暨南大学2007至2008学年度第二学期概率论与数理统计期末考试试题
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
《概率论与数理统计》考试试题B(答案)
广东白云学院2007—2008学年第二学期期末考试《概率论与数理统计》B卷参考答案及评分标准适用专业及方向: 经济管理类各专业、土木工程层次: 本科年级: 07级限时: 120分钟考试形式: 闭卷考场要求: 笔试考试形式:闭卷考场要求:笔试.(×)2. 设、为两事件, 则.(×)3. 设, 则其一定是某连续型随机变量的密度函数.(√)4. 设随机变量~N(1, 9), 则.(√)5.设, , 与相互独立, 则.二、填空题(请将正确答案填写在括号内。
每空3分,共30分), 则( 0.6 ).7.设随机变量和都服从[0,2]上的均匀分布, 则( 2 ).8. 设为两个随机事件,且已知, , ,则条件概率(0.6).则常数c=(0.1),}5.15.0{<<-XP=(0.5).10. 已知~,函数值,则=(0.9772).11. 服从参数的泊松分布, 令, 则(13), (75).12. 设三次独立试验中, 事件出现的概率相等, 若已知至少出现一次的概率等1/3 ).,则下列关系成立的是( C )A. B.C. D.15.同时抛掷3枚均匀的硬币, 则恰好有两枚正面朝上的概率为( D )A. 0.5B. 0.125C. 0.25D. 0.37516. 10张奖券中含有3张中奖的奖券,每人购买一张,则第3个购买者中奖的概率为( B )A. B. 0.3 C. D.17. 设连续型随机变量服从参数为的指数分布,若方差,则数学期望( B )A. B. C. D.18. 如果离散型随机变量相互独立,且服从参数为的泊松分布,则当充分大时,离散型随机变量( D )近似服从标准正态分布.A. B. C. D.19. 设连续型随机变量的概率密度为,则( A )A. B. C.D.四、计算题(每小题8分,共32分)(1)若事件BA,互不相容,求α; (2)若事件BA,相互独立,求α.解 (1)因为BA,互不相容,所以φ=AB, (1分)所以)()()()(BPABPBPBAP=-= (2分)而)(1)()()()(APBAPBPAPBAP-=-+=(3分)所以α=0.3 (4分)(2)因为BA,相互独立,则A与B也相互独立, (5分))())(1)(()()()()()(BPBPAPBPAPBPAPBAP+-=-+=(7分)所以α=73(8分)21. 某产品主要由三个厂家供货.甲、乙、丙三个厂家的产品分别占总数的15%,80%,5%,其次品率分别为0.02,0.01,0.03,试计算(1)从这批产品中任取一件是不合格品的概率;(2)已知从这批产品中随机地取出的一件是不合格品,问这件产品由哪个厂家生产的可能性最大?解记=A{所取一件产品是不合格品},321,,BBB分别表示”产品来自甲、乙、丙厂” (1分) 依题意有:15.0)(1=BP, 80.0)(2=BP,05.0)(3=BP02.0)(1=BAP,01.0)(2=BAP,03.0)(3=BAP (2分) (1)由全概率公式0125.0)()()(31==∑=iiiBPBAPAP (5分) (2)由贝叶斯公式24.00125.002.015.0)()()()(111=⨯==APBAPBPABP, (6分)64.00125.001.080.0)()()()(222=⨯==APBAPBPABP, (7分)12.00125.003.005.0)()()()(333=⨯==A PB A P B P A B P (8分) 22.设连续型随机变量X 的密度函数⎩⎨⎧<<=其他020)(2x Ax x ϕ,求(1)常数A ;(2))(),(X D X E .解 因为138)(202===⎰⎰∞+∞-A dx Ax dx x ϕ (2分) 所以 83=A (3分)所以 ⎪⎩⎪⎨⎧<<=其他2083)(2x xx ϕ2383)()(203===⎰⎰∞+∞-dx x dx x x X E ϕ (5分) 51283)()(20422===⎰⎰∞+∞-dx x dx x x X E ϕ (7分) 20323512)]([)()(222=⎪⎭⎫ ⎝⎛-=-=X E X E X D (8分) 23. 已知电站供电网有10000盏电灯, 夜晚每一盏灯开灯的概率都是0.7, 而假定开、关时间彼此独立, 试用切贝谢夫不等式估计夜晚同时开着的灯数在6800与7200之间的概率。
概率论与数理统计期末试题与详细解答
《概率论与数理统计》期末试卷一、填空题(每题4分,共20分)1、假设事件A 和B 满足1)(=A B P ,则A 和B 的关系是_______________。
2、设随机变量)(~λπX ,且{}{},21===X P X P 则{}==k X P _____________。
3、设X 服从参数为1的指数分布,则=)(2X E ___________。
4、设),1,0(~),2,0(~N Y N X 且X 与Y 相互独立,则~Y X Z -=___________。
5、),16,1(~),5,1(~N Y N X 且X 与Y 相互独立,令12--=Y X Z ,则=YZ ρ____。
二、选择题(每题4分,共20分)1、将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( )A 、323B 、83C 、161D 、812、随机变量X 和Y 的,0=XY ρ则下列结论不正确的是( ) A 、)()()(Y D X D Y X D +=- B 、a X +与b Y -必相互独立 C 、X 与Y 可能服从二维均匀分布 D 、)()()(Y E X E XY E =3、样本nX X X ,,,21 来自总体X ,,)(,)(2σμ==X D X E 则有( )A 、2i X )1(n i ≤≤都是μ的无偏估计 B 、X 是μ的无偏估计C 、)1(2n i X i ≤≤是2σ的无偏估计D 、2X 是2σ的无偏估计 4、设nX X X ,,,21 来自正态总体),(2σμN 的样本,其中μ已知,2σ未知,则下列不是统计量的是( ) A 、ini X ≤≤1min B 、μ-X C 、∑=ni iX 1σ D 、1X X n -5、在假设检验中,检验水平α的意义是( ) A 、原假设0H 成立,经检验被拒绝的概率 B 、原假设0H 不成立,经检验被拒绝的概率 C 、原假设0H 成立,经检验不能拒绝的概率D 、原假设0H 不成立,经检验不能拒绝的概率三、计算题(共28分)1、已知离散型随机变量的分布律为求:X 的分布函数,(2))(X D 。
2007级概率统计(理工类)考试试卷A答案
暨 南 大 学 考 试 试 卷上分位数(除填空题外,其它题用到的分位数请详细列明)0025002582306, 92262..().().,t t == 00500581859, 91833..().().t t ==20.025(8)17.532χ=, 20.025(9)19.022=χ, 20.975(8) 2.18=χ, 20.975(9) 2.7=χ 108413().Φ= ,1645095(.).Φ=,1960975(.).Φ=, 2509938(.).Φ=得分 评阅人二、选择题(共8小题,每小题2分,共16分)答案填写在右表1. 设随机变量X 服从正态分布2(,) N μσ,则随着标准差σ的增大,概率{}P X μσ-<如何变化( C )(A) 单调增大; (B) 单调减少; (C) 保持不变; (D) 增减不定。
2. 离散型随机变量X 的概率分布为()kP X k A λ== (1,2,k =)的充要条教 师 填写 2008 - 2009 学年度第__二_ 学期课程名称:__概率论与数理统计(理工类)_ 授课教师姓名:_____刘中学______考试时间:____2009__年 7_月__15__日课程类别必修[√ ] 选修[ ]考试方式开卷[ ] 闭卷[√ ] 试卷类别(A ,B,…) [ A ] 共 7 页考 生 填 写学院(校) 专业 班(级)姓名 学号 内招[ ] 外招[ ]题 号 一 二 三 四 五 六 七 八 九 十 总 分得 分题 号1 2 3 4 5 6 7 8 答 案 C A D A C B B A 得 分件是( A )。
(A )1(1)A λ-=+且0A >; (B )1A λ=-且01λ<<; (C )1A λ=-且1λ<; (D )0A >且01λ<<. 3. 已知()0.5P A =,()0.4P B =,()0.6P AB =,则()P A B =(D )(A) 0.2 ; (B) 0.45; (C) 0.6 ; (D) 0.75。
大学《概率论与数理统计》期末考试试卷含答案
大学《概率论与数理统计》期末考试试卷含答案一、填空题(每空 3 分,共 30分)在显著性检验中,若要使犯两类错误的概率同时变小,则只有增加 样本容量 .设随机变量具有数学期望与方差,则有切比雪夫不等式 .设为连续型随机变量,为实常数,则概率= 0 . 设的分布律为,,若绝对收敛(为正整数),则=.某学生的书桌上放着7本书,其中有3本概率书,现随机取2本书,则取到的全是概率书的概率为. 设服从参数为的分布,则=. 设,则数学期望= 7 .为二维随机变量, 概率密度为, 与的协方差的积分表达式为 .设为总体中抽取的样本的均值,则= . (计算结果用标准正态分布的分布函数表X ()E X μ=2()D X σ={}2P X μσ-≥≤14X a {}P X a =X ,{}1,2,k k P X x p k ===2Y X =1n k k k x p ∞=∑n()E Y 21k k k x p ∞=∑17X λpoisson (2)E X 2λ(2,3)YN 2()E Y (,)X Y (,)f x y X Y (,)Cov X Y (())(())(,)d d x E x y E y f x y x y +∞+∞-∞-∞--⎰⎰X N (3,4)14,,X X {}15P X ≤≤2(2)1Φ-()x Φ示)10. 随机变量,为总体的一个样本,,则常数=.A 卷第1页共4页 概率论试题(45分) 1、(8分)题略解:用,分别表示三人译出该份密码,所求概率为 (2分)由概率公式 (4分)(2分) 2、(8分) 设随机变量,求数学期望与方差.解:(1) = (3分) (2) (3分) (2分)(8分) 某种电器元件的寿命服从均值为的指数分布,现随机地取16只,它们的寿命相互独立,记,用中心极限定理计算的近似值(计算结果用标准正态分布的分布函数表示).2(0,)XN σn X X X ,,,21 X221()(1)ni i Y k X χ==∑k 21n σA B C 、、P A B C ()P A B C P ABC P A P B P C ()=1-()=1-()()()1-1-1-p q r =1-()()()()1,()2,()3,()4,0.5XY E X D X E Y D Y ρ=====()E X Y +(23)D X Y -()E X Y +E X E Y ()+()=1+3=4(23)4()9()12ov(,)D X Y D X D Y C X Y -=+-8361244XYρ=+-=-100h i T 161ii T T ==∑{1920}P T ≥()x Φ解: (3分) (5分)(4分)(10分)设随机变量具有概率密度,.(1)求的概率密度; (2) 求概率.解: (1) (1分)A 卷第2页共4页(2分)(2分)概率密度函数 (2分)(2) . (3分) (11分) 设随机变量具有概率分布如下,且.i i ET D T E T D T 2()=100,()=100,()=1600,()=160000{1920}0.8}1P T P ≥=≥≈-Φ(0.8)X 11()0x x f x ⎧-≤≤=⎨⎩,,其它21Y X =+Y ()Y f y 312P Y ⎧⎫-<<⎨⎬⎩⎭12Y Y y F y y F y≤>时()=0,时()=1212,{}{1}()d Y y F yP Y y P X y f x x <≤≤=+≤=()=02d 1x y ==-2()=Y Y y f y F y≤⎧'⎨⎩1,1<()=0,其它3102Y YP Y F F ⎧⎫-<<=-=⎨⎬⎩⎭311()-(-1)=222(,)X Y {}110P X Y X +===(1)求常数; (2)求与的协方差,并问与是否独立?解: (1) (2分)由(2分) 可得 (1分)(2), , (3分) (2分) 由可知与不独立 (1分) 三、数理统计试题(25分)1、(8分) 题略. A 卷第3页共4页 证明:,相互独立(4分) ,(4分),p q X Y (,)Cov X Y X Y 1111134123p q p q ++++=+=,即{}{}{}{}{}101011010033P X Y X P Y X p P X Y X P X P X p +====+========+,,1p q ==EX 1()=2E Y 1()=-3E XY 1()=-6,-CovX Y E XY E X E Y ()=()()()=0..ij i j P P P ≠X Y 222(1)(0,1),(1)X n S N n χσ--22(1)X n S σ-2(1)X t n -(1)X t n -(10分) 题略解:似然函数 (4分)由 可得为的最大似然估计 (2分)由可知为的无偏估计量,为的有偏估计量 (4分) 、(7分) 题略 解: (2分)检验统计量,拒绝域 (2分)而 (1分)因而拒绝域,即不认为总体的均值仍为4.55 (2分)A 卷第4页共4页2221()(,)2n i i x L μμσσ=⎧⎫-=-⎨⎬⎩⎭∑2221()ln ln(2)ln() 222ni i x n n L μπσσ=-=---∑2222411()ln ln 0,022n ni i i i x x L L nμμμσσσσ==--∂∂===-+=∂∂∑∑221111ˆˆ,()n n i i i i x x n n μσμ====-∑∑2,μσ221ˆˆ(),()n nE E μμσσ-==11ˆn i i x n μ==∑μ2211ˆ()ni i x n σμ==-∑2σ01: 4.55: 4.55H H μμ=≠x z =0.025 1.96z z ≥=0.185 1.960.036z ==>0H。
2007—2008 概率论与数理统计(B)
梅三#111光棍文印室 单面6分/张 双面8分/张 打印资料 复印课本 胶装电话:134 **** **** Q :124 111 2484(可发过来) 量大从优!欢迎光临松1#520打印室《概率论与数理统计》B 试卷 第1页共 4页河南理工大学 2007—2008 学年第 2 学期概率论与数理统计 试卷考试方式:闭卷 本试卷考试分数占学生总评成绩的 80 %复查总分 总复查人一、填空题(每小题5分,共25分)1.设,21)(,31)(==B P A P 且B A ⊂,则)(B A P = 。
2.设随机变量x ~N(1,4),8413.0)1(=Φ,则事件“31≤≤x ”的概率为 。
3.n x x x ,,,21 ,为来自两点分布),1(p b 的样本,则当n 很大时,其样本均值X 近似服从 分布。
4.设A 、B 为任意两个随机事件,则=++++)})()()((B A B A B A B A P 。
5.设n x x x ,,,21 为来自总体X 的简单随机样本,X ~N ),(2σμ,∑==n i i X n X 11,212)(11X X n S n i i --=∑=,若2σ已知,则μ的置信度为α-1(其中10<<ε)的双侧置信区间为 。
二、选择题(每小题5分,共25分)1.设P(A)=a,P(B)=b,P(A ∪B)=C ,则)(B A P 为( ) (A )a(1-b) (B )a-b (C )c-b (D )a(1-c)2.设X ~N (1,1)其概率密度函数为)(x f ,分布函数)(x F ,则有( )(A )5.0}0{}0{=≥=≤x P x P (B )),(),()(+∞-∞∈-=x x f x f (C )5.0}1{}1{=≥=≤x P x P(B)),(),()(+∞-∞∈-=x x F x F3.设X 、Y 是相互独立的随机变量,它们的分布函数分别为)()(y F x F y x =,则),min(Y X Z =的分布函数)(Z F 是( )。
2007年第2学期概率论期末考试试卷
华南农业大学期末考试试卷(A卷)2007-2008学年第2学期 考试科目:概率论考试类型:(闭卷) 考试时间: 120分钟学号姓名年级专业题号 一 二 三 三 三 三 四 五 六 总分得分评卷人一(15分)(1)在区间(0,1)中随机取两个数,求事件“两数之和小于65”的概率。
(7分)(2)从10个数1,2,…,10中随机取4个数,求(a)其中最大数为5的概率, (4分)(b)其中最小数为5的概率。
(4分)二(10分,每小题5分)设同年级有二个班,1班有50名学生,其中10名女生,2班有30名学生,其中18名女生。
在该年级中任选1名,试求:(1) 选出的是女生的概率;(2) 在已知选出女生的条件下,她是第1班学生的概率。
本试卷六个大题,共5页1本试卷六个大题,共5页2三 计算题(15分,每小题5分)设(),ξη的密度函数为。
()()2,0,0,,0,x y Aex y f x y −+⎧>>⎪=⎨⎪⎩其他求(1)常数A ;(2)ξ的边缘密度()f x ξ;(3)概率()22P ξη+<。
本试卷六个大题,共5页3四(15分)设G 表示由抛物线2y x =及直线y x =所包围区域,(),X Y 在区域G 上服从均匀分布,求:(1)(),X Y 的联合密度函数(),,f x y 边缘密度函数()()X Y f x f y 和; (12分) (2)判断(),X Y 的独立性。
(3分)本试卷六个大题,共5页4五(15分)(1) 设()211~,,1,2,,;,,,k k kmN a k m ξσξξξ=""且相互独立,求1mk k ηξ==∑的分布; (7分)(2)若随机变量X 的特征函数为()cos ,X t t ϕ= 求X 的分布律,并求32Y X =+的特征函数。
(8分)六(30分,每小题10分)在以下各题中任选3题,若多选则取最高分数的3个题计算:(1)设()0x ϕ>,且当0x >时,()x ϕ是单调上升函数,又设()E M ϕξ⎡⎤=⎣⎦存在,试证明:对任意0t >,有{}().MP t t ξϕ≥≤本试卷六个大题,共5页5(2)假设某一年龄的女童身高的均值为130厘米,标准差为8厘米。
概率论期末考试试卷(A卷)答案
设随机变量 X 服从泊松分布,且 P ( X ≤ 1) = 4 P ( X = 2) ,求 P( X = 3) 的值。 (提示:若 X ∼ π (λ ) ,即 P ( X = k ) = λ k e − λ , k = 0,1, 2, )
k! 解答: P( X ≤ 1) = P( X = 0) + P( X = 1) = e−λ + λe−λ , P( X = 2) = λ2 e−λ
2、在一标准字典中有 55 个由两个不相同的字母所组成的单词,若从 26 个英文字母中任取
两个字母予以排列,能排列上述单词的概率是 11/130
。。
3、已知随机变量 X ,Y 相互独立,且 X ∼ N (1, 3) ,Y ∼ N (2, 4) ,若 Z = 3X − 2Y ,则 Z 服
从分布为 N (−1, 43)
∫ ∫ 故: P ⎧⎨0 < X < 1 ,e < Y < 6⎫⎬ =
1 2
6 2xe−( y−5)dxdy = 1 (1− e−1)
⎩
2
⎭ 05
4
……………………………… 2 分
(2)因为: E(3X + Y ) = E(3X ) + E(Y ) = 3E( X ) + E(Y )
……………………………… 3 分
第5页共6页
而
∫ ∫ ∫ ∫ E(X ) =
+∞
+∞
xf (x, y)dxdy =
1
+∞ 2x2e−( y−5)dxdy
−∞ −∞
05
∫ ∫ = 1 +∞ 2x2e−( y−5)dxdy = 2
05
3
∫ ∫ ∫ ∫ E(Y ) =
第2学期《概率论与数理统计》期末考试试题A卷(公共课)参考答案及评分标准
中南财经政法大学2006–2007学年第二学期期末考试试卷《概率论与数理统计》参考答案(A 卷)一 选择题 (每题2分,共10分)1.D2.C3.B4.D5.C二 填空题 (每题2分,共12分)1.272.()!1!!k n k n -+3.354.05.25126.()0.49,0.49X X σσ-+三 判断说明题(每题5分,共20分,判断2分,说明理由3分) 1.错。
()()A B A B AB BA ++=+≠Φ2.对。
()()()()()()0,00P A P A B P A P AB P AB P AB =≤-=-=-=则,所以3.对。
()(),D X Y D X Y +=-得()cov ,0,0XY X Y ρ==即,所以R E =(单位矩阵)4.错。
2212123125122933955525D X X D X X X σσ⎛⎫⎛⎫+=>++= ⎪ ⎪⎝⎭⎝⎭四 简答题1.不能。
()()2223221,441,,4a axdx a a a a f x +=+-=+==-⎰若即得则不能非负。
--(4分) 2. 不能成为分布函数。
12()()2F F +∞++∞= -----------------------------------------(4分)3. (,)X Y 的联合分布律为(2分) 588551,(),cov(,)333339EX EY E XY X Y ====-⨯=- ---------------------(5分)4.()22,(),(),x X f x x h y y h y σμσ-'===+=------------------------- (3分)则,()()22y Y f y σμ+-=-------------------------------------------(5分) 五 解答题(共34分) 1. (8分)解 用12,A A 分别表示事件“产品是由甲厂生产”,“产品是乙厂生产”,B 表示取到的产品是次品。
概率论与数理统计(II)期末考试样卷1(答案)
命题人或命题小组负责人签名: 教研室(系)主任签名: 分院(部)领导签名:第 页 (共 4页)概率论与数理统计(II )期末考试样卷1参考答案注意:所有数据结果保留小数点后两位,本试卷可能用的数据如下:0.9750.930.920.9750.950.950.975(1.71)0.96,(1.14)0.87, 1.96,(8) 1.8,(9) 1.8,(9) 2.262(1)0.84,(15) 1.753,(2,12) 3.89,(12) 2.1788,(2.67)0.996U t t t t F t Φ=Φ=====Φ====Φ=一、填空题( 每小题3分,共24分)1.设某厂生产的灯泡的使用寿命 (单位:小时)2~(1000,)X N σ,抽取一容量为9的样本,得到940,100x s ==,则(940)P x <= 0.07 .2.某食品厂生产听装饮料,现从生产线上随机抽取5听饮料,称得其净重(单位:克)为351 347 355 344 351 则其经验分布函数5()F x = 1525450 344344347 347351 351355 1 355x x x x x <⎧⎪≤<⎪⎪≤<⎨⎪≤<⎪⎪≥⎩ . 3. 设16,,X X 为总体~(0,1)X N 的一个样本,且cY 服从2χ分布,这里,()()22123456Y X X X X X X =+++++, 则 c =4.设161,,x x 是来自(8,4)N 的样本,则(16)(10)P x >= 161(0.84)- .5.设1,,n X X 为来自(,1)(0)U θθ>的一个样本,11,nini X X ==∑则未知参数θ的矩估计量是21X - . 6.设1,,n X X 为来自2(,)N μσ的一个样本,()1211n i i i c X X -+=-∑为2σ的无偏估计,则常数c = 12(1)n - .7.已知某种材料的抗压强度2~(,),X N μσ现随机地抽取10个试件进行抗压试验,测得样本均值457.5,x =标准差35.217,s =则μ的95%的置信区间为 [432.31,482.69] .8.设1,,n X X 为来自2(,)N μσ的一个样本,2211111,()n ni i n n i i X X S X X -====-∑∑,其中参数2,μσ未知,要检验假设00:H μμ=应用 t 检验法,检验的统计量是X 二、单项选择题(每小题2分,共8分)1. 设()n F x 是经验分布函数,基于来自总体X 的样本,而()F x 是总体X 的分布函数,则下列命题错误的为,对于每个给定的x ,()n F x ( A )。
概率论和数理统计期末考试题及答案
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
0708概率论与数理统计试题B答桉暨南大学慨率论期末考试试卷
暨 南 大 学 考 试 试 卷一、填空题(共5小题,每小题2分,共10分)1. 在某一随机试验中,事件A 与B 相互独立,且2.0)(,3.0)(==B P A P 则=)(B A P 0.24 。
2. 设随机变量ξ的密度函数为⎩⎨⎧∈=其它0),0(2)(A x x x ϕ,则常数A = 1 。
3. 设随机变量ξ与η相互独立,且3,2==ηξE E ,则=+-)(ξηηξE 5 。
4. 设n X X X ,,,21 是取自总体),(2σμN 的样本,则当=C 21+n 时,∑=ni i X niC 1是μ的无偏估计。
5. 已知二元随机变量),(ηξ的联合密度函数为⎪⎩⎪⎨⎧≤≤++=.,04,0),sin()12(),(其它;πϕy x y x y x则ξ的边缘概率密度为) 0()84 0 X x x x ππϕ⎧++≤≤⎪=⎨⎪⎩其它或表为1)[c o s c o s ()] 0()44 0 X x x x x ππϕ⎧+-+≤≤⎪=⎨⎪⎩其它。
二、单项选择题(共10小题,每小题2分,共20分)1. 设)(x F 是随机变量ξ的分布函数,则下列结论中正确的是( D )(A ) 1)(0<<x F (B) 0)(≤x F (C ) 1)(≥x F (D) 1)(0≤≤x F2. 某人打靶的命中率为8.0,现独立地射击5次,那么5次射击中命中2次的概率为( D )(A ) 2.08.02⨯ (B) 28.0 (C) 4.08.02⨯ (D) 22350.80.2C ⨯⨯3. 若事件E 与F 互不相容,且6.0)(,3.0)(==F P E P ,则=+)(F E P ( B ) (A) 3.0 (B) 9.0 (C) 18.0 (D) 6.04. 随机变量ξ的密度函数为⎪⎩⎪⎨⎧∈=其它]2,0[21)(x x ϕ,则=ξξE D ( B ) (A) 0 (B)31 (C)41 (D) 15. 设n X X X ,,,21 是总体),(2σμN 的样本,则∑==ni i X n X 11服从( A )分布。
07-08数学分析II考试试卷A答案
暨 南 大 学 考 试 试 卷得分 评阅人1. 函数在 [a,b ] 上可积,那么( A )A .在[a,b ]上有界B .在[a,b ]上连续C .在[a,b ]上单调D .在[a,b ]上只有一个间断点2.若,则( B )A .B .C .D .3.在[a ,+∞]上恒有,则( D ) A .收敛也收敛 B .发散也发散C .和同敛散D . 无法判断4. 函数项级数在D 上一致收敛的充要条件是( A )A . 对>0, N ()>0,使当m >n> N 有B .对>0, N>0,使当m >n> N 有C . >0, N ()>0,使当m >n> N 有D .对>0, N ()>0,使m >n> N 有5. 是以为周期的函数,在一个周期的表达式为,则它的傅里叶级数( B ) A .不含正弦项; B .不含余弦项; C .既含正弦项也含余弦项; D .不存在. 得分评阅人二、叙述题(每小题3分,共6分)教 师 填 写2007---2008 学年度第 2 学期 课程名称: 数学分析II 授课教师姓名:高凌云考试时间: 2008年 7 月 15日 课程类别 必修[√]选修[] 考试方式 开卷[ ]闭卷[√] 试卷类别(A 、B) [ A ] 共8页考生填写 学院(校) 专业班(级) 姓名学号 内招[ ] 外招[ ] 题 号 一 二 三 四 五 六 七 八 九 十 总 分得 分1、牛顿-莱不尼兹公式设在上连续,是在上的一个原函数,则成立2、收敛的cauchy收敛原理使得,成立二、计算题(共8小题,每小题5分,共40分)1..由于在[0,1]可积,由定积分的定义知(1分)=(4分)2.(5分)3.求摆线与轴围成的图形的面积。
所求的面积为:(5分)4. 求由曲线和围成的图形绕轴旋转而成的几何体的体积。
两曲线的交点为(0,0),(1,1)(2分)所求的体积为:(3分)5.求数项级数的和.解考虑幂级数, 其收敛域为. 设和函数为, 在内有, . (2分)注意到,对有, .于是, . (3分)6. .解:设,则==== (5分)7. .解:== (5分)8.解:(3分)(2分)三、讨论判断题(共2小题,每小题5分,共10分)2.解:对于,它为正常积分;(2分)对于,它收敛。
[VIP专享]2007—2008(2)概率论与数理统计II(A)试卷(电子)
P 0.2 0.3 0.1 0.4
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
X -1 0 1 2
设随机变量 X 其概率分布为
(A) 0.6;
(2)
(D) 0.18.
(C) 0.5;
(B) 0.3;
题 号 一 二 三 四 五 六 七 八 九 十 十一 十二 总成绩 得分
(7)
(D) X 与 Y 互不相容
(C) X 与 Y 相互独立
(B) D( X Y ) DX DY
(A) D( XY ) DX DY
)
(6)对于任意的两个随机变量 X 和Y ,若 E( XY ) EX EY ,则(
(D) 21.
(C) 17 ;
(A) 25 ; (B) 13 ;
cov ( X, Y ) 2 , 则 D ( 2X Y ) 等于 ( ) .
三、(7 分) 由 A、B、C、D 四个元件组成一个系统,其连接方式如图所示,并用
事件 A、B、C、D 分别表示元件 A、B、C、D 正常工作;元件之间是否正常 工作是相互独立的。已知 P( A) 0.9, P(B) 0.95, P(C) P(D) 0.8 ,试 求 这个系统的能正常工作的概率(即系统的可靠性)。
共 8 页第 1 页
(4)
设随机变量 X ~ N ( 3 , 1), Y ~ N ( 2, 1), 且 X 与 Y 相互独 立 , 令 Z X 2 Y 7 , 则 Z ~ ( ). (A) N ( 0, 5); (B) N ( 0, 3); (C) N (0 , 46 ); (D) N ( 0 , 54).
06-07(2)概率论与数理统计-内A暨南大学慨率论期末考试试卷
暨 南 大 学 考 试 试 卷一、填空题(共5小题,每小题3分,共15分)1.某班共有30名学生,其中3名来自北京。
今从班上任选2名学生去参观展览,其中恰有1名学生来自北京的概率为 。
2.一批产品的废品率为0.1,从中重复抽取m 件进行检查,这m 件产品中至少有1件废品的概率为 。
3.设连续型随机变量2,01~()0,x x x ξϕ<<⎧=⎨⎩其它,则1()2P ξ<= 。
4.设二元随机变量(,)ξη的联合概率密度函数为(),0,1(,)0,x y ce x y x y ϕ-+⎧<<=⎨⎩其他, 则c = 。
5.设随机变量ξ服从正态分布()N 24,3,则ξ的期望E ξ= , 方差D ξ= 。
二、单选题,请把正确答案填在题后的括号内(共5小题,每小题3分,共15分)1.设A 、B 、C 为三个事件,则事件“A 、B 、C 中恰有两个发生”可表示为( )。
(a) AB AC BC ++; (b) A B C ++; (c) ABC ABC ABC ++; (d) ABC 2.已知随机变量ξ具有如下分布律1230.1p k j ξ⎛⎫ ⎪⎝⎭, 且2() 5.3E ξ=,则j =( )。
(a) 0.5; (b) 0.2; (c) 0; (d) 0.1 3.设随机变量ξ服从二项分布(100,0.1)B ,则ξ的期望E ξ和方差D ξ分别为( )。
(a) E ξ=10,D ξ=0.09; (b) E ξ=10,D ξ=9; (c) E ξ=90,D ξ=10; (d) E ξ=1,D ξ=34.设随机变量ξ服从指数分布,其概率密度函数为22,0()0,0x e x x x ϕ-⎧>=⎨≤⎩,则ξ的期望E ξ=( )。
(a) 4; (b) 2; (c)12; (d) 145.设123,μμμ和为总体期望值μ的三个无偏估计量,且123,D D D μμμ<,则以下结论( )成立。
《概率论与数理统计》期末考试试题及答案
(1)根据边缘概率与联合概率之间的关系得出-1 0 10 Nhomakorabea1
0
0
0
………….4分
(2)因为
所以 与 不相互独立
…………8分
七、(8分)设二维随机变量 的联合密度函数为
求:(1) ;(2)求 的边缘密度。
解:(1) …………..2分
=
=[ ] ………….4分
(2) …………..6分
……………..8分
1. 2. , 3. 4.
(1)如果 ,则 .
(2)设随机变量 的分布函数为
则 的密度函数 , .
(3)
(4) 设总体 和 相互独立,且都服从 , 是来自总体 的
样本, 是来自总体 的样本,则统计量
服从分布(要求给出自由度)。
三、(6分)设 相互独立, , ,求 .
解:0.88=
= (因为 相互独立)……..2分
求随机变量Y=2X+1的概率密度。
解:因为 是单调可导的,故可用公式法计算………….1分
当 时, ………….2分
由 ,得 …………4分
从而 的密度函数为 …………..5分
= …………..6分
六、(8分)已知随机变量 和 的概率分布为
而且 .
(1)求随机变量 和 的联合分布;
(2)判断 与 是否相互独立?
…………4分
即为[4.801,5.199]…………5分
令 ………..5分
于是 的最大似然估计:
。……….7分
十二、(5分)某商店每天每百元投资的利润率 服从正态分布,均值为 ,长期以来方差 稳定为1,现随机抽取的100天的利润,样本均值为 ,试求 的置信水平为95%的置信区间。( )
概率论与数理统计期末考试试题及参考答案(最终)
概率论与数理统计复习题〔一〕一. 选择题:1、假设两个事件 A 和B 同时呈现的概率P(AB)= 0, 那么以下结论正确的选项是( ).(A) A 和B 互不相容.(C) AB 未必是不成能事件. 解此题答案应选(C).2x, x [0, c], (B) AB 是不成能事件.(D) P(A )=0 或P(B)=0.2、设f ( x) 如果c=( ), 那么f (x) 是某一随机变量的概率0, x [0, c].密度函数.1 1 3(A) . (B) . (C) 1. (D) .3 2 2c解由概率密度函数的性质 f ( x)dx 1可得 2 xdx 1, 于是c 1,故本题应选(C ).3、设X ~ N (0,1), 又常数c 满足P{ X≥c} P{ X c} , 那么c 等于( ).1(A) 1. (B) 0. (C) . (D) - 1.2解因为P{ X≥c} P{ X c} , 所以1 P{ X c} P{ X c} ,即2P{ X c} 1 , 从而P{ X c} ,即(c) , 得c=0. 因此此题应选(B).4、设X 与Y 彼此独立,且都从命N(, 2 ) , 那么有( ).(A) E( X Y) E(X ) E(Y) .(C) D( X Y)D(X) D (Y) .(B) E( X Y) 2 .(D) D(X Y) 2 2 .解注意到E(X Y) E(X)E(Y ) 0.由于X 与Y 彼此独立,所以D( X Y)D(X) D(Y) 2 2 . 选(D).25、设总体X 的均值μ与方差σ都存在但未知, 而X , X ,L , X 为来自X 的样1 2 n本, 那么均值μ与方差σ2 的矩估计量别离是() . 1nn(A) X 和S2. (B) X 和(D) X 和2(X ) .ii 1n1(C) μ和σ2. 解选(D).2( X i X ) . n i 1二、在三个箱子中, 第一箱装有4个黑球, 1个白球; 第二箱装有3个黑球, 3 个白球; 第三箱装有 3 个黑球, 5 个白球. 现任取一箱, 再从该箱中任取一球。
概率统计2007-2008期末试题
m in (,)Z X Y =的分布函数()Z F z 为 1[1()][1X Y F x F y ---;),max(Y X Z =的分布函数()Z F z 为)()(y F x F Y X1.二维正态分布的密度函数为:]))())((2)([)1(21exp(121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f 设随机变量),(Y X 密度函数2222),(yy x x Aey x f -+-=,+∞<<∞-y x ,。
试求:(1)常数A ;(2)条件密度函数)|(|x y f X Y1)1(21,2)1(,2)1(21,121,022221221222121=-=-=--===σρσσρρσρρσπσμμA可得:21,1,21,121====ρσσπA ,)2/1;1,2/1;0,0(~),(N Y X21)(xX ex f -=π,从而:2)(|1)(),()|(y x X X Y ex f y x f x y f --==π+∞<<∞-y 。
(其中+∞<<∞-x )2. 二维随机向量(,)~(0,1;0,1;0)X Y N ,相关系数为0,从而,X 与Y 不相关。
二维正态分布不相关的充要条件为相互独立。
(1)由全概率公式 ()()()()()P A P B P A B P B P A B =+ (2)由贝叶斯公式得所求概率为()()()P A B P BA P A =()()480.1404()342P B P A B P A ==≈注:切贝雪夫不等式和中心极限定理是近年来经常考的内容。
如:(1)设随机变量序列 ,,21X X相互独立,且~0.50.5k X ⎛⎝⎭证明:0ε∀>,有0|)(11|lim11=⎪⎭⎫⎝⎛≥-∑∑==∞+→nk nk k kn X E nXnP ε;(2)某工厂的产品的次品率为0.1,从中任意抽取200件,问次品数不多于18件的概率为多少?(用中心极限定理计算)。
最新暨南大学、华侨大学数学考试试卷
2007年暨南大學、華僑大學招收港澳、台灣、華僑、華人及其他外籍學生入學考試題目數 學(A)一. 選擇題:本大題共15小題,每小題4分,共60分,每小題所列四個選項中只有一個是正確的,把你的選擇按題號填入答案紙。
1. 若集合R = {a, b, c, d}, M={b, e, f},N={c, f, g}則集合{R ⋃M}⋂N = [ ]A. {a, b, c }B. {b, c, f}C. {c, f}D. {c, f, g}2.己知不等式022>+-a x x 的解集為實數集R, 則實數a 的取值範圍是 [ ] A. 1≥aB. 1>aC. 1≤aD. 1<a3.函數x x y 2cos sin 32+=的最小正週期為 [ ] A.2πB.πC. π2D. 3π4.5)1)(2(i i i +-=[ ] A. 2+iB. 1-iC. 1+3iD. 1-3i5. 在125)1(x x +的展開式中常數項是 [ ] A. -50B. 66C. 60D. 656. 若函數)(x f 满足x xf 2log )11(=+,則)3(f 的值是 [ ] A. 3log 2 B. 21- C. 21 D. 3log 2-7. 要得到函數)32sin(3π-=x y 的圖像,只需將函數y=3sin 2x 的圖像 [ ] A.向左平移3π個單位 B.向右平移3π個單位 C.向左平移6π個單位 D.向右平移6π個單位8.函數1-=x e y 的反函數)(1x f -= [ ]A. )0(1ln ≥+x xB. )0(1ln >-xC. )1)(1ln(-≥+x xD. )1)(1ln(->+x x9.已知數列4,,,121--a a 成等差數列,4,,,,1321--b b b 成等比數列,則212b a a -的值是 [ ] A.21B. 21-C. 21或21-D. 4110.已知平面α內有060=∠XOY , OA 是過平面α的斜線,且OA=3,∠AOX=∠AOY=450,則A 到平面α的距離是 [ ]A.1B. 2C. 3D. 411. 已知過點),1(m A -和)5,(m B 0123=+-y x 垂直, 則m 的值為[ ] A. 10B. 13C. 17D. 1912. 已知圓1222=+-y my x (m 為常數)1+=x y 對稱, 則m 的值為 [ ]A. 1B. 4C. 8D. 1213.有5根木條,長度分別為1、3、5、7、9cm 取其中3根,可以構成三角形的概率[ ]A. 0.3B. 0.5C. 0.7D. 0.814.定義在實數集R 上的偶函數)(x f 满足)()2(x f x f =+,且)(x f 在[-3,-2]上是減函數,又α、β是銳角三角形的兩個內角,則 [ ]A.)(sin )(sin βαf f >B.)(cos )(cos βαf f <C.)(cos )(sin βαf f >D.)(cos )(sin βαf f <15.已知3個同一品牌的飲料空瓶可以換得一瓶該品牌的飲料喝,現有10個該品牌的 飲料空瓶,若不交錢,最多可以喝_____瓶這種飲料. [ ]A. 3B. 4C. 5D. 6二. 填充題:本大題共8小題,每小題4分,共32分,把答案按題號填入答案紙。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
暨南大学2007至2008学年度第二学期概率论与数理统计期末考试试题
暨 南 大 学 考 试 试 卷
得分 评阅人
一、填空题(共5小题,每小题2分,共10分)
1. 在某一随机试验中,事件
与相互独立,且则
0.24 。
2. 设随机变量的密度函数为,则常数= 1 。
3. 设随机变量与相互独立,且
,则
5 。
4. 设是取自总体的样本,则当 时,
是的无偏估计。
5. 已知二元随机变量
的联合密度函数为
教 师 填 写
2007__- 2008_ 学年度第___二__学期 (内招生) 课程名称:___概率论与数理统计 授课教师姓名:邱青、张培爱、李全国、吴广庆、刘中学 考试时间:_2008_年___7____月___10___日
课程类别
必修[√] 选修[ ] 考试方式
开卷[ ] 闭卷[ √ ]
试卷类别(A 、B) [ B] 共 7 页
考 生 填 写
学院(校) 专业 班(级) 姓名 学号 内招[√] 外招[ ]
题 号
一
二
三
四
五
六
七
八
九
十
总 分
得 分
则的边缘概率密度为
或表为。
得分评阅人
二、单项选择题(共10小题,每小题2分,共20分)
1. 设是随机变量的分布函数,则下列结论中正确的是( D )
(A ) (B)
(C ) (D)
2. 某人打靶的命中率为,现独立地射击5次,那么5次射击中命中2次的概率为( D )
(A ) (B)
(C) (D)
3. 若事件与互不相容,且,则( B)
(A) (B)
(C) (D)
4. 随机变量的密度函数为,则( B )
(A) (B) (C) (D)
5. 设是总体的样本,则服从( A )分布。
(A) (B)
(C) (D)
6. 设离散型随机变量的概率分布为
P
其分布函数为,则( C )
(A) (B) (C) (D)
7.设随机变量服从正态分布,其密度函数为,则等于(B )
(A ) 0 (B )
(C) 1 (D)
8. 设随机变量的数学期望,方差,,用切比雪夫不等式估计概率为( D )
(A) (B) (C) (D)
9. 是取自总体的一个样本,是一个未知参数,以下函数中是统计量的是( C )
(A) (B)
(C) (D)
10. 总体~,参数未知,是取自总体的一个样本,则
的四个无偏估计中最有效的是( D )
(A) (B)
(C) (D)
得分评阅人
三、计算题(共4小题,共44分)
1. 事件与相互独立,已知,确定的值。
(10分)
解:
3分
7分
解得 10分2. 已知%的男人和%的女人是色盲,假设男人女人各占一半。
现随机挑选一人。
(1)此人恰是色盲患者的概率多大?(2)若随机挑选一人,此人不是色盲患者,问他是男人的概率多大?(12分)
解:,
由已知,
2分
(1)由全概率公式
6分
(2)根据题意,即求.
9分
12分
3. 设总体的概率密度,为从总体
中取出的一组样本观察值,求参数的最大似然估计值。
(12分)
解:当,样本似然函数
4分
对数似然函数
10分
12分4. 用热敏电阻测温仪间接测量地热,勘探井底温度,重复测量7次,测定温度
(C)为,而用某精确办法测定温度为(可看作温度真值),试问用热敏电阻测温仪间接测温有无系统偏差
()?(设热敏电阻测温仪测得的温度总体服从正态分布。
(双侧临界值)(10分)
解:
3分
检验假设
6分
8分
接受,认为用热敏电阻测温仪间接测温无系统偏差。
10分
得分评阅人
四、综合计算题(共2小题,共26分)
1. 设连续型随机变量的分布函数为
求:(1)常数、的值;(2);(3)。
(15分)
解:(1)在点连续
2分
5分
(2)由
知 7分
从而 10分
(3) 15分
方法二:(2)、(3)也可通过概率密度计算
(2)的概率密度
10分(3)
15分2. 保险公司有人投保,每人每年付元保险费;已知一年内人口死亡率为,若死亡一人,保险公司赔付元,求保险公司年利润不少于元的概率。
(设)(11分)
解:
4分
由拉普拉斯中心极限定理知
保险公司年利润
所求概率
7分
=
=11分。