2017-2018届上海市杨浦区高三上学期一模理科数学试卷及答案
2018杨浦一模
![2018杨浦一模](https://img.taocdn.com/s3/m/244accc2ad51f01dc281f14d.png)
上海市杨浦区2018届高三一模数学试卷2017.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 计算1lim(1)n n→∞-的结果是2. 已知集合{1,2,}A m =,{3,4}B =,若{3}A B = ,则实数m =3. 已知3cos 5θ=-,则sin()2πθ+=4. 若行列式124012x -=,则x =5. 已知一个关于x 、y 的二元一次方程组的增广矩阵是112012-⎛⎫⎪⎝⎭,则x y +=6. 在62()x x-的二项展开式中,常数项的值为7. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具), 先后抛掷2次,则出现向上的点数之和为4的概率是8. 数列{}n a 的前n 项和为n S ,若点(,)n n S (*n N ∈)在函数2log (1)y x =+的反函数的图像上,则n a =9. 在ABC ∆中,若sin A 、sin B 、sin C 成等比数列,则角B 的最大值为10. 抛物线28y x =-的焦点与双曲线2221x y a-=的左焦点重合,则这条双曲线的两条渐近线的夹角为11. 已知函数()cos (sin )f x x x x =+x R ∈,设0a >,若函数()()g x f x α=+ 为奇函数,则α的值为12. 已知点C 、D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD MC λ= ,则实 数λ的取值范围为二. 选择题(本大题共4题,每题5分,共20分) 13. 在复平面内,复数2iz i-=对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限14. 给出下列函数:①2log y x =;②2y x =;③||2x y =;④arcsin y x =. 其中图像关于y 轴对称的函数的序号是( )A. ①②B. ②③C. ①③D. ②④ 15. “0t ≥”是“函数2()f x x tx t =+-在(,)-∞+∞内存在零点”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分也非必要条件16. 设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅= ,0AC AD ⋅=,0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积,则123S S S ++的最大值是( ) A. 12B. 2C. 4D. 8三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域; (2)怎样围才能使得场地的面积最大?最大面积是多少?18. 如图,已知圆锥的侧面积为15π,底面半径OA 和OB 互相垂直,且3OA =,P 是母线BS 的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小. (结果用反三角函数值表示)19. 已知函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.20. 设直线l 与抛物线2:4y x Ω=相交于不同两点A 、B ,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆22:(5)16C x y -+=相切于点M ,且M 为线段AB 的中点,求直线l 的方程;(3)若0OA OB ⋅=,点Q 在线段AB 上,满足OQ AB ⊥,求点Q 的轨迹方程.21. 若数列A :1a ,2a ,⋅⋅⋅,n a (3n ≥)中*i a N ∈(1i n ≤≤)且对任意的21k n ≤≤-,112k k k a a a +-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,x ,y ,7为“U -数列”,写出所有可能的x 、y ;(2)若“U -数列” A :1a ,2a ,⋅⋅⋅,n a 中,11a =,2017n a =,求n 的最大值; (3)设0n 为给定的偶数,对所有可能的“U -数列”A :1a ,2a ,⋅⋅⋅,0n a ,记012max{,,,}n M a a a =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示1x ,2x ,⋅⋅⋅,s x 这s 个数中最大的数,求M 的最小值.参考答案一. 填空题1. 32. 35- 3. 2 4. 6 5. 160-6. 1127. 18. 12n n a -=9. 3π 10. 3π 11. *()26k k N ππα=-∈ 12. 1[,3]3二. 选择题13. C 14. B 15. A 16. B三. 解答题17.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)设平行于墙的边长为a , 则篱笆总长3l x a =+,即3a l x =-, ……2分所以场地面积(3)y x l x =-,(0,)3lx ∈ (定义域2分) ……6分(2)222(3)33()612l l y x l x x lx x =-=-+=--+,(0,)3l x ∈ ……8分所以当且仅当6l x =时,2max 12l y = ……12分综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l ……14分18.(本题满分14分,第1小题满分7分,第2小题满分7分) 解1:(1)由题意,15OA SB ππ⋅⋅=得5BS =, ……2分故4SO === ……4分 从而体积2211341233V OA SO πππ=⋅⋅=⨯⨯=. ……7分 (2)如图,取OB 中点H ,联结PH AH 、. 由P 是SB 的中点知PH SO ∥,则APH ∠(或其补角)就是异面直线SO 与PA 所成角. ……10分 由SO ⊥平面OAB ⇒PH ⊥平面OAB ⇒PH AH ⊥.在OAH ∆中,由OA OB ⊥得2AH ==;……11分在Rt APH ∆中,90AHP O∠=,122PH SB ==,AH =……12分则tan AH APH PH ∠==所以异面直线SO 与PA 所成角的大小 …14分(其他方法参考给分)19.(本题满分14分,第1小题满分6分,第2小题满分8分)解:(1)令101xx+>-,解得11x -<<,所以(1,1)A =-, ……3分 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[1,0]- ……6分(2)函数()f x 的定义域(1,1)A =-,定义域关于原点对称 ……8分1()()ln 1()x f x x ---=+-1111ln ln ln ()111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭……12分 而1()ln 32f =,11()ln 23f -=,所以11()()22f f -≠ ……13分 所以函数()f x 是奇函数但不是偶函数. ……14分20.(本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分) 解:(1)抛物线Ω的焦点到准线的距离为2 ……4分 (2)设直线:l x my b =+当0m =时,1x =和9x =符合题意 ……5分当0m ≠时,11(,)A x y 、22(,)B x y 的坐标满足方程组24x my by x=+⎧⎨=⎩,所以2440y my b --=的两根为1y 、2y 。
2017-2018上海市杨浦区高三数学一模试卷
![2017-2018上海市杨浦区高三数学一模试卷](https://img.taocdn.com/s3/m/13e26ca102768e9950e738c4.png)
2017-2018上海市杨浦区高三数学一模试卷学校:___________姓名:___________班级:___________考号:___________一、填空题1.计算1lim(1)n n→∞-的结果是________ 2.已知集合1,{}2,A m =,{3,4}B =,若{3}A B ⋂=,则实数m =________ 3.已知3cos 5θ=-,则sin()2πθ+=________ 4.若行列式124012x -=,则x = .5.已知一个关于x y 、的二元一次方程组的增广矩阵是112012-⎛⎫⎪⎝⎭,则x y +=_________6.在62()x x -的二项展开式中,常数项的值为________7.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 .8..数列{}n a 的前n 项和为n S ,若点(,)n n S (*n N ∈)在函数的反函数的图像上,则n a =________.9.在ABC ∆中,若sin A 、sin B 、sin C 成等比数列,则角B 的最大值为________ 10.抛物线28y x =-的焦点与双曲线2221x y a -=的左焦点重合,则这条双曲线的两条渐近线的夹角为 .11.已知函数()cos (sin )f x x x x =+x ∈R ,设0a >,若函数()()g x f x α=+为奇函数,则α的值为________12.已知点C 、D 是椭圆2214x y +=上的两个动点,且点(0,2)M ,若MD MC λ=,则实数λ的取值范围为________二、单选题13.在复平面内,复数2i i-对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限 14.给出下列函数:①2log y x =;②2y x ;③||2x y =;④arcsin y x =.其中图像关于y 轴对称的函数的序号是( )A .①②B .②③C .①③D .②④ 15.“0t ≥”是“函数()2f x x tx t =+-在(),-∞+∞内存在零点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件16.设A B C D 、、、是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用123S S S 、、分别表示△ABC 、△ACD 、△ABD 的面积,则123S S S 的最大值是( ).A .12B .2C .4D .8三、解答题17.(2020-2021学年上海市杨浦区高三数学一模)如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.如图,已知圆锥的侧面积为15π,底面半径OA 和OB 互相垂直,且3OA =,P 是母线BS 的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小. (结果用反三角函数值表示)19.已知函数()1ln 1x f x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数但不是偶函数.20.设直线l 与抛物线2:4y x Ω=相交于不同两点A 、B ,O 为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆22:(5)16C x y -+=相切于点M ,且M 为线段AB 的中点,求直线l 的方程;(3)若0OA OB ⋅=,点Q 在线段AB 上,满足OQ AB ⊥,求点Q 的轨迹方程. 21.若数列A :1a ,2a ,⋅⋅⋅,n a (3n ≥)中*i a N ∈(1i n ≤≤)且对任意的21k n ≤≤-,112k k k a a a +-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,x ,y ,7为“U -数列”,写出所有可能的x 、y ;(2)若“U -数列” A :1a ,2a ,⋅⋅⋅,n a 中,11a =,2017n a =,求n 的最大值; (3)设0n 为给定的偶数,对所有可能的“U -数列”A :1a ,2a ,⋅⋅⋅,0n a ,记{}012max ,,,n M a a a =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示1x ,2x ,⋅⋅⋅,s x 这s 个数中最大的数,求M 的最小值.参考答案1.1【解析】11lim(1)1lim 101n n nn →∞→∞-=-=-= 故答案为12.3【解析】∵ 集合{}1,2,A m =,{}3,4B =,且{}3A B ⋂=∴3m =故答案为33.35【解析】 ∵3cos 5θ=- ∴3sin()cos 25πθθ+==- 故答案为354.2 【解析】试题分析:由行列式的定义把方程转化为一般代数式方程即可.ab ad bc cd =-.考点:行列式的定义.5.6【分析】根据关于x y 、的二元一次方程组的增广矩阵,写出方程组,求出方程组的解,即可得到结论.【详解】 解:由题意关于x y 、的二元一次方程组的增广矩阵是112012-⎛⎫ ⎪⎝⎭, 可得关于x y 、的二元线性方程组22x y y -=⎧⎨=⎩,可得42x y =⎧⎨=⎩,故6x y +=,故答案为:6.【点睛】本题主要考查二元线性方程组的增广矩阵的涵义,计算量小,属于基础题型.6.-160【解析】 展开式的通项为6621662()(2)r r r r r r r T C xC x x--+=-=- 令620r -=,得3r = ∴在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项的值为336(2)160C -=- 故答案为160-点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项:可依据条件写出第1r +项,再由特定项的特点求出r 值即可; (2)已知展开式的某项,求特定项的系数:可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.7.112【分析】分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.【详解】解:所有的基本事件共6636⨯=个,其中,点数和为4的有(1,3)、(2,2)、(3,1)共3个,∴出现向上的点数之和为4的概率是313612=, 故答案为:112. 【点睛】本小题考查古典概型及其概率计算公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )m n=,属于基础题.8.12n -【解析】解:因为 221log (1)log (1)12212nn n n n n n y x n S S S a -=+∴=+∴+=∴=-∴= 9.3π 【解析】∵在ABC ∆中,sin A 、sin B 、sin C 依次成等比数列,∴2sin sin sin B A C = ,则由正弦定理可得:2b ac = 根据余弦定理得2222221cos 2222a cb ac ac ac ac B ac ac ac +-+--==≥=,当且仅当a c =时取等号∴B 的取值范围为(0,]3π,即角B 的最大值为3π 故答案为3π 10.3π 【解析】试题分析:因为抛物线28y x =-的焦点为(2,0),-所以22212, 3.a a +==所以双曲线2221x y a-=的渐近线方程为y =3π. 考点:双曲线的渐近线考点:11.*()26k k N ππα=-∈【解析】∵()()cos sin f x x x x =∴sin 2cos 2)()sin(2)2223x x f x x π+=+-=+ ∵函数()()g x f x α=+为奇函数 ∴()sin(22)3g x x πα=++为奇函数,则2()3k k Z παπ+=∈∵0a > ∴*()26k k N ππα=-∈ 故答案为*()26k k N ππα=-∈ 12.1[,3]3 【解析】①当直线斜率存在时,设过点()0,2M 的直线方程为2y kx =+,联立方程222{14y kx x y =++=,整理可得22(14)16120k x kx +++=,则22(16)4(14)120k k ∆=-⨯+⨯≥,即234k ≥ 设11(,)C x y ,22(,)D x y ,则1221614k x x k +=-+,1221214x x k ⋅=+ ∵MD MC λ=∴12x x λ= ∴2216(1)14k x k λ+=-+,22212()14x k λ⋅=+,即2222222(1)161464641()114123(14)34k k k k k k λλ++=⨯==⨯+++ ∵234k ≥ ∴2(1)1643λλ+≤<∴133λ<< ②当直线斜率不存在时,则过点()0,2M 的直线方程为0x =,此时(0,1)C ,(0,1)D -,或(0,1)C -,(0,1)D当(0,1)C ,(0,1)D -时,3λ=;当(0,1)C -,(0,1)D 时,13λ= 综上,133λ≤≤ 故答案为1[,3]3 点睛:本题考查解析几何问题和向量的联系,题设中出现MD MC λ=,可以得出12x x λ=,结合韦达定理找到λ与k 之间的关系,再利用0∆≥建立不等关系即可得解,本题要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏.13.C【分析】 根据复数除法运算法则,求出2i i-的实部和虚部,即可得出结论. 【详解】 22i (2)()12i i i i i ---==---, 2i i-对应点的坐标为(1,2)--,位于第三象限. 故选:C.【点睛】本题考查复数的代数运算以及复数的几何意义,属于基础题.14.B【解析】对于①,2log y x =的定义域为(0,)+∞,定义域关于原点不对称,则函数为非奇非偶函数;对于②,2y x =是偶函数,图象关于y 轴对称,满足条件;对于③,2x y =是偶函数,图象关于y 轴对称,满足条件;对于④,arcsin y x =是奇函数,图象关于y 轴不对称,不满足条件.故选B15.A【解析】函数()2f x x tx t =+-在(),-∞+∞内存在零点,则240t t =+≥,解得0t ≥或4t ≤-. 所以“0t ≥”是“函数()2f x x tx t =+-在(),-∞+∞内存在零点”的充分而不必要条件. 故选A.点睛:解本题的关键是处理二次函数在区间上的零点问题,对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x 轴的交点个数;四是,区间端点值.16.B【解析】设AB a =,AC b =,AD c = .∵0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,∴AB ,AC ,AD 两两互相垂直,扩展为长方体,它的对角线为球的直径,即222244a b c R ++==.∵1S 、2S 、3S 分别表示ABC ∆、ACD ∆、ABD ∆的面积, ∴()()22212311222S S S ab ac bc a b c ++=++≤++=,当且仅当a b c ==时取等号 ∴123S S S ++的最大值是2,故选B .点睛:本题考查球的内接多面体及基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解答本题的关键.17.(1)()3y x l x =-,0,3l x ⎛⎫∈ ⎪⎝⎭;(2)6l x =时,2max 12l y =. 【解析】(1)设平行于墙的边长为a ,则篱笆总长3l x a =+,即3a l x =-,∴场地面积()3y x l x =-,0,3l x ⎛⎫∈ ⎪⎝⎭.(2)()222333612l l y x l x x lx x ⎛⎫=-=-+=--+ ⎪⎝⎭,0,3l x ⎛⎫∈ ⎪⎝⎭,∴当且仅当6l x =时,2max 12l y =. 综上,当场地垂直于墙的边长x 为6l 时,最大面积为212l.18.(1)12π.(2)arctan 4. 【解析】试题分析:(1)根据圆锥的侧面积求出5BS =,从而求出4SO =,由此能求出圆锥的体积;(2)取OB 中点H ,连结PH AH 、,由P 是SB 的中点知PH ∥SO ,则APH ∠(或其补角)就是异面直线SO 与PA 所成角,由此能求出异面直线SO 与PA 所成角的大小. 试题解析:(1)由题意,15OA SB ππ⋅⋅=得5BS =, 故4SO == ,从而体积2211341233V OA SO πππ=⋅⋅=⨯⨯=. (2)如图,取OB 中点H ,连结PH AH 、. 由P 是SB 的中点知PH ∥SO ,则APH ∠(或其补角)就是异面直线SO 与PA 所成角.由SO ⊥平面OAB ⇒ PH ⊥平面OAB ⇒ PH AH ⊥.在OAH ∆中,由OA OB ⊥得AH ==在Rt APH ∆中,90AHP O ∠=,122PH SB ==,AH =则tan AH APH PH ∠==,∴异面直线SO 与PA 所成角的大小 . 19.(1)[1,0]- ;(2)见解析. 【解析】试题分析:(1)由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论. 试题解析:(1)令101xx+>-,解得11x -<<,所以()1,1A =-, 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤,即实数a 的取值范围是[]1,0-(2)函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭ 而1ln32f ⎛⎫= ⎪⎝⎭,11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 是奇函数但不是偶函数.20.(1)2;(2)1x =,9x =;(3)2240x x y -+= 【解析】试题分析:(1)根据题意,由抛物线的方程分析可得p 的值,即可得答案;(2)根据题意,设直线l 的方程为x my b =+,分0m =与0m ≠两种情况讨论,分析m 的取值,综合可得m 可取的值,将m 的值代入直线的方程即可得答案;(3)设直线:AB x my b =+,设()11,A x y 、()22,B x y ,将直线的方程与抛物线方程联立,结合0OA OB ⋅=,由根与系数的关系分析可得答案.试题解析:(1)∵抛物线Ω的方程为24y x =∴抛物线Ω的焦点到准线的距离为2 (2)设直线:l x my b =+当0m =时,1x =和9x =符合题意;当0m ≠时,()11,A x y 、()22,B x y 的坐标满足方程组24x my by x=+⎧⎨=⎩, ∴2440y my b --=的两根为1y 、2y ,()2160m b ∆=+>,124y y m += ∴2121242x x my b my b m b +=+++=+,∴线段AB 的中点()22,2M m b m + ∵1AB CM k k ⋅=-,1AB k m= ∴2225CM mk m m b ==-+-,得232b m =- ∴()()22161630m b m ∆=+=->,得203m<<∵4r ===∴23m =(舍去) 综上所述,直线l 的方程为:1x =,9x = (3)设直线:AB x my b =+,()11,A x y 、()22,B x y 的坐标满足方程组24x my by x =+⎧⎨=⎩,∴2440y my b --=的两根为1y 、2y()2160m b ∆=+>,124y y m +=,124y y b =-∴222121212124044y y OA OB x x y y y y b b ⋅=+=⋅+=-=,得0b =或4b =0b =时,直线AB 过原点,所以()0,0Q ; 4b =时,直线AB 过定点()4,0P设(),Q x y ∵OQ AB ⊥,∴()()22,4,40OQ PQ x y x y x x y ⋅=⋅-=-+=(0x ≠),综上,点Q 的轨迹方程为2240x x y -+=点睛:本题主要考查直线与圆相切,求直线方程,分类讨论,轨迹方程的求法等,属于中档题.注意解决本类问题时,要使用直线和圆相切的性质,设直线时注意分类讨论,严防漏解,求轨迹方程时一般先设出动点坐标,再根据条件建立关于,x y 的关系,化简即可求出轨迹方程.21.(1)12x y =⎧⎨=⎩,13x y =⎧⎨=⎩或24x y =⎧⎨=⎩ ;(2)n 的最大值为65;(3)20288n n -+. 【解析】试题分析:(Ⅰ)直接根据“U -数列”的定义,讨论列举法即可求出x ,y ;(Ⅱ)11112k k k k k k k a a a a a a a +-+-+>⇔->-可得()()112201712n n --≤-,解得:6265n -≤≤,故65n ≤,另外,任意的264k ≤≤,1k k b b ->,故数列{}n a 为“U -数列”,此时651012632017a =++++⋅⋅⋅+=,即65n =符合题意;(Ⅲ)利用放缩法()221120012822228m m m a a m m a a n n m m M +++-+-+-+≥≥≥=,即可得结论. 试题解析::(Ⅰ)12x y =⎧⎨=⎩,13x y =⎧⎨=⎩或24x y =⎧⎨=⎩ (Ⅱ)n 的最大值为65,理由如下一方面,注意到:11112k k k k k k k a a a a a a a +-+-+>⇔->-对任意的11i n ≤≤-,令1i i i b a a +=-,则i b Z ∈且1k k b b ->(21k n ≤≤-),故11k k b b -≥+对任意的21k n ≤≤-恒成立.当11a =,2017n a =时,注意到121110b a a =-≥-=,得()()()1122111i i i i i b b b b b b b b i ---=-+-+⋅⋅⋅+-+≥-(21i n ≤≤-)此时()()112110122122n n a a b b b n n n --=++⋅⋅⋅+≥+++⋅⋅⋅+-=-- 即()()112201712n n --≤-,解得:6265n -≤≤,故65n ≤ 另一方面,取1i b i =-(164i ≤≤),则对任意的264k ≤≤,1k k b b ->,故数列{}n a 为“U -数列”,此时651012632017a =++++⋅⋅⋅+=,即65n =符合题意.综上,n 的最大值为65.(Ⅲ)M 的最小值为200288n n -+,证明如下:当02n m =(2m ≥,*m N ∈)时,一方面:由(★)式,11k k b b +-≥,()()()1121m k k m k m k m k m k k k b b b b b b b b m +++-+-+-+-=-+-+⋅⋅⋅+-≥.此时有:()()()()()()()()121122112111222111m m m m m m m m m m m a a a a b b b b b b b b b b b b m m m m m +++--++--+-+=++⋅⋅⋅+-++⋅⋅⋅+=-+-+⋅⋅⋅+-≥++⋅⋅⋅+=-故()221120012822228m m m a a m m a a n n m m M +++-+-+-+≥≥≥=另一方面,当11b m =-,22b m =-,…,11m b -=-,0m b =,11m b +=,…,211m b m -=-时,()()11111210k k k k k k k k k a a a a a a a b b +-+--+-=---=-=>取1m a =,则11m a +=,123m a a a a >>>⋅⋅⋅>,122m m m a a a ++<<⋅⋅⋅<,且()()11211112m m a a b b b m m -=-++⋅⋅⋅+=-+ ()()2112211112mm m m m a a b b b m m +++-=+++⋅⋅⋅+=-+此时()200122811128mn n M a a m m -+===-+=. 综上,M 的最小值为200288n n -+.。
2017年上海市杨浦区高考数学一模试卷带解析【精品】
![2017年上海市杨浦区高考数学一模试卷带解析【精品】](https://img.taocdn.com/s3/m/bb22931a6d85ec3a87c24028915f804d2b16877a.png)
第1页(共17页)页)2017年上海市杨浦区高考数学一模试卷一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分 1.(4分)若“a >b ”,则“a 3>b 3”是命题(填:真、假) 2.(4分)已知A =(﹣∞,0],B =(a ,+∞),若A ∪B =R ,则a 的取值范围是 .3.(4分)z +2=9+4i (i 为虚数单位),则|z |= .4.(4分)若△ABC 中,a +b =4,∠C =30°,则△ABC 面积的最大值是 .5.(4分)若函数f (x )=log 2的反函数的图象经过点(﹣2,3),则a = . 6.(4分)过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则该截面的面积是 .7.(5分)抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c ,则a +bi (i 为虚数单位)是方程x 2﹣2x +c =0的根的概率是 .8.(5分)设常数a >0,(x +)9展开式中x 6的系数为4,则(a +a 2+…+a n)= .9.(5分)已知直线l 经过点且方向向量为(2,﹣1),则原点O 到直线l 的距离为 .10.(5分)若双曲线的一条渐近线为x +2y =0,且双曲线与抛物线y =x 2的准线仅有一个公共点,则此双曲线的标准方程为 .11.(5分)平面直角坐标系中,给出点A (1,0),B (4,0),若直线x +my ﹣1=0存在点P ,使得|P A |=2|PB |,则实数m 的取值范围是 . 12.(5分)函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,若存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 1)|+…+|f (xn ﹣1﹣f (x n ))|=2016,则n +x n的最小值为 .二、选择题(本大题共4题,满分20分)13.(5分)若与﹣都是非零向量,则“•=•”是“⊥(﹣)”的( )A .充分但非必要条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件14.(5分)行列式中,元素7的代数余子式的值为( ) A .﹣15B .﹣3C .3D .1215.(5分)一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5800 B .6000C .6200D .640016.(5分)若直线+=1通过点P (cos θ,sin θ),则下列不等式正确的是( ) A .a 2+b 2≤1 B .a 2+b 2≥1C .+≤1D .+≥1三、解答题(满分76分)共5题17.(14分)某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC =60°.(1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,毫米,试求该零件的重量试求该零件的重量试求该零件的重量(每(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底•h .18.(14分)如图所示,l 1,l 2是互相垂直的异面直线,MN 是它们的公垂线段,点A ,B 在直线l 1上,且位于M 点的两侧,C 在l 2上,AM =BM =NM =CN (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积V ABCN =9,求异面直线l 1,l 2之间的距离.19.(14分)如图所示,椭圆C:+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2.(1)当直线l 1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;(2)求四边形ABCD面积的最大值.20.(14分)数列{a n},定义{△a n}为数列{a n}的一阶差分数列,其中△a n=a n+1﹣a n(n∈N*)(1)若a n=n2﹣n,试判断{△a n}是否是等差数列,并说明理由;(2)若a1=1,△a n﹣a n=2n,求数列{a n}的通项公式;(3)对(b)中的数列{a n},是否存在等差数列{b n},使得b1C+b2C+…+b n C =a n,对一切n∈N*都成立,若存在,求出数列{b n}的通项公式,若不存在,请说明理由.21.(20分)对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;(2)若函数f(x)=kx+sin x是“同比不减函数”,求k的取值范围; (3)是否存在正常数T,使得函数f(x)=x+|x﹣1|﹣|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.2017年上海市杨浦区高考数学一模试卷参考答案与试题解析一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分 1.(4分)若“a>b”,则“a3>b3”是 真 命题(填:真、假)【解答】解:函数f(x)=x3在R是单调增函数,∴当a>b,一定有a3>b3,故是真命题答案为:真.2.(4分)已知A=(﹣∞,0],B=(a,+∞),若A∪B=R,则a的取值范围是 a≤0. .【解答】解:若A∪B=R,A=(﹣∞,0],B=(a,+∞),必有a≤0;故答案为:a≤0.3.(4分)z+2=9+4i(i为虚数单位),则|z|= 5 .【解答】解:设z=x+yi(x,y∈R),∵z+2=9+4i,∴x+yi+2(x﹣yi)=9+4i,化为:3x﹣yi=9+4i,∴3x=9,﹣y=4,解得x=3,y=﹣4.∴|z|==5.故答案为:5.4.(4分)若△ABC中,a+b=4,∠C=30°,则△ABC面积的最大值是 1 . 【解答】解:在△ABC中,∵C=30°,a+b=4,∴△ABC的面积S=ab•sin C=ab•sin30°=ab≤×()2=×4=1,当且仅当a=b=2时取等号,故答案为:1.5.(4分)若函数f(x)=log2的反函数的图象经过点(﹣2,3),则a= 2 . 【解答】解:∵函数f(x)=log2的反函数的图象经过点(﹣2,3),∴函数f(x)=log2的图象经过点(3,﹣2),∴﹣2=log2,∴a=2,故答案为2.6.(4分)过半径为2的球O表面上一点A作球O的截面,若OA与该截面所成的角是60°,则该截面的面积是 π .【解答】解:设截面的圆心为Q,由题意得:∠OAQ=60°,QA=1,∴S=π•12=π.答案:π.7.(5分)抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a,b,c,则a+bi(i为虚数单位)是方程x2﹣2x+c=0的根的概率是.【解答】解:抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a,b,c,基本事件总数n=6×6×6=216,∵a+bi(i为虚数单位)是方程x2﹣2x+c=0的根,∴(a+bi)2﹣2(a+bi)+c=0,即,∴a=1,c=b2+1,∴a+bi(i为虚数单位)是方程x2﹣2x+c=0的根包含的基本事件为:(1,1,2),(1,2,5),∴a+bi(i为虚数单位)是方程x2﹣2x+c=0的根的概率是p=.故答案为:.8.(5分)设常数a>0,(x+)9展开式中x6的系数为4,则(a+a2+…+a n)= .【解答】解:∵常数a>0,(x+)9展开式中x6的系数为4,∴=,当时,r =2,∴=4,解得a =,∴a +a 2+…+a n ===(1﹣),∴(a +a 2+…+a n )==.故答案为:.9.(5分)已知直线l 经过点且方向向量为(2,﹣1),则原点O 到直线l 的距离为 1 .【解答】解:直线的方向向量为(2,﹣1),所以直线的斜率为:﹣,直线方程为:x +2y +=0,由点到直线的距离可知:=1;故答案为:1.10.(5分)若双曲线的一条渐近线为x +2y =0,且双曲线与抛物线y =x 2的准线仅有一个公共点,则此双曲线的标准方程为.【解答】解:抛物线y =x 2的准线:y =﹣,双曲线与抛物线y =x 2的准线仅有一个公共点,可得双曲线实半轴长为a =,焦点在y 轴上.双曲线的一条渐近线为x +2y =0,∴=, 可得b =,则此双曲线的标准方程为:.故答案为:.11.(5分)平面直角坐标系中,给出点A (1,0),B (4,0),若直线x +my ﹣1=0存在点P ,使得|P A |=2|PB |,则实数m 的取值范围是 m ≥或m ≤﹣.【解答】解:设P (1﹣my ,y ), ∵|P A |=2|PB |, ∴|P A |2=4|PB |2,∴(1﹣my ﹣1)2+y 2=4(1﹣my ﹣4)2+y 2, 化简得(m 2+1)y 2+8my +12=0则△=64m 2﹣48m 2﹣48≥0, 解得m ≥或m ≤﹣, 即实数m 的取值范围是m ≥或m ≤﹣.故答案为:m ≥或m ≤﹣.12.(5分)函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,若存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 1)|+…+|f (x n ﹣1﹣f (x n ))|=2016,则n +x n 的最小值为 1513 . 【解答】解:∵函数y =f (x )是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f (x )=2x +1,∴函数的值域为[﹣3,1],对任意x i ,x j (i ,j =1,2,3,…,m ),都有|f (x i )﹣f (x j )|≤f (x )max ﹣f (x )min =4,要使n +x n 取得最小值,尽可能多让x i (i =1,2,3,…,m )取得最高点,且f (0)=1,f (2)=﹣3,∵0≤x 1<x 2<…<x m ,|f (x 1)﹣f (x 2)|+|f (x 2)﹣f (x 3)|+…+|f (x n ﹣1)﹣f (x n )|=2016, ∴n 的最小值为,相应的x n 最小值为1008,则n +x n 的最小值为1513.故答案为:1513.二、选择题(本大题共4题,满分20分)13.(5分)若与﹣都是非零向量,则“•=•”是“⊥(﹣)”的( )A .充分但非必要条件B .必要但非充分条件C .充要条件D .既非充分也非必要条件【解答】解:“•=•”⇔“•﹣•=0”⇔“•(﹣)=0”⇔“⊥(﹣)”,故“•=•”是“⊥(﹣)”的充要条件, 故选:C . 14.(5分)行列式中,元素7的代数余子式的值为( ) A .﹣15B .﹣3C .3D .12【解答】解:∵行列式,∴元素7的代数余子式为: D 13=(﹣1)4=2×6﹣5×3=﹣3.故选:B .15.(5分)一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是( ) A .5800B .6000C .6200D .6400【解答】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为=5400, 当另外两名员工的工资都大于6500时,中位数为=6300,∴8位员工月工资的中位数的取值区间为[5400,6300], ∴8位员工月工资的中位数不可能是6400. 故选:D .16.(5分)若直线+=1通过点P (cos θ,sin θ),则下列不等式正确的是( )A .a 2+b 2≤1 B .a 2+b 2≥1 C .+≤1D .+≥1【解答】解:直线+=1通过点P (cos θ,sin θ), ∴b cos θ+a sin θ=ab , ∴sin (θ+φ)=ab ,其中tan φ=, ∴≥ab ,∴a 2+b 2≥a 2b 2, ∴+≥1,故选:D .三、解答题(满分76分)共5题 17.(14分)某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC =60°.(1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,毫米,试求该零件的重量试求该零件的重量试求该零件的重量(每(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底•h .【解答】解:(1)∵AB =55,AC =88,BP =R ,∠BAC =60°.AP =88﹣R , ∴在△ABP 中,由余弦定理可得:BP 2=AB 2+AP 2﹣2AB •AP •cos ∠BAC ,可得:R 2=552+(88﹣R )2﹣2×55×(88﹣R )×cos60°, ∴解得:R =49mm .(2)在△ABP 中,AP =88﹣49=39mm ,AB =55,BP =49, cos ∠BP A ==≈0.2347, ∴sin ∠BP A ≈0.972. ∴∠BP A =arcsin0.972.V柱=S底•h=(S△ABP+S扇形BPC)•h=(+)•3该零件的重量=(+)•3÷1000×8.9≈82.7.18.(14分)如图所示,l1,l2是互相垂直的异面直线,MN是它们的公垂线段,点A,B在直线l1上,且位于M点的两侧,C在l2上,AM=BM=NM=CN (1)求证:异面直线AC与BN垂直;(2)若四面体ABCN的体积V ABCN=9,求异面直线l1,l2之间的距离.【解答】解:(1)证明:由已知l2⊥MN,l2⊥l1,MN∩l1=M,可得l2⊥平面ABN. 由已知MN⊥l1,AM=MB=MN,可知AN=NB且AN⊥NB.又AN为AC在平面ABN内的射影.∴AC⊥NB(2)∵AM=BM=NM=CN,MN是它们的公垂线段,就是异面直线l1,l2之间的距离,由中垂线的性质可得AN=BN,四面体ABCN的体积V ABCN=9,可得:V ABCN=9==MN3,∴MN=3.异面直线l1,l2之间的距离为3.19.(14分)如图所示,椭圆C:+y2=1,左右焦点分别记作F1,F2,过F1,F2分别作直线l1,l2交椭圆AB,CD,且l1∥l2.(1)当直线l 1的斜率k1与直线BC的斜率k2都存在时,求证:k1•k2为定值;(2)求四边形ABCD面积的最大值.【解答】(1)证明:由椭圆C:+y2=1,得a2=4,b2=1,∴.设k1=k,则AB所在直线方程为y=kx+,CD所在直线方程为y=kx﹣, 联立,得(1+4k2)x2+8k2x+12k2﹣4=0.解得,不妨取,则 同理求得,.则==,则k1•k2=;(2)解:由(1)知,,|AB|===.AB、CD的距离d=,∴=.令1+4k2=t(t≥1),则,∴当t=3时,S max=4.20.(14分)数列{a n},定义{△a n}为数列{a n}的一阶差分数列,其中△a n=a n+1﹣a n(n∈N*)(1)若a n=n2﹣n,试判断{△a n}是否是等差数列,并说明理由;(2)若a1=1,△a n﹣a n=2n,求数列{a n}的通项公式;(3)对(b)中的数列{a n},是否存在等差数列{b n},使得b1C+b2C+…+b n C =a n,对一切n∈N*都成立,若存在,求出数列{b n}的通项公式,若不存在,请说明理由.【解答】解:(1)若a n=n2﹣n,试判断{△a n}是等差数列,理由如下:∵a n=n2﹣n,∴△a n=a n+1﹣a n=(n+1)2﹣(n+1)﹣(n2﹣n)=2n,∵△a n+1﹣△a n=2,且△a1=4,∴{△a n}是首项为4,公差为2的等差数列;(2)∵△a n﹣a n=2n.△a n=a n+1﹣a n,∴a n+1﹣2a n=2n,∴﹣=,(6分)∴数列{}构成以为首项,为公差的等差数列,即=⇒a n=n•2n﹣1;(3)b1∁n1+b2∁n2+…+b n∁n n=a n,即b1∁n1+b2∁n2+…+b n∁n n=n•2n﹣1,∵1∁n1+2∁n2+3∁n3+…+n∁n n=n(C n﹣10+C n﹣11+C n﹣12+…+C n﹣1n﹣1)=n•2n﹣1,∴存在等差数列{b n},b n=n,使得b1∁n1+b2∁n2+…+b n∁n n=a n对一切自然n∈N都成立.21.(20分)对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;(2)若函数f(x)=kx+sin x是“同比不减函数”,求k的取值范围; (3)是否存在正常数T,使得函数f(x)=x+|x﹣1|﹣|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.【解答】解:(1)∵f(x)=x2,∴f(x+T)﹣f(x)=(x+T)2﹣x2=2xT+T2=T(2x+T),由于2x+T与0的小无法比较,∴f(x+T)≥f(x)不一定成立,∴对任意正常数T,f(x)=x2都不是“T同比不减函数,(2)∵函数f(x)=kx+sin x是“同比不减函数,∴f(x+)﹣f(x)=k(x+)+sin(x+)﹣kx﹣sin x=+cos x﹣sin x=﹣sin(x﹣)≥0恒成立,∴k≥sin(x﹣),∵﹣1≤sin(x﹣)≤1,∴k≥,(3)f(x)=x+|x﹣1|﹣|x+1|图象如图所示,由图象可知,只要把图象向左至少平移4个单位,即对任意的x∈D,都有f(x+T)≥f(x)成立,∴T≥4.赠送—高中数学知识点【2.1.1】指数与指数幂的运算 (1)根式的概念)根式的概念①如果,,,1nx a a R x R n =ÎÎ>,且n N +Î,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次方根用符号n a 表示;当n 是偶数时,正数a 的正的n 次方根用符号n a 表示,负的n 次方根用符号n a -表示;表示;00的n 次方根是0;负数a 没有n 次方根.次方根.②式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ³.③根式的性质:()nna a =;当n 为奇数时,nna a =;当n 为偶数时,(0)|| (0)nn a a a a a a ³ì==í-<î. (2)分数指数幂的概念)分数指数幂的概念①正数的正分数指数幂的意义是:(0,,,m nmna a a m n N +=>Î且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:11()()(0,,,mmmn nnaa m n N a a-+==>Î且1)n >.0的负分数指数幂没有意义.的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数.底数取倒数,指数取相反数.(3)分数指数幂的运算性质)分数指数幂的运算性质①(0,,)r s r s a a a a r s R +×=>Î ②()(0,,)r s rs a a a r s R =>Î ③()(0,0,)r r rab a b a b r R =>>Î【2.1.2】指数函数及其性质 (4)指数函数)指数函数 函数名称函数名称指数函数指数函数定义定义函数(0xy a a =>且1)a ¹叫做指数函数叫做指数函数图象图象1a >01a <<定义域定义域 R值域值域 (0,)+¥过定点过定点 图象过定点(0,1),即当0x =时,1y =.奇偶性奇偶性 非奇非偶非奇非偶单调性单调性在R 上是增函数上是增函数在R 上是减函数上是减函数函数值的函数值的 变化情况变化情况1(0)1(0)1(0)xx x a x a x a x >>==<< 1(0)1(0)1(0)xx x a x a x a x <>==>< a 变化对变化对 图象的影响象的影响 在第一象限内,a 越大图象越高;在第二象限内,a 越大图象越低.越大图象越低.xa y =xy(0,1)O1y =xa y =xy (0,1)O 1y =〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义)对数的定义①若(0,1)xa N a a =>¹且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.叫做真数.②负数和零没有对数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =Û=>¹>. (2)几个重要的对数恒等式)几个重要的对数恒等式log 10a =,log 1a a =,log b aa b =.(3)常用对数与自然对数)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质)对数的运算性质 如果0,1,0,0a a M N >¹>>,那么,那么①加法:log log log ()a a aM N MN += ②减法:log log log a a a M M N N-= ③数乘:log log ()n a a n M M n R =Î ④log a Na N =⑤log log (0,)bn a a n M M b n R b=¹Î ⑥换底公式:log log (0,1)log b ab N N b b a=>¹且【2.2.2】对数函数及其性质(5)对数函数)对数函数函数函数 名称名称 对数函数对数函数定义定义函数log (0a yx a =>且1)a ¹叫做对数函数叫做对数函数图象图象1a > 01a <<xyO(1,0)1x =log a y x=xyO (1,0)1x =log a y x=定义域定义域(0,)+¥值域值域R过定点过定点图象过定点(1,0),即当1x=时,0y=. 奇偶性奇偶性非奇非偶非奇非偶单调性单调性在(0,)+¥上是增函数上是增函数在(0,)+¥上是减函数上是减函数函数值的函数值的变化情况变化情况log0(1)log0(1)log0(01)aaax xx xx x>>==<<<log0(1)log0(1)log0(01)aaax xx xx x<>==><<a变化对变化对 图象的影响象的影响 在第一象限内,a越大图象越靠低;在第四象限内,a越大图象越靠高.越大图象越靠高.。
2018年上海市杨浦区高考高三数学一模试卷及解析
![2018年上海市杨浦区高考高三数学一模试卷及解析](https://img.taocdn.com/s3/m/6db8cf3359eef8c75ebfb30e.png)
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x +α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B =(a,a +1),且B ⊆A.(1)求实数a 的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l 与抛物线Ω:y 2=4x 相交于不同两点A 、B,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆C :(x ﹣5)2+y 2=16相切于点M,且M 为线段AB 的中点,求直线l 的方程; (3)若,点Q 在线段AB 上,满足OQ ⊥AB,求点Q 的轨迹方程.21.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U ﹣数列”A :a 1,a 2,…,a n 中,a 1=1,a n =2017,求n 的最大值;(3)设n0为给定的偶数,对所有可能的“U ﹣数列”A :a 1,a 2,…,,记,其中max {x1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数,求M 的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【试题解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【试题解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【试题解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【试题解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=6.【试题解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【试题解答】解:展开式的通项为T r=x6﹣r(﹣)r=(﹣2)r x6﹣2r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【试题解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【试题解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【试题解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【试题解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【试题解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【试题解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【试题解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【试题解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【试题解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8【试题解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc )≤(a2+b2+c2)=2即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【试题解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【试题解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90 O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【试题解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【试题解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m =0时,x =1和x =9符合题意;当m ≠0时,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2. △=16(m 2+b)>0,y 1+y 2=4m, 所以,所以线段AB 的中点M(2m 2+b,2m)因为k AB •k CM =﹣1,,所以,得b =3﹣2m 2所以△=16(m 2+b)=16(3﹣m 2)>0,得0<m 2<3 因为,所以m 2=3(舍去)综上所述,直线l 的方程为:x =1,x =9(3)设直线AB :x =my +b,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2 △=16(m 2+b)>0,y 1+y 2=4m,y 1y 2=﹣4b 所以,得b =0或b =4b =0时,直线AB 过原点,所以Q(0,0); b =4时,直线AB 过定点P(4,0) 设Q(x,y),因为OQ ⊥AB, 所以(x ≠0),综上,点Q 的轨迹方程为x 2﹣4x +y 2=021.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【试题解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意. 综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。
杨浦区2018学年度第一学期高三年级模拟质量调研 数学学科试卷及答案
![杨浦区2018学年度第一学期高三年级模拟质量调研 数学学科试卷及答案](https://img.taocdn.com/s3/m/29479784ce2f0066f53322a4.png)
杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案 2018.12.考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2. 本试卷共有21道题,满分150分,考试时间120分钟.一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置填写结果.1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =ð ▲ .2.已知扇形的半径为6,圆心角为3π,则扇形的面积为 ▲ . 3.已知双曲线221x y -=,则其两条渐近线的夹角为 ▲________.4. 若nb a )(+展开式的二项式系数之和为8,则n = ▲________.5. 若实数,x y 满足 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,高)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在无穷等比数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ⊆, 则实数a 的取值范围为▲________.9. 在行列式中,第3行第2列的元素的代数余子式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平面上,设复数12,z z 对应的点分别为12,Z Z ,若︒=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最小正周期 ▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成立,则实数a 的最大值为 ▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满足)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满足条件的k 的值为▲________.二、选择题(本题共有4题,满分20分,每题5分)每题有且只有一个正确选项,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. 下列函数中既是奇函数,又在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5人,其中女队员2人. 现随机选派2人参加一个象棋比赛,则选出的2人中恰有1人是女队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+⎛⎫=⎪⎝⎭b f =,sin 2sin cos c f θθθ⎛⎫=⎪+⎝⎭,则c b a ,,的大小关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++⋅=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)如图,PA ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:无论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1小题满分7分,第2小题满分7分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且5cos 13B =. (1)若4sin 5A =,求cos C ; (2)若4b =,求证:5-≥⋅BC AB .19. (本题满分14分,第1小题满分6分,第2小题满分8分)上海某工厂以x 千克/小时的速度匀速生产一种产品,每一小时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使生产该产品2小时获得的利润不低于30元,求x 的取值范围;(2)要使生产900千克该产品获得的利润最大,问:该厂应选取何种生产速度?并求最大利润.20. (本题满分16分,第1小题满分4分,第2小题满分5分,第3小题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线x y C 4:2=上存在不同的两点B A ,,满足PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ∆面积的最小值.21. (本题满分18分,第1小题满分4分,第2小题满分5分,第3小题满分9分) 记无穷数列{}n a 的前n 项中最大值为n M ,最小值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不小于K 的正整数n ,有1n n b b += 成立?请说明理由.青浦区2018学年第一学期高三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题一种或几种解法,如果考生的解法与所列解法不同,可参照解答中评分标准的精神进行评分.2.评阅试卷,应坚持每题评阅到底,不要因为考生的解答中出现错误而中断对该题的评阅.当考生的解答在某一步出现错误,影响了后续部分,但该步以后的解答未改变这一题的内容和难度时,可视影响程度决定后面部分的给分,但是原则上不应超出后面部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题至第21题中右端所注的分数,表示考生正确做到这一步应得的该题分数. 4.给分或扣分均以1分为单位.一.填空题(本大题满分54分)本大题共有12题,1-6每题4分,7-12每题5分考生应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2⎛⎤ ⎥⎝⎦;12.1,3⎤⎦.二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)在正四棱柱1111ABCD A B C D -中, ∵1AA ⊥平面ABCD ,AD ⊂≠平面ABCD , ∴1AA AD ⊥,故14AA =, ∴正四棱柱的侧面积为(43)448⨯⨯=, 体积为2(3)436⨯=.(2)建立如图的空间直角坐标系O xyz -,由题意 可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成角为α,直线BE 与平面ABCD 所成角为θ,则11cos ||||AA BEAA BE α⋅===⋅ 又1AA是平面ABCD 的一个法向量, 故sin cos θα==,θ=.所以直线BE 与平面ABCD所成的角为arcsin61. 【另法提示:设AD 中点为G ,证EBG ∠即为BE 与平面ABCD 所成的角,然后解直角三角形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)小题满分8分,第(2)小题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=︒-,1tan(45)1tDQ tθ-=︒-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ∆∆-=--=--⨯+正方形122(1)221t t=-++≤+当且仅当1t =时,等号成立所以摄像头能捕捉到正方形ABCD 内部区域的面积S至多为22hm19.(本题满分14分)本题共2小题,第(1)小题6分,第(2)小题8分. 解:(1)因为函数()3g x x =是函数()3mf x x x=+在区间[)+∞4,上的弱渐近函数, 所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成立, 即444m m ≤⇒-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取122x x≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x⇒>⇒<即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4f x gx-∈-,又([]0,41,1-⊆-,即满足()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成立,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题6分.解:(1)242a a=⇒=,又双曲线的渐近线方程为y=,所以bba==双曲线的标准方程是221412x y-=.(2)法一:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代入双曲线方程得124x x⋅=;法二:当直线AB的斜率不存在时,显然2x=±,此时124xx⋅=;当直线AB的斜率存在时,设直线AB的方程为(0,y kxt k k=+≠≠则由y kx tAy=+⎛⎧⎪⇒⎨=⎪⎩同理y kx tBy=+⎛⎧⎪⇒⎨=⎪⎩此时223,33kt t P k k ⎛⎫ ⎪--⎝⎭代入双曲线方程得224(3)t k =-,所以212243t x x k ⋅==-(3)①对称中心:原点;对称轴方程:,y y x ==②顶点坐标:3,22⎛⎫⎪ ⎪⎝⎭,322⎛⎫-- ⎪ ⎪⎝⎭;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ⎡≠∈-∞+∞⎣④渐近线:0,3x y x ==21.(本题满分18分)本题共3小题,第(1)小题4分,第(2)小题6分,第(3)小题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,又*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=⨯+-=+-=+-==则数列前4n 项中的项43n b -是以2为首项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成一个首项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++⎡⎤⎣⎦2(1)3(31)26(3)2212822n n n n n n n n --=+⨯+⨯+⨯=+ 43nn S λ≤⋅,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==, 即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”又是等比数列,设{}n b 的公比为1n nb q b +=,由等比数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =; ② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-; 经检验,满足条件的{}n b 的通项公式为n b b =或()11n n b b -=-.。
2017年上海市杨浦区高考数学一模试卷
![2017年上海市杨浦区高考数学一模试卷](https://img.taocdn.com/s3/m/91d9a052f12d2af90242e681.png)
2017年上海市杨浦区高考数学一模试卷一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分1. 若“”,则“”是________命题(填:真、假)【答案】真【考点】命题的真假判断与应用不等式的概念与应用【解析】利用函数在是单调增函数判定.【解答】解:函数在是单调增函数,∴当,一定有,故是真命题答案为:真.2. 已知,,若,则的取值范围是________.【答案】.【考点】并集及其运算【解析】利用集合的性质直接求解,解题时要注意的是是成立的【解答】解:若,,,必有;故答案为:.3. (为虚数单位),则________.【答案】【考点】复数的模【解析】设,代入,化为:,利用复数相等即可得出.【解答】解:设,∵,∴,化为:,∴,,解得,.∴.故答案为:.4. 若中,,,则面积的最大值是________.【答案】【考点】正弦定理【解析】由条件可得的面积,再利用正弦函数的值域、基本不等式求得的最大值.【解答】解:在中,∵,,∴的面积,当且仅当时取等号,故答案为:.5. 若函数的反函数的图象经过点,则________.【答案】【考点】反函数【解析】由函数的反函数的图象经过点,得函数的图象经过点,代入计算可得结论.【解答】解:∵函数的反函数的图象经过点,∴函数的图象经过点,∴,∴,故答案为.6. 过半径为的球表面上一点作球的截面,若与该截面所成的角是,则该截面的面积是________.【答案】【考点】直线与平面所成的角球的性质【解析】充分利用球的半径、球心与截面圆心的连线、在截面圆上的射影构成的直角三角形解决即可.【解答】设截面的圆心为,由题意得:,,∴.7. 抛掷一枚均匀的骰子(刻有,,,,,)三次,得到的数字依次记作,,,则(为虚数单位)是方程的根的概率是________.【答案】【考点】古典概型及其概率计算公式【解析】基本事件总数,由(为虚数单位)是方程的根,得,,由此能求出(为虚数单位)是方程的根的概率.【解答】解:抛掷一枚均匀的骰子(刻有,,,,,)三次,得到的数字依次记作,,,基本事件总数,∵(为虚数单位)是方程的根,∴,即,∴,,∴(为虚数单位)是方程的根包含的基本事件为:,,∴(为虚数单位)是方程的根的概率是.故答案为:.8. 设常数,展开式中的系数为,则________.【答案】【考点】二项式定理的应用【解析】由,根据的系数为,求出,从而,解得,由此能求出的值.【解答】解:∵常数,展开式中的系数为,∴,当时,,∴,解得,∴,∴.故答案为:.9. 已知直线经过点且方向向量为,则原点到直线的距离为________.【答案】【考点】点到直线的距离公式【解析】通过方向向量求出直线的斜率,利用点斜式写出直线方程,通过点到直线的距离求解即可.【解答】解:直线的方向向量为,所以直线的斜率为:,直线方程为:,由点到直线的距离可知:;故答案为:.10. 若双曲线的一条渐近线为,且双曲线与抛物线的准线仅有一个公共点,则此双曲线的标准方程为________.【答案】【考点】直线与抛物线的位置关系抛物线的求解直线与双曲线的位置关系【解析】求出抛物线的准线方程,得到双曲线的实半轴的长,利用双曲线的渐近线方程,求解即可.【解答】解:抛物线的准线:,双曲线与抛物线的准线仅有一个公共点,可得双曲线实半轴长为,焦点在轴上.双曲线的一条渐近线为,∴,可得,则此双曲线的标准方程为:.故答案为:.11. 平面直角坐标系中,给出点,,若直线存在点,使得,则实数的取值范围是________.【答案】或【考点】两点间的距离公式【解析】根据题意,设出点,代入,化简得,由,求出实数的取值范围.【解答】解:设,∵,∴,∴,化简得,则,解得或,即实数的取值范围是或.故答案为:或.12. 已知偶函数满足,且在时,,若存在,,…满足,且(,则最小值为________.【答案】【考点】函数的最值及其几何意义【解析】由函数是最小正周期为的偶函数可知函数的值域为,对任意,,…,,都有,要使取得最小值,尽可能多让,…,取得最高点,然后可得的最小值.【解答】解:∵偶函数满足,∴函数是周期为4的偶函数,且当时,,∴函数的值域为,对任意,,…,,都有,若,注意到在上是单调递减函数,,,则,∴不妨设当时,,要使取得最小值,则尽可能多让,…,取得最高点与最低点,且,,,∵,且,=2018,根据,且,相应的最小值为.故答案为:.二、选择题(本大题共4题,满分20分)若与都是非零向量,则“”是“”的()A.充分但非必要条件B.必要但非充分条件C.充要条件D.既非充分也非必要条件【答案】C【考点】平面向量数量积的运算必要条件、充分条件与充要条件的判断【解析】根据向量数量积运算和向量垂直的充要条件,可得答案.【解答】解:“”“”“”“”,故“”是“”的充要条件,故选:行列式中,元素的代数余子式的值为()A. B. C. D.【答案】B【考点】二阶行列式的定义【解析】利用代数余子式的定义和性质求解.【解答】解:∵行列式,∴元素的代数余子式为:.故选:.一个公司有名员工,其中名员工的月工资分别为,,,,,,另两名员工数据不清楚,那么位员工月工资的中位数不可能是()A. B. C. D.【答案】D【考点】众数、中位数、平均数【解析】由已知能求出位员工月工资的中位数的取值区间为,由此能求出结果.【解答】∵一个公司有名员工,其中名员工的月工资分别为,,,,,,∴当另外两名员工的工资都小于时,中位数为,当另外两名员工的工资都大于时,中位数为,∴位员工月工资的中位数的取值区间为,∴位员工月工资的中位数不可能是若直线通过点,则下列不等式正确的是()A. B.C. D.【答案】D【考点】不等式比较两数大小【解析】先把点代入得到,即可得到,得到,问题得以判断【解答】解:直线通过点,∴,∴,其中,∴,∴,∴,故选:三、解答题(满分76分)共5题某柱体实心铜制零件的截面边长是长度为毫米线段和毫米的线段以及圆心为,半径为的一段圆弧构成,其中.(1)求半径的长度;(2)现知该零件的厚度为毫米,试求该零件的重量(每个立方厘米铜重克,按四舍五入精确到克).柱底.【答案】解:(1)∵,,,.,∴在中,由余弦定理可得:,可得:,∴解得:.(2)在中,,,,,∴.∴.柱底扇形该零件的重量.【考点】弧长公式【解析】(1)在中,由余弦定理建立方程,即可求半径的长度;(2)求出柱底,即可求该零件的重.量【解答】解:(1)∵,,,.,∴在中,由余弦定理可得:,可得:,∴解得:.(2)在中,,,,,∴.∴.柱底扇形该零件的重量.如图所示,,是互相垂直的异面直线,是它们的公垂线段,点,在直线上,且位于点的两侧,在上,(1)求证:异面直线与垂直;(2)若四面体的体积,求异面直线,之间的距离.【答案】解:(1)证明:由已知,,,可得平面.由已知,,可知且.又为在平面内的射影.∴(2)∵,是它们的公垂线段,就是异面直线,之间的距离,由中垂线的性质可得,四面体的体积,可得:,∴.异面直线,之间的距离为.【考点】点、线、面间的距离计算【解析】(1)欲证,可先证面,根据线面垂直的判定定理只需证,即可;(2)判断异面直线的距离,利用体积公式求解即可.【解答】解:(1)证明:由已知,,,可得平面.由已知,,可知且.又为在平面内的射影.∴(2)∵,是它们的公垂线段,就是异面直线,之间的距离,由中垂线的性质可得,四面体的体积,可得:,∴.异面直线,之间的距离为.如图所示,椭圆,左右焦点分别记作,,过,分别作直线,交椭圆,,且.(1)当直线的斜率与直线的斜率都存在时,求证:为定值;(2)求四边形面积的最大值.【答案】(1)证明:由椭圆,得,,∴.设,则所在直线方程为,所在直线方程为,联立,得.解得,不妨取,则同理求得,.则,则;(2)解:由(1)知,,.、的距离,∴.四边形令,则,∴当时,.【考点】直线与椭圆的位置关系【解析】(1)由椭圆方程求出焦点坐标,得到直线、的方程,与椭圆方程联立求得、的坐标,求出所在直线斜率得答案;(2)由(1)结合弦长公式求得,再由两平行线间的距离公式求出边、的距离,代入平行四边形面积公式,利用换元法求得最值.【解答】(1)证明:由椭圆,得,,∴.设,则所在直线方程为,所在直线方程为,联立,得.解得,不妨取,则同理求得,.则,则;(2)解:由(1)知,,.、的距离,∴.四边形令,则,∴当时,.数列,定义为数列的一阶差分数列,其中(1)若,试判断是否是等差数列,并说明理由;(2)若,,求数列的通项公式;(3)对中的数列,是否存在等差数列,使得,对一切都成立,若存在,求出数列的通项公式,若不存在,请说明理由.【答案】解:(1)若,试判断是等差数列,理由如下:∵,∴,∵,且,∴是首项为,公差为的等差数列;(2)∵.,∴,∴,∴数列构成以为首项,为公差的等差数列,即;(3),即,∵,∴存在等差数列,,使得对一切自然都成立.【考点】数列的求和数列递推式【解析】(1)根据数列的通项公式,结合新定义,可判定是首项为,公差为的等差数列;(2)由入手能够求出数列的通项公式;(3)结合组合数的性质:进行求解.【解答】解:(1)若,试判断是等差数列,理由如下:∵,∴,∵,且,∴是首项为,公差为的等差数列;(2)∵.,∴,∴,∴数列构成以为首项,为公差的等差数列,即;(3),即,∵,∴存在等差数列,,使得对一切自然都成立.对于函数,若存在正常数,使得对任意的,都有成立,我们称函数为“同比不减函数”.(1)求证:对任意正常数,都不是“同比不减函数”;(2)若函数是“同比不减函数”,求的取值范围;(3)是否存在正常数,使得函数为“同比不减函数”;若存在,求的取值范围;若不存在,请说明理由.【答案】解:(1)∵,∴,由于与的小无法比较,∴不一定成立,∴对任意正常数,都不是“同比不减函数,(2)∵函数是“同比不减函数,∴恒成立,∴,∵,∴,(3)图象如图所示,由图象可知,只要把图象向左至少平移个单位,即对任意的,都有成立,∴.【考点】函数与方程的综合运用【解析】(1)根据同比不减函数的定义即可证明,(2)根据同比不减函数的定义,分离参数得到,根据三角形函数的性质即可求出的范围,(3)画出函数的图象,根据图象的平移即可求出的范围.【解答】解:(1)∵,∴,由于与的小无法比较,∴不一定成立,∴对任意正常数,都不是“同比不减函数,(2)∵函数是“同比不减函数,∴恒成立,∴,∵,∴,(3)图象如图所示,由图象可知,只要把图象向左至少平移个单位,即对任意的,都有成立,∴.。
上海市杨浦区2018届高三数学一模试卷 Word版含解析
![上海市杨浦区2018届高三数学一模试卷 Word版含解析](https://img.taocdn.com/s3/m/5e41cccc33d4b14e852468e2.png)
上海市杨浦区2018届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 计算的结果是________【答案】1【解析】故答案为12. 已知集合,,若,则实数________【答案】3【解析】∵ 集合,,且∴故答案为33. 已知,则________【答案】【解析】∵∴故答案为4. 若行列式,则________【答案】6【解析】试题分析:由行列式的定义把方程转化为一般代数式方程即可.. 考点:行列式的定义.5. 已知一个关于、的二元一次方程组的增广矩阵是,则________ 【答案】6【解析】∵一个关于、的二元一次方程组的增广矩阵是∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式∴∴故答案为66. 在的二项展开式中,常数项的值为________【答案】-160【解析】展开式的通项为令,得∴在的二项展开式中,常数项的值为故答案为点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项:可依据条件写出第项,再由特定项的特点求出值即可;(2)已知展开式的某项,求特定项的系数:可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.7. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是________【答案】1考点:组合问题、概率.8. 数列的前项和为,若点()在函数的反函数的图像上,则________【答案】【解析】解:因为9. 在中,若、、成等比数列,则角的最大值为________【答案】【解析】∵在中,、、依次成等比数列,∴,则由正弦定理可得:根据余弦定理得,当且仅当时取等号∴的取值范围为,即角的最大值为故答案为10. 抛物线的焦点与双曲线的左焦点重合,则这条双曲线的两条渐近线的夹角为________【答案】【解析】试题分析:因为抛物线的焦点为所以所以双曲线的渐近线方程为,其夹角为.考点:双曲线的渐近线考点:11. 已知函数,,设,若函数为奇函数,则的值为________【答案】【解析】∵∴∵函数为奇函数∴为奇函数,则∵∴故答案为12. 已知点、是椭圆上的两个动点,且点,若,则实数的取值范围为________【答案】【解析】①当直线斜率存在时,设过点的直线方程为,联立方程,整理可得,则,即设,,则,∵∴∴,,即∵∴∴②当直线斜率不存在时,则过点的直线方程为,此时,,或,当,时,;当,时,综上,故答案为点睛:本题考查解析几何问题和向量的联系,题设中出现,可以得出,结合韦达定理找到与之间的关系,再利用建立不等关系即可得解,本题要特别注意直线斜率是否存在的问题,避免不分类讨论造成遗漏.二. 选择题(本大题共4题,每题5分,共20分)13. 在复平面内,复数对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】试题分析:,对应的点为,在第三象限考点:复数运算14. 给出下列函数:①;②;③;④.其中图像关于轴对称的函数的序号是()A. ①②B. ②③C. ①③D. ②④【答案】B..................故选B15. “”是“函数在内存在零点”的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件【答案】A【解析】函数在内存在零点,则,解得或.所以“”是“函数在内存在零点”的充分而不必要条件.故选A.点睛:解本题的关键是处理二次函数在区间上的零点问题,对于二次函数的研究一般从以几个方面研究:一是,开口;二是,对称轴,主要讨论对称轴与区间的位置关系;三是,判别式,决定于x轴的交点个数;四是,区间端点值.16. 设、、、是半径为1的球面上的四个不同点,且满足,,,用、、分别表示、、的面积,则的最大值是()A. B. 2 C. 4 D. 8【答案】B【解析】设,,∵,,∴,,两两互相垂直,扩展为长方体,它的对角线为球的直径,即∵、、分别表示、、的面积∴,当且仅当时取等号∴的最大值是故选B点睛:本题考查球的内接多面体及基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解答本题的关键.三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图所示,用总长为定值的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为,垂直于墙的边长为,试用解析式将表示成的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【答案】(1),(2)时,.【解析】试题分析:(1)由题意设平行于墙的边长为,则篱笆总长,表示出面积,由>0,且,可得函数的定义域;(2)对其表达式进行配方,然后求出函数的最值即场地的面积最大值,从而求解.试题解析:(1)设平行于墙的边长为,则篱笆总长,即,∴场地面积,(2),∴当且仅当时,综上,当场地垂直于墙的边长为时,最大面积为18. 如图,已知圆锥的侧面积为,底面半径和互相垂直,且,是母线的中点.(1)求圆锥的体积;(2)求异面直线与所成角的大小. (结果用反三角函数值表示)【答案】(1).(2).【解析】试题分析:(1)根据圆锥的侧面积求出,从而求出,由此能求出圆锥的体积;(2)取中点,连结,由是的中点知∥,则(或其补角)就是异面直线与所成角,由此能求出异面直线与所成角的大小.试题解析:(1)由题意,得,故,从而体积.(2)如图,取中点,连结. 由是的中点知∥,则(或其补角)就是异面直线与所成角.由平面平面.在中,由得;在中,,,则,∴异面直线与所成角的大小 .19. 已知函数的定义域为集合,集合,且.(1)求实数的取值范围;(2)求证:函数是奇函数但不是偶函数.【答案】(1) ;(2)见解析.【解析】试题分析:(1)由对数的真数大于0,可得集合,再由集合的包含关系,可得的不等式组,解不等式即可得到所求范围;(2)求得的定义域,计算与比较,即可得到所求结论.试题解析:(1)令,解得,所以,因为,所以,解得,即实数的取值范围是(2)函数的定义域,定义域关于原点对称而,,所以所以函数是奇函数但不是偶函数.20. 设直线与抛物线相交于不同两点、,为坐标原点.(1)求抛物线的焦点到准线的距离;(2)若直线又与圆相切于点,且为线段的中点,求直线的方程;(3)若,点在线段上,满足,求点的轨迹方程.【答案】(1)2;(2),;(3)【解析】试题分析:(1)根据题意,由抛物线的方程分析可得的值,即可得答案;(2)根据题意,设直线的方程为,分与两种情况讨论,分析的取值,综合可得可取的值,将的值代入直线的方程即可得答案;(3)设直线,设、,将直线的方程与抛物线方程联立,结合,由根与系数的关系分析可得答案.试题解析:(1)∵抛物线的方程为∴抛物线的焦点到准线的距离为2(2)设直线当时,和符合题意;当时,、的坐标满足方程组,∴的两根为、,,∴,∴线段的中点∵,∴,得∴,得∵∴(舍去)综上所述,直线的方程为:,(3)设直线,、的坐标满足方程组,∴的两根为、,,∴,得或时,直线AB过原点,所以;时,直线AB过定点设∵,∴(),综上,点的轨迹方程为点睛:本题主要考查直线与圆相切,求直线方程,分类讨论,轨迹方程的求法等,属于中档题.注意解决本类问题时,要使用直线和圆相切的性质,设直线时注意分类讨论,严防漏解,求轨迹方程时一般先设出动点坐标,再根据条件建立关于的关系,化简即可求出轨迹方程.21. 若数列:,,,()中()且对任意的,恒成立,则称数列为“数列”.(1)若数列1,,,7为“数列”,写出所有可能的、;(2)若“数列” :,,,中,,,求的最大值;(3)设为给定的偶数,对所有可能的“数列”:,,,,记,其中表示,,,这s个数中最大的数,求的最小值.【答案】(1),或;(2)的最大值为;(3).【解析】试题分析:(Ⅰ)直接根据“数列”的定义,讨论列举法即可求出,;(Ⅱ)可得,解得:,故,另外,任意的,,故数列为“数列”,此时,即符合题意;(Ⅲ)利用放缩法,即可得结论.试题解析::(Ⅰ),或(Ⅱ)的最大值为,理由如下一方面,注意到:对任意的,令,则且(),故对任意的恒成立.当,时,注意到,得()此时即,解得:,故另一方面,取(),则对任意的,,故数列为“数列”,此时,即符合题意.综上,的最大值为65.(Ⅲ)的最小值为,证明如下:当(,)时,一方面:由(★)式,,.此时有:故另一方面,当,,…,,,,…,时,取,则,,,且此时.综上,的最小值为.。
杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案
![杨浦区2018学年度第一学期高三年级模拟质量调研数学学科试卷及答案](https://img.taocdn.com/s3/m/dfe2286c5bcfa1c7aa00b52acfc789eb172d9e91.png)
杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案杨浦区2018学年度第⼀学期⾼三年级模拟质量调研数学学科试卷及答案 2018.12.考⽣注意: 1.答卷前,考⽣务必在答题纸写上姓名、考号,并将核对后的条形码贴在指定位置上.2.本试卷共有21道题,满分150分,考试时间120分钟.⼀、填空题(本⼤题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考⽣应在答题纸的相应位置填写结果. 1.设全集{}=1,2,3,4,5U ,若集合{}3,4,5A =,则U A =e ▲.2.已知扇形的半径为6,圆⼼⾓为3π,则扇形的⾯积为▲. 3.已知双曲线221x y -=,则其两条渐近线的夹⾓为▲________.4. 若nb a )(+展开式的⼆项式系数之和为8,则n = ▲________.5. 若实数,x y 满⾜ 221x y +=,则xy 的取值范围是▲________.6. 若圆锥的母线长=l )(5cm ,⾼)(4cm h =,则这个圆锥的体积等于▲________()3cm . 7. 在⽆穷等⽐数列{}n a 中,121lim()2n n a a a →∞+++=,则1a 的取值范围是▲________. 8. 若函数1()ln1xf x x+=-的定义域为集合A ,集合(,1)B a a =+. 且B A ?,则实数a 的取值范围为▲________.9. 在⾏列式中,第3⾏第2列的元素的代数余⼦式记作,则的零点是▲________10. 已知复数1cos 2()i z x f x =+,2cos )i z x x =++ (,R x λ∈,i 为虚数单位).在复平⾯上,设复数12,z z 对应的点分别为12,Z Z ,若?=∠9021OZ Z ,其中O 是坐标原点,则函数()f x 的最⼩正周期▲________. 11. 当a x <<0时,不等式2)(1122≥-+x a x 恒成⽴,则实数a 的最⼤值为▲________. 274434651xx--()f x 1()y f x =+12. 设d 为等差数列}{n a 的公差,数列}{n b 的前n 项和n T ,满⾜)N ()1(21*∈-=+n b T n n n n ,且25b a d ==. 若实数)3,N }(|{*32≥∈<<=∈+-k k a x a x P m k k k ,则称m 具有性质k P .若n H 是数列}{n T 的前n 项和,对任意的*N ∈n ,12-n H 都具有性质k P ,则所有满⾜条件的k 的值为▲________.⼆、选择题(本题共有4题,满分20分,每题5分)每题有且只有⼀个正确选项,考⽣应在答题纸的相应位置,将代表正确选项的⼩⽅格涂⿊.13. 下列函数中既是奇函数,⼜在区间[-1,1]上单调递减的是 ………( ). x x f arcsin )(=. lg y x =.()f x x =-.()cos f x x =14. 某象棋俱乐部有队员5⼈,其中⼥队员2⼈. 现随机选派2⼈参加⼀个象棋⽐赛,则选出的2⼈中恰有1⼈是⼥队员的概率为 ………( )()A .310()B .35()C .25()D .2315. 已知x x f θsin log )(=,,设sin cos ,2a f θθ+??=b f =,sin 2sin cosc f θθθ=+,则c b a ,,的⼤⼩关系是 ………( )()A .b c a ≤≤.()B .a c b ≤≤. ()C .a b c ≤≤.()D .c b a ≤≤.16. 已知函数nx x m x f x ++?=22)(,记集合},0)(|{R x x f x A ∈==,集合},0)]([|{R x x f f x B ∈==,若B A =,且都不是空集,则n m +的取值范围是………( )()A . [0,4) ()B . [1,4)- ()C . [3,5]- ()D . [0,7)()A ()B ()C ()D )2,0(πθ∈三、解答题(本⼤题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1⼩题满分6分,第2⼩题满分8分)如图,PA ⊥平⾯ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E PAD -的体积;(2)证明:⽆论点E 在边BC 的何处,都有AF PE ⊥.18. (本题满分14分,第1⼩题满分7分,第2⼩题满分7分)在ABC ?中,⾓,,A B C 所对的边分别为,,a b c ,且5cos 13B =.(1)若4sin 5A =,求cos C ;(2)若4b =,求证:5-≥?BC AB .19. (本题满分14分,第1⼩题满分6分,第2⼩题满分8分)上海某⼯⼚以x 千克/⼩时的速度匀速⽣产⼀种产品,每⼀⼩时可获得的利润是)315(xx -+元,其中101≤≤x .(1)要使⽣产该产品2⼩时获得的利润不低于30元,求x 的取值范围;(2)要使⽣产900千克该产品获得的利润最⼤,问:该⼚应选取何种⽣产速度?并求最⼤利润.20. (本题满分16分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分7分)如图,已知点P 是y 轴左侧(不含y 轴)⼀点,抛物线x y C 4:2=上存在不同的两点B A ,,满⾜PB PA ,的中点均在抛物线C 上.(1)求抛物线C 的焦点到准线的距离;(2)设AB 中点为M ,且),(),,(M M P P y x M y x P ,证明:M P y y =;(3)若P 是曲线221(0)4y x x +=<上的动点,求PAB ?⾯积的最⼩值.21. (本题满分18分,第1⼩题满分4分,第2⼩题满分5分,第3⼩题满分9分)记⽆穷数列{}n a 的前n 项中最⼤值为n M ,最⼩值为n m ,令2n nn M m b +=,其中*N ∈n . (1) 若2cos2n n n a π=+,请写出3b 的值; (2) 求证:“数列{}n a 是等差数列”是“数列{}n b 是等差数列”的充要条件;(3) 若对任意n ,有||2018n a <, 且||1n b =,请问:是否存在*K ∈N ,使得对于任意不⼩于K 的正整数n ,有1n n b b += 成⽴?请说明理由.青浦区2018学年第⼀学期⾼三年级期终学业质量调研测试数学参考答案及评分标准 2018.12说明1.本解答列出试题⼀种或⼏种解法,如果考⽣的解法与所列解法不同,可参照解答中评分标准的精神进⾏评分.2.评阅试卷,应坚持每题评阅到底,不要因为考⽣的解答中出现错误⽽中断对该题的评阅.当考⽣的解答在某⼀步出现错误,影响了后续部分,但该步以后的解答未改变这⼀题的内容和难度时,可视影响程度决定后⾯部分的给分,但是原则上不应超出后⾯部分应给分数之半,如果有较严重的概念性错误,就不给分.3.第17题⾄第21题中右端所注的分数,表⽰考⽣正确做到这⼀步应得的该题分数. 4.给分或扣分均以1分为单位.⼀.填空题(本⼤题满分54分)本⼤题共有12题,1-6每题4分,7-12每题5分考⽣应在答题纸相应编号的空格内直接填写结果. 1.{}1-; 2.“若a b <,则22am bm <”; 3.()2,3-;4.43; 5.12π;67.(0,4)(4,8); 8.32;9. 80; 10. 14;11.10,2;12.1,3??.⼆.选择题(本⼤题满分20分)本⼤题共有4题,每题有且只有⼀个正确答案,考⽣应在答题纸的相应编号上,将代表答案的⼩⽅格涂⿊,选对得5分,否则⼀律得零分. 13. A ;14. D ; 15.C ;16. C .三.解答题(本⼤题满分74分)本⼤题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)在正四棱柱1111ABCD A B C D -中,∵1AA ⊥平⾯ABCD ,AD ?≠平⾯ABCD ,∴1AA AD ⊥,故14AA =,∴正四棱柱的侧⾯积为(43)448??=,体积为2(3)436?=.(2)建⽴如图的空间直⾓坐标系O xyz -,由题意可得(0,0,0)D ,(3,3,0)B ,1(3,0,4)A ,(0,0,0)D ,3(,0,2)2E ,1(0,0,4)AA =,3(,3,2)2BE =--,设1AA 与BE 所成⾓为α,直线BE 与平⾯ABCD 所成⾓为θ,则11cos ||||AA BEAA BE α?===⼜1AA是平⾯ABCD 的⼀个法向量,故sin cos θα==,θ=.所以直线BE 与平⾯ABCD所成的⾓为arcsin61.【另法提⽰:设AD 中点为G ,证EBG ∠即为BE 与平⾯ABCD 所成的⾓,然后解直⾓三⾓形EBG ,求出EBG ∠】arctan 1518.(本题满分14分)第(1)⼩题满分8分,第(2)⼩题满分6分.解:(1),1,01BP t CP t t ==-≤≤45DAQ θ∠=?-,1tan(45)1tDQ tθ-=?-=+, 12111t tCQ t t-=-=++所以211t PQ t +===+ 故221111211t t l CP CQ PQ t t t t t+=++=-++=-++=++ 所以△CPQ 的周长l 是定值2(2)111221ABP ADQ ABCD t t S S S S t ??-=--=--?+正⽅形122(1)221t t=-++≤+当且仅当1t =时,等号成⽴所以摄像头能捕捉到正⽅形ABCD 内部区域的⾯积S⾄多为22hm19.(本题满分14分)本题共2⼩题,第(1)⼩题6分,第(2)⼩题8分. 解:(1)因为函数()3g x x =是函数()3m=+在区间[)+∞4,上的弱渐近函数,所以()()1mf xg x x-=≤ ,即m x ≤在区间[)+∞4,上恒成⽴,即444m m ≤?-≤≤(2)()()2f x g x x x -==[)2,+x ∈∞,()()22(f x g x x x ∴-==-A DCBθP Q45令2()()()2(x xh x f x g x x=-===任取12≤<,则2212311x x≤-<-≤<120xx<<12()()h x h x><即函数()()()2(h x f x g x x=-=在区间[)2,+∞上单调递减,所以(()()0,4x-∈-,⼜([]0,41,1-?-,即满⾜()2g x x=使得对于任意的[)2,x∈+∞有()()1f xg x-≤恒成⽴,所以函数()2g x x=是函数()f x=在区间[)2,+∞上的弱渐近函数.20.(本题满分16分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题6分.解:(1)242a a=?=,⼜双曲线的渐近线⽅程为y=,所以bba==双曲线的标准⽅程是22412x y-=.(2)法⼀:由题不妨设11()A x,22(,)B x,则1212(,)22x xP+,由P在双曲线上,代⼊双曲线⽅程得124x x?=;法⼆:当直线AB的斜率不存在时,显然2x=±,此时124xx?=;当直线AB的斜率存在时,设直线AB的⽅程为(0,t k k=+≠≠则由y kx tAy=+?=同理y kx tBy=+?=此时223,33kt t P k k ?? ?--??代⼊双曲线⽅程得224(3)t k =-,所以212243t x x k ?==-(3)①对称中⼼:原点;对称轴⽅程:,y y x = =②顶点坐标:3,22??,322??-- ? ???;焦点坐标:(,(1,-实轴长:2a =、虚轴长:22b =、焦距:24c =③范围:()0,,2,x y ?≠∈-∞+∞?④渐近线:0,3x y x ==21.(本题满分18分)本题共3⼩题,第(1)⼩题4分,第(2)⼩题6分,第(3)⼩题8分.解:(1)因为数列{}n b 是“Γ数列”,且11b =,3k =、4d =、0c =,所以当1n ≥,n *∈N 时,310n b +=,⼜*2016672N 3=∈,即20170b =, 20182017044b b d =+=+=,20192018448b b d =+=+= (2)因为数列{}n b 是“Γ数列”,且12b =,4k =、2d =、1c =()()()414344341434243434312336n n n n n n n n n n b b cb b b d b b d b b d b d +---------=-=?+-=+-=+-==则数列前4n 项中的项43n b -是以2为⾸项,6为公差的得差数列,易知{}4n b 中删掉含有43n b -的项后按原来的顺序构成⼀个⾸项为2公差为2的等差数列,41543()n n S b b b -∴=+++()()()()23467846454442414+n n n n n n b b b b b b b b b b b b -----++++++++++++2(1)3(31)26(3)2212822n n n n n n n n --=+++=+ 43nn S λ≤?,43nn S λ∴≤,设2412833n n n n S n n c +==,则()max n c λ≥,22211112(1)8(1)12824820333n n n n n n n n n n n c c +++++++-++-=-=当1n =时,2248200n n -++>,12c c <;当2n ≥,n *∈N 时,2248200n n -++<,1n n c c +<,∴123c c c <>>,∴()2max 649n c c ==,即()2max 649n c c λ≥==(3)因为{}n b 既是“Γ数列”⼜是等⽐数列,设{}n b 的公⽐为1n nb q b +=,由等⽐数列的通项公式有1n n b bq -=,当m *∈N 时,21k m k m b b d ++-=,即()11km km km bq bq bq q d +-=-=① 1q =,则0d =,n b b =;② 1q ≠,则()1kmd qq b=-,则kmq 为常数,则1q =-,k 为偶数,2d b =-,()11n n b b -=-;经检验,满⾜条件的{}n b 的通项公式为n b b =或()1 1n n b b -=-.。
2017届上海市杨浦区高三上学期一模理科数学试卷及答案
![2017届上海市杨浦区高三上学期一模理科数学试卷及答案](https://img.taocdn.com/s3/m/590357367375a417866f8f54.png)
杨浦区2017—2017学年度第一学期高三年级学业质量调研数学试卷(文科) 1.2考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上. 2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 计算:=+∞→133lim n nn .2.若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示).3.若行列式124012x -=,则x = .4.若全集U R =,函数21x y =的值域为集合A ,则=A C U.5.双曲线2221(0)y x b b -=>的一条渐近线方程为y ,则b =________.6.若函数()23-=x x f 的反函数为()x f 1-,则()=-11f . 7. 若将边长为cm 1的正方形绕其一条边所在直线旋转一周,则所形成圆柱的体积等于()3cm .8. 已知函数()lg f x x =,若()1f ab =,则22()()f a f b += _________. 9. 已知函数x x x f cos sin )(=,则函数)(x f 的最小正周期为__________.10. 某公司一年购买某种货物600吨,每次都购买x 吨,运费为3万元/次,一年的总存储费用为2x 万元,若要使一年的总运费与总存储费用之和最小,则每次需购买 吨. 11. 已知复数i -=2ω(i 为虚数单位),复数25-+=ωωz ,则一个以z 为根的实系数一元二次方程是________.12.若21()nx x +的二项展开式中,所有二项式系数和为64,则n 等于 . 13.在100件产品中有90件一等品,10件二等品,从中随机取出4件产品.则恰含1件二等品的概率是 .(结果精确到0.01)14.函数()x f 是R 上的奇函数,()x g 是R 上的周期为4的周期函数,已知()()622=-=-g f ,且()()()()()()()()[]2122022222=-+-++f g g f g g f f ,则()0g 的值为___________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15. 若空间三条直线c b a 、、满足b a ⊥,c b //,则直线a 与c ………( ). )(A 一定平行 )(B 一定相交 )(C 一定是异面直线 )(D 一定垂直16.“21<-x 成立”是“01<-x x成立”的………( ).)(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件.17. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 1=a ,A B 2=, 则b 的取值范围为………( ). )(A ()3,2 . )(B ()3,1 .)(C()2,2 . )(D ()2,0 .18.若式子),,(c b a σ满足),,(),,(),,(b a c a c b c b a σσσ==,则称),,(c b a σ为轮换对称式.给出如下三个式子:①abc c b a =),,(σ; ②222),,(c b a c b a +-=σ; ③C B A C C B A 2cos )cos(cos ),,(--⋅=σC B A ,,(是ABC ∆的内角).其中,为轮换对称式的个数是………( ).)(A 0 . )(B 1 . )(C 2 . )(D 3 .三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 . 已知正方体1111D C B A ABCD -的棱长为a . (1)求异面直线B A 1与C B 1所成角的大小; (2)求四棱锥ABCD A -1的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分 .已知向量()1,2x =,()ax a 21,-=,其中0>a .函数()x g ⋅=在区间[]3,2∈x 上有最大值为4,设()()x x g x f =.(1)求实数a 的值;(2)若不等式()033≥-x x k f 在[]1,1-∈x 上恒成立,求实数k 的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 . 某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.求抛物线Γ方程;求证:αα2sin )1(cos 2+=AF .22. (本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分.已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ; (2)求证:数列{}n b 是等比数列;(3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.23.(本题满分18分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分8分.已知椭圆Γ:2214x y +=.(1) 椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫ ⎝⎛21,m M 满足0m ≠,且m ≠①用m 表示点F E ,的坐标;②若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程.杨浦区2017—2017学年度第一学期高三模拟测试 1.2一.填空题(本大题满分56分) 1. 1 ; 2.3arctan ; 3.2; 4. ()0,∞- ; 5. 3 ; 6. 1 ; 7. π; 8. 2; 9. 文π; 10. 30 ; 11. 01062=+-x x ; 12.文 6 ;13.文0.30; 14.文2; 二、选择题(本大题满分20分)本大题共有4题 15. D ; 16. B ; 17. A ; 18. 文C三、解答题(本大题满分74分)本大题共5题 19. 【解】(1)因为 D A C B 11//,∴直线B A 1与D A 1所成的角就是异面直线B A 1与C B 1所成角. ……2分又BD A 1∆为等边三角形,∴异面直线B A 1与C B 1所成角的大小为︒60. ……6分(2)四棱锥ABCD A -1的体积=V 323131a a a =⨯⨯ ……12分 20. 【解】(1)由题得()a x a ax ax x g -+-=-+=⋅=1)1(2122 ……4分 又0>a 开口向上,对称轴为1=x ,在区间[]3,2∈x 单调递增,最大值为4,()()43max ==∴g x g 所以,1=a ……7分(2)由(1)的他,()21)(-+==x x x x g x f ……8分令x t 3=,则⎥⎦⎤⎢⎣⎡∈3,31t 以()033≥-x x k f 可化为kt t f ≥)(, 即t t f k )(≤恒成立, ……9分2)11()(-=t t t f 且⎥⎦⎤⎢⎣⎡∈3,311t ,当11=t ,即1=t 时t t f )(最小值为0, ……13分0≤∴k ……14分21. 【解】文科(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……8分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……11分 解得 αα2sin )1(cos 2+=AF ……14分22. 【解】文科(1) 由21=a 及2321++=+n S S n n 当1=n 时 故72=a ……4分(2)由2321++=+n S S n n 及)2(2)1(321≥+-+=-n n S S n n……6分 得 1231-+=+n a a n n ,故)(3)1(1n a n a n n +=+++, ……8分即)2(1≥=+n b b n n ,当1=n 时上式也成立, ……9分,故{}n b 是以3为首项,3为公比的等比数列 ……10分(3) 由(2)得nn n n b b 311,3== ……11分8140)311(21311)311(3111121>-=--=+⋅⋅⋅++nn n b b b ……14分故 813>n解得4>n ,最小正整数n 的值5 ……16分23【解】(文科)解:(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠,∴直线AM 的斜率为k1=m 21-,直线BM 斜率为k2=m 23,∴直线AM 的方程为y=121+-x m ,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭ ……4分 由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……5分②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠,5AMFBME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m mm mm m m m =--++ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分(2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k =--⇒++=, ……12分所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =所以直线1l 被圆224x y +=所截的弦222143242k k d TR ++=-=;由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k k x x P Q 所以418)4(64)11(222222++=++=k k k k k QP ……15分 所以13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ当2522k k =⇒=⇒=±时等号成立,此时直线1:12l y x =±- ……18分。
2018年上海市杨浦区高考一模数学试卷【解析版】
![2018年上海市杨浦区高考一模数学试卷【解析版】](https://img.taocdn.com/s3/m/9746141583c4bb4cf6ecd10a.png)
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sin A、sin B、sin C成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g (x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsin x.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD 的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与P A所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.21.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n 0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,x2,…,x s}表示x1,x2,…,x s,其中max{x这s个数中最大的数,求M的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【考点】6F:极限及其运算.【解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【考点】1E:交集及其运算.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【考点】GF:三角函数的恒等变换及化简求值.【解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【考点】O1:二阶矩阵.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =6.【考点】OT:特征向量的定义.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【考点】DA:二项式定理.【解答】解:展开式的通项为T r+1=x6﹣r(﹣)r=(﹣2)r x6﹣2r令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】CB:古典概型及其概率计算公式.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【考点】4R:反函数.【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sin A、sin B、sin C成等比数列,则角B的最大值为.【考点】HR:余弦定理.【解答】解:∵在△ABC中,sin A、sin B、sin C依次成等比数列,∴sin2B=sin A sin C,利用正弦定理化简得:b2=ac,由余弦定理得:cos B==≥=(当且仅当a=c 时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】KC:双曲线的性质.【解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【考点】GL:三角函数中的恒等变换应用.【解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【考点】K4:椭圆的性质.【解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3,∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsin x.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【考点】3K:函数奇偶性的性质与判断.【解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsin x是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD 的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8【考点】9O:平面向量数量积的性质及其运算;LF:棱柱、棱锥、棱台的体积.【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4+S△ACD+S△ADB=(ab+ac+bc)≤(a2+b2+c2)=2所以S△ABC即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】7F:基本不等式及其应用.【解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与P A所成角的大小.(结果用反三角函数值表示)【考点】L5:旋转体(圆柱、圆锥、圆台);LM:异面直线及其所成的角.【解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与P A所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90O,,…(12分)则,∴异面直线SO与P A所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】18:集合的包含关系判断及应用;3K:函数奇偶性的性质与判断.【解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】KN:直线与抛物线的综合.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m)因为k AB•k CM=﹣1,,所以,得b=3﹣2m2所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=021.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+1+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n 0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s 这s个数中最大的数,求M的最小值.【考点】8K:数列与不等式的综合.【解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。
2017年上海杨浦区高考一模数学
![2017年上海杨浦区高考一模数学](https://img.taocdn.com/s3/m/7eda3f96680203d8ce2f2459.png)
2017年上海市杨浦区高考一模数学一、填空题(本大题满分54分)共12小题,1-6题每题4分,7-12题每题5分1.若“a>b”,则“a 3>b 3”是____命题(填:真、假)解析:函数f(x)=x 3在R 是单调增函数,∴当a >b ,一定有a 3>b 3,故是真命题. 答案:真.2.已知A=(﹣∞,0],B=(a ,+∞),若A ∪B=R ,则a 的取值范围是____. 解析:若A ∪B=R ,A=(﹣∞,0],B=(a ,+∞), 必有a ≤0. 答案:a ≤0.3.z+2z =9+4i(i 为虚数单位),则|z|=____.解析:设z=x+yi(x ,y ∈R),∵z+2z =9+4i ,∴x+yi+2(x ﹣yi)=9+4i ,化为:3x ﹣yi=9+4i , ∴3x=9,﹣y=4,解得x=3,y=﹣4. ∴223(4)5z =+-=.答案:5.4.若△ABC 中,a+b=4,∠C=30°,则△ABC 面积的最大值是____. 解析:在△ABC 中,∵C=30°,a+b=4, ∴△ABC 的面积211111sin sin 30412244)4(2S ab C ab b ab a =⋅=⋅︒==+≤⨯⨯=,当且仅当a=b=2时取等号.答案:1.5.若函数()2g 1lo x f x ax -+=的反函数的图象经过点(﹣2,3),则a=____. 解析:∵函数()2g 1lo x f x ax -+=的反函数的图象经过点(﹣2,3),∴函数()2g 1lo x f x ax -+=的图象经过点(3,﹣2),∴232log 31a-=-+,∴a=2. 答案:2.6.过半径为2的球O 表面上一点A 作球O 的截面,若OA 与该截面所成的角是60°,则该截面的面积是____.解析:设截面的圆心为Q ,由题意得:∠OAQ=60°,QA=1,∴S=π·12=π. 答案:π.7.抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c ,则a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根的概率是____.解析:抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c , 基本事件总数n=6×6×6=216,∵a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根,∴(a+bi)2﹣2(a+bi)+c=0,即222022a b c a ab b⎧-+-=⎨=⎩,∴a=1,c=b 2+1, ∴a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根包含的基本事件为: (1,1,2),(1,2,5),∴a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根的概率是21216108p ==. 答案:1108.8.设常数a >0,9(x 展开式中x 6的系数为4,则()2lim n n a a a →∞++⋯+=____.解析:∵常数a >0,9(x +展开式中x 6的系数为4, ∴183922199r r r rrrr r T C x a xa C x---+==,当18362r-=时,r=2, ∴2294a C =,解得13a =,∴2211(1)1111133(1)13332313n n n na a a -+++==⋯-+-++= , ∴()2111lim lim[(1)]232nn n n a a a →∞→∞++-==⋯+. 答案:12.9.已知直线l 经过点(且方向向量为(2,﹣1),则原点O 到直线l 的距离为____. 解析:直线的方向向量为(2,﹣1),所以直线的斜率为:﹣12,直线方程为:, 1=;答案:1.10.若双曲线的一条渐近线为x+2y=0,且双曲线与抛物线y=x 2的准线仅有一个公共点,则此双曲线的标准方程为____. 解析:抛物线y=x 2的准线:14y =-, 双曲线与抛物线y=x 2的准线仅有一个公共点,可得双曲线实半轴长为14a =,焦点在y 轴上. 双曲线的一条渐近线为x+2y=0,∴12a b =,可得12b =, 则此双曲线的标准方程为:22111164y x -=. 答案:22111164y x -=.11.平面直角坐标系中,给出点A(1,0),B(4,0),若直线x+my ﹣1=0存在点P ,使得|PA|=2|PB|,则实数m 的取值范围是____. 解析:设P(1﹣my ,y), ∵|PA|=2|PB|,∴|PA|2=4|PB|2,∴(1﹣my ﹣1)2+y 2=4(1﹣my ﹣4)2+y 2,化简得(m 2+1)y 2+8my+12=0则△=64m 2﹣48m 2﹣48≥0, 解得mm即实数m 的取值范围是mm答案:mm12.函数y=f(x)是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f(x)=2x+1,若存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f(x 1)﹣f(x 2)|+|f(x 2)﹣f(x 1)|+…+|f(x n ﹣1﹣f(x n ))|=2016,则n+x n 的最小值为____.解析:∵函数y=f(x)是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f(x)=2x+1, ∴函数的值域为[﹣3,1],对任意x i ,x j (i ,j=1,2,3,…,m),都有|f(x i )﹣f(x j )|≤f(x)max ﹣f(x)min =4,要使n+x n 取得最小值,尽可能多让x i (i=1,2,3,…,m)取得最高点,且f(0)=1,f(2)=﹣3,∵0≤x 1<x 2<…<x m ,|f(x 1)﹣f(x 2)|+|f(x 2)﹣f(x 3)|+…+|f(x n ﹣1)﹣f(x n )|=2016, ∴n 的最小值为201615054+=,相应的x n 最小值为1008,则n+x n 的最小值为1513. 答案:1513.二、选择题(本大题共4题,满分20分) 13.若a 与b c - 都是非零向量,则“a b a c ⋅=⋅ ”是“()a b c ⊥-”的()A.充分但非必要条件B.必要但非充分条件C.充要条件D.既非充分也非必要条件解析:“a b a c ⋅=⋅ ”⇔“0a b a c ⋅-⋅= ”⇔“()0a b c ⋅-= ”⇔“()a b c ⊥-”,故“a b a c ⋅=⋅ ”是“()a b c ⊥-”的充要条件.答案:C14.行列式147258369中,元素7的代数余子式的值为() A.﹣15 B.﹣3 C.3 D.12解析:∵行列式147258369, ∴元素7的代数余子式为: D 13=(﹣1)42536=2×6﹣5×3=﹣3.答案:B.15.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是() A.5800 B.6000 C.6200 D.6400解析:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为5300550054002+=,当另外两名员工的工资都大于6500时,中位数为6100650063002+=, ∴8位员工月工资的中位数的取值区间为[5400,6300], ∴8位员工月工资的中位数不可能是6400. 答案:D. 16.若直线1x ya b+=通过点P(cos θ,sin θ),则下列不等式正确的是() A.a 2+b 2≤1 B.a 2+b 2≥1C.22111a b +≤ D.22111a b+≥ 解析:直线1x ya b+=通过点P(cos θ,sin θ),∴bcos θ+asin θ=ab ,)ab θφ+=,其中tan b aφ=,ab ≥, ∴a +b ≥a b ,∴22111a b+≥, 答案:D三、解答题(满分76分)共5题17.某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC=60°. (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底·h.解析:(1)在△ABP 中,由余弦定理建立方程,即可求半径PB 的长度; (2)求出V 柱=S 底·h ,即可求该零件的重量.答案:(1)∵AB=55,AC=88,BP=R ,∠BAC=60°.AP=88﹣R ,∴在△ABP 中,由余弦定理可得:BP 2=AB 2+AP 2﹣2AB ·AP ·cos ∠BAC ,可得:R 2=552+(88﹣R)2﹣2×55×(88﹣R)×cos60°, ∴解得:R=49mm.(2)在△ABP 中,AP=88﹣49=39mm ,AB=55,BP=49,222394955897cos 0.2347239493822BPA +-∠==≈⨯⨯,∴sin ∠BPA ≈0.972.∴∠BPA=arcsin0.972.V 柱=S 底·h=(S △ABP +S 扇形BPC ) ·h=21(arcsin 0.972)49(5539)322360π⋅⨯⨯⨯+⋅该零件的重量=213(arcsin 0.972)49(5539)32360π⋅⨯⨯⨯+⋅÷1000×8.9≈82.7.18.如图所示,l 1,l 2是互相垂直的异面直线,MN 是它们的公垂线段,点A ,B 在直线l 1上,且位于M 点的两侧,C 在l 2上,AM=BM=NM=CN (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积V ABCN =9,求异面直线l 1,l 2之间的距离.解析:(1)欲证AC ⊥NB ,可先证BN ⊥面ACN ,根据线面垂直的判定定理只需证AN ⊥BN ,CN ⊥BN 即可;(2)判断异面直线的距离,利用体积公式求解即可.答案:(1)证明:由已知l 2⊥MN ,l 2⊥l 1,MN ∩l 1=M ,可得l 2⊥平面ABN.由已知MN ⊥l 1,AM=MB=MN , 可知AN=NB 且AN ⊥NB.又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(2)∵AM=BM=NM=CN ,MN 是它们的公垂线段, 就是异面直线l 1,l 2之间的距离,由中垂线的性质可得AN=BN ,四面体ABCN 的体积V ABCN =9, 可得:31119323ABCN V AB MN CN MN ==⨯⨯⨯=, ∴MN=3.异面直线l 1,l 2之间的距离为3.19.如图所示,椭圆C :2241x y +=,左右焦点分别记作F 1,F 2,过F 1,F 2分别作直线l 1,l 2交椭圆AB ,CD ,且l 1∥l 2.(1)当直线l 1的斜率k 1与直线BC 的斜率k 2都存在时,求证:k 1·k 2为定值; (2)求四边形ABCD 面积的最大值.解析:(1)由椭圆方程求出焦点坐标,得到直线AB 、CD 的方程,与椭圆方程联立求得A 、D 的坐标,求出AD 所在直线斜率得答案;(2)由(1)结合弦长公式求得|AB|,再由两平行线间的距离公式求出边AB 、CD 的距离,代入平行四边形面积公式,利用换元法求得最值.答案:(1)证明:由椭圆C :2241x y +=,得a 2=4,b 2=1,∴c =设k 1=k ,则AB 所在直线方程为,CD 所在直线方程为y=kx,联立2241y kx y x ⎧=+⎪⎨+=⎪⎩,得(1+4k 2)x 22x+12k 2﹣4=0.解得2214x k -±=+不妨取221=B x --,则2214=B y k -+ 同理求得2214C x k -=+2214=C y k-+.则214k k ==-,则12·()44k k k k =⋅-=-;(2)解:由(1)知,=A B x x +,2212414=A B k x x k -+()224114k AB k +===+. AB 、CD的距离d =,(224114四边形=ABCD k S k +=+令1+4k 2=t(t ≥1),则2311118316816=S t t ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝+⎭-+,∴当t=3时,S max =4.20.数列{a n },定义{△a n }为数列{a n }的一阶差分数列,其中△a n =a n+1﹣a n (n ∈N *)(1)若a n =n 2﹣n ,试判断{△a n }是否是等差数列,并说明理由;(2)若a 1=1,△a n ﹣a n =2n,求数列{a n }的通项公式;(3)对(b)中的数列{a n },是否存在等差数列{b n },使得1212nn n n n n bC b C b C a ++⋯+=,对一切n ∈N *都成立,若存在,求出数列{b n }的通项公式,若不存在,请说明理由.解析:(1)根据数列{a n }的通项公式a n =n 2﹣n ,结合新定义,可判定{△a n }是首项为4,公差为2的等差数列;(2)由△a n ﹣a n =2n入手能够求出数列{a n }的通项公式;(3)结合组合数的性质:1C n 1+2C n 2+3C n 3+…+nC n n =n(C n ﹣10+C n ﹣11+C n ﹣12+…+C n ﹣1n ﹣1)=n·2n ﹣1进行求解.答案:(1)若a n =n 2﹣n ,试判断{△a n }是等差数列,理由如下:∵a n =n 2﹣n ,∴△a n =a n+1﹣a n =(n+1)2﹣(n+1)﹣(n 2﹣n)=2n , ∵△a n+1﹣△a n =2,且△a 1=4,∴{△a n }是首项为4,公差为2的等差数列;(2)∵△a n ﹣a n =2n.△a n =a n+1﹣a n ,∴a n+1﹣2a n =2n,∴111222n n n n a a ++-=, ∴数列2n na ⎧⎫⎨⎬⎩⎭构成以12为首项,12为公差的等差数列, 即1222﹣n n n n a n a n =⇒=⋅; (3)b 1C n 1+b 2C n 2+…+b n C n n=a n ,即b 1C n 1+b 2C n 2+…+b n C n n=n·2n ﹣1, ∵1C n 1+2C n 2+3C n 3+…+nC n n =n(C n ﹣10+C n ﹣11+C n ﹣12+…+C n ﹣1n ﹣1)=n ·2n ﹣1,∴存在等差数列{b n },b n =n ,使得b 1C n 1+b 2C n 2+…+b n C n n=a n 对一切自然n ∈N 都成立.21.对于函数f(x)(x ∈D),若存在正常数T ,使得对任意的x ∈D ,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T 同比不减函数”.(1)求证:对任意正常数T ,f(x)=x 2都不是“T 同比不减函数”; (2)若函数f(x)=kx+sinx 是“2π同比不减函数”,求k 的取值范围; (3)是否存在正常数T ,使得函数f(x)=x+|x ﹣1|﹣|x+1|为“T 同比不减函数”;若存在,求T 的取值范围;若不存在,请说明理由.解析:(1)根据T 同比不减函数的定义即可证明,(2)根据T 同比不减函数的定义,分离参数得到)4﹣k x ππ≥,根据三角形函数的性质即可求出k 的范围,(3)画出函数f(x)的图象,根据图象的平移即可求出T 的范围.答案:(1)∵f(x)=x 2,∴f(x+T)﹣f(x)=(x+T)2﹣x 2=2xT+T 2=T(2x+T), 由于2x+T 与0的小无法比较, ∴f(x+T)≥f(x)不一定成立,∴对任意正常数T ,f(x)=x 2都不是“T 同比不减函数,(2)∵函数f(x)=kx+sinx 是“2π同比不减函数, ∴sin sin 222()()()()f x f x k x x kx x πππ+-=+++--=cos sin 0224()k k x x x πππ+-=-≥恒成立,∴4()k x ππ≥-, ∵﹣1≤sin(x ﹣4π)≤1,∴k ≥(3)f(x)=x+|x ﹣1|﹣|x+1|图象如图所示,由图象可知,只要把图象向左至少平移4个单位,即对任意的x ∈D ,都有f(x+T)≥f(x)成立, ∴T ≥4.。
2018届杨浦区高考数学一模(附答案)
![2018届杨浦区高考数学一模(附答案)](https://img.taocdn.com/s3/m/252d8b09a21614791711282b.png)
杨浦区2017学年度第一学期高三年级模拟质量调研数学学科试卷 2017.12.19一、填空题1. 计算1lim 1n n →∞⎛⎫- ⎪⎝⎭的结果是____________ 2. 已知集合{}1,2,A m =,{}3,4B =,若{}3A B ⋂=,则实数m=____________3. 已知3cos 5θ=-,则sin 2πθ⎛⎫+= ⎪⎝⎭____________ 4. 若行列式124012x -=,则x =____________5. 已知一个关于x 、y 的二元一次方程组的增广矩阵是112012-⎛⎫⎪⎝⎭,则x y +=____________6. 在62x x ⎛⎫- ⎪⎝⎭的二项展开式中,常数项的值为____________ 7. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛 掷2次,则出现向上的点数之和为4的概率是____________8. 数列{}n a 的前n 项和为n S ,若点()()*,n n S n N ∈在函数()2log 1y x =+的反函数的图像上,则n a =____________9. 在ABC 中,若sin A ,sin B ,sin C 成等比数列,则角B 的最大值为____________ 10. 抛物线28y x =-的焦点与双曲线2221x y a -=的左焦点重合,则这条双曲线的两条渐近线的夹角为____________11. 已知函数()()cos sin f x x x x =-,x R ∈,设0a >,若函数()()g x f x α=+为奇函数,则α的值为____________ 12. 已知点C 、D 是椭圆2214x y +=上的两个动点,且点()0,2M ,若MD MC λ=,则实数λ的取值范围为____________二、选择题13. 在复平面内,复数2i z i-=对应的点位于( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限 14. 给出下列函数:①2log y x = ②2y x = ③2x y = ④arcsin y x =其中图像关于y 轴对称的函数的序号是( )A.①②B.②③C. ①③D.②④ 15.“0t ≥”是“函数()2f x x tx t =+-在(),-∞+∞内存在零点”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件16. 设A 、B 、C 、D 是半径为1的球面上的四个不同点,且满足0AB AC ⋅=,0AC AD ⋅=,0AD AB ⋅=,用1S 、2S 、3S 分别表示ABC 、ACD 、ABD 的面积,则123S S S ++的最大值是( )A. 12B. 2C. 4D. 8三、解答题17. 如图所示,用总长为定值l 的篱笆围成长方形的场地,以墙为一边,并用平行于一边篱笆隔开.(1)设场地面积为y ,垂直于墙的边长为x ,试用解析式将y 表示成x 的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18. 如图,已知圆锥的侧面积为15π,底面半径OA 和OB 互相垂直,且OA=3,P 是母线BS 的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小(结果用反三角函数表示).19. 已知函数()1ln 1x f x x+=-的定义域为集合A ,集合{},1B a a =+,且B A ⊆. (1)求实数a 的取值范围;(2)求证:函数()f x 是奇函数不是偶函数.20. 设直线l 与抛物线2:4y x Ω=相交于不同两点A 、B ,O 为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆()22:516C x y -+=相切于点M ,且M 为线段AB 的中点,求直线l 的方程;(3)若0OA OB ⋅=,点Q 在线段AB 上,满足OQ AB ⊥,其点Q 的轨迹方程.21.若数列A :1a ,2a ,……,()3n a n ≥中, i a ∈*N ()1i n ≤≤且对任意21k n ≤≤-,112k k k a a a +-+>恒成立,则称数列A 为“U -数列”.(1)若数列1,x ,y ,7为“U -数列”,写出所有可能的x ,y ;(2)若“U -数列”A :1a ,2a ,……,n a 中,11a =,2017n a =,求n 的最大值;(3)设0n 为给定的偶数,对所有可能的“U -数列”A :1a ,2a ,……,0n a ,记{}012max ,,...,n M a a a =,其中{}12max ,,...,s M x x x =表示12,,...,s x x x 这s 个数中最大的数,求M 的最小值.参考答案1、12、33、35- 4、2 5、6 6、160-7、112 8、12n - 9、3π 10、3π 11、()26k k N ππ*-∈ 12、(]1,11,33⎛⎫⋃ ⎪⎝⎭ 13-16、CBAB17、(1)()23303l y x l x x lx x ⎛⎫=-=-+<< ⎪⎝⎭; (2)当6l x =时,场地面积最大为212l ; 18、(1)12π;(2)19、(1)[]1,0-;(2)证明略;20、(1)2; (2)有两条,为1x =或9x =;(3)略21、(1)(){}()()(){},1,2,1,3,2,4x y =;(2)若112k k k a a a +-+>,则11k k k k a a a a +-->-,即()()111k k k k a a a a +--≥-+ ∴()()()112211...n n n n n a a a a a a a a ---=-+-++-+ 即()()()()()()()1112212112...12n n n n n n n a a a a a a a a n a a ------=-+-++-≥--+ ∴()()()()2112201612n n n a a --≥--+ ∵11a =,i a ∈*N ,故210a a -≥,故易知当210a a -=时,()()122n n --可取的值最大,即n 可取到最大值,满足条件 ()()1220162n n --≥,解得6265n -≤≤,故max65n =. (3)略。
杨浦区2017届高三一模数学卷答案及官方评分标准
![杨浦区2017届高三一模数学卷答案及官方评分标准](https://img.taocdn.com/s3/m/c375656527284b73f2425071.png)
8
2
MN 就是异面直线 l1
l2 之间的距离
10
设 d = AM = BM = NM = CN
1 1 1 所以 VABCN = ( (2d ⋅ d ) ⋅ d = d 3 = 9 3 2 3
所以 d = 3 ,即异面直线 l1
12
l2 之间的距离为 3
14
19
本题满 证明: 根据对
14
本题共有 2 个小题,第 1 小题满
x = −1 时,因为 f (−1 + T ) ≥ f (−1) = 1 = f (3) 成立, 所以 −1 + T ≥ 3 ,所以 T ≥ 4 13 而另一方面,若 T ≥ 4 , x ∈ (−∞, − 1] 时, f ( x + T ) − f ( x) = x + T + | x + T − 1| − | x + T + 1| −( x + 2) = T + | x + T − 1| − | x + T + 1| −2 因为 | x + T − 1| − | x + T + 1| ≥ − | ( x + T − 1) − ( x + T + 1) |= −2 所以 f ( x + T ) − f ( x) ≥ T − 2 − 2 ≥ 0 ,所以有 f ( x + T ) ≥ f ( x) 成立 15 x ∈ [−1, + ∞ ) 时, f ( x + T ) − f ( x) = x + T − 2 − ( x + | x − 1| − | x + 1|) = T − 2− | x − 1| + | x + 1| 因为 | x + 1| − | x − 1| ≥ − | ( x + 1) − ( x − 1) |= −2 所以 f ( x + T ) − f ( x) ≥ T − 2 − 2 ≥ 0 即 f ( x + T ) ≥ f ( x ) 成立 17 综 ,恒有有 f ( x + T ) ≥ f ( x ) 成立 所以 T 的取值范围是 [4, + ∞) 18
上海市杨浦区2017届高考数学一模(含详细答案)
![上海市杨浦区2017届高考数学一模(含详细答案)](https://img.taocdn.com/s3/m/caace70d011ca300a7c39001.png)
上海市杨浦区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 若“”,则“”是 命题(填:真、假)a b >33a b >2. 已知,,若,则的取值范围是(,0]A =-∞(,)B a =+∞A B R = a 3. (为虚数单位),则294z z i +=+i ||z =4. 若△中,,,则△面积的最大值是 ABC 4a b +=30C ︒∠=ABC 5. 若函数的反函数的图像过点,则 2()log 1x a f x x -=+(2,3)-a =6. 若半径为2的球表面上一点作球的截面,若与该截面所成的角是,则该O A O OA 60︒截面的面积是7. 抛掷一枚均匀的骰子(刻有1、2、3、4、5、6)三次,得到的数字依次记作、a 、,b c 则(为虚数单位)是方程的根的概率是a bi +i 220x x c -+=8. 设常数,展开式中的系数为4,则 0a >9(x +6x 2lim()n n a a a →∞++⋅⋅⋅+=9. 已知直线经过点且方向向量为,则原点到直线的距离为 l ((2,1)-O l 10. 若双曲线的一条渐近线为,且双曲线与抛物线的准线仅有一个公共20x y +=2y x =点,则此双曲线的标准方程为 11.平面直角坐标系中,给出点、,若直线上存在点,使得(1,0)A (4,0)B 10x my +-=P ,则实数的取值范围是||2||PA PB =m 12. 函数是最小正周期为4的偶函数,且在时,,若存()y f x =[2,0]x ∈-()21f x x =+在、、、满足,且1x 2x ⋅⋅⋅n x 120n x x x ≤<<⋅⋅⋅<1223|()()||()()|f x f x f x f x -+-+⋅⋅⋅,则最小值为 ;1|()()|2016n n f x f x -+-=n n x +二. 选择题(本大题共4题,每题5分,共20分)13. 若与都是非零向量,则“”是“”的( )条件a b c - a b a c ⋅=⋅ ()a b c ⊥- A. 充分不必要 B. 必要不充分 C. 充分必要 D. 既不充分也不必要14. 行列式中,元素的代数余子式的值为( )1472583697A. B. C. D. 15-3-31215. 一个公司有8名员工,其中6位员工的月工资分别为5200、5300、5500、6100、6500、6600,另两位员工数据不清楚,那么8位员工月工资的中位数不可能是( )A. 5800 B. 6000 C. 6200 D. 640016. 若直线通过点,则下列不等式正确的是( )1x y a b +=(cos ,sin )P θθA. B. C. D. 221a b +≤221a b +≥22111a b +≤22111a b +≥三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,某柱体实心铜制零件的截面边界是长度为55毫米线段和88毫米的线段AB AC 以及圆心为,半径为的一段圆弧构成,其中;P PB BC 60BAC ︒∠=(1)求半径的长度;PB (2)现知该零件的厚度为3毫米,试求该零件的重量(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克);()V s h =⋅柱底18. 如图所示,、是互相垂直的异面直线,是它们的公垂线段,点、在上,1l 2l MN A B 1l 且位于点的两侧,在上,;M C 2l AM BM NM CN ===(1)求证:异面直线与垂直;AC BN (2)若四面体的体积,求异面直线、之间的距离;ABCN 9ABCN V =1l 2l19. 如图所示,椭圆,左右焦点分别记作、,过、分别作直线22:14x C y +=1F 2F 1F 2F 、交椭圆于、,且∥;1l 2l AB CD 1l 2l (1)当直线的斜率与直线的斜率都存在时,求证:为定值;1l 1k BC 2k 12k k ⋅(2)求四边形面积的最大值;ABCD20. 数列,定义为数列的一阶差分数列,其中,;{}n a {}n a ∆{}n a 1n n n a a a +∆=-*n N ∈(1)若,试判断是否是等差数列,并说明理由;2n a n n =-{}n a ∆(2)若,,求数列的通项公式;11a =2n n n a a ∆-={}n a (3)对(2)中的数列,是否存在等差数列,使得{}n a {}n b 1212n n n n n n b C b C b C a ++⋅⋅⋅+=对一切都成立,若存在,求出数列的通项公式;若不存在,请说明理由;*n N ∈{}n b 21. 对于函数,若存在正常数,使得对任意,都有()f x ()x D ∈T x D ∈()()f x T f x +≥成立,我们称函数为“同比不减函数”;()f x T (1)求证:对任意正常数,都不是“同比不减函数”;T 2()f x x =T (2)若函数是“同比不减函数”,求的取值范围;()sin f x kx x =+2πk (3)是否存在正常数,使得函数为“同比不减函数”,若T ()|1||1|f x x x x =+--+T 存在,求的取值范围,若不存在,请说明理由;T参考答案一. 填空题1. 真2.3.4.5.6.0a ≤51227. 8. 9. 10. 1108121221641y x -=11. 12. (,)-∞+∞ 1513二. 选择题13. C 14. B 15. D 16. D三. 解答题17.18.19.20.(21.。
2017年上海市杨浦区高考一模数学
![2017年上海市杨浦区高考一模数学](https://img.taocdn.com/s3/m/ac9b6675d4d8d15abf234e8b.png)
2021年上海市杨浦区高考一模数学一、填空题(本大题总分值54分)共12小题,1-6题每题4分,7-12题每题5分1.假设“a>b 〞,那么“a 3>b 3〞是____命题(填:真、假)解析:函数f(x)=x 3在R 是单调增函数,∴当a >b ,一定有a 3>b 3,故是真命题. 答案:真.2.A=(﹣∞,0],B=(a ,+∞),假设A ∪B=R ,那么a 的取值范围是____. 解析:假设A ∪B=R ,A=(﹣∞,0],B=(a ,+∞), 必有a ≤0. 答案:a ≤0.3.z+2z =9+4i(i 为虚数单位),那么|z|=____.解析:设z=x+yi(x ,y ∈R),∵z+2z =9+4i ,∴x+yi+2(x ﹣yi)=9+4i ,化为:3x ﹣yi=9+4i ,∴3x=9,﹣y=4,解得x=3,y=﹣4. ∴223(4)5z =+-=.答案:5.4.假设△ABC 中,a+b=4,∠C=30°,那么△ABC 面积的最大值是____. 解析:在△ABC 中,∵C=30°,a+b=4, ∴△ABC 的面积211111sin sin 30412244)4(2S ab C ab b ab a =⋅=⋅︒==+≤⨯⨯=,当且仅当a=b=2时取等号.答案:1.5.假设函数()2g 1lo x f x ax -+=的反函数的图象经过点(﹣2,3),那么a=____. 解析:∵函数()2g 1lo x f x ax -+=的反函数的图象经过点(﹣2,3),∴函数()2g 1lo x f x ax -+=的图象经过点(3,﹣2),∴232log 31a-=-+,∴a=2. 答案:2.6.过半径为2的球O 外表上一点A 作球O 的截面,假设OA 与该截面所成的角是60°,那么该截面的面积是____. 解析:设截面的圆心为Q ,由题意得:∠OAQ=60°,QA=1,∴S=π·12=π. 答案:π.7.抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c ,那么a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根的概率是____.解析:抛掷一枚均匀的骰子(刻有1,2,3,4,5,6)三次,得到的数字依次记作a ,b ,c ,根本领件总数n=6×6×6=216,∵a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根,∴(a+bi)2﹣2(a+bi)+c=0,即222022a b c a ab b⎧-+-=⎨=⎩,∴a=1,c=b 2+1, ∴a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根包含的根本领件为:(1,1,2),(1,2,5),∴a+bi(i 为虚数单位)是方程x 2﹣2x+c=0的根的概率是21216108p ==. 答案:1108. 8.设常数a >0,9(x 展开式中x 6的系数为4,那么()2lim n n a a a →∞++⋯+=____.解析:∵常数a >0,9(x +展开式中x 6的系数为4, ∴183922199r r r rrrr r T C x a xa C x---+==,当18362r-=时,r=2, ∴2294a C =,解得13a =,∴2211(1)1111133(1)13332313n n n na a a -+++==⋯-+-++=, ∴()2111lim lim[(1)]232n n n n a a a →∞→∞++-==⋯+. 答案:12.9.直线l 经过点(0)且方向向量为(2,﹣1),那么原点O 到直线l 的距离为____.解析:直线的方向向量为(2,﹣1),所以直线的斜率为:﹣12,直线方程为:=0,1=;答案:1.10.假设双曲线的一条渐近线为x+2y=0,且双曲线与抛物线y=x 2的准线仅有一个公共点,那么此双曲线的标准方程为____. 解析:抛物线y=x 2的准线:14y =-, 双曲线与抛物线y=x 2的准线仅有一个公共点,可得双曲线实半轴长为14a =,焦点在y 轴上.双曲线的一条渐近线为x+2y=0,∴12a b =, 可得12b =, 那么此双曲线的标准方程为:22111164y x -=.答案:22111164y x -=. 11.平面直角坐标系中,给出点A(1,0),B(4,0),假设直线x+my ﹣1=0存在点P ,使得|PA|=2|PB|,那么实数m 的取值范围是____. 解析:设P(1﹣my ,y), ∵|PA|=2|PB|,∴|PA|2=4|PB|2,∴(1﹣my ﹣1)2+y 2=4(1﹣my ﹣4)2+y 2,化简得(m 2+1)y 2+8my+12=0那么△=64m 2﹣48m 2﹣48≥0, 解得m或m,即实数m 的取值范围是m或m.答案:mm.12.函数y=f(x)是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f(x)=2x+1,假设存在x 1,x 2,…x n 满足0≤x 1<x 2<…<x n ,且|f(x 1)﹣f(x 2)|+|f(x 2)﹣f(x 1)|+…+|f(x n ﹣1﹣f(x n ))|=2021,那么n+x n 的最小值为____.解析:∵函数y=f(x)是最小正周期为4的偶函数,且在x ∈[﹣2,0]时,f(x)=2x+1, ∴函数的值域为[﹣3,1],对任意x i ,x j (i ,j=1,2,3,…,m),都有|f(x i )﹣f(x j )|≤f(x)max ﹣f(x)min =4,要使n+x n 取得最小值,尽可能多让x i (i=1,2,3,…,m)取得最高点,且f(0)=1,f(2)=﹣3,∵0≤x 1<x 2<…<x m ,|f(x 1)﹣f(x 2)|+|f(x 2)﹣f(x 3)|+…+|f(x n ﹣1)﹣f(x n )|=2021, ∴n 的最小值为201615054+=,相应的x n 最小值为1008,那么n+x n 的最小值为1513. 答案:1513.二、选择题(本大题共4题,总分值20分)13.假设a 与b c -都是非零向量,那么“a b a c ⋅=⋅〞是“()a b c ⊥-〞的() A.充分但非必要条件 B.必要但非充分条件 C.充要条件D.既非充分也非必要条件解析:“a b a c ⋅=⋅〞⇔“0a b a c ⋅-⋅=〞⇔“()0a b c ⋅-=〞⇔“()a b c ⊥-〞, 故“a b a c ⋅=⋅〞是“()a b c ⊥-〞的充要条件. 答案:C14.行列式147258369中,元素7的代数余子式的值为() A.﹣15 B.﹣3 C.3 D.12解析:∵行列式147258369, ∴元素7的代数余子式为:D 13=(﹣1)42536=2×6﹣5×3=﹣3. 答案:B.15.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是() A.5800 B.6000 C.6200 D.6400解析:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为5300550054002+=,当另外两名员工的工资都大于6500时,中位数为6100650063002+=,∴8位员工月工资的中位数的取值区间为[5400,6300], ∴8位员工月工资的中位数不可能是6400. 答案:D. 16.假设直线1x ya b+=通过点P(cos θ,sin θ),那么以下不等式正确的选项是() A.a 2+b 2≤1 B.a 2+b 2≥1C.22111a b +≤ D.22111a b+≥ 解析:直线1x ya b+=通过点P(cos θ,sin θ),∴bcos θ+asin θ=ab ,)ab θφ+=,其中tan b aφ=,ab ≥, ∴a 2+b 2≥a 2b 2, ∴22111a b+≥, 答案:D三、解答题(总分值76分)共5题17.某柱体实心铜制零件的截面边长是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中∠BAC=60°. (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1个立方厘米铜重8.9克,按四舍五入精确到0.1克).V 柱=S 底·h.解析:(1)在△ABP 中,由余弦定理建立方程,即可求半径PB 的长度; (2)求出V 柱=S 底·h ,即可求该零件的重量.答案:(1)∵AB=55,AC=88,BP=R ,∠BAC=60°.AP=88﹣R ,∴在△ABP 中,由余弦定理可得:BP 2=AB 2+AP 2﹣2AB ·AP ·cos ∠BAC ,可得:R 2=552+(88﹣R)2﹣2×55×(88﹣R)×cos60°, ∴解得:R=49mm.(2)在△ABP 中,AP=88﹣49=39mm ,AB=55,BP=49,222394955897cos 0.2347239493822BPA +-∠==≈⨯⨯,∴sin ∠BPA ≈0.972.∴∠BPA=arcsin0.972.V 柱=S 底·h=(S △ABP +S 扇形BPC ) ·h=21(arcsin 0.972)49(5539)32360π⋅⨯⨯⋅ 该零件的重量=213(arcsin 0.972)49(5539)322360π⋅⨯⨯⨯+⋅÷1000×8.9≈82.7. 18.如下图,l 1,l 2是互相垂直的异面直线,MN 是它们的公垂线段,点A ,B 在直线l 1上,且位于M 点的两侧,C 在l 2上,AM=BM=NM=CN (1)求证:异面直线AC 与BN 垂直;(2)假设四面体ABCN 的体积V ABCN =9,求异面直线l 1,l 2之间的距离.解析:(1)欲证AC ⊥NB ,可先证BN ⊥面ACN ,根据线面垂直的判定定理只需证AN ⊥BN ,CN ⊥BN 即可;(2)判断异面直线的距离,利用体积公式求解即可.答案:(1)证明:由l 2⊥MN ,l 2⊥l 1,MN ∩l 1=M ,可得l 2⊥平面ABN. 由MN ⊥l 1,AM=MB=MN , 可知AN=NB 且AN ⊥NB.又AN 为AC 在平面ABN 内的射影. ∴AC ⊥NB(2)∵AM=BM=NM=CN ,MN 是它们的公垂线段, 就是异面直线l 1,l 2之间的距离,由中垂线的性质可得AN=BN ,四面体ABCN 的体积V ABCN =9, 可得:31119323ABCN V AB MN CN MN ==⨯⨯⨯=, ∴MN=3.异面直线l 1,l 2之间的距离为3.19.如下图,椭圆C :2241x y +=,左右焦点分别记作F 1,F 2,过F 1,F 2分别作直线l 1,l 2交椭圆AB ,CD ,且l 1∥l 2.(1)当直线l 1的斜率k 1与直线BC 的斜率k 2都存在时,求证:k 1·k 2为定值; (2)求四边形ABCD 面积的最大值.解析:(1)由椭圆方程求出焦点坐标,得到直线AB 、CD 的方程,与椭圆方程联立求得A 、D 的坐标,求出AD 所在直线斜率得答案;(2)由(1)结合弦长公式求得|AB|,再由两平行线间的距离公式求出边AB 、CD 的距离,代入平行四边形面积公式,利用换元法求得最值.答案:(1)证明:由椭圆C :2241x y +=,得a 2=4,b 2=1,∴c ==设k 1=k ,那么AB 所在直线方程为,CD 所在直线方程为y=kx ,联立2241y kx y x ⎧=+⎪⎨+=⎪⎩,得(1+4k 2)x 22x+12k 2﹣4=0.解得x =B x ,那么B y同理求得C x =C y .那么214k k ==-,那么1211·()44k k k k =⋅-=-;(2)解:由(1)知,2214=A B x x k +-+,2212414=A B k x x k -+()224114k AB k +===+. AB 、CD的距离d =(224114四边形=ABCD k S k +=+令1+4k 2=t(t ≥1),那么2311118316816=S t t ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝+⎭-+,∴当t=3时,S max =4.20.数列{a n },定义{△a n }为数列{a n }的一阶差分数列,其中△a n =a n+1﹣a n (n ∈N *)(1)假设a n =n 2﹣n ,试判断{△a n }是否是等差数列,并说明理由;(2)假设a 1=1,△a n ﹣a n =2n,求数列{a n }的通项公式;(3)对(b)中的数列{a n },是否存在等差数列{b n },使得1212nn n n n n b C b C b C a ++⋯+=,对一切n ∈N *都成立,假设存在,求出数列{b n }的通项公式,假设不存在,请说明理由.解析:(1)根据数列{a n }的通项公式a n =n 2﹣n ,结合新定义,可判定{△a n }是首项为4,公差为2的等差数列;(2)由△a n ﹣a n =2n入手能够求出数列{a n }的通项公式;(3)结合组合数的性质:1C n 1+2C n 2+3C n 3+…+nC n n =n(C n ﹣10+C n ﹣11+C n ﹣12+…+C n ﹣1n ﹣1)=n·2n ﹣1进行求解.答案:(1)假设a n =n 2﹣n ,试判断{△a n }是等差数列,理由如下:∵a n =n 2﹣n ,∴△a n =a n+1﹣a n =(n+1)2﹣(n+1)﹣(n 2﹣n)=2n , ∵△a n+1﹣△a n =2,且△a 1=4,∴{△a n }是首项为4,公差为2的等差数列;(2)∵△a n ﹣a n =2n.△a n =a n+1﹣a n ,∴a n+1﹣2a n =2n,∴111222n n n n a a ++-=, ∴数列2n n a ⎧⎫⎨⎬⎩⎭构成以12为首项,12为公差的等差数列, 即1222﹣n n n na n a n =⇒=⋅;(3)b 1C n 1+b 2C n 2+…+b n C n n =a n ,即b 1C n 1+b 2C n 2+…+b n C n n =n·2n ﹣1,∵1C n 1+2C n 2+3C n 3+…+nC n n =n(C n ﹣10+C n ﹣11+C n ﹣12+…+C n ﹣1n ﹣1)=n ·2n ﹣1,∴存在等差数列{b n },b n =n ,使得b 1C n 1+b 2C n 2+…+b n C n n=a n 对一切自然n ∈N 都成立.21.对于函数f(x)(x ∈D),假设存在正常数T ,使得对任意的x ∈D ,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T 同比不减函数〞.(1)求证:对任意正常数T ,f(x)=x 2都不是“T 同比不减函数〞; (2)假设函数f(x)=kx+sinx 是“2π同比不减函数〞,求k 的取值范围; (3)是否存在正常数T ,使得函数f(x)=x+|x ﹣1|﹣|x+1|为“T 同比不减函数〞;假设存在,求T 的取值范围;假设不存在,请说明理由. 解析:(1)根据T 同比不减函数的定义即可证明,(2)根据T 同比不减函数的定义,别离参数得到)4﹣k x ππ≥,根据三角形函数的性质即可求出k 的范围,(3)画出函数f(x)的图象,根据图象的平移即可求出T 的范围.答案:(1)∵f(x)=x 2,∴f(x+T)﹣f(x)=(x+T)2﹣x 2=2xT+T 2=T(2x+T), 由于2x+T 与0的小无法比拟, ∴f(x+T)≥f(x)不一定成立,∴对任意正常数T ,f(x)=x 2都不是“T 同比不减函数,(2)∵函数f(x)=kx+sinx 是“2π同比不减函数, ∴sin sin 222()()()()f x f x k x x kx x πππ+-=+++--=cos sin 0224()k k x x x πππ+-=-≥恒成立,∴4()k x ππ≥-, ∵﹣1≤sin(x ﹣4π)≤1,∴k ≥(3)f(x)=x+|x ﹣1|﹣|x+1|图象如下图,由图象可知,只要把图象向左至少平移4个单位,即对任意的x ∈D ,都有f(x+T)≥f(x)成立, ∴T ≥4.。
2018年上海市杨浦区高考数学一模试卷含详解
![2018年上海市杨浦区高考数学一模试卷含详解](https://img.taocdn.com/s3/m/9381817a26d3240c844769eae009581b6ad9bd45.png)
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g (x)=f(x+α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B ⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.21.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.的2≤k≤n﹣1,a k+1(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【考点】6F:极限及其运算.【专题】35:转化思想;4R:转化法;52:导数的概念及应用.【分析】由n→+∞,→0,即可求得=1.【解答】解:当n→+∞,→0,∴=1,故答案为:1.【点评】本题考查极限的运算,考查计算能力,属于基础题.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;4O:定义法;5J:集合.【分析】利用交集定义直接求解.【解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.3.(4分)已知,则=﹣.【考点】GF:三角函数的恒等变换及化简求值.【专题】11:计算题;35:转化思想;4R:转化法;56:三角函数的求值.【分析】由已知利用诱导公式即可化简求值得解.【解答】解:∵,∴=.故答案为:﹣.【点评】本题主要考查了诱导公式在三角函数化简求值中的应用,属于基础题.4.(4分)若行列式,则x=2.【考点】O1:二阶矩阵.【专题】11:计算题.【分析】先根据行列式的计算公式进行化简,然后解指数方程即可求出x的值.【解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:2【点评】本题主要考查了行列式的基本运算,同时考查了指数方程,属于基础题.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y= 6.【考点】OT:特征向量的定义.【专题】11:计算题;34:方程思想;4O:定义法;5R:矩阵和变换.【分析】由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,由此能求出x+y.【解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.【点评】本题考查两数和的求法,是基础题,解题时要认真审题,注意增广矩阵的合理运用.6.(4分)在的二项展开式中,常数项等于﹣160.【考点】DA:二项式定理.【专题】11:计算题.【分析】研究常数项只需研究二项式的展开式的通项,使得x的指数为0,得到相应的r,从而可求出常数项.=x6﹣r(﹣)r=(﹣2)r x6﹣2r【解答】解:展开式的通项为T r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣160【点评】本题主要考查了利用二项展开式的通项求解指定项,同时考查了计算能力,属于基础题.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【考点】CB:古典概型及其概率计算公式.【专题】11:计算题;4O:定义法;5I:概率与统计.【分析】分别求出基本事件数,“点数和为4”的种数,再根据概率公式解答即可.【解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.【点评】本题考查的知识点是古典概型概率计算公式,难度不大,属于基础题.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【考点】4R:反函数.【专题】51:函数的性质及应用.【分析】先利用点(n,S n)都在f(x)的反函数图象上即点(S n,n)都在f(x)的原函数图象上,得到关于S n的表达式;再利用已知前n项和为S n求数列{a n}的通项公式的方法即可求数列{a n}的通项公式;【解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣1【点评】本小题主要考查反函数、利用已知前n项和为S n求数列{a n}的通项公式的方法等基础知识,考查运算求解能力,属于基础题.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【考点】HR:余弦定理.【专题】11:计算题;35:转化思想;49:综合法;58:解三角形.【分析】由sinA、sinB、sinC依次成等比数列,利用等比数列的性质列出关系式,利用正弦定理化简,再利用余弦定理表示出cosB,把得出关系式代入并利用基本不等式求出cosB的范围,利用余弦函数的性质可求B的最大值.【解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.【点评】此题考查了正弦、余弦定理,以及基本不等式的运用,熟练掌握定理及公式是解本题的关键,属于基础题.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【考点】KC:双曲线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由已知条件推导出a2+1=4,从而得到双曲线的渐近线方程为y=,由此能求出这条双曲线的两条渐近线的夹角.【解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.【点评】本题考查双曲线的两条渐近线的夹角的求法,是基础题,解题时要认真审题,注意抛物线性质的合理运用.11.(5分)已知函数,x∈R,设a>0,若函数g (x)=f(x+α)为奇函数,则α的值为.【考点】GL:三角函数中的恒等变换应用.【专题】35:转化思想;56:三角函数的求值;57:三角函数的图像与性质.【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质求出结果.【解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【考点】K4:椭圆的性质.【专题】35:转化思想;41:向量法;4R:转化法;5D:圆锥曲线的定义、性质与方程.【分析】设直线CD的方程,代入椭圆方程,由△≥0,利用韦达定理及向量的坐标运算,即可求得λ的取值范围.【解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3,∴实数λ的取值范围.故答案为:.【点评】本题考查椭圆的性质,直线与椭圆的位置关系,考查韦达定理及向量的坐标运算,考查计算能力,属于中档题.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【专题】5N:数系的扩充和复数.【分析】直接由复数的除法运算化简,求出复数对应的点的坐标,则答案可求.【解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.【点评】本题考查了复数代数形式的除法运算,考查了复数的代数表示法及其几何意义,是基础题.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【考点】3K:函数奇偶性的性质与判断.【专题】2A:探究型;4O:定义法;51:函数的性质及应用.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.【点评】本题主要考查函数奇偶性的判断,利用函数奇偶性的定义和性质是解决本题的关键15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11:计算题;35:转化思想;4O:定义法;5L:简易逻辑.【分析】t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.由此能求出结果.【解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.【点评】本题考查充分条件、充要条件、必要条件的判断,考查函数的零点等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想,是基础题.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A.B.2C.4D.8【考点】9O:平面向量数量积的性质及其运算;LF:棱柱、棱锥、棱台的体积.【专题】15:综合题;5F:空间位置关系与距离.【分析】由题意可知,三棱锥的顶点的三条直线AB,AC,AD两两垂直,可以扩展为长方体,对角线为球的直径,设出三度,表示出面积关系式,然后利用基本不等式,求出最大值.【解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc )≤(a2+b2+c2)=2即最大值为:2故选:B.【点评】本题是基础题,考查球的内接多面体,基本不等式求最值问题,能够把几何体扩展为长方体,推知多面体的外接球是同一个球,是解题的关键.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【考点】7F:基本不等式及其应用.【专题】33:函数思想;4A:数学模型法;51:函数的性质及应用.【分析】(1)由题意设长方形场地的宽为x,则长为L﹣3x,表示出面积y;由x >0,且l﹣3x>0,可得函数的定义域;(2)对其运用基本不等式求出函数的最值即场地的面积最大值,从而求解.【解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.【点评】此题是一道实际应用题,考查函数的最值问题,解决此类问题要运用基本不等式,这也是高考常考的方法.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【考点】L5:旋转体(圆柱、圆锥、圆台);LM:异面直线及其所成的角.【专题】11:计算题;31:数形结合;44:数形结合法;5F:空间位置关系与距离;5G:空间角.【分析】(1)推导出BS=5,从而SO=4,由此能求出圆锥的体积.(2)取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角,由此能求出异面直线SO与PA所成角.【解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90 O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)【点评】本题考查圆锥的体积的求法,考查异面直线所成角的求法,考查空间中线线、线面、面面的位置关系等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B ⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【考点】18:集合的包含关系判断及应用;3K:函数奇偶性的性质与判断.【专题】33:函数思想;48:分析法;51:函数的性质及应用.【分析】(1)由对数的真数大于0,可得集合A,再由集合的包含关系,可得a 的不等式组,解不等式即可得到所求范围;(2)求得f(x)的定义域,计算f(﹣x)与f(x)比较,即可得到所求结论.【解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.【点评】本题考查函数的定义域和集合的包含关系,考查函数的奇偶性的判断,注意运用定义法,考查运算能力,属于基础题.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【考点】KN:直线与抛物线的综合.【专题】11:计算题;34:方程思想;35:转化思想;5D:圆锥曲线的定义、性质与方程.【分析】(1)根据题意,由抛物线的方程分析可得p的值,即可得答案;(2)根据题意,设直线的方程为x=my+b,分m=0与m≠0两种情况讨论,分析m的取值,综合可得m可取的值,将m的值代入直线的方程即可得答案;(3)设直线AB:x=my+b,将直线的方程与抛物线方程联立,结合OQ⊥AB,由根与系数的关系分析可得答案.【解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m=0时,x=1和x=9符合题意;当m≠0时,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2.△=16(m2+b)>0,y1+y2=4m,所以,所以线段AB的中点M(2m2+b,2m)因为k AB•k CM=﹣1,,所以,得b=3﹣2m2所以△=16(m2+b)=16(3﹣m2)>0,得0<m2<3因为,所以m2=3(舍去)综上所述,直线l的方程为:x=1,x=9(3)设直线AB:x=my+b,A(x1,y1)、B(x2,y2)的坐标满足方程组,所以y2﹣4my﹣4b=0的两根为y1、y2△=16(m2+b)>0,y1+y2=4m,y1y2=﹣4b所以,得b=0或b=4b=0时,直线AB过原点,所以Q(0,0);b=4时,直线AB过定点P(4,0)设Q(x,y),因为OQ⊥AB,所以(x≠0),综上,点Q的轨迹方程为x2﹣4x+y2=0【点评】本题考查直线与抛物线的位置关系,(2)中注意设出直线的方程,并讨论m的值.21.(18分)若数列A:a1,a2,…,a n(n≥3)中(1≤i≤n)且对任意的2≤k≤n﹣1,a k+a k﹣1>2a k恒成立,则称数列A为“U﹣数列”.+1(1)若数列1,x,y,7为“U﹣数列”,写出所有可能的x、y;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n0为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【考点】8K:数列与不等式的综合.【专题】34:方程思想;54:等差数列与等比数列;59:不等式的解法及应用.【分析】(1)根据“U﹣数列”的定义可得:x=1时,;x=2时,;x≥3时,,解出即可得出.(2)n的最大值为65,理由如下:一方面,注意到:a k+a k﹣1>2a k⇔a k+1﹣a k>+1a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,可得b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,利用裂项求和方法可得b i≥i﹣1.(2≤i≤n﹣1).即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥,即,解得n≤65.另一方面,取b i=i ﹣1(1≤i≤64),可得对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,进而得出.(3)M的最小值为,分析如下:当n0=2m(m≥2,m∈N*)时,一﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)方面:由(*)式,b k+1+…+(b k﹣b k)≥m.此时有:a1+a2m﹣(a m+a m+1)≥m(m﹣1),即(a1+a2m)+1≥(a m+a m+1)+m(m﹣1)可得M≥.又,可得,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0,取a m=1,则+1a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且a1=a m﹣(b1+b2+…+b m﹣1)=m(m﹣1)+1.此时.即可得出.【解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.一方面,注意到:a k+1对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k +1对任意的2≤k≤n﹣1恒成立.(*)≥b k﹣1当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n ﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k ≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意.综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+1﹣b k)≥m.此时有:+…+(b k+1(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1 +a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0时,a k+1取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.【点评】本题考查了新定义、等差数列的通项公式与求和公式、裂项求和方法、不等式的性质,考查了推理能力与计算能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
杨浦区2017-2018—2017-2018学年度第一学期高三年级学业质量调研数学试卷(文科) 1.2考生注意: 1.答卷前,考生务必在答题纸写上姓名、考号, 并将核对后的条形码贴在指定位置上. 2.本试卷共有23道题,满分150分,考试时间120分钟.一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分.1. 计算:=+∞→133lim n nn .2.若直线013=--x y 的倾斜角是θ,则=θ (结果用反三角函数值表示).3.若行列式124012x -=,则x = .4.若全集U R =,函数21x y =的值域为集合A ,则=A C U.5.双曲线2221(0)y x b b -=>的一条渐近线方程为y ,则b =________.6.若函数()23-=x x f 的反函数为()x f 1-,则()=-11f . 7. 若将边长为cm 1的正方形绕其一条边所在直线旋转一周,则所形成圆柱的体积等于()3cm .8. 已知函数()lg f x x =,若()1f ab =,则22()()f a f b += _________. 9. 已知函数x x x f cos sin )(=,则函数)(x f 的最小正周期为__________.10. 某公司一年购买某种货物600吨,每次都购买x 吨,运费为3万元/次,一年的总存储费用为2x 万元,若要使一年的总运费与总存储费用之和最小,则每次需购买 吨. 11. 已知复数i -=2ω(i 为虚数单位),复数25-+=ωωz ,则一个以z 为根的实系数一元二次方程是________.12.若21()nx x +的二项展开式中,所有二项式系数和为64,则n 等于 . 13.在100件产品中有90件一等品,10件二等品,从中随机取出4件产品.则恰含1件二等品的概率是 .(结果精确到0.01)14.函数()x f 是R 上的奇函数,()x g 是R 上的周期为4的周期函数,已知()()622=-=-g f ,且()()()()()()()()[]2122022222=-+-++f g g f g g f f ,则()0g 的值为___________.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,填上正确的答案,选对得5分,否则一律得零分.15. 若空间三条直线c b a 、、满足b a ⊥,c b //,则直线a 与c ………( ). )(A 一定平行 )(B 一定相交 )(C 一定是异面直线 )(D 一定垂直16.“21<-x 成立”是“01<-x x成立”的………( ).)(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件.17. 设锐角ABC ∆的三内角A 、B 、C 所对边的边长分别为a 、b 、c ,且 1=a ,A B 2=, 则b 的取值范围为………( ). )(A ()3,2 . )(B ()3,1 .)(C()2,2 . )(D ()2,0 .18.若式子),,(c b a σ满足),,(),,(),,(b a c a c b c b a σσσ==,则称),,(c b a σ为轮换对称式.给出如下三个式子:①abc c b a =),,(σ; ②222),,(c b a c b a +-=σ; ③C B A C C B A 2cos )cos(cos ),,(--⋅=σC B A ,,(是ABC ∆的内角).其中,为轮换对称式的个数是………( ).)(A 0 . )(B 1 . )(C 2 . )(D 3 .三、解答题(本大题满分74分)本大题共5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤 . 19.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分 .已知正方体1111D C B A ABCD -的棱长为a . (1)求异面直线B A 1与C B 1所成角的大小; (2)求四棱锥ABCD A -1的体积.20.(本题满分14分)本题共有2个小题,第(1)小题满分7分,第(2)小题满分7分 .已知向量()1,2x =,()ax a 21,-=,其中0>a .函数()x g ⋅=在区间[]3,2∈x 上有最大值为4,设()()x x g x f =.(1)求实数a 的值;(2)若不等式()033≥-x x k f 在[]1,1-∈x 上恒成立,求实数k 的取值范围.21.(本题满分14分)本题共有2个小题,第(1)小题满分5分,第(2)小题满分9分 . 某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中AC 、BD 是过抛物线Γ焦点F 的两条弦,且其焦点)1,0(F ,0=⋅BD AC ,点E 为y 轴上一点,记α=∠EFA ,其中α为锐角.求抛物线Γ方程;求证:αα2sin )1(cos 2+=AF .22. (本题满分16分)本题共有3个小题,第(1)小题满分4分,第(2)小题满分6分,第(3)小题满分6分. 已知数列{}n a ,n S 是其前n 项的和,且满足21=a ,对一切*∈N n 都有2321++=+n S S n n 成立,设n a b n n +=.(1)求2a ; (2)求证:数列{}n b 是等比数列;(3)求使814011121>+⋅⋅⋅++n b b b 成立的最小正整数n 的值.23.(本题满分18分)本题共有3个小题,第(1)小题满分10分,第①问5分,第②问5分,第(2)小题满分8分.已知椭圆Γ:2214x y +=.(1) 椭圆Γ的短轴端点分别为B A ,(如图),直线BM AM ,分别与椭圆Γ交于F E ,两点,其中点⎪⎭⎫ ⎝⎛21,m M 满足0m ≠,且m ≠①用m 表示点F E ,的坐标;②若∆BME 面积是∆AMF 面积的5倍,求m 的值;(2)若圆ψ:422=+y x .21,l l 是过点)1,0(-P 的两条互相垂直的直线,其中1l 交圆ψ于T 、 R 两点,2l 交椭圆Γ于另一点Q .求TRQ ∆面积取最大值时直线1l 的方程.杨浦区2017-2018—2017-2018学年度第一学期高三模拟测试 1.2一.填空题(本大题满分56分) 1. 1 ; 2.3arctan ; 3.2; 4. ()0,∞- ; 5. 3 ; 6. 1 ; 7. π; 8. 2; 9. 文π; 10. 30 ; 11. 01062=+-x x ; 12.文 6 ;13.文0.30; 14.文2; 二、选择题(本大题满分20分)本大题共有4题 15. D ; 16. B ; 17. A ; 18. 文C三、解答题(本大题满分74分)本大题共5题 19. 【解】(1)因为 D A C B 11//,∴直线B A 1与D A 1所成的角就是异面直线B A 1与C B 1所成角. ……2分又BD A 1∆为等边三角形,∴异面直线B A 1与C B 1所成角的大小为︒60. ……6分(2)四棱锥ABCD A -1的体积=V 323131a a a =⨯⨯ ……12分 20. 【解】(1)由题得()a x a ax ax x g -+-=-+=⋅=1)1(2122 ……4分 又0>a 开口向上,对称轴为1=x ,在区间[]3,2∈x 单调递增,最大值为4,()()43max ==∴g x g 所以,1=a ……7分(2)由(1)的他,()21)(-+==x x x x g x f ……8分令x t 3=,则⎥⎦⎤⎢⎣⎡∈3,31t 以()033≥-x x k f 可化为kt t f ≥)(, 即t t f k )(≤恒成立, ……9分2)11()(-=t t t f 且⎥⎦⎤⎢⎣⎡∈3,311t ,当11=t ,即1=t 时t t f )(最小值为0, ……13分0≤∴k ……14分21. 【解】文科(1) 由抛物线Γ焦点)1,0(F 得,抛物线Γ方程为y x 42= ……5分 (2) 设m AF =,则点)1cos ,sin (+-ααm m A ……8分所以,)cos 1(4)sin (2ααm m +=-,既04cos 4sin 22=--ααm m ……11分 解得 αα2sin )1(cos 2+=AF ……14分22. 【解】文科(1) 由21=a 及2321++=+n S S n n 当1=n 时 故72=a ……4分(2)由2321++=+n S S n n 及)2(2)1(321≥+-+=-n n S S n n……6分 得 1231-+=+n a a n n ,故)(3)1(1n a n a n n +=+++, ……8分即)2(1≥=+n b b n n ,当1=n 时上式也成立, ……9分,故{}n b 是以3为首项,3为公比的等比数列 ……10分(3) 由(2)得nn n n b b 311,3== ……11分8140)311(21311)311(3111121>-=--=+⋅⋅⋅++nn n b b b ……14分故 813>n解得4>n ,最小正整数n 的值5 ……16分23【解】(文科)解:(1)①因为)1,0(),1,0(-B A ,M (m,12),且0m ≠,∴直线AM 的斜率为k1=m 21-,直线BM 斜率为k2=m 23,∴直线AM 的方程为y=121+-x m ,直线BM 的方程为y=123-x m , ……2分由⎪⎩⎪⎨⎧+-==+,121,1422x m y y x 得()22140m x mx +-=,240,,1m x x m ∴==+22241,,11m m E m m ⎛⎫-∴ ⎪++⎝⎭ ……4分 由⎪⎩⎪⎨⎧-==+,123,1422x m y y x 得()229120m x mx +-=,2120,,9m x x m ∴==+222129,99m m F m m ⎛⎫-∴ ⎪++⎝⎭; ……5分②1||||sin 2AMF S MA MF AMF ∆=∠,1||||sin 2BME S MB ME BME ∆=∠,AMF BME ∠=∠,5AMFBME S S ∆∆=,∴5||||||||MA MF MB ME =,∴5||||||||MA MB ME MF =, ……7分∴225,41219m mm mm m m m =--++ 0m ≠,∴整理方程得22115119m m =-++,即22(3)(1)0m m --=,又有m ≠∴230m -≠, 12=∴m ,1m ∴=±为所求. ……10分(2) 因为直线12l l ⊥,且都过点(0,1)P -,所以设直线1:110l y kx kx y =-⇒--=,直线21:10l y x x ky k k =--⇒++=, ……12分所以圆心(0,0)到直线1:110l y kx kx y =-⇒--=的距离为d =所以直线1l 被圆224x y +=所截的弦222143242k k d TR ++=-=;由2222248014x ky k k x x kx x y ++=⎧⎪⇒++=⎨+=⎪⎩,所以482+-=+k k x x P Q 所以418)4(64)11(222222++=++=k k k k k QP ……15分 所以13131613232341334324348212222=≤+++=++==∆k k k k TR QP S TRQ当2522k k =⇒=⇒=±时等号成立,此时直线1:12l y x =±- ……18分。