高考数学大二轮总复习与增分策略 专题二 函数与导数 第3讲 导数及其应用练习 文

合集下载

专题3导数及其应用两大考点与真题训练 -2022年高考数学考前30天提分方案(新高考专用)

专题3导数及其应用两大考点与真题训练 -2022年高考数学考前30天提分方案(新高考专用)

2022年高考数学考前30天迅速提分复习方案(新高考地区专用)专题1.3导数及其应用两大考点与真题训练考点一:导数的几何意义一、单选题1.(2022·河南焦作·二模(文))函数()()2e cos xf x x x =-⋅的图象在0x =处的切线方程为( ) A .210x y -+= B .20x y -+= C .20x +=D .210x y -+=2.(2022·贵州·模拟预测(理))若存在两条过点(1,1)-的直线与曲线2ay x x=-相切,则实数a 的取值范围为( ) A .(,4)(1,)∞∞--⋃+ B .(,1)(4,)-∞-+∞ C .(,0)(3,)-∞⋃+∞D .(,3)(0,)∞∞--⋃+3.(2020·四川·模拟预测(理))曲线()ln f x x x x =-在(,0)a 处的切线方程为( ) A .0y = B .y x = C .e y x =-+D .e y x =-4.(2022·福建·三模)已知()f x 是定义在R 上的函数,且函数(1)1y f x =+-是奇函数,当12x <时,()ln(12)f x x =-,则曲线()y f x =在2x =处的切线方程是( ) A .4y x =-B .y x =C .22y x =-+D .26y x =-+5.(2022·全国·模拟预测)曲线()cos 2f x x ππ=+在12x =处的切线方程为( ) A .10x y +-= B .0x y ππ+-= C .10x y π+-=D .0x y π+-=二、多选题6.(2022·重庆·二模)已知曲线()e xf x x=及点(),0P s ,则过点P 且与曲线()y f x =相切的直线可能有( )A .0条B .1条C .2条D .3条7.(2022·福建漳州·二模)已知函数()xf x e =,则下列结论正确的是( )A .曲线()y f x =的切线斜率可以是1B .曲线()y f x =的切线斜率可以是1-C .过点()0,1且与曲线()y f x =相切的直线有且只有1条D .过点()0,0且与曲线()y f x =相切的直线有且只有2条8.(2022·全国·模拟预测)已知函数()e xf x x =,则( )A .曲线()y f x =在点()0,0处的切线方程为y x =B .函数()f x 的极小值为e -C .当2213e 2ea ≤<时,()()1f x a x <-仅有一个整数解 D .当223e 2e 2a <≤时,()()1f x a x <-仅有一个整数解9.(2022·全国·模拟预测)已知a 为常数,函数()()ln f x x x ax =-有两个极值点1x ,2x (12x x <),则( ) A .()10f x >B .()10<f xC .()212f x >-D .()212f x <-三、填空题10.(2022·江西·二模(理))已知函数()sin cos f x x x x =+,则函数()f x 在点(,())f ππ处的切线方程是____.11.(2022·河北保定·一模)若函数()ln f x x m x=在()()1,1f 处的切线过点()0,2,则实数m =______.12.(2022·陕西陕西·二模(文))已知函数()y f x =的图象过原点,且()y f x =在原点的切线为第一、三象限的平分线,试写出一个满足条件的函数______.13.(2022·全国·模拟预测)曲线()()1ln xf x x e x =++在()1,a 处的切线与直线20bx y -+=平行,则b a -=___________.14.(2022·四川宜宾·二模(理))已知21()2()3f x x xf '=+-,则曲线()f x 在点13x =-处的切线方程为___________.四、解答题15.(2022·河南焦作·二模(理))已知函数()()e 2axf x x =-.(1)若1a =,()f x 的一个零点为()000x x ≠,求曲线()y f x =在0x x =处的切线方程; (2)若当0x >时,不等式()132ln f x a x x x x ⎡⎤⎛⎫+≥+⋅ ⎪⎢⎥⎣⎦⎝⎭恒成立,求实数a 的取值范围.16.(2022·陕西西安·二模(理))已知函数()ln xf x x=. (1)求曲线()y f x =在点11,ee f⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线方程; (2)设()()g x f x k =-有两个不同的零点12,x x ,求证:212e x x >.17.(2022·四川达州·二模(文))已知()()e 1xf x mx m =+<-.(1)当2m =-时,求曲线()y f x =上的斜率为1-的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-恒成立,求实数m 的范围.18.(2022·河南·模拟预测(文))已知函数()21si cos n 2f x x x a x x =-++. (1)当1a =-时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若函数()f x 在3π0,4⎡⎤⎢⎥⎣⎦上单调递减,求a 的取值范围.19.(2022·全国·模拟预测(文))设函数()()()ln 12af x x a x x =+-+. (1)若2a =,过点()2,8A --作曲线()y f x =的切线,求切点的坐标; (2)若()f x 在区间()2,+∞上单调递增,求整数a 的最大值.20.(2022·四川达州·二模(理))已知:()e xf x mx =+.(1)当1m =时,求曲线()y f x =的斜率为2的切线方程;(2)当0x ≥时,()2213222m f x x ≥+-成立,求实数m 的范围21.(2022·北京西城·一模)已知函数()1e x axf x a=-+,0a ≠. (1)当1a =时,①求曲线()y f x =在0x =处的切线方程; ②求证:()f x 在(0,)+∞上有唯一极大值点; (2)若()f x 没有零点,求a 的取值范围.22.(2022·陕西陕西·二模(文))已知()()21ln R 2x ax a f x x a =-+∈.(1)求1a =时,()f x 在()()1,1f 处的切线方程;(2)若()f x 存在两个极值点1x ,2x 且()()12f x f x m +≤,求实数m 的取值范围.23.(2022·陕西商洛·一模(文))已知函数e ()(1)1xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当1a =时,()2f x ≥恒成立,求b 的值.考点二:导数的应用一、单选题1.(2022·陕西·西安中学模拟预测(文))已知函数()e ln x f x x x x =--,若不等式()f x a ≥恒成立,则a 的最大值为( )A .1B .e 1-C .2D .e2.(2022·江西宜春·模拟预测(文))已知实数x ,y ,R z ∈,且满足ln e e ex y z x y z==-,1y >,则x ,y ,z 大小关系为( ) A .y x z >> B .x z y >> C .y z x >> D .x y z >>3.(2022·内蒙古呼和浩特·一模(文))已知函数()|ln(1)|f x x ax a =--+有3个零点,则a 的取值范围是( ) A .(0,e)B .(0,1)C .10,e ⎛⎫ ⎪⎝⎭D .210,e ⎛⎫ ⎪⎝⎭二、多选题4.(2022·重庆·模拟预测)已知函数()e 1xaf x x =--有唯一零点,则实数a 的值可以是( ) A .1-B .12-C .0D .15.(2022·全国·模拟预测)已知函数()()e 1xf x x =+,()()1lng x x x =+,则( ) A .函数()f x 在R 上无极值点B .函数()g x 在()0,∞+上存在唯一极值点C .若对任意0x >,不等式()()2ln f ax f x >恒成立,则实数a 的最大值为2eD .若()()()120f x g x t t ==>,则()12ln 1t x x +的最大值为1e6.(2022·江苏江苏·一模)已知函数()e ()ln R xf x a x x a x=⋅-+∈,若对于定义域内的任意实数s ,总存在实数t 使得()()f t f s <,则满足条件的实数a 的可能值有( ) A .-1B .0C .1eD .17.(2022·海南·嘉积中学模拟预测)已知1201x x ,下列不等式恒成立的是( )A .1221e e x xx x >B .2112ln ln x x x x <C .1122ln ln x x x x <D .1221ln e l e n x xx x +<+三、填空题8.(2022·山东潍坊·模拟预测)设函数()()e 1xf x a x b x=+-+(a ,b ∈R )在区间[]1,3上总存在零点,则22a b +的最小值为________.9.(2022·贵州·模拟预测(理))如图,圆O :224x y +=交x 轴的正半轴于点A .B 是圆上一点,M 是弧AmB 的中点,设∠AOM=θ(0θπ<<),函数()f θ表示弦AB 长与劣弧AM 长之和.当函数()f θ取得最大值时,点M 的坐标是________.10.(2022·陕西·西安中学模拟预测(文))若过定点(1,e)P 恰好可作曲线e (0)x y a a =>的两条切线,则实数a 的取值范围是__________.11.(2022·浙江浙江·二模)已知函数()||(0,1,2,3)k f x x ka a k =->=,函数123()()()()g x f x f x f x =.若对任意[0,3]x a ∈,()12()()2g f x f x +≤恒成立,则实数a 的取值范围是________.四、解答题12.(2022·陕西·模拟预测(文))已知函数()ln 2=-f x ax x x .(1)若()f x 在1x =处取得极值,求()f x 的单调区间; (2)若函数2()()2=-+f x h x x x有1个零点,求a 的取值范围.13.(2022·河南省杞县高中模拟预测(理))已知函数()e xf x =,()1g x ax =+.(1)若()()f x g x ≥恒成立,求实数a 的值;(2)若()0,1x ∈,求证:()1ln 11x x f x x-+-<.14.(2022·江西宜春·模拟预测(文))已知函数()e 1xf x x x =--.(1)求函数()f x 在区间[]0,1上的最小值;(2)不等式()1ln 2a f x x x x ⎡⎤++>+-⎣⎦对于()0,x ∈+∞恒成立,求实数a 的取值范围.【真题训练】一、单选题1.(2021·浙江·高考真题)已知函数21(),()sin 4f x xg x x =+=,则图象为如图的函数可能是( )A .1()()4y f x g x =+- B .1()()4y f x g x =-- C .()()y f x g x =D .()()g x y f x =2.(2021·全国·高考真题(理))设2ln1.01a =,ln1.02b =, 1.041c =.则( ) A .a b c <<B .b c a <<C .b a c <<D .c a b <<3.(2021·全国·高考真题(理))设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( ) A .a b <B .a b >C .2ab a <D .2ab a >4.(2021·全国·高考真题)若过点(),a b 可以作曲线e x y =的两条切线,则( ) A .e b a < B .e a b < C .0e b a <<D .0e a b <<二、填空题5.(2021·全国·高考真题)已知函数12()1,0,0xf x e x x <=>-,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是_______.6.(2021·全国·高考真题)写出一个同时具有下列性质①②③的函数():f x _______. ①()()()1212f x x f x f x =;②当(0,)x ∈+∞时,()0f x '>;③()'f x 是奇函数. 8.(2021·全国·高考真题(理))曲线212x y x -=+在点()1,3--处的切线方程为__________.三、解答题9.(2021·天津·高考真题)已知0a >,函数()x f x ax xe =-. (I )求曲线()y f x =在点(0,(0))f 处的切线方程: (II )证明()f x 存在唯一的极值点(III )若存在a ,使得()f x a b ≤+对任意x ∈R 成立,求实数b 的取值范围.10.(2021·全国·高考真题)一种微生物群体可以经过自身繁殖不断生存下来,设一个这种微生物为第0代,经过一次繁殖后为第1代,再经过一次繁殖后为第2代……,该微生物每代繁殖的个数是相互独立的且有相同的分布列,设X 表示1个微生物个体繁殖下一代的个数,()(0,1,2,3)i P X i p i ===.(1)已知01230.4,0.3,0.2,0.1p p p p ====,求()E X ;(2)设p 表示该种微生物经过多代繁殖后临近灭绝的概率,p 是关于x 的方程:230123p p x p x p x x +++=的一个最小正实根,求证:当()1E X ≤时,1p =,当()1E X >时,1p <;(3)根据你的理解说明(2)问结论的实际含义.11.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点①21,222e a b a <≤>; ②10,22a b a <<≤.12.(2021·北京·高考真题)已知函数()232xf x x a-=+. (1)若0a =,求曲线()y f x =在点()()1,1f 处的切线方程;(2)若()f x 在1x =-处取得极值,求()f x 的单调区间,以及其最大值与最小值.13.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b e x x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)14.(2021·全国·高考真题(理))已知抛物线()2:20C x py p =>的焦点为F ,且F 与圆22:(4)1M x y ++=上点的距离的最小值为4. (1)求p ;(2)若点P 在M 上,,PA PB 是C 的两条切线,,A B 是切点,求PAB △面积的最大值.15.(2021·全国·高考真题(理))设函数()()ln f x a x =-,已知0x =是函数()y xf x =的极值点. (1)求a ; (2)设函数()()()x f x g x xf x +=.证明:()1g x <.16.(2021·全国·高考真题(文))设函数22()3ln 1f x a x ax x =+-+,其中0a >. (1)讨论()f x 的单调性;(2)若()y f x =的图象与x 轴没有公共点,求a 的取值范围.17.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.18.(2021·全国·高考真题(文))已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.19.(2021·全国·高考真题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b <+<.。

2025高考数学二轮复习导数应用中的函数构造技巧

2025高考数学二轮复习导数应用中的函数构造技巧

函数形式出现的是“-”法形式时,优先考虑构造 y=型函数.
(2)利用f(x)与ex(enx)构造
() ()

常用的构造形式有 e f(x),e f(x), e , e ,这类形式一方面是对 y=uv,y=型函
x
nx
数形式的考查,另外一方面也是对(ex)'=ex,(enx)'=nenx 的考查.所以对于
f'(x)cos x-f(x)sin x>0,所以 F'(x)>0,即函数
由于
f
π
6
f
π
6
π
0<6
<
π
4
π
π
cos6<f 4
<
3
π
3
3
<
π
3
<
π
,所以
2
π
π
cos4<f 3
π
F(x)在区间(0,2)
π
4
<F
π
cos3,因此可得
π
6
,故选 AD.
F
π
6
<F
f
π
x∈(0,2)时,
π
3
<
内单调递增.
,即
锐角三角形,则( D )
A.f(sin A)sin2B>f(sin B)sin2A
B.f(sin A)sin2B<f(sin B)sin2A
C.f(cos A)sin2B>f(sin B)cos2A
D.f(cos A)sin2B<f(sin B)cos2A
解析 因为
() '
2

高考数学大二轮总复习增分策略第四篇第2讲函数与导数

高考数学大二轮总复习增分策略第四篇第2讲函数与导数

2.函数与导数1.求函数的定义域,关键是依据含自变量x 的代数式有意义来列出相应的不等式(组)求解,如开偶次方根、被开方数一定是非负数;对数式中的真数是正数;列不等式时,应列出所有的不等式,不应遗漏.对抽象函数,只要对应关系相同,括号里整体的取值范围就完全相同. [问题1] 函数f (x )=11-x +lg(1+x )的定义域是__________________.2.用换元法求解析式时,要注意新元的取值范围,即函数的定义域问题. [问题2] 已知f (cos x )=sin 2x ,则f (x )=________.3.分段函数是在其定义域的不同子集上,分别用不同的式子来表示对应关系的函数,它是一个函数,而不是几个函数.[问题3] 已知函数f (x )=⎩⎪⎨⎪⎧3x ,x ≤0,f x -,x >0,那么f (56)的值为________.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.[问题4] f (x )=-x2|x -2|-2是________函数(填“奇”“偶”或“非奇非偶”).5.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“及”连接,或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替. [问题5] 函数f (x )=1x的减区间为________________________________________.6.弄清函数奇偶性的性质(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反. (2)若f (x )为偶函数,则f (-x )=f (x )=f (|x |). (3)若奇函数f (x )的定义域中含有0,则必有f (0)=0. “f (0)=0”是“f (x )为奇函数”的既不充分也不必要条件. [问题6] 设f (x )=lg ⎝⎛⎭⎪⎫21-x +a 是奇函数,且在x =0处有意义,则该函数为( )A .(-∞,+∞)上的减函数B .(-∞,+∞)上的增函数C .(-1,1)上的减函数D .(-1,1)上的增函数7.求函数最值(值域)常用的方法(1)单调性法:适合于已知或能判断单调性的函数. (2)图象法:适合于已知或易作出图象的函数. (3)基本不等式法:特别适合于分式结构或两元的函数. (4)导数法:适合于可导函数. (5)换元法(特别注意新元的范围). (6)分离常数法:适合于一次分式.[问题7] 函数y =2x2x +1(x ≥0)的值域为________.8.函数图象的几种常见变换(1)平移变换:左右平移——“左加右减”(注意是针对x 而言);上下平移——“上加下减”. (2)翻折变换:f (x )→|f (x )|;f (x )→f (|x |).(3)对称变换:①证明函数图象的对称性,即证图象上任意点关于对称中心(轴)的对称点仍在图象上;②函数y =f (x )与y =-f (-x )的图象关于原点成中心对称;③函数y =f (x )与y =f (-x )的图象关于直线x =0 (y 轴)对称;函数y =f (x )与函数y =-f (x )的图象关于直线y =0(x 轴)对称.[问题8] 函数f (x )=2x +1x +1的图象的对称中心是________.9.有关函数周期的几种情况必须熟记:(1)f (x )=f (x +a )(a >0),则f (x )的周期T =a ;(2)f (x +a )=1f x(f (x )≠0)或f (x +a )=-f (x ),则f (x )的周期T =2a .[问题9] 对于函数f (x )定义域内任意的x ,都有f (x +2)=-1f x,若当2<x <3时,f (x )=x ,则f (2 016.5)=________. 10.二次函数问题(1)处理二次函数的问题勿忘数形结合.二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向,二看对称轴与所给区间的相对位置关系.(2)若原题中没有指出是“二次”方程、函数或不等式,要考虑到二次项系数可能为零的情形.[问题10] 若关于x 的方程ax 2-x +1=0至少有一个正根,则a 的取值范围为________. 11.(1)对数运算性质已知a >0且a ≠1,b >0且b ≠1,M >0,N >0. 则log a (MN )=log a M +log a N , log a M N=log a M -log a N , log a M n=n log a M ,对数换底公式:log a N =log b Nlog b a .推论:log m n a N =n m log a N ;log a b =1log b a. (2)指数函数与对数函数的图象与性质可从定义域、值域、单调性、函数值的变化情况考虑,特别注意底数的取值对有关性质的影响,另外,指数函数y =a x的图象恒过定点(0,1),对数函数y =log a x 的图象恒过定点(1,0). [问题11] 函数y =|log 2|x -1||的递增区间是________________. 12.幂函数y =x α(α∈R )(1)①若α=1,则y =x ,图象是直线.②当α=0时,y =x 0=1(x ≠0)图象是除点(0,1)外的直线.③当0<α<1时,图象过(0,0)与(1,1)两点,在第一象限内是上凸的. ④当α>1时,在第一象限内,图象是下凸的.(2)增减性:①当α>0时,在区间(0,+∞)上,函数y =x α是增函数;②当α<0时,在区间(0,+∞)上,函数y =x α是减函数.[问题12] 函数f (x )=x 12-⎝ ⎛⎭⎪⎫12x的零点个数为________.13.函数与方程(1)对于函数y =f (x ),使f (x )=0的实数x 叫做函数y =f (x )的零点.事实上,函数y =f (x )的零点就是方程f (x )=0的实数根.(2)如果函数y =f (x )在区间[a ,b ]上的图象是一条连续曲线,且有f (a )f (b )<0,那么函数y =f (x )在区间[a ,b ]内有零点,即存在c ∈(a ,b ),使得f (c )=0,此时这个c 就是方程f (x )=0的根.反之不成立.[问题13] 已知定义在R 上的函数f (x )=(x 2-3x +2)·g (x )+3x -4,其中函数y =g (x )的图象是一条连续曲线,则方程f (x )=0在下面哪个区间内必有实数根( )A .(0,1)B .(1,2)C .(2,3)D .(3,4) 14.求导数的方法(1)基本导数公式:c ′=0 (c 为常数);(x m)′=mxm -1(m ∈Q );(sin x )′=cos x ;(cos x )′=-sin x ;(e x )′=e x ;(a x )′=a xln a ;(ln x )′=1x ;(log a x )′=1x ln a (a >0且a ≠1).(2)导数的四则运算:(u ±v )′=u ′±v ′; (uv )′=u ′v +uv ′;⎝ ⎛⎭⎪⎫u v ′=u ′v -uv ′v 2(v ≠0). (3)复合函数的导数:y x ′=y u ′·u x ′. 如求f (ax +b )的导数,令u =ax +b ,则 (f (ax +b ))′=f ′(u )·a . [问题14] f (x )=e-2x,则f ′(x )=________.15.利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果f ′(x )>0,那么f (x )在该区间内为增函数;如果f ′(x )<0,那么f (x )在该区间内为减函数;如果在某个区间内恒有f ′(x )=0,那么f (x )在该区间内为常函数.注意:如果已知f (x )为减函数求字母取值范围,那么不等式f ′(x )≤0恒成立,但要验证f ′(x )是否恒等于0.增函数亦如此.[问题15] 函数f (x )=ax 3-2x 2+x -1在R 上是增函数,则a 的取值范围是________. 16.导数为零的点并不一定是极值点,例如:函数f (x )=x 3,有f ′(0)=0,但x =0不是极值点.[问题16] 函数f (x )=14x 4-13x 3的极值点是________.17.定积分运用微积分基本定理求定积分ʃba f (x )d x 值的关键是用求导公式逆向求出f (x )的原函数,应熟练掌握以下几个公式:ʃb ax n d x =x n +1n +1|ba ,ʃb a sin x d x =-cos x |ba , ʃba cos x d x =sin x |ba ,ʃb a 1xd x =ln x |b a (b >a >0), ʃb aa x d x =a xln a|ba .[问题17] 计算定积分ʃ1-1(x 2+sin x )d x =________.易错点1 忽视函数定义域例1 函数y =log 12(x 2-5x +6)的单调递增区间为_____________.错因分析 忽视对函数定义域的要求,漏掉条件x 2-5x +6>0.解析 由x 2-5x +6>0知{x |x >3或x <2}.令u =x 2-5x +6,则u =x 2-5x +6在(-∞,2)上是减函数,∴y =log 12(x 2-5x +6)的单调增区间为(-∞,2).答案 (-∞,2)易错点2 分段函数意义理解不准确例2 定义在R 上的函数f (x )满足f (x )=⎩⎪⎨⎪⎧log 2-x ,x ≤0,f x --f x -,x >0,则f (2 016)的值为( )A .-1B .0C .1D .2错因分析 不理解分段函数的意义,误认为应将x =2 016,代入log 2(1-x ),或者认为得不到f (2 016)的值.解析 f (2 016)=f (2 015)-f (2 014)=f (2 014)-f (2 013)-f (2 014)=-f (2 013)=f (2 010)=f (0)=0. 答案 B例 3 函数f (x )=⎩⎪⎨⎪⎧ax 2+1,x ≥0,a 2-ax,x >0在(-∞,+∞)上单调,则a 的取值范围是________________.错因分析 只考虑分段函数各段上函数值变化情况,忽视对定义域的临界点处函数值的要求.解析 若函数在R 上单调递减,则有⎩⎪⎨⎪⎧a <0,a 2-1>0,a 2-0≥1,解之得a ≤-2;若函数在R上单调递增,则有⎩⎪⎨⎪⎧a >0,a 2-1>0,a 2-0≤1,解得1<a ≤2,故a 的取值范围是(-∞,-2]∪(1,2].答案 (-∞,-2]∪(1,2]易错点3 函数零点求解讨论不全面例4 函数f (x )=mx 2-2x +1有且仅有一个正实数零点,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,0]∪{1} C .(-∞,0)∪{1}D .(-∞,1)错因分析 解本题易出现的错误有分类讨论不全面、函数零点定理使用不当,如忽视对m =0的讨论,就会错选C.解析 当m =0时,x =12为函数的零点;当m ≠0时,若Δ=0,即m =1时,x =1是函数唯一的零点,若Δ≠0,显然x =0不是函数的零点,这样函数有且仅有一个正实数零点等价于方程f (x )=mx 2-2x +1=0有一个正根一个负根,即mf (0)<0,即m <0.故选B. 答案 B易错点4 混淆“过点”和“切点”例5 求过曲线y =3x -x 3上的点(2,-2)的切线方程.错因分析 混淆过一点的切线和在一点处切线,错误认为(2,-2)一定是切点. 解 设切点为P (x 0,y 0),则点P 处的切线方程是y -y 0=(3-3x 20)(x -x 0).∵点A 在切线上,∴-2-y 0=(3-3x 20)(2-x 0).① 又∵点P 在曲线C 上, ∴y 0=3x 0-x 30.②由①、②,解得x 0=2或x 0=-1. 当x 0=2时,P 点的坐标为(2,-2), 切线方程是9x +y -16=0.当x 0=-1时,P 点的坐标为(-1,-2), 切线方程是y +2=0.综上,过点A 的曲线C 的切线方程是:9x +y -16=0或y +2=0.易错点5 极值点条件不清例6 已知f (x )=x 3+ax 2+bx +a 2在x =1处有极值为10,则a +b =________.错因分析 把f ′(x 0)=0作为x 0为极值点的充要条件,没有对a ,b 值进行验证,导致增解.解析 f ′(x )=3x 2+2ax +b ,由x =1时,函数取得极值10,得⎩⎪⎨⎪⎧f =3+2a +b =0, ①f =1+a +b +a 2=10, ②联立①②得⎩⎪⎨⎪⎧a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3.当a =4,b =-11时,f ′(x )=3x 2+8x -11=(3x +11)(x -1).在x =1两侧的符号相反,符合题意. 当a =-3,b =3时,f ′(x )=3(x -1)2在x =1两侧的符号相同,所以a =-3,b =3不符合题意,舍去. 综上可知a =4,b =-11,∴a +b =-7. 答案 -7易错点6 函数单调性与导数关系理解不准确例7 函数f (x )=ax 3-x 2+x -5在R 上是增函数,则a 的取值范围是________.错因分析 误认为f ′(x )>0恒成立是f (x )在R 上是增函数的必要条件,漏掉f ′(x )=0的情况.解析 f (x )=ax 3-x 2+x -5的导数f ′(x )=3ax 2-2x +1,由f ′(x )≥0,得⎩⎪⎨⎪⎧a >0,Δ=4-12a ≤0,解得a ≥13.答案 a ≥13易错点7 计算定积分忽视细节例8 ʃ421xd x 等于( )A .-2ln 2B .2ln 2C .-ln 2D .ln 2错题分析 本题易出现的问题主要有两个方面:一是混淆求原函数和求导数的运算,误认为原函数为y =(1x)′而找不到答案;二是记错公式,把积分的上、下限颠倒导致计算失误,而错选C.解析 因为(ln x )′=1x ,所以y =1x的一个原函数是y =ln x ,故ʃ421xd x =ln x |42=ln 4-ln 2=ln 2,故选D.答案 D1.(2014·北京)下列函数中,在区间(0,+∞)上为增函数的是( ) A .y =x +1 B .y =(x -1)2C .y =2-xD .y =log 0.5(x +1) 2.(2014·山东)函数f (x )=12x2-1的定义域为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞)C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞) 3.下列各式中错误的是( ) A .0.83>0.73B .log 0.50.4>log 0.50.6C .0.75-0.1<0.750.1D .lg 1.6>lg 1.44.a 是f (x )=2x-log 12x 的零点,若0<x 0<a ,则f (x 0)的值满足( )A .f (x 0)=0B .f (x 0)<0C .f (x 0)>0D .f (x 0)的符号不确定5.(2014·天津)函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )的导函数f ′(x )的图象如图所示,那么函数f (x )的图象最有可能的是( )7.(2014·福建)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x >0,cos x ,x ≤0,则下列结论正确的是( )A .f (x )是偶函数B .f (x )是增函数C .f (x )是周期函数D .f (x )的值域为[-1,+∞)8.若函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是________.9.已知函数f (x )=⎩⎪⎨⎪⎧log 2x , x >0,3x, x ≤0且关于x 的方程f (x )+x -a =0有且只有一个实根,则实数a 的取值范围是________.10.(2014·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 11.已知函数f (x )=x 2+ax(x ≠0,a ∈R ). (1)判断函数f (x )的奇偶性;(2)若f (x )在区间[2,+∞)上是增函数,求实数a 的取值范围.12.已知函数f (x )=ln(ax )(a ≠0,a ∈R ),g (x )=x -1x. (1)当a =1时,记φ(x )=f (x )-x +1x -1,求函数φ(x )的单调区间; (2)若f (x )≥g (x )(x ≥1)恒成立,求实数a 的取值范围.学生用书答案精析 2.函数与导数 要点回扣[问题1] (-1,1)∪(1,+∞) [问题2] 1-x 2(x ∈[-1,1]) [问题3] -12[问题4] 奇解析 由⎩⎪⎨⎪⎧1-x 2>0,|x -2|-2≠0得定义域为(-1,0)∪(0,1), f (x )=-x2-x --2=-x2-x.∴f (-x )=-f (x ),f (x )为奇函数. [问题5] (-∞,0),(0,+∞)[问题6] D [由题意可知f (0)=0,即lg(2+a )=0, 解得a =-1,故f (x )=lg 1+x1-x ,函数f (x )的定义域是(-1,1),在此定义域内f (x )=lg 1+x1-x=lg(1+x )-lg(1-x ),函数y 1=lg(1+x )是增函数,函数y 2=lg(1-x )是减函数,故f (x )=y 1-y 2是增函数.选D.][问题7] ⎣⎢⎡⎭⎪⎫12,1解析 方法一 ∵x ≥0,∴2x≥1,∴y1-y ≥1,解得12≤y <1.∴其值域为y ∈⎣⎢⎡⎭⎪⎫12,1. 方法二 y =1-12x+1,∵x ≥0, ∴0<12x +1≤12,∴y ∈⎣⎢⎡⎭⎪⎫12,1. [问题8] (-1,2) [问题9] -25[问题10] ⎝ ⎛⎦⎥⎤-∞,14[问题11] [0,1),[2,+∞)解析 ∵y =⎩⎪⎨⎪⎧ |log 2x -1x ,|log 2-x x ,作图可知正确答案为[0,1),[2,+∞).[问题12] 1[问题13] B [f (x )=(x -2)(x -1)g (x )+3x -4,∴f (1)=0+3×1-4=-1<0,f (2)=2×3-4=2>0.又函数y =g (x )的图象是一条连续曲线,∴函数f (x )在区间(1,2)内有零点.因此方程f (x )=0在(1,2)内必有实数根.][问题14] -2e -2x[问题15] a ≥43解析 f (x )=ax 3-2x 2+x -1的导数 f ′(x )=3ax 2-4x +1.由f ′(x )≥0,得⎩⎪⎨⎪⎧ a >0,Δ=16-12a ≤0,解得a ≥43.a =43时,f ′(x )=(2x -1)2≥0, 且只有x =12时,f ′(x )=0, ∴a =43符合题意. [问题16] x =1[问题17] 23解析 ʃ1-1(x 2+sin x )d x =⎪⎪⎪⎝ ⎛⎭⎪⎫x 33-cos x 1-1=23. 查缺补漏1.A [A 项,函数y =x +1在[-1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B 项,函数y =(x -1)2在(-∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C 项,函数y =2-x =(12)x 在R 上为减函数,故错误;D 项,函数y =log 0.5(x +1)在(-1,+∞)上为减函数,故错误.]2.C [由题意知⎩⎪⎨⎪⎧ x >0,2x 2>1,解得x >2或0<x <12.故选C.] 3.C [构造相应函数,再利用函数的性质解决,对于A ,构造幂函数y =x 3,为增函数,故A 对;对于B 、D ,构造对数函数y =log 0.5x 为减函数,y =lg x 为增函数,B 、D 都正确;对于C ,构造指数函数y =0.75x ,为减函数,故C 错.]4.B [函数f (x )=2x -log 12x =2x +log 2x 在(0,+∞)上是单调递增的,这个函数有零点,这个零点是唯一的,根据函数的单调性,知在(0,a )上,这个函数的函数值小于零,即f (x 0)<0.]5.D [因为y =log 12t 在定义域上是减函数,所以求原函数的单调递增区间,即求函数t =x 2-4的单调递减区间,结合函数的定义域,可知所求区间为(-∞,-2).]6.A [从导函数图象上可以看出函数f (x )的单调递增区间是(-2,0),单调递减区间是(-∞,-2),(0,+∞),故函数图象最有可能是选项A 中的图象.]7.D [函数f (x )=⎩⎪⎨⎪⎧ x 2+1,x >0,cos x ,x ≤0的图象如图所示,由图象知只有D 正确.]8.(-2,2)解析 因为f (x )是偶函数,所以f (-x )=f (x )=f (|x |).因为f (x )<0,f (2)=0.所以f (|x |)<f (2).又因为f (x )在(-∞,0]上是减函数,所以f (x )在(0,+∞)上是增函数,所以|x |<2,所以-2<x <2.9.(1,+∞)解析 方程f (x )+x -a =0的实根也就是函数y =f (x )与y =a -x 的图象交点的横坐标,如图所示,作出两个函数图象,显然当a ≤1时,两个函数图象有两个交点,当a >1时,两个函数图象的交点只有一个.所以实数a 的取值范围是(1,+∞).10.(-22,0) 解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧ f m ,fm +, 即⎩⎪⎨⎪⎧ m 2+m 2-1<0,m +2+m m +-1<0,解得-22<m <0. 11.解 (1)当a =0时,f (x )=x 2为偶函数;当a ≠0时,f (x )既不是奇函数也不是偶函数.(2)要使f (x )在区间[2,+∞)上是增函数,只需当x ≥2时,f ′(x )≥0恒成立,即2x -a x 2≥0,则a ≤2x 3,又因为2x 3≥16.故当a ≤16时,f (x )在区间[2,+∞)上是增函数.12.解 (1)当a =1时,φ(x )=f (x )-x +1x -1=ln x -x +1x -1,则φ′(x )=1x +2x -2=x 2+1x x -2.因为x >0且x ≠1,所以φ′(x )>0.故函数φ(x )的单调递增区间为(0,1)和(1,+∞).(2)因为ln(ax )≥x -1x对x ≥1恒成立, 所以ln a +ln x ≥x -1x , 即ln a ≥1-1x-ln x 对x ≥1恒成立. 令h (x )=1-1x -ln x ,则h ′(x )=1x 2-1x,因为x ≥1,故h ′(x )≤0.所以h (x )在区间[1,+∞)上单调递减,由ln a ≥h (x )max =h (1)=0,解得a ≥1.故实数a 的取值范围为[1,+∞).。

高三新课标大二轮专题辅导与增分攻略数学(文)课件:3-6-3导数及其应用

高三新课标大二轮专题辅导与增分攻略数学(文)课件:3-6-3导数及其应用

课 导
真 题
当 a≤0 时,h(x)>0 恒成立,所以 f′(x)>0,故 f(x)在(0,+ 学
体 验
∞)上单调递增,
当 a>0 时,同例 2 解的内容.
综上:a≤0 时,函数 f(x)在(0,+∞)上递增.
第24页
第三篇 专题六 第三讲
大二轮专题辅导与增分攻略 ·数学 (文)

心 考 点 突
0<a<12时,函数
考 真 题 体
(4)(logax)′=xl1na(a>0,且 a≠1).
导 学

第6页
第三篇 专题六 第三讲
大二轮专题辅导与增分攻略 ·数学 (文)
2.导数的几何意义

函数 f(x)在 x0 处的导数是曲线 f(x)在点 P(x0,f(x0))处的切线

考 点
的斜率,曲线 f(x)在点 P 处的切线的斜率 k=f ′(x0),相应的切线



第三篇 专题六 第三讲
大二轮专题辅导与增分攻略 ·数学 (文)
[高考导航]

1.导数的意义和运算是导数应用的基础,是高考的一个热

考 点.

突 破
2.利用函数的单调性和最值确定函数的解析式或参数的值, 名
突出考查导数的工具性作用.
师 微









第4页
第三篇 专题六 第三讲
核 心 考 点 突 破 高 考 真 题 体 验
6.(2019·山东济宁一模)若曲线 y= x在点(a, a)处的切线
核 与两个坐标轴围成的三角形的面积为 2,则 a=____4____.

【高考数学二轮学习精品讲义教师版】第三部分_重点板块_专题六函数与导数:第3讲导数的简单应用

【高考数学二轮学习精品讲义教师版】第三部分_重点板块_专题六函数与导数:第3讲导数的简单应用
(2)证明:∵f(x)=ex-axln x,a∈(0,e),x∈ae,1,
∴f′(x)=ex-a(ln x+1).
①当 ln x+1≤0 时,f′(x)>0 恒成立,f(x)在ae,1上单调递增.
②当 ln x+1>0 时,1≤a<e,令 g(x)=ln xe+x 1,
则 g′(x)=ex(l(n xln+x1+)1-)e2x·1x=e(xllnnxx-+1x1+)12,
第 363 页 共 434 页
又当 a=-21,g′(x)=(x-x1)2当且仅当 x=1 时,g′(x)=0.
故当 a∈-∞,-21时,g(x)=f(x)-ax 在(0,+∞)上单调递增.
(1)已知函数的单调性,求参数的取值范围,应用条件 f′(x)≥0(或 f′(x)≤0),x∈(a,b)恒 成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是 f′(x) 不恒等于 0 的参数的范围.
成的三角形的面积为( )
3
A.2
B.2
1
1
C.2
D.4
(2)(2019·全国卷Ⅲ)已知曲线 y=aex+xln x 在点(1,ae)处的切线方程为 y=2x+b,则( )
A.a=e,b=-1
B.a=e,b=1
C.a=e-1,b=1
D.a=e-1,b=-1
(3)(2019·成都市第二次诊断性检测)已知直线 l 既是曲线 C1:y=ex 的切线,又是曲线 C2:
第 3 讲 导数的简单应用
[全国卷 3 年考情分析]
年份
全国卷Ⅰ
全国卷Ⅱ
全国卷Ⅲ
2019
求切线方程·T13 利用导数研究函数 的极值点·T20 奇函数的定义及利

专题3-10 导数与数列,导数与概率统计(解析版)2023年高考数学二轮专题全套热点题型

专题3-10 导数与数列,导数与概率统计(解析版)2023年高考数学二轮专题全套热点题型

a=1.
于是
f′(x)=
1 x
-1=
1
x
x

当 x(0,1)时,f′(x)>0,f(x)为增函数,当 x(1,+∞)时,f′(x)<0,f(x)为减函数,
即 f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).
(2) 由(1)知 x1(0,+∞),f(x1)≤f(1)=0,即 f(x1)的最大值为 0, 由题意知:对∀x1(0,+∞),∃x2(-∞,0)使得 f(x1)≤g(x2)成立,只需 f(x)max≤g(x)max.
在区间 ea1,1 单调递减.
又 f ea1 f 1 0 ,与 f x0 恒成立相矛盾.
综上, 实数 a 的取值范围为1, .
(2)
由(1)知当 a 1 时, x 1 x ln x ≤ 0 0 x ≤1
即 ln x ≥ x 1 1 1
x
x
令 x 1 ,则 ln 1 ≥1 n
.............................................................22
题型一:利用放缩通项公式解决数列求和中的不等问题
【典例分析】
例题
1.(2022·全国·高三专题练习)已知正项数列an 满足
a0
0,
a2 n1
an2
2(n
1), n
N

(1)求证: an2 an1 ; an1 an
.
4.(2022·湖南张家界·高二期末)已知函数 f x ln x ax 1,其中 a R .
(1)当 a 1 时,求函数 f (x) 的单调区间;
(2)①若 f x 0 恒成立,求 a 的最小值;

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析20---导数的简单应用

高考数学二轮复习考点知识与题型专题解析导数的简单应用微专题1导数的几何意义及其应用导数的几何意义函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P 处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)·(x-x0).『典型题训练』1.若过函数f(x)=ln x-2x图象上一点的切线与直线y=2x+1平行,则该切线方程为()A.2x-y-1=0B.2x-y-2ln2+1=0C.2x-y-2ln2-1=0D.2x+y-2ln2-1=02.已知a∈R,设函数f(x)=ax-ln x+1的图象在点(1,f(1))处的切线为l,则l过定点()A.(0,2) B.(1,0)C.(1,a+1) D.(e,1)),则曲线y=f(x)在x=0 3.已知函数f(x)的导函数为f′(x),且满足f(x)=cos x-xf′(π2处的切线方程是()A.2x-y-1=0 B.2x+y+1=0C.x-2y+2=0 D.x+2y+1=04.已知函数f(x)=a e x+x2的图象在点M(1,f(1))处的切线方程是y=(2e+2)x+b,那么ab=()A.2 B.1 C.-1 D.-25.[2021·重庆三模]已知曲线C1:f(x)=e x+a和曲线C2:g(x)=ln (x+b)+a2(a,b∈R),若存在斜率为1的直线与C1,C2同时相切,则b的取值范围是(),+∞)B.[0,+∞)A.[−94]C.(−∞,1]D.(−∞,94在点(-1,-3)处的切线方程为________________.6.[2021·全国甲卷(理)]曲线y=2x−1x+2微专题2利用导数研究函数的单调性『常考常用结论』导数与单调性的关系1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0;2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)为常数,函数不具有单调性.『提分题组训练』1.[2021·山东烟台模拟]已知a=ln12 020+2 0192 020,b=ln12 021+2 0202 021,c=ln12 022+2 0212 022,则a,b,c的大小关系是()A.a>b>c B.a>c>bC.c>b>a D.c>a>b2.函数f(x)=x2-a ln x在[1,+∞)上单调递增,则实数a的取值范围是()A.(0,2] B.(2,+∞)C.(-∞,2] D.(-∞,2)3.已知函数f(x)=23x3-ax2+4x在区间(-2,-1)内存在单调递减区间,则实数a的取值范围是()A.(2√2,+∞) B.[2√2,+∞)C.(-∞,-2√2) D.(-∞,-2√2]4.若函数f(x)的导函数为f′(x),对任意x∈(-π,0),f′(x)sin x<f(x)cos x恒成立,则()A.√2f(−5π6)>f(−3π4)B.f(−5π6)>√2f(−3π4)C.√2f(−5π6)<f(−3π4)D.f(−5π6)<√2f(−3π4)5.定义在R上的函数f(x)满足f(x)>1-f′(x),f(0)=6,则不等式f(x)>1+5e x(e为自然对数的底数)的解集为()A.(0,+∞) B.(5,+∞)C.(-∞,0)∪(5,+∞) D.(−∞,0)6.[2021·山东济南一模]设a=2022ln2020,b=2021ln2021,c=2020ln2022,则() A.a>c>b B.c>b>aC.b>a>c D.a>b>c微专题3利用导数研究函数的极值、最值『常考常用结论』导数与极值、最值(1)函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左正右负”⇔f(x)在x0处取极大值;函数f(x)在x0处的导数f′(x0)=0且f′(x)在x0附近“左负右正”⇔f(x)在x0处取极小值.(2)函数f(x)在一闭区间上的最大值是此函数在该区间上的极值与该区间端点处函数值中的“最大者”;函数f(x)在一闭区间上的最小值是此函数在该区间上的极值与该区间端点处函数值中的“最小者”.『提分题组训练』1.已知函数f(x)=12sin2x+sin x,则f(x)的最小值是()A.-3√32B.3√32C.-3√34D.3√342.[2021·全国乙卷(理)]设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则()A .a <bB .a >bC .ab <a 2D .ab >a 23.函数f (x )=x 3-ax 2-bx +a 2在x =1处有极值10,则点(a ,b )为() A .(3,-3) B .(-4,11) C .(3,-3)或(-4,11) D .(4,11)4.若函数f (x )=x 3-3x 在区间(2a ,3-a 2)上有最大值,则实数a 的取值范围是() A .(-3,1) B .(-2,1) C .(−3,−12) D .(-2,-1]5.若函数f (x )=12e 2x -m e x -m2x 2有两个极值点,则实数m 的取值范围是() A .(12,+∞) B .(1,+∞) C .(e 2,+∞) D .(e ,+∞) 6.[2021·山东模拟]若函数f (x )={2x−2−2m ,x <12x 3−6x 2,x ≥1有最小值,则m 的一个正整数取值可以为________.参考答案导数的简单应用微专题1导数的几何意义及其应用典型题训练1.解析:由题意,求导函数可得y ′=1x -2, ∵切线与直线y =2x +1平行, ∴1x -2=2, ∴x =14,∴切点P 坐标为(14,−2ln 2−12),∴过点P 且与直线y =2x +1平行的切线方程为y +2ln2+12=2(x −14),即2x -y -2ln2-1=0.故选C.答案:C2.解析:由f (x )=ax -ln x +1⇒f ′(x )=a -1x ,f ′(1)=a -1,f (1)=a +1,故过(1,f (1))处的切线方程为:y =(a -1)(x -1)+a +1=(a -1)x +2,故l 过定点(0,2).故选A.答案:A3.解析:∵f (x )=cos x -xf ′(π2), ∴f ′(x )=-sin x -f ′(π2),∴f ′(π2)=-sin π2-f ′(π2)=-1-f ′(π2), 解得:f ′(π2)=-12,∴f (x )=cos x +12x ,f ′(x )=-sin x +12,∴f (0)=1,f ′(0)=12,∴y =f (x )在x =0处的切线方程为y -1=12x ,即x -2y +2=0.故选C.4.解析:因为f (x )=a e x +x 2,所以f ′(x )=a e x +2x ,因此切线方程的斜率k =f ′(1)=a e +2,所以有a e +2=2e +2,得a =2,又切点在切线上,可得切点坐标为(1,2e +2+b ), 将切点代入f (x )中,有f (1)=2e +1=2e +2+b ,得b =-1, 所以ab =-2.故选D. 答案:D5.解析:f ′(x )=e x ,g ′(x )=1x+b ,设斜率为1的切线在C 1,C 2上的切点横坐标分别为x 1,x 2,由题知e x 1=1x2+b=1,∴x 1=0,x 2=1-b ,两点处的切线方程分别为y -(1+a )=x 和y -a 2=x -(1-b ), 故a +1=a 2-1+b ,即b =2+a -a 2=-(a −12)2+94≤94.故选D. 答案:D6.解析:y ′=(2x−1x+2)′=2(x+2)−(2x−1)(x+2)2=5(x+2)2,所以y ′|x =-1=5(−1+2)2=5,所以切线方程为y +3=5(x +1),即y =5x +2.答案:y =5x +2微专题2利用导数研究函数的单调性提分题组训练1.解析:构造函数f (x )=ln x +1-x ,f ′(x )=1x-1=1−x x,当0<x <1时,f ′(x )>0,f (x )单调递增,所以f (12 020)>f (12 021)>f (12 022),a >b >c .故选A.2.解析:由题意得,f ′(x )=2x -ax ≥0在x ∈[1,+∞)上恒成立, 所以a ≤2x 2在x ∈[1,+∞)上恒成立, 因为2x 2在x ∈[1,+∞)的最小值为2, 所以m ≤2.故选C. 答案:C3.解析:f ′(x )=2x 2-2ax +4,由题意得∃x ∈(-2,-1),使得不等式f ′(x )=2(x 2-ax +2)<0成立, 即x ∈(-2,-1)时,a <(x +2x )max ,令g (x )=x +2x ,x ∈(-2,-1), 则g ′(x )=1-2x 2=x 2−2x 2,令g ′(x )>0,解得-2<x <-√2, 令g ′(x )<0,解得-√2<x <-1,故g (x )在(-2,-√2)上单调递增,在(-√2,-1)上单调递减, 故g (x )max =g (-√2)=-2√2,故满足条件的a 的范围是(-∞,-2√2), 故选C. 答案:C4.解析:因为任意x ∈(-π,0),f ′(x )sin x <f (x )cos x 恒成立, 即任意x ∈(-π,0),f ′(x )sin x -f (x )cos x <0恒成立, 又x ∈(-π,0)时,sin x <0,所以[f (x )sin x ]′=f ′(x )sin x−f (x )cos x(sin x )2<0,所以f (x )sin x 在(-π,0)上单调递减, 因为-5π6<-3π4,所以f(−5π6)sin(−5π6)>f(−3π4)sin(−3π4),即f(−5π6)−12>f(−3π4)−√22,所以√2f (−5π6)<f (−3π4),故选C.答案:C5.解析:设g (x )=e x f (x )-e x ,因为f (x )>1-f ′(x ),所以g ′(x )=e x [f (x )+f ′(x )]-e x =e x [f (x )+f ′(x )-1]>0,所以g (x )是R 上的增函数, 又g (0)=e 0f (0)-e 0=5,所以不等式f (x )>1+5e x 可化为e xf (x )-e x >5,即g (x )>g (0),所以x >0.故选A.答案:A6.解析:令f (x )=ln xx+1且x ∈(0,+∞),则f ′(x )=1+1x−ln x (x+1)2,若g (x )=1+1x -ln x ,则在x ∈(0,+∞)上g ′(x )=-1x 2−1x <0,即g (x )单调递减, 又g (e)=1e >0,g (e 2)=1e 2-1<0,即∃x 0∈(1e ,e 2)使g (x 0)=0, ∴在(x 0,+∞)上g (x )<0,即f ′(x )<0,f (x )单调递减; ∴f (2021)<f (2020),有ln 20212 022<ln 20202 021,即a >b ,令m (x )=ln xx−1且x ∈(0,1)∪(1,+∞),则m ′(x )=1−1x−ln x (x−1)2,若n (x )=1-1x -ln x ,则n ′(x )=1x (1x -1),即在x ∈(0,1)上n (x )单调递增,在x ∈(1,+∞)上n (x )单调递减,∴n (x )<n (1)=0,即m ′(x )<0,m (x )在x ∈(1,+∞)上递减, ∴m (2022)<m (2021),有ln 20222 021<ln 20212 020,即b >c ,故选D.答案:D微专题3利用导数研究函数的极值、最值提分题组训练1.解析:由题得f ′(x )=cos2x +cos x =2cos 2x +cos x -1=(2cos x -1)(cos x +1), 所以当cos x >12时,f ′(x )>0,f (x )单调递增;当-1≤cos x <12时,f ′(x )<0,f (x )单调递减.所以f (x )取得最小值时,cos x =12,此时sin x =±√32, 当sin x =-√32时,f (x )=sin x cos x +sin x =-3√34; 当sin x =√32时,f (x )=sin x cos x +sin x =3√34; 所以f (x )的最小值是-3√34.故选C.答案:C 2.解析:当a >0时,根据题意画出函数f (x )的大致图象,如图1所示,观察可知b >a .当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .综上,可知必有ab >a 2成立.故选D.答案:D3.解析:由f (x )=x 3-ax 2-bx +a 2,求导f ′(x )=3x 2-2ax -b ,由函数f(x)=x3-ax2-bx+a2在x=1处有极值10,则{f(1)=10f′(1)=0,即{1−a−b+a2=103−2a−b=0,解得{a=−4b=11或{a=3b=−3,当a=3,b=-3时,f′(x)=3x2-6x+3=3(x-1)2≥0,此时f(x)在定义域R上为增函数,无极值,舍去.当a=-4,b=11,f′(x)=3x2+8x-11,x=1为极小值点,符合题意,故选B.答案:B4.解析:因为函数f(x)=x3-3x,所以f′(x)=3x2-3,当x<-1或x>1时,f′(x)>0,当-1<x<1时,f′(x)<0,所以当x=-1时,f(x)取得最大值,又f(-1)=f(2)=2,且f(x)在区间(2a,3-a2)上有最大值,所以2a<-1<3-a2≤2,解得-2<a≤-1,所以实数a的取值范围是(-2,-1]故选D.答案:D5.解析:依题意,f′(x)=e2x-m e x-mx有两个变号零点,令f′(x)=0,即e2x-m e x-mx=0,则e2x=m(e x+x),显然m≠0,则1m =e x+xe2x,设g(x)=e x+xe2x,则g′(x)=(e x+1)·e2x−(e x+x)·2e2xe4x =1−e x−2xe2x,设h(x)=1-e x-2x,则h′(x)=-e x-2<0,∴h(x)在R上单调递减,又h(0)=0,∴当x∈(-∞,0)时,h(x)>0,g′(x)>0,g(x)单调递增,当x∈(0,+∞)时,h(x)<0,g′(x)<0,g(x)单调递减,∴g(x)max=g(0)=1,且x→-∞时,g(x)→-∞,x→+∞时,g(x)→0,<1,解得m>1.∴0<1m故选B.答案:B6.解析:y=2x-2-2m在(-∞,1)上单调递增,∴y=2x-2-2m>-2m;当x≥1时,y=2x3-6x2,此时,y′=6x2-12x=6x(x-2).∴y=2x3-6x2在(1,2)上单调递减,在(2,+∞)上单调递增,∴y=2x3-6x2在[1,+∞)上的最小值为-8,函数f(x)有最小值,则-2m≥-8,即m≤4,故m的一个正整数取值可以为4.答案:4。

高考理科数学二轮专题提分教程全国课件导数及其应用

高考理科数学二轮专题提分教程全国课件导数及其应用

可导与连续关系
可导必连续
如果函数在某一点处可导,则该函数 在该点处必定连续。这是因为可导的 定义中已经包含了函数在该点处的连 续性。
连续不一定可导
虽然连续函数在其定义域内具有许多 良好的性质,但并不意味着它在每一 点处都可导。例如,绝对值函数在原 点处连续但不可导。
基本初等函数导数公式
常数函数
幂函数
物理学中速度和加速度计算
要点一
速度计算
要点二
加速度计算
在物理学中,速度是位移对时间的导数。通过求解位移函 数的导数,可以得到物体在任意时刻的速度。
加速度是速度对时间的导数。通过对速度函数求导,可以 得到物体在任意时刻的加速度,进而分析物体的运动状态 。
工程学中最优化问题求解
最值问题
在工程学中,经常需要求解某个函数的最值 问题,如最小成本、最大效益等。通过求解 函数的导数,并令其等于零,可以找到函数 的极值点,进而确定最值。
正弦函数y=sinx的导数 为cosx;余弦函数 y=cosx的导数为-sinx; 正切函数y=tanx的导数 为sec2x。
复合函数、反函数求导法则
复合函数求导法则
如果u=g(x)在点x处可导,且y=f(u)在点u=g(x)处也可导,则复合函数y=f[g(x)]在点x处也可导,且 其导数可由f'和g'通过链式法则求得:dy/dx = f'(u) * g'(x)。
利用中值定理求极限或判断函数性质
利用中值定理求极限
通过中值定理找到满足条件的点,然后利用 该点的性质求出极限。Biblioteka 利用中值定理判断函数单调性
通过中值定理找到满足条件的点,然后利用 该点的性质判断函数的单调性。
利用中值定理判断函数凹凸性

高考数学二轮总复习第2篇经典专题突破核心素养提升专题6函数与导数第3讲导数的简单应用文课件

高考数学二轮总复习第2篇经典专题突破核心素养提升专题6函数与导数第3讲导数的简单应用文课件

b∈R),f′(x)为f(x)的导函数,则f(2 016)+f(-2 016)+f′(2 016)-
f′(-2 016)=
(C )
A.0
B.2 015
C.8
D.2 016
【解析】 ∵f(x)=asin x+bx3+4, ∴f′(x)=acos x+3bx2, ∴f(x)+f(-x)=8,f′(x)-f′(-x)=0, ∴f(2 016)+f(-2 016)+f′(2 016)-f′(-2 016)=8. 故选C.
考向2 利用函数的单调性求参数取值(范围)
典例3 (1)(2021·重庆八中高三月考)若函数f(x)=sin 2x+acos x+
6x在(-∞,+∞)上单调递增,则a的取值范围为
(A )
A.[-4,4]
B.[-3,4]
C.[-4,3]
D.[-3,3]
【解析】 ∵f′(x)=2cos 2x-asin x+6≥0, ∴8-4sin2x-asin x≥0⇔4sin2x+asin x-8≤0, 设 t=sin x(-1≤t≤1), 即有 4t2+at-8≤0, 只需要44××1-2+1a2×+1a-×8-≤10,-8≤0, 解得 a∈[-4,4].故选 A.

a>0
时,g(x)在0,1+
21a+2a上单调递增,在1+
21a+2a,+∞
上单调递减.
【素养提升】 求解或讨论函数单调性问题的解题策略 讨论函数的单调性,其实就是讨论不等式解集的情况,大多数情况 下,这类问题可以归纳为一个含有参数的一元二次不等式的解集的讨 论: (1)在能够通过因式分解求出不等式对应方程的根时,依据根的大小 进行分类讨论. (2)在不能通过因式分解求出根的情况时,根据不等式对应方程的判 别式进行分类讨论. [注意]讨论函数的单调性是在函数的定义域内进行的,千万不要忽 视了定义域的限制.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3讲 导数及其应用1.(2016·四川改编)已知a 为函数f (x )=x 3-12x 的极小值点,则a =________. 答案 2解析 ∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12, 令f ′(x )=0,则x 1=-2,x 2=2.当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增;当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.2.(2016·课标全国乙改编)若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,则a 的取值范围是____________.答案 ⎣⎢⎡⎦⎥⎤-13,13 解析 ∵函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)上单调递增,∴f ′(x )=1-23cos 2x +a cos x=1-23(2cos 2x -1)+a cos x=-43cos 2x +a cos x +53≥0,即a cos x ≥43cos 2x -53在(-∞,+∞)恒成立.当cos x =0时,恒有0≥-53,得a ∈R ;当0<cos x ≤1时,得a ≥43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在(0,1]上为增函数,得a ≥f (1)=-13;当-1≤cos x <0时,得a ≤43cos x -53cos x ,令t =cos x ,f (t )=43t -53t 在[-1,0)上为增函数,得a ≤f (-1)=13.综上,可得a 的取值范围是⎣⎢⎡⎦⎥⎤-13,13. 3.(2016·山东改编)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.给出四个函数①y =sin x ;②y =ln x ;③y =e x;④y =x 3,其中具有T 性质的是________.答案 ①解析 对函数y =sin x 求导,得y ′=cos x ,当x =0时,该点处切线l 1的斜率k 1=1,当x =π时,该点处切线l 2的斜率k 2=-1,∴k 1·k 2=-1,∴l 1⊥l 2;对函数y =ln x 求导,得y ′=1x恒大于0,斜率之积不可能为-1;对函数y =e x 求导,得y ′=e x恒大于0,斜率之积不可能为-1;对函数y =x 3,得y ′=2x 2恒大于等于0,斜率之积不可能为-1. 4.(2016·天津)已知函数f (x )=(2x +1)e x,f ′(x )为f (x )的导函数,则f ′(0)的值为________. 答案 3解析 因为f (x )=(2x +1)e x,所以f ′(x )=2e x +(2x +1)e x =(2x +3)e x, 所以f ′(0)=3e 0=3.1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值最值问题是高考的常见题型.3.导数与函数零点,不等式的结合常作为高考压轴题出现.热点一 导数的几何意义1.函数f (x )在x 0处的导数是曲线f (x )在点P (x 0,f (x 0))处的切线的斜率,曲线f (x )在点P 处的切线的斜率k =f ′(x 0),相应的切线方程为y -f (x 0)=f ′(x 0)(x -x 0). 2.求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的不同.例1 (1)函数f (x )=e xcos x 的图象在(0,f (0))处的切线方程为____________________. (2)已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于________.答案 (1)x -y +1=0 (2)254解析 (1)f ′(x )=e x cos x +e x (-sin x ),f ′(0)=e 0cos 0+e 0(-sin 0)=1,f (0)=e 0cos 0=1,f (x )的图象在点(0,f (0))处的切线方程为y =x +1,即x -y +1=0. (2)∵f (x )=x 3-2x 2+x +6, ∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8,切线方程为y -2=8(x +1), 即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.思维升华 (1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 设曲线y =2-cos x sin x 在点⎝ ⎛⎭⎪⎫π2,2处的切线与直线x +ay +1=0垂直,则a =________. 答案 1解析 由题意得,y ′=2-cos x ′sin x -2-cos xsin x ′sin 2x=1-2cos xsin 2x, 则曲线y =2-cos x sin x 在点⎝ ⎛⎭⎪⎫π2,2处的切线的斜率为 k 1=1-2cosπ2sin2π2=1.因为直线x +ay +1=0的斜率k 2=-1a,又该切线与直线x +ay +1=0垂直,所以k 1k 2=-1,解得a =1.热点二 利用导数研究函数的单调性1.f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.2.f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常函数,函数不具有单调性.例2 已知函数f (x )=e x(ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解 (1)f ′(x )=e x(ax +b )+a e x-2x -4 =e x(ax +a +b )-2x -4,∵y =f (x )在(0,f (0))处的切线方程为y =4x +4, ∴f ′(0)=a +b -4=4,f (0)=b =4, ∴a =4,b =4.(2)由(1)知f ′(x )=4e x(x +2)-2(x +2) =2(x +2)(2e x-1)令f ′(x )=0得x 1=-2,x 2=ln 12,列表:↗↗∴y =f (x )的单调增区间为(-∞,-2),⎝ ⎛⎭⎪⎫ln 12,+∞; 单调减区间为⎝⎛⎭⎪⎫-2,ln 12.f (x )极大值=f (-2)=4-4e -2.思维升华 利用导数研究函数单调性的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x );(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x )>0或f ′(x )<0.②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解.跟踪演练2 (1)已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调递增区间是__________________.(2)若函数f (x )=2x 2-ln x 在其定义域内的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是__________.答案 (1)⎝ ⎛⎭⎪⎫-∞,-43∪(0,+∞) (2)⎣⎢⎡⎭⎪⎫1,32解析 (1)因为f ′(x )=3x 2-2mx , 所以f ′(-1)=3+2m =-1,解得m =-2.由f ′(x )=3x 2+4x >0,解得x <-43或x >0,即函数f (x )的单调递增区间为(-∞,-43)∪(0,+∞).(2)f (x )的定义域为(0,+∞).f ′(x )=4x -1x.由f ′(x )=0,得x =12.据题意,得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.热点三 利用导数求函数的极值、最值1.若在x 0附近左侧f ′(x )>0,右侧f ′(x )<0,则f (x 0)为函数f (x )的极大值;若在x 0附近左侧f ′(x )<0,右侧f ′(x )>0,则f (x 0)为函数f (x )的极小值.2.设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导,则f (x )在[a ,b ]上必有最大值和最小值且在极值点或端点处取得.例3 已知函数f (x )=ax -2x-3ln x ,其中a 为常数.(1)当函数f (x )的图象在点⎝ ⎛⎭⎪⎫23,f ⎝ ⎛⎭⎪⎫23处的切线的斜率为1时,求函数f (x )在⎣⎢⎡⎦⎥⎤32,3上的最小值;(2)若函数f (x )在区间(0,+∞)上既有极大值又有极小值,求a 的取值范围. 解 (1)f ′(x )=a +2x 2-3x(x >0),由题意可知,f ′⎝ ⎛⎭⎪⎫23=1,解得a =1. 故f (x )=x -2x-3ln x ,∴f ′(x )=x -1x -2x2,根据题意由f ′(x )=0,得x =2. 于是可得下表:x 32⎝ ⎛⎭⎪⎫32,2 2 (2,3) 3 f ′(x ) - 0 + f (x )↘1-3ln 2↗∴f (x )min =f (2)=1-3ln 2.(2)f ′(x )=a +2x 2-3x =ax 2-3x +2x2(x >0), 由题意可得方程ax 2-3x +2=0有两个不等的正实根,不妨设这两个根为x 1,x 2,并令h (x )=ax 2-3x +2,则⎩⎪⎨⎪⎧Δ=9-8a >0,x 1+x 2=3a >0,x 1x 2=2a >0,⎝⎛⎭⎪⎫也可以为⎩⎪⎨⎪⎧Δ=9-8a >0,--32a >0,h 0>0 解得0<a <98.故a 的取值范围为⎝ ⎛⎭⎪⎫0,98. 思维升华 (1)求函数f (x )的极值,则先求方程f ′(x )=0的根,再检查f ′(x )在方程根的左右函数值的符号.(2)若已知极值大小或存在情况,则转化为已知方程f ′(x )=0根的大小或存在情况来求解. (3)求函数f (x )在闭区间[a ,b ]的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.跟踪演练3 已知函数f (x )=ln x +ax -a 2x 2(a ≥0). (1)若x =1是函数y =f (x )的极值点,求a 的值; (2)若f (x )<0在定义域内恒成立,求实数a 的取值范围. 解 (1)函数的定义域为(0,+∞), f ′(x )=-2a 2x 2+ax +1x.因为x =1是函数y =f (x )的极值点, 所以f ′(1)=1+a -2a 2=0, 解得a =-12(舍去)或a =1.经检验,当a =1时,x =1是函数y =f (x )的极值点, 所以a =1.(2)当a =0时,f (x )=ln x ,显然在定义域内不满足f (x )<0恒成立; 当a >0时, 令f ′(x )=2ax +1-ax +1x=0,得x 1=-12a (舍去),x 2=1a,所以x ,f ′(x ),f (x )的变化情况如下表:x (0,1a)1a(1a,+∞)f ′(x ) + 0 - f (x )↗极大值↘所以f (x )max =f (1a )=ln 1a<0,所以a >1.综上可得,a 的取值范围是(1,+∞).1.设函数y =f (x )的导函数为f ′(x ),若y =f (x )的图象在点P (1,f (1))处的切线方程为x -y +2=0,则f (1)+f ′(1)=________.押题依据 曲线的切线问题是导数几何意义的应用,是高考考查的热点,对于“过某一点的切线”问题,也是易错易混点. 答案 4解析 依题意有f ′(1)=1,1-f (1)+2=0,即f (1)=3, 所以f (1)+f ′(1)=4.2.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则ab的值为________. 押题依据 函数的极值是单调性与最值的“桥梁”,理解极值概念是学好导数的关键.极值点、极值的求法是高考的热点. 答案 -23解析 由题意知f ′(x )=3x 2+2ax +b ,f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b -a 2-7a =10,解得⎩⎪⎨⎪⎧a =-2,b =1或⎩⎪⎨⎪⎧a =-6,b =9,经检验⎩⎪⎨⎪⎧a =-6,b =9,满足题意,故a b =-23.3.已知函数f (x )=x 2-ax +3在(0,1)上为减函数,函数g (x )=x 2-a ln x 在(1,2)上为增函数,则a 的值等于________.押题依据 函数单调性问题是导数最重要的应用,体现了“以直代曲”思想,要在审题中搞清“在(0,1)上为减函数”与“函数的减区间为(0,1)”的区别. 答案 2解析 ∵函数f (x )=x 2-ax +3在(0,1)上为减函数, ∴a2≥1,得a ≥2.又∵g ′(x )=2x -a x,依题意g ′(x )≥0在x ∈(1,2)上恒成立,得2x 2≥a 在x ∈(1,2)上恒成立,有a ≤2,∴a =2. 4.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________.押题依据 不等式恒成立或有解问题可以转化为函数的值域解决.考查了转化与化归思想,是高考的一个热点.答案 ⎣⎢⎡⎭⎪⎫94,+∞ 解析 由于f ′(x )=1+1x +12>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.A 组 专题通关1.设函数f (x )在(0,+∞)内可导,且f (e x)=x +e x,则f ′(1)=________. 答案 2解析 令t =e x,f (t )=t +ln t (t >0),所以f (x )=x +ln x (x >0).f ′(x )=1+1x,f ′(1)=2.2.曲线y =f (x )=xx 2+1在点(1,f (1))处的切线方程是____________.答案 y =12解析 f (x )=xx 2+1的导数f ′(x )=1-x21+x22,∴曲线在点(1,f (1))处的切线斜率k =0,∵切点为⎝ ⎛⎭⎪⎫1,12, ∴曲线在点(1,f (1))处的切线方程为y =12.3.已知a ≥0,函数f (x )=(x 2-2ax )e x.若f (x )在[-1,1]上是单调递减函数,则a 的取值范围是____________. 答案 [34,+∞)解析 f ′(x )=e x [x 2+2(1-a )x -2a ],∵f (x )在[-1,1]上单调递减,∴f ′(x )≤0在[-1,1]上恒成立.令g (x )=x 2+2(1-a )x -2a , 则⎩⎪⎨⎪⎧g 1≤0,g-1≤0,解得a ≥34.4.函数f (x )=x 3-3x 的极小值为________. 答案 -2解析 f ′(x )=3x 2-3,令f ′(x )=0,得x =1或x =-1.当x ∈(-1,1)时,f ′(x )<0,函数y =f (x )在(-1,1)内是减函数;当x ∈(-∞,-1)或x ∈(1,+∞)时,f ′(x )>0,函数y =f (x )在(-∞,-1)或(1,+∞)上是增函数,故当x =1时,函数f (x )取得极小值f (1)=13-3×1=-2.5.已知函数f (x )=x +a ln x ,若曲线y =f (x )在点(a ,f (a ))处的切线过原点,则实数a 的值为________. 答案 e解析 因为f ′(x )=1+a x, 因此f ′(a )=2=a +a ln aa⇒ln a =1⇒a =e. 6.已知函数f (x )=a sin x +bx 3+4(a ,b ∈R ),f ′(x )为f (x )的导函数,则f (2 014)+f (-2 014)+f ′(2 015)-f ′(-2 015)=__________. 答案 8解析 因为f (x )=a sin x +bx 3+4(a ,b ∈R ),所以f ′(x )=a cos x +3bx 2.因为f (x )-4=a sin x +bx 3为奇函数,且f ′(x )=a cos x +3bx 2为偶函数,所以f (2 014)+f (-2 014)+f ′(2015)-f ′(-2 015)=[f (2 014)-4]+[f (-2 014)-4]+8=8.7.已知函数f (x )=x 3+2x ,若1(1)(log 3)0af f +> (a >0且a ≠1),则实数a 的取值范围是______________. 答案()0,1∪()3,+∞解析 因为f ′(x )=3x 2+2>0,f (-x )=-f (x ),所以f (x )=x 3+2x 为R 上单调递增的奇函数,因此由1(1)(log 3)0af f +>得1(1)(log 3)(log 3)(log 3),a a af f f f -=--=即1>log a 3,当a >1时,a >3,当0<a <1时,成立,即实数a 的取值范围是()0,1∪()3,+∞. 8.若函数f (x )=-13x 3+12x 2+2ax 在[23,+∞)上存在单调递增区间,则a 的取值范围是________. 答案 (-19,+∞)解析 f ′(x )=-x 2+x +2a =-(x -12)2+14+2a .当x ∈[23,+∞)时,f ′(x )的最大值为f ′(23)=2a +29,令2a +29>0,解得a >-19,所以a 的取值范围是(-19,+∞).9.(2016·北京)设函数f (x )=x e a -x+bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4. (1)求a ,b 的值; (2)求f (x )的单调区间. 解 (1)f (x )的定义域为R . ∵f ′(x )=ea -x-x ea -x+b =(1-x )ea -x+b .依题设,⎩⎪⎨⎪⎧f 2=2e +2,f ′2=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1.解得a =2,b =e.(2)由(1)知f (x )=x e 2-x +e x ,由f ′(x )=2e x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x -1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1. ∴当x ∈(-∞,1)时,g ′(x )<0,g (x )在区间(-∞,1)上单调递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在区间(1,+∞)上单调递增.故g (1)=1是g (x )在区间(-∞,+∞)上的最小值,从而g (x )>0,x ∈(-∞,+∞),综上可知,f ′(x )>0,x ∈(-∞,+∞).故f (x )的单调递增区间为(-∞,+∞).10.已知函数f (x )=x 28-ln x ,x ∈[1,3]. (1)求f (x )的最大值与最小值;(2)若f (x )<4-at 对任意的x ∈[1,3],t ∈[0,2]恒成立,求实数a 的取值范围. 解 (1)∵函数f (x )=x 28-ln x ,∴f ′(x )=x 4-1x, 令f ′(x )=0,得x =2或x =-2(舍去).∵x ∈[1,3],当1<x <2时,f ′(x )<0;当2<x <3时,f ′(x )>0.∴f (x )在(1,2)上是单调减函数,在(2,3)上是单调增函数,∴f (x )在x =2处取得极小值f (2)=12-ln 2. 又f (1)=18,f (3)=98-ln 3, ∵ln 3>1,∴18-(98-ln 3)=ln 3-1>0, ∴f (1)>f (3),∴当x =1时,f (x )取得最大值为18. 当x =2时,f (x )取得最小值为12-ln 2. (2)由(1)知,当x ∈[1,3]时,f (x )≤18,故对任意x ∈[1,3],f (x )<4-at 恒成立,只要4-at >18对任意t ∈[0,2]恒成立,即at <318恒成立,记g (t )=at ,t ∈[0,2]. ∴⎩⎪⎨⎪⎧ g0<318,g 2<318,解得a <3116, ∴实数a 的取值范围是(-∞,3116).B 组 能力提高11.已知函数f (x )是定义在R 上的可导函数,f ′(x )为其导函数,若对任意实数x ,有f (x )-f ′(x )>0,则e f (2 015)________f (2 016).(填“>”“<”“=”)答案 >解析 令g (x )=f xe x ,则g ′(x )=f ′x -f xex <0,函数g (x )=f x e x 在R 上单调递减,所以g (2 015)>g (2 016),即f 2 015e 2 015>f 2 016e 2 016,ef (2 015)>f (2 016).12.(2016·江苏苏北三市高三最后一次模拟)若点P ,Q 分别是曲线y =x +4x与直线4x +y =0上的动点,则线段PQ 长的最小值为_________.答案 71717 解析 设两直线4x +y =m 与y =x +4x 相切,P 为切点.由y ′=-4x 2得-4x2=-4⇒x =±1,因此P (1,5)或P (-1,-3),m =9或m =-7,两直线4x +y =m,4x +y =0间距离分别为917或717,故线段PQ 长的最小值为71717. 13.设函数f (x )=-x 3+mx 2-m (m >0).(1)当m =1时,求函数f (x )的单调减区间;(2)设g (x )=|f (x )|,求函数g (x )在区间[0,m ]上的最大值.解 (1)当m =1时,f (x )=-x 3+x 2-1. f ′(x )=-3x 2+2x =-x (3x -2).由f ′(x )<0,解得x <0或x >23.所以函数f (x )的减区间是(-∞,0),(23,+∞). (2)依题意m >0.因为f (x )=-x 3+mx 2-m ,所以f ′(x )=-3x 2+2mx =-x (3x -2m ).由f ′(x )=0,得x =2m 3或x =0. 当0<x <2m 3时,f ′(x )>0, 所以f (x )在(0,2m 3)上为增函数; 当2m 3<x <m 时,f ′(x )<0, 所以f (x )在(2m 3,m )上为减函数; 所以,f (x )极大值=f (2m 3)=427m 3-m . ①当427m 3-m ≥m ,即m ≥362时,y max =427m 3-m . ②当427m 3-m <m ,即0<m <362时,y max =m . 综上,y max =⎩⎪⎨⎪⎧ 427m 3-m ,m ≥362,m ,0<m <362.。

相关文档
最新文档