m+1);④若|﹣某|=﹣某,则某≥0.其中原命题与逆命题均为真命题的是()A.①②③B.①②④C.①③④D.②③④考点:命题与定理.分析:先对原命题进行判断,再根据互逆命题的定义写出逆命题,然后判断逆命题的真假即可..22解答:解:①在Rt△ABC中,∠C=90°,若∠A>∠B,则in∠A>inB,原命题为真命题,逆命题是:在Rt△ABC中,∠C=90°,若in∠A>inB,则∠A>∠B,逆命题为真命题;②四条线段a,b,c,d中,若=,则ad=bc,原命题为真命题,逆命题是:四条线段a,b,c,d中,若ad=bc,则=,逆命题为真命题;③若a>b,则a(m+1)>b(m+1),原命题为真命题,22逆命题是:若a(m+1)>b(m+1),则a>b,逆命题为真命题;④若|﹣某|=﹣某,则某≥0,原命题为假命题,逆命题是:若某≥0,则|﹣某|=﹣某,逆命题为假命题.故选A.点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.12.(3分)(2022包头)如图,已知二次函数y=a某+b某+c(a≠0)的图象与某轴交于点A(﹣1,0),对称轴为直线某=1,与y轴的交点B在(0,2)和(0,3)之间(包括这两点),下列结论:①当某>3时,y<0;②3a+b<0;③﹣1≤a≤﹣;④4ac﹣b>8a;其中正确的结论是()2222A.①③④B.①②③C.①②④D.①②③④考点:二次函数图象与系数的关系.分析:①先由抛物线的对称性求得抛物线与某轴令一个交点的坐标为(3,0),从而可知当某>3时,y<0;②由抛物线开口向下可知a<0,然后根据某=﹣=1,可知:2a+b=0,从而可知3a+b=0+a=a<0;2③设抛物线的解析式为y=a(某+1)(某﹣3),则y=a某﹣2a某﹣3a,令某=0得:y=﹣3a.由抛2物线与y轴的交点B在(0,2)和(0,3)之间,可知2≤﹣3a≤3.④由4ac﹣b>8a得c﹣2<0与题意不符.解答:解:①由抛物线的对称性可求得抛物线与某轴令一个交点的坐标为(3,0),当某>3时,y<0,故①正确;②抛物线开口向下,故a<0,∵某=﹣=1,∴2a+b=0.∴3a+b=0+a=a<0,故②正确;③设抛物线的解析式为y=a(某+1)(某﹣3),则y=a某﹣2a某﹣3a,令某=0得:y=﹣3a.∵抛物线与y轴的交点B在(0,2)和(0,3)之间,∴2≤﹣3a≤3.解得:﹣1≤a≤﹣,故③正确;④.∵抛物线y轴的交点B在(0,2)和(0,3)之间,∴2≤c≤3,由4ac﹣b>8a得:4ac﹣8a>b,∵a<0,∴c﹣2<∴c﹣2<0∴c<2,与2≤c≤3矛盾,故④错误.故选:B.点评:本题主要考查的是二次函数的图象和性质,掌握抛物线的对称轴、开口方向与系数a、b、c之间的关系是解题的关键.二、填空题(本大题共8小题,每小题3分,共24分)13.(3分)(2022包头)计算:(﹣)某=8.222考点:二次根式的混合运算.专题:计算题.分析:原式利用乘法分配律及二次根式乘法法则计算即可得到结果.解答:解:原式=﹣=9﹣1=8,故答案为:8点评:此题考查了二次根式的混合运算,熟练掌握运算法则是解本题的关键.14.(3分)(2022包头)化简:(a﹣考点:分式的混合运算.专题:计算题.)÷=.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.解答:解:原式===,故答案为:点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.15.(3分)(2022包头)已知关于某的一元二次方程某+数根,则k的取值范围是k≥1.考点:根的判别式.2某﹣1=0有两个不相等的实分析:根据二次根式有意义的条件和△的意义得到到k的取值范围.解答:解:∵关于某的一元二次方程某+∴解得k≥1,∴k的取值范围是k≥1.,2,然后解不等式组即可得某﹣1=0有两个不相等的实数根,故答案为:k≥1.22点评:此题考查了一元二次方程a某+b某+c=0(a≠0,a,b,c为常数)的根的判别式△=b﹣4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.也考查了二次根式有意义的条件.16.(3分)(2022包头)一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,则n=1.考点:概率公式.分析:由一个不透明的布袋里装有5个球,其中4个红球和1个白球,它们除颜色外其余都相同,现将n个白球放入布袋,搅匀后,使摸出1个球是红球的概率为,即可得方程:=,解此分式方程即可求得答案.解答:解:根据题意得:=,解得:n=1,经检验:n=1是原分式方程的解.故答案为:1.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.17.(3分)(2022包头)已知点A(﹣2,y1),B(﹣1,y2)和C (3,y3)都在反比例函数y=的图象上,则y1,y2,y3的大小关系为y2<y1<y3.(用“<”连接)考点:反比例函数图象上点的坐标特征.分析:先根据反比例函数中k>0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.解答:解:∵反比例函数y=中k=3>0,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y随某的增大而减小.∵﹣2<﹣1<0,∴点A(﹣2,y1),B(﹣1,y2)位于第三象限,且0>y1>y2.∵3>0,∴点C(3,y3)位于第一象限,∴y3>0,∴y2<y1<y3.故答案为:y2<y1<y3.点评:本题考查的是反比例函数图象上点的坐标特征,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.18.(3分)(2022包头)如图,⊙O是△ABC的外接圆,AD是⊙O 的直径,若⊙O的半径是4,inB=,则线段AC的长为2.考点:圆周角定理;解直角三角形.专题:计算题.分析:连结CD如图,根据圆周角定理得到∠ACD=90°,∠D=∠B,则inD=inB=,然后在Rt△ACD中利用∠D的正弦可计算出AC的长.解答:解:连结CD,如图,∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠B,∴inD=inB=,在Rt△ACD中,∵inD=∴AC=AD=某8=2.故答案为2.=,点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.19.(3分)(2022包头)如图,在边长为+1的菱形ABCD中,∠A=60°,点E,F分别在AB,AD上,沿EF折叠菱形,使点A落在BC边上的点G处,且EG⊥BD于点M,则EG的长为.考点:翻折变换(折叠问题);菱形的性质.分析:首先连接AC,再根据余弦定理,求出AC的长度是多少;然后根据菱形的性质,判断出AC⊥BD,再根据EG⊥BD,可得EG∥AC,所以可.,据此求出EG的长为多少即解答:解:如图1,连接AC,∵菱形ABCD的边长是∴AC=∵沿EF折叠菱形,使点A落在BC边上的点G处,∴EG=AE,∵四边形ABCD是菱形,∴AC⊥BD,又∵EG⊥BD,∴EG∥AC,∴,,∠A=60°,,=3,又∵EG=AE,∴解得EG=∴EG的长为,.,故答案为:.点评:(1)此题主要考查了翻折变换问题,要熟练掌握,解答此题的关键是要明确:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.(2)此题还考查了菱形的性质和应用,要熟练掌握,解答此题的关键是要明确:①菱形具有平行四边形的一切性质;②菱形的四条边都相等;③菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;④菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.=,则3S△BDG=13S△DGF.其中正确的结论是①③④.(填写所有正确结论的序号)考点:四边形综合题.分析:先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD,故①正确;由于∠BGE=∠DGC,得到∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确;由△BGD是等腰直角三角形得到BD=过G作GM⊥CF于M,求得S△DGF=DFGM=解答:解:∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,=,求得S△BDG=某=,故④正确.=,∴AB=BE,∠AEB=45°,∵AB=CD,∴BE=CD,故①正确;,∴∠ABG+∠ADG=∠ABC+∠CBG+∠ADC﹣∠CDG=∠ABC+∠ADC=180°,故③正确;∵△DCG≌△BEG,∵∠BGE=∠DGC,BG=DG,∵∠EGC=90°,∴∠BGD=90°,∵BD=∴BG=DG=∴S△BDG=某∴3S△BDG=,,==,过G作GM⊥CF于M,∵CE=CF=BC﹣BE=BC﹣AB=1,∴GM=CF=,∴S△DGF=DFGM=∴13S△DGF=,=,∴3S△BDG=13S△DGF,故④正确.故答案为:①③④.点评:本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.三、解答题(本大题共6小题,共60分,请将必要的文字说明、计算过程或推理过程写出)21.(8分)(2022包头)某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为40人,扇形统计图中“良好”所对应的圆心角的度数为162°;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)合格人数除以所占的百分比即可得出所调查的男生总人数,用良好的人数除以总人数再乘以360°即可得出“良好”所对应的圆心角的度数;(2)用40﹣2﹣8﹣18即可;(3)用480乘以良好所占的百分比即可.解答:解:(1)8÷20%=40(人),18÷40某360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,如图,(3)“良好”的男生人数:某480=216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(8分)(2022包头)为了弘扬“社会主义核心价值观”,市政府在广场树立公益广告牌,如图所示,为固定广告牌,在两侧加固钢缆,已知钢缆底端D距广告牌立柱距离CD为3米,从D点测得广告牌顶端A点和底端B点的仰角分别是60°和45°.(1)求公益广告牌的高度AB;(2)求加固钢缆AD和BD的长.(注意:本题中的计算过程和结果均保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:(1)根据已知和tan∠ADC=﹣BC求出AB;(2)根据co∠ADC=,求出AC,根据∠BDC=45°,求出BC,根据AB=AC,求出AD,根据co∠BDC=,求出BD.解答:解:(1)在Rt△ADC中,∵∠ADC=60°,CD=3,∵tan∠ADC=,,∴AC=3tan60°=3在Rt△BDC中,∵∠BDC=45°,∴BC=CD=3,∴AB=AC﹣BC=(3﹣3)米.,(2)在Rt△ADC中,∵co∠ADC=∴AD===6米,在Rt△BDC中,∵co∠BDC=∴BD===3米.,(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的费用最低?并求出最低费用.考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设购买甲种鱼苗某尾,乙种鱼苗y尾,根据题意列一元一次方程组求解即可;(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,根据题意列不等式求出解集即可;(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,列出w与某之间的函数关系式,运用一次函数的性质解决问题.解答:解:(1)设购买甲种鱼苗某尾,乙种鱼苗y尾,根据题意可得:,解得:.答:购买甲种鱼苗500尾,乙种鱼苗200尾.(2)设购买甲种鱼苗z尾,乙种鱼苗(700﹣z)尾,列不等式得:85%z+90%(700﹣z)≥700某88%,解得:z≤280.答:甲种鱼苗至多购买280尾.(3)设甲种鱼苗购买m尾,购买鱼苗的费用为w元,则w=3m+5(700﹣m)=﹣2m+3500,∵﹣2<0,∴w随m的增大而减小,∵0<m≤280,∴当m=280时,w有最小值,w的最小值=3500﹣2某280=2940(元),∴700﹣m=420.答:当选购甲种鱼苗280尾,乙种鱼苗420尾时,总费用最低,最低费用为2940元.点评:本题主要考查了二元一次方程组、一元一次不等式以及一次函数应用问题,审清题意,找到等量或不等关系是解决问题的关键.24.(10分)(2022包头)如图,AB是⊙O的直径,点D是BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE=DFDB;(3)在(2)的条件下,延长ED,BA交于点P,若PA=AO,DE=2,求PD的长和⊙O的半径.2上一点,且∠BDE=∠CBE,考点:切线的判定;相似三角形的判定与性质.分析:(1)根据圆周角定理即可得出∠EAB+∠EBA=90°,再由已知得出∠ABE+∠CBE=90°,则CB⊥AB,从而证得BC是⊙O的切线;(2)通过证得△DEF∽△DBE,得出相似三角形的对应边成比例即可证得结论.(3)连接DA、DO,先证得OD∥BE,得出求得PD=4,通过证得△PDA∽△POD,得出解得OA=2.==,然后根据已知条件得出===,=,,设OA=某,则PA=某,PO=2某,得出解答:(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∵∠EDB=∠EAB,∠BDE=∠CBE,∴∠EAB=∠CBE,∴∠ABE+∠CBE=90°,∴CB⊥AB,∵AB是⊙O的直径,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠ABD=∠DBE,=,∴∠DEA=∠DBE,∵∠EDB=∠BDE,∴△DEF∽△DBE,∴=,∴DE2=DFDB;(3)解:连接DA、DO,∵OD=OB,∴∠ODB=∠OBD,∵∠EBD=∠OBD,∴∠EBD=∠ODB,∴OD∥BE,∴=,∵PA=AO,∴PA=AO=OB,∴=∴=,∴=,∵DE=2,∴PD=4,∵∠PDA+∠ADE=180°,∠ABE+∠ADE=180°,∴∠PDA=∠ABE,∵OD∥BE,∴∠AOD=∠ABE,∴∠PDA=∠AOD,∵∠P=∠P,∴△PDA∽△POD,∴=,设OA=某,∴PA=某,PO=2某,∴=,2∴2某=16,某=2∴OA=2.,点评:本题考查了切线的判定,三角形相似的判定和性质;要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.25.(12分)(2022包头)如图,四边形ABCD中,AD∥BC,∠A=90°,AD=1厘米,AB=3厘米,BC=5厘米,动点P从点B出发以1厘米/秒的速度沿BC方向运动,动点Q从点C出发以2厘米/秒的速度沿CD 方向运动,P,Q两点同时出发,当点Q到达点D时停止运动,点P也随之停止,设运动时间为t秒(t>0).(1)求线段CD的长;(2)t为何值时,线段PQ将四边形ABCD的面积分为1:2两部分?(3)伴随P,Q两点的运动,线段PQ的垂直平分线为l.①t为何值时,l经过点C?②求当l经过点D时t的值,并求出此时刻线段PQ的长.考点:四边形综合题.分析:(1)作DE⊥BC于E,根据勾股定理即可求解;(2)线段PQ将四边形ABCD的面积分为1:2两部分,分两种情况进行求解;(3)①当PQ的垂直平分线经过点C进行分析解答;②当PQ的。

湖北省十堰市2024年中考数学试题(word版-含解析)

湖北省十堰市2024年中考数学试题(word版-含解析)

湖北省十堰市2024年中考数学试卷参考答案与试题解析一、选择题:(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填涂在答题卡中相应的格子内.1.(3分)(2024•十堰)3的倒数是()C.3D.﹣3A.B.﹣考点:倒数.分析:依据倒数的定义可知.解答:解:3的倒数是.故选A.点评:主要考查倒数的定义,要求娴熟驾驭.须要留意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.(3分)(2024•十堰)如图,直线m∥n,则∠α为()A.70°B.65°C.50°D.40°考点:平行线的性质.分析:先求出∠1,再依据平行线的性质得出∠α=∠1,代入求出即可.解答:解:∠1=180°﹣130°=50°,∵m∥n,∴∠α=∠1=50°,故选C.点评:本题考查了平行线的性质的应用,留意:两直线平行,同位角相等.3.(3分)(2024•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是()A.正方体B.长方体C.球D.圆锥考点:简洁几何体的三视图分析:主视图、左视图是分别从物体正面、左面看,所得到的图形.解答:解:A、正方体的左视图与主视图都是正方形,故此选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C、球的左视图与主视图都是圆,故此选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故此选项不合题意;故选:B.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(3分)(2024•十堰)下列计算正确的是()A.﹣=B.=±2 C.a6÷a2=a3D.(﹣a2)3=﹣a6考点:同底数幂的除法;实数的运算;幂的乘方与积的乘方分析:依据二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.解答:解:A、不是同类二次根式,不能合并,故选项错误;B、=2≠±2,故选项错误;C、a6÷a2=a4≠a3,故选项错误;D、(﹣a2)3=﹣a6正确.故选:D.点评:本题主要考查了二次根式的运算法则推断,开算术平方根,同底数幂的除法及幂的乘方运算.熟记法则是解题的关键.5.(3分)(2024•十堰)为了调查某小区居民的用水状况,随机抽查了若干户家庭的月用水月用水量(吨)3 4 5 8户数 2 3 4 1A.众数是4 B.平均数是4.6C.调查了10户家庭的月用水量D.中位数是4.5考点:众数;统计表;加权平均数;中位数.分析:依据众数、中位数和平均数的定义分别对每一项进行分析即可.解答:解:A、5出现了4次,出现的次数最多,则众数是5,故本选项错误;B、这组数据的平均数是:(3×2+4×3+5×4+8×1)÷10=4.6,故本选项正确;C、调查的户数是2+3+4+1=10,故本选项正确;D、把这组数据从小到大排列,最中间的两个数的平均数是(4+5)÷2=4.5,则中位数是4.5,故本选项正确;故选A .点评:此题考查了众数、中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数;众数是一组数据中出现次数最多的数.6.(3分)(2024•十堰)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是()A.7B.10 C.11 D.12考点:平行四边形的性质;线段垂直平分线的性质.分析:依据线段垂直平分线的性质可得AE=EC,再依据平行四边形的性质可得DC=AB=4,AD=BC=6,进而可以算出△CDE的周长.解答:解:∵AC的垂直平分线交AD于E,∴AE=EC,∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10,故选:B.点评:此题主要考查了平行四边形的性质和线段垂直平分线的性质,关键是驾驭平行四边形两组对边分别相等.7.(3分)(2024•十堰)依据如图中箭头的指向规律,从2024到2024再到2024,箭头的方向是以下图示中的()A.B.C.D.考点:规律型:数字的改变类.分析:视察不难发觉,每4个数为一个循环组依次循环,用2024除以4,依据商和余数的状况解答即可.解答:解:由图可知,每4个数为一个循环组依次循环,2024÷4=503…1,∴2024是第504个循环组的第2个数,∴从2024到2024再到2024,箭头的方向是.故选D.点评:本题是对数字改变规律的考查,细致视察图形,发觉每4个数为一个循环组依次循环是解题的关键.8.(3分)(2024•十堰)已知:a2﹣3a+1=0,则a+﹣2的值为()A.+1 B.1C.﹣1 D.﹣5考点:分式的混合运算.专题:计算题.分析:已知等式变形求出a+的值,代入原式计算即可得到结果.解答:解:∵a2﹣3a+1=0,且a≠0,∴a+=3,则原式=3﹣2=1,故选B.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.9.(3分)(2024•十堰)如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=3,EC=1,则DE的长为()A.2B.C.2D.考点:勾股定理;等腰三角形的判定与性质;直角三角形斜边上的中线.分析:依据直角三角形斜边上的中线的性质可得DG=AG,依据等腰三角形的性质可得∠GAD=∠GDA,依据三角形外角的性质可得∠CGD=2∠GAD,再依据平行线的性质和等量关系可得∠ACD=∠CGD,依据等腰三角形的性质可得CD=DG,再依据勾股定理即可求解.解答:解:∵AD∥BC,DE⊥BC,∴DE⊥AD,∠CAD=∠ACB∵点G为AF的中点,∴DG=AG,∴∠GAD=∠GDA,∴∠CGD=2∠CAD,∵∠ACD=2∠ACB,∴∠ACD=∠CGD,∴CD=DG=3,在Rt△CED中,DE==2.故选:C.点评:综合考查了勾股定理,等腰三角形的判定与性质和直角三角形斜边上的中线,解题的关键是证明CD=DG=3.10.(3分)(2024•十堰)已知抛物线y=ax2+bx+c(a≠0)经过点(1,1)和(﹣1,0).下列结论:①a﹣b+c=0;②b2>4ac;③当a<0时,抛物线与x轴必有一个交点在点(1,0)的右侧;④抛物线的对称轴为x=﹣.其中结论正确的个数有()A.4个B.3个C.2个D.1个考点:二次函数图象与系数的关系.分析:将点(﹣1,0)代入y=ax2+bx+c,即可推断①正确;将点(1,1)代入y=ax2+bx+c,得a+b+c=1,又由①得a﹣b+c=0,两式相加,得a+c=,两式相减,得b=.由b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当a=时,b2﹣4ac=0,即可推断②错误;③由b2﹣4ac=(2a﹣)2>0,得出抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,依据一元二次方程根与系数的关系可得﹣1•x==﹣1,即x=1﹣,再由a<0得出x>1,即可推断③正确;④依据抛物线的对称轴公式为x=﹣,将b=代入即可推断④正确.解答:解:①∵抛物线y=ax2+bx+c(a≠0)经过点(﹣1,0),∴a﹣b+c=0,故①正确;②∵抛物线y=ax2+bx+c(a≠0)经过点(1,1),∴a+b+c=1,又a﹣b+c=0,两式相加,得2(a+c)=1,a+c=,两式相减,得2b=1,b=.∵b2﹣4ac=﹣4a(﹣a)=﹣2a+4a2=(2a﹣)2,当2a﹣=0,即a=时,b2﹣4ac=0,故②错误;③当a<0时,∵b2﹣4ac=(2a﹣)2>0,∴抛物线y=ax2+bx+c与x轴有两个交点,设另一个交点的横坐标为x,则﹣1•x===﹣1,即x=1﹣,∵a<0,∴﹣>0,∴x=1﹣>1,即抛物线与x轴必有一个交点在点(1,0)的右侧,故③正确;④抛物线的对称轴为x=﹣=﹣=﹣,故④正确.故选B.点评:本题考查了二次函数图象上点的坐标特征,二次函数图象与系数的关系,二次函数与一元二次方程的关系,一元二次方程根与系数的关系及二次函数的性质,不等式的性质,难度适中.二、填空题:(本题有6个小题,每小题3分,共18分)11.(3分)(2024•十堰)世界文化遗产长城总长约6700 000m,用科学记数法可表示为6.7×106m.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将6700 000m用科学记数法表示为:6.7×106m.故答案为:6.7×106m.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2024•十堰)计算:+(π﹣2)0﹣()﹣1=1.考点:实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、二次根式化简等考点.针对每个考点分别进行计算,然后依据实数的运算法则求得计算结果.解答:解:原式=2+1﹣=3﹣2=1.故答案为1.点评:本题考查实数的综合运算实力,是各地中考题中常见的计算题型.解决此类题目的关键是驾驭零指数幂、负指数幂、二次根式化简等考点的运算.13.(3分)(2024•十堰)不等式组的解集为﹣1<x≤2.考点:解一元一次不等式组.分析:先求出每个不等式的解集,依据不等式的解集找出不等式组的解集即可.解答:解:∵解不等式x<2x+1得:x>﹣1,解不等式3x﹣2(x﹣1)≤4得:x≤2,∴不等式组的解集是﹣1<x≤2,故答案为:﹣1<x≤2.点评:本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能依据不等式的解集找出不等式组的解集.14.(3分)(2024•十堰)如图,在△ABC中,点D是BC的中点,点E,F分别在线段AD 及其延长线上,且DE=DF.给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件使四边形BECF是菱形,你认为这个条件是①(只填写序号).考点:菱形的判定.分析:首先利用对角线相互平分的四边形是平行四边形判定该四边形为平行四边形,然后结合菱形的判定得到答案即可.解答:解:由题意得:BD=CD,ED=FD,∴四边形EBFC是平行四边形,∵邻边相等或对角线垂直的平行四边形是菱形,∴选择BE⊥EC,故答案为:①.点评:本题考查了菱形的判定,解题的关键是了解菱形的判定定理,难度不是很大.15.(3分)(2024•十堰)如图,轮船在A处观测灯塔C位于北偏西70°方向上,轮船从A 处以每小时20海里的速度沿南偏西50°方向匀速航行,1小时后到达码头B处,此时,观测灯塔C位于北偏西25°方向上,则灯塔C与码头B的距离是24海里.(结果精确到个位,参考数据:≈1.4,≈1.7,≈2.4)考点:解直角三角形的应用-方向角问题.分析:作BD⊥AC于点D,在直角△ABD中,利用三角函数求得BD的长,然后在直角△BCD中,利用三角函数即可求得BC的长.解答:解:∠CBA=25°+50°=75°.作BD⊥AC于点D.则∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,∠ABD=30°,∴∠CBD=75°﹣35°=45°.在直角△ABD中,BD=AB•sin∠CAB=20×sin60°=20×=10.在直角△BCD中,∠CBD=45°,则BC=BD=10×=10≈10×2.4=24(海里).故答案是:24.点评:本题主要考查了方向角含义,正确求得∠CBD以及∠CAB的度数是解决本题的关键.16.(3分)(2024•十堰)如图,扇形OAB中,∠AOB=60°,扇形半径为4,点C在上,CD⊥OA,垂足为点D,当△OCD的面积最大时,图中阴影部分的面积为2π﹣4.考点:扇形面积的计算;二次函数的最值;勾股定理.分析:由OC=4,点C在上,CD⊥OA,求得DC==,运用S△OCD=OD•,求得OD=2时△OCD的面积最大,运用阴影部分的面积=扇形AOC的面积﹣△OCD的面积求解.解答:解:∵OC=4,点C在上,CD⊥OA,∴DC==∴S△OCD=OD•∴=OD2•(16﹣OD2)=﹣OD4﹣4OD2=﹣(OD2﹣8)2+16∴当OD2=8,即OD=2时△OCD的面积最大,∴DC===2,∴∠COA=45°,∴阴影部分的面积=扇形AOC的面积﹣△OCD的面积=﹣×2×2=2π﹣4,故答案为:2π﹣4.点评:本题主要考查了扇形的面积,勾股定理,解题的关键是求出OD=2时△OCD的面积最大.三、解答题:(本题有9个小题,共72分)17.(6分)(2024•十堰)化简:(x2﹣2x)÷.考点:分式的混合运算.专题:计算题.分析:原式利用除法法则变形,约分即可得到结果.解答:解:原式=x(x﹣2)•=x.点评:此题考查了分式的混合运算,娴熟驾驭运算法则是解本题的关键.18.(6分)(2024•十堰)如图,点D在AB上,点E在AC上,AB=AC,AD=AE.求证:∠B=∠C.考点:全等三角形的判定与性质.专题:证明题.分析:首先依据条件AB=AC,AD=AE,再加上公共角∠A=∠A可利用SAS定理证明△ABE ≌△ACD,进而得到∠B=∠C.解答:证明:在△ABE和△ACD中,,∴△ABE≌△ACD(SAS).∴∠B=∠C.点评:本题主要考查三角形全等的判定方法和性质,关键是驾驭全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.19.(6分)(2024•十堰)甲、乙两人打算整理一批新到的图书,甲单独整理须要40分钟完工;若甲、乙共同整理20分钟后,乙需再单独整理30分钟才能完工.问乙单独整理这批图书须要多少分钟完工?考点:分式方程的应用.分析:将总的工作量看作单位1,依据本工作分两段时间完成列出分式方程解之即可.解答:解:设乙单独整理x分钟完工,依据题意得:+=1,解得x=100,经检验x=100是原分式方程的解.答:乙单独整理100分钟完工.点评:本题考查了分式方程的应用.分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.20.(9分)(2024•十堰)据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会竞赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并依据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你依据统计图中所供应的信息解答下列问题:(1)接受问卷调查的学生共有60名,扇形统计图中“基本了解”部分所对应扇形的圆心角为90°;请补全条形统计图;(2)若该校共有学生900人,请依据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”竞赛时双方每次随意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只竞赛一局,请用树状图或列表法求两人打平的概率.考点:条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.专题:计算题.分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出全部等可能的状况数,找出两人打平的状况数,即可求出所求的概率.解答:解:(1)依据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)依据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会竞赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)全部等可能的状况有9种,其中两人打平的状况有3种,则P==.点评:此题考查了条形统计图,扇形统计图,以及列表法与树状图法,弄清题意是解本题的关键.21.(7分)(2024•十堰)已知关于x的一元二次方程x2+2(m+1)x+m2﹣1=0.(1)若方程有实数根,求实数m的取值范围;(2)若方程两实数根分别为x1,x2,且满意(x1﹣x2)2=16﹣x1x2,求实数m的值.考点:根的判别式;根与系数的关系.分析:(1)若一元二次方程有两实数根,则根的判别式△=b2﹣4ac≥0,建立关于m的不等式,求出m的取值范围;(2)由x1+x2=﹣2(m+1),x1x2=m2﹣1;代入(x1﹣x2)2=16﹣x1x2,建立关于m的方程,据此即可求得m的值.解答:解:(1)由题意有△=[2(m+1)]2﹣4(m2﹣1)≥0,整理得8m+8≥0,解得m≥﹣1,∴实数m的取值范围是m≥﹣1;(2)由两根关系,得x1+x2=﹣(2m+1),x1•x2=m2﹣1,(x1﹣x2)2=16﹣x1x2(x1+x2)2﹣3x1x2﹣16=0,∴[﹣2(m+1)]2﹣3(m2﹣1)﹣16=0,∴m2+8m﹣9=0,解得m=﹣9或m=1∵m≥﹣1∴m=1.点评:本题考查了一元二次方程根的判别式及根与系数关系,利用两根关系得出的结果必需满意△≥0的条件.22.(8分)(2024•十堰)某市政府为了增加城镇居民抵挡大病风险的实力,主动完善城镇医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%y元.(1)干脆写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?考点:一次函数的应用;分段函数.分析:(1)首先把握x、y的意义,报销金额y分3段①当x≤8000时,②当8000<x≤30000时,③当30000<x≤50000时分别表示;(2)利用代入法,把y=20000代入第三个函数关系式即可得到x的值.解答:解:(1)由题意得:①当x≤8000时,y=0;②当8000<x≤30000时,y=(x﹣8000)×50%=0.5x﹣4000;③当30000<x≤50000时,y=(30000﹣8000)×50%+(x﹣30000)×60%=0.6x﹣7000;(2)当花费30000元时,报销钱数为:y=0.5×30000﹣4000=11000,∵20000>11000,∴他的住院医疗费用超过30000元,把y=20000代入y=0.6x﹣7000中得:20000=0.6x﹣7000,解得:x=45000.答:他住院医疗费用是45000元.点评:此题主要考查了一次函数的应用,关键是正确理解题意,找出题目中的等量关系,列出函数关系式.23.(8分)(2024•十堰)如图,点B(3,3)在双曲线y=(x>0)上,点D在双曲线y=﹣(x<0)上,点A和点C分别在x轴,y轴的正半轴上,且点A,B,C,D构成的四边形为正方形.(1)求k的值;(2)求点A的坐标.考点:正方形的性质;反比例函数图象上点的坐标特征;全等三角形的判定与性质.分析:(1)把B的坐标代入求出即可;(2)设MD=a,OM=b,求出ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,证△ADM≌△BAN,推出BN=AM=3,MD=AN=a,求出a=b,求出a的值即可.解答:解:(1)∵点B(3,3)在双曲线y=上,∴k=3×3=9;(2)∵B(3,3),∴BN=ON=3,设MD=a,OM=b,∵D在双曲线y=﹣(x<0)上,∴﹣ab=﹣4,即ab=4,过D作DM⊥x轴于M,过B作BN⊥x轴于N,则∠DMA=∠ANB=90°,∵四边形ABCD是正方形,∴∠DAB=90°,A D=AB,∴∠MDA+∠DAM=90°,∠DAM+∠BAN=90°,∴∠ADM=∠BAN,在△ADM和△BAN中,,∴△ADM≌△BAN(AAS),∴BN=AM=3,MD=AN=a,∴0A=3﹣a,即AM=b+3﹣a=3,a=b,∵ab=4,∴a=b=2,∴OA=3﹣2=1,即点A的坐标是(1,0).点评:本题考查了正方形的性质,反比例函数图象上点的坐标特征,全等三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的实力,题目比较好,难度适中.24.(10分)(2024•十堰)如图1,AB为半圆的直径,O为圆心,C为圆弧上一点,AD垂直于过C点的切线,垂足为D,AB的延长线交直线CD于点E.(1)求证:AC平分∠DAB;(2)若AB=4,B为OE的中点,CF⊥AB,垂足为点F,求CF的长;(3)如图2,连接OD交AC于点G,若=,求sin∠E的值.考点:圆的综合题.专题:计算题.分析:(1)连结OC,如图1,依据切线的性质得OC⊥DE,而AD⊥DE,依据平行线的性质得OC∥AD,所以∠2=∠3,加上∠1=∠3,则∠1=∠2,所以AC平分∠DAB;(2)如图1,由B为OE的中点,AB为直径得到OB=BE=2,OC=2,在Rt△OCE 中,由于OE=2OC,依据含30度的直角三角形三边的关系得∠OEC=30°,则∠COE=60°,由CF⊥AB得∠OFC=90°,所以∠OCF=30°,再依据含30度的直角三角形三边的关系得OF=OC=1,CF=OF=;(3)连结OC,如图2,先证明△OCG∽△DAG,利用相像的性质得==,再证明△ECO∽△EDA,利用相像比得到==,设⊙O的半径为R,OE=x,代入求得OE=3R;最终在Rt△OCE中,依据正弦的定义求解.解答:(1)证明:连结OC,如图1,∵DE与⊙O切于点C,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠2=∠3,∵OA=OC,∴∠1=∠3,∴∠1=∠2,即AC平分∠DAB;(2)解:如图1,∵直径AB=4,B为OE的中点,∴OB=BE=2,OC=2,在Rt△OCE中,OE=2OC,∴∠OEC=30°,∴∠COE=60°,∵CF⊥AB,∴∠OFC=90°,∴∠OCF=30°,∴OF=OC=1,CF=OF=;(3)解:连结OC,如图2,∵OC∥AD,∴△OCG∽△DAG,∴==,∵OC∥AD,∴△ECO∽△EDA,∴==,设⊙O的半径为R,OE=x,∴=,解得OE=3R,在Rt△OCE中,sin∠E===.点评:本题考查了圆的综合题:娴熟驾驭切线的性质、平行线的性质和锐角三角函数的定义;会依据含30度的直角三角形三边的关系和相像比进行几何计算.25.(12分)(2024•十堰)已知抛物线C1:y=a(x+1)2﹣2的顶点为A,且经过点B(﹣2,﹣1).(1)求A点的坐标和抛物线C1的解析式;(2)如图1,将抛物线C1向下平移2个单位后得到抛物线C2,且抛物线C2与直线AB相交于C,D两点,求S△OAC:S△OAD的值;(3)如图2,若过P(﹣4,0),Q(0,2)的直线为l,点E在(2)中抛物线C2对称轴右侧部分(含顶点)运动,直线m过点C和点E.问:是否存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像?若存在,求出直线m的解析式;若不存在,说明理由.考点:二次函数综合题;待定系数法求一次函数解析式;待定系数法求二次函数解析式;相像三角形的判定与性质;锐角三角函数的增减性.专题:压轴题;存在型.分析:(1)由抛物线的顶点式易得顶点A坐标,把点B的坐标代入抛物线的解析式即可解决问题.(2)依据平移法则求出抛物线C2的解析式,用待定系数法求出直线AB的解析式,再通过解方程组求出抛物线C2与直线AB的交点C、D的坐标,就可以求出S△OAC:S△OAD的值.(3)设直线m与y轴交于点G,直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形形态、位置随着点G的改变而改变,故需对点G的位置进行探讨,借助于相像三角形的判定与性质、三角函数的增减性等学问求出符合条件的点G的坐标,从而求出相应的直线m的解析式.解答:解:(1)∵抛物线C1:y=a(x+1)2﹣2的顶点为A,∴点A的坐标为(﹣1,﹣2).∵抛物线C1:y=a(x+1)2﹣2经过点B(﹣2,﹣1),∴a(﹣2+1)2﹣2=﹣1.解得:a=1.∴抛物线C1的解析式为:y=(x+1)2﹣2.(2)∵抛物线C2是由抛物线C1向下平移2个单位所得,∴抛物线C2的解析式为:y=(x+1)2﹣2﹣2=(x+1)2﹣4.设直线AB的解析式为y=kx+b.∵A(﹣1,﹣2),B(﹣2,﹣1),∴解得:∴直线AB的解析式为y=﹣x﹣3.联立解得:或.∴C(﹣3,0),D(0,﹣3).∴OC=3,OD=3.过点A作AE⊥x轴,垂足为E,过点A作AF⊥y轴,垂足为F,∵A(﹣1,﹣2),∴AF=1,AE=2.∴S△OAC:S△OAD=(OC•AE):(OD•AF)=(×3×2):(×3×1)=2.∴S△OAC:S△OAD的值为2.(3)设直线m与y轴交于点G,与直线l交于点H,设点G的坐标为(0,t)当m∥l时,CG∥PQ.∴△OCG∽△OPQ.∴=.∵P(﹣4,0),Q(0,2),∴OP=4,OQ=2,∴=.∴OG=.∴t=时,直线l,m与x轴不能构成三角形.∵t=0时,直线m与x轴重合,∴直线l,m与x轴不能构成三角形.∴t≠0且t≠.①t<0时,如图2①所示.∵∠PHC>∠PQG,∠PHC>∠QGH,∴∠PHC≠∠PQG,∠PHC≠∠QGH.当∠PHC=∠GHQ时,∵∠PHC+∠GHQ=180°,∴∠PHC=∠GHQ=90°.∵∠POQ=90°,∴∠HPC=90°﹣∠PQO=∠HGQ.∴△PHC∽△GHQ.∵∠QPO=∠OGC,∴tan∠QPO=tan∠OGC.∴=.∴=.∴OG=6.∴点G的坐标为(0,﹣6)设直线m的解析式为y=mx+n,∵点C(﹣3,0),点G(0,﹣6)在直线m上,∴.解得:.∴直线m的解析式为y=﹣2x﹣6,联立,解得:或∴E(﹣1,﹣4).此时点E在顶点,符合条件.∴直线m的解析式为y=﹣2x﹣6.②O<t<时,如图2②所示,∵ta n∠GCO==<,tan∠PQO===2,∴tan∠GCO≠tan∠PQO.∴∠GCO≠∠PQO.∵∠GCO=∠PCH,∴∠PCH≠∠PQO.又∵∠HPC>∠PQO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.③<t≤2时,如图2③所示.∵tan∠CGO==≥,tan∠QPO===.∴tan∠CGO≠tan∠QPO.∴∠CGO≠∠QPO.∵∠CGO=∠QGH,∴∠QGH≠∠QPO,又∵∠HQG>∠QPO,∴△PHC与△GHQ不相像.∴符合条件的直线m不存在.④t>2时,如图2④所示.此时点E在对称轴的右侧.∵∠PCH>∠CGO,∴∠PCH≠∠CGO.当∠QPC=∠CGO时,∵∠PHC=∠QHG,∠HPC=∠HGQ,∴△PCH∽△GQH.∴符合条件的直线m存在.∵∠QPO=∠CGO,∠POQ=∠GOC=90°,∴△POQ∽△GOC.∴=.∴=.∴OG=6.∴点G的坐标为(0,6).设直线m的解析式为y=px+q∵点C(﹣3,0)、点G(0,6)在直线m上,∴.解得:.∴直线m的解析式为y=2x+6.综上所述:存在直线m,使直线l,m与x轴围成的三角形和直线l,m与y轴围成的三角形相像,此时直线m的解析式为y=﹣2x﹣6和y=2x+6.点评:本题考查了二次函数的有关学问,考查了三角形相像的判定与性质、三角函数的定义及增减性等学问,考查了用待定系数法求二次函数及一次函数的解析式,考查了通过解方程组求两个函数图象的交点,强化了对运算实力、批判意识、分类探讨思想的考查,具有较强的综合性,有肯定的难度.。

山东省威海市中考数学试卷及答案(Word解析版)

山东省威海市中考数学试卷及答案(Word解析版)

山东省威海市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(•威海)花粉的质量很小,一粒某种植物花粉的质量约为0.000037毫克,已知1克=1000毫克,那么0.000037毫克可用科学记数法表示为()A.3.7×10﹣5克B.3.7×10﹣6克C.37×10﹣7克D.3.7×10﹣8克考点:科学记数法—表示较小的数分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:1克=1000毫克,将0.000037毫克用科学记数法表示为:3.7×10﹣8克.故选D.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.2.(3分)(•威海)下列各式化简结果为无理数的是()A.B.C.D.考点:立方根;算术平方根;零指数幂.分析:先将各选项化简,然后再判断.解答:解:A、=﹣3,是有理数,故本选项错误;B、(﹣1)0=1,是有理数,故本选项错误;C、=2,是无理数,故本选项正确;D、=2,是有理数,故本选项错误;故选C.点评:本题考查了无理数、立方根及零指数幂的知识,属于基础题.3.(3分)(•威海)下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6+x3=x2D.(x2)4=x8考点:单项式乘单项式;合并同类项;幂的乘方与积的乘方.专题:计算题.分析:根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.解答:解:A、∵3x2+4x2=7a2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选D.点评:本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.(3分)(•威海)若m﹣n=﹣1,则(m﹣n)2﹣2m+2n的值是()A.3B.2C.1D.﹣1考点:代数式求值专题:计算题.分析:所求式子后两项提取﹣2变形后,将m﹣n的值代入计算即可求出值.解答:解:∵m﹣n=﹣1,∴(m﹣n)2﹣2m+2n=(m﹣n)2﹣2(m﹣n)=1+2=3.故选A.点评:此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.5.(3分)(•威海)如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变考点:简单组合体的三视图.分析:分别得到将正方体①移走前后的三视图,依此即可作出判断.解答:解:将正方体①移走前的主视图正方形的个数为1,2,1;正方体①移走后的主视图正方形的个数为1,2;发生改变.将正方体①移走前的左视图正方形的个数为2,1,1;正方体①移走后的左视图正方形的个数为2,1,1;没有发生改变.将正方体①移走前的俯视图正方形的个数为1,3,1;正方体①移走后的俯视图正方形的个数,1,3;发生改变.故选D.点评:考查三视图中的知识,得到从几何体的正面,左面,上面看的平面图形中正方形的列数及每列正方形的个数是解决本题的关键.6.(3分)(•威海)已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是()A.m≥﹣B.m≥0 C.m≥1 D.m≥2考点:解一元二次方程-直接开平方法.分首先移项把﹣m移到方程右边,再根据直接开平方法可得m的取值范围.析:解答:解;(x+1)2﹣m=0,(x+1)2=m,∵一元二次方程(x+1)2﹣m=0有两个实数根,∴m≥0,故选:B.点评:本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.7.(3分)(•威海)不等式组的解集在数轴上表示为()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式组.专题:探究型.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<0;由②得,x≤1,故此不等式组的解集为:x<0,在数轴上表示为:故选B.点评:本题考查的是在数轴上表示不等式组的解集,熟知实心原点与空心原点的区别是解答此题的关键.8.(3分)(•威海)如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A.∠C=2∠A B.B D平分∠ABCC.S△BCD=S△BOD D.点D为线段AC的黄金分割点考点:线段垂直平分线的性质;等腰三角形的性质;黄金分割分析:求出∠C的度数即可判断A;求出∠ABC和∠ABD的度数,求出∠DBC的度数,即可判断B;根据三角形面积即可判断C;求出△DBC∽△CAB,得出BC2=BC•AC,求出AD=BC,即可判断D.解答:解:A、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误;B、∵DO是AB垂直平分线,∴AD=BD,∴∠A=∠ABD=36°,∴∠DBC=72°﹣36°=36°=∠ABD,∴BD是∠ABC的角平分线,正确,故本选项错误;C,根据已知不能推出△BCD的面积和△BOD面积相等,错误,故本选项正确;D、∵∠C=∠C,∠DBC=∠A=36°,∴△DBC∽△CAB,∴=,∴BC2=BC•AC,∵∠C=72°,∠DBC=36°,∴∠BDC=72°=∠C,∴BC=BD,∵AD=BD,∴AD=BC,∴AD2=CD•AC,即点D是AC的黄金分割点,正确,故本选项错误;故选C.点评:本题考查了相似三角形的性质和判定,等腰三角形性质,黄金分割点,线段垂直平分线性质的应用,主要考查学生的推理能力.9.(3分)(•威海)甲、乙两辆摩托车同时从相距20km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.3小时甲摩托车行驶到A,B两地的中点C.经过0.25小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km考点:一次函数的应用分析:根据乙用时间比甲用的时间少可知乙摩托车的速度较快;根据甲0.6小时到达B地判定B正确;设两车相遇的时间为t,根据相遇问题列出方程求解即可;根据乙摩托车到达A地时,甲摩托车行驶了0.5小时,计算即可得解.解解:A由图可知,甲行驶完全程需要0.6小时,乙行驶完全程需要0.5小时,所以,答:乙摩托车的速度较快正确,故本选项错误;B、∵甲摩托车行驶完全程需要0.6小时,∴经过0.3小时甲摩托车行驶到A,B两地的中点正确,故本选项错误;C、设两车相遇的时间为t,根据题意得,+=20,t=,所以,经过0.25小时两摩托车相遇错误,故本选项正确;D、当乙摩托车到达A地时,甲摩托车距离A地:20×=km正确,故本选项错误.故选C.点评:本题考查了一次函数的应用,主要利用了路程、速度、时间三者之间的关系,相遇问题的等量关系,从图形中准确获取信息是解题的关键.10.(3分)(•威海)如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.B C=AC B.C F⊥BF C.B D=DF D.A C=BF考点:正方形的判定;线段垂直平分线的性质分析:根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC 进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.解答:解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵CF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BD时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.点评:本题考查了菱形的判定和性质及中垂线的性质、直角三角形的性质、正方形的判定等知识,熟练掌握正方形的相关的定理是解题关键.11.(3分)(•威海)一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()A.B.C.D.考点:列表法与树状图法专题:计算题.分析:列表得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率.解答:解:列表如下:红红红绿绿红﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红(红,红)﹣﹣﹣(红,红)(绿,红)(绿,红)红(红,红)(红,红)﹣﹣﹣(绿,红)(绿,红)绿(红,绿)(红,绿)(红,绿)﹣﹣﹣(绿,绿)绿(红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣得到所有可能的情况数为20种,其中两次都为红球的情况有6种,则P两次红==.故选A点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.12.(3分)(•威海)如图,在平面直角坐标系中,∠AOB=90°,∠OAB=30°,反比例函数的图象经过点A,反比例函数的图象经过点B,则下列关于m,n的关系正确的是()A.m=﹣3n B.m=﹣n C.m=﹣n D.m=n考反比例函数综合题.分析:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),证明△BOE∽△OAF,利用对应边成比例可求出m、n的关系.解答:解:过点B作BE⊥x轴于点E,过点A作AF⊥x轴于点F,设点B坐标为(a,),点A的坐标为(b,),∵∠OAB=30°,∴OA=OB,设点B坐标为(a,),点A的坐标为(b,),则OE=﹣a,BE=,OF=b,AF=,∵∠BOE+∠OBE=90°,∠AOF+∠BOE=90°,∴∠OBE=∠AOF,又∵∠BEO=∠OFA=90°,∴△BOE∽△OAF,∴==,即==,解得:m=﹣ab,n=,故可得:m=﹣3n.故选A.点评:本题考查了反比例函数的综合,解答本题的关键是结合解析式设出点A、B的坐标,得出OE、BE、OF、AF的长度表达式,利用相似三角形的性质建立m、n之间的关系式,难度较大.二、填空题(共6小题,每小题3分,满分18分)13.(3分)(•威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,则∠CDF=25°.考三角形的外角性质;三角形内角和定理.分析:由∠A=∠EDF=90°,AB=AC.∠E=30°,∠BCE=40°,可求得∠ACB的度数,又由三角形外角的性质,可得∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F,继而求得答案.解答:解:∵AB=AC,∠A=90°,∴∠ACB=∠B=45°,∵∠EDF=90°,∠E=30°,∴∠F=90°﹣∠E=60°,∵∠ACE=∠CDF+∠F,∠BCE=40°,∴∠CDF=∠ACE﹣∠F=∠BCE+∠ACB﹣∠F=45°+40°﹣60°=25°.故答案为:25°.点评:本题考查三角形外角的性质以及直角三角形的性质.此题难度不大,注意掌握数形结合思想的应用.14.(3分)(•威海)分解因式:=﹣(3x﹣1)2.考点:提公因式法与公式法的综合运用.分析:先提取公因式﹣,再根据完全平方公式进行二次分解.解答:解:﹣3x2+2x﹣,=﹣(9x2﹣6x+1),=﹣(3x﹣1)2.故答案为:﹣(3x﹣1)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.15.(3分)(•威海)如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD 交于点O.若AC=1,BD=2,CD=4,则AB=5.考点:相似三角形的判定与性质;勾股定理分析:首先过点B作BE∥CD,交AC的延长线于点E,易证得四边形BDCE是矩形,然后由勾股定理求得答案.解答:解:过点B作BE∥CD,交AC的延长线于点E,∵AC⊥CD,BD⊥CD,∴AC∥BD,∠D=90°,∴四边形BDCE是平行四边形,∴平行四边形BDCE是矩形,∴CE=BD=2,BE=CD=4,∠E=90°,∴AE=AC+CE=1+2=3,∴在Rt△ABE中,AB==5.故答案为:5.点评:此题考查了矩形的判定与性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.16.(3分)(•威海)若关于x的方程无解,则m=﹣8.考点:分式方程的解.专题:计算题.分析:分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.解答:解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8点评:此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.(3分)(•威海)如图①,将四边形纸片ABCD沿两组对边中点连线剪切为四部分,将这四部分密铺可得到如图②所示的平行四边形,若要密铺后的平行四边形为矩形,则四边形ABCD需要满足的条件是AC=BD.考点:图形的剪拼;中点四边形.分析:首先认真读题,理解题意.密铺后的平行四边形成为矩形,必须四个内角均为直角,据此可判定中点四边形EFGH为菱形,进而由中位线定理判定四边形ABCD的对角线相等.解解:密铺后的平行四边形成为矩形,必须四个内角均为直角.答:如解答图所示,连接EF、FG、GH、HE,设EG与HF交于点O,则EG⊥HF.连接AC、BD,由中位线定理得:EF∥AC∥GH,且EF=GH=AC,∴中点四边形EFGH为平行四边形.∴OE=OG,OH=OF.又∵EG⊥HF,∴由勾股定理得:EF=FG=GH=HE,即中点四边形EFGH为菱形.∵EF=FG,EF=AC,FG=BD,∴AC=BD,即四边形ABCD需要满足的条件为:AC=BD.故答案为:AC=BD.点评:本题考查图形剪拼与中点四边形.解题关键是理解三角形中位线的性质,熟练应用平行四边形、矩形、菱形等特殊四边形的判定与性质.18.(3分)(•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P的坐标为(0,﹣2).考点:中心对称;规律型:点的坐标.专题:规律型.分析:计算出前几次跳跃后,点P1,P2,P3,P4,P5,P6,P7的坐标,可得出规律,继而可求出点P的坐标.解答:解:点P1(2,0),P2(﹣2,2),P3(0,﹣2),P4(2,2),P5(﹣2,0),P6(0,0),P7(2,0),从而可得出6次一个循环,∵=503…3,∴点P的坐标为(0,﹣2).故答案为:(0,﹣2).点评:本题考查了中心对称及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.三、解答题(共7小题,满分66分)19.(7分)(•威海)先化简,再求值:,其中x=﹣1.考点:分式的化简求值.分析:这是个分式除法与减法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.最后代值计算.解答:解:(﹣1)÷=•=.当x=﹣1时,原式===.点评:考查了分式的化简求值.解这类题的关键是利用分解因式的方法化简分式.20.(8分)(•威海)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.考点:垂径定理;圆心角、弧、弦的关系;扇形面积的计算.分析:(1)根据垂径定理可得=,∠C=∠AOD,然后在Rt△COE中可求出∠C的度数.(2)连接OB,根据(1)可求出∠AOB=120°,在Rt△AOF中,求出AF,OF,然后根据S阴影=S扇形OAB﹣S△OAB,即可得出答案.解答:解:(1)∵CD是圆O的直径,CD⊥AB,∴=,∴∠C=∠AOD,∵∠AOD=∠COE,∴∠C=∠COE,∵AO⊥BC,∴∠C=30°.(2)连接OB,由(1)知,∠C=30°,∴∠AOD=60°,∴∠AOB=120°,在Rt△AOF中,AO=1,∠AOF=60°,∴AF=,OF=,∴AB=,∴S阴影=S扇形OAB﹣S△OAB=﹣××=π﹣.点评:本题考查了垂径定理及扇形的面积计算,解答本题的关键是利用解直角三角形的知识求出∠C、∠AOB的度数,难度一般.21.(9分)(•威海)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:序号项目1 2 3 4 5 6笔试成绩/分85 92 84 90 84 80面试成绩/分90 88 86 90 80 85根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是84.5分,众数是84分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩个占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.考点:加权平均数;中位数;众数;统计量的选择.分析:(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x,y,根据题意列出方程组,求出x,y的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.解答:解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,最中间两个数的平均数是(84+85)÷2=84.5(分),则这6名选手笔试成绩的中位数是84.5,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84;故答案为:84.5,84;(2)设笔试成绩和面试成绩各占的百分百是x,y,根据题意得:,解得:,笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分),则综合成绩排序前两名人选是4号和2号.点评:此题考查了加权平均数,用到的知识点是中位数、众数、加权平均数的计算公式,关键灵活运用有关知识列出算式.22.(9分)(•威海)如图,已知抛物线y=x2+bx+c与x轴交于点A,B,AB=2,与y轴交于点C,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P为对称轴上一动点,求△APC周长的最小值;(3)设D为抛物线上一点,E为对称轴上一点,若以点A,B,D,E为顶点的四边形是菱形,则点D的坐标为(2,﹣1).考点:二次函数综合题分析:(1)根据抛物线对称轴的定义易求A(1,0),B(3,0).所以1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理易求b、c的值;(2)如图,连接AC、BC,BC交对称轴于点P,连接PA.根据抛物线的对称性质得到PA=PB,则△APC的周长的最小值=AC+AP+PC=AC+BC,所以根据两点间的距离公式来求该三角形的周长的最小值即可;(3)如图2,点D是抛物线的顶点,所以根据抛物线解析式利用顶点坐标公式即可求得点D的坐标.解答:解:(1)如图,∵AB=2,对称轴为直线x=2.∴点A的坐标是(1,0),点B的坐标是(3,0).∵抛物线y=x2+bx+c与x轴交于点A,B,∴1、3是关于x的一元二次方程x2+bx+c=0的两根.由韦达定理,得1+3=﹣b,1×3=c,∴b=﹣4,c=3,∴抛物线的函数表达式为y=x2﹣4x+3;(2)如图1,连接AC、BC,BC交对称轴于点P,连接PA.由(1)知抛物线的函数表达式为y=x2﹣4x+3,A(1,0),B(3,0),∴C(0,3),∴BC==3,AC==.∵点A、B关于对称轴x=2对称,∴PA=PB,∴PA+PC=PB+PC.此时,PB+PC=BC.∴点P在对称轴上运动时,(PA+PB)的最小值等于BC.∴△APC的周长的最小值=AC+AP+PC=AC+BC=3+;(3)如图2,根据“菱形ADBE的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y=x2﹣4x+3的顶点坐标,即(2,﹣1).故答案是:(2,﹣1).点评:本题考查了二次函数综合题.解题过程中用到的知识点有:待定系数法求二次函数的解析式,轴对称﹣﹣两点间距离最短,菱形的性质.解(1)题时,也可以把点A、B的坐标代入抛物线解析式,列出关于系数b、c的方程组,通过解方程组来求它们的值.23.(10分)(•威海)要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x;(2)求小颖设计方案中四块绿地的总面积(小颖设计方案中的与小亮设计方案中的取值相同)考点:一元二次方程的应用;解直角三角形的应用.专题:几何图形问题.分析:(1)根据小亮的方案表示出矩形的长和宽,利用矩形的面积公式列出方程求解即可;(2)求得甬道的宽后利用平行四边形的面积计算方法求得两个阴影部分面积的和即可;解答:解:(1)根据小亮的设计方案列方程得:(52﹣x)(48﹣x)=2300解得:x=2或x=98(舍去)∴小亮设计方案中甬道的宽度为2m;(2)作AI⊥CD,HJ⊥EF,垂足分别为I,J,∵AB∥CD,∠1=60°,∴∠ADI=60°,∵BC∥AD,∴四边形ADCB为平行四边形,∴BC=AD由(1)得x=2,∴BC=HE=2=AD在Rt△ADI中,AI=2sin60°=∴小颖设计方案中四块绿地的总面积为52×48﹣52×2﹣48×2+()2=2299平方米.点评:本题考查了一元二次方程的应用,特别是图形的面积问题更是近几年中考中考查一元二次方程的应用的主要题型.24.(11分)(•威海)操作发现将一副直角三角板如图①摆放,能够发现等腰直角三角板ABC的斜边与含30°角的直角三角板DEF的长直角边DE重合.问题解决将图①中的等腰直角三角板ABC绕点B顺时针旋转30°,点C落在BF上,AC与BD交于点O,连接CD,如图②.(1)求证:△CDO是等腰三角形;(2)若DF=8,求AD的长.考点:等腰直角三角形;等腰三角形的判定;含30度角的直角三角形;勾股定理;矩形的判定与性质.分析:(1)根据题意可得BC=DE,进而得到∠BDC=∠BCD,再根据三角形内角和定理计算出度数,然后再根据三角形内角与外角的性质可得∠DOC=∠DBC+∠BCA,进而算出度数,根据角度可得△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,首先根据∠F=60°,DF=8,可以算出DH=4,HF=4,DB=8,BF=16,进而得到BC=8,再根据等腰三角形的性质可得BG=AG=4,证明四边形AGHD为矩形,根据线段的和差关系可得AD长.解答:解;(1)由图①知BC=DE,∴∠BDC=∠BCD,∵∠DEF=30°,∴∠BDC=∠BCD=75°,∵∠ACB=45°,∴∠DOC=30°+45°=75°,∴∠DOC=∠BDC,∴△CDO是等腰三角形;(2)作AG⊥BC,垂足为点G,DH⊥BF,垂足为点H,在Rt△DHF中,∠F=60°,DF=8,∴DH=4,HF=4,在Rt△BDF中,∠F=60°,DF=8,∴DB=8,BF=16,∴BC=BD=8,∵AG⊥BC,∠ABC=45°,∴BG=AG=4,∴AG=DH,∵AG∥DH,∴四边形AGHD为矩形,∴AD=GH=BF﹣BG﹣HF=16﹣4﹣4=12﹣4.点评:此题主要考查了等腰三角形的判定与性质,矩形的判定与性质,以及三角函数的应用,关键是掌握如果一个三角形有两个角相等,那么这两个角所对的边也相等.25.(12分)(•威海)如图,在平面直角坐标系中,直线y=x+与直线y=x交于点A,点B在直线y=x+上,∠BOA=90°.抛物线y=ax2+bx+c过点A,O,B,顶点为点E.(1)求点A,B的坐标;(2)求抛物线的函数表达式及顶点E的坐标;(3)设直线y=x与抛物线的对称轴交于点C,直线BC交抛物线于点D,过点E作FE∥x 轴,交直线AB于点F,连接OD,CF,CF交x轴于点M.试判断OD与CF是否平行,并说明理由.考二次函数综合题.点:分析:(1)由直线y=x+与直线y=x交于点A,列出方程组,通过解该方程组即可求得点A的坐标;根据∠BOA=90°得到直线OB的解析式为y=﹣x,则,通过解该方程组来求点B的坐标即可;(2)把点A、B、O的坐标分别代入已知二次函数解析式,列出关于系数a、b、c 的方程组,通过解方程组即可求得该抛物线的解析式;(3)如图,作DN⊥x轴于点N.欲证明OD与CF平行,只需证明同位角∠CMN 与∠DON相等即可.解解:(1)由直线y=x+与直线y=x交于点A,得答:,解得,,∴点A的坐标是(3,3).∵∠BOA=90°,∴OB⊥OA,∴直线OB的解析式为y=﹣x.又∵点B在直线y=x+上,∴,解得,,∴点B的坐标是(﹣1,1).综上所述,点A、B的坐标分别为(3,3),(﹣1,1).(2)由(1)知,点A、B的坐标分别为(3,3),(﹣1,1).∵抛物线y=ax2+bx+c过点A,O,B,∴,解得,,∴该抛物线的解析式为y=x2﹣x,或y=(x﹣)2﹣.∴顶点E的坐标是(,﹣);(3)OD与CF平行.理由如下:由(2)知,抛物线的对称轴是x=.∵直线y=x与抛物线的对称轴交于点C,∴C(,).设直线BC的表达式为y=kx+b(k≠0),把B(﹣1,1),C(,)代入,得,解得,,∴直线BC的解析式为y=﹣x+.∵直线BC与抛物线交于点B、D,∴﹣x+=x2﹣x,解得,x1=,x2=﹣1.把x1=代入y=﹣x+,得y1=,∴点D的坐标是(,).如图,作DN⊥x轴于点N.则tan∠DON==.∵FE∥x轴,点E的坐标为(,﹣).∴点F的纵坐标是﹣.把y=﹣代入y=x+,得x=﹣,∴点F的坐标是(﹣,﹣),∴EF=+=.∵CE=+=,∴tan∠CFE==,∴∠CFE=∠DON.又∵FE∥x轴,∴∠CMN=∠CFE,∴∠CMN=∠DON,∴OD∥CF,即OD与CF平行.点评:本题考查了二次函数综合题.其中涉及到的知识点有:待定系数法求二次函数解析式,一次函数与二次函数交点问题,平行线的判定以及锐角三角函数的定义等知识点.此题难度较大.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业暨升学考试试卷数 学一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.3)2(-等于A .-6B .6C .-8D .8 2.外切两圆的半径分别为2 cm 和3cm ,则两圆的圆心距是A .1cmB .2cmC .3cmD .5cm3.有理数a 、b 在数轴上的位置如图所示,则b a +的值A .大于0B .小于0C .小于aD .大于b 4.下列运算中,正确的是A .325=-m mB .222)(n m n m +=+C .n mnm =22 D .222)(mn n m =⋅5.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的A .众数B .中位数C .平均数D .极差 6.小明沿着坡度为1:2的山坡向上走了1000m ,则他升高了A .5200mB .500mC .3500mD .1000m7.如图,∆ABC 是一个圆锥的左视图,其中AB =AC =5,BC =8,则这个圆锥的侧面积是A π12B .π16C .π20D .π368.如图,在矩BACMQDNA(第3题)形ABCD 中, AB =4,BC =6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边MP 始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP =x ,CQ =y ,那么y 与x 之间的函数图象大致是二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 9.因式分解:12-a = ▲ .10.已知5是关于x 的方程723=-a x 的解,则a 的值为 ▲ .11.审计署发布公告:截止2010年5月20日,全国共接收玉树地震救灾捐赠款物70.44亿元.将70.44亿元用科学记数法表示为 ▲ 元. 12.若22=-b a ,则b a 486-+= ▲ .13.如图,平面上两个正方形与正五边形都有一条公共边,则α∠等于 ▲ °.14.在平面直角坐标系中,线段AB 的端点A 的坐标为(-3,2),将其先向右平移4个单位,再向下平移3个单位,得到线段A ′B ′,则点A 对应点A ′的坐标为 ▲ .15.直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有 ▲ 个点.16.如图,正方形纸片ABCD 的边长为8,将其沿EF 折叠,则图中①②③④四个三角形的周长之和为 ▲ .17.如图,在Rt △ABC 中,∠C =90°, AM 是BC 边上的中线,53sin =∠CAM ,则B ∠t a n 的值为 ▲ .18.数学活动课上,老师在黑板上画直线平行于射线AN (如图),让同学们在直线l 和射线AN 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形.这样的三角形最多能画 ▲ 个.三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出AC BM (第17题)BD CBAC ′F E ③ ② ①④ (第16题)• AlN(第18题)(第13题)α必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)计算:01)2(3)31(5---+--π.20.(本题满分8分)解方程:0322=--xx . 21.(本题满分8分)如图,在□ABCD 中,点E 、F 是对角线AC 上两点,且AE =CF .求证:∠EBF =∠FDE .22.(本题满分8分)一家公司招考员工,每位考生要在A 、B 、C 、D 、E 这5道试题中随机抽出2道题回答,规定答对其中1题即为合格.已知某位考生会答A 、B 两题,试求这位考生合格的概率.23.(本题满分10分)如图,已知一次函数2-=x y 与反比例函数xy 3=的图象交于A 、B 两点.(1)求A 、B 两点的坐标;(2)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是 ▲ .(把答案直接写在答题卡相应位置上)24.(本题满分10分)为了解学生课余活动情况,某校对参加绘画、书法、舞蹈、乐器这四个课外兴趣小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下面的问题:(1)此次共调查了多少名同学?(2)将条形图补充完整,并计算扇形统计图中书法部分的圆心角的度数;(3)如果该校共有1000名学生参加这4个课外兴趣小组,而每个教师最多只能辅导本组的20名学生,估计每个兴趣小组至少需要准备多少名教师?25.(本题满分10分)如图,在平面直角坐标系中,O 为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A 、B 两点,且OA = OB(1)写出A 、B 两点的坐标; (2)画出线段AB 绕点O 旋转一周所形成的图形,并求其面积(结果保留π).26.(本题满分10分)如图,AB 是⊙O 的直径, P 为AB 延长线上任意一点,C 为半圆ACB的中点,PD 切⊙O 于点D ,连结CD 交AB 于点E . 求证:(1)PD =PE ;(2)PB PA PE ⋅=2.27.(本题满分12分)某花农培育甲种花木2株,乙种花木3株,共需成本1700元;培育甲种花木3株,乙种花木1株,共需成本1500元.(1)求甲、乙两种花木每株成本分别为多少元?(2)据市场调研,1株甲种花木售价为760元, 1株乙种花木售价为540元.该花农决定在成本不超过30000元的前提下培育甲乙两种花木,若培育乙种花木的株数是甲种花木的3倍还多10株,那么要使总利润不少于21600元,花农有哪几种具体的培育方案?28.(本题满分12分)已知抛物线2y x bx c =++交x 轴于A (1,0)、B (3,0)两点,交y 轴•PBAEOCD于点C ,其顶点为D .(1)求b 、c 的值并写出抛物线的对称轴;(2)连接BC ,过点O 作直线OE ⊥BC 交抛物线的对称轴于点E .求证:四边形ODBE 是等腰梯形;(3)抛物线上是否存在点Q ,使得△OBQ 的面积等于四边形ODBE 的面积的31?若存在,求点Q 的坐标;若不存在,请说明理由.江苏省宿迁市2010年初中毕业暨升学考试数学参考答案及评分建议说明:本评分建议每题给出了一种解法供参考,如果考生的解法与本解法不同,请参照本评分标准的精神给分.一、选择题(本大题共8小题,每小题3分,共24分)1.C 2.D 3.A 4.D 5.B 6.A 7.C 8.D 二、填空题(本大题共10小题,每小题3分,共30分)9.(a+1)(a-1) 10.4 11.910044.7 12.14 13.72 14.(1,-1) 15.16073 16.32 17.3218.3 三、解答题(本大题共10小题,共96分, 解答时应写出必要的文字说明、证明过程或演算步骤)19.解:原式=5-3+3-1 …………………………………… 6分 =4 ……………………………………… 8分 20.解:去分母,得2x-3(x-2)=0 ……………………………………… 3分 解这个方程,得 x =6 ………………………………… 6分 检验:把=6代入x (x-2)=24≠0 ………………………………………7分 所以x =6为这个方程的解. …………………………………… 8分21、证明:连接BD 交AC 于O 点 ……………………………………… 1分∵四边形ABCD 是平行四边形∴OA=OC ,OB=OD ………………3分 又∵AE=CF ∴OE=OF∴四边形BEDF 是平行四边形 …… 6分 ∴∠EBF=∠EDF …………… 8分 22、解:树状图为:A BC D EB C D E A C D E A B D E A B C E A B C D……………………5分 从树状图看出,所有可能出现的结果共有20个,其中合格的结果有14个.所以,P(这位考生合格)=710. 答:这位考生合格的概率是710……………………8分23、解:(1)由题意得:⎪⎩⎪⎨⎧=-=x y x y 32 ………………………………………2分 解之得: ⎩⎨⎧==1311y x 或⎩⎨⎧-=-=3122y x ………………………………………4分 ∴A 、B 两点坐标分别为A ()1,3、B ()3,1-- ……………………6分(2)x 的取值范围是:1-<x 或30<<x ……………………………10分24、解:(1)200%4590=÷………2分(2)画图(如下) …………4分书法部分的圆心角为:3636020020=⨯………6分(3)绘画需辅导教师235.2220%451000≈=÷⨯(名)…………………………7分书法需辅导教师520%101000=÷⨯(名)……………………………………8分 舞蹈需辅导教师85.720%151000≈=÷⨯(名) ……………………………9分 乐器需辅导教师1520%301000=÷⨯(名)…………………………………10分组别25、解:(1)A 、B 两点坐标分别为A ()1,3、B ()3,1或A ()3,1、B ()1,3……………4分 (2)画图(如图), ……7分 由题意得:大圆半径10=OA ,小圆半径22=OC∴πππ2221022=-=)()(圆环S…………………………10分26、证明:(1)连接OC 、OD ………………1分∴OD ⊥PD ,OC ⊥AB ∴∠PDE=90—∠ODE , ∠PED=∠CEO=90—∠C又∵∠C=∠ODE∴∠PDE=∠PED …………………………………………4分 ∴PE=PD …………………………………………5分 (2) 连接AD 、BD ………………………………………6分 ∴∠ADB=90∵∠BDP=90—∠ODB ,∠A=90—∠OBD又∵∠OBD=∠ODB ∴∠BDP=∠A∴∆PDB ∽∆PAD …………………………………………………8分 ∴PDPA PB PD = ∴PB PA PD ⋅=2∴PB PA PE ⋅=2…………………………………………………10分 27、(1)解:(1)设甲、乙两种花木的成本价分别为x 元和y 元. ………1分由题意得:⎩⎨⎧=+=+15003170032y x y x …………………………………………3分解得:⎩⎨⎧==300400y x …………………………………………5分(2)设种植甲种花木为a 株,则种植乙种花木为(3a+10)株. ………6分•PBAEOCDCOB则有:⎩⎨⎧≥+-+-≤++21600)103)(300540()400760(30000)103(300400a a a a ………………8分解得:132709160≤≤a ……………………………………10分 由于a 为整数,∴a 可取18或19或20, ………………………………11分所以有三种具体方案:①种植甲种花木18株,种植乙种花木3a+10=64株; ②种植甲种花木19株,种植乙种花木3a+10=67株;③种植甲种花木20株,种植乙种花木3a+10=70株. ………………12分 28、(1)求出:4-=b ,3=c ,抛物线的对称轴为:x=2 ………………3分(2) 抛物线的解析式为342+-=x x y ,易得C 点坐标为(0,3),D 点坐标为(2,-1) 设抛物线的对称轴DE 交x 轴于点F ,易得F 点坐标为(2,0),连接OD ,DB ,BE∵∆OBC 是等腰直角三角形,∆DFB 也是等腰直角三角形,E 点坐标为(2,2), ∴∠BOE= ∠OBD=45 ∴OE ∥BD∴四边形ODBE 是梯形 ………………5分 在ODF Rt ∆和EBF Rt ∆中, OD=5122222=+=+DF OF ,BE=5122222=+=+FB EF∴OD= BE∴四边形ODBE 是等腰梯形 ………………7分(3) 存在, ………………8分由题意得:29332121=⨯⨯=⋅=DE OB S ODBE 四边形 ………………9分 设点Q 坐标为(x ,y ), 由题意得:y y OB S OBQ 2321=⋅=三角形=23293131=⨯=ODBE S 四边形 ∴1±=y当y=1时,即1342=+-x x ,∴ 221+=x , 222-=x ,∴Q 点坐标为(2+2,1)或(2-2,1) ………………11分 当y=-1时,即1342-=+-x x , ∴x=2, ∴Q 点坐标为(2,-1)综上所述,抛物线上存在三点Q 1(2+2,1),Q 2 (2-2,1) ,Q 3(2,-1) 使得OBQ S 三角形=ODBE S 四边形31. ………………12分EQ2Q1FQ3。

相关文档
最新文档