最新人教版高中数学选修2-1第二章《曲线与方程》温故知新
人教版【高中数学】选修2-1第二章曲线与方程的概念讲义
案例(二)——精析精练课堂合作探究重点难点突破知识点一曲线方程概念的理解1.在建立了平面直角坐标系之后,平面内的点和有序实数对之间就建立了一一对应关系,现在要求我们进一步研究平面内的曲线与含有两个变量的方程之间的关系.平面内的曲线可以理解为平面内符合某种条件的点的集合(或轨迹)也就是说:(1)曲线上的每一个点都要符合某种条件;(2)每个符合条件的点都要在曲线上既然平面内的点与作为它的坐标的有序实数对之间建立了对应关系,那么对应于符合某种条件的一切点,它的坐标是应该有制约的,也就是说它的横坐标与纵坐标之间受到某种条件的约束,所以探求符合某种条件的点的轨迹问题,就变为探求这些点的横坐标与纵坐标应满足怎样的约束条件的问题,含两个变量x、y的方程F(x,y)=0就标志着横坐标x与纵坐标y之间所受的约束.2.在曲线的方程的定义中,曲线上的点与方程的解之间的关系(1)和(2)缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的从集合的角度来看,设A是曲线C上的所有点组成的点集,B是所有以方程F(x,y)=0的实数解为坐标的点组成的点集,则由关系(1)可知A⊆B,由关系(2)可知BCA;同时具有这两个关系,就有A=B.3.从充要条件的角度理解,即“某点在曲线上”与“点的坐标满足曲线的方程”之间是互为充要条件的.知识点二圆系方程1.曲线系:同时具有某一特征的一组曲线叫做一个曲线系;它们的共同方程叫做这个曲线系的曲线系方程2.圆系方程:(1)过两已知圆交点的圆系方程:两相交圆C:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0.则过其交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(λ≠-1).(2)过直线与圆交点的圆系方程:直线Ax+By+C=0与圆x 2+y 2+Dx+Ey+F=0相交,则过其交点的圆系方程为:x 2+y 2+Dx+Ey+F+λ(Ax+By+C)=0. 典型例题分析题型1曲线的方程与方程的曲线 【例1】判断下列命题是否正确:①设点A(2,0)、B(0,2),则线段AB 的方程是x+y-2=0; ②到原点的距离等于5的动点的轨迹是y=x -25; ③到两坐标轴距离相等的点的轨迹方程是x 2-y 2=0. 解析 根据曲线与方程的定义,逐条检验“两性”答案 命题①中方程x+y-2=0表示一条直线,坐标满足该方程的点如(-1,3)等不在线段AB 上,故命题①错误;命题②中到原点距离等于5的动点的轨迹方程为x 2+y 2=52,方程y=x -25表示的曲线是圆x 2+y 2=25除去x 轴下半部分的曲线,故命题②错误命题③中到两坐标轴距离相等的点的轨迹方程为y=±x,满足x 2-y 2=0,反过来坐标满足方程x 2-y=0的点到两坐标轴的距离相等,故命题③正确规律总结 判断方程是否是曲线的方程,要从两个方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上【变式训练1】下列命题是否正确?若不正确,说明原因 (1)过点A(2,0)平行于y 轴的直线l 的方程是|x|=2; (2)到两坐标轴距离相等的点的轨迹方程是y=x答案(1)错误,因为以方程|x|=2的解为坐标的点,不都在直线l 上,直线l 只是方程|x|=2所表示的图形的一部分(2) 错误,因为到两坐标轴距离相等的点的轨迹有两条直线y=x 和y=-x,故y=x 不是所求的轨迹方程题型2曲线的交点【例2】求通过直线2x+y+4=0及圆x 2+y 2+2x-4y+1=0的交点,并且面积最小的圆的方程 解析 利用圆系公式可求出变圆的半径,参变量取适当值时可使变圆半径最小答案 设圆的方程是(x 2+y 2+2x-4y+1)+λ(2x+y+4)=0,即[x+(1+λ)2+(y+24-λ)=4161652+-λλ.设该圆半径为R,由圆面积公式S=πR 2,得R 2=4161652+-λλ取最小值的面积为最小.而R 2=45(λ-58)2+54,所以当λ=58时,圆面积最小.此时圆的方程是5x 2+5y 2+26x-12y+37=0.规律总结 最值问题要先列出目标函数,再利用合适的方法求最值【变式训练2】已知直线x+y+b=0与曲线x 2-1+y=0有公共点,则b 的取值范围是 .答案 联立两曲线方程,消去y 得x 2-x-(1+b)=0.由题意得△≥0,即1+4(1+b)≥0,解得b ≥-45规律 方法 总结1.判断方程是否是曲线方程,要从两方面着手,一是检验点的坐标是否适合方程,二是检验以方程的解为坐标的点是否在曲线上2.判断方程表示什么曲线,要对方程适当变形,变形过程一定要注意与原方程的等价 性,否则变形的方程表示的曲线就不是原方程的曲线,另外,变形的方法还有配方法、因式分 解法等3.在求轨迹方程时经常遇到已知一动点的轨迹方程,求另一动点的轨迹方程的问题, 而解决这类问题的解法称为代入法(或相关点法),而此法的关键是如何来表示出相关的点定时 巩固 检测基础训练1.如果命题“坐标满足方程f(x,y)=0的点都在曲线C 上”是不正确的,那么下列命题中正确的是 ( ) A.坐标满足f(x,y)=0的点都不在曲线C 上 B.曲线C 上的点的坐标不都满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C 上,有些不在曲线C 上D.至少有一个不在曲线C 上的点,其坐标满足f(x,y)=0 【答案】D(点拨:由简易逻辑推理可得)2.已知圆C 的方程f(x,y)=0,点A(x 0,y 0)在圆外,点B(x ´,y ´)在圆上,则f(x,y)-f(x 0,y 0)+f(x ´,y ´)=0表示的曲线是 ( ) A.就是圆C B.过A 点且与圆C 相交的圆 C.可能不是圆 D.过A 点与圆C 同心的圆 【答案】D(点拨:由点B(x ´,y ´)在圆上, ∴f(x ´,y ´)=0,即方程为f(x,y)-f(x 0,y 0)=0, ∴方程过点A(x 0,y 0) 又f(x 0,y 0)为常数,∴f(x,y)-f(x 0,y 0)=0仍为圆的方程.)3.已知A(1,0),B(-1,0),动点M 满足|MA|-|MB|=2,则点M 的轨迹方程是 ( ) A.y=0(-1≤y ≤1) B.y=0(x ≥1) C.y=0(x ≤-1) D.y=0(|x|≥1) 【答案】C(点拨:由|MA|-|MB|=2可设M(x,y),则()()222211y x y x ++-+-=2整理得:y=0,又|MA|-|MB|>0,∴x ≤-1.)4.点P(2,-3)在曲线x 2-ay 2=1上,则a= . 【答案】31(点拔:将点代入方程中即可.) 5.已知两定点A(-1,0),B(2,0),动点P 满足21=PB PA,则P 点的轨迹方程是 . 【答案】x 2+4x+y 2=0(点披:将|PA|与|PB|用距离公式表示出整理即可,)6.过点P(2,4)作两条互相垂直的直线1l 、2l ,1l ,交x 轴于A 点,2l 交y 轴于B 点,求线段AB 的中点M 的轨迹方程.【答案】如下图,设M 点的坐标为(x ,y),则A(2x,0),B(0,2y)∵1l ⊥2l ,2l P(2,4),∴PA ⊥PB,k PA ·k PB =-1,而k PA =x x -=-12224(x ≠1),k PB =2042--y =2-y, ∴x-12·(2-y)=-1,整理得x+2y-5=0(x ≠1). ∵当x=1时,A(2.0),B(0,4∴AB 的中点M(1,2)也满足方程x+2y-5=0,综上所述,点M 的轨迹方程为x+2y-5=07.线段AB 的长度为10.它的两个端点分别在x 轴,y 轴上滑动,则AB 的中点P 的轨迹是什么? 【答案】解法一:由题意可知AB 的中点P 恒满足到原点(0,0)的题离为5,所以点P 的轨迹为以原点为圆心,以5为半径的圆.解法二:设P 点的坐标为(x,y),由中点坐标公式知A(2x ,0),B(0,2y),因为|AB|=10,所以2244y x +=10,即x 2+y 2=25,所以点P 的轨为以原点为圆心,以5为半径的圆能力提升8.如图所示的曲线方程是 ( )A.|x|-y=0B.x-|y|=0C.y x =0D.yx -1=0【答案】B(点拔:A 中y ≥0与图形不符,C 、D 中都不满足y= 0,而图形过原点,所以排除C 、D,只有B 符合题意.) 9.(1)方程(x+y-1)1-x =0表示什么曲线?(2)方程2x 2+y 2-4x+2y+3=0表示什么曲线? 【答案】(1)由方程(x+y-1)1-x =0可得⎩⎨⎧=-+≥-010,1y x x 或⎩⎨⎧=-≥-.01,01x x 即x+y-1=0(x ≥1)或x=1,表示直线x=1和射线x+y-1=0(x ≥1).(2)方程左边配方得2(x-1)2+(y+1)2=0,∵2(x-1)2≥0,(y+1)2≥0,∴⎪⎩⎪⎨⎧=+=-,0)1(,0)1(222y x 得⎩⎨⎧-==,1,1y x∴方程表示的图形是点A(1,-1).10.求经过两圆C 1:x 2+y 2+6x-16=0,C 2:x 2+y 2-4x-5=0的交点,且过点(2,1)的圆的方程. 【答案】 设圆的方为x 2+y 2+6x-16+λ(x 2+y 2-4x-5)=0又因为圆过点(2,1),代入方程得λ=81,所以所求圆的方程为x 2+y 2+6x-16+81(x 2+y 2-4x-5)=0.即9x 2+9y 2+44x-133=0.(点拨:过相交的两个圆C 1:x 2+y 2+D 1x+E 1y+F 1=0,C 2:x 2+y 2+D 2x+E 2y+F 2=0的交点的圆系方程为x 2+y 2+D 1x+E 1y+F 1+λ(x 2+y 2+D 2x+E 2y+F 2)=0(λ≠-1).11.设A(-c,0),B(c,0)(c>0)为两定点,动点P 到点A 的距离与到点B 的距离的比为定值a(a>0),试求点P 的轨迹方程,并探求点P 的轨迹 【答案】设动点P 的坐标是(x ,y),由PBPA =a(a>0)得2222)()(yc x y c x +-++=a,简得(1-a 2)x 2+2c(1+a 2)x+c 2(1-a 2)+(1-a 2)y 2=0.当a ≠1时,得x 2+221)1(2aa c -+x+c 2+y 2=0,整理得22211⎪⎪⎭⎫ ⎝⎛-+-c a a x +y 2=2212⎪⎭⎫ ⎝⎛-a ac ;当a=1时,化简得x=0,所以当a ≠1时,P 点的轨迹是以⎪⎪⎭⎫ ⎝⎛-+0,1122c a a 为圆心,122-a ac为半径的圆:当a=1时,P 点的轨迹是y 轴.。
最新人教版高中数学选修2-1第二章《曲线与方程》梳理探究2
数学人教B 选修2-1第二章2.1 曲线与方程1.了解曲线与方程的对应关系.2.了解两条曲线交点的求法.3.了解用坐标法研究几何性质.4.掌握求曲线的方程和由方程研究曲线的性质.1.点的轨迹方程一般地,一条曲线可以看成________________的轨迹,所以曲线的方程又常称为____________的点的轨迹方程.【做一做1】到A (2,-3)和B (4,-1)的距离相等的点的轨迹方程是( )A .x -y -1=0B .x -y +1=0C .x +y -1=0D .x +y +1=02.曲线的方程与方程的曲线的定义(1)在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间具有如下关系: ①__________________________________;②__________________________________.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程.在曲线的方程的定义中,曲线上的点与方程的解之间的关系①和②缺一不可,而且两者是对曲线上的任意一点以及方程的任意一个实数解而言的.从集合的角度来看,设A 是曲线C 上的所有点组成的点集,B 是所有以方程F (x ,y )=0的实数解为坐标的点组成的点集,则由关系①可知A ⊆B ,由关系②可知B ⊆A ;若同时具有关系①和②,就有A =B .(2)曲线C 用集合的特征性质描述法,可以描述为C ={M (x ,y )|F (x ,y )=0}.【做一做2】下面各对方程中,表示相同曲线的一对方程是( )A .y =x 与x =y 2B .y =x 与x y=1 C .||y =||x 与x 2-y 2=0D .y =lg x 2与y =2lg x3.两曲线的交点已知两条曲线C 1:F (x ,y )=0和C 2:G (x ,y )=0,求这两条曲线的交点坐标,只要求方程组⎩⎪⎨⎪⎧F (x ,y )=0G (x ,y )=0的________就可以得到.曲线的交点问题需转化为二元方程组的求解问题,那么,解二元方程组的一切思路方法和相关知识,都是求两曲线交点的基本依据和方法.【做一做3】曲线y =x 2+1和y =x +m 有两个不同的交点,则( )A .m ∈RB .m ∈⎝⎛⎭⎫0,34 C .m =34D .m ∈⎝⎛⎭⎫34,+∞1.曲线与方程的定义的理解剖析:(1)定义中的第①条“曲线C 上的点的坐标都是方程F (x ,y )=0的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有点都符合这个条件而毫无例外(纯粹性).(2)定义中的第②条“以方程F (x ,y )=0的解为坐标的点都在曲线C 上”,阐明符合条件的所有点都在曲线上而毫无遗漏(完备性).(3)定义的实质是平面曲线的点集{M |p (M )}和方程F (x ,y )=0的解集{(x ,y )|F (x ,y )=0}之间的一一对应关系,由曲线和方程的这一对应关系,既可以通过方程研究曲线的性质,又可以由曲线求它的方程.2.曲线方程的求法剖析:求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标;(2)写出适合条件p 的点M 的集合P ={M ︱p (M )};(3)用坐标表示条件p (M ),列出方程F (x ,y )=0;(4)化方程F (x ,y )=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写,如有特殊情况,可以适当说明.另外,也可以根据情况省略步骤(2),直接列出曲线方程.题型一 曲线与方程的概念【例1】若曲线C 上的点的坐标满足方程F (x ,y )=0,则下列说法正确的是( )A .曲线C 的方程是F (x ,y )=0B .方程F (x ,y )=0的曲线是CC .坐标不满足方程F (x ,y )=0的点都不在曲线C 上D .坐标满足方程F (x ,y )=0的点都在曲线C 上反思:(1)判定曲线与方程的对应关系有两种方法:等价转换和特值讨论.它们使用的依据是曲线的纯粹性和完备性.(2)处理“曲线与方程”的概念题,可采用直接法,也可采用特值法.题型二 曲线方程的求法【例2】已知△ABC ,A (-2,0),B (0,-2),第三个顶点C 在曲线y =3x 2-1上移动,求△ABC 的重心G 的轨迹方程.分析:在这个问题中,动点C 与点G 之间有关系,写出C 与G 之间的坐标关系,并用G 的坐标表示C 的坐标,然后代入C 的坐标所满足的关系式中,化简整理即得所求. 【例3】长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,动点C (x ,y )满足AC =2CB ,求动点C 的轨迹方程. 分析:A ,B 分别在x ,y 轴上移动,可设A(x 0,0),B(0,y 0),又动点C (x ,y )满足AC =2CB ,代入即可得方程.反思:求曲线的方程的关键是找到曲线上动点的运动规律,并利用坐标把这种规律翻译成代数方程.1方程x 2+xy =x 表示的曲线是( )A .一个点B .一条直线C .两条直线D .一个点和一条直线2已知方程2x 2-xy +1=0表示的图形为C ,则下列点不在C 上的为( )A .⎝⎛⎭⎫12,3B .(-3,5)C .⎝⎛⎭⎫-2,-92D .⎝⎛⎭⎫2,92 3在平面直角坐标系xOy 中,若定点A (1,2)与动点P (x ,y )满足OP ·OA =4.则点P 的轨迹方程是____________.4点P (2,-3)在曲线x 2-ay 2=1上,则a =__________.5已知k ∈R ,则直线y =3x +k 与圆x 2+y 2=16无公共点时,k 的取值范围为__________.答案:基础知识·梳理1.动点依某种条件运动 满足某种条件【做一做1】C2.(1)①曲线C 上点的坐标都是方程F (x ,y )=0的解 ②以方程F (x ,y )=0的解为坐标的点都在曲线C 上【做一做2】C3.实数解【做一做3】D 已知条件可转化为联立后的方程组有两组不同的解,即方程x 2-x +1-m =0的判别式大于零,即(-1)2-4(1-m )>0,解得m >34. 典型例题·领悟【例1】C 方法一:上述说法写成命题的形式为“若点M (x ,y )是曲线C 上的点,则点M 的坐标适合方程F (x ,y )=0”.其逆否命题为:“若点M 的坐标不适合方程F (x ,y )=0,则点M 不在曲线C 上”.故选C.方法二:本题亦可考虑特值法,作直线l :y =1.考查l 与F (x ,y )=y 2-1=0的关系,知选项A ,B ,D 三种说法均不正确.故选C.【例2】解:设△ABC 的重心坐标为G (x ,y ),顶点C 的坐标为(x 1,y 1),由重心坐标公式得⎩⎨⎧ x =-2+0+x 13,y =0-2+y 13⇒⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2,代入y 1=3x 21-1,得3y +2=3(3x +2)2-1.则有y =9x 2+12x +3,故所求轨迹方程为y =9x 2+12x +3.【例3】解:∵长为3的线段AB 的端点A ,B 分别在x ,y 轴上移动,故可设A (x 0,0),B (0,y 0).又动点C (x ,y )满足AC =2CB ,∴(x -x 0,y )=2(0-x ,y 0-y ),即(x -x 0,y )=(-2x ,2y 0-2y ),∴⎩⎪⎨⎪⎧ x -x 0=-2x y =2y 0-2y ⇒⎩⎪⎨⎪⎧ x 0=3x ,y 0=32y .又∵|AB |=3,即x 20+y 20=9,∴(3x )2+⎝⎛⎭⎫32y 2=9.整理得动点C 的轨迹方程为x 2+y 24=1. 随堂练习·巩固1.C x 2+xy =x 因式分解得x (x +y )=x ,即x (x +y -1)=0,即x =0或x +y -1=0.2.B3.x +2y =4 设P (x ,y ),由OP ·OA =4知x +2y =4.4.13 将点P 的坐标代入方程中即可求得a =13. 5.k >8或k <-8 无公共点时圆心到直线的距离大于半径,即|k |2>4,∴k >8或k <-8.。
(人教版)高中数学选修2-1课件:第2章 圆锥曲线与方程2.3.1
合作探究 课堂互动
高效测评 知能提升
(2)设双曲线的方程为 mx2+ny2=1(mn<0), ∵双曲线经过点(3,0),(-6,-3),
∴93m6m++0= 9n1=,1, 解得nm==-19,13, ∴所求双曲线的标准方程为x92-y32=1.
数学 选修2-1
第二章 圆锥曲线与方程
自主学习 新知突破
合作探究 课堂互动
高效测评 知能提升
定义法求方程
已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2= 9,动圆M同时与圆C1及圆C2相外切,求动圆的圆心M的轨迹方 程.
思路点拨: 根据两圆外切的定义从中找出相关的几何关 系,与所学椭圆、双曲线的定义进行对比可解.
数学 选修2-1
第二章 圆锥曲线与方程
合作探究 课堂互动
高效测评 知能提升
(2)焦点F1,F2的位置是双曲线定位的条件,它决定了双曲 线标准方程的类型“焦点跟着正项走”,若x2项的系数为正, 则焦点在x轴上;若y2项的系数为正,那么焦点在y轴上.
(3)当且仅当双曲线的中心在原点,其焦点在坐标轴上时, 双曲线的方程才具有标准形式.
(4)双曲线的标准形式的特征是数xⅠ2 +数yⅡ2 =1,数Ⅰ与
合作探究 课堂互动
高效测评 知能提升
3.与双曲线x82-1y02 =1 具有相同焦点的双曲线方程是 ________(只写出一个即可).
解析: 与x82-1y02 =1 具有相同焦点的双曲线方程为8+x2 k -10y-2 k=1(-8<k<10).
答案: x62-1y22 =1
数学 选修2-1
第二章 圆锥曲线与方程
数学 选修2-1
第二章 圆锥曲线与方程
人教版高中数学选修2-1第二章2.1.1曲线与方程
导入新课观察与分析我们知道,用一个垂直于圆锥的轴的平面截圆锥,截口曲线(截面与圆锥侧面的交线)是一个圆,如果改变平面与圆锥曲线的夹角,会得到什么呢?抛物线 双曲线 椭圆观察与分析如图:以上三个不垂直于圆锥轴的平面截圆锥,当截面与圆锥的轴夹角不同时,可以得到不同的截口曲线,他们分别是抛物线,双曲线,和椭圆.因此我们通常把抛物线,双曲线和椭圆统称为圆锥曲线.圆锥曲线与科研、生活、以及人类生活有着密切的关系.早在16,17世纪之交,开普勒就发现行星绕太阳运行是一个椭圆.喷泉喷出美丽的抛物线发电厂冷却塔的外形是双曲线教学目标知识与能力•使同学们对曲线与方程有更系统更完整的认识.•培养同学们分析曲线的能力.•培养学生学会从“感性认识”到“理性认识”过程中获取新知.•通过对圆与方程的感性认识,坐标法研究曲线的方法,进一步学习曲线与方程. 过程与方法情感态度与价值观教学重难点重点•掌握曲线的方程,曲线的方程的概念.难点•使同学们理解曲线的方程的概念. •分析曲线的能力.我们知道,在直角坐标系中,平分第一、三象限的直线的方程是x - y =0,这就是说,如果点 M (x 0,y 0)是这条直线上的任一点,它到坐标轴的距离相等,即 x 0 = y 0,那么,点 M ( x 0,y 0 ) 是方程 x - y =0的解. M (x 0,y 0)M(x0,y0)反过来,如果(x0,y0)是方程x - y=0的解,即x=y0,那么以这个解为坐标的点到坐标轴的距离相等.一般的,在直角坐标系中,如果某曲线 C(看作点的集合或适合某种条件的点的轨迹)上的点与一个一元二次方程 : f(x,y)=0的实数解建立如下的关系:(1)曲线上的点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线方程;这条曲线叫做方程的曲线.证明:与两条坐标轴的距离的积是常数k(k>0)的点的轨迹方程是xy=±k 的解.M RO Q 图2.1-3例1:证明:(1)如图2.1-3,设M (x 0,y 0)是轨迹上的任一点.因为点M 与x 轴的距离为|y 0|,与y 轴的距离为|x 0|,所以 |x 0| · |y 0|=k ,即(x 0,y 0)是方程 x y =±k 的解.M R O Q 如图2.1-3(2)设点M 1的坐标(x 1,y 1)是方程xy =±k 的解则x 1y 1=±k 即|x 1|·|y 1|=k ,|x 1|,|y 1|正是点M 1到纵轴和横轴的距离,因此点M 1到这两条直线的距离的积是常数k ,点M 1是曲线上的点. 由(1)(2)可知x y =±k 是与两条坐标的距离的积为常数k (k >0)的点的轨迹方程.例2:已知等腰三角形三个顶点的坐标分别是A(0,3),B(-2,0),C(2,0).问:中线AO(O为原点)所在直线的方程是x = 0吗?为什么?解:是,由图可知,等腰三角形ABC的边BC 上的中线AO所在直线的方程是:x=0AB CO xy这里的“曲线”指的是三角形ABC中BC的中线所在的直线x=0是这条曲线的方程.在理解什么是“曲线”时,要注意曲线是满足条件的图形;在理解“方程”时,要注意方程包含对其中未知数的限制.比如本例题中,三角形ABC中BC 的中线的方程是x=0(0≥y≥3).课堂小结“曲线方程”的概念:(1)曲线上的点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都是曲线上的点那么,这个方程叫做曲线方程;(1)曲线上的点的坐标都是这个方程的解(2)以这个方程的解为坐标的点都是曲线 上的点那么,这条曲线叫做方程的曲线. “方程的曲线”的概念:高考链接2.(2006北京理)已知:曲线C上的任意一点P到点F(0,1)的距离比它到直线m:y=4的距离小3.不经过坐标原点的直线与曲线l相交于两个不同点A,B,且以AB为直径的原经过坐标原点O(1)求曲线方程C的方程;(2)求证:直线l过顶点,并求出该顶点的坐标;(3)三角形ABF的面积是否存在最小值?若不存在请说明理由;(4)设曲线C在点A、B处发热切线分别为l1,l2,证明l1与l2的焦点必定在定直线m:y=-4上.解:(1)解法1:依题意,可知,曲线C是“平面内到顶点F(0,1)的距离与到定直线y=-1的距离相等的点的轨迹”,所以它是以F(0,1)为焦点,以直线y=-1为准线的抛物线.所以曲线C的方程式x2=4y.(1)解法2:设点P 的坐标为(x ,y ),依题意指点P 必定在直线m 的上方,即y >-4于是 |PF |= |y +4|- 3= y +1,所以整理得x 2=4y 所以曲线C 的方程是x 2=4y . 它是以F (0,1)为焦点, 以直线y =-1为准线的抛物线.22(1)1x y y +-=+(2)直线l 的斜率显然存在,又直线l 不经过坐标原点,故可设直线l 的方程为 y=kx+b (b ≥0),并设A (x 1,y 1), B (x 2,y 2)由 ,消去y ,整理得 x 2- 4kx - 4b =0①∴ x 1+x 2=4k ②x 1x 2=-4b ③⎩⎨⎧=+=yx bkx y 42若以AB 为直径的圆过坐标原点O 则∴x 1x 2+y 1y 2=0, 即 ④将③带入④,得 解的b =4或b =0(舍去) 所以x 1x 2=-16,⑤∴直线l 的方程为y =kx +4,显然,直线l 过定点M (0,4) 0161222121=+x x x x 0)4(16142=-+-b b OB OA ⊥(3)由弦长公式得 把②⑤带入上式,得 设点F (0,1)到直线l :kx-y +4=0的距离为d ,则 2122124)(1||x x x x k AB -+⋅+=414||22+⋅+=k k AB 131|410|22+=++-=k k d46||212+=⋅⋅=∆k d AB S AFB ∴ ∴当k =0时,S △AFB 有最小值,是12∴ △AFB 的面积存在最小值,最小值是12.(4)曲线C 的方程可化为 则 , 所以l 1的方程为: l 2的方程为:214y x =x y 21='1121|1x y k x x ='==2221|2x y k x x ='==)(21411121x x x x y -=-⑥⑦ )(21412222x x x x y -=-解⑥⑦联立方程组,得所以l 1与l 2的焦点为M (2k ,-4)它恒定在直线m :y =-4上.1212x +x x ==2k,≠2x x x ==-44课堂练习1.下面各对方程中表示的曲线相同的一对是().C(A)y2=x与y=x(B)y=x与y / x=1(C)|y|=|x|与y2=x2(D)y=lgx2与y=2lgx2. 如果命题“坐标满足方程f (x, y)=0的点都在曲线c上”是不正确的,那么下列命题正确的是().DA. 坐标满足方程f (x, y)=0的点都不在曲线c上B. 坐标满足方程f (x, y)=0的点有些在曲线c上,有些不在曲线c上C. 曲线c上的点不都满足方程f (x, y)=0D. 一定有不在曲线c上的点,其坐标满足方程f (x, y)=0填空题:1.已知△ABC的面积为4,A、B两点的坐标分别是(-2,0)、(2,0),则顶点C的轨迹方程是y=2和 y =-2______________ .2.m=-2是直线(2-m )x+my+3=0和直线x-my-3=0互相垂直的充分而不必要的条件__________________ .解答题1.若直线 l1:x+y+a=0,l2:x+ay+1=0,l3:ax+y+1=0能围成三角形,求a的取值范围.解:由l 1、l 2相交,需要1·a -1·1≠0,得到a ≠1,此时,解方程组 可解得 .即l 1,l 2的交点为(-1-a ,1),由l 1、l 3相交,需1·1-a·a ≠0,∴a ≠±1, 又(-1-a ,1) 不∈l 3∴a ·(-1-a )+1+1≠0, 得a ≠1且a ≠-2,综上,a ∈R 且a ≠±1且a ≠-2,能保证三交点 (-1-a ,1),(1,-1-a )、(-1-a ,-1+a +a 2)互不重合,所以所求a 的范围为a ∈(-∞,-2)∪(-2,-1)∪(-1,1)∪(1,+∞). x +y +a =0x +ay +1=0⎧⎨⎩x =-1y =1⎧⎨⎩解:如图,设围成四边形为OABC ,因OABC 有外接圆,且∠AOC =90°,故∠ABC =90°.∴两条直线x +3y -7=0,kx – y – 2 = 0互相垂直,(- )·k =-1,即k =3. 312.已知直线x +3y -7=0,kx-y -2=0和x 轴、y 轴围成四边形有外接圆,求k .教材习题答案1.已知等腰三角形的三个顶点坐标分别是(0,3)(-2,0)(2,0).中线AO(O为原点)所在直线方程是x=0吗?为什么?解:是,容易求出等腰三角形ABC的变BC上的中线AO所在的直线是x=0.2.已知方程ax2+by2=2的曲线经过A(0, )和点B(0,0)求a,b的值.解:a=,b=3532251825与本节内容相关的课后习题:A组的第1题:点A(1,-2),B(2,-3), C(3,10)是否在方程x2-xy+2y+1=0表示的曲线上?为什么?解:点A(1,-2), C(3,10)在该曲线上,而B(2,-3)不在该曲线上.。
高中数学人教版选修2-1:2.1.1 曲线与方程(共16张PPT)
证明:(1)如图,设M(x0,y0 )是轨迹上的任意一点, 因为点M与x轴的距离为 y0 ,与y轴的距离为 x0 , 所以 x0·y0 = k,即(x0,y0 )是方程xy = ±k的解.
三、精典例题
(2)设点M1的坐标(x1,y1)是方程xy = ±k的解, 即x1y1 = ±k,即 x1·y1 = k. 而 x1 ,y1 正是点M1到纵轴、横轴的距离, 因此点M1到两条直线的距离的积是常数k, 点M1是曲线上的点.
2.证明已知曲线的方程的方法和步骤:
第一步:设 M (x0,y0)是曲线C上任一点,证明 (x0,y0)是f(x,y)=0的解.
第二步:设(x0,y0)是 f(x,y)=0的解,证明点 M (x0,y0)在曲线C上.
五、巩固提升
课堂练习 第37页练习第1、2题 课堂作业 第37页习题2.1A组第1、2题
由(1)、(2)可知,xy = ±k是与两条坐标轴的距离 的积为常数k(k > 0)的点的轨迹方程.
四、课堂小结
1.曲线与方程的概念:
如果满足下列两个条件: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点. 那么,这个方程叫做曲线的方程;
这条曲线叫做方程的曲线.
一、新知探究
1.在直角坐标系中,平分第一、三象限的直线
m的方程是__x_-y_=__0_.
2.①点M(1,1)在x-y=0的解吗?
y x-y=0 m
②(1,1)是方程x-y=0的解,则点M(1,1)在 直线m上吗?
M(1,1)3.①若点M(x0,y0)在直线m上,则点M的坐标
二、曲线的方程和方程的曲线的含义
一般地,在直角坐标系中,如果某曲线C(看作点的 集合或适合某种条件的点的轨迹)上的点与一个二元方程 f(x,y)=0的实数解建立了如下的关系:
最新人教版高中数学选修2-1第二章《曲线与方程》梳理探究1
数学人教A选修2-1第二章2.1 曲线与方程1.了解曲线与方程的对应关系,理解曲线的方程、方程的曲线的概念.2.明确解析几何研究的主要问题,掌握求曲线的方程的方法与步骤.1.曲线的方程与方程的曲线在直角坐标系中,如果某曲线C(看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)______________都是这个方程的解;(2)以_____________为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线.如果曲线C的方程是f(x,y)=0,那么点P0(x0,y0)在曲线C上的充要条件是f(x0,y0)=0.【做一做1】已知圆C:(x-2)2+(y+1)2=4及直线l:x+2y-2=0,则点M(4,-1)( )A.不在圆C上,但在直线l上B.在圆C上,但不在直线l上C.既在圆C上,也在直线l上D.既不在圆C上,也不在直线l上2.解析几何所研究的主要问题(1)根据已知条件,求出表示曲线的____.(2)通过曲线的方程,研究曲线的____.【做一做2】写出曲线xy-4x-3y=0上一点的坐标________.3.求曲线方程的一般步骤(1)建立适当的坐标系,用有序实数对______表示曲线上任意一点M的坐标;(2)写出适合条件p的点M的集合P={M|p(M)};(3)用____表示条件p(M),列出方程f(x,y)=0;(4)化方程f(x,y)=0为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.【做一做3】动点P到点(1,-2)的距离为3,则动点P的轨迹方程是( )A.(x+1)2+(y-2)2=9B.(x-1)2+(y+2)2=9C.(x+1)2+(y-2)2=3D.(x-1)2+(y+2)2=3答案:1.(1)曲线上点的坐标(2)这个方程的解【做一做1】C2.(1)方程(2)性质【做一做2】(1,-2)(不惟一)3.(1)(x,y) (3)坐标【做一做3】B1.对曲线与方程的定义的理解剖析:(1)定义中的第一条“曲线上的点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都符合这个条件而毫无例外(纯粹性).(2)定义中的第二条“以这个方程的解为坐标的点都是曲线上的点”,阐明符合条件的以方程解为坐标的所有点都在曲线上而毫无遗漏(完备性).(3)定义的实质是平面曲线的点集{M|p(M)}和方程f(x,y)=0的解集{(x,y)|f(x,y)=0}之间的一一对应关系.由曲线和方程的这一对应关系,既可以求出曲线的方程,又可以通过方程研究曲线的性质.2.求曲线方程中应注意的问题剖析:求曲线的方程时,(1)在第一步中,如果原题中没有确定坐标系,首先选取适当的坐标系,通常选取特殊位置为原点,相互垂直的直线为坐标轴.建立适当的坐标系,会给运算带来方便.(2)第二步是求方程的重要一环,要仔细分析曲线的特征,注意揭示其隐含的条件,抓住与曲线上任意一点M有关的等量关系,列出等式,此步骤有时也可以省略,而直接将几何条件用动点的坐标表示.(3)在化简的过程中,注意运算的合理性与准确性,尽量避免“失解”或“增解”.(4)第五步的说明可以省略不写,若有特殊情况,可以适当说明,如某些点虽然其坐标满足方程,但不在曲线上,可以通过限定方程中x(或y)的取值予以剔除.3.求曲线方程的常用方法剖析:(1)直接法:建立适当的坐标系后,设动点为(x,y),根据几何条件寻求x,y之间的关系式.(2)定义法:如果所给几何条件正好符合圆等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(3)相关点法:利用所求曲线上的动点与某一已知曲线上的动点的关系,用所求动点的坐标(x,y)来表示已知动点的坐标,并代入已知动点满足的曲线的方程,由此即可求得动点坐标(x,y)所满足的关系.题型一曲线的方程与方程的曲线的概念辨析【例题1】设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,则下列命题正确的是( )A.坐标满足方程f(x,y)=0的点都不在曲线C上B.曲线C上的点的坐标都不满足方程f(x,y)=0C.坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上D.一定有不在曲线C上的点,其坐标满足方程f(x,y)=0反思:本题一是要正确理解“不都在”的含义,二是要把握曲线与方程的关系.题型二求曲线的方程【例题2】已知圆C:x2+(y-3)2=9,过原点作圆C的弦OP,求OP的中点Q的轨迹方程.分析:解答本题可用三种方法:直接法,定义法,代入法.在解题过程中,应注意自变量的取值范围.反思:求曲线的方程的常用方法有三种:一是直接法;二是定义法;三是相关点法(又称为代入法).在解题中,我们可以根据题目的不同特点选择最合适的方法.求曲线方程的过程中要特别注意题目隐含的限制条件.题型三 易错辨析【例题3】 设A ,B 两点的坐标是(-a,0),(a,0),若动点M 满足k MA ·k MB =-1,求动点M 的轨迹方程.错解:设M(x ,y),∵k MA ·k MB =-1,∴y x +a ·y x -a=-1. 整理得x 2+y 2=a 2,∴M 的轨迹方程是x 2+y 2=a 2.答案:【例题1】 D 命题“坐标满足方程f (x ,y )=0的点都在曲线C 上”是不正确的,即“坐标满足方程f (x ,y )=0的点不都在曲线C 上”是正确的,“不都在”包括“都不在”和“有的在,有的不在”这两种情况,故选项A ,C 错;而选项B 显然错;故选D.【例题2】 解法一:(直接法):如图,因为Q 是OP 的中点,所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2,即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+⎝⎛⎭⎫ y -322=94(y ≠0). 解法二:(定义法):如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝⎛⎭⎫ y -322=94(y ≠0). 解法三:(代入法):设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎨⎧ x =x 12,y =y 12,即⎩⎪⎨⎪⎧x 1=2x , y 1=2y . 又因为x 21+(y 1-3)2=9,所以4x 2+4⎝⎛⎭⎫ y -322=9, 即x 2+⎝⎛⎭⎫ y -322=94(y ≠0). 【例题3】 错因分析:上述解法中思路是正确的,但忽视了斜率k MA ,k MB 存在的前提x ≠±a .正解:设M (x ,y ),∵k MA 和k MB 存在,∴x ≠±a .由k MA ·k MB =-1,得y x +a ·y x -a=-1, 整理得x 2+y 2=a 2,∴点M 的轨迹方程是x 2+y 2=a 2(x ≠±a).1 已知0≤α<2π,点P(cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为( ) A.3π B.53π C. 3π或53π D. 3π或6π 答案:C 由(cos α-2)2+sin 2α=3,得cos α=12. 又∵0≤α<2π,∴α=33ππ5或. 2 已知动点P 在曲线2x 2-y =0上,则点A(0,-1)与点P 连线的中点的轨迹方程是( )A.y =2x 2B.y =8x 2C.y =8x 2-1D.2y =8x 2-1答案:D 设AP 中点为M (x ,y ),点P (x 1,y 1), 由中点坐标公式,得1111,2,212 1.2x x x x y y y y ⎧=⎪=⎧⎪⇒⎨⎨-=+⎩⎪=⎪⎩ 由于P (x 1,y 1)在曲线2x 2-y =0上,代入化简,得2y =8x 2-1.3 已知两点M(-2,0),N(2,0),点P 满足 PM PN =0,则点P 的轨迹方程为__________.答案:x 2+y 2=4 设点P 的坐标为P (x ,y ),由 PM PN =(-2-x ,-y )·(2-x ,-y )=x 2-4+y 2=0,得x 2+y 2=4,则点P 的轨迹方程为x 2+y 2=4.4 已知A ,B 两点的坐标分别为A(0,-4),B(0,4),直线MA 与MB 的斜率之积为-1,求点M 的轨迹方程.答案:解:设点M 的坐标为(x ,y ),∵MA ,MB 都存在斜率,∴x ≠0.由A (0,-4),B (0,4),得k MA =4y x +,k MB =4y x -. 又∵k MA ·k MB =-1, ∴44y y x x+-∙=-1,化简得x 2+y 2=16. 故点M 的轨迹方程为x 2+y 2=16(x ≠0).5 一个动点到直线x =8的距离是它到点A(2,0)的距离的2倍,求动点的轨迹方程. 答案:解:设动点坐标为(x ,y ),则动点到直线x =8的距离为|x -8|,到点A由已知,得|x-8|=化简得3x2+4y2=48.故动点的轨迹方程为3x2+4y2=48.。
人教版高中数学选修2-1《2.1.1曲线与方程》
给定曲线C与二元方程f(x,y)=0,若满足 (1)曲线上的点坐标都是这个方程的解 (2)以这个方程的解为坐标的点都是曲线上的点 那么这个方程f(x,y)=0叫做这条曲线C的方程 这条曲线C叫做这个方程的曲线
y
f(x,y)=0
0
x
说明:1、曲线的方程——反映的是图形所满足的数量关系 方程的曲线——反映的是数量关系所表示的图形
六、课堂小结
(1)曲线C上的点的坐标都是方程 f(x,y) =0的解; (2)以方程f(x,y)=0的解为坐标的点都 在曲线C上.
在领会定义时,要牢记关系⑴、⑵两者缺一不可.
2.曲线和方程之间一一对应的确立,进一步把 “曲线”与“方程”统一了起来,在此基础上, 我们就可以更多地用代数的方法研究几何问题。 1. “曲线的方程”和“方程的曲线”的定 义:
答案 D
2.下列选项中方程表示图中曲线的是 (
).
解析 对于A,x2+y2=1表示一个整圆;对于B, x2-y2=(x+y)(x-y)=0,表示两条相 交直线;对于D,由lg x+lg y=0知x>0,y>0. 答案 C
3.方程x2+xy=x表示的曲线是 ( ). A.一个点 B.一条直线 C.两条直线 D.一个点和一条直线 解析 由x2+xy=x,得x(x+y-1)=0,即x=0或x +y-1=0.由此知方程x2+xy=x表 示两条直线.故选C. 答案 C
4.(创新拓展)已知曲线C的方程为x= 4 y 2 , 说明曲线C是什么样的曲线,并求该曲线与y轴围 成的图形的面积. 解 由x= 4 y 2 ,得x2+y2=4. 又x≥0,∴方程x= 4 y 2 表示的曲线是以原点 为圆心,2为半径的右半圆, 从而该曲线C与y轴围成的图形是半圆, 1 其面积S= π· 4=2π. 2 所以所求图形的面积为2π.
人教版 高中数学【选修 2-1】2.1曲线与方程课后习题
人教版高中数学精品资料【优化设计】高中数学 2.1曲线与方程课后习题新人教A版选修2-1课时演练·促提升A组1.“曲线C上的点的坐标都是方程f(x,y)=0的解”是“方程f(x,y)=0是曲线C的方程”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件解析:“曲线C上的点的坐标都是方程f(x,y)=0的解”时,不一定能得到“方程f(x,y)=0是曲线C的方程”,但反之,如果“方程f(x,y)=0是曲线C的方程”,必能得出“曲线C上的点的坐标都是f(x,y)=0的解”.答案:B2.方程y=3x-2(x≥1)表示的曲线为()A.一条直线B.一条射线C.一条线段D.不能确定解析:方程y=3x-2表示的曲线是一条直线,当x≥1时,它表示一条射线.答案:B3.曲线xy=2与直线y=x的交点是()A.()B.(-,-)C.()或(-,-)D.不存在解析:由解得即交点坐标为()或(-,-).答案:C4.如图所示的曲线方程是()A.|x|-y=0B.x-|y|=0C.-1=0D.-1=0解析:∵(0,0)点在曲线上,∴C,D不正确.∵x≥0,y∈R,∴B正确.答案:B5.一动点C在曲线x2+y2=1上移动时,它和定点B(3,0)连线的中点P的轨迹方程是()A.(x+3)2+y2=4B.(x-3)2+y2=1C.(2x-3)2+4y2=1D.+y2=1解析:设C(x0,y0),P(x,y).依题意有所以因为点C(x0,y0)在曲线x2+y2=1上,所以(2x-3)2+(2y)2=1,即点P的轨迹方程为(2x-3)2+4y2=1.答案:C6.如果方程ax2+by2=4的曲线过点A(0,-2),B,则a=,b=.解析:由已知解得答案:4 17.已知动点M到点A(9,0)的距离是M到点B(1,0)的距离的3倍,则动点M的轨迹方程是.解析:设M(x,y),则|MA|=,|MB|=.由|MA|=3|MB|,得=3,化简得x2+y2=9.答案:x2+y2=98.已知曲线C的方程是y2-xy+2x+k=0.(1)若点(1,-1)在曲线C上,求k的值;(2)当k=0时,判断曲线C是否关于x轴、y轴、原点对称?解:(1)因为点(1,-1)在曲线C上,所以(-1)2-1×(-1)+2×1+k=0,解得k=-4.(2)当k=0时,曲线C的方程为y2-xy+2x=0.以-x代替x,y不变,方程化为y2+xy-2x=0,所以曲线C不关于y轴对称;以-y代替y,x不变,方程化为y2+xy+2x=0,所以曲线C不关于x轴对称;同时以-x代替x,-y代替y,方程化为(-y)2-(-x)(-y)+2(-x)=0,即y2-xy-2x=0,所以曲线C不关于原点对称.9.已知两点A(,0),B(-,0),点P为平面内一动点,过点P作y轴的垂线,垂足为Q,且=2,求动点P的轨迹方程.解:设动点P的坐标为(x,y),则点Q的坐标为(0,y).于是=(-x,0),=(-x,-y),=(--x,-y),=x2-2+y2.由=2,得x2-2+y2=2x2,即y2-x2=2.故动点P的轨迹方程为y2-x2=2.B组1.方程x2+xy=x表示的曲线是()A.一个点B.一条直线C.两条直线D.一个点和一条直线解析:∵x2+xy=x可化为x(x+y-1)=0,即x=0或x+y-1=0,∴原方程表示两条直线.答案:C2.已知A(-1,0),B(2,4),△ABC的面积为10,则动点C的轨迹方程是()A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=0解析:|AB|==5.∵S△ABC=|AB|·h=10,∴h=4,即顶点C到AB所在直线的距离为4,易求AB所在直线的方程为4x-3y+4=0.设点C(x,y),则=h=4,∴4x-3y+4=±20.故选B.答案:B3.方程|x|+|y|=1所表示的曲线C围成的图形的面积为.解析:方程|x|+|y|=1所表示的曲线C围成的图形是正方形ABCD(如图),其边长为.故方程|x|+|y|=1所表示的曲线C围成的图形的面积为2.答案:24.已知Rt△ABC,|AB|=2a(a>0),求直角顶点C的轨迹方程.解法一:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则有A(-a,0),B(a,0),设顶点C(x,y).由△ABC是直角三角形可知|AB|2=|AC|2+|BC|2,即(2a)2=(x+a)2+y2+(x-a)2+y2,化简得x2+y2=a2.依题意可知,x≠±a.故所求直角顶点C的轨迹方程为x2+y2=a2(x≠±a).解法二:以AB所在直线为x轴,AB的中点为坐标原点,建立如图所示的直角坐标系,则A(-a,0),B(a,0).∵∠ACB=90°,∴点C在以AB为直径的圆上.∵以AB为直径的圆的方程为x2+y2=a2,又∵C与A,B不重合,∴x≠±a.∴顶点C的轨迹方程为x2+y2=a2(x≠±a).5.若直线y=kx+1与曲线mx2+5y2-5m=0(m>0)恒有公共点,求m的取值范围.解:将y=kx+1代入mx2+5y2-5m=0,得(m+5k2)x2+10kx+5(1-m)=0.由题意得,该方程对k∈R总有实数解,∴Δ=20m(m-1+5k2)≥0对k∈R恒成立.∵m>0,∴m≥1-5k2恒成立.∵1-5k2≤1,∴m≥1.故m的取值范围是[1,+∞).6.已知A,B分别是直线y=x和y=-x上的两个动点,线段AB的长为2,P是AB的中点.求动点P的轨迹C的方程.解:设P(x,y),A(x1,y1),B(x2,y2).∵P是线段AB的中点,∴∵A,B分别是直线y=x和y=-x上的点,∴y1=x1,y2=-x2,∴又∵|AB|=2,∴(x1-x2)2+(y1-y2)2=12.∴12y2+x2=12.∴动点P的轨迹方程为+y2=1.。
高中数学 2.1.1曲线与方程课件 新人教版选修2-1
ppt精选
19
【互动探究】若把题1中的方程改为(x+y-1)(
-1)=0,
x3
表示什么曲线?
【解题指南】解答本题,要注意题目中的隐含条件x-3≥0.
第二章 圆锥曲线与方程 2.1 曲线与方程 2.1.1 曲线与方程
ppt精选
1
ppt精选
2
曲线的方程和方程的曲线的定义
一般地,在直角坐标系中,如果某曲线C(看作点的集 前提 合或适合某种条件的点的轨迹)上的点与一个二元
方程f(x,y)=0的实数解建立了如下的关系: ①曲线上点的坐标都是_____________; 条件 ②以这个方程的解为坐标这的个点方都程是的_解__________ 这个方程就叫做曲线的方程;这条曲曲线线就上叫的做点方程 结论 的曲线
ppt精选
3
判断:(正确的打“√”,错误的打“×”) (1)以方程f(x,y)=0的解为坐标的点都在曲线上,那么方程 f(x,y)=0就是曲线的方程.( ) (2)如果f(x,y)=0是某曲线C的方程,则曲线上的点的坐标都适 合方程.( ) (3)x2+y2=1(x>0)表示的曲线是单位圆.( )
C.充要条件
D.既不充分也不必要条件
ppt精选
14
【解题指南】解决本题的关键是分清楚哪个是条件,哪个是结 论,然后考虑是否满足两个条件. 【解析】选B.“曲线C的方程是f(x,y)=0”⇒“以方程 f(x,y)=0的解为坐标的点是曲线C上的点”,但满足f(x,y)=0 不能说明“f(x,y)=0”为曲线方程.
2.点P(x0,y0)与曲线C:f(x,y)=0的关系 (1)点P在曲线C上⇔f(x0,y0)=0. (2)点P不在曲线C上⇔f(x0,y0以方程f(x,y)=0的解为坐标的点都是曲线C上
人教版高中数学选修2-1第二章 2.1曲线与方程同步教案(基础)
学生姓名性别年级学科数学授课教师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程同步教案(基础)教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(一)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C 上的点的坐标都是方程f (x ,y )=0的解”是真命题,下列命题中正确的是( ) A .方程f (x ,y )=0的曲线是C B .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =-2x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( ) A .(x +3)2+y 2=4 B .(x -3)2+y 2=1 C .(2x -3)2+4y 2=1D .(x +32)2+y 2=14.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________. 6.求方程(x +y -1)x -y -2=0表示的曲线. 【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A.4x-3y-16=0或4x-3y+16=0B.4x-3y-16=0或4x-3y+24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.星火教育一对一辅导教案学生姓名性别女年级高二学科数学授课教师贺老师上课时间年月日第()次课共()次课课时:2 课时教学课题人教版选修2-1第二章 2.1曲线与方程(基础)同步复习教案教学目标知识目标:掌握常用动点的轨迹以及求动点轨迹方程的常用技巧与方法.能力目标:通过对求轨迹方程的常用技巧与方法的归纳和介绍,培养综合运用各方面知识的能力.情感态度价值观:通过对求轨迹方程的常用技巧与方法的介绍,掌握常用动点的轨迹,为学习物理等学科打下扎实的基础.教学重点与难点重点:曲线轨迹方程难点:曲线与方程关系与联系教学过程(二)曲线的方程、方程的曲线知识梳理在直角坐标系中,如果某曲线C(看做点的集合或适合某种条件的点的轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解.(2)以这个方程的解为坐标的点都是曲线上的点,那么,这个方程叫做曲线的方程,这条曲线叫做方程的曲线.练习:在平面直角坐标系中,已知A(2,0),B(-2,0).问题1:平面上任一点P(x,y)到A的距离是多少?提示:|P A|=x-22+y2.问题2:平面上到A,B两点距离相等的点(x,y)满足的方程是什么?提示:x-22+y2=x+22+y2.问题3:到A,B两点距离相等的点的运动轨迹是什么?提示:轨迹是一条直线.1.求曲线的方程的步骤2.解析几何研究的主要问题(1)根据已知条件,求出表示曲线的方程.(2)通过曲线的方程,研究曲线的性质.正确理解曲线与方程的概念(1)定义中两个条件是轨迹性质的体现.条件“曲线上点的坐标都是这个方程的解”,阐明曲线上没有坐标不满足方程的点,也就是说曲线上所有的点都适合这个条件而无一例外(纯粹性);而条件“以这个方程的解为坐标的点都是曲线上的点”,阐明符合方程的点都在曲线上而毫无遗漏(完备性).(2)定义中的两个条件是判断一个方程是否为指定曲线的方程,一条曲线是否为所给定方程的曲线的依据,缺一不可.从逻辑知识来看:第一个条件表示f(x,y)=0是曲线C的方程的必要条件,第二个条件表示f(x,y)=0是曲线C的方程的充分条件.因此,在判断或证明f(x,y)=0为曲线C的方程时,必须注意两个条件同时成立.例题精讲[例1]分析下列曲线上的点与相应方程的关系:(1)过点A(2,0)平行于y轴的直线与方程|x|=2之间的关系;(2)与两坐标轴的距离的积等于5的点与方程xy=5之间的关系;(3)第二、四象限两轴夹角平分线上的点与方程x+y=0之间的关系.巩固训练1.命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是真命题,下列命题中正确的是()A.方程f(x,y)=0的曲线是CB .方程f (x ,y )=0的曲线不一定是C C .f (x ,y )=0是曲线C 的方程D .以方程f (x ,y )=0的解为坐标的点都在曲线C 上 2.方程4x 2-y 2+6x -3y =0表示的图形是( ) A .直线2x -y =0 B .直线2x +y +3=0C .直线2x -y =0或直线2x +y +3=0D .直线2x +y =0和直线2x -y +3=0例题精讲[例2] 已知方程x 2+(y -1)2=10.(1)判断点P (1,-2),Q (2,3)是否在此方程表示的曲线上; (2)若点M (m2,-m )在此方程表示的曲线上,求m 的值.巩固训练3.已知直线l :x +y -3=0及曲线C :(x -3)2+(y -2)2=2,则点M (2,1)( ) A .在直线l 上,但不在曲线C 上 B .在直线l 上,也在曲线C 上 C .不在直线l 上,也不在曲线C 上 D .不在直线l 上,但在曲线C 上4.如果曲线ax 2+by 2=4过A (0,-2),B (12,3),则a =________,b =________.5.若曲线y 2-xy +2x +k =0过点(a ,-a )(a ∈R),求k 的取值范围.例题精讲[例3] 已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.巩固训练6.等腰三角形的顶点是A(4,2),底边一个端点是B(3,5),求另一个端点C的轨迹方程,并说明它的轨迹是什么.7.已知△ABC,A(-2,0),B(0,-2),第三个顶点C在曲线y=3x2-1上移动,求△ABC的重心的轨迹方程.【方法技巧】1.求曲线的方程时,若题设条件中无坐标系,则需要恰当建系,要遵循垂直性和对称性的原则,即借助图形中互相垂直的直线为坐标轴建系,借助图形的对称性建系.一方面让尽量多的点落在坐标轴上,另一方面能使求出的轨迹方程形式简洁.2.求曲线的方程与求轨迹是有不同要求和区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.课后作业【基础巩固】1.“点M在曲线y2=4x上”是“点M的坐标满足方程y=-2x”的()A.充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件2.如图,图形的方程与图中曲线对应正确的是( )3.一动点C 在曲线x 2+y 2=1上移动时,它和定点B (3,0)连线的中点P 的轨迹方程是( )A .(x +3)2+y 2=4B .(x -3)2+y 2=1C .(2x -3)2+4y 2=1D .(x +32)2+y 2=1 4.方程x 2+y 2-3x -2y +k =0表示的曲线经过原点的充要条件是k =________.5.已知点A (-2,0),B (3,0),动点P (x ,y )满足P A ―→·PB ―→=x 2,则点P 的轨迹方程是________.6.求方程(x +y -1)x -y -2=0表示的曲线.【能力提升】7.已知A (-1,0),B (2,4),△ABC 的面积为10,则动点C 的轨迹方程是( )A .4x -3y -16=0或4x -3y +16=0B .4x -3y -16=0或4x -3y +24=0C.4x-3y+16=0或4x-3y+24=0D.4x-3y+16=0或4x-3y-24=08.过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程.答案:.[例1][思路点拨]按照曲线的方程与方程的曲线的定义进行分析.[精解详析](1)过点A(2,0)平行于y轴的直线上的点的坐标都是方程|x|=2的解;但以方程|x|=2的解为坐标的点不一定都在过点A(2,0)且平行于y轴的直线上.因此,|x|=2不是过点A(2,0)平行于y轴的直线的方程.(2)与两坐标轴的距离的积等于5的点的坐标不一定满足方程xy=5,但以方程xy=5的解为坐标的点与两坐标轴的距离之积一定等于5.因此,与两坐标轴的距离的积等于5的点的轨迹方程不是xy =5.(3)第二、四象限两轴夹角平分线上的点的坐标都满足x +y =0;反之,以方程x +y =0的解为坐标的点都在第二、四象限两轴夹角的平分线上.因此,第二、四象限两轴夹角平分线上的点的轨迹方程是x +y =0.1.解析:“曲线C 上的点的坐标都是方程f (x ,y )=0的解”,但“以方程f (x ,y )=0的解为坐标的点”不一定在曲线C 上,故A 、C 、D 都不正确,B 正确.答案:B2.解析:方程可化为(2x -y )(2x +y +3)=0,即2x -y =0或2x +y +3=0.∴表示两条直线2x -y =0或2x +y +3=0.答案:C[例2] [精解详析] (1)∵12+(-2-1)2=10,(2)2+(3-1)2=6≠10,∴点P (1,-2)在方程x 2+(y -1)2=10表示的曲线上,点Q (2,3)不在方程x 2+(y -1)2=10表示的曲线上.(2)∵点M (m 2,-m )在方程x 2+(y -1)2=10表示的曲线上,∴x =m 2,y =-m 适合上述方程, 即(m 2)2+(-m -1)2=10.解之得m =2或m =-185, ∴m 的值为2或-185. 3.解析:将M 点的坐标代入直线l 、曲线C 的方程验证可知点M 在直线l 上,也在曲线C 上. 答案:B4.解析:曲线过A (0,-2),B (12,3)两点, ∴A (0,-2),B (12,3)的坐标就是方程的解. ∴⎩⎪⎨⎪⎧4b =4,14a +3b =4,∴b =1,a =4. 答案:4 15.解:∵曲线y 2-xy +2x +k =0过点(a ,-a ),∴a 2+a 2+2a +k =0.∴k =-2a 2-2a =-2(a +12)2+12. ∴k ≤12, ∴k 的取值范围是(-∞,12]. [例3] [思路点拨] 关键是寻找Q 点满足的几何条件.可以考虑圆的几何性质,如CQ ⊥OP ,还可考虑Q 是OP 的中点.[精解详析] 法一:(直接法)如图,因为Q 是OP 的中点,所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2,即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+(y -32)2=94(去掉原点). 法二:(定义法)如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC为直径的圆上,故Q点的轨迹方程为x 2+(y -32)2=94(去掉原点). 法三:(代入法)设P (x 1,y 1),Q (x ,y ),由题意,得 ⎩⎨⎧ x =x 12,y =y 12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y . 又因为x 21+(y 1-3)2=9,所以4x 2+4(y -32)2=9, 即x 2+(y -32)2=94(去掉原点). 6.解:设动点C 的坐标为(x ,y ).∵△ABC 为以A 为顶点的等腰三角形,∴|AB |=|AC |,∴(x -4)2+(y -2)2=(4-3)2+(2-5)2,即(x -4)2+(y -2)2=10(x ≠3,5).所以点C 的轨迹方程为(x -4)2+(y -2)2=10,它表示以(4,2)为圆心,以10为半径且去掉(3,5),(5,-1)的圆.7.解:设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1).由重心坐标公式得⎩⎨⎧ x =-2+0+x 13,y =0-2+y 13,∴⎩⎪⎨⎪⎧x 1=3x +2,y 1=3y +2.代入y 1=3x 21-1,得 3y +2=3(3x +2)2-1.∴y =9x 2+12x +3即为所求轨迹方程.1.解析:∵y =-2x ≤0,而y 2=4x 中y 可正可负,∴点M 在曲线y 2=4x 上,但M 不一定在y =-2x 上.反之点M 在y =-2x 上时,一定在y 2=4x 上.答案:B2.解析:A 中方程x 2+y 2=1表示的是以(0,0)为圆心,1为半径的圆,故A 错;B 中方程x 2-y 2=0可化为(x -y )(x +y )=0,表示两条直线x -y =0,x +y =0,故B 错;C 中方程lg x +lg y =1可化得y =1x(x >0),此方程只表示第一象限的部分,故C 错;D 中的方程y =|x |去绝对值得y =⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0,表示两条射线,所以D 正确. 答案:D3.解析:设动点C 的坐标为(x 0,y 0),P 点坐标为(x ,y ),则由中点坐标公式可得x =x 0+32,y =y 0+02, 即x 0=2x -3,y 0=2y .又动点C (x 0,y 0)在曲线x 2+y 2=1上,∴(2x -3)2+4y 2=1.答案:C4.解析:由两点式,得直线AB 的方程是y -04-0=x +12+1, 即4x -3y +4=0,线段AB 的长度|AB |=(2+1)2+42=5.设C 的坐标为(x ,y ),则12×5×|4x -3y +4|5=10, 即4x -3y -16=0或4x -3y +24=0.答案:B5.解析:若曲线过原点,则(0,0)适合曲线的方程,即有k =0.答案:06.解析: uu u r PA =(-x -2,-y ),uu u rPB =(3-x ,-y ), 则uu u r PA ·uu u rPB =(-x -2)(3-x )+(-y )2=x 2,化简得y 2=x +6.答案:y 2=x +67.解:(x +y -1)x -y -2=0写成 ⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,或x -y -2=0.由⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,得⎩⎪⎨⎪⎧ x +y -1=0,x ≥32,∴⎩⎪⎨⎪⎧ x +y -1=0,x -y -2≥0,表示射线x +y -1=0(x ≥32),∴原方程表示射线x +y -1=0(x ≥32)或直线x -y -2=0.8.解:法一:如图,设点M 的坐标为(x ,y ).∵M 为线段AB 的中点,∴A 点坐标是(2x,0),B 点坐标是(0,2y ).∵l 1,l 2均过点P (2,4),且l 1⊥l 2,∴P A ⊥PB .当x ≠1时,k P A ·k PB =-1.而k P A =4-02-2x =21-x ,k PB =4-2y 2-0=2-y1,∴21-x ·2-y1=-1.整理,得x +2y -5=0(x ≠1).当x =1时,A ,B 点的坐标分别为(2,0),(0,4),∴线段AB 的中点坐标是(1,2),它满足方程x +2y -5=0.综上所述,点M 的轨迹方程是x +2y -5=0.法二:设M 的坐标为(x ,y ),则A ,B 两点坐标分别是(2x,0),(0,2y ).连接PM ,如图.∵l 1⊥l 2,∴2|PM |=|AB |.而|PM |=(x -2)2+(y -4)2,|AB |=(2x )2+(2y )2,∴2(x -2)2+(y -4)2=4x 2+4y 2.化简,得x +2y -5=0,即为所求轨迹方程.法三:∵l 1⊥l 2,OA ⊥OB ,∴O ,A ,P ,B 四点共圆,且该圆的圆心为M .∴|MP |=|MO |.∴点M 的轨迹为线段OP 的中垂线. ∵k OP =4-02-0=2,OP 的中点坐标为(1,2), ∴点M 的轨迹方程是y -2=-12(x -1), 即x +2y -5=0.。
数学第二章2.1曲线与方程课件(人教A版选修2-1)
【名师点评】 利用直接法求轨迹方程,即 直接根据已知等量关系,列出x、y之间的关 系式,构成F(x,y)=0,从而得出所求动点的 轨迹方程.要注意轨迹上的点不能含有杂点, 也不能少点.
互动探究 2.若本例中的等式关系改为Q→P·F→P=O→P·Q→F, 其他条件不变,动点 P 的轨迹 C 的方程.
名师微博 用x、y表示x0、y0是代入法求方程的关键. 【名师点评】 代入法的定义及求解步骤 (1)定义:若动点M依赖于已知曲线上的动点P, 求点M的轨迹方程的方法通常叫代入法,又 叫相关点法(动点P叫相关动点),也叫坐标转 移法.
(2)求解步骤: ①设动点 M(x,y),相关动点 P(x0,y0); ②利用条件求出两动点坐标之间的关系 yx00==gf((xx,,yy)); ③代入相关动点的轨迹方程; ④化简、整理,得所求轨迹方程.
直接法求曲线方程
例2 如图,已知点 F(1,0),直线 l:x=- 1,P 为平面上的一动点,过点 P 作 l 的垂线, 垂足为 Q,且Q→P·Q→F=F→P·F→Q. 求动点 P 的轨迹 C 的方程.
【解】 设点 P(x,y),则 Q(-1,y). 由Q→P·Q→F=F→P·F→Q, 得(x+1,0)·(2,-y)=(x-1,y)·(-2,y), ∴2(x+1)=-2(x-1)+y2, 化简得 y2=4x. 即轨迹 C 的方程为 y2=4x.
【解】 设 P(x,y),M(x0,y0),(1 分) ∵P 为 MB 的中点, ∴x=x0+2 3,(4 分)
y=y20 即yx00==22yx-3.(5 分) 又∵M 在曲线 x2+y2=1 上, ∴(2x-3)2+(2y)2=1,(7 分) ∴P 点的轨迹方程为(2x-3)2+4y2=1.(8 分)
最新人教版高中数学选修2-1第二章《曲线与方程》知识导学
第二章 圆锥曲线与方程2.1 曲线与方程2.11. 曲线与方程课标解读能够结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.学会思考1.怎样说明x -y=0是一、三象限平分线的方程?2.曲线C 1的方程为y=l g x 2,曲线C 2的方程为y=2l g x , 请问C 1与C 2是同一条曲线吗? 答案:1.以方程x -y=0的解为坐标的点在平分线上,平分线上每一点的坐标都适合方程.2.不是.自学导引1.在直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f (x ,y )=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做_________,这条曲线叫做_________.2.如果曲线C 的方程是f (x ,y )=0,那么点P 0(x 0, y 0)在曲线C 上的充要条件是________. 答案:1.(2)曲线的方程 方程的曲线(图形)2.f (x 0,y 0)=0典例启示知识点1曲线与方程关系的判定【例1】 证明圆心为P (a ,b ),半径等于r 的圆的方程是(x -a )2+(y -b )2=r 2.证明:(1)设M (x 0,y 0)是圆上任意一点,因为点M 到圆心的距离等于r ,所以,r b y a x =-+-2020)()(,也就是(x 0-a )2+(y 0-b )2=r 2,即(x 0,y 0)是方程(x -a )2+(y -b )2=r 2的解.(2)设(x 0,y 0)是方程(x -a )2+(y -b )2=r 2的解,则有(x 0-a )2+(y 0-b )2=r 2,两边开方取算术根,得r b y a x =-+-2020)()(,即点M (x 0,y 0)到点(a ,b )的距离等于r ,点(x 0,y 0)是这个圆上的点. 由(1)(2)可知,(x -a )2+(y -b )2=r 2是圆心为P (a ,b ),半径等于r 的圆的方程.启示:证明方程的曲线或曲线的方程需证明两条:①曲线上的坐标都是方程的解; ②以这个方程的解为坐标的点都在曲线上.【例2】 设A (2,0),B (0,2),能否说线段AB 的方程是x +y -2=0?为什么?解:不能说线段AB 的方程是x +y -2=0,因点(-3,5)的坐标是方程x +y -2=0的一个解,但点(-3,5)不在线段AB 上,所以线段AB 的方程不是x +y -2=0.启示:线段AB 的方程是x +y -2=0(0≤x ≤2).知识点2由方程画曲线【例3】 作出曲线y=|x -2|-2的图象,并求它与x 轴所围成的三角形的面积. 解:(1)当x -2≥0时,原方程可化为y=x -4.(2)当x -2<0时,原方程可化为y=-x ,故原方程表示两条共顶点的射线,易得顶点为B (2,-2),与x 轴交于点O (0,0),A (4,0),它与x 轴围成的三角形的面积为S △AOB =21|OA |·|y b |=4.启示:已知方程研究曲线,首先要对所给的方程进行同解变形,化为我们所熟悉的方程,进一步研究曲线的特点和性质,进而作出图形.知识点3由方程、曲线讨论字母系数【例4】 已知方程(x -a)2+(y -b)2=36的曲线经过点O (0,0)和点A (0,-12),求a 、b 的值. 解:∵点O 、A 都在方程(x -a)2+(y -b)2=36表示的曲线上,∴点O 、A 的坐标都是方程(x -a)2+ (y -b)2 =36的解.∴⎪⎩⎪⎨⎧=--+-=-+-,36)12()0(,36)0()0(2222b a b a 解得⎩⎨⎧-==,6,0b a 即a=0,b=-6为所求.启示:若点在曲线上,则点的坐标满足曲线的方程.随堂训练1.下面各对方程中,表示相同曲线的一对方程是…( )A.y=x 与2x y =B.(x -1)2+(y +2)2=0与(x -1)(y +2)=0C.xy 1=与xy=1 D.y=l g x 2与y=2l g x答案:C2.方程x 2+xy=x 的曲线是( )A.一个点B.一条直线C.两条直线D.一个点和一条直线解析:由x 2+xy=x 得x (x +y -1)=0.∴x=0或x +y -1=0,它们表示的曲线是两条直线.答案:C3.P (2,-3)在曲线x 2-ay 2=1上,则a 的值为__________.解析:由22-a (-3)2=1,得31=a . 答案:31 4.直线x -y=0与曲线xy=1的交点是…( )A.(1,1)B.-1,-1)C.(1,1)、(-1,-1)D.(0,0)解析:由⎩⎨⎧==,1,xy x y 得⎩⎨⎧==1,1y x 或⎩⎨⎧-=-=.1,1y x 答案:C5.以(5,0)和(0,5)为端点的线段的方程是( )A.x +y=5B.x +y=5(x ≥0)C.x +y=5(y ≥0)D.x +y=5(0≤x ≤5)6.下列命题中,真命题的个数是( )①若曲线C 上的点的坐标都是方程f (x ,y )=0的解,则C 的方程是f (x ,y )=0②若以方程f (x ,y )=0的解为坐标的点都是曲线C 上的点,则方程f (x ,y )=0的曲线是C ③若以方程f (x ,y )=0的解为坐标的点都是曲线C 上的点,则曲线C 的方程是f (x ,y )=0A.0B.1C.2D.3答案:5.D 6.A。
高中数学选修2-1课件:2.1曲线与方程(一)
(2)曲线C是顶点在原点的抛物线其方
程为x+ =0;
不是
(3)曲线C是Ⅰ, Ⅱ象限内到x轴,y轴
的距离乘积为1的点集其方程为y= 。是
y
y
y
1ห้องสมุดไป่ตู้
1
1
-1 0
x 1
-2 -1 0 1 2 x
-2 -1 0 1 2 x
⑴
⑵
⑶
15
课堂练习2:下述方程表示的图形分别是 下图中的哪一个?
① x - y =0 ② |x|-|y|=0 ③ x-|y|=0
⑴若点 M (x0 , y0 ) 是直线 l 上的一点,则它的坐标 (x0 , y0 ) 都是
方程 y kx b 的解.
∵ PM 与方向向量 (1,k) 共线,即 (x0 , y0 b) /为这/(什样1,么的k)会关有系
∴ y0 b kx0 ∴ y0 kx0 b ,
⑵若 (x0 , y0 ) 是方程 y kx b 的解,则 M (x0 , y0 ) 是经过点 P
y ax2 (a 0)的解;
(2)如果(x0, y0 )是方程 y ax2(a>0)的解,那么以它为坐标
的点一定在抛物线上.
说这条抛物线的方程是 y ax2 (a 0),
方程y ax2 (a 0)表示的曲线是这条抛物线.
8
定义:一般地,在直角坐标系中,如果某曲线C(看作
点的集合或合适某种条件的点的轨迹)与二元
即x0 y0 k (2)设点M的坐标( x1, y1 )是方程xy k的解,则
x1 y1 k 即 x1 y1 k
而 x1 , y1 正是点M到纵轴、横轴的距离,因此点M 到这两条直线的距离的积是常数k,点M是曲线上的点。
最新人教版高中数学选修2-1第二章《曲线与方程》示范教案
第二章圆锥曲线与方程本章概览教材分析“圆锥曲线与方程”是理科选修21的第二章内容,是必修教材中解析几何的延续,在那里我们研究了直线和圆,选修教材在此基础上进一步研究圆锥曲线与方程.对于这段内容,文科与理科的处理基本相同,只有细微的区别.笛卡儿的坐标系,开启了变量数学的大门.学了距离公式、直线和圆的方程这些入门功夫,算是品尝了数形结合的思想.要进一步感受这种思想的奥妙和威力,就来探索如何用解析几何的方法研究圆锥曲线吧!地球和宇宙飞船的轨道,子弹的飞行路线,一去不返的彗星的遗迹,放到直角坐标系里原来都是二次方程.用了代数方法,古人用非凡智慧才能洞悉的圆锥曲线的奥秘,就水落石出真相大白了.圆锥曲线是一个重要的数学模型,课本章前图讲了圆锥曲线可以由平面截圆锥得到,讲了它的广泛应用,“天上地下,圆锥曲线无处不在”.因此,无论从数学的进一步学习和研究,还是从今后在日常生活和实践的应用来看,学习这部分内容都是非常重要的.“圆锥曲线与方程”这部分内容研究的对象是圆锥曲线,其中圆锥曲线的几何性质可以从动手实验和直观的观察得到,而进一步深入的定量研究就要依靠对曲线与方程之间对应关系的了解,通过对方程这样一个代数对象的分析研究获得对圆锥曲线的几何性质的认识.因此,对这部分内容的学习,就不只是为获得对圆锥曲线性质的了解,而是要进一步体会数形结合的重要数学思想.历史上,正是这一重要的数学思想推动了数学跨越式的革命.事实上,在解析几何诞生后不久,微积分便产生了,这在数学发展的进程中是件里程碑价值的事件.我们说,学生在数学上的进步本质不单靠数学知识的积累,而是数学思想与数学方法的提升.数学从实践中来,建立了数学模型之后,又返回到实践中去,应用的范围得到了极大的扩展,这才显示出数学的力量.圆锥曲线正是对此有效诠释的一个极好的素材.从2000多年以前古希腊人研究圆锥曲线,到笛卡儿、开普勒、牛顿,直到今天的航天飞行,学生从数学文化的角度,从圆锥曲线的应用的角度都能受到很好的数学教育.因此,“圆锥曲线与方程”是一部分很有挖掘价值的素材,我们期望学生通过这部分内容的学习获得更多的收获.新教材在教材的选择与编排上力图体现知识的发展过程,丰富学生的数学活动,突出数学模型的建立,体现数形结合的思想,介绍圆锥曲线的重要应用与文化背景.希望给学生展现出更加生动活泼的数学,并给学生留有更多的思考空间.其主要特色:1.数学实验丰富了学生的数学活动;2.知识的呈现体现出层次性(先从几何直观想性质,再从方程进行研究).课标要求1.曲线与方程结合已学过的曲线及其方程的实例,了解曲线与方程的对应关系,进一步感受数形结合的基本思想.2.圆锥曲线①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质.③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题.⑤通过圆锥曲线的学习,进一步体会数形结合的思想.教学建议1.把握教学要求本章理科共分四大节,前一节的重点是掌握求曲线方程的一般步骤.后三节分别研究了椭圆、双曲线、抛物线的概念和简单几何性质.并插入学会用坐标法解决直线与圆锥曲线的位置关系问题.教学时力求突出主干知识,精选内容:研究圆锥曲线方程时主要介绍标准方程,不涉及一般方程;在利用方程研究圆锥曲线的几何性质时,只讨论最简单、最主要的性质,满足基本的需要,并使学生在此过程中学会研究曲线性质的一般方法;对有兴趣的学生可鼓励自主探究,并通过“思考”“探究”“探究与发现”“阅读与思考”等栏目,以及在条件许可下运用信息技术提供发展空间.另外,根据问题的难易度及学生的认知水平,只要求掌握椭圆、抛物线的定义,对双曲线只要求“了解双曲线的定义”.2.突出基本思想解析几何的基本思想是曲线与方程、方程与曲线的关系;突出用方程研究曲线,用代数方法研究曲线的性质.由于教材是先通过特殊曲线,从感性上认识曲线方程的意义,再建立一般的曲线方程的概念,因此在建立椭圆、双曲线、抛物线的方程时,可不必涉及方程的解与曲线上的点的对应关系的两个方面,重点放在“如何建立曲线方程”及“怎样用曲线方程研究曲线的几何性质”上.曲线方程的概念比较抽象,教学时只需通过已经学习过的几种曲线的方程与曲线的关系进行概括,并通过具体问题让学生适当感受,并在应用中加深体会,不要在定义的两个方面作过多研究.本章的数学教育价值是“数形结合”的数学思想方法,《标准》中多次提到“让学生体会和感受数形结合的思想”,应在本章中得到较好的落实.3.重视引入过程在椭圆的学习过程中,教材从圆出发,给出“探究”栏目,通过把细绳的两端分开,让学生观察轨迹的形状,建立与已有知识的联系与区别;由画图的过程,探究形成轨迹的动点满足的几何条件,展现曲线的典型几何特征;在此基础上,给出具有这种典型几何特征的轨迹的正式名称:椭圆;通过观察椭圆的形状,引导学生建立适当的直角坐标系,用点的坐标表示距离,建立椭圆的标准方程.教材意在突出知识的发生、发展过程,引导学生自主学习探索,既动手又动脑,获得体验;在感性认识的基础上,把具体直观的图形“椭圆”抽象形式化(代数化)为“方程”,形成理性认识.其他两种圆锥曲线:双曲线与抛物线,虽然它们的几何特征与椭圆不同,但其引入过程以及标准方程的建立过程,都可与椭圆相类比展开.课时分配2.1曲线与方程整体设计教材分析“曲线和方程”这节教材揭示了几何中的形与代数中的数相统一的关系,为“作形判数”与“就数论形”的相互转化开辟了途径,这正体现了解析几何这门课的基本思想,对全部解析几何教学有着深远的影响.学生只有透彻理解了曲线和方程的意义,才算是寻得了解析几何学习的入门之径.如果认为学生不真正领悟曲线和方程的关系,照样能求出方程、照样能计算某些难题,因而可以忽视这个基本概念的教学,这不能不说是一种“舍本逐题”的偏见,应该认识到这节“曲线与方程”的开头课是解析几何教学的“重头戏”!根据以上分析,确立教学重点是:“曲线的方程”与“方程的曲线”的概念;难点是:怎样利用定义验证曲线是方程的曲线,方程是曲线的方程.课时分配本节共安排两个课时,第一课时讲解曲线与方程的概念和简单的求曲线方程,第二节讲解求曲线方程的方法与步骤.2.1.1曲线与方程教学目标知识与技能1.了解曲线上的点与方程的解之间的一一对应关系;2.初步领会“曲线的方程”与“方程的曲线”的概念;3.学会根据已有的情景资料找规律,进而分析、判断、归纳结论;4.强化“形”与“数”一致并相互转化的思想方法.过程与方法1.通过直线方程的引入,加强学生对方程的解和曲线上的点的一一对应关系的认识;2.在形成曲线和方程的概念的教学中,学生经历观察、分析、讨论等数学活动过程,探索出结论,并能有条理地阐述自己的观点;3.能用所学知识理解新的概念,并能运用概念解决实际问题,从中体会转化化归的思想方法,提高思维品质,发展应用意识.情感、态度与价值观1.通过概念的引入,让学生感受从特殊到一般的认知规律;2.通过反例辨析和问题解决,培养合作交流、独立思考等良好的个性品质,以及勇于批判、敢于创新的科学精神.重点难点教学重点:“曲线的方程”与“方程的曲线”的概念;教学难点:利用定义验证曲线是方程的曲线,方程是曲线的方程.教具准备三角板、多媒体教学设备.教学过程引入新课在本节课之前,我们研究过直线的各种方程,建立了二元一次方程与直线的对应关系:在平面直角坐标系中,任何一条直线都可以用一个二元一次方程表示,同时任何一个二元一次方程也表示着一条直线.下面看一个具体的例子:问题1:画出方程x-y=0表示的直线,同时思考直线上的点的坐标是否都是方程的解,另一方面以这个方程的解为坐标的点是否都在直线上?借助多媒体让学生从直观上深刻体会如下结论:1.直线上的点的坐标都是方程的解;2.以这个方程的解为坐标的点都在直线上.即直线上所有点的集合与方程的解的集合之间建立了一一对应关系.也即引导学生类比、推广并思考相关问题:类比:推广:即任意的曲线和二元方程是否都能建立这种对应关系呢?也即方程F(x,y)=0的解与曲线C上的点的坐标具备怎样的关系就能用方程F(x,y)=0表示曲线C,同时曲线C也表示着方程F(x,y)=0?为什么要具备这些条件?以上问题就是本节课的内容:曲线与方程(板书课题).探究新知在上面的讨论中,有的同学提到了应具备关系:“曲线上的点的坐标都是方程的解”;有的同学提到了应具备关系:“以这个方程的解为坐标的点都是曲线上的点”;还有的同学虽用了不同的提法,但意思不外乎这两个.现在的问题是:上述的两种提法一样吗?它们反映的是不是同一事实?有何区别?究竟用怎样的关系才能把问题推广中的曲线与方程的这种对应关系完整地表达出来?为了弄清这些问题,首先提出如下的问题:问题2:用下列方程表示如图所示的曲线C,对吗?为什么?请同学们思考:(1)x-y=0;(2)x2-y2=0;(3)|x|-y=0.活动设计:学生独立思考,教师巡视指导.活动成果:方程(1)、(2)、(3)都不是曲线C 的方程.第(1)题中曲线C 上的点不全是方程x -y =0的解;例如点A(-2,-2)、B(-3,-3)等不符合“曲线上点的坐标都是方程的解”这一结论.第(2)题中,尽管“曲线上点的坐标都是方程的解”,但是以方程x 2-y 2=0的解为坐标的点却不全在曲线上;例如D(2,-2)、E(-3,3)等不符合“以这个方程的解为坐标的点都在曲线上”这一结论.第(3)题中既有以方程|x|-y =0的解为坐标的点,如G(-3,3)、H(-2,2)等不在曲线上,又有曲线C 上的点,如M(-3,-3)、N(-1,-1)等的坐标不是方程|x|-y =0的解.事实上,(1)、(2)、(3)中各方程所表示的曲线应该是如图所示的3种情况.教师点评:以上我们观察分析了问题1、问题2,发现问题1完整地用方程表示曲线,用曲线表示方程;而问题2不能完整地用方程表示曲线,用曲线表示方程.如果我们把完整地用方程表示曲线和用曲线表示方程看成“曲线的方程”和“方程的曲线”的话,那么就可以给“曲线的方程”和“方程的曲线”下定义了.问题:在下“曲线的方程”和“方程的曲线”定义时,针对问题2中第(1)个问题“曲线上混有其坐标不是方程的解的点”应作何规定?学生思考活动:“曲线上的点的坐标都是这个方程的解”.老师再提问:针对问题2中第(2)个问题“以方程的解为坐标的点不在曲线上”应作何规定?学生思考回答:“以方程的解为坐标的点都是曲线上的点”.这样,我们可以对“曲线的方程”和“方程的曲线”下这样的定义:一般地,在直角坐标系中,如果某曲线C 上的点与一个二元方程f(x ,y)=0的实数解建立了如下的关系:(1)曲线上点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.理解新知教师提出问题:大家熟知,曲线可以看作是由点组成的集合,记作C ;一个二元方程的解可以作为点的坐标,因此二元方程的解集也描述了一个点集,记作F.请大家思考:如何用集合C 和F 间的关系来表述“曲线的方程”和“方程的曲线”定义中的两个关系,进而重新表述“曲线的方程”和“方程的曲线”的定义.启发学生得出:关系(1)指点集C 是点集F 的子集;关系(2)指点集F 是点集C 的子集.这样用集合相等的概念定义“曲线的方程”与“方程的曲线”为:.⎭⎬⎫⊆⊆C F F C )2()1( C=F总结说明:另外从充要条件的角度看,关系(1)或(2)仅是“曲线的方程”和“方程的曲线”的必要条件,只有两者都满足了,“曲线的方程”和“方程的曲线”才具备充分性.运用新知1.初步应用、突出内涵1下列各小题中,如图所示的曲线C的方程为所列方程,对吗?如果不对,是不符合关系(1)还是关系(2)?学生活动:思考.成果:(1)错.不符合定义中的关系(2),即C F但F C.(2)错.不符合定义中的关系(1),即F C但C F.(3)错.不符合定义中的关系(1)和(2),即C F且F C.2.变式训练解答下列问题,且说出各依据了“曲线的方程”和“方程的曲线”定义中的哪一个关系?(1)点A(3,-4)、B(-25,2)是否在方程x2+y2=25表示的圆上?(2)已知方程为x2+y2=25的圆过点C(7,m),求m的值.学生回答:(1)依据关系(2)点A在圆上,依据关系(1)点B不在圆上.(2)依据关系(2)求得m=±3 2.2证明:以坐标原点为圆心,半径等于5的圆的方程是x2+y2=25.教师提出问题:请同学思考,证明应从何着手?学生活动:思考应从以下两方面:(1)圆上的点的坐标都满足方程:x2+y2=25;(2)以方程x2+y2=25的解为坐标的点都在圆上.教师点评:(1)中的“点”和(2)中的“解”指的都是有关集合中的全体元素,怎样解决全体问题?(学生思考片刻后)用“任意一个”代表“全体”是数学证明中常用的方法.(请同学们完成证明过程,同桌间交流,参照课本例1的证明步骤纠正错误,完善证题过程,加强证明题的严密性.)课堂小结本节课我们通过实例研究了“曲线的方程”和“方程的曲线”的定义,在领会定义时,要牢记关系(1)、(2)两者缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了,“曲线的方程”和“方程的曲线”才具备充分性.曲线和方程之间一一对应的确立,进一步把“曲线”与“方程”统一了起来,在此基础上,我们就可以更多地用代数的方法研究几何问题.布置作业1.教材习题2.1A组第1题.2.思考题:如果两条曲线的方程F1(x,y)=0和F2(x,y)=0的交点为M(x0,y0),求证:方程F1(x,y)+λF2(x,y)=0表示的曲线也经过点M.(λ为任意常数)设计说明这节课我们将直线引申到了一般的曲线,应用了特殊到一般,一般到特殊的方法,研究了曲线的方程和方程的曲线的定义.在领会定义时,要注意关系1、2缺一不可,它们都是“曲线的方程”和“方程的曲线”的必要条件,两者都满足了,“曲线的方程”和“方程的曲线”才具有充分性.曲线与方程一一对应关系的确立,进一步把曲线与方程统一了起来,通过数研究形,同时形也为数提供了直观背景.我们要有数形结合的意识.笛卡儿等人在解析几何中创立的用坐标表示点,用方程表示曲线,通过代数方法研究几何问题的思想方法意义重大.设计中注重了概念的形成过程,注重了学生的认识规律.备课资料近代数学本质上可以说是变量数学,而变量数学的第一个里程碑是解析几何的发明.解析几何的真正发明者应归功于法国两位数学家笛卡儿(R.Descartes,1596~1650,哲学名言:“我思故我在”)和费马(P.DeFermat,1601~1665).笛卡儿出生于法国都伦的拉哈耶,贵族家庭的后裔,父亲是个律师.他早年受教于拉福累歇的耶稣会学校.1612年赴巴黎从事研究,曾于1617年和1619年两次从军,离开军营后旅行于欧洲,他的学术研究是在军旅和旅行中作出的. 关于笛卡儿创立解析几何的灵感有几个传说:一个传说讲,笛卡儿终身保持着在耶稣会学校读书期间养成的“晨思”的习惯,他在一次“晨思”时,看见一只苍蝇正在天花板上爬,他突然想到,如果知道了苍蝇与相邻的两个墙壁的距离之间的关系,就能描述它的路线,这使他的头脑中产生了关于解析几何的最初闪念;另一个传说是,1619年冬天,笛卡儿随军队驻扎在多瑙河畔的一个村庄,在圣马丁节的前夕(11月10日),他作了三个连贯的梦,笛卡儿后来说,正是这三个梦向他揭示了“一门奇特的科学”和“一项惊人的发现”,虽然他从未明说过这门奇特的科学和这项惊人的发现是什么,但这三个梦从此成为佳话,给解析几何的诞生蒙上了一层神秘的色彩.人们在苦心思索之后的睡梦中获得灵感与启示,不是不可能的事情,但事实上笛卡儿之所以能创立解析几何,主要是他艰苦探索、潜心思考、运用科学的方法,同时批判地继承前人的成就的结果.华罗庚论数形结合:数与形,本是相倚依,焉能分作两边飞.数缺形时少直觉,形少数时难入微.数形结合百般好,割裂分家万事非.切莫忘,几何代数统一体,永远联系,切莫分离.随着学习的逐步深入,同学们可以进一步做到形与数的密切结合;体会到数学基础知识与实际应用的密切联系;体会到由于解析几何的创立可使函数概念的内涵更加丰富;并从中领略笛卡儿等数学家们的创新精神.(设计者:赵中华)。
最新人教版高中数学选修2-1第二章《求曲线的方程》温故知新
2.1.2求曲线的方程温故知新新知预习1.借助于坐标系,用坐标表示点,把曲线看成满足某种条件的点的或,用曲线上点的坐标(x,y)所满足的表示曲线,通过研究的性质间接地来研究曲线的性质,这就是.数学中,用研究几何图形的知识形成的学科叫做解析几何.2.平面解析几何研究的主要问题是:(1)________________;(2)______________.3.求曲线(图形)的方程,有下面几个步骤:(1)____________________________;(2)____________________________;(3)____________________________;(4)____________________________;(5)____________________________.一般地,步骤(5)可以省略不写,如有特殊情况,可以适当说明.另外也可以省略(2),直接列出曲线方程.基础示例x =0(x≠0)所表示的图形是()1.方程yA.x2=y的图形在第二象限的部分B.与x2=y的图形相同C.与x2=-y的图形相同D.x2=-y的图形在第四象限的部分答案:A2.到两坐标轴距离之和为6的点的轨迹方程为()A.x+y=6 B.x±y=6C.|x|+|y|=6 D.|x+y|=6答案:C3.方程x2-y2=0表示的图形是()A.一条直线B.两条平行直线C.两条相交直线D.以上都不对解析:∵方程x2-y2=0可写成x+y=0 或x-y=0,∴方程x 2-y 2 =0表示的图形是两条相交直线.答案:C4.若点M到两坐标轴的距离的积为2 006,则点M的轨迹方程是()A.xy=2 006B.xy=-2 006C.xy=±2 006D.xy=±2 006(x>0)答案:C。
最新人教版高中数学选修2-1第二章《曲线与方程》教学设计[2020年最新]
曲线与方程教材分析:曲线属于“形”的范畴,方程则属于“数”的范畴,它们通过直角坐标系而联系在一起,曲线的方程是曲线几何的一种代数表示,方程的曲线则是代数的一种几何表示。
在直角坐标系中,点可由它的坐标来表示,而曲线是点的轨迹,所以曲线可用含x、y的方程来表示。
“曲线和方程”这节教材,揭示了几何中的“形”与代数中的“数”的统一,为“依形判数”和“就数论形”的相互转化奠定了扎实的基础,对解析几何教学有着深远的影响,曲线与方程的相互转化,是数学方法论上的一次飞跃。
由于曲线和方程的概念是解析几何中最基本的内容,因而学生用解析法研究几何图形的性质时,只有透彻理解曲线和方程的意义,才能算是寻得了解析几何学习的入门之径。
求曲线与方程的问题,也贯穿了这一章的始终,所以应该认识到,本节内容是解析几何的重点内容之一。
本节中提出的曲线与方程的概念,它既是对以前学过的函数及其图象、直线的方程、圆的方程等数学知识的深化,又是学习圆锥曲线的理论基础,它贯穿于研究圆锥曲线的全过程,根据曲线与方程的对应关系,通过研究方程来研究曲线的几何性质,是几何的研究实现了代数化。
数与形的有机结合,在本章中得到了充分体现。
曲线与方程学情分析:新课标强调返璞归真,努力揭示数学概念、结论的发展背景,过程和本质,揭示人们探索真理的道路。
同时结合高二学生特点,本节课在学生学习了集合和直线的方程、圆的方程知识的基础上,使学生理解数学概念、结论产生的背景和逐步形成的过程,体会孕育在其中的思想,把数学的学术形态转化为学生易于接受的教育形态。
为突破曲线的方程与方程的曲线定义的难点,选择学生认知结构中与新知最邻近“直线的方程”,“ 圆的方程”入手,以集合相等,辅助理解“曲线的方程”与“方程的曲线”,进一步强化了概念理解的深刻性。
无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。
曲线与方程课标分析"圆锥曲线与方程"是选修课程系列1选修1-1和系列2选修2-1中的内容,其中选修1-1是为希望在人文、社会科学等方面发展的学生设置的;选修2-1是为希望在理工、经济等方面发展的学生设置的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章圆锥曲线与方程
2.1曲线与方程
2.1.1曲线与方程
温故知新
新知预习
1.在直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程F(x,y)=0的实数解建立了如下的关系:
(1)曲线上点的坐标都是这个方程的解;
(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做,这条曲线叫做.
2.如果曲线C的方程是F(x,y)=0,那么点P0(x0,y0)在曲线C上的充要条件是 . 基础示例
1.下列命题中,真命题的个数是()
①若曲线C上的点的坐标都是方程F(x,y)=0的解,则C的方程是F(x,y)=0②若以方程F(x,y)=0的解为坐标的点都是曲线C上的点,则方程F(x,y)=0的曲线是C ③若以方程F(x,y)=0的解为坐标的点都是曲线C上的点,则曲线C的方程是F(x,y)=0
A.0
B.1
C.2
D.3
答案:A
2.方程x2+xy=x的曲线是()
A.一个点 B.一条直线
C.两条直线 D.一个点和一条直线
答案:C。