2020高考数学二轮复习专题二函数与导数课时作业四基本初等函数函数与方程及函数的应用理

合集下载

2020届高考数学大二轮复习层级二专题一函数与导数第1讲函数的图象与性质课时作业

2020届高考数学大二轮复习层级二专题一函数与导数第1讲函数的图象与性质课时作业

第1讲 函数的图象与性质限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.(2020·湖北部分重点中学起点考试)已知函数f (x )=(e x +e -x)ln 1-x 1+x -1,若f (a )=1,则f (-a )=( )A .1B .-1C .3D .-3解析:D [解法一 由题意,f (a )+f (-a )=(e a+e -a)ln1-a 1+a -1+(e a +e -a)ln 1+a 1-a-1=(e a +e -a )⎝ ⎛⎭⎪⎫ln 1-a 1+a+ln 1+a 1-a -2=-2,所以f (-a )=-2-f (a )=-3,故选D.解法二 令g (x )=f (x )+1=(e x +e -x )ln 1-x 1+x ,则g (-x )=(e -x +e x )ln 1+x 1-x=-(e x +e-x)ln 1-x1+x=-g (x ),所以g (x )为奇函数,所以f (-a )=g (-a )-1=-g (a )-1=-f (a )-2=-3,故选D.]2.(2020·唐山摸底)设函数f (x )=x (e x +e -x),则f (x )( ) A .是奇函数,且在(0,+∞)上是增函数 B .是偶函数,且在(0,+∞)上是增函数 C .是奇函数,且在(0,+∞)上是减函数 D .是偶函数,且在(0,+∞)上是减函数解析:A [通解 由已知可知,f (-x )=(-x )(e -x+e x )=-x (e x +e -x)=-f (x ),故f (x )为奇函数.f ′(x )=e x +e -x +x (e x -e -x ),当x >0时,e x >e -x ,所以x (e x -e -x )>0,又e x+e-x>0,所以f ′(x )>0,所以f (x )在(0,+∞)上是增函数,故选A.优解 根据题意知f (-x )=-f (x ),所以函数f (x )为奇函数.又f (1)<f (2),所以f (x )在(0,+∞)上是增函数,故选A.]3.(2019·合肥调研)设函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2x +1,x ≥0,g x,x <0,则g (f (-7))=( )A .3B .-3C .2D .-2解析:D [函数f (x )是定义在R 上的奇函数,且f (x )=⎩⎪⎨⎪⎧log 2x +1,x ≥0,g x ,x <0,设x <0,则-x >0,则f (-x )=log 2(-x +1), 因为f (-x )=-f (x ),所以f (x )=-f (-x )=-log 2(-x +1), 所以g (x )=-log 2(-x +1)(x <0), 所以f (-7)=g (-7)=-log 2(7+1)=-3, 所以g (-3)=-log 2(3+1)=-2.]4.(2020·大连模拟)若函数f (x )同时满足下列两个条件,则称该函数为“优美函数”: (1)∀x ∈R ,都有f (-x )+f (x )=0; (2)∀x 1,x 2∈R ,且x 1≠x 2,都有f x 1-f x 2x 1-x 2<0.①f (x )=sin x ;②f (x )=-2x 3;③f (x )=1-x ;④f (x )=ln(x 2+1+x ). 以上四个函数中,“优美函数”的个数是( ) A .0 B .1 C .2D .3解析:B [由条件(1),得f (x )是奇函数,由条件(2),得f (x )是R 上的减函数. 对于①,f (x )=sin x 在R 上不单调,故不是“优美函数”;对于②,f (x )=-2x 3既是奇函数,又在R 上单调递减,故是“优美函数”;对于③,f (x )=1-x 不是奇函数,故不是“优美函数”;对于④,易知f (x )在R 上单调递增,故不是“优美函数”.故选B.]5.(2020·辽宁五校协作体联考)已知函数f (x )是定义在R 上的奇函数,且x ≥0时,f (x )=(-x +a +1)log 2(x +2)+x +m ,其中a ,m 是常数,且a >0.若f (0)+f (a )=1,则f (m -3)=( )A .1B .-1C .6D .-6解析:C [由题意知f (0)=a +1+m =0,所以a +m =-1,又f (a )=log 2(a +2)+a +m ,f (0)+f (a )=1,所以log 2(a +2)=2,解得a =2,所以m =-3.于是,当x ≥0时,f (x )=(3-x )log 2(x +2)+x -3.故f (m -3)=f (-6)=-f (6)=-(-3log 28+3)=6.故选C.]6.(组合型选择题)函数y =f (x )和y =g (x )在[-2,2]上的图象分别如图(1)(2)所示:给出下列四个命题:①方程f(g(x))=0有且仅有6个根;②方程g(f(x))=0有且仅有3个根;③方程f(f(x))=0有且仅有5个根;④方程g(f(g))=0有且仅有4个根;其中正确命题的个数是( )A.4 B.3C.2 D.1解析:B [由图象可得-2≤g(x)≤2,-2≤f(x)≤2.对于①,观察f(x)的图象,可知满足方程f(g(x))=0的g(x)有三个不同的值,一个值在-2或-1之间,一个值为0,一个值在1与2之间.再观察g(x)的图象,由图象知,g(x)的值在-2与-1之间时对应了2个x值,g(x)=0时对应了2个x值,g(x)的值在1与2之间时对应了2个x值,故方程f(g(x))=0有且仅有6个根,故①正确.对于②,观察g(x)的图象,可知满足g(f(x))=0的f(x)有两个不同的值,一个值处于-2与-1之间,另一个值处于0与1之间.观察f(x)的图象,知f(x)的值在-2与-1之间时对应了1个x值,f(x)的值在0与1之间时对应了3个x值,所以方程g(f(x))=0有且仅有4个根,故②不正确.对于③,观察f(x)的图象,可知满足方程f(f(x))=0的f(x)有3个不同的值,一个值在-2与-1之间,一个值为0,一个值在1与2之间.再观察f(x)的图象,由图象知f(x)的值在-2与-1之间时对应了1个x值,f(x)=0时对应了3个x值,f(x)的值在1与2之间时对应了1个x值,故方程f(f(x))=0有且仅有5个根,故③正确.对于④,观察g(x)的图象,可知满足方程g(g(x))=0的g(x)有2个不同的值,一个值在-2与-1之间,一个值在0与1之间.再观察g(x)的图象,由图象可知g(x)的值在-2与-1之间时对应了2个x值,g(x)的值在0与1之间时对应了2个x值,故方程g(g(x))=0有且仅有4个根,故④正确.综上所述,正确命题的个数是3.故选B.]7.(2019·广州二模)已知定义在R 上的函数f (x ),对任意x ∈R ,都有f (x +4)=f (x )+f (2)成立,若函数y =f (x +1)的图象关于直线x =-1对称,则f (2 022)的值为( )A .2 018B .-2 018C .0D .4解析:C [依题意得,函数y =f (x )的图象关于直线x =0对称,因此函数y =f (x )是偶函数,且f (-2+4)=f (-2)+f (2),即f (2)=f (2)+f (2),所以f (2)=0,所以f (x +4)=f (x ),即函数y =f (x )是以4为周期的函数,f (2 022)=f (4×505+2)=f (2)=0.]8.(2019·苏州调研)函数y =sin 2x1-cos x的部分图象大致为( )解析:C [令f (x )=sin 2x1-cos x,∵f (1)=sin 21-cos 1>0,f (π)=sin 2π1-cos π=0,∴排除选项A ,D.由1-cos x ≠0得x ≠2k π(k ∈Z ), 故函数f (x )的定义域关于原点对称.又∵f (-x )=sin -2x 1-cos -x =-sin 2x1-cos x=-f (x ),∴f (x )为奇函数,其图象关于原点对称,∴排除选项B.故选C.] 9.已知函数f (x )=x -4+9x +1,x ∈(0,4).当x =a 时,f (x )取得最小值b ,则函数g (x )=⎝ ⎛⎭⎪⎫1a |x +b |的图象为( )解析:B [因为x ∈(0,4),所以x +1>1,所以f (x )=x -4+9x +1=x +1+9x +1-5≥2 x +1×9x +1-5=1,当且仅当x =2时取等号,且f (x )的最小值为1,所以a =2,b=1,所以g (x )=⎝ ⎛⎭⎪⎫12|x +1|,其图象关于直线x =-1对称,又g (x )=⎝ ⎛⎭⎪⎫12|x +1|≤⎝ ⎛⎭⎪⎫120=1,所以B.]10.(2020·河北衡水中学模拟)已知函数f (x )=22 019x+1+sin x ,其中f ′(x )为函数f (x )的导数,则f (2 018)+f (-2 018)+f ′(2 019)-f ′(-2 019)等于( )A .2B .2 019C .2 018D .0解析:A [由题意得f (x )+f (-x )=2, ∴f (2 018)+f (-2 018)=2,由f (x )+f (-x )=2可得f (x )-1+f (-x )-1=0, ∴y =f (x )-1为奇函数, ∴y =f (x )-1的导函数为偶函数,即y =f ′(x )为偶函数,其图象关于y 轴对称, ∴f ′(2 019)-f ′(-2 019)=0,∴f (2 018)+f (-2 018)+f ′(2 019)-f ′(-2 019)=2.故选A.]11.(2019·定州二模)已知a >0,设函数f (x )=2 019x +1+2 0172 019x+1(x ∈[-a ,a ])的最大值为M ,最小值为N ,那么M +N =( )A .2 017B .2 019C .4 040D .4 036解析:D [由题意得f (x )=2 019x +1+2 0172 019x +1=2 019-22 019x+1. 因为y =2 019x+1在[-a ,a ]上是单调递增的, 所以f (x )=2 019-22 019x+1在[-a ,a ]上是单调递增的,所以M =f (a ),N =f (-a ), 所以M +N =f (a )+f (-a )=4 038-22 019a +1-22 019-a+1=4 036.] 12.(2019·贵阳监测)已知函数f (x )=2xx -1,则下列结论正确的是( ) A .函数f (x )的图象关于点(1,2)中心对称 B .函数f (x )在(-∞,1)上是增函数C .函数f (x )的图象上存在不同的两点A 、B ,使得直线AB ∥x 轴D .函数f (x )的图象关于直线x =1对称 解析:A [因为f (x )=2x x -1=2x -1+2x -1=2x -1+2,所以该函数图象可以由y =2x的图象向右平移1个单位长度,向上平移2个单位长度得到,所以函数f (x )的图象关于点(1,2)中心对称,A 正确,D 错误;易知函数f (x )在(-∞,1)上单调递减,故B 错误;易知函数f (x )的图象是由y =2x的图象平移得到的,所以不存在不同的两点A 、B ,使得直线AB ∥x 轴,C 错误.故选A.]二、填空题(本大题共4小题,每小题5分,共20分)13.(2020·安徽江淮十校联考)函数f (x )=log 13(x 2+2)+13|x |+1,若f (2x +1)≥f (x ),则实数x 的取值范围是____________.解析:易知f (x )为偶函数,且在[0,+∞)上单调递减,∴|2x +1|≤|x |,解得-1≤x ≤-13,∴x ∈⎣⎢⎡⎦⎥⎤-1,-13.答案:⎣⎢⎡⎦⎥⎤-1,-13 14.(2019·北京卷)设函数f (x )=e x +a e -x(a 为常数).若f (x )为奇函数,则a =____________;若f (x )是R 上的增函数,则a 的取值范围是____________.解析:若函数f (x )=e x +a e -x 为奇函数,则f (-x )=-f (x ),e -x +a e x =-(e x +a e -x)恒成立,即(a +1)(e x +e -x )=0恒成立,欲(a +1)(e x +e -x)=0对任意的x 恒成立.需a +1=0,即a =-1时,所以a =-1.若函数f (x )=e x +a e -x 是R 上的增函数,则f ′(x )=e x -a e -x ≥0恒成立,a ≤e 2x,a ≤0. 即实数a 的取值范围是(-∞,0]. 答案:-1 (-∞,0]15.(2020·湖北省八校联考)已知函数f (x )=⎩⎪⎨⎪⎧ln x 2+a ln x +b ,x >0,e x +12,x ≤0,若f (e 2)=f (1),f (e)=43f (0),则函数f (x )的值域为________________.解析:由题意可得⎩⎪⎨⎪⎧4+2a +b =b ,1+a +b =2,解得⎩⎪⎨⎪⎧a =-2,b =3,∴当x >0时,f (x )=(ln x )2-2ln x +3=(ln x -1)2+2≥2;当x ≤0时,12<e x +12≤e 0+12=32,则函数f (x )的值域为⎝ ⎛⎦⎥⎤12,32∪[2,+∞).答案:⎝ ⎛⎦⎥⎤12,32∪[2,+∞) 16.(2020·辽宁五校联考)如果定义在R 上的函数f (x )满足:对任意的x 1≠x 2,都有x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),则称f (x )为“H 函数”,给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x )③y =1-e x ;④f (x )=⎩⎪⎨⎪⎧ln x x ≥1,0x <1;⑤y =xx 2+1.其中是“H 函数”的是________.(写出所有满足条件的函数的序号)解析:因为x 1f (x 1)+x 2f (x 2)≥x 1f (x 2)+x 2f (x 1),所以f (x 1)(x 1-x 2)-f (x 2)(x 1-x 2)≥0,即[f (x 1)-f (x 2)](x 1-x 2)≥0,分析可得,若函数f (x )为“H 函数”,则函数f (x )为增函数或常函数.对于①,y =-x 3+x +1,则y ′=-3x 2+1,所以y =-x 3+x +1既不是R 上的增函数也不是常函数,故其不是“H 函数”;对于②,y =3x -2(sin x -cos x ),则y ′=3-2(cosx +sin x )=3-22sin ⎝⎛⎭⎪⎫x +π4>0,所以y =3x -2(sin x -cos x )是R 上的增函数,故其是“H 函数”;对于③,y =1-e x是R 上的减函数,故其不是“H 函数”;对于④,f (x )=⎩⎪⎨⎪⎧ln x x ≥1,0x <1,当x <1时,是常函数,当x ≥1时,是增函数,且当x =1时,ln x =0,故其是“H 函数”;对于⑤,y =x x 2+1,当x ≠0时,y =1x +1x,不是R 上的增函数也不是常函数,故其不是“H 函数”.所以满足条件的函数的序号是②④.答案:②④。

2020高考文科数学二轮专题辅导通用版课件:专题1 函数与导数2.1.高考小题 2

2020高考文科数学二轮专题辅导通用版课件:专题1 函数与导数2.1.高考小题 2

【解析】(1)选A.令m1=-26.7,m2=-1.45, 则m2-m1=-1.45-(-26.7)=25.25= , lg =10.1, =1010.1.
E1
E1
E2
E2
5 lg E1 2 E2

(2)依题意有a·e-b×8= a,
所以b= ,
1
所以y=a· .若容器中只有开始时的2八分之一, 则解有得at=·24=,所lan以. 2再经过的时间为24-8=16(min).
【变式训练】(1)函数f(x)= 则下列结论成立的是
(
的图) 象如图所示a,x+b
A.a>0,b>0,c<0 B.a<0,b>0,c>0
(x+c)2
C.a<0,b>0,c<0
D.a<0,b<0,c<0
(2)已知函数f(x)=ax+b(a>0,a≠1)的定义域和值域都是[-1,0],则a+b=________.
(2)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形 结合求解. (3)分离参数法:先将参数分离,转化成求函数的值域问题加以解决.
【变式训练】
(1)函数f(x)=ln x+x- ,则函数的零点所在区间

()
A. C.
B. D.(1,2)
1
2
(1,1 ) 42 ( 3,1) 4
考向三 函数的实际应用(保分题型考点) 【题组通关】 1.某棵果树前n年的总产量Sn与n之间的关系如图所示.从目前记录的结果看,前m年的 年平均产量最高,m的值为 ( )
A.5
B.7
C.9
D.11

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

高考数学(理科)二轮复习【专题2】函数、基本初等函数的图象与性质(含答案)

第1讲函数、基本初等函数的图象与性质考情解读(1)高考对函数的三要素,函数的表示方法等内容的考查以基础知识为主,难度中等偏下.(2)函数图象和性质是历年高考的重要内容,也是热点内容,对图象的考查主要有两个方面:一识图,二用图,即利用函数的图象,通过数形结合的思想解决问题;对函数性质的考查,则主要是将单调性、奇偶性、周期性等综合一起考查,既有具体函数也有抽象函数.常以填空题的形式出现,且常与新定义问题相结合,难度较大.1.函数的三要素定义域、值域及对应关系两个函数当且仅当它们的三要素完全相同时才表示同一函数.2.函数的性质(1)单调性:单调性是函数在其定义域上的局部性质.利用定义证明函数的单调性时,规范步骤为取值、作差、判断符号、下结论.复合函数的单调性遵循“同增异减”的原则.(2)奇偶性:奇偶性是函数在定义域上的整体性质.偶函数的图象关于y轴对称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调性.(3)周期性:周期性是函数在定义域上的整体性质.若函数在其定义域上满足f(a+x)=f(x)(a不等于0),则其一个周期T=|a|.3.函数的图象对于函数的图象要会作图、识图、用图.作函数图象有两种基本方法:一是描点法,二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换.4.指数函数、对数函数和幂函数的图象和性质(1)指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,着重关注两函数图象中的两种情况的公共性质. (2)幂函数y =x α的图象和性质,分幂指数α>0,α<0两种情况.热点一 函数的性质及应用例1 (1)(2014·课标全国Ⅱ)已知偶函数f (x )在[0,+∞)单调递减,f (2)=0.若f (x -1)>0,则x 的取值范围是________.(2)设奇函数y =f (x ) (x ∈R ),满足对任意t ∈R 都有f (t )=f (1-t ),且x ∈⎣⎡⎦⎤0,12时,f (x )=-x 2,则f (3)+f ⎝⎛⎭⎫-32=________. 思维启迪 (1)利用数形结合,通过函数的性质解不等式;(2)利用f (x )的性质和x ∈[0,12]时的解析式探求f (3)和f (-32)的值.答案 (1)(-1,3) (2)-14解析 (1)∵f (x )是偶函数,∴图象关于y 轴对称.又f (2)=0,且f (x )在[0,+∞)单调递减, 则f (x )的大致图象如图所示,由f (x -1)>0,得-2<x -1<2,即-1<x <3. (2)根据对任意t ∈R 都有f (t )=f (1-t )可得f (-t ) =f (1+t ),即f (t +1)=-f (t ),进而得到 f (t +2)=-f (t +1)=-[-f (t )]=f (t ),得函数y =f (x )的一个周期为2,故f (3)=f (1)=f (0+1)=-f (0)=0,f ⎝⎛⎭⎫-32=f ⎝⎛⎭⎫12=-14.所以f (3)+f ⎝⎛⎭⎫-32=0+⎝⎛⎭⎫-14=-14. 思维升华 函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.(1)(2013·重庆改编)已知函数f (x )=ax 3+b sin x +4(a ,b ∈R ),f (lg(log 210))=5,则f (lg(lg 2))=________.(2)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________________________________________________________________________. 答案 (1)3 (2)⎝⎛⎭⎫-2,23 解析 (1)lg(log 210)=lg ⎝⎛⎭⎫1lg 2=-lg(lg 2),由f (lg(log 210))=5,得a [lg(lg 2)]3+b sin(lg(lg 2))=4-5=-1,则f (lg(lg 2))=a (lg(lg 2))3+b sin(lg(lg 2))+4=-1+4=3. (2)易知f (x )为增函数.又f (x )为奇函数,由f (mx -2)+f (x )<0知, f (mx -2)<f (-x ).∴mx -2<-x ,即mx +x -2<0, 令g (m )=mx +x -2,由m ∈[-2,2]知g (m )<0恒成立,即⎩⎪⎨⎪⎧g (-2)=-x -2<0,g (2)=3x -2<0,∴-2<x <23.热点二 函数的图象例2 (1)下列四个图象可能是函数y =10ln|x +1|x +1图象的是________.(2)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f (-12),b =f (2),c =f (3),则a ,b ,c 的大小关系为________.思维启迪 (1)可以利用函数的性质或特殊点,利用排除法确定图象.(2)考虑函数f (x )的单调性. 答案 (1)③ (2)b >a >c解析 (1)函数的定义域为{x |x ≠-1},其图象可由y =10ln|x |x 的图象沿x 轴向左平移1个单位而得到,y =10ln|x |x 为奇函数,图象关于原点对称,所以,y =10ln|x +1|x +1的图象关于点(-1,0)成中心对称.所以①④不可能是;又x >0时,y =10ln|x +1|x +1>0,所以②不可能是,图象③可能是.(2)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f (-12)=f (52),当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .思维升华 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换.尤其注意y =f (x )与y =f (-x )、y =-f (x )、y =-f (-x )、y =f (|x |)、y =|f (x )|及y =af (x )+b 的相互关系.(2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.(3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.(1)(2013·课标全国Ⅰ改编)已知函数f (x )=⎩⎪⎨⎪⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则a的取值范围是________.(2)形如y =b|x |-a (a >0,b >0)的函数,因其图象类似于汉字中的“囧”字,故我们把它称为“囧函数”.若当a =1,b =1时的“囧函数”与函数y =lg |x |图象的交点个数为n ,则n =________. 答案 (1)[-2,0] (2)4解析 (1)函数y =|f (x )|的图象如图.①当a =0时,|f (x )|≥ax 显然成立.②当a >0时,只需在x >0时,ln(x +1)≥ax 成立. 比较对数函数与一次函数y =ax 的增长速度. 显然不存在a >0使ln(x +1)≥ax 在x >0上恒成立. ③当a <0时,只需在x <0时,x 2-2x ≥ax 成立. 即a ≥x -2成立,所以a ≥-2.综上所述:-2≤a ≤0. (2)由题意知,当a =1,b =1时, y =1|x |-1=⎩⎨⎧1x -1(x ≥0且x ≠1),-1x +1(x <0且x ≠-1),在同一坐标系中画出“囧函数”与函数y =lg|x |的图象如图所示,易知它们有4个交点.热点三 基本初等函数的图象及性质例3 (1)若函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是________.(2)已知α,β∈[-π2,π2]且αsin α-βsin β>0,则下面结论正确的是________.①α>β;②α+β>0;③α<β;④α2>β2.思维启迪 (1)可利用函数图象或分类讨论确定a 的范围;(2)构造函数f (x )=x sin x ,利用f (x )的单调性.答案 (1)(-1,0)∪(1,+∞) (2)④解析 (1)方法一 由题意作出y =f (x )的图象如图.显然当a >1或-1<a <0时,满足f (a )>f (-a ). 方法二 对a 分类讨论:当a >0时,log 2a >log 12a ,即log 2a >0,∴a >1.当a <0时,log 12(-a )>log 2(-a ),即log 2(-a )<0,∴-1<a <0.(2)设f (x )=x sin x ,x ∈[-π2,π2],∴y ′=x cos x +sin x =cos x (x +tan x ), 当x ∈[-π2,0]时,y ′<0,∴f (x )为减函数,当x ∈[0,π2]时,y ′>0,∴f (x )为增函数,且函数f (x )为偶函数,又αsin α-βsin β>0, ∴αsin α>βsin β,∴|α|>|β|,∴α2>β2.思维升华 (1)指数函数、对数函数、幂函数和三角函数是中学阶段所学的基本初等函数,是高考的必考内容之一,重点考查图象、性质及其应用,同时考查分类讨论、等价转化等数学思想方法及其运算.(2)比较数式大小问题,往往利用函数图象或者函数的单调性.(1)设15<(15)b <(15)a <1,那么a a ,b a ,a b 的大小关系式是________.(2)已知函数f (x )=2x-12x ,函数g (x )=⎩⎪⎨⎪⎧f (x ),x ≥0,f (-x ),x <0,则函数g (x )的最小值是________.答案 (1)a b <a a <b a (2)0解析 (1)因为指数函数y =(15)x 在(-∞,+∞)上是递减函数,所以由15<(15)b <(15)a <1,得0<a <b <1,所以0<ab<1.所以y =a x ,y =b x ,y =(a b )x 在(-∞,+∞)上都是递减函数,从而a b <a a ,(ab )a <1得b a >a a ,故a b <a a <b a .(2)当x ≥0时,g (x )=f (x )=2x -12x 为单调增函数,所以g (x )≥g (0)=0;当x <0时,g (x )=f (-x )=2-x -12-x 为单调减函数,所以g (x )>g (0)=0,所以函数g (x )的最小值是0.1.判断函数单调性的常用方法(1)能画出图象的一般用数形结合法去观察.(2)由基本初等函数通过加、减运算或复合而成的函数,常转化为基本初等函数单调性的判断问题.(3)对于解析式较复杂的一般用导数法. (4)对于抽象函数一般用定义法. 2.函数奇偶性的应用函数的奇偶性反映了函数图象的对称性,是函数的整体特性.利用函数的奇偶性可以把研究整个函数具有的性质问题转化到只研究部分(一半)区间上,是简化问题的一种途径.尤其注意偶函数f (x )的性质:f (|x |)=f (x ). 3.函数图象的对称性(1)若函数y =f (x )满足f (a +x )=f (a -x ),即f (x )=f (2a -x ),则f (x )的图象关于直线x =a 对称.提醒:函数y =f (a +x )与y =f (a -x )的图象对称轴为x =0,并非直线x =a . (2)若f (x )满足f (a +x )=f (b -x ),则函数f (x )的图象关于直线x =a +b2对称.(3)若函数y =f (x )满足f (x )=2b -f (2a -x ),则该函数图象关于点(a ,b )成中心对称.4.二次函数、一元二次方程和一元二次不等式是一个有机的整体,要深刻理解它们之间的相互关系,能用函数与方程、分类讨论、数形结合思想来研究与“三个二次”有关的问题,高考对“三个二次”知识的考查往往渗透在其他知识之中,并且大都出现在解答题中. 5.指数函数、对数函数的图象和性质受底数a 的影响,解决与指、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.比较两个对数的大小或解对数不等式或解对数方程时,一般是构造同底的对数函数,若底数不同,可运用换底公式化为同底的对数,三数比较大小时,注意与0比较或与1比较. 6.解决与本讲有关的问题应注意函数与方程、数形结合、分类讨论、化归与转化等思想的运用.真题感悟1.(2014·安徽)若函数f (x )(x ∈R )是周期为4的奇函数,且在[0,2]上的解析式为f (x )=⎩⎪⎨⎪⎧x (1-x ),0≤x ≤1,sin πx ,1<x ≤2,则f ⎝⎛⎭⎫294+f ⎝⎛⎭⎫416=________. 答案516解析 ∵f (x )是以4为周期的奇函数, ∴f ⎝⎛⎭⎫294=f ⎝⎛⎭⎫8-34=f ⎝⎛⎭⎫-34, f ⎝⎛⎭⎫416=f ⎝⎛⎭⎫8-76=f ⎝⎛⎭⎫-76.∵当0≤x ≤1时,f (x )=x (1-x ), ∴f ⎝⎛⎭⎫34=34×⎝⎛⎭⎫1-34=316.∵当1<x ≤2时,f (x )=sin πx ,∴f ⎝⎛⎭⎫76=sin 7π6=-12. 又∵f (x )是奇函数,∴f ⎝⎛⎭⎫-34=-f ⎝⎛⎭⎫34=-316, f ⎝⎛⎭⎫-76=-f ⎝⎛⎭⎫76=12. ∴f ⎝⎛⎭⎫294+f ⎝⎛⎫416=12-316=516.2.(2014·福建改编)若函数y =log a x (a >0,且a ≠1)的图象如图所示,则所给函数图象正确的是________.答案 ②解析 由题意得y =log a x (a >0,且a ≠1)的图象过(3,1)点,可解得a =3.图象①中,y =3-x =(13)x ,显然图象错误;图象②中,y =x 3,由幂函数图象可知正确;图象③中,y =(-x )3=-x 3,显然与所画图象不符;图象④中,y =log 3(-x )的图象与y =log 3x 的图象关于y 轴对称,显然不符,故图象②正确. 押题精练1.已知函数f (x )=e |ln x |-⎪⎪⎪⎪x -1x ,则函数y =f (x +1)的大致图象为________.答案 ①解析 据已知关系式可得f (x )=⎩⎨⎧e-ln x+⎝⎛⎭⎫x -1x =x (0<x ≤1),eln x-⎝⎛⎫x -1x =1x(x >1),作出其图象然后将其向左平移1个单位即得函数y =f (x +1)的图象.2.已知函数f (x )=|log 12x |,若m <n ,有f (m )=f (n ),则m +3n 的取值范围是________.答案 (4,+∞)解析 ∵f (x )=|log 12x |,若m <n ,有f (m )=f (n ),∴log 12m =-log 12n ,∴mn =1,∴0<m <1,n >1,∴m +3n =m +3m 在m ∈(0,1)上单调递减,当m =1时,m +3n =4,∴m +3n >4.3.已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )的最小值为________. 答案 -1解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )的最小值为-1.4.已知定义在R 上的偶函数满足:f (x +4)=f (x )+f (2),且当x ∈[0,2]时,y =f (x )单调递减,给出以下四个命题:①f (2)=0;②x =-4为函数y =f (x )图象的一条对称轴;③函数y =f (x )在[8,10]上单调递增;④若方程f (x )=m 在[-6,-2]上的两根为x 1,x 2,则x 1+x 2=-8. 则所有正确命题的序号为________. 答案 ①②④解析 令x =-2,得f (2)=f (-2)+f (2),又函数f (x )是偶函数,故f (2)=0,①正确; 根据①可得f (x +4)=f (x ),可得函数f (x )的周期是4,由于偶函数的图象关于y 轴对称,故x =-4也是函数y =f (x )图象的一条对称轴,②正确; 根据函数的周期性可知,函数f (x )在[8,10]上单调递减,③不正确; 由于函数f (x )的图象关于直线x =-4对称,故如果方程f (x )=m 在区间[-6,-2]上的两根为x 1,x 2,则x 1+x 22=-4,即x 1+x 2=-8,④正确.故正确命题的序号为①②④.(推荐时间:40分钟)1.设函数f (x )=x 3cos x +1.若f (a )=11,则f (-a )=________. 答案 -9解析 令g (x )=f (x )-1=x 3cos x ,∵g (-x )=(-x )3cos(-x )=-x 3cos x =-g (x ), ∴g (x )为定义在R 上的奇函数.又∵f (a )=11, ∴g (a )=f (a )-1=10,g (-a )=-g (a )=-10. 又g (-a )=f (-a )-1,∴f (-a )=g (-a )+1=-9.2.(2014·浙江改编)在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是________.答案 ④解析 幂函数f (x )=x a 的图象不过(0,1)点,图象①不正确;②由对数函数f (x )=log a x 的图象知0<a <1,而此时幂函数f (x )=x a 的图象应是增长越来越慢的变化趋势,故②错;图象③中由对数函数f (x )=log a x 的图象知a >1,而此时幂函数f (x )=x a 的图象应是增长越来越快的变化趋势,故③错.图象④是正确的.3.(2014·朝阳模拟)已知函数y =f (x )是奇函数,当x >0时,f (x )=lg x ,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100的值为________. 答案 -lg 2解析 当x <0时,-x >0,则f (-x )=lg(-x ). 又函数f (x )为奇函数,f (-x )=-f (x ), 所以当x <0时,f (x )=-lg(-x ). 所以f ⎝⎛⎭⎫1100=lg 1100=-2,f ⎝⎛⎭⎫f ⎝⎛⎭⎫1100=f (-2)=-lg 2. 4.设函数f (x )=x (e x +a e -x )(x ∈R )是偶函数,则实数a 的值为________. 答案 -1解析 因为f (x )是偶函数,所以恒有f (-x )=f (x ),即-x (e -x +a e x )=x (e x +a e -x ),化简得x (e -x +e x )(a +1)=0.因为上式对任意实数x 都成立,所以a =-1.5.设偶函数f (x )满足f (x )=2x -4(x ≥0),则f (x -2)>0的解集为________.答案 {x |x <0或x >4}解析 由于函数f (x )是偶函数,因此有f (|x |)=f (x ),不等式f (x -2)>0,即f (|x -2|)>0,f (|x -2|)=2|x -2|-4>0, |x -2|>2,即x -2<-2或x -2>2,由此解得x <0或x >4.∴f (x -2)>0的解集为{x |x <0或x >4}.6.使log 2(-x )<x +1成立的x 的取值范围是________.答案 (-1,0)解析 在同一坐标系内作出y =log 2(-x ),y =x +1的图象,知满足条件的x ∈(-1,0).7.函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,cos πx ,x <0的图象上关于y 轴对称的点共有________对. 答案 3解析 因为y =cos πx 是偶函数,图象关于y 轴对称.所以,本题可转化成求函数y =log 3x 与y =cos πx 图象的交点个数的问题.作函数图象如图,可知它们有三个交点,即函数f (x )图象上关于y 轴对称的点有3对.8.(2013·天津)已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增.若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是________. 答案 ⎣⎡⎦⎤12,2解析 由题意知a >0,又log 12a =log 2a -1=-log 2a . ∵f (x )是R 上的偶函数,∴f (log 2a )=f (-log 2a )=f (log 12a ). ∵f (log 2a )+f (log 12a )≤2f (1), ∴2f (log 2a )≤2f (1),即f (log 2a )≤f (1).又∵f (x )在[0,+∞)上递增.∴|log 2a |≤1,-1≤log 2a ≤1,∴a ∈⎣⎡⎦⎤12,2.9.已知函数f (x )=⎩⎪⎨⎪⎧ 13e x (x ≥2),f (x +1)(x <2),则f (ln 3)=________. 答案 e解析 f (ln 3)=f (ln 3+1)=13eln 3+1=e ,故填e. 10.已知函数f (x )=x |x -a |,若对任意的x 1,x 2∈[2,+∞),且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]>0恒成立,则实数a 的取值范围为________.答案 {a |a ≤2}解析 f (x )=⎩⎪⎨⎪⎧x (x -a ),x ≥a ,-x (x -a ),x <a ,由(x 1-x 2)[f (x 1)-f (x 2)]>0知,函数y =f (x )在[2,+∞)单调递增,当a ≤0时,满足题意,当a >0时,只需a ≤2,即0<a ≤2,综上所述,实数a 的取值范围为a ≤2.11.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎪⎨⎪⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫32,则a +3b 的值为________.答案 -10解析 因为f (x )的周期为2,所以f ⎝⎛⎭⎫32=f ⎝⎛⎭⎫32-2=f ⎝⎛⎭⎫-12,即f ⎝⎛⎭⎫12=f ⎝⎛⎭⎫-12.又因为f ⎝⎛⎭⎫-12=-12a +1,f ⎝⎛⎭⎫12=b 2+212+1=b +43, 所以-12a +1=b +43. 整理,得a =-23(b +1).① 又因为f (-1)=f (1),所以-a +1=b +22,即b =-2a .② 将②代入①,得a =2,b =-4.所以a +3b =2+3×(-4)=-10.12.已知定义在R 上的函数y =f (x )满足以下三个条件:①对于任意的x ∈R ,都有f (x +4)=f (x );②对于任意的x 1,x 2∈R ,且0≤x 1<x 2≤2,都有f (x 1)<f (x 2);③函数y =f (x +2)的图象关于y 轴对称.则判断f (4.5),f (6.5),f (7)的大小关系为________.答案 f (4.5)<f (7)<f (6.5)解析 由已知得f (x )是以4为周期且关于直线x =2对称的函数.所以f (4.5)=f (4+12)=f (12), f (7)=f (4+3)=f (3),f (6.5)=f (4+52)=f (52). 又f (x )在[0,2]上为增函数.所以作出其在[0,4]上的图象知f (4.5)<f (7)<f (6.5).13.设函数f (x )=1+(-1)x 2(x ∈Z ),给出以下三个结论: ①f (x )为偶函数;②f (x )为周期函数;③f (x +1)+f (x )=1,其中正确结论的序号是________. 答案 ①②③解析 对于x ∈Z ,f (x )的图象为离散的点,关于y 轴对称,①正确;f (x )为周期函数,T =2,②正确;f (x +1)+f (x )=1+(-1)x +12+1+(-1)x 2 =1+(-1)x +1+(-1)x 2=1,③正确. 14.能够把圆O :x 2+y 2=16的周长和面积同时分为相等的两部分的函数称为圆O 的“和谐函数”,下列函数是圆O 的“和谐函数”的是________.①f (x )=e x +e -x ;②f (x )=ln 5-x 5+x; ③f (x )=tan x 2;④f (x )=4x 3+x . 答案 ②③④解析 由“和谐函数”的定义知,若函数为“和谐函数”,则该函数为过原点的奇函数.①中,f (0)=e 0+e -0=2,所以f (x )=e x +e -x 的图象不过原点,故f (x )=e x +e -x 不是“和谐函数”;②中f (0)=ln 5-05+0=ln 1=0,且f (-x )=ln 5+x 5-x =-ln 5-x 5+x=-f (x ),所以f (x )为奇函数,所以f (x )=ln 5-x 5+x为“和谐函数”;③中,f (0)=tan 0=0,且f (-x )=tan -x 2=-tan x 2=-f (x ),f (x )为奇函数,故f (x )=tan x 2为“和谐函数”;④中,f (0)=0,且f (x )为奇函数,故f (x )=4x 3+x 为“和谐函数”,所以,②③④中的函数都是“和谐函数”.。

高考数学二轮专题突破辅导与测试基本初等函数函数与方程及函数的应用公开课一等奖课件省赛课获奖课件

高考数学二轮专题突破辅导与测试基本初等函数函数与方程及函数的应用公开课一等奖课件省赛课获奖课件

c=log2.11.5<log2.12.1=1,
因此 c<a<b.
(2)选项A,由于函数在区间上为增函数,由单调性定义可
知(x1-x2)[f(x1)-f(x2)]>0,故A错误;选项B,由函数图像的凸
凹性可知f
x1+x2 2
>
fx1+fx2 2
,故B错误;选项C,令g(x)=
fx x

ln x x
=exx在(-∞,0),(0,1)上为减函数,在(1,+∞)上为增函数,故 C
错误;同理,令 h(x)=xex,则 h′(x)=ex+xex=(1+x)ex,所以
h(x)=xex 在(-∞,-1)上为减函数,在(-1,+∞)上为增函数,
故 D 错误.
答案:B
——————————规律·总结————————————
2.已知函数 f(x)=2xx+-112,,xx∈∈210,,212.,
若存在 x1,x2,当 0≤x1<x2<2
时,f(x1)=f(x2),则 x1f(x2)的取值范围是_____.
x1+12=2x2-1,
解析:作出函数
f(x)的图像,由图知
22-12≤x1<12,
21≤x2<1.
所以
x1f(x2)
1 x
图像交点的个数,在同一坐标系中画出两个
函数图像如图所示:
由图可知共有6个交点,故函数F(x)=xf(x)-1的零点 个数为6.
(3)由x2-3≥x-1解得x≤-1或x≥2,所以f(x)=
|x-1|,x≤-1或x≥2, x2-3,-1<x<2.
函数y=f(x)-c恰有两个零点,即函
数y=f(x),y=c的图像恰有两个交点,作出函数y=f(x),y=c

高中数学专题 微专题2 基本初等函数、函数的应用

高中数学专题 微专题2 基本初等函数、函数的应用

A.y=1.002x
1
C.y= x 3-5
√B.y=log7x+1
D.y=5+sin x
由题意,函数在(10,1 000)上单调递增,故D不符合题意,排除D;
1
因为当x∈(10,125)时,y=x 3-5<0,故C不符合题意,排除C;
当x=1 000时,1.0021 000≈7.37>5,故y=1.002x不符合题意,排除A;
1 2 3 4 5 6 7 8 9 10 11 12
对于D选项,当T=360,P=729时,lg P= lg 729∈(lg 102,lg 103),即lg P∈(2,3),根 据图象可知,二氧化碳处于超临界状态.
1 2 3 4 5 6 7 8 9 10 11 12
(1,+∞)上单调递减,所以由复合函数的单调性可知,f(x)在(-∞,
1)上单调递增,在(1,+∞)上单调递减.易知f(x)的图象关于直线x=1
对称,所以
c=f
6
2

f
2-
6
2


2 2
<2 -
6 2<
3 2
<1 ,
所以
f
2
2
<f
2-
26<f
23,所以
b>c>a.
跟则实踪数训a练的1取值(1)范(2围02是3·广东联考)已知函数f(x)=2-x,12xx≥,0x<,0,若f(a)<f(6-a),
PART TWO
热点突破
1.(2023·通州模拟)下列函数中,是奇函数且在定义域内单调递增的是
A.y=1x C.y=ex+e-x
√B.y=x3

高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用

高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用

3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).

(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log

(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg

高中总复习二轮文科数学精品课件 专题2 函数与导数 2.1 基本初等函数、函数的图象和性质

高中总复习二轮文科数学精品课件 专题2 函数与导数 2.1 基本初等函数、函数的图象和性质
(2020全国Ⅲ,文10)
(2021全国乙,文9)
(2021全国甲,文6)
(2022全国乙,文8)
(2018全国Ⅰ,文13)
(2018全国Ⅱ,文12)
(2018全国Ⅲ,文9)
(2019全国Ⅰ,文3)
(2019全国Ⅱ,文6)
(2020全国Ⅰ,文8)
(2020全国Ⅱ,文12)
(2020全国Ⅲ,文12)
(2021全国甲,文4)
周期为2|a-b|;如果函数f(x)的图象关于直线x=a对称,关于点(b,0)(a≠b)对称,
则f(x)为周期函数,周期为4|a-b|.
对点训练2(1)已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,
f(-x)=-f(x);当
A.-2
B.-1
C.0
D.2
1
x> 时,f
=1
=0+1-1-2-1=-3.
题后反思 1.单调性是函数在其定义域上的局部性质,函数的单调性使得自
变量的不等关系和函数值之间的不等关系可以“正逆互推”.
2.奇偶性和周期性是函数在定义域上的整体性质.偶函数的图象关于y轴对
称,在关于坐标原点对称的定义域区间上具有相反的单调性;奇函数的图象
关于坐标原点对称,在关于坐标原点对称的定义域区间上具有相同的单调
所以函数为奇函数,排除B,D选项.
又f(1)=(3-3-1)cos 1>0,故选A.
(2)已知函数 f(x)=x
1
A.y=f(x)+g(x)4
1
B.y=f(x)-g(x)4
C.y=f(x)g(x)
()
D.y=
()
2
1

高考数学二轮复习第二部分突破热点分层教学专题一第讲基本初等函数函数与方程及函数的应用学案

高考数学二轮复习第二部分突破热点分层教学专题一第讲基本初等函数函数与方程及函数的应用学案

第2讲 基本初等函数、函数与方程及函数的应用基本初等函数的图象与性质(综合型)指数与对数式的8个运算公式 (1)a m·a n=am +n.(2)(a m )n =a mn .(3)(ab )m =a m b m.(4)log a (MN )=log a M +log a N .(5)log a MN=log a M -log a N .(6)log a M n=n log a M .(7)alog aN=N .(8)log a N =log b Nlog b a.[注意] (1)(2)(3)中,a >0,b >0;(4)(5)(6)(7)(8)中,a >0且a ≠1,b >0且b ≠1,M >0,N >0.[典型例题](1)(2018·高考天津卷)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b(2)函数y =1x+ln|x |的图象大致为()【解析】 (1)因为a =log 2e>1,b =ln 2∈(0,1),c =log 1213=log 23>log 2e>1,所以c >a >b ,故选D.(2)当x <0时,y =1x +ln(-x ),由函数y =1x ,y =ln(-x )单调递减,知函数y =1x+ln(-x )单调递减,排除C ,D ;当x >0时,y =1x +ln x ,此时f (1)=11+ln 1=1,而选项A 中函数的最小值为2,故排除A ,只有B 正确.故选B.【答案】 (1)D(2)B基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a 的值不确定时,要注意分a >1和0<a <1两种情况讨论:当a >1时,两函数在定义域内都为增函数;当0<a <1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y =x α的性质要注意α>0和α<0两种情况的不同.[对点训练]1.(2018·武汉模拟)已知定义在R 上的函数f (x )=2|x -m |-1为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选C.函数f (x )=2|x -m |-1为偶函数,则m =0,则f (x )=2|x |-1,a =f (log 0.53)=2log 23-1=2,b =f (log 25)=2log 25-1=4,c =f (0)=20-1=0.故c <a <b ,选C.2.已知a 是大于0的常数,把函数y =a x和y =1ax+x 的图象画在同一平面直角坐标系中,不可能出现的是( )解析:选D.因为a >0,所以y =1ax +x 是对勾函数,若0<a ≤1,则当x >0时,y =1ax+x 的值大于等于2,函数y =a x 和y =1ax+x 的图象不可能有两个交点,故选D.函数的零点(综合型)函数的零点及其与方程根的关系对于函数f (x ),使f (x )=0的实数x 叫做函数f (x )的零点.函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.零点存在性定理如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,并且有f (a )·f (b )<0,那么函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.[典型例题]命题角度一 确定函数零点的个数或其存在情况(1)已知实数a >1,0<b <1,则函数f (x )=a x+x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)(2)设函数f (x )的定义域为R ,f (-x )=f (x ),f (x )=f (2-x ),当x ∈[0,1]时,f (x )=x 3,则函数g (x )=|cos πx |-f (x )在区间⎣⎢⎡⎦⎥⎤-12,32上零点的个数为( )A .3B .4C .5D .6【解析】 (1)因为a >1,0<b <1,f (x )=a x+x -b , 所以f (-1)=1a-1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点. (2)由f (-x )=f (x ),得f (x )的图象关于y 轴对称.由f (x )=f (2-x ),得f (x )的图象关于直线x =1对称.当x ∈[0,1]时,f (x )=x 3,所以f (x )在[-1,2]上的图象如图.令g (x )=|cos πx |-f (x )=0,得|cos πx |=f (x ),两函数y =f (x )与y =|cos πx |的图象在⎣⎢⎡⎦⎥⎤-12,32上的交点有5个.【答案】 (1)B (2)C判断函数零点个数的方法(1)直接求零点:令f (x )=0,则方程解的个数即为零点的个数.(2)利用零点存在性定理:利用该定理还必须结合函数的图象和性质(如单调性)才能确定函数有多少个零点.(3)数形结合法:对于给定的函数不能直接求解或画出图形时,常会通过分解转化为两个能画出的函数图象交点问题.命题角度二 已知函数零点的个数或存在情况求参数的取值范围(2018·高考全国卷Ⅰ)已知函数f (x )=⎩⎪⎨⎪⎧e x, x ≤0ln x , x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)【解析】 函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y =-x-a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1,故选C.【答案】 C利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的位置关系问题,从而构建不等式求解.[对点训练]1.(2018·洛阳第一次统考)已知函数f (x )满足f (1-x )=f (1+x )=f (x -1)(x ∈R ),且当0≤x ≤1时,f (x )=2x-1,则方程|cos πx |-f (x )=0在[-1,3]上的所有根的和为( )A .8B .9C .10D .11解析:选D.方程|cos πx |-f (x )=0在[-1,3]上的所有根的和即y =|cos πx |与y =f (x )在[-1,3]上的图象交点的横坐标的和.由f (1-x )=f (1+x )得f (x )的图象关于直线x =1对称,由f (1-x )=f (x -1)得f (x )的图象关于y 轴对称,由f (1+x )=f (x -1)得f (x )的一个周期为2,而当0≤x ≤1时,f (x )=2x-1,在同一坐标系中作出y =f (x )和y =|cos πx |在[-1,3]上的大致图象,如图所示,易知两图象在[-1,3]上共有11个交点,又y =f (x ),y =|cos πx |的图象都关于直线x =1对称,故这11个交点也关于直线x =1对称,故所有根的和为11.故选D.2.已知函数f (x )=exx-kx (e 为自然对数的底数)有且只有一个零点,则实数k 的取值范围是________.解析:由题意,知x ≠0,函数f (x )有且只有一个零点等价于方程e xx -kx =0只有一个根,即方程exx2=k 只有一个根,设g (x )=e x x 2,则函数g (x )=exx2的图象与直线y =k 只有一个交点.因为g ′(x )=(x -2)exx3,所以函数g (x )在(-∞,0)上为增函数,在(0,2)上为减函数,在(2,+∞)上为增函数,g (x )的极小值g (2)=e24,且x →0时,g (x )→+∞,x →-∞时,g (x )→0,x →+∞时,g (x )→+∞,则g (x )的图象如图所示,由图易知0<k <e24.答案:⎝ ⎛⎭⎪⎫0,e 24函数的实际应用(综合型)[典型例题]某食品的保鲜时间y (单位:h)与储存温度x (单位:℃)满足的函数关系式为y=ekx +b(e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是________ h.【解析】 由已知,得e b =192,e 22k +b=48,两式相除得e 22k =14,所以e 11k=12,所以e33k +b=(e 11k )3e b=18×192=24,即该食品在33 ℃的保鲜时间是24 h.【答案】 24应用函数模型解决实际问题的一般程序和解题关键(1)一般程序:读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.(2)解题关键:解答这类问题的关键是确切地建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.[对点训练]1.某公司为激励创新,计划逐年加大研发资金投入.若该公司2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( )A .2021年B .2022年C .2023年D .2024年解析:选B.根据题意,知每年投入的研发资金增长的百分率相同,所以,从2018年起,每年投入的研发资金组成一个等比数列{a n },其中,首项a 1=130,公比q =1+12%=1.12,所以a n =130×1.12n -1.由130×1.12n -1>200,两边同时取对数,得n -1>lg 2-lg 1.3lg 1.12,又lg 2-lg 1.3lg 1.12≈0.30-0.110.05=3.8,则n >4.8,即a 5开始超过200,所以2022年投入的研发资金开始超过200万元,故选B.2.某工厂某种产品的年固定成本为250万元,每生产x 千件该产品需另投入的成本为G (x )(单位:万元),当年产量不足80千件时,G (x )=13x 2+10x ;当年产量不小于80千件时,G (x )=51x +10 000x-1 450.已知每件产品的售价为0.05万元.通过市场分析,该工厂生产的产品能全部售完,则该工厂在这一产品的生产中所获年利润的最大值是________万元.解析:因为每件产品的售价为0.05万元,所以x 千件产品的销售额为0.05×1 000x =50x 万元.①当0<x <80时,年利润L (x )=50x -13x 2-10x -250=-13x 2+40x -250=-13(x -60)2+950,所以当x =60时,L (x )取得最大值,且最大值为L (60)=950万元;②当x ≥80时,L (x )=50x -51x -10 000x+1 450-250=1 200-⎝⎛⎭⎪⎫x +10 000x≤1 200-2x ·10 000x =1 200-200=1 000,当且仅当x =10 000x,即x =100时,L (x )取得最大值1 000万元.由于950<1 000,所以当产量为100千件时,该工厂在这一产品的生产中所获年利润最大,最大年利润为1 000万元.答案:1 000一、选择题 1.函数y =1log 0.5(4x -3)的定义域为( )A.⎝ ⎛⎭⎪⎫34,1B.⎝ ⎛⎭⎪⎫34,+∞ C .(1,+∞)D.⎝ ⎛⎭⎪⎫34,1∪(1,+∞)解析:选A.要使函数有意义需满足⎩⎪⎨⎪⎧4x -3>0,log 0.5(4x -3)>0,解得34<x <1.2.已知函数f (x )=(m 2-m -5)x m是幂函数,且在x ∈(0,+∞)时为增函数,则实数m 的值是( )A .-2B .4C .3D .-2或3解析:选C.f (x )=(m 2-m -5)x m是幂函数⇒m 2-m -5=1⇒m =-2或m =3. 又在x ∈(0,+∞)上是增函数, 所以m =3.3.若a =log 1π13,b =e π3,c =log 3cos π5,则( )A .b >c >aB .b >a >cC .a >b >cD .c >a >b解析:选B.因为0<1π<13<1,所以1=log 1π1π>log 1π13>0,所以0<a <1,因为b =e π3>e=1,所以b >1.因为0<cos π5<1,所以log 3cos π5<log 31=0,所以c <0.故b >a >c ,选B.4.函数f (x )=⎩⎪⎨⎪⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C.令2ex -1>2(x <2),解得1<x <2;令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞).5.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则函数y =log a |x |的图象大致是()解析:选A.若函数y =a |x |(a >0且a ≠1)的值域为{y |0<y ≤1},则0<a <1,故log a |x |是偶函数且在(0,+∞)上单调递减,由此可知y =log a |x |的图象大致为A.6.(2018·贵阳模拟)20世纪30年代,为了防范地震带来的灾害,里克特(C.F.Richter)制定了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大,这就是我们常说的里氏震级M ,其计算公式为M =lg A -lg A 0,其中A 是被测地震的最大振幅,A 0是“标准地震”的振幅.已知5级地震给人的震感已经比较明显,则7级地震的最大振幅是5级地震的最大振幅的( )A .10倍B .20倍C .50倍D .100倍解析:选D.根据题意有lg A =lg A 0+lg 10M=lg (A 0·10M).所以A =A 0·10M,则A 0×107A 0×105=100.故选D.7.函数y =x 2ln |x ||x |的图象大致是( )解析:选D.易知函数y =x 2ln |x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D. 8.设x ,y ,z 为正数,且2x=3y=5z,则( ) A .2x <3y <5z B .5z <2x <3y C .3y <5z <2xD .3y <2x <5z解析:选D.设2x=3y=5z=k (k >1), 则x =log 2k ,y =log 3k ,z =log 5k ,所以2x 3y =2log 2k 3log 3k =2lg k lg 2·lg 33lg k =2lg 33lg 2=lg 9lg 8>1,即2x >3y .①2x 5z =2log 2k 5log 5k =2lg k lg 2·lg 55lg k =2lg 55lg 2=lg 25lg 32<1,所以2x <5z .② 由①②得3y <2x <5z .9.(2018·高考全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B.由a =log 0.20.3得1a =log 0.30.2,由b =log 20.3得1b =log 0.32,所以1a +1b=log 0.30.2+log 0.32=log 0.30.4,所以0<1a +1b <1,得0<a +bab<1.又a >0,b <0,所以ab<0,所以ab <a +b <0.10.已知f (x )是定义在R 上的奇函数,且x >0时,f (x )=ln x -x +1,则函数g (x )=f (x )-e x(e 为自然对数的底数)的零点个数是( )A .0B .1C .2D .3解析:选C.当x >0时,f (x )=ln x -x +1,f ′(x )=1x-1=1-xx,所以x ∈(0,1)时f ′(x )>0,此时f (x )单调递增;x ∈(1,+∞)时,f ′(x )<0,此时f (x )单调递减.因此,当x >0时,f (x )max=f (1)=ln 1-1+1=0.根据函数f (x )是定义在R 上的奇函数作出函数y =f (x )与y =ex的大致图象如图所示,观察到函数y =f (x )与y =e x的图象有两个交点,所以函数g (x )=f (x )-e x (e 为自然对数的底数)有2个零点.11.已知函数f (x )是定义在R 上的奇函数,且在区间[0,+∞)上单调递增,若⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1),则x 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,1eB .(0,e) C.⎝ ⎛⎭⎪⎫1e ,e D .(e ,+∞)解析:选C.因为函数f (x )是定义在R 上的奇函数,所以f (ln x )-f ⎝⎛⎭⎪⎫ln 1x =f (ln x )-f (-ln x )=f (ln x )+f (ln x )=2f (ln x ),所以⎪⎪⎪⎪⎪⎪f (ln x )-f ⎝ ⎛⎭⎪⎫ln 1x 2<f (1)等价于|f (ln x )|<f (1),又f (x )在区间[0,+∞)上单调递增,所以-1<ln x <1,解得1e<x <e. 12.(2018·沈阳教学质量监测)设函数f (x )是定义在R 上的偶函数,且f (x +2)=f (2-x ),当x ∈[-2,0]时,f (x )=⎝ ⎛⎭⎪⎫22x-1,若关于x 的方程f (x )-log a (x +2)=0(a >0且a ≠1)在区间(-2,6)内有且只有4个不同的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫14,1 B .(1,4) C .(1,8) D .(8,+∞)解析:选D.因为f (x )为偶函数,且f (2+x )=f (2-x ),所以f (4+x )=f (-x )=f (x ), 所以f (x )为偶函数且周期为4,又当-2≤x ≤0时,f (x )=⎝ ⎛⎭⎪⎫22x-1, 画出f (x )在(-2,6)上的大致图象,如图所示.若f (x )-log a (x +2)=0(a >0且a ≠1)在(-2,6)内有4个不同的实根,则y =f (x )的图象与y =log a (x +2)的图象在(-2,6)内有4个不同的交点.所以⎩⎪⎨⎪⎧a >1,log a (6+2)<1,所以a >8,故选D. 二、填空题13.计算:2log 410-12log 225+823-(π-3)0=________. 解析:2log 410-12log 225+823-(π-3)0=2×12log 210-log 25+(23)23-1=log 2105+22-1=1+4-1=4.答案:414.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________.解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④15.(2018·高考全国卷Ⅲ)已知函数f (x )=ln(1+x 2-x )+1, f (a )=4,则f (-a )=________.解析:由f (a )=ln(1+a 2-a )+1=4,得ln(1+a 2-a )=3,所以f (-a )=ln(1+a 2+a )+1=-ln11+a 2+a +1=-ln(1+a 2-a )+1=-3+1=-2. 答案:-216.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时.已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间的变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少;③到了此日13时,甲所购买的食品还在保鲜时间内;④到了此日14时,甲所购买的食品已过了保鲜时间.其中,所有正确结论的序号是________.解析:因为某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎪⎨⎪⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,所以24k +6=16,即4k +6=4,解得k =-12,所以t =⎩⎪⎨⎪⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414小时,到13时,甲所购买的食品不在保鲜时间内,故③错误;④由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 所以正确结论的序号为①④.答案:①④。

高考数学二轮复习专题补偿练2基本初等函数、函数与方程理

高考数学二轮复习专题补偿练2基本初等函数、函数与方程理

补偿练二 基本初等函数、函数与方程(建议用时:40分钟)一、选择题 1.函数f (x )=3x21-x+lg(3x +1)的定义域是( ).A.⎝ ⎛⎭⎪⎫-13,+∞B.⎝ ⎛⎭⎪⎫-13,1C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 解析 由题意知⎩⎪⎨⎪⎧1-x >0,3x +1>0,解得-13<x <1.答案 B2.若奇函数f (x )在(0,+∞)上的解析式是f (x )=x (1-x ),则在(-∞,0)上,f (x )的解析式是( ).A .f (x )=-x (1-x )B .f (x )=x (1+x )C .f (x )=-x (1+x )D .f (x )=x (1-x )解析 当x ∈(-∞,0)时,-x ∈(0,+∞), ∴f (-x )=-x (1+x ), 又f (-x )=-f (x ), ∴f (x )=x (1+x ). 答案 B3.设函数f (x )=⎩⎪⎨⎪⎧1-x 2,x ≤1,x 2+x -2,x >1,则f ⎝⎛⎭⎪⎫1f的值为 ( ).A.1516 B .-2716 C.89 D .18 解析 f (2)=4,1f=14, ∴f ⎝⎛⎭⎪⎫1f =f ⎝ ⎛⎭⎪⎫14=1-⎝ ⎛⎭⎪⎫142=1516. 答案 A4.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ).A .a >b >cB .a >c >bC .b >a >cD .c >a >b解析 a =log 23.6=log 43.62=log 412.96,又∵y =log 4x 在(0,+∞)是增函数,而3.2<3.6<12.96∴a >c >b . 答案 B5.已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,则log 2f (2)的值为( ).A.12 B .-12C .2D .-2解析 设幂函数f (x )=x α, 则f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12α=22,解得α=12,所以f (x )=x .∴log 2f (2)=log 22=12.答案 A 6.函数f (x )=e1-x2的部分图象大致是( ).解析 因函数f (x )为偶函数,所以图象关于y 轴对称,排除A ,B ,又因为e 1-x2>0,所以排除D. 答案 C7.函数f (x )=lg x -1x的零点所在的区间是( ).A .(3,4)B .(2,3)C .(1,2)D .(0,1)解析 因为f (2)=lg 2-12<0,f (3)=lg 3-13>0,且f (x )在(0,+∞)上单调递增,所以函数的零点在区间(2,3)上.答案 B8.已知函数f (x )=x -ln |x |x2,则函数y =f (x )的大致图象为 ( ).解析 因为函数f (x )为非奇非偶函数, 所以排除B 、C.又f (-1)=-1<0,排除D. 答案 A 二、填空题9.若函数f (x )为奇函数,当x ≥0时,f (x )=x 2+x ,则f (-2)的值______.解析 由题意知f (-2)=-f (2)=-(22+2)=-6. 答案 -610.定义a *b =⎩⎪⎨⎪⎧a ,a <b ,b ,a ≥b ,已知a =30.3,b =0.33,c =log 30.3,则(a *b )*c =______(用a ,b ,c 作答).解析 log 30.3<0<0.33<1=30<30.3, 即有c <b <a依题意得:(a *b )*c =b *c =c . 答案 c11.某公司购买一批机器投入生产,据市场分析每台机器生产的产品可获得的总利润y (单位:万元)与机器运转时间x (单位:年)的关系为y =-x 2+18x -25(x ∈N *).则当每台机器运转______年时,年平均利润最大,最大值是______万元.解析 由题意知每台机器运转x 年的年平均利润为y x=18-(x +25x),而x >0,故yx≤18-225=8,当且仅当x =5时,年平均利润最大,最大值为8万元. 答案 5 812.已知函数f (x )=⎩⎪⎨⎪⎧x ,x ≤0,x 2-x ,x >0,若函数g (x )=f (x )-m 有三个不同的零点,则实数m的取值范围是________.解析 由g (x )=f (x )-m =0得f (x )=m ,作出函数y =f (x )的图象, 当x >0时,f (x )=x 2-x =⎝ ⎛⎭⎪⎫x -122-14≥-14,所以要使函数g (x )=f (x )-m 有三个不同的零点, 则-14<m <0,即m ∈⎝ ⎛⎭⎪⎫-14,0.答案 ⎝⎛⎭⎪⎫-14,013.已知函数f (x )在实数集R 上具有下列性质:①直线x =1是函数f (x )的一条对称轴;②f (x +2)=-f (x );③当1≤x 1<x 2≤3时,(f (x 2)-f (x 1))·(x 2-x 1)<0,则f (2 011),f (2 012),f (2 013)从大到小的顺序为____________. 解析 由f (x +2)=-f (x )得f (x +4)=f (x ),所以周期是4.所以f (2 011)=f (3),f (2 012)=f (0),f (2 013)=f (1),又直线x =1是函数f (x )的一条对称轴. 所以f (2 012)=f (0)=f (2).由(f (x 2)-f (x 1))·(x 2-x 1)<0可知当1≤x 1<x 2≤3时,函数单调递减;所以f (1)>f (2)>f (3),故f (2 013)>f (2 012)>f (2 011).答案 f (2 013)>f (2 012)>f (2 011)14.已知定义在R 上的函数f (x )的图象关于点⎝ ⎛⎭⎪⎫-34,0成中心对称,对任意实数x 都有f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,且f (-1)=1,f (0)=-2,则f (0)+f (1)+…+f (2016)=________.解析 由函数关于点⎝ ⎛⎭⎪⎫-34,0对称可知,f (x )+f ⎝ ⎛⎭⎪⎫-32-x =0,所以f (1)+f ⎝ ⎛⎭⎪⎫-52=0,又f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f ⎝ ⎛⎭⎪⎫-52=-1f -=-1,所以f (1)=1,因为f (x )=-1f ⎝ ⎛⎭⎪⎫x +32,所以f (x )=-1f ⎝ ⎛⎭⎪⎫x +32=-1-1f x +=f (x +3),即f (x )是以3为周期的函数,故f(3)=f(0)=-2,f(2)=f(-1)=1,所以f(0)+f(1)+f(2)+…+(2 016)=f(0)+[f(1)+f(2)+f(3)]×672=f(0)=-2.答案-215.设函数y=f(x)是定义在R上的奇函数,且满足f(x-2)=-f(x),对一切x∈R都成立,又当x∈[-1,1]时,f(x)=x3,则下列四个命题:①函数y=f(x)是以4为周期的周期函数;②当x∈[1,3],f(x)=(2-x)3;③函数y=f(x)的图象关于x=1对称;④函数y =f(x)的图象关于(2,0)对称,其中正确命题的序号是________.解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵f(x-2)=-f(x)对一切x∈R都成立,∴f(x-4)=f(x),∴函数y=f(x)是以4为周期的周期函数,故①正确;当x∈[1,3],x-2∈[-1,1],f(x-2)=(x-2)3=-f(x),∴f(x)=(2-x)3,故②正确;∵f(x-2)=-f(x),∴f(1+x)=f(1-x),∴函数y=f(x)的图象关于x=1对称,故③正确;∵当x∈[1,3]时,f(x)=(2-x)3,∴f(2)=0,∵f(x-2)=-f(x),∴f(-x-2)=-f(-x)=f(x)=-f(x-2),∴f(x+2)=-f(x-2),∴函数y=f(x)的图象关于(2,0)对称,故④正确.答案①②③④。

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)

第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。

2020版高考理科数学大二轮专题复习新方略课时作业: 4基本初等函数、函数与方程及函数的应用

2020版高考理科数学大二轮专题复习新方略课时作业: 4基本初等函数、函数与方程及函数的应用

答案:A2.[2019·安徽皖江八校联考]已知函数y =x a ,y =x b ,y =c x 的图象如图所示,则a ,b ,c 的大小关系为( ),b =,0<c <,得1212)解析:函数f (x )的定义域为R ,关于原点对称,f (-x )=-=-,则f (-x )+f (x )=0,所以f (x )是奇函数,函1e -x +112e x e x +112数f (x )=-显然是减函数.故选C.1e x +112答案:C6.[2019·山西大同模拟]函数f (x )=|lg(2-x )|在下列区间中为增函轴对称得到y =-(x -2)]的图象,将得到的图象在下方的部分翻折上来,就可以得到f (x )=|lg(2由图象知,在选项中的区间上,满足f (x )是增函数的显然只有C .f (x )=+tan xD .f (x )=sinx (2)解析:A 选项,因为f (x )=x +|x |,所以f (-x )=-x +|x |,而-f (x )=-x -|x |,所以f (x )=x +|x |不是奇函数,排除A ;B 选项,因为f (x )=x -1+x ,所以f (-x )=-x -1-x =-f (x ),所以函数f (x )是奇函数,但令f (x )=0,可知方程无解,即f (x )没有零点,所以排除B ;D 选项,因为f (x )=sin=cos x ,所以f (-x )=cos x =f (x ),即f (x )为偶函数,(x +π2)的解集是( )x |-1≤x ≤1}x |-1<x ≤2},易知g(x)的定义域为的图象,如图所示.由Error!得Error!x|-1<x≤1}.故选①b2>4ac;②2a-b=1;③a-b+c=0;④5a<b.其中正确的是( )根据二次函数的图象,可以确定二次函数湖北荆门模拟]若函数f (x )=(m -2)x 21,0)和区间(1,2)内,则m 的取值范围是1)解析:依题意,结合函数f (x )的图象可知m 需满足Error!即Error!解得<m <.1412答案:C13.[2019·四川德阳一诊]若函数f (x )=2x ,g (x )=log 2x ,则f [g (2 019)]+g [f (2 019)]=________.=-5 730×log 20.767≈2 292.ln 0.767ln 2答案:2 29216.[2019·天津南开一模]设函数f (x )=Error!若函数g (x )=x +a -f (x )有三个零点,则这三个零点之和的取值范围是________.解析:函数f (x )=Error!函数g (x )=x +a -f (x )有三个零点,即方程a =f (x )-x 有三个根,f (x )-x =Error!所以函数y =a 和y =f (x )-x 设三个交点的横坐标分别为x 1,x 2,x 3,且3x +4=-3,得。

2020届高考数学大二轮复习层级二专题一函数与导数第2讲基本初等函数、函数与方程课时作业

2020届高考数学大二轮复习层级二专题一函数与导数第2讲基本初等函数、函数与方程课时作业

第2讲 基本初等函数、函数与方程限时40分钟 满分80分一、选择题(本大题共12小题,每小题5分,共60分)1.(2019·云南检测)设a =60.7,b =log 70.6,c =log 0.60.7,则a ,b ,c 的大小关系为( ) A .c >b >a B .b >c >a C .c >a >bD .a >c >b解析:D [因为a =60.7>1,b =log 70.6<0,0<c =log 0.60.7<1,所以a >c >b .] 2.(北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与M N最接近的是( )(参考数据:lg 3≈0.48) A .1033B .1053C .1073D .1093解析:D [设M N =x =33611080,两边取对数,lg x =lg 33611080=lg3361-lg1080=361×lg 3-80=93.28,所以x =1093.28,即MN最接近1093,故选D.]3.(2020·安徽皖中名校联考)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )B .(-∞,a )和(a ,b )C .(b ,c )和(c ,+∞)D .(-∞,a )和(c ,+∞)解析:A [由题意可得f (a )>0,f (b )<0,f (c )>0,则由零点存在性定理可知,选A.] 4.(2019·铁人中学期中)函数f (x )满足f (x +2)=f (x ),且当-1≤x ≤1时,f (x )=|x |.若y =f (x )的图象与g (x )=log a x (a >0且a ≠1)的图象有且仅有四个交点,则a 的取值集合为( )A .{4,5}B .{4,6}C .{5}D .{6}解析:C [函数f (x +2)=f (x ),则函数f (x )是周期为2的周期函数,画出函数f (x )的图象(图略),数形结合可知,当g (x )的图象过点(5,1)时,f (x )的图象与g (x )=log a x 的图象仅有四个交点,则g (5)=log a 5=1,得a =5.故选C.]5.(2020·广西三校)函数f (x )=x 2lg x -2x +2的图象( ) A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称解析:B [因为f (x )=x 2lgx -2x +2,所以其定义域为(-∞,-2)∪(2,+∞),所以f (-x )=x 2lg x +2x -2=-x 2lg x -2x +2=-f (x ),所以函数为奇函数,所以函数的图象关于原点对称.]6.某商店已按每件80元的成本购进某商品1 000件,根据市场预测,销售价为每件100元时可全部售完,定价每次提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件( )A .100元B .110元C .150元D .190元解析:D [设售价提高x 元,利润为y 元,则依题意得y =(1 000-5x )×(20+x )=-5x2+900x +20 000=-5(x -90)2+60 500.故当x =90时,y max =60 500,此时售价为每件190元.]7.(2020·深圳模拟)已知函数f (x )=ln x -2[x ]+3,其中[x ]表示不大于x 的最大整数(如[1.6]=1,[-2.1]=-3),则函数f (x )的零点个数是( )A .1B .2C .3D .4解析:B [设g (x )=ln x ,h (x )=2[x ]-3,当0<x <1时,h (x )=-3,作出图象, 两个函数图象有一个交点,即f (x )有一个零点;当2≤x <3时,h (x )=1,ln 2≤g (x )<ln 3. 此时两函数图象有一个交点,即f (x )有一个零点, 当x ≥3以后,两函数图象无交点, 综上,共有两个零点.]8.(2020·贵阳模拟)某地方政府为鼓励全民创业,拟对本地产值在50万元到500万元的新增小微企业进行奖励,奖励方案遵循以下原则:奖金y (单位:万元)随年产值x (单位:万元)的增加而增加,且奖金不低于7万元,同时奖金不超过年产值的15%.若采用函数f (x )=15x -a x +8作为奖励函数模型,则最小的正整数a 的值为( )A .310B .315C .320D .325解析:B [对于函数模型f (x )=15x -a x +8=15-120+ax +8,a 为正整数,函数在[50,500]上单调递增,f (x )min =f (50)≥7,得a ≤344,要使f (x )≤0.15x 对x ∈[50,500]恒成立,即a ≥-0.15x 2+13.8x 对x ∈[50,500]恒成立,所以a ≥315.综上,最小的正整数a 的值为315.]9.(山东卷)已知当x ∈[0,1]时,函数y =(mx -1)2的图象与y =x +m 的图象有且只有一个交点,则正实数m 的取值范围是( )A .(0,1]∪[23,+∞)B .(0,1]∪[3,+∞)C .(0,2]∪[23,+∞)D .(0,2]∪[3,+∞)解析:B [当0<m ≤1时,1m≥1,y =(mx -1)2单调递减,且y =(mx -1)2∈[(m -1)2,1],y =x +m 单调递增,且y =x +m ∈[m,1+m ],此时有且仅有一个交点;当m >1时,0<1m<1,y =(mx -1)2在⎣⎢⎡⎦⎥⎤1m,1上单调递增,所以要有且仅有一个交点,需(m -1)2≥1+m ⇒m ≥3,选B.]10.(2020·长春模拟)已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( )A .[-1,1)B .[0,2]C .[-2,2)D .[-1,2)解析:D [∵f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,∴g (x )=f (x )-2x =⎩⎪⎨⎪⎧-x +2,x >a ,x 2+3x +2,x ≤a ,而方程-x +2=0的解为2,方程x 2+3x +2=0的解为-1,-2;若函数g (x )=f (x )-2x 恰有三个不同的零点,则⎩⎪⎨⎪⎧2<a ,-1≤a ,-2≤a ,解得-1≤a <2,实数a 的取值范围是[-1,2).故选D.]11.(2019·长春质量监测)已知函数f (x )=x -1x -2与g (x )=1-sin πx ,则函数F (x )=f (x )-g (x )在区间[-2,6]上的所有零点的和为( )A .4B .8C .12D .16解析:D [令F (x )=f (x )-g (x )=0,得f (x )=g (x ),在同一平面直角坐标系中分别画出函数f (x )=1+1x -2与g (x )=1-sin πx 的图象,如图所示.f (x ),g (x )的图象都关于点(2,1)对称,结合图象可知f (x )与g (x )的图象在[-2,6]上共有8个交点,交点的横坐标即F (x )=f (x )-g (x )的零点,且这些交点关于直线x =2成对出现,由对称性可得所有零点之和为4×2×2=16,故选D.]12.(2020·烟台模拟)已知函数y =f (x -1)的图象关于点(1,0)对称,且当x ∈(-∞,0)时,f (x )+xf ′(x )<0成立(其中f ′(x )是f (x )的导函数),若a =30.3·f (30.3),b =(log π3)·f (log π3),c =⎝⎛⎭⎪⎫log 319·f ⎝ ⎛⎭⎪⎫log 319,则a ,b ,c 的大小关系是( ) A .a >b >c B .c >a >b C .c >b >aD .a >c >b解析:B [因为当x ∈(-∞,0)时不等式f (x )+xf ′(x )<0成立,即[xf (x )]′<0, 所以g (x )=xf (x )在(-∞,0)上是减函数. 又因为函数y =f (x -1)的图象关于点(1,0)对称, 所以函数y =f (x )的图象关于点(0,0)对称, 所以函数y =f (x )是定义在R 上的奇函数, 所以g (x )=xf (x )是定义在R 上的偶函数, 所以g (x )=xf (x )在(0,+∞)上是增函数. 又因为30.3>1>log π3>0>log 319=-2,2=-log 319>30.3>1>log π3>0,所以⎝ ⎛⎭⎪⎫-log 319f ⎝ ⎛⎭⎪⎫-log 319>30.3·f (30.3)>(log π3)·f (log π3),即⎝ ⎛⎭⎪⎫log 319f ⎝ ⎛⎭⎪⎫log 319>30.3·f (30.3)>(log π3)·f (log π3),即c >a >b ,故选B.]二、填空题(本大题共4小题,每小题5分,共20分)13.(2020·福建三明模拟)物体在常温下的温度变化可以用牛顿冷却定律来描述:设物体的初始温度是T 0,经过一定时间t (单位:分)后的温度是T ,则T -T a =(T 0-T a )·⎝ ⎛⎭⎪⎫12th,其中T a 称为环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降到40 ℃需要20分钟,那么此杯咖啡从40 ℃降温到32 ℃时,还需要________分钟.解析:由已知可得T a =24,T 0=88,T =40,则40-24=(88-24)×⎝ ⎛⎭⎪⎫1220h ,解得h =10.当咖啡从40 ℃降温到32 ℃时,可得32-24=(40-24)×⎝ ⎛⎭⎪⎫12t10,解得t =10.故还需要10分钟.答案:1014.(2020·湖南省四校联考)已知函数f (x )=lg x +32x -9在区间(n ,n +1)(n ∈Z )上存在零点,则n =________.解析:易知函数f (x )的定义域为(0,+∞),且f (x )在其定义域内单调递增,由零点存在性定理知,若函数f (x )在区间(n ,n +1)(n ∈Z )上存在零点,则有⎩⎪⎨⎪⎧f n <0,fn +1>0.又f (4)=lg 4+6-9=lg 4-3<0,f (5)=lg 5+152-9=lg 5-32<0,f (6)=lg 6+9-9=lg 6>0,所以函数f (x )在(5,6)上存在零点,所以n =5.答案:515.(2018·浙江卷)已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.当λ=2时,不等式f (x )<0的解集是________.若函数f (x )恰有2个零点,则λ的取值范围是________.解析:∵λ=2,∴f (x )=⎩⎪⎨⎪⎧x -4,x ≥2x 2-4x +3,x <2当x ≥2时,x -4<0得2≤x <4. 当x <2时,x 2-4x +3<0,解得1<x <2. 综上不等式的解集为1<x <4. 当y =x 2-4x +3有2个零点时,λ>4.当y =x 2-4x +3有1个零点时,y =x -4有1个零点,1<λ≤3. ∴1<λ≤3或λ>4.答案:(1,4);(1,3]∪(4,+∞)16.(2019·合肥调研)已知f (x )=⎩⎪⎨⎪⎧x 2-4,x ≤a ,e x-1,x >a(其中a <0,e 为自然对数的底数),若g (x )=f [f (x )]在R 上有三个不同的零点,则a 的取值范围是____________.解析:令t=f(x),所以g(x)=f(t),g(x)=f[f(x)]在R上要有三个不同的零点,则f(t)=0必有两解,所以-2≤a<0,所以f(x)的大致图象如图所示,又f(x)的零点为x1=0,x2=-2,所以y=f(t)必有两个零点,t1=-2和t2=0,而x≤a时,f(x)min=a2-4,所以要使y=f(t)的两个零点都存在,则a2-4≤-2,否则t1=-2这个零点就不存在,故a2≤2,所以-2≤a<0.答案:[-2,0)。

新课标2020届高考数学二轮复习专题二函数与导数2.2函数与方程及函数的应用课件理20201204211-

新课标2020届高考数学二轮复习专题二函数与导数2.2函数与方程及函数的应用课件理20201204211-

序为
读题 文字语言

建模 数学语言

求解 数学应用

反馈
检验作答.
-14-
命题热点一 命题热点二 命题热点三
对点训练3某食品的保鲜时间y(单位:h)与储藏温度x(单位:℃)满
足函数关系y=ekx+b(e=2.718…为自然对数的底数,k,b为常数).若该
食品在0 ℃的保鲜时间是192 h,在22 ℃的保鲜时间是48 h,则该食 关闭
2.二次函数y=a(x-h)2+k(a≠0),x∈[p,q]的最值问题实际上是函数 在[p,q]上的单调性问题.常用方法:(1)注意是“轴动区间定”,还是“轴 定区间动”,找出分类的标准;(2)利用导数知识,最值可以在端点和极 值点处寻找.
3.f(x)≥0在[p,q]上恒成立问题,等价于f(x)min≥0,x∈[p,q].
-16-
规律总结
拓展演练
1.下列函数中,既是偶函数又存在零点的是( )
A.y=ln x
B.y=x2+1
C.y=sin x
D.y=cos x
关闭
y=ln x既不是奇函数也不是偶函数;y=x2+1是偶函数,但不存在零点,不满足
要求;y=sin x是奇函数不满足要求;y=cos x是偶函数,由其图象可知有无数
-11-
命题热点一 命题热点二 命题热点三
函数的实际应用 【思考】 应用函数模型解决实际问题的一般程序是怎样的? 例3某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄 水池的底面半径为r m,高为h m,体积为V m3.假设建造成本仅与表 面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160 元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率). (1)将V表示成r的函数V(r),并求该函数的定义域; (2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积 最大.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时作业(四) 基本初等函数、函数与方程及函数的应用[授课提示:对应学生用书第77页]1.已知函数f (x )=(m 2-m -5)x m是幂函数,且在x ∈(0,+∞)上为增函数,则实数m 的值是( ) A .-2 B .4 C .3 D .-2或3解析:f (x )=(m 2-m -5)x m 是幂函数⇒m 2-m -5=1⇒m =-2或m =3.又在x ∈(0,+∞)上是增函数,所以m =3.答案:C 2.函数y =ax +2-1(a >0且a ≠1)的图象恒过的点是( )A .(0,0)B .(0,-1)C .(-2,0)D .(-2,-1)解析:法一:因为函数y =a x(a >0,a ≠1)的图象恒过点(0,1),将该图象向左平移2个单位,再向下平移1个单位得到y =ax +2-1(a >0,a ≠1)的图象,所以y =ax +2-1(a >0,a ≠1)的图象恒过点(-2,0),选项C 正确.法二:令x +2=0,x =-2,得f (-2)=a 0-1=0,所以y =a x +2-1(a >0,a ≠1)的图象恒过点(-2,0),选项C 正确.答案:C3.(2017·大同二模)某种动物的繁殖数量y (单位:只)与时间x (单位:年)的关系式为y =a log 2(x +1),若这种动物第一年有100只,则到第7年它们发展到( )A .300只B .400只C .500只D .600只解析:由题意,得100=a log 2(1+1),解得a =100,所以y =100log 2(x +1),当x =7时,y =100log 2(7+1)=300,故到第7年它们发展到300只.答案:A4.(2017·安徽省两校阶段性测试)函数y =x 2ln|x ||x |的图象大致是( )解析:易知函数y =x 2ln|x ||x |是偶函数,可排除B ,当x >0时,y =x ln x ,y ′=ln x +1,令y ′>0,得x >e -1,所以当x >0时,函数在(e -1,+∞)上单调递增,结合图象可知D 正确,故选D.答案:D5.(2017·武汉二模)设函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x -7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是( )A .(-∞,-3)B .(1,+∞)C .(-3,1)D .(-∞,-3)∪(1,+∞)解析:法一:当a <0时,不等式f (a )<1为⎝ ⎛⎭⎪⎫12a -7<1,即⎝ ⎛⎭⎪⎫12a <8,即⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12-3,因为0<12<1,所以a >-3,此时-3<a <0;当a ≥0时,不等式f (a )<1为a <1,所以0≤a <1.故a 的取值范围是(-3,1),故选C.法二:取a =0,f (0)=0<1,符合题意,排除A ,B ,D. 答案:C6.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析:因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).答案:C7.(2017·陕西省高三教学质量检测试题(一))已知a =213-,b =(2log 23)12-,c =14⎠⎛0πsin x d x ,则实数a ,b ,c 的大小关系是( )A .a>c>bB .b>a>cC .a>b>cD .c>b>a解析:依题意得,a =213-,b =312-,c =-14cos x ⎪⎪⎪π=12,所以a 6=2-2=14,b 6=3-3=127,c 6=⎝ ⎛⎭⎪⎫126=164,则a>b>c ,选C .答案:C8.(2017·云南省第一次统一检测)已知a ,b ,c ,d 都是常数,a>b ,c>d.若f(x)=2 017-(x -a)(x -b)的零点为c ,d ,则下列不等式正确的是( )A .a>c>b>dB .a>b>c>dC .c>d>a>bD .c>a>b>d解析:点,且a>b ,c>d ,所以可在平面直角坐标系中作出函数f(x)的大致图象,如图所示,由图可知c>a>b>d ,故选D .答案:D9.(2017·贵州省适应性考试)某地一年的气温Q(t)(单位:℃)与时间t(月份)之间的关系如图所示,已知该年的平均气温为10 ℃,令C(t)表示时间段[0,t]的平均气温,下列四个函数图象中,最能表示C(t)与t 之间的函数关系的是( )解析:若增加的数大于当前的平均数,则平均数增大;若增加的数小于当前的平均数,则平均数减小.因为12个月的平均气温为10 ℃,所以当t =12时,平均气温应该为10 ℃,故排除B ;因为在靠近12月份时其温度小于10 ℃,因此12月份前的一小段时间内的平均气温应该大于10 ℃,排除C ;6月份以后增加的温度先大于平均值后小于平均值,故平均气温不可能出现先减小后增加的情况,故排除D ,故选A .答案:A10.(2017·××市第一次统一考试)已知f(x)是偶函数,当x>0时,f(x)单调递减,设a =-21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则f(a),f(b),f(c)的大小关系为( )A .f(c)<f(b)<f(a)B .f(c)<f(a)<f(b)C .f(c)>f(b)>f(a)D .f(c)>f(a)>f(b)解析:依题意,注意到21.2>20.8=⎝ ⎛⎭⎪⎫12-0.8>20=1=log 55>log 54=2log 52>0,又函数f(x)在区间(0,+∞)上是减函数,于是有f(21.2)<f(20.8)<f(2log 52),由函数f(x)是偶函数得f(a)=f(21.2),因此f(a)<f(b)<f(c),选C .答案:C11.(2017·××市高考实战模拟)已知奇函数f(x)是R 上的单调函数,若函数y =f (2x 2+1)+f (λ-x )只有一个零点,则实数λ的值是( )A.14B.18C .-78D .-38解析:∵函数y =f (2x 2+1)+f (λ-x )只有一个零点,∴方程f (2x 2+1)+f (λ-x )=0只有一个实数根,又函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴f (2x 2+1)+f (λ-x )=0⇔f (2x 2+1)=-f (λ-x )⇔f (2x 2+1)=f (x -λ)⇔2x 2+1=x -λ,∴方程2x 2-x +1+λ=0只有一个实数根,∴Δ=(-1)2-4×2×(1+λ)=0,解得λ=-78.故选C.答案:C12.若函数y =f (x )的图象上存在不同的两点M 、N 关于原点对称,则称点对(M ,N )是函数y =f (x )的一对“和谐点对”(点对(M ,N )与(N ,M )看作同一对“和谐点对”).已知函数f (x )=⎩⎪⎨⎪⎧e x,x <0,x 2-4x ,x >0,则此函数的“和谐点对”有( )A .1对B .2对C .3对D .4对解析:作出f (x )=⎩⎪⎨⎪⎧e x,x <0,x 2-4x ,x >0的图象如图所示,f (x )的“和谐点对”数可转化为y =e x (x <0)和y =-x2-4x (x <0)的图象的交点个数.由图象知,函数f (x )有2对“和谐点对”. 答案:B13.⎝ ⎛⎭⎪⎫168134-+log 354+log 345=________.解析:⎝ ⎛⎭⎪⎫168134-+log 354+log 345=⎝ ⎛⎭⎪⎫23-3+log 31=278+0=278. 答案:27814.(2017·辽宁沈阳一模)已知函数f (x )=|log 3x |,实数m ,n 满足0<m <n ,且f (m )=f (n ),若f (x )在[m 2,n ]上的最大值为2,则nm=________.解析:∵f (x )=|log 3x |,正实数m ,n 满足m <n ,且f (m )=f (n ),∴-log 3m =log 3n ,∴mn =1.∵f (x )在区间[m 2,n ]上的最大值为2,函数f (x )在[m 2,1)上是减函数,在(1,n ]上是增函数,∴-log 3m 2=2或log 3n =2.若-log 3m 2=2,得m =13,则n =3,此时log 3n =1,满足题意.那么n m =3÷13=9.同理:若log 3n =2,得n =9,则m =。

相关文档
最新文档