2016年广东省深圳市17校联考中考数学二模试卷

合集下载

中考数学二模试卷含解析191

中考数学二模试卷含解析191

2016年广东省深圳市福田区中考数学二模试卷一、选择题:本部分共12小题,共36分,每小题给出4个选项,其中只有一个是正确的.1.﹣2的倒数是()A.﹣ B.﹣2 C.D.22.2016年4月14日日本熊本县发生级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.×108B.×109C.×1010D.×10113.下列计算正确的是()A.a10﹣a7=a3 B.(﹣2a2b)2=﹣2a4b2C.D.(a+b)9÷(a+b)3=(a+b)64.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.5.在选拔2016年第十三届全国冬季运动会速滑运动员时,教练打算根据平时训练成绩,从运动员甲和乙种挑选1名成绩稳定的运动员,甲、乙两名运动员平时训练成绩的方差分别为S甲2=,S乙2=,你认为教练应该挑选的运动员是()A.乙B.甲C.甲、乙都行D.无法判断6.五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是()A.B.C.D.7.如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是5,则乘电梯从点B 到点C上升的高度h是()A. m B.5m C. m D.10m8.在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a<B.<a<3 C.﹣3<a<﹣ D.<a<39.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形11.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线上,此时下列结论不正确的是()A.点B为(0,) B.AC边的高为C.双曲线为D.此时点A与点O距离最大12.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为()A. cm B.1cm C. cm D.2cm二、填空题:本题共4小题,每小题3分,共12分.13.因式分解:a3﹣ab2=______.14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为______m.15.在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为______.16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是______.三、解答题:本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分.17.计算:﹣12016+cos60°﹣()﹣2+.18.解方程组.19.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)本次调查的学生总人数为______;(2)补全条形统计图;(3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为______;(4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为______.20.如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.21.深圳市地铁9号线梅林段的一项绿化工程由甲、乙两工程队承担,已知乙工程队单独完成这项工程所需的天数是甲工程队单独完成所需天数的,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?22.如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于点E,交AC或延长线于点F.(1)当AE=4时,求AF的长;(2)当以边AC为直径的⊙O与线段DE相切时,求BE的长.23.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为______,点B的坐标为______;(2)抛物线的解析式为______;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.2016年广东省深圳市福田区中考数学二模试卷参考答案与试题解析一、选择题:本部分共12小题,共36分,每小题给出4个选项,其中只有一个是正确的.1.﹣2的倒数是()A.﹣ B.﹣2 C.D.2【考点】倒数.【分析】根据乘积是1的两个数互为倒数,可得一个数的倒数.【解答】解:有理数﹣2的倒数是﹣.故选:A.2.2016年4月14日日本熊本县发生级地震,据NHK报道,受强地震造成的田地受损,农产品无法出售等影响,日本熊本县农林业遭受的地震损失最少可达236亿日元,数据236亿用科学记数法表示为()A.×108B.×109C.×1010D.×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:∵1亿=1×108,∴236亿=236×108=×1010.故选:C.3.下列计算正确的是()A.a10﹣a7=a3 B.(﹣2a2b)2=﹣2a4b2C.D.(a+b)9÷(a+b)3=(a+b)6【考点】二次根式的加减法;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A、原式不能合并,错误;B、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可作出判断;C、原式不能合并,错误;D、原式利用同底数幂的除法法则计算得到结果,即可作出判断.【解答】解:A、原式不能合并,错误;B、原式=4a4b2,错误;C、原式不能合并,错误;D、原式=(a+b)6,正确,故选D4.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是()A. B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、旋转角是,只是每旋转与原图重合,而中心对称的定义是绕一定点旋转180度,新图形与原图形重合.因此不符合中心对称的定义,不是中心对称图形.D、是轴对称图形,不是中心对称图形,故本选项错误.故选C.5.在选拔2016年第十三届全国冬季运动会速滑运动员时,教练打算根据平时训练成绩,从运动员甲和乙种挑选1名成绩稳定的运动员,甲、乙两名运动员平时训练成绩的方差分别为S甲2=,S乙2=,你认为教练应该挑选的运动员是()A.乙B.甲C.甲、乙都行D.无法判断【考点】方差.【分析】先比较出两名运动员的方差,再根据方差的意义:方差越小数据越稳定,即可得出答案.【解答】解:∵甲、乙两名运动员平时训练成绩的方差分别为S甲2=,S乙2=,∴S甲2<S乙2,∴甲的成绩更稳定,∴教练应该挑选的运动员是甲;故选B.6.五一期间刚到深圳的小明在哥哥的陪伴下,打算上午从莲山春早、侨城锦绣、深南溢彩中随机选择一个景点,下午从梧桐烟云、梅沙踏浪、一街两制中随机选择一个景点,小明恰好上午选中莲山春早,下午选中梅沙踏浪的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列表得出所有等可能的情况数,找出恰好上午选中莲山春早,下午选中梅沙踏浪的情况数,即可求出所求概率.【解答】解:根据题意列表如下(莲山春早、侨城锦绣、深南溢彩、梧桐烟云、梅沙踏浪、一街两制分别记作1,2,3,4,5,6),1 2 34 (1,4)(2,4)(3,4)5 (1,5)(2,5)(3,5)6 (1,6)(2,6)(3,6)所有等可能的情况有9种,其中恰好上午选中莲山春早,下午选中梅沙踏浪的情况有1种,则P=,故选C7.如图是深圳市少年宫到中心书城地下通道的手扶电梯示意图,其中AB、CD分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC=135°,BC的长约是5,则乘电梯从点B 到点C上升的高度h是()A. m B.5m C. m D.10m【考点】解直角三角形的应用.【分析】如图,作CH⊥AB于H,在Rt△CBH中,根据sin45°=,即可求出CH.【解答】解:如图,作CH⊥AB于H.在Rt△CBH中,∵∠CHB=90°,BC=5,∠CBH=45°,∴sin45°=,∴CH=BC×=5.故选B.8.在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,则a的取值范围是()A.﹣3<a<B.<a<3 C.﹣3<a<﹣ D.<a<3【考点】解一元一次不等式组;点的坐标.【分析】根据第二象限内点的坐标特点列出关于a的不等式组,求出a的取值范围即可.【解答】解:∵在平面直角坐标系中,点(a﹣3,2a+1)在第二象限内,∴,解得﹣<a<3.故选D.9.2016年4月21日在深圳体育馆召开的第八届中国(深圳)国际茶业文化博览会上某茶商将甲、乙两种茶叶卖出,甲种茶叶卖出1200元,盈利20%,乙种茶叶卖出1200元,亏损20%,则此人在这次交易中是()A.盈利50元B.盈利100元C.亏损150元D.亏损100元【考点】一元一次方程的应用.【分析】求此次茶叶交易中共盈利多少元,关键要求出两种茶叶买进的价格,利用买价+利润=卖价,列方程求解即可.【解答】解:设甲种茶叶的买价是x元,根据题意得:(1+20%)x=1200,解得x=1000.设乙种茶叶的买价是y元,根据题意得:(1﹣20%)y=1200,解得y=1500.1000+1500>1200+1200,即此次交易中亏损了100元.故选D.10.下列命题中,不正确的是()A.有一个角是60°的等腰三角形是等边三角形B.一组对边平行且一组对角相等的四边形是平行四边形C.对角线互相垂直且相等的四边形是矩形D.对角线相等的菱形是正方形【考点】命题与定理.【分析】根据等边三角形的判定方法以及平行四边形和正方形的判定方法分别判断得出答案.【解答】解:A、有一个角是60°的等腰三角形是等边三角形,正确,不合题意;B、一组对边平行且一组对角相等的四边形是平行四边形,符合平行四边形的判定方法,故不合题意;C、对角线互相垂直且相等的四边形是正方形,故此选项错误,符合题意;D、对角线相等的菱形是正方形,正确,不合题意;故选:C.11.如图,Rt△ABC中AB=3,BC=4,∠B=90°,点B、C在两坐标轴上滑动.当边AC⊥x轴时,点A刚好在双曲线上,此时下列结论不正确的是()A.点B为(0,) B.AC边的高为C.双曲线为D.此时点A与点O距离最大【考点】反比例函数综合题.【分析】根据AB=3,BC=4,∠B=90°,利用勾股定理可求AC=5,而AC⊥x轴,易知点A的纵坐标是5,设AC边上的高是h,再结合三角形的面积公式,易求h,进而可得点A的坐标,再代入反比例函数解析式,易求k,从而可得反比例函数解析式,在Rt△BOC中,利用勾股定理可求OB,从而可得点B的坐标.综上可知A、B、C都正确,从而选择D.【解答】解:∵AB=3,BC=4,∠B=90°,∴AC=5,∵AC⊥x轴,∴点A的纵坐标是5,设AC边上的高是h,∵S△ABC=×3×4=×5•h,∴h=;∴点A的坐标是(,5),又∵点A在上,∴k=12,∴反比例函数的解析式是y=;∵OC=,BC=4,∴OB=(负数舍去),∴B点坐标是(0,).综上所述,可知ABC都是正确的,答案D不一定正确,利用排除法可知.故选D.12.一块矩形木板ABCD,长AD=3cm,宽AB=2cm,小虎将一块等腰直角三角板的一条直角边靠在顶点C上,另一条直角边与AB边交于点E,三角板的直角顶点P在AD边上移动(不含端点A、D),当线段BE最短时,AP的长为()A. cm B.1cm C. cm D.2cm【考点】相似三角形的判定与性质;二次函数的最值.【分析】设BE=y,AP=x,由△AEP∽△DPC,得=,构建二次函数即可解决问题.【解答】解:设BE=y,AP=x,∵四边形ABCD是矩形,∴∠A=∠D=90°,∵∠EPC=90°,∴∠APE+∠AEP=90°,∠APE+∠CPD=90°,∴∠AEP=∠CPD,∴△AEP∽△DPC,∴=,∴=,∴y=x2﹣3x+4=(x﹣)2+.∵a=1>0,∴x=时,y有最小值,故选C.二、填空题:本题共4小题,每小题3分,共12分.13.因式分解:a3﹣ab2= a(a+b)(a﹣b).【考点】提公因式法与公式法的综合运用.【分析】观察原式a3﹣ab2,找到公因式a,提出公因式后发现a2﹣b2是平方差公式,利用平方差公式继续分解可得.【解答】解:a3﹣ab2=a(a2﹣b2)=a(a+b)(a﹣b).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为 4 m.【考点】平行投影;相似三角形的应用.【分析】根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得=;即DC2=ED•FD,代入数据可得答案.【解答】解:如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°,∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有=;即DC2=ED•FD,代入数据可得DC2=16,DC=4;故答案为:4.15.在平行四边形ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连接CE,则△CDE的周长为8 .【考点】平行四边形的性质.【分析】由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=8,继而可得△CDE的周长等于AD+CD.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,AB=CD,AD=BC,∵AB=3,BC=5,∴AD+CD=8,∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=8.故答案为:8.16.将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是4n+1 .【考点】规律型:图形的变化类.【分析】仔细观察,发现图形的变化的规律,从而确定答案.【解答】解:∵第1次:分别连接各边中点如图2,得到4+1=5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到4×2+1=9个正方形…,以此类推,根据以上操作,则第n次得到4n+1个正方形,故答案为:4n+1.三、解答题:本题共7小题,其中第17题5分,第18题6分,第19题7分,第20、21题各8分,第22题9分,第23题9分,共52分.17.计算:﹣12016+cos60°﹣()﹣2+.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1+﹣4+1=﹣3.18.解方程组.【考点】解二元一次方程组.【分析】由第二个方程表示出x,然后代入第一个方程,求出y的值,再求解即可.【解答】解:,由②得,x=2y+8③,③代入①得,3(2y+8)+y=10,解得y=﹣2,把y=﹣2代入③得,x=2×(﹣2)+8=4,所以,方程组的解是.19.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏 a科学实验35%音乐舞蹈 b手工编织10%其他 c根据统计图表中的信息,解答下列问题:(1)本次调查的学生总人数为200人;(2)补全条形统计图;(3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为72°;(4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为420人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由“科学实验”社团的人数和其所占的百分比即可求出总人数;(2)根据百分比,计算出文学鉴赏和手工编织的人数,即可补全条形统计图;(3)计算出“音乐舞蹈”社团的百分比即可得到所在扇形所对应的圆心角;(4)用总人数乘以“科学实验”社团的百分比,即可解答.【解答】解:(1)本次调查的学生总人数是:70÷35%=200(人),b=40÷200=20%,c=10÷200=5%,a=1﹣(35%+20%+10%+5%)=30%,故答案为:200人;(2)文学鉴赏的人数:30%×200=60(人),手工编织的人数:10%×200=20(人),如图所示,(3)由题意可知:b=40÷200=20%,所以“音乐舞蹈”社团所在扇形所对应的圆心角=360°×20%=72°,故答案为:72°;(4)全校选择“科学实验”社团的学生人数:1200×35%=420(人),故答案为:420人.20.如图,正方形ABCD中,以对角线BD为边作菱形BDFE,使B,C,E三点在同一直线上,连接BF,交CD与点G.(1)求证:CG=CE;(2)若正方形边长为4,求菱形BDFE的面积.【考点】正方形的性质;菱形的判定与性质.【分析】(1)连接DE,则DE⊥BF,可得∠CDE=∠CBG,根据BC=DC,∠BCG=∠DCE,可证△BCG≌△DCE,可证CG=CE;(2)已知正方形的边长可以证明BD,即BE,根据BE,DC即可求菱形BDFE的面积.【解答】解:连接DE,则DE⊥BF,∵∠ODG+∠OGD=90°,∠CBG+∠CGB=90°,∠CGB=∠OGD∴∠CDE=∠CBG,又∵BC=DC,∠BCG=∠DCE,∴△BCG≌△DCE(ASA),∴CG=CE,(2)正方形边长BC=4,则BD=BC=4,菱形BDFE的面积为S=4×4=16.答:菱形BDFE的面积为16.21.深圳市地铁9号线梅林段的一项绿化工程由甲、乙两工程队承担,已知乙工程队单独完成这项工程所需的天数是甲工程队单独完成所需天数的,甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成.(1)求乙工程队单独完成这项工作需要多少天?(2)因工期的需要,将此项工程分成两部分,甲做其中一部分用了x天完成,乙做另一部分用了y天完成,其中x、y均为正整数,且x<46,y<52,求甲、乙两队各做了多少天?【考点】分式方程的应用.【分析】(1)根据甲工程队单独工作30天后,乙工程队参与合做,两队又共同工作了36天完成,列出方程求解,等量关系为:乙做36天的工作量+甲队做66天的工作量=1.(2)首先根据题意列出x和y的关系式,进而求出x的取值范围,结合x和y都是正整数,即可求出x和y的值.【解答】解:(1)设解工程队单独完成这项工作需要x天,则乙队单独完成需x天,由题意,得66×+36×=1,解得x=120,经检验,x=120是原方程的解,∴x=80,答:乙队单独完成需80天.(2)∵甲队做其中一部分用了x天,乙队做另一部分用了y天,∴+=1即y=80﹣x,又∵x<46,y<52,∴,解得42<x<46,∵x、y均为正整数,∴x=45,y=50,答:甲队做了45天,乙队做了50天.22.如图,△ABC中,AB=AC=10,BC=12,点D在边BC上,且BD=4,以点D为顶点作∠EDF=∠B,分别交边AB于点E,交AC或延长线于点F.(1)当AE=4时,求AF的长;(2)当以边AC为直径的⊙O与线段DE相切时,求BE的长.【考点】相似三角形的判定与性质;等腰三角形的性质;切线的性质.【分析】(1)先证△BDE∽△CFD,得出对应边成比例,求出CF的长,即可得出结果;(2)取边AC中点O,作OG⊥DE于G,OQ⊥BC于Q,过点A作AH⊥BC于H,连接OD,则CH=BC=6,由⊙O和线段DE相切,得出OG=AC=5,求出cosC==,CQ=COcosC=3,DQ=BC﹣BD﹣CQ=5,得出OG=DQ,由HL证得Rt△OGD≌Rt△DQO,得出∠GOD=∠QDO,OG∥BC,∠EDB=∠OGD=90°,由cosB==cosC=,即可得出结果.【解答】解:(1)∵∠EDF+∠FDC=∠B+∠DEB,∠EDF=∠B,∴∠FDC=∠DEB,∵AB=AC,∴∠C=∠B,∴△CDF∽△BED,∴,即,解得:CF=,∴AF=AC﹣CF=10﹣=;(2)取边AC中点O,作OG⊥DE于G,OQ⊥BC于Q,过点A作AH⊥BC于H,连接OD,如图所示:∵AB=AC,AH⊥BC,∴CH=BC=6,∵⊙O和线段DE相切,∴OG=AC=5,在Rt△CAH中,∠AHC=90°,cosC===,在Rt△CQO中,∠CQO=90°∵cosC=,∴CQ=COcosC=5×=3,∴DQ=BC﹣BD﹣CQ=12﹣4﹣3=5,∴OG=DQ,在Rt△OGD与Rt△DQO中,,∴Rt△OGD≌Rt△DQO(HL),∴∠GOD=∠QDO,∴OG∥BC,∴∠EDB=∠OGD=90°,∴cosB==cosC=,∴BE==,∴当以边AC为直径的⊙O与线段DE相切时,BE=.23.如图,在平面直角坐标系中,将一块腰长为的等腰直角三角板ABC放在第二象限,且斜靠在两坐标轴上,直角顶点C的坐标为(﹣1,0),点B在抛物线y=ax2+ax﹣2上.(1)点A的坐标为(0,2),点B的坐标为(﹣3,1);(2)抛物线的解析式为y=x2+x﹣2 ;(3)设(2)中抛物线的顶点为D,求△DBC的面积;(4)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)先根据勾股定理求出OA的长,即可得出点A的坐标,再求出OE、BE的长即可求出B的坐标;(2)把点B的坐标代入抛物线的解析式,求出a的值,即可求出抛物线的解析式;(3)先求出点D的坐标,再用待定系数法求出直线BD的解析式,然后求出CF的长,再根据S△DBC=S△CEB+S△CED进行计算即可;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,由全等三角形的判定定理可得△MP1C≌△FBC,再由全等三角形的对应边相等可得出点P1点的坐标;②若以点A为直角顶点;则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,由全等三角形的性质可得出点P2的坐标;点P1、P2的坐标代入抛物线的解析式进行检验即可.③以点P为直角顶点,求出点P的坐标,再判断点P不在抛物线上.【解答】解:(1)∵C(﹣1,0),AC=,∴OA===2,∴A(0,2);过点B作BF⊥x轴,垂足为F,∵∠ACO+∠CAO=90°,∠ACO+∠BCF=90°,∠BCF+∠FBC=90°,在△AOC与△CFB中,∵,∴△AOC≌△CFB,∴CF=OA=2,BF=OC=1,∴OF=3,∴B的坐标为(﹣3,1),故答案为:(0,2),(﹣3,1);(2)∵把B(﹣3,1)代入y=ax2+ax﹣2得:1=9a﹣3a﹣2,解得a=,∴抛物线解析式为:y=x2+x﹣2.故答案为:y=x2+x﹣2;(3)由(2)中抛物线的解析式可知,抛物线的顶点D(﹣,﹣),设直线BD的关系式为y=kx+b,将点B、D的坐标代入得:,解得.∴BD的关系式为y=﹣x﹣.设直线BD和x 轴交点为E,则点E(﹣,0),CE=.∴S△DBC=××(1+)=;(4)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形:①若以点C为直角顶点;则延长BC至点P1,使得P1C=BC,得到等腰直角三角形△ACP1,过点P1作P1M⊥x轴,∵CP1=BC,∠MCP1=∠BCF,∠P1MC=∠BFC=90°,∴△MP1C≌△FBC.∴CM=CF=2,P1M=BF=1,∴P1(1,﹣1);②若以点A为直角顶点;i)则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形△ACP2,过点P2作P2N⊥y轴,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,∴P2(2,1),ii)若以点P为直角顶点.过P3作P3G⊥y轴于G,同理,△AGP3≌△CAO,∴GP3=OA=2,AG=OC=1,∴P3为(﹣2,3).经检验,点P1(1,﹣1)与点P2(2,1)都在抛物线y=x2+x﹣2上,点P3(﹣2,3)不在抛物线上.故点P的坐标为P1(1,﹣1)与P2(2,1).。

2016年广东省深圳市南山区中考数学二模试卷(解析版)

2016年广东省深圳市南山区中考数学二模试卷(解析版)

2016年广东省深圳市南山区中考数学二模试卷一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.(3分)﹣5的倒数是()A.B.C.﹣5D.52.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×1083.(3分)方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.5.(3分)下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a66.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC =BC,则下列选项正确的是()A.B.C.D.7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<29.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3 10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是.14.(3分)分解因式:2x2y﹣8y=.15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tan B为.三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤. 17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.(6分)解不等式组并求它的整数解.19.(7分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:P A是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.2016年广东省深圳市南山区中考数学二模试卷参考答案与试题解析一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.(3分)﹣5的倒数是()A.B.C.﹣5D.5【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.(3分)人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B.3.(3分)方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=16﹣16=0,∴一元二次方程有两个相等的实数根.故选:A.4.(3分)如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选:C.5.(3分)下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a6【解答】解:A、原式=a2﹣16,不成立;B、原式不能合并,不成立;C、原式=a3,不成立;D、原式=a6,成立.故选:D.6.(3分)如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得P A+PC =BC,则下列选项正确的是()A.B.C.D.【解答】解:∵PB+PC=BC,而P A+PC=BC,∴P A=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选:D.7.(3分)如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°﹣∠3=48°.故选:A.8.(3分)关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<2【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选:C.9.(3分)如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A (3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.10.(3分)如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米【解答】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=1.∴AB=.故选:B.11.(3分)如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【解答】解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU=(180°﹣∠CAE)=(180°﹣60°)=80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.12.(3分)如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.【解答】解:过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴,即,∴x=3,∴CD=3,∴S△ABD=AB•DE=3=15,∵AD==3,设BD到AD的距离是h,∴S△ABD=AD•h,∴h=2.故选:C.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.(3分)某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是6.【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,故这组数据的中位数是6.故答案为:6.14.(3分)分解因式:2x2y﹣8y=2y(x+2)(x﹣2).【解答】解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).15.(3分)在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.16.(3分)已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tan B为.【解答】解:过A作AC⊥y轴,过B作BD⊥y轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤. 17.(6分)计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.18.(6分)解不等式组并求它的整数解.【解答】解:,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.19.(7分)为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.【解答】解:(1)该镇本次统计的小微企业总个数是:4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数为:×360°=72°;故答案为:25,72;A类小微企业个数为:25﹣5﹣14﹣4=2(个);补全统计图:(2)分别用A,B表示2个来自高新区的,用C,D表示2个来自开发区的.画树状图得:∵共有12种等可能的结果,所抽取的2个发言代表都来自高新区的有2种情况,∴所抽取的2个发言代表都来自高新区的概率为:=.20.(8分)【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.21.(8分)某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?【解答】解:(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.22.(8分)如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:P A是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【解答】(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴,∵OA=OB∴∠ABD=∠BAO,∴.23.(9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴CD=,∴BNmin==,∴BN1min=BN min=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴l AB:y=x+1不妨设P(m,﹣(m﹣2)2),则E(m,m+1)∴PE=m2﹣m+2∴当m=1时,,∴P(1,﹣),∴Q1(﹣,﹣).此时,PQ1最小,最小值为=,∴PQ1=PQ2=.设Q2(n,n+1),∵P(1,﹣),∴PQ2==,∴n=﹣或n=,∴Q2(,),∴满足条件的Q(﹣,﹣)或(,),。

广东省深圳市2016年17校联考中考数学二模试卷(解析版)

广东省深圳市2016年17校联考中考数学二模试卷(解析版)

广东省深圳市2016年17校联考中考数学二模试卷(解析版)参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.给出四个数0,,π,﹣1,其中最小的是()A.0 B.C.π D.﹣1【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<π,故给出四个数0,,π,﹣1,其中最小的是﹣1.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为()美元.A.8.18×109B.8.18×1010C.8.18×1011D.0.818×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:818亿美元可用科学记数法表示为8.18×1010美元,故选B.【点评】此题考查科学记数法问题,将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.3.在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,结合图形特征即可求解.【解答】解:A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a8÷a4=a2B.a3a4=a12C.=±2 D.2x3x2=2x5【分析】直接利用同底数幂的除法运算法则以及单项式乘以单项式运算法则求出答案.【解答】解:A、a8÷a4=a4,故此选项错误;B、a3a4=a7,故此选项错误;C、=2,故此选项错误;D、2x3x2=2x5,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算法则以及单项式乘以单项式,正确掌握运算法则是解题关键.5.下列各图中,描述∠1与∠2互为余角关系最准确的是()A.B.C.D.【分析】根据互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1=∠2,不是互为余角关系,故本选项错误;B、∠1=∠2,是对顶角,不是互为余角关系,故本选项错误;C、∠1与∠2互为余角关系,故本选项正确;D、∠1与∠2互为补角关系,故本选项错误.故选C.【点评】本题考查了余角和补角,熟练掌握余角的概念并准确识图是解题的关键.6.如图,正三棱柱的主视图为()A.B.C.D.【分析】根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.7.2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x场,则可列方程为()A.3x+(29﹣x)=67 B.x+3(29﹣x)=67 C.3 x+(30﹣x)=67 D.x+3(30﹣x)=67 【分析】设该队共胜了x场,则平了(30﹣x)场,根据得出总分为67分列出方程解答即可.【解答】解:设该队共胜了x场,则平了(30﹣x)场,由题意得3x+(29﹣x)=67,故选A【点评】此题考查一元一次方程的实际运用,理解题意,找出得分的计算方法是解决问题的关键.8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=ACBD,其中正确的结论有()A.0个B.1个C..2个D..3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==ACBD,故③正确;故选D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.9.深圳空气质量优良指数排名近年来一直排在全国城市前十.下表是深圳市气象局于2016年3月22日在全市十一个监测点监测到空气质量指数(AQI)数据如表监测点荔园西乡华侨城南油盐田龙岗洪湖南澳葵涌梅沙观澜AQI 15 31 25 24 31 24 25 25 34 20 26 质量优优优优优优优优优优优上述(AQI)数据中,众数和中位数分别是()A.25,25 B.31,25 C.25,24 D.31,24【分析】一组数据中出现次数最多的数据叫做众数;把这组数据按照从小到大的顺序排列,第6个数是中位数.【解答】解:把这组数据按照从小到大的顺序排列15,20,24,24,25,25,25,26,31,31,34,第6个数是25,所以中位数是25;在这组数据中出现次数最多的是25,即众数是25.故选A.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.一组数据中出现次数最多的数据叫做众数.10.如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD于F,再分别以B、F为圆心,大于BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为()A.11 B.6 C.8 D.10【分析】连接EF,根据题意得出AE垂直平分BF,AF=AB=5,得出OB=OF=3,∠BAE=∠FAE,由勾股定理求出OA,再证出BE=AB=AF,得出四边形ABEF是平行四边形,由平行四边形的性质得出OA=OE=AE,即可得出结果.【解答】解:连接EF,如图所示:根据题意得:AE垂直平分BF,AF=AB=5,∴∠AOF=90°,OB=OF=3,∠BAE=∠FAE,∴OA==4,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴BE=AB=AF,∴四边形ABEF是平行四边形,∴OA=OE=AE,∴AE=2OA=8;故选:C.【点评】本题考查了平行四边形的性质与判定、垂直平分线的性质、勾股定理;熟练掌握平行四边形的性质,证明四边形ABEF是平行四边形是解决问题的关键.11.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②③④ B.③④ C.①③④ D.①②【分析】根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号即可判断①;根据对称轴求出b=﹣a,即可判断②;求得点(2,0)关于对称轴的对称点为(﹣1,0),把x=﹣1代入函数关系式,即可判断③;求出点(0,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.【解答】解:∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;∵由①中知b=﹣a,∴a+b=0,故②正确;由对称轴为x=,点(2,0)的对称点是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故③正确;∵(0,y1)关于直线x=的对称点的坐标是(1,y1),∴y1=y2.故④正确;综上所述,正确的结论是①②③④.故选:A.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.12.如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x 轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1 B.2﹕C.2﹕1 D.29﹕14【分析】首先根据反比例函数y2=的解析式可得到S△ODB=S△OAC=×3=,再由阴影部=9,从而得到图象C1的函数关系式为y=,再算出△EOF的分面积为6可得到S矩形PDOC面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC的值.【解答】解:∵B、C反比例函数y2=的图象上,∴S△ODB=S△OAC=×3=,∵P在反比例函数y1=的图象上,=k1=6++=9,∴S矩形PDOC∴图象C1的函数关系式为y=,∵E点在图象C1上,∴S△EOF=×9=,∴==3,∵AC⊥x轴,EF⊥x轴,∴AC∥EF,∴△EOF∽△AOC,∴=,故选:A.【点评】此题主要考查了反比例函数系数k的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.二、填空题(本大题共4小题,每小题3分,共12分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)13.已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则的值是5.【分析】根据一元二次方程根与系数的关系和代数式变形求则可.欲求的值,可先将此代数式进行分解因式化简.化简后为,再将x=1代入方程ax2+bx﹣10=0中求出a+b的值即可.【解答】解:==,将x=1代入方程ax2+bx﹣10=0中可得a+b﹣10=0,解得a+b=10则=5,故填5.【点评】本题综合考查了分式的化简与方程解的定义.解这类题的关键是利用分解因式的方法化简分式,将已知量与未知量联系起来.14.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有1000个学生去过该景点.【分析】首先求出随机抽取的400名学生中去过该景点的学生所占的百分比,然后再乘以8000,即可得出答案.【解答】解:∵随机抽取400名九年级学生,其中有50名学生去过该景点,∴估计全区九年级学生去过该景点的人数为:×8000=1000(个).故答案为:1000.【点评】本题考查了用样本估计总体的知识,解答本题的关键在于求出随机抽取的400名学生中去过该景点的学生所占的百分比,然后乘以全区九年级学生人数.15.将一些相同的“○”按如图所示的规律依次摆放,观察每个“稻草人”中的“○”的个数,则第20个“稻草人”中有385个“○”.【分析】分析数据可得:第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…由此得出第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.据此可以求得答案.【解答】解:∵第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…∴第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.∴第20个“稻草人”中的“○”的个数为1+23+192=385,故答案为:385.【点评】此题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.16.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为2﹣2.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的性质;会利用勾股定理计算线段的长.解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题10分,共52分)17.计算:|﹣|+(2016﹣π)0﹣2sin45°+()﹣2.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+1﹣2×+4=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解不等式组.并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,找出解集中的整数解即可.【解答】解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.不等式组的整数为:2、3.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.19.九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有40名;该班参加“爱心社”的人数为12名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为36°;(2)一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.【分析】(1)利用参加“读书社”的学生数和它所占比例可计算出调查的学生总数,再用学生总数乘以“爱心社”所占的百分比得到该班参加“爱心社”的人数,然后计算出该班参加“吉他社”的百分比,用此百分比乘以360度即可得到“吉他社”对应扇形的圆心角的度数;(3)画树状图展示所有8种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)因为参加“读书社”的学生有10人,且在扇形统计图中,所占比例为25%,所以该班的学生共有10÷25%=40(人);该班参加“爱心社”的人数=40×20%=8(名);参加“吉他社”的学生在全班学生中所占比为(1﹣25%﹣15%﹣20%﹣20%)=10%,所以“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;故答案为40,8,36°;(3)画树状图如下:共有8种等可能的结果数,其中恰好选中甲和乙的情况有2种,所以P(选中甲和乙)==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图.20.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求sin∠AED的值.【分析】(1)根据平行四边形的判定得出边形OCED是平行四边形,根据菱形的性质求出∠COD=90°,根据矩形的判定得出即可;(2)解直角三角形求出AO、DO、求出AC、CE,根据勾股定理求出AE,解直角三角形求出即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD,∴四边形OCED是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCED是矩形;(2)解:∵∠ADB=60°,AD=2,∴OD=,AO=3,∴CE=,AC=6,由勾股定理得:AE===,∴sin∠AED=sin∠CAE==.【点评】本题考查了菱形的性质,矩形的判定,平行四边形的判定和性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键,注意:菱形的对角线互相平分且垂直.21.如图,河坝横断面背水坡AB的坡角是45°,背水坡AB长度为20米,现在为加固堤坝,将斜坡AB改成坡度为1:2的斜坡AD【备注:AC⊥CB】(1)求加固部分即△ABD的横截面的面积;(2)若该堤坝的长度为100米,某工程队承包了这一加固的土石方工程,为抢在在汛期到来之际提前完成这一工程,现在每天完成的土方比原计划增加25%,这样实际比原计划提前10天完成了,求原计划每天完成的土方.【提示土石方=横截面x堤坝长度】【分析】(1)在直角△ABC中,首先求得AC的长,根据坡度的定义求得CD的长,进而求的BD的长,然后利用三角形的面积公式求解;(2)设原计划每天完成的土方为x立方,则实际每天完成的土石方为(1+25%)x,然后根据每天完成的土方比原计划增加25%,这样实际比原计划提前10天完成即可列方程求解.【解答】解(1)由题意可知∠ABC=45°,AB=20,AC:CD=1:2,∵∠ABC=45° AB=20,∴AC=BC=20.∵AC:CD=1:2,∴CD=40,BD=20,∴△ABD的面积=200;②堤坝的土石方总量=100x200=20000.设原计划每天完成的土方为x立方,则实际每天完成的土石方为(1+25%)x,由题意可得:﹣=10,解得x=400.经检验x=400是原方程的解.答:原计划每天完成的土方为400立方米.【点评】本题考查了解直角三角形以及分式方程的应用,正确求得△ABD的面积是关键.22.如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC 交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【分析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD 平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC ⊥BC ,∴AC ∥OD ,∴∠CAD=∠ADO ,∵OA=OD ,∴∠OAD=∠ADO ,∴∠OAD=∠CAD ,即AD 平分∠CAB ;(2)设EO 与AD 交于点M ,连接ED .∵∠BAC=60°,OA=OE ,∴△AEO 是等边三角形,∴AE=OA ,∠AOE=60°,∴AE=AO=OD ,又由(1)知,AC ∥OD 即AE ∥OD ,∴四边形AEDO 是菱形,则△AEM ≌△DMO ,∠EOD=60°,∴S △AEM =S △DMO ,∴S 阴影=S 扇形EOD ==.【点评】此题考查了切线的性质、等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.如图,抛物线y=﹣x 2+bx+c 与x 轴交于点A (﹣1,0)、B (3,0).(1)求b 、c 的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.【解答】解:(1)将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:,解得:.(2)作DN∥CF交CB于N,如图1所示.∵DN∥CF,∴△DEN∽△FEC,∴.∵抛物线的解析式为y=﹣x2+2x+3,∴点C的坐标为(0,3).∴直线BC的解析式为y=﹣x+3.令直线y=kx+1中x=0,则y=1,即点F的坐标为(0,1).设点D的坐标为(m,﹣m2+2m+3),则点N的坐标为(m,﹣m+3),∴DN=﹣m2+3m,CF=3﹣1=2,∴=,∵DN=﹣m2+3m=﹣+的最大值为,∴的最大值为.(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线,如图2所示.∵抛物线的解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴P点的坐标为(1,4),PM的解析式为x=1,∵直线BC的解析式为y=﹣x+3,∴M的坐标为(1,2),∵点G的坐标为(1,0),∴PM=GM=2,∴过点G与BC平行的直线为y=﹣x+1.联立直线与抛物线解析式得:,解得:或.∴点Q的坐标为(,﹣)或(,﹣).故在直线BC下方的抛物线上存在点Q,使得△QMB与△PMB的面积相等,点Q的坐标为(,﹣)或(,﹣).【点评】本题考查了待定系数法求函数解析式、相似三角形的判定及性质、二次函数的性质以及解二元二次方程组,解题的关键是:(1)利用待定系数法求函数解析式;(2)由二次函数的性质解决最值问题;(3)由直线与抛物线相交得出二元二次方程组.本题属于中档题,难度不大,解决该题型题目时,联立直线与抛物线的解析式得出关于x、y的二元二次方程组,通过解方程组来求出交点坐标是关键.。

广东省深圳市2016年十七校联考中考数学模拟试卷含答案解析

广东省深圳市2016年十七校联考中考数学模拟试卷含答案解析

广东省深圳市2016年十七校联考中考数学模拟试卷(解析版)一、选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的))1.的倒数是()A.﹣2 B.2 C.D.2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×1043.下列计算正确的是()A.a3•a4=a12 B.(a3)4=a7 C.(a2b)3=a6b3D.a3÷a4=a(a≠0)4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.一个几何体的三视图如图所示,这个几何体是()A.棱柱 B.圆柱 C.圆锥 D.球6.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是()A.3,3 B.2,3 C.2,2 D.3,57.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元8.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b29.四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角分别相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④对角线互相垂直的四边形是菱形,其中正确的是()A.①②B.①③C.②③D.③④10.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则AB的长为()A.4 B.4 C.2D.211.如图是二次函数y=ax2+bx+c过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③12.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.因式分解:x3y﹣xy=.14.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.15.“五一”国际劳动节,广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆黄色花,第二层摆红色花,第三层是紫色花,第四层摆黄色花…由里向外依次按黄、红、紫的颜色摆放,那么第10层应摆盆花.16.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=.三、解答题(共七题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣22++(3﹣π)0﹣|﹣3|18.先化简()+(1﹣),然后从﹣<x<范围内选取一个合适的整数作为x的值代入求值.19.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?20.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.21.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?22.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.23.抛物线y=ax2+bx+4A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,若点P在直线BC上方的抛物线上,△BCP的面积为15,求点P 的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为弧ACE上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2016年广东省深圳市十七校联考中考数学模拟试卷参考答案与试题解析一、选择题(本部分共12小题,每题3分,共36分.每小题4个选项,只有一个是正确的))1.的倒数是()A.﹣2 B.2 C.D.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是﹣2,故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.2015年初,一列CRH5型高速车组进行了“300000公里正线运营考核”标志着中国高速快车从“中国制造”到“中国创造”的飞跃,将300000用科学记数法表示为()A.3×106B.3×105C.0.3×106D.30×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300000用科学记数法表示为:3×105.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列计算正确的是()A.a3•a4=a12 B.(a3)4=a7 C.(a2b)3=a6b3D.a3÷a4=a(a≠0)【分析】根据同底数幂乘法、幂的乘方、积的乘方的运算性质,利用排除法求解.【解答】解:A、应为a3a4=a7,故本选项错误;B、应为(a3)4=a12,故本选项错误;C、每个因式都分别乘方,正确;D、应为a3÷a4=(a≠0),故本选项错误.故选C.【点评】本题考查了同底数幂的乘法,积的乘方和幂的乘方,需熟练掌握且区分清楚,才不容易出错.4.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【点评】本题主要考查的是轴对称图形和中心对称图形,掌握轴对称图形和中心对称图形的特点是解题的关键.5.一个几何体的三视图如图所示,这个几何体是()A.棱柱 B.圆柱 C.圆锥 D.球【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为圆可得为圆柱体.故选B.【点评】本题考查了由三视图来判断几何体,还考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力.6.为了解某班学生每天使用零花钱的情况,小红随机调查了15名同学,结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是()A.3,3 B.2,3 C.2,2 D.3,5【分析】由于小红随机调查了15名同学,根据表格数据可以知道中位数在第三组,再利用众数的定义可以确定众数在第二组.【解答】解:∵小红随机调查了15名同学,∴根据表格数据可以知道中位数在第三组,即中位数为3.∵2出现了5次,它的次数最多,∴众数为2.故选B.【点评】此题考查中位数、众数的求法:①给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据里的数.②给定一组数据,出现次数最多的那个数,称为这组数据的众数.如果一组数据存在众数,则众数一定是数据集里的数.7.阳光公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为()A.26元B.27元C.28元D.29元【分析】根据题意,设电子产品的标价为x元,按照等量关系“标价×0.9﹣进价=进价×20%”,列出一元一次方程即可求解.【解答】解:设电子产品的标价为x元,由题意得:0.9x﹣21=21×20%解得:x=28∴这种电子产品的标价为28元.【点评】本题为一元一次方程的应用题型,同学们需学会借助方程去解决应用题.8.下列不等式变形正确的是()A.由a>b,得a﹣2<b﹣2 B.由a>b,得|a|>|b|C.由a>b,得﹣2a<﹣2b D.由a>b,得a2>b2【分析】根据不等式两边加(或减)同一个数(或式子),不等号的方向不变;等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.【解答】解:A、等式的两边都减2,不等号的方向不变,故A错误;B、如a=2,b=﹣3,a>b,得|a|<|b|,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、如a=2,b=﹣3,a>b,得a2>b2,故D错误.故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.9.四个命题:①三角形的一条中线能将三角形分成面积相等的两部分;②有两边和其中一边的对角分别相等的两个三角形全等;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2);④对角线互相垂直的四边形是菱形,其中正确的是()A.①②B.①③C.②③D.③④【分析】根据三角形的面积,全等三角形的判定,关于原点对称的点的坐标特征,菱形的判定定理对各小题分析判断即可得解.【解答】解:①三角形的一条中线能将三角形分成面积相等的两部分,正确;②有两边和其中一边的对角对应相等的两个三角形全等,错误;③点P(1,2)关于原点的对称点坐标为(﹣1,﹣2),正确;④对角线互相垂直的平行四边形才是菱形,故错误.综上所述,正确的是①③.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA=30°,则AB的长为()A.4 B.4 C.2D.2【分析】由切线的性质得∠OAB=90°,利用锐角三角函数的定义可得AB.【解答】解:∵,为切线,∴∠OAB=90°,∵∠OBA=30°,OA=2,∴AB===2,故选C.【点评】本题主要考查了切线的性质,利用切线的性质和锐角三角函数的定义是解答此题的关键.11.如图是二次函数y=ax2+bx+c过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac,②2a+b=0;③a﹣b+c=0;④5a<b.其中正确结论是()A.②④B.①④C.②③D.①③【分析】①正确.根据抛物线与x轴有两个交点即可判定.②错误.根据对称轴x=﹣1即可判定.③错误.根据x=﹣1时,y>0即可判定.④正确.由b=2a,a<0,即可判定5a<2a由此即可解决问题.【解答】解:∵抛物线与x轴有两个交点,∴△>0,即b2﹣4ac>0,∴b2>4ac,故①正确.∵对称轴x=﹣1,∴﹣=﹣1,∴b=2a,∴2a﹣b=0,故②错误,∵x=﹣1时,y>0,∴a﹣b+c>0,故③错误,∵b=2a,a<O,∴5a<2a,即5a<b,故④正确,故选B.【点评】本题考查二次函数的图象与系数的关系、解题的关键是熟练掌握基本知识,读懂图象信息,充分利用图象信息解决问题,属于中考常考题型.12.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A.B.C.D.【分析】作FG⊥AB于点G,由AE∥FG,得出=,求出Rt△BGF≌Rt△BCF,再由AB=BC求解.【解答】解:作FG⊥AB于点G,∵∠DAB=90°,∴AE∥FG,∴=,∵AC⊥BC,∴∠ACB=90°,又∵BE是∠ABC的平分线,∴FG=FC,在Rt△BGF和Rt△BCF中,∴Rt△BGF≌Rt△BCF(HL),∴CB=GB,∵AC=BC,∴∠CBA=45°,∴AB=BC,∴====+1.故选:C.【点评】本题主要考查了平行线分线段成比例,全等三角形及角平分线的知识,解题的关键是找出线段之间的关系,CB=GB,AB=BC再利用比例式求解.二、填空题(共4小题,每小题3分,满分12分)13.因式分解:x3y﹣xy=xy(x﹣1)(x+1).【分析】首先提取公因式xy,再运用平方差公式进行二次分解.【解答】解:x3y﹣xy,=xy(x2﹣1)…(提取公因式)=xy(x+1)(x﹣1).…(平方差公式)故答案为:xy(x+1)(x﹣1).【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.小亮与小明一起玩“石头、剪刀、布”的游戏,两同学同时出“剪刀”的概率是.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两同学同时出“剪刀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,两同学同时出“剪刀”的有1种情况,∴两同学同时出“剪刀”的概率是:.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.15.“五一”国际劳动节,广场中央摆放着一个正六边形的鲜花图案,如图所示,已知第一层摆黄色花,第二层摆红色花,第三层是紫色花,第四层摆黄色花…由里向外依次按黄、红、紫的颜色摆放,那么第10层应摆60盆黄色花.【分析】根据题意发现:颜色是黄、红、紫三个一循环;花盆个数是逐层加6盆鲜花.【解答】解:第10层是10÷3=3…1,应摆放黄花;第一层是2×6﹣6=6盆花;第二层是3×6﹣6=12盆花;依此类推,第10层是11×6﹣6=60盆花.故应摆60盆黄花.【点评】此题要分别考虑颜色和摆放盆数的规律,根据规律进行分析.16.如图,△AOB与△ACD均为正三角形,且顶点B、D均在双曲线y=(x>0)上,点A、C在x轴上,连接BC交AD于点P,则△OBP的面积=4.【分析】设等边△AOB的边长为a,等边△ACD的边长为b,由等边三角形的性质找出点B 的坐标,过点B作BE⊥x轴于点E,过点P作PF⊥x轴于点F,由等边三角形的性质可找出∠BOA=60°=∠PAC,从而得出BO∥PA,根据平行线的性质即可得出,再由BE⊥x轴,PF⊥x轴得出BE∥PF,由此得出==,根据比例关系找出线段PF的长度,通过分割三角形以及三角形的面积公式找出S△OBP=,由点B的坐标结合反比例函数图象上点的坐标特征即可得出结论.【解答】解:设等边△AOB的边长为a,等边△ACD的边长为b,∴点A的坐标为(a,0),点C的坐标为(a+b,0),点B的坐标为(a,a),点D的坐标为(a+b,b).过点B作BE⊥x轴于点E,过点P作PF⊥x轴于点F,如图所示.∵△AOB与△ACD均为正三角形,∴∠BOA=60°=∠PAC,∴BO∥PA,∴.∵BE⊥x轴,PF⊥x轴,∴BE∥PF,∴==.∵BE=a,∴PF=BE=.S△OBP=S△OBC﹣S△OPC=OCBE﹣OCPF=(a+b)×a﹣(a+b)×=.∵点B在反比例函数y=(x>0)的图象上,∴k=a a==4,∴S△OBP=4.故答案为:4.【点评】本题考查了等边三角形的性质、反比例函数图象上点的坐标特征、三角形的面积公式以及平行线的性质,解题的关键是用a表示出S△OBP.本题属于中档题,难度不大,但用到知识点较多,解决该题型题目时,通过平行线的性质找出线段间的关系,再通过分割图形求出三角形面积是关键.三、解答题(共七题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣22++(3﹣π)0﹣|﹣3|【分析】分别进行乘方、二次根式、零指数幂和绝对值的化简等运算,然后合并求解.【解答】解:原式=﹣4+2+1﹣3=﹣4【点评】本题考查了实数的运算,涉及了乘方、二次根式、零指数幂和绝对值的化简等知识,解答本题的关键是掌握各知识点的运算法则.18.先化简()+(1﹣),然后从﹣<x<范围内选取一个合适的整数作为x的值代入求值.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值代入进行计算即可.【解答】解:原式=+=﹣==,当x=时,原式==﹣3.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.垃圾的分类处理与回收利用,可以减少污染,节省资源.某城市环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况,其相关信息如下:根据图表解答下列问题:(1)请将条形统计图补充完整;(2)在抽样数据中,产生的有害垃圾共3吨;(3)调查发现,在可回收物中塑料类垃圾占,每回收1吨塑料类垃圾可获得0.7吨二级原料.假设该城市每月产生的生活垃圾为5 000吨,且全部分类处理,那么每月回收的塑料类垃圾可以获得多少吨二级原料?【分析】(1)根据D类垃圾量和所占的百分比即可求得垃圾总数,然后乘以其所占的百分比即可求得每个小组的频数从而补全统计图;(2)求得C组所占的百分比,即可求得C组的垃圾总量;(3)首先求得可回收垃圾量,然后求得塑料颗粒料即可;【解答】解:(1)观察统计图知:D类垃圾有5吨,占10%,∴垃圾总量为5÷10%=50吨,故B类垃圾共有50×30%=15吨,故统计表为:(2)∵C组所占的百分比为:1﹣10%﹣30%﹣54%=6%,∴有害垃圾为:50×6%=3吨;(3)(吨),答:每月回收的塑料类垃圾可以获得378吨二级原料.【点评】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据.20.如图1,在△OAB中,∠OAB=90°,∠AOB=30°,OB=8.以OB为边,在△OAB外作等边△OBC,D是OB的中点,连接AD并延长交OC于E.(1)求证:四边形ABCE是平行四边形;(2)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.【分析】(1)首先根据直角三角形中斜边上的中线等于斜边的一半可得DO=DA,再根据等边对等角可得∠DAO=∠DOA=30°,进而算出∠AEO=60°,再证明BC∥AE,CO∥AB,进而证出四边形ABCE是平行四边形;(2)设OG=x,由折叠可得:AG=GC=8﹣x,再利用三角函数可计算出AO,再利用勾股定理计算出OG的长即可.【解答】(1)证明:∵Rt△OAB中,D为OB的中点,∴AD=OB,OD=BD=OB∴DO=DA,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:设OG=x,由折叠可得:AG=GC=8﹣x,在Rt△ABO中,∵∠OAB=90°,∠AOB=30°,BO=8,∴AO=BOcos30°=8×=4,在Rt△OAG中,OG2+OA2=AG2,x2+(4)2=(8﹣x)2,解得:x=1,∴OG=1.【点评】此题主要考查了平行四边形的判定与性质,以及勾股定理的应用,图形的翻折变换,关键是掌握平行四边形的判定定理.21.山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(列方程解答)(2)该车行计划今年新进一批A型车和B型车共60辆,A型车的进货价为每辆1100元,销售价与(1)相同;B型车的进货价为每辆1400元,销售价为每辆2000元,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?【分析】(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由卖出的数量相同建立方程求出其解即可;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由条件表示出y与a之间的关系式,由a的取值范围就可以求出y的最大值.【解答】解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得解得:x=1600,经检验,x=1600是元方程的根;答:今年A型车每辆售价1600元;(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得y=(1600﹣1100)a+(2000﹣1400)(60﹣a),y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的两倍,∴60﹣a≤2a,∴a≥20.∵k=﹣100<0,∴y随a的增大而减小.∴a=20时,y最大=34000元.∴B型车的数量为:60﹣20=40辆.∴当新进A型车20辆,B型车40辆时,这批车获利最大.【点评】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,一次函数的解析式的运用,解答时由销售问题的数量关系求出一次函数的解析式是关键.22.如图,已知AB是⊙O的直径,直线CD与⊙O相切于点C,AD⊥CD于点D.(1)求证:AC平分∠DAB;(2)若点E为的中点,AD=,AC=8,求AB和CE的长.【分析】(1)首先连接OC,由直线CD与⊙O相切于点C,AD⊥CD,易证得OC∥AD,继而可得AC平分∠DAB;(2)首先连接BC,OE,过点A作AF⊥CE于点F,可证得△ADC∽△ACB,△ACB∽△AFE,△ACF是等腰直角三角形,然后由相似三角形的对应边成比例以及勾股定理,即可求得答案.【解答】(1)证明:连接OC,∵直线CD与⊙O相切于点C,∴OC⊥CD,∵AD⊥CD,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠OAC=∠DAC,即AC平分∠DAB;(2)连接BC,OE,过点A作AF⊥EC于点F,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠ADC,∵∠DAC=∠BAC,∴△ADC∽△ACB,∴,即,解得:AB=10,∴BC==6,∵点E为的中点,∴∠AOE=90°,∴OE=OA=AB=5,∴AE==5,∵∠AEF=∠B(同弧所对圆周角相等),∠AFE=∠ACB=90°,∴△ACB∽△AFE,∴,∴,∴AF=4,EF=3,∵∠ACF=∠AOE=45°,∴△ACF是等腰直角三角形,∴CF=AF=4,∴CE=CF+EF=7.【点评】此题考查了切线的性质、相似三角形的判定与性质、勾股定理以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.23.抛物线y=ax2+bx+4A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,若点P在直线BC上方的抛物线上,△BCP的面积为15,求点P 的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为弧ACE上的一动点(不与点A,E重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.【分析】(1)将点A、B的坐标代入抛物线的解析式,得到关于a、b的方程,从而可求得a、b的值;(2)设点P的坐标为P(m,m2﹣6m+4),根据S△CBP=15,由S△CBP=S梯形CEDP﹣S△CEB ﹣S△PBD,得到关于m的方程求得m的值,从而可求得点P的坐标;(3)首先证明△EAB∽△NMB,从而可得到NB=,当MB为圆的直径时,NB有最大值.【解答】解:(1)将点A、B的坐标代入抛物线的解析式得:,解得:.∴抛物线得解析式为y=x2﹣6x+4;(2)如图所示:设点P的坐标为P(m,m2﹣6m+4)∵S△CBP=15,即:S△CBP=S梯形CEDP﹣S△CEB﹣S△PBD,∴m(5+m2﹣6m+4+1)﹣×5×5﹣(m﹣5)(m2﹣6m+5)=15,化简得:m2﹣5m﹣6=0,解得:m=6,或m=﹣1,∴点P的坐标为(6,4)或(﹣1,11),(3)连接AB、EB,∵AE是圆的直径,∴∠ABE=90°,∴∠ABE=∠MBN,又∵∠EAB=∠EMB,∴△EAB∽△NMB,∵A(1,﹣1),B(5,﹣1),∴点O1的横坐标为3,将x=0代入抛物线的解析式得:y=4,∴点C的坐标为(0,4),设点O1的坐标为(3,m),∵O1C=O1A,∴=,解得:m=2,∴点O1的坐标为(3,2),∴O1A=,在Rt△ABE中,由勾股定理得:BE===6,∴点E的坐标为(5,5),∴AB=4,BE=6,∵△EAB∽△NMB,∴=,∴=,∴NB=BM,∴当MB为直径时,MB最大,此时NB最大,∴MB=AE=2,∴NB=×2=3.【点评】本题主要考查了二次函数的综合应用,相似三角形的判定和性质,勾股定理,圆周角定理,利用两点间的距离公式求得圆的半径是解题的关键.。

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)

广东省深圳市2016-2017学年中考模拟数学考试试卷(二)一、选择题1.9的平方根是()A. ±3B. 3C. ﹣3D. 812.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2016年“快的打车”账户流水总金额达到147.3亿元,147.3亿用科学记数法表示为()A. 1.473×1010B. 14.73×1010C. 1.473×1011D. 1.473×10123.下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A. B. C. D.4.下列运算正确的是()A. 3ab﹣2ab=1B. x4•x2=x6C. (x2)3=x5D. 3x2÷x=2x5.如图,已知a∥b,∠1=50°,则∠2=()A. 40°B. 50°C. 120°D. 130°6.一家商店将某种商品按进货价提高100%后,又以6折优惠售出,售价为60元,则这种商品的进货价是()A. 120元B. 100元C. 72元D. 50元7.由几个大小相同的正方形组成的几何图形如图,则它的左视图是()A. B. C. D.8.若ab>0,则函数y=ax+b与y=b(a≠0)在同一直角坐标系中的图象可能是()xA. B. C. D.9.已知不等式组 {x −a <−11−x 3≤1 的解集如图所示(原点没标出),则a 的值为( )A. ﹣1B. 0C. 1D. 210.如图,一艘轮船以40海里/时的速度在海面上航行,当它行驶到A 处时,发现它的北偏东30°方向有一灯塔B .轮船继续向北航行2小时后到达C 处,发现灯塔B 在它的北偏东60°方向.若轮船继续向北航行,那么当再过多长时间时轮船离灯塔最近?( )A. 1小时B. √3 小时C. 2小时D. 2√3 小时 11.对于数对(a ,b )、(c ,d ),定义:当且仅当a=c 且b=d 时,(a ,b )=(c ,d );并定义其运算如下: (a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),如(1,2)※(3,4)=(1×3﹣2×4,1×4+2×3)=(﹣5,10).若(x ,y )※(1,﹣1)=(1,3),则x y 的值是( ) A. ﹣1 B. 0 C. 1 D. 2 12.如图所示,矩形ABCD 中,AE 平分∠BAD 交BC 于E ,∠CAE=15°,则下面的结论:①△ODC 是等边三角形;②BC=2AB ;③∠AOE=135°;④S △AOE =S △COE , 其中正确结论有( )A. 1个B. 2个C. 3个D. 4个二、填空题13.分解因式:ax 2﹣9a=________.14.有A 、B 两只不透明口袋,每只口袋装有两只相同的球,A 袋中的两只球上分别写了“细”、“致”的字样,B 袋中的两只球上分别写了“信”、”心”的字样,从每只口袋里各摸出一只球,刚好能组成“细心”字样的概率是________.15.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打________折.16.如图,直线y=x ,点A 1坐标为(1,0),过点A 1作x 轴的垂线交直线于点B 1 , 以原点O 为圆心,OB 1长为半径画弧交x 轴于点A 2;再过点A 2作x 轴的垂线交直线于点B 2 , 以原点O 为圆心,OB 2长为半径画弧交x轴于点A3;…,按照此做法进行下去,则OA n的长为________.三、解答题17.计算:(﹣12)﹣2+ √3tan60°+|﹣1|+(2cos60°+1)0.18.解方程:3+xx−4+1=14−x.19.某课题小组为了解某品牌手机的销售情况,对某专卖店该品牌手机在今年1~4月的销售做了统计,并绘制成如图两幅统计图(如图).(1)该专卖店1~4月共销售这种品牌的手机________台;(2)请将条形统计图补充完整;(3)在扇形统计图中,“二月”所在的扇形的圆心角的度数是________;(4)在今年1~4月份中,该专卖店售出该品牌手机的数量的中位数是________台.20.2013年9月23日强台风“天兔”登录深圳,伴随着就是狂风暴雨.梧桐山山坡上有一棵与水平面垂直的大树,台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面(如图所示).已知山坡的坡角∠AEF=23°,量得树干的倾斜角为∠BAC=38°,大树被折断部分和坡面所成的角∠ADC=60°,AD=3m.(1)求∠DAC的度数;(2)求这棵大树折断前的高度.(结果保留根号)21.为了能以“更新、更绿、更洁、更宁”的城市形象迎接2011年大运会的召开,深圳市全面实施市容市貌环境提升行动.某工程队承担了一段长为1500米的道路绿化工程,施工时有两张绿化方案:甲方案是绿化1米的道路需要A型花2枝和B型花3枝,成本是22元;乙方案是绿化1米的道路需要A型花1枝和B型花5枝,成本是25元.现要求按照乙方案绿化道路的总长度不能少于按甲方案绿化道路的总长度的2倍.(1)求A型花和B型花每枝的成本分别是多少元?(2)求当按甲方案绿化的道路总长度为多少米时,所需工程的总成本最少?总成本最少是多少元?22.如图1,边长为2的正方形ABCD中,E是BA延长线上一点,且AE=AB,点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,直线EP交AD于点F,过点F作直线FG⊥DE于点G,交AB于点R.(1)求证:AF=AR;(2)设点P运动的时间为t,①求当t为何值时,四边形PRBC是矩形?②如图2,连接PB.请直接写出使△PRB是等腰三角形时t的值.23.如图,⊙C的内接△AOB中,AB=AO=4,tan∠AOB= 3,抛物线y=ax2+bx经过点A(4,0)与点(﹣2,46).(1)求抛物线的函数解析式;(2)直线m与⊙C相切于点A,交y轴于点D.求证:AD∥OB;(3)动点P在线段OB上,从点O出发向点B运动;同时动点Q在线段DA上,从点D出发向点A运动;点P的速度为每秒一个单位长,点Q的速度为每秒2个单位长,当PQ⊥AD时,求运动时间t的值.答案解析部分一、<b >选择题1.【答案】A【解析】【解答】解:∵(±3)2=9,∴9的平方根为±3.故选A.【分析】直接根据平方根的定义求解即可.2.【答案】A【解析】【解答】解:147.3亿用科学记数法表示为1.473×1010,故选:A.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.3.【答案】B【解析】【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,不是轴对称图形,故本选项错误.故选B.【分析】根据轴对称图形与中心对称图形的概念求解.4.【答案】B【解析】【解答】解:A、应为3ab﹣2ab=ab,故选项错误;B、x4•x2=x6,正确;C、应为(x2)3=x6,故选项错误;D、应为3x2÷x=3x,故选项错误.故选B.【分析】根据合并同类项法则;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.5.【答案】D【解析】【解答】解:如图,∵∠1=50°,∴∠3=180°﹣∠1=180°﹣50°=130°,又∵a∥b,∴∠2=∠3=130°.故选D .【分析】根据平角的定义得到∠3=180°﹣∠1=180°﹣50°=130°,然后根据两直线平行,同位角相等即可得到∠2的度数. 6.【答案】 D【解析】【解答】设进货价为x 元,由题意得: (1+100%)x•60%=60, 解得:x =50, 故选:D .【分析】根据题意假设出商品的进货价,从而可以表示出提高后的价格为(1+100%)x , 再根据以6折优惠售出,即可得出符合题意的方程,求出即可. 7.【答案】B【解析】【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形, 故选:B . 【分析】根据从左边看得到的图形是左视图,可得答案. 8.【答案】C【解析】【解答】解:∵ab >0, ∴a 、b 同号,当a >0,b >0时,直线经过第一、二、三象限,双曲线经过第一、三象限, 当a <0,b <0时,直线经过第二、三、四象限,双曲线经过第二、四象限,A 、图中直线经过直线经过第一、四、三象限,双曲线经过第一、三象限,故A 选项错误;B 、图中直线经过原点,故B 选项错误;C 、图中直线经过第一、二、三象限,双曲线经过第一、三象限,故C 选项正确;D 、图中直线经过第二、一、四象限,双曲线经过第二、四象限,故D 选项错误. 故选:C .【分析】由于ab >0,那么a 、b 同号,当a >0,b >0时,直线经过第一、二、三象限,双曲线经过第一、二象限,当a <0,b <0时,直线经过第二、三、四象限,双曲线经过第二、四象限,利用这些结论即可求解. 9.【答案】D【解析】【解答】解:∵ {x −a <−11−x 3≤1 的解集为:﹣2≤x <a ﹣1, 又∵,∴﹣2≤x <1, ∴a ﹣1=1, ∴a=2. 故选D .【分析】首先解不等式组,求得其解集,又由 ,即可求得不等式组的解集,则可得到关于a 的方程,解方程即可求得a 的值. 10.【答案】 A【解析】【解答】解:作BD ⊥AC 于D ,如下图所示:易知:∠DAB=30°,∠DCB=60°, 则∠CBD=∠CBA=30°. ∴AC=BC ,∵轮船以40海里/时的速度在海面上航行, ∴AC=BC=2×40=80海里, ∴CD= 12 BC=40海里.故该船需要继续航行的时间为40÷40=1小时. 故选A .【分析】过B 作AC 的垂线,设垂足为D .由题易知:∠DAB=30°,∠DCB=60°,则∠CBD=∠CBA=30°,得AC=BC .由此可在Rt △CBD 中,根据BC (即AC )的长求出CD 的长,进而可求出该船需要继续航行的时间. 11.【答案】C【解析】【解答】解:∵(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ), ∴(x ,y )※(1,﹣1)=(x+y ,﹣x+y )=(1,3),∵当且仅当a=c 且b=d 时,(a ,b )=(c ,d ); ∴ {x +y =1−x +y =3 ,解得: {x =−1y =2 , ∴x y 的值是(﹣1)2=1, 故选:C .【分析】根据(a ,b )※(c ,d )=(ac ﹣bd ,ad+bc ),得出(x ,y )※(1,﹣1)的值即可求出x ,y 的值.12.【答案】 C【解析】【解答】解:∵四边形ABCD 是矩形,∴∠BAD=90°,OA=OC ,OD=OB ,AC=BD , ∴OA=OD=OC=OB , ∵AE 平分∠BAD , ∴∠DAE=45°, ∵∠CAE=15°, ∴∠DAC=30°, ∵OA=OD ,∴∠ODA=∠DAC=30°,∴∠DOC=60°,∵OD=OC,∴△ODC是等边三角形,∴①正确;∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°∴∠DAC=∠ACB=30°,∴AC=2AB,∵AC>BC,∴2AB>BC,∴②错误;∵AD∥BC,∴∠DBC=∠ADB=30°,∵AE平分∠DAB,∠DAB=90°,∴∠DAE=∠BAE=45°,∵AD∥BC,∴∠DAE=∠AEB,∴∠AEB=∠BAE,∴AB=BE,∵四边形ABCD是矩形,∴∠DOC=60°,DC=AB,∵△DOC是等边三角形,∴DC=OD,∴BE=BO,∴∠BOE=∠BEO=1(180°﹣∠OBE)=75°,2∵∠AOB=∠DOC=60°,∴∠AOE=60°+75°=135°,∴③正确;∵OA=OC,∴根据等底等高的三角形面积相等得出S△AOE=S COE,∴④正确;故选C.【分析】根据矩形性质求出OD=OC,根据角求出∠DOC=60°即可得出三角形DOC是等边三角形,求出AC=2AB,即可判断②,求出∠BOE=75°,∠AOB=60°,相加即可求出∠AOE,根据等底等高的三角形面积相等得出S△AOE=S COE.二、<b >填空题13.【答案】a(x+3)(x﹣3)【解析】【解答】解:ax2﹣9a =a(x2﹣9),=a(x+3)(x﹣3).故答案为:a(x+3)(x﹣3).【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.14.【答案】14.故答案【解析】【解答】解:共有4种情况,恰好能组成“细心”字样的情况数有1种,所以概率为14为1.4【分析】列举出所有情况,看刚好能组成“细心”字样的情况数占所有情况数的多少即可.15.【答案】七【解析】【解答】解:设打x折,﹣800≥800×5%,根据题意得1200• x10解得x≥7.所以最低可打七折.故答案为七.﹣800≥800×5%,然后解不等式求出x的范【分析】设打x折,利用销售价减进价等于利润得到1200• x10围,从而得到x的最小值即可.16.【答案】(√2)n﹣1【解析】【解答】解:∵B1,B2,…,B n是直线y=x上的点,∴△OA1B1,△OA2B2,…,△OA n B n都是等腰直角三角形,由等腰三角形的性质,得OA2=OB1= √2OA1,OA3=OB1= √2OA2,…OA n=OB n﹣1= √2OA n﹣1=(√2)n﹣1.故答案为:(√2)n﹣1.【分析】由直线y=x的性质可知,△OA1B1,△OA2B2,…都是等腰直角三角形,且OA2=OB1= √2OA1,由此可知,后一个三角形的直角边长是前一个三角形直角边长的√2倍,得出一般规律.三、<b >解答题17.【答案】解:原式=4+3+1+1 =9【解析】【分析】原式第一项利用负整数指数幂法则计算,第二项利用特殊角的三角函数值计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.18.【答案】解:方程两边同乘(x﹣4),得:3+x+x﹣4=﹣1,整理解得x=0.经检验x=0是原方程的解【解析】【分析】因为4﹣x=﹣(x﹣4),所以最简公分母为(x﹣4),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.19.【答案】(1)240(2)解:如图(3)135°(4)55【解析】【解答】解:(1)由两种统计图可知一月份的销售量为60台,占前四个月销售量的25%,∴60÷25%=240,∴专卖店1~4月共销售这种品牌的手机240台;(2)如图;(3)∵90240×360°=135°∴“二月”所在的扇形的圆心角的度数是135°;(4)排序后一三两月的销量位于中间位置,∴中位数为:(60+50)÷2=55台.【分析】(1)用一月份的销售量除以该月的销售量所占百分比即可得到总得销售量;(2)用销售总量减去其他三个月的销售量即可得到二月份的销售量;(3)用二月份的销售量除以四个月的销售总量即可得到二月份所占百分比;(4)找到销售量位于中间位置的两个月份,其销量的平均数即为四个月销量的中位数.20.【答案】(1)解:延长BA交EF于一点G,如图所示,则∠DAC=180°﹣∠BAC﹣∠GAE=180°﹣38°﹣(90°﹣23°)=75°(2)解:过点A作CD的垂线,设垂足为H,在Rt△ADH中,∠ADC=60°,∠AHD=90°,∴∠DAH=30°,∵AD=3,∴DH= 32,AH= 3√32,在Rt△ACH中,∠CAH=∠CAD﹣∠DAH=75°﹣30°=45°,∴∠C=45°,∴CH=AH= 3√32,AC= 3√62,则树高3√62+ 3√32+ 32(米)【解析】【分析】(1)延长BA交EF于点G,利用三角形外角性质即可求出所求角的度数;(2)过A作CD的垂线,垂足为H,在直角三角形ADH中,求出∠DAH=30°,利用30度角所对的直角边等于斜边的一半求出DH与AH的长,确定出三角形ACH为等腰直角三角形,求出CH,AH的长,由AC+CH+HD求出大树高即可.21.【答案】(1)解:设A型花和B型花每枝的成本分别是x元和y元,根据题意得:{2x+3y=22 x+5y=25解得:{x=5y=4所以A型花和B型花每枝的成本分别是5元和4元(2)解:设按甲方案绿化的道路总长度为a米,根据题意得:1500﹣a≥2aa≤500则所需工程的总成本是5×2a+4×3a+5(1500﹣a)+4×5(1500﹣a)=10a+12a+7500﹣5a+30000﹣20a=37500﹣3a∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少w=37500﹣3×500=36000(元)∴当按甲方案绿化的道路总长度为500米时,所需工程的总成本最少,总成本最少是36000元【解析】【分析】(1)本题需根据题意设A型花和B型花每枝的成本分别是x元和y元,根据题意列出方程组,即可求出A型花和B型花每枝的成本.(2)本题需先根据题意设按甲方案绿化的道路总长度为a 米,根据题意列出不等式,解出结果;再求出工程的总成本即可得出答案.22.【答案】(1)证明:如图,在正方形ABCD中,AD=AB=2,∵AE=AB,∴AD=AE,∴∠AED=∠ADE=45°,又∵FG⊥DE,∴在Rt△EGR中,∠GER=∠GRE=45°,∴在Rt△ARF中,∠FRA=∠AFR=45°,∴∠FRA=∠RFA=45°,∴AF=AR(2)解:①如图,当四边形PRBC是矩形时,则有PR∥BC,∴AF∥PR,∴△EAF∽△ERP,∴AFRP =EAER,即:AF2=22+AR由(1)得AF=AR,∴AR2=22+AR,解得:AR=−1+√5或AR=−1−√5(不合题意,舍去),∴DP=AR=−1+√5,∵点P从点D出发,以每秒1个单位长度沿D→C→B向终点B运动,∴t=√5−1(秒);②若PR=PB,过点P作PK⊥AB于K,设FA=x,则RK= 12BR= 12(2﹣x),∵△EFA∽△EPK,∴FAPK =EAEK,即:x2=24−12(2−x),解得:x=± √17﹣3(舍去负值);∴t= √17−12(秒);若PB=RB,则△EFA∽△EPB,∴EAEB =AFBP= 12,∴ARBP =12,∴BP= 23AB= 23×2= 43∴CP=BC﹣BP=2﹣43= 23,∴t=83(秒).综上所述,当PR=PB时,t= √17−12;当PB=RB时,t=83秒.【解析】【分析】(1)依题意可知AD=AE,∠DAE=90°,则∠DEA=45°,在△ERG中,RG⊥DE,则∠FRA=45°,可证AF=AR;(2)①当四边形PRBC是矩形时,则有PR∥BC,AF∥PR,可证△EAF∽△ERP,利用相似比求AR,而AR=DP=t,由此求t的值;②当△PRB是等腰三角形时,PC=2BR,列方程求t的值.23.【答案】(1)解:∵抛物线y=ax2+bx经过点A(4,0)与点(﹣2,6),∴{16a+4b=04a−2b=6,解得{a=12b=−2,∴抛物线的解析式为:y= 12x2﹣2x(2)解:如图,连接AC交OB于点E,连接OC、BC,∵OC=BC,AB=AO,∴AC⊥OB,∵AD为切线,∴AC⊥AD,∴AD∥OB(3)解:∵tan∠AOB= 3,4∴sin∠AOB= 3,5∴AE=OA•sin∠AOB=4× 3=2.4,5∵AD∥OB,∴∠OAD=∠AOB,∴OD=OA•tan∠OAD=OA•tan∠AOB=4× 3=3,4当PQ⊥AD时,OP=t,DQ=2t,过O点作OF⊥AD于F,在Rt△ODF中,OD=3,OF=AE=2.4,DF=DQ﹣FQ=DQ﹣OP=2t﹣t=t,由勾股定理得:DF= √OD2−OF2= √32−2.42=1.8,∴t=1.8秒.【解析】【分析】(1)把经过的点的坐标代入抛物线表达式,然后利用待定系数法求二次函数解析式;(2)连接AC交OB于点E,连接OC、OB,然后根据到线段两端点距离相等的点在线段的垂直平分线上求出AC⊥OB,再根据圆的切线的定义求出AC⊥AD,然后根据垂直于同一直线的两直线互相平行证明;(3)根据∠AOB的正切值求出余弦值,然后求出AE,再利用∠OAD的正切值求出OD的长,表示出OP、OQ,再过O点作OF⊥AD于F,用t表示出DF,在Rt△ODF中,利用勾股定理列式求出DF,从而得解.。

(完整版)深圳市龙华区2016-2017学年度九年级第二次调研测试数学试题及答案

(完整版)深圳市龙华区2016-2017学年度九年级第二次调研测试数学试题及答案

龙华区2016-2017学年度九年级第二次调研测试数学试卷说明:1.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2.全卷分两部分,第一部分为选择题,第二部分为非选择题,共4 页.考试时间90 分钟,满分100分.3.本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.答题卡必须保持清洁,不能折叠.4.本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选择涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内.5.考试结束后,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共12小题,每小题 3分,共 36分.每小题给出 4个选项,其中只有一个是正确的)1.如果向东走3 米记作+3 米,那么向西走2 米记作( )A .21米B .21-米 C .2 米 D .–2 米2.据龙华区发展和财政局公布,2016 年1-12 月龙华区一般公共预算支出约260 亿元,数据260 亿用科学记数法表示为( )A .10106.2⨯B .111026.0⨯C .91026⨯D .9106.2⨯ 3.下列运算正确的是( )A . 422a a a =+B .22)(ab ab =C .326a a a =÷D .6328)2(a a = 4.下列图形均是一些科技创新公司标志图,其中既是中心对称图形又是轴对称图形的是( )A B C D 5.据报道,深圳今年4 月2 日至4 月8 日每天的最高气温变化如图1 所示.则关于这七天的最高气温的数据,下列判断中错误的是( ) A .平均数是26; B .众数是26; C .中位数是27;D .方差是74.图16.已知三角形三边的长分别为1、2、x ,则x 的取值范围在数轴上表示为( )A B C D 7.一个几何体由若干大小相同的小立方块搭成,图2分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要( )A .5 块B .6 块C .7 块D .8 块8.如图3,已知∠MAN=55º,点B 为AN 上一点.用尺规按如下过程作图:以点A 为圆心,以任意长为半径作弧,交AN 于点D ,交AM 于点E ;以点B 为圆心,以AD 为半径作弧,交AB 于点F ;以点F 为圆心,以DE 为半径作弧,交前面的弧于点G ;连接BG 并延长交AM 于点C .则∠BCM 的度数为( ) A .70º B .110º C .125º D .130º 9.如图4,已知五边形ABCDE 是⊙O 的内接正五边形,且⊙O 的半径为1.则图中阴影部分的面积是( )A . π51B .π52C . π31D .π12510.下列命题中是真命题的是( ) A .同位角相等; B .有两边及一角分别相等的两个三角形全等; C .两组对边分别相等的四边形是平行四边形; D .垂直于半径的直线是圆的切线.11.定义一种运算“◎”,规定x ◎y =ax –by ,其中a 、b 为常数,且2◎3=6,3◎2=8,则a + b 的值是( )A .2B .–2C .316图2 图3 图4D .412.已知函数c bx ax y ++=2(a ≠0)的图象与函数y = x -23的图象如图5所示,则下列结论:①0>ab ;②23->c ;③21-<++c b a ;④方程023)1(2=++-+c x b ax 有两个不相等的实数根.其中正确的有( )A .4 个B .3 个C .2 个D .1 个第二部分 非选择题填空题(本题共有4 小题,每小题3 分,共12 分) 13.分解因式:=+-32244b ab b a .14.在31,0,2 ,–1 这四个数中随机取出两个数,则取出的两个数均为正数的概率是 .15.如图6,已知函数y = kx 与函数xky = 的图象交于A 、B 两点,过点B 作BC ⊥y 轴,垂足为C ,连接AC .若△ABC 的面积为2 ,则k 的值为 . 16.如图7,在平面直角坐标系中,已知矩形OABC 的顶点A 在x 轴上,OA=4,OC=3,点D 为BC 边上一点,以AD 为一边在与点B 的同侧作正方形ADEF , 连接OE 。

【深圳】2016-2017广东省深圳市南山区初三二模数学

【深圳】2016-2017广东省深圳市南山区初三二模数学

南山区2017年九年级二模数学试卷(时间:90分钟,总分:100分)一、选择题(本题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项涂在答题卡上.............) 1.下列四个数中,最大的数是(). A .2- B .13C .0D .62.下列运算正确的是(). A .236a a a ?B .235()a a =C .2363(2)8a b a b -=-D .22(21)421a a a +=++3.“互联网”已全面进入人们的日常生活,据有关部门统计,目前全国4G 用户达到4.62亿,其中4.62亿用科学记数法表示为(). A .44.6210´B .64.6210´C .84.6210´D .80.46210´4.下列图形中,既是轴对称图形又是中心对称图形的是().A .B .C .D .5.如图,直线12l l ∥,等腰直角ABC △的两个顶点A 、B 分别落在直线1l 、2l 上,90ACB ??,若115??,则2Ð的度数是().A .35°B .30°C .25°D .20°6.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、第二束气球的价格如图所示,则第三束气球的价格为().A .19B .18C .16D .17.下列说法正确的是().①面积之比为1:2的两个相似三角形的周长之比是1:4;②三视图相同的几何体是正方体③27-没有立方根④对角线互相垂直的四边形是菱形⑤某中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为82x =甲分,82=乙分,2245S =甲,2190S =乙,那么成绩较为整齐的是乙班(注意有文字) A .1个 B .2个 C .3个 D .4个8.如图,在Rt ABC △,90C ??,顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是().21l 2l 1CAA .15B .30C .45D .609.如图,A ,B 的坐标为(2,0),(0,1),若将线段AB 平移至11A B ,则a b +的值为().A .2B .3C .4D .510.如图,抛物线()20y ax bx c a =++?的对称轴为直线1x =,与x 轴的一个交点坐标为(1,0)-,其部分图象如图所示,下列结论:)①24ac b <②方程20ax bx c ++=的两个根是11x =-,23x = ③30a c +>④当0y >时,x 的取值范围是1x -<≤3 ⑤当0x <时,y 随x 增大而增大 其中结论正确的个数是( ). A .4个 B .3个 C .2个 D .1个11.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ^,垂足为点F ,连接DF ,分析下列四个结论:①AEF CAB ∽△△;②2CF AF =;③DF DC =;④tan CAD? ).A .4个B .3个C .2个D .1个12.如图,正方形ABCD 的边长为3cm ,动点M 从点B 出发以3cm/s 的速度沿着边BC CD DA --运动,到达点A 停止运动,另一动点N 同时从点B 出发,以1cm/s 的速度沿着边BA 向点A 运动,到达点A 停止运动,设点M 运动时间为(s)x ,AMN △的面积为2(cm )y ,则y 关于x 的函数图象是().FCDEB ACMBN DAA .B .C .D .二、填空题(本题有4小题,每小题3分,共12分,把答案填在答题卡上.........). 13.已知3a b +=,5a b -=,则代数式22a b -的值是__________.14.如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ¢处,那么tan BAD ¢Ð等于__________.15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M 与圆心O 重合,则图中阴影部分的面积是__________.16.如图,已知点A是双曲线y 在第三象限分支上的一个动点,连结AO 并延长交另一分支于点B ,以AB 为边作等边三角形ABC ,点C 在第四象限内,且随着点A 的运动,点C的位置也在不断变化,DADBC但点C 始终在双曲线ky x=上运动,则k 的值是__________.三、解答题(本大题有7题,其中17题6分,18题5分,19题8分,20题7分,21题8分,22题9分,23题9分,共52分) 17.(本题6分)化简:2222421121x x x x x x x ++-?+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值.18.(本题5分)计算:20160(1)2sin 60π-+?-+.19.(本题8分)黔东南州某中学为了解本校学生平均每天的课外学习时间情况,随机抽取部分学生进行问卷调查,并将调查结果分为A ,B ,C ,D 四个等级,设学生课外学习时间为t (小时),:A 1t <,:1 1.5B t <≤,:1.52C t <≤,:2D t ≥,根据调查结果绘制了如图所示的两幅不完整的统计图,请你根据图中信息解答下列问题:(1)本次抽样调查共抽取了多少名学生?并将条形统计图补充完整. (2)本次抽样调查中,学习中位数落在哪个等有内. (3)表示B 等级的扇形圆心角a 的度数是多少.(4)在此次问卷调查中,甲班有2人平均每天课外学习时间超过2小时,乙班有3人平均每天课外学习时间超过2小时,若从这5人中任选2人去参加座谈,试用列表或画树状的方法求选出的2人来自不同班级的概率.图1 图28040αDCB A20.(本题7分)为更新果树品种,某果园计划新购进A 、B 两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A 种苗的单价为7元/棵,购买B 种苗所需费用y (元)与购买数量x (棵)之间存在如图所示的函数关系. (1)求y 与x 的函数关系式.(2)若在购买计划中,B 种苗的数量不超过35棵,但不少于A 种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.21.(本题8分)如图,地面上两个村庄C 、D 处于同一水平线上,一飞行器在空中以6千米/小时的速度沿MN 方向水平飞行,航线MN 与C 、D 在同一铅直平面内.当该飞行器飞行至村庄C 的正上方A 处时,测得60NAD ??;该飞行器从A 处飞行40分钟至B 处时,测得75ABD ??.从A 处飞行40分钟至B 处时,测得75ABD ??.求村庄C 、D1.73,结果精确到0.1千米).22.(本题9分)如图,已知,AB 是⊙O 的直径,点P 在AB 的延长线上,弦CE 交AB 于点,连结OE ,AC ,且P E ??,2POE CAB ??, (1)求证:CE AB ^. (2)求证:PC 是⊙O 的切线.(3)若2BD OD =,且9PB =,求⊙O 的半径长和tan P Ð的值.23.(本题9分)如图,抛物线2(1)(1)y x m x m m =-+-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点(0,3)C .(1)求抛物线的解析式.(2)点D 和点C 关于抛物线的对称轴对称,点F 在直线AD 上方的抛物线上,FG AD ^于G ,FH x∥轴交直线AD 于H ,求FGH △的周长的最大值;(3)点M 是抛物线的顶点,直线l 垂直于直线AM ,与坐标轴交于P 、Q 两点,点R 在抛物线的对称轴上,使得PQR △是以PQ 为斜边的等腰直角三角形,求直线l 的解析式.PBD EO CA。

2016深圳二模数学(理)试题 Word版含解析

2016深圳二模数学(理)试题 Word版含解析

2016年深圳市高三年级第二次调研考试数学(理科)1.复数z 满足(1i)1i z +=-(i 为虚数单位),则z =( ) ABC .2D .1 【答案】D 【解析】1i1i 11i 1iz --===++. 2.设,A B 是两个集合,则“x A ∈”是“x A B ∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】B 3.若1cos()23πα-=,则cos(2)πα-=( ) A.9- B.9 C . 79-D .79【答案】C 【解析】∵1cos()23πα-=,∴1sin 3α=. ∴27cos(2)cos 22sin 19πααα-=-=-=-. 4.若,x y 满足约束条件10,10,410.x y x x y +-≥⎧⎪-≤⎨⎪-+≥⎩则目标函数13y z x +=+的最大值为( )A .14 B .23 C .32D .2 【答案】C 【解析】目标函数13y x ++点(,)x y 和点(3,1)--由图可知:当其经过点(1,5)A 即max 15133132y z x ++===++ .5.如图所示的流程图中,若输入,,a b c 的值分别是2,4,5,则输出的x =( )A .1B .2C .lg 2D .10 【答案】A【解析】由题意可知a b c <<,∴lg 2lg51x =+=.6.已知函数()f x 的图象是由函数()cos g x x =的图象经过如下变换得到:先将()g x 的图象向右平移3π个单位长度,再将其图象上所有点的横坐标变为原来的一半,纵坐标不变.则函数()f x 的一条对称轴方程为( ) A .6x π=B .512x π=C .3x π=D .712x π= 【答案】D【解析】cos y x =3π−−−−−→向右个单位所有点的纵坐标不变cos()3y x π=-−−−−−−−→横坐标变为原来的一半纵坐标不变cos(2)3y x π=-.∴()cos(2)3f x x π=-.对称轴方程为2,3x k k Z ππ-=∈,即1,26x k k Z ππ=+∈,故选A .7.以直线y =为渐近线的双曲线的离心率为为( )A .2 BC .2D【答案】C【解析】∵双曲线的渐近线方程为y =,∴b a =a b =224c a =,或2243c a =. ∴2e =,或e =8.2位男生和3位女生共5位同学站成一排,则3位女生中有且只有两位女生相邻的概率是( ) A .310 B .35 C .25 D .15【答案】B【解析】2222322355()35C A A A P A ⋅⋅==. 9.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BN λμ=+,则λμ+=( )A .2B .83C .65D .85【答案】D【解析】∵AC AM BN λμ=+()()AB BM BC CN λμ=+++11()()22AB AD AD AB λμ=++-11()()22AB AD λμλμ=-++,∴112112λμλμ⎧-=⎪⎨⎪+=⎩, 解得6525λμ⎧=⎪⎨⎪=⎩,85λμ+=. 10.已知函数ln ,0,()ln(),0.x x x f x x x x -- >⎧=⎨--+<⎩ 则关于m 的不等式11()ln 22f m <-的解集为( )A. 1(0,)2 B .(0,2) C .11(,0)(0,)22- D .(2,0)(0,2)- 【答案】C【解析】函数()f x 的定义域(,0)(0,)-∞+∞关于原点对称,∵0x >时,0x -<,()ln ()f x x x f x -=-+=, 同理:()()f x f x -=,∴()f x 为偶函数.NA DC MB∵()f x 在(0,)+∞上为减函数,且1(2)ln 22ln 22f =--=-, ∴当0m >时,由11()ln 22f m <-,得1()(2)f f m <,∴12m>,解得102m <<.根据偶函数的性质知当0m <时,得102m -<<.11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积为( )A .48B .16C .32D .165 【答案】D【解析】该几何体的直观图,如图:42585S =⨯=,655h =, ∴11685516335V Sh ==⨯⨯=.12.设定义在(0,)+∞上的函数()f x 满足()()ln xf x f x x x '-=,11()f e e=,则()f x ( ) A .有极大值,无极小值 B .有极小值,无极大值C .既有极大值,又有极小值D .既无极大值,也无极小值 【答案】D【解析】()f x 的定义域为(0,)+∞, ∵()()ln xf x f x x x '-=,∴2()()ln xf x f x xx x '-=, ∴()ln ()f x x x x '=,∴2()1ln 2f x x c x =+,∴21()ln 2f x x x cx =+.∵211111()ln 2f c e e e e e =+⨯=,∴12c =. ∴22111()ln ln (ln 1)0222f x x x x '=++=+≥,∴()f x 在(0,)+∞上单调递增,∴()f x 在(0,)+∞上既无极大值也无极小值. 二、填空题:本大题4小题,每小题5分,满分20分ADC BP13.高为π,体积为2π的圆柱的侧面展开图的周长为 . 【答案】6π【解析】∵2222V r h r πππ===,∴1r =,∴侧面展开图的周长为2(2)6r πππ+=.14.过点(3,1)P 的直线l 与圆22:(2)(2)4C x y -+-=相交于,A B 两点,当弦AB 的长取最小值时,直线l 的倾斜角等于 .【答案】4π 【解析】∵AB 的长取最小值时,AB 垂直于PC ,∴1AB PC k k ⋅=-,即(1)1AB k ⋅-=-, ∴1AB k =,直线l 的倾斜角等于4π. 15.在1020161(2)x展开式中,4x 项的系数为____________.(结果用数值表示)【答案】180【解析】含有4x项为228048201612()180C x x ⋅⋅-=.另解:10102016201611(2)[2]xx=+,∴通项10110201612)rrrr T C x-+=,20161)rx的通项11()(4033)2016221(1)(1)r k r k kk kkk k rrT C xxC x---+=-=-∴1(4033)42010r k r ⎧-=⎪⎨⎪≤≤⎩,∴8r =. ∴4x 项的系数为82102180C =.16.如图,在凸四边形ABCD 中,1AB =,BC =,AC CD ⊥,AC CD =.当ABC ∠变化时,对角线BD 的最大值为_________.【答案】D【解析】设AC CD x ==,在ABC ∆中,2222cos AC AB BC AB BC ABC =+-⋅⋅∠,∴213x ABC =+-∠,∵sin sin AC AB ABC ACB =∠∠,∴sin sin ABCACB x ∠∠=.在BCD ∆中,BD ====,ABCD∵(0,)ABC π∠∈,∴sin()4ABC π∠-可以取到最大值1,∴max 1BD ==.三、解答题:解答应写出文字说明,证明过程或演算步骤 . 17.(本小题满分12分)设数列{}n a 的前n 项和为n S ,n a 是n S 和1的等差中项. (1)求数列{}n a 的通项公式; (2)求数列{}n na 的前n 项和n T . 【解析】(1)由题意得:12n n S a +=, ① 当2n ≥时,112(1)n n S a --=-,② ①-②得122n n n a a a -=-,即12n n a a -=,∴12nn a a -=. 由①式中令1n =,可得11a =,∴数列{}n a 是以1为首项,2为公比的等比数列,∴12n n a -=. (2)由12n n n a b n -=⋅得112233n n n T a b a b a b a b =⋅+⋅+⋅++⋅01211222322n n -=⋅+⋅+⋅++⋅12312122232(1)22n n n T n n -=⋅+⋅+⋅++-⋅+⋅1211222222221212nn nn n n n T n n n ---=++++-⋅=-⋅=--⋅-∴(1)21nn T n =-⋅+.18.(本小题满分12分)某市在以对学生的综合素质评价中,将其测评结果分为“优秀、合格、不合格”三个等级,其中不小于80分为“优秀”,小于60分为“不合格”,其它为“合格”.(1)某校高一年级有男生500人,女生4000人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高一学生中抽取了45名学生的综合素质评价结果,其各个等级的把握认为“综合素(2生的概率,且每名学生是否“优秀”相互独立,现从该市高一学生中随机抽取3人.(i )求所选3人中恰有2人综合素质评价为“优秀”的概率;(ii )记X 表示这3人中综合素质评价等级为“优秀”的个数,求X 的数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【解析】(1)设从高一年级男生中抽出m 人,则,25500500400m ==+.而45(1551015)91.1252.706301525208k ⨯⨯-⨯===<⨯⨯⨯ ∴没有90%的把握认为“测评结果为优秀与性别有关”.(2)(i )由(1)知等级为“优秀”的学生的频率为15152453+=,∴从该市高一学生中随机抽取1名学生,该生为“优秀”的概率为23.记“所选3名学和g 中恰有2人综合素质评价‘优秀’学生”为事件A ,则事件A 发生的概率为:223224()()(1)339P A C =⨯⨯-=;(ii )由题意知,随机变量2~(3,)3X B ,∴随机变量X 的数学期望2()323E X =⨯=.19.(本小题满分12分)在三棱柱111ABC A B C -中,CA CB =,侧面11ABB A 是边长为2的正方体.点,E F 分别在线段111,AA A B 上,且113,,24AE A F CE EF ==⊥.(1)证明:平面11ABB A ⊥平面ABC ;(2)若CA CB ⊥,求直线1AC 与平面CEF 所成角的正弦值. 【解析】(1)取线段AB 中点M ,连接EM ,在正方体11ABB A 中,131,2AM A E ==,在Rt EAM ∆和1Rt FA E ∆中,1123AE AM A F A E ==, 又12EAM FA E π∠=∠=,∴1Rt EAM Rt FA E ∆∆∼,∴1AEM A FE ∠=∠,从而1112AEM A EF A FE A EF π∠+∠=∠+∠=,∴2FEM π∠=,即EF EM ⊥. 又,EF CE ME CE E ⊥=, ∴EF ⊥平面CEM ,∵CM ⊂平面CEM , ∴ CM EF ⊥, 在等腰三角形CAB ∆中,CM AB ⊥,又AB 与EF 相交,知CM ⊥平面1AB ,∵CM ⊂平面ABC ,∴平面11ABB A ⊥平面ABC ;(2)在等腰三角形CAB ∆中,由,2CA CB AB ⊥=知CA CB ==,且1CM =,记线段11A B 中点为N ,连接MN ,由(1)知,,,MC MA MN 两两互相垂直, 以M 为坐标原点,分别以,,MC MA MN 为正交基底建立如图所示空间直角坐标系Oxyz ,则111(1,0,0),(0,1,),(0,,2),(0,1,0),(1,0,2)24C E F A C ,设平面CEF 的法向量为(,,)x y z =n ,则,CE EF ⊥⊥n n ,即102202332042x y z x y z y z y z ⎧-++=⎪--=⎧⎪⇒⎨⎨=⎩⎪-+=⎪⎩,取2z =,则4,5y x ==,从而得到平面CEF 的一个法向量(5,4,2)=n .1(1,1,2)AC =-,记直线1AC 与平面CEF 所成角为θ,则111||sin |cos ,|||||AC AC AC θ⋅=<>===⋅n n n .故直线1AC 与平面CEF . 20.(本小题满分12分)过抛物线C :22(0)y px p =>的焦点F 的直线交抛物线于,A B 两点,且,A B 两点的纵坐标之积为4-.ACBA 1B 1C 1FE(1)求抛物线C 的方程;(2)已知点D 的坐标为(4,0),若过D 和B 两点的直线交抛物线C 的准线于P 点,求证:直线AP 与x 轴交于一定点.【解析】(1)抛物线的焦点为(,0)2pF , 故可设直线AB 的方程为2px my =+,由222p x my y px ⎧=+⎪⎨⎪=⎩,得2220y pmx p --=, 设1122(,),(,)A x y B x y ,则212y y p =-,∴24p -=-,由0p >,可得2p =. ∴抛物线C 的方程为24y x =.(2)【方法1】依题意,直线BD 与x 轴不垂直,∴24x ≠. ∴直线BD 的方程可表示为22(4)4y y x x =--,① ∵抛物线C 的准线方程为1x =-,② 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由(1)可得124y y =-, ∴P 的坐标可化为1215(1,)1y y --, ∴1121121151411APy y y y k x y --==---,∴直线AP 的方程为111214()1y y y x x y -=--, 令0y =,可得222111111114444y y x x y --=-=-=, ∴直线AP 与x 轴交于定点1(,0)4.【方法2】直线AP 与x 轴交于定点1(,0)4M . 证明如下:依题意,直线BD 与x 轴不垂直,∴24x ≠. ∴直线BD 的方程可表示为22(4)4y y x x =--,① ∵抛物线C 的准线方程为1x =-,② 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由①,②联立方程组可求得P 的坐标为225(1,)4y x ---, 由(1)可得124y y =-,∴214y y =-. ∴P 的坐标可化为1215(1,)1y y --, ∴,P M 两点连线的斜率为12112150141114PMy y y k y --==---,∴,A M 两点连线的斜率为1121104114AM y yk y x -==--, ∴PM AM k k =,∴P 、A 、M 三点共线, 即直线AP 与x 轴交于定点1(,0)4. 21.(本小题满分12分)已知函数2()x ax f x e =,直线1y x e=为曲线()y f x =的切线.(1)求实数a 的值;(2)用min{,}m n 表示,m n 中的最小值,设函数1()min{(),}(0)g x f x x x x=->,若函数2()()h x g x cx =-为增函数,求实数c 的取值范围.【解析】(1)对()f x 求导得222(2)()()x x x xx e x e x x f x a a e e ⋅-⋅-'=⋅=⋅,设直线1y x e=与曲线()y f x =切于点00(,)P x y ,则 00200001(2x )1x x ax x e e x a ee ⎧=⎪⎪⎨-⎪=⋅⎪⎩,解得01a x ==.所以a 的值为1.(2)记函数211()()(),0x x F x f x x x x x e x=--=-+>,下面考察函数()y F x =的符号.对函数()y F x =求导得2(2)1()1,0x x x F x x e x-'=-->. 当2x ≥时()0F x '<恒成立.当02x <<时,2(2)(2)[]12x x x x +--≤=, 从而2222(2x)11111(x)11110x x x F e x e x x x-'=--≤--<--=-<. ∴()0F x '<在(0,)+∞上恒成立,故()y F x =在(0,)+∞上单调递减. ∵2143(1)0,(2)02F F e e =>=-<,∴(1)(2)0F F ⋅<. 又曲线()y F x =在[1,2]上连续不间断,所以由函数的零点存在性定理及其单调性知∃惟一的0(1,2)x ∈,使0()0F x =∴00(0,),()0;(,),()0x x F x x x F x ∈>∈+∞<.∴02101()min{(),},x x x x xg x f x x x xx x e ⎧-<≤⎪⎪=-=⎨⎪>⎪⎩,, 从而2022201-0()(),xx cx x x x h x g x cx x cx x xe ⎧-<≤⎪⎪=-=⎨⎪->⎪⎩,∴0201120()(2)2,xcx x x xh x x x cx x xe ⎧+-<≤⎪⎪'=⎨-⎪->⎪⎩,由函数2()()h x g x cx =-为增函数,且曲线()y h x =在(0,)+∞上连续不断知()0h x '≥在0(0,)x ,0(,)x +∞上恒成立.①当0x x >时,(2)20x x x cx e --≥在0(,)x +∞上恒成立,即22xxc e-≤在0(,)x +∞上恒成立.记02(),x x u x x x e -=>,则03(),xx u x x x e -'=>, 当x 变化时,()u x ',()u x 变化情况如下表:∴min 3()()(3)u x u x u e===-极小. 故“22x x c e -≤在0(,)x +∞上恒成立”只需min312()c u x e ≤=-,即312c e ≤-. ②当00x x <<时,21()12h x cx x '=+-,当0c ≤时,()0h x '>在0(0,)x 上恒成立.综合(1)(2)知,当312c e ≤-时,函数2()()h x g xcx =-为增函数.故实数c 的取值范围是31(,]2e-∞-.请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时写清题号22.(本小题满分10分)选修4-1:几何证明选讲 如图,AB 是O 直径,C 在O 上,CF AB ⊥于F ,点D 为线段CF 上任意一点,延长AD 交O 于E ,30AEC ∠=.证明:(1)AF FO =;(2)若CF =AD AE ⋅的值.A【解析】(1)证明:连接,OC AC , ∵30AEC ∠=,∴60AOC ∠=.∵OA OC =,∴AOC ∆为等边三角形. ∵CF AB ⊥,∴CF 为AOC ∆中AO 边上的中线,即AF FO =. (2)连接BE ,∵CF =AOC ∆为等边三角形,∴1AF =,4AB =. ∵AB 是O 直径,∴90AEB ∠=,∴AEB AFD ∠=∠.∵BAE DAF ∠=∠,∴AEB ∆∽AFD ∆, ∴AD AFAB AE=,即414AD AE AB AF ⋅=⋅=⨯=. 23.(本小题满分10分)选修4-4:坐标系与参数方程选讲 已知极坐标系的极点与直角坐标系的原点重合,极轴与直角坐标系中x 轴的正半轴重合.若曲线C 的参数方程为32cos (2sin x y ααα=+⎧⎨=⎩为参数),直线l 的极坐标方程为sin()14πθ-=.(1)将曲线C 的参数方程化为极坐标方程;(2)由直线l 上一点向曲线C 引切线,求切线长的最小值.【解析】(1)圆C 的直角坐标方程为22(3)4x y -+=.∵222,cos ,sin x y x y ρρθρθ+===, ∴圆C 的极坐标方程为26cos 50ρρθ-+=. (2) ∵直线lsin()14πθ-=,∴sin cos 1ρθρθ-=,∴直线l 的直角坐标方程为10x y -+=. 设直线l 上点P ,切点为A ,圆心(3,0)C ,则有22224PA PC AC PC =-=-, 当PC 最小时,有PA 最小.∵PC ≥=FEBCAD O∴2PA ==,∴切线长的最小值为2.24.(本小题满分10分)选修4-5:不等式选讲已知关于x 的不等式231x x m --+≥+有解,记实数m 的最大值为M . (1)求M 的值;(2)正数,,a b c 满足2a b c M ++=,求111a b b c+≥++. 【解析】23(2)(3)5x x x x --+≤--+=, 若不等式231x x m --+≥+有解, 则满足15m +≤,解得64m -≤≤. ∴4M =.(2)由(1)知正数,,a b c 满足24a b c ++=, ∴11111[())]()4a b b c a b b c a b b c+=++++++++11(1)(1144b c a b a b b c ++=++≥+=++, 当且仅当,2a c a b =+=时,取等号.。

2016年深圳市南山区中考数学二模试卷含答案解析

2016年深圳市南山区中考数学二模试卷含答案解析

2016年深圳市南山区中考数学二模试卷含答案解析2016年广东省深圳市南山区中考数学二模试卷一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.﹣5的倒数是()A.B.C.﹣5D.52.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108 3.方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根4.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.5.下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a66.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.7.如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°8.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<29.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>310.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米11.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是.14.分解因式:2x2y﹣8y=.15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是.16.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB 为.三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.18.解不等式组并求它的整数解.19.为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w <10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.20.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.21.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B 品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?22.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.23.如图,平面直角坐标系中,O为菱形ABCD 的对称中心,已知C(2,0),D(0,﹣1),N 为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC 的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.2016年广东省深圳市南山区中考数学二模试卷参考答案与试题解析一、选择题:本题有12小题,每题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.1.﹣5的倒数是()A.B.C.﹣5D.5【考点】倒数.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣5)×(﹣)=1,∴﹣5的倒数是﹣.故选:A.2.人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107B.2×107C.0.2×108D.2×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将“两千万”用科学记数法表示为:2×107,故选:B3.方程x2﹣4x+4=0的根的情况是()A.有两个相等的实数根B.只有一个实数根C.没有实数根D.有两个不相等的实数根【考点】根的判别式.【分析】先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=4,∴△=b2﹣4ac=16﹣16=0,∴一元二次方程有两个相等的实数根.故选A.4.如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从上面看易得左边第一列有2个正方形,中间第二列最有2个正方形,最右边一列有1个正方形在右上角处.故选C.5.下列等式成立的是()A.(a+4)(a﹣4)=a2﹣4B.2a2﹣3a=﹣aC.a6÷a3=a2D.(a2)3=a6【考点】平方差公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】A、原式利用平方差公式化简得到结果,即可作出判断;B、原式不能合并,错误;C、原式利用同底数幂的除法法则计算得到结果,即可作出判断;D、原式利用幂的乘方运算法则计算得到结果,即可作出判断.【解答】解:A、原式=a2﹣16,不成立;B、原式不能合并,不成立;C、原式=a3,不成立;D、原式=a6,成立.故选D.6.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.【考点】作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.7.如图,l1∥l2,l3⊥l4,∠1=42°,那么∠2的度数为()A.48°B.42°C.38°D.21°【考点】直角三角形的性质;平行线的性质.【分析】先根据两直线平行,同位角相等求出∠3,再根据直角三角形两锐角互余即可求出∠2.【解答】解:如图,∵l1∥l2,∠1=42°,∴∠3=∠1=42°,∵l3⊥l4,∴∠2=90°﹣∠3=48°.故选A.8.关于x的方程mx﹣1=2x的解为正实数,则m的取值范围是()A.m≥2B.m≤2C.m>2D.m<2【考点】解一元一次不等式;一元一次方程的解.【分析】根据题意可得x>0,将x化成关于m 的一元一次方程,然后根据x的取值范围即可求出m的取值范围.【解答】解:由mx﹣1=2x,移项、合并,得(m﹣2)x=1,∴x=.∵方程mx﹣1=2x的解为正实数,∴>0,解得m>2.故选C.9.如图,已知二次函数y1=x2﹣x的图象与正比例函数y2=x的图象交于点A(3,2),与x 轴交于点B(2,0),若y1<y2,则x的取值范围是()A.0<x<2B.0<x<3C.2<x<3D.x<0或x>3【考点】二次函数与不等式(组).【分析】直接利用已知函数图象得出y1在y2下方时,x的取值范围即可.【解答】解:如图所示:若y1<y2,则二次函数图象在一次函数图象的下面,此时x的取值范围是:0<x<3.故选:B.10.如图,一根电线杆的接线柱部分AB在阳光下的投影CD的长为1米,太阳光线与地面的夹角∠ACD=60°,则AB的长为()A.米B.米C.米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】依据平行于三角形一边的直线截其他两边所得的线段对应成比例及60°的正切值联立求解.【解答】解:设直线AB与CD的交点为点O.∴.∴AB=.∵∠ACD=60°.∴∠BDO=60°.在Rt△BDO中,tan60°=.∵CD=1.∴AB=.故选B.11.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°【考点】旋转的性质.【分析】由旋转的性质得出△ADE≌△ABC,得出∠D=∠B=40°,AE=AC,证出△ACE是等边三角形,得出∠ACE=∠E=60°,由三角形内角和定理求出∠DAE的度数,即可得出结果.【解答】解:由旋转的性质得:△ADE≌△ABC,∴∠D=∠B=40°,AE=AC,∵∠CAE=60°,∴△ACE是等边三角形,∴∠ACE=∠E=60°,∴∠DAE=180°﹣∠E﹣∠D=80DU===80°,∴∠DAC=∠DAE﹣∠CAE=80°﹣60°=20°;故选:B.12.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,AD平分∠BAC,则点B到AD的距离是()A.3B.4C.2D.【考点】相似三角形的判定与性质;角平分线的性质.【分析】过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,根据角平分线的性质得到,求得CD=3,求得S△ABD=AB•DE=3=15,由勾股定理得到AD==3,根据三角形的面积公式即可得到结论.【解答】解:过点D作DE⊥AB交AB于E,设CD=x,则BD=8﹣x,∵AD平分∠BAC,∴,即,∴x=3,∴CD=3,∴S△ABD=AB•DE=3=15,∵AD==3,设BD到AD的距离是h,∴S△ABD=AD•h,∴h=2.故选C.二、填空题:本题共4小题,每小题分,共12分,把答案填在答题卡上13.某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是6.【考点】中位数.【分析】求中位数可将一组数据从小到大依次排列,中间数据(或中间两数据的平均数)即为所求.【解答】解:数据按从小到大排列后为3,5,5,6,8,9,10,故这组数据的中位数是6.故答案为:6.14.分解因式:2x2y﹣8y=2y(x+2)(x﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式2y,再对余下的多项式利用平方差公式继续分解.【解答】解:2x2y﹣8y,=2y(x2﹣4),=2y(x+2)(x﹣2).故答案为:2y(x+2)(x﹣2).15.在一次数学测试中,某班50名学生的成绩分为六组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第六组的频数是5.【考点】频数与频率.【分析】一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,根据第五组的频率是0.2,求出第五组的频数,用样本容量减去前五组的频数,得到第六组的频数.【解答】解:∵一个容量为50的样本,把它分成6组,第一组到第四组的频数分别为6,8,9,12,第五组的频率是0.2,则第五组的频数是0.2×50=10,∴第六组的频数是50﹣6﹣8﹣9﹣10﹣12=5.故答案为:5.16.已知点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,且OA⊥OB,则tanB 为\frac{1}{2}.【考点】反比例函数综合题.【分析】过A作AC垂直于y轴,过B作BD垂直于y轴,利用垂直的定义可得出一对直角相等,再由OA与OB垂直,利用平角的定义得到一对角互余,在直角三角形AOC中,两锐角互余,利用同角的余角相等得到一对角相等,利用两对对应角相等的三角形相似得到三角形AOC 与三角形OBD相似,利用反比例函数k的几何意义求出两三角形的面积,得出面积比,利用面积比等于相似比的平方求出相似比,即为OA与OB的比值,在直角三角形AOB中,利用锐角三角函数定义即可求出tan∠ABO的值.【解答】解:过A作AC⊥y轴,过B作BD⊥y 轴,可得∠ACO=∠BDO=90°,∴∠AOC+∠OAC=90°,∵OA⊥OB,∴∠AOC+∠BOD=90°,∴∠OAC=∠BOD,∴△AOC∽△OBD,∵点A、B分别在反比例函数y=(x>0),y=﹣(x>0)的图象上,∴S△AOC=1,S△OBD=4,∴S△AOC:S△OBD=1:4,即OA:OB=1:2,则在Rt△AOB中,tan∠ABO=.故答案为:三、解答题(本大题有七题,其中第17题6分、第18题6分、第19题7分、第20题8分、第21题8分、第22题8分、第23题9分,共52分)解答应写出文字说明或演算步骤.17.计算:﹣2﹣1+(﹣π)0﹣|﹣2|﹣2cos30°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】分别根据0指数幂及负整数指数幂的计算法则、绝对值的性质及特殊角的三角函数值分别计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=﹣+1﹣(2﹣)﹣2×=﹣+1﹣2+﹣=﹣.18.解不等式组并求它的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:,由①得:x<8,由②得:x≥6,∴不等式组的解集为6≤x<8,则不等式组的整数解为6,7.19.为贯彻政府报告中“大众创业、万众创新”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w <10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是25个,扇形统计图中B类所对应扇形圆心角的度数为72度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)用D类小企业的数量除以它所占的百分比即可得到调查的总数,再用B类所占的百分比乘以360度得到B类所对应扇形圆心角的度数,然后计算A类小企业的数量,再补全条形统计图;(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,利用树状图展示所有12种等可能的结果数,再找出所抽取的2个发言代表都来自高新区的结果数,然后根据概率公式求解.【解答】解:(1)该镇本次统计的小微企业总个数为4÷16%=25(个);扇形统计图中B类所对应扇形圆心角的度数=×360°=72°A类小微企业个数为25﹣5﹣14﹣=2(个),补全条形统计图为:故答案为25个,72;(2)2个来自高新区的企业用A、B表示,2个来自开发区的企业用a、b表示,画树状图为:共有12种等可能的结果数,其中所抽取的2个发言代表都来自高新区的结果数为2,所以所抽取的2个发言代表都来自高新区的概率==.20.【阅读发现】如图①,在正方形ABCD的外侧,作两个等边三角形ABE和ADF,连结ED 与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC=90°.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【考点】正方形的性质;全等三角形的判定与性质;矩形的性质.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠D FC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.21.某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌蓝球花费了2400元,购买B 品牌蓝球花费了1950元,且购买A品牌蓝球数量是购买B品牌蓝球数量的2倍,已知购买一个B品牌蓝球比购买一个A品牌蓝球多花50元.(1)求购买一个A品牌、一个B品牌的蓝球各需多少元?(2)该学校决定再次购进A、B两种品牌蓝球共30个,恰逢百货商场对两种品牌蓝球的售价进行调整,A品牌蓝球售价比第一次购买时提高了10%,B品牌蓝球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌蓝球的总费用不超过3200元,那么该学校此次最多可购买多少个B品牌蓝球?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一个A品牌的篮球需x元,则购买一个B品牌的篮球需(x+50)元,根据购买A品牌足球数量是购买B品牌足球数量的2倍列出方程解答即可;(2)设此次可购买a个B品牌篮球,则购进A 品牌篮球(30﹣a)个,根据购买A、B两种品牌篮球的总费用不超过3200元,列出不等式解决问题.【解答】解:(1)设购买一个A品牌的篮球需x 元,则购买一个B品牌的篮球需(x+50)元,由题意得=×2,解得:x=80,经检验x=80是原方程的解,x+50=130.答:购买一个A品牌的篮球需80元,购买一个B品牌的篮球需130元.(2)设此次可购买a个B品牌篮球,则购进A 品牌篮球(30﹣a)个,由题意得80×(1+10%)(30﹣a)+130×0.9a≤3200,解得a≤19,∵a是整数,∴a最大等于19,答:该学校此次最多可购买19个B品牌蓝球.22.如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【考点】切线的判定.【分析】(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出BE=2,在RT△ABE 中,利用锐角三角函数关系得出sin∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO=.【解答】(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴,∵OA=OB∴∠ABD=∠BAO,∴.23.如图,平面直角坐标系中,O为菱形ABCD 的对称中心,已知C(2,0),D(0,﹣1),N 为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC 的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【考点】二次函数综合题.【分析】(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=m2﹣m+2函数解析式,根据抛物线的特点确定出最小值.【解答】解:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴CD=,∴BNmin==,∴BN1min=BN min=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴l AB:Y=x+1不妨设P(m,﹣(m﹣2)2),则E(m,m+1)∴PE=m2﹣m+2∴当m=1时,此时,PQ1最小,最小值为=,∴PQ1=PQ2=.2016年7月13日。

中考数学二模试卷(含解析)2

中考数学二模试卷(含解析)2

2016年广东省深圳市联盟学校联考中考数学二模试卷一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.计算|﹣2|的结果是()A.2 B.C.﹣ D.﹣22.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是()A.8.5×106吨B.8.5×105吨C.8.5×107吨D.85×106吨3.如图,只是中心对称图形不是轴对称图形的是()A.B. C.D.4.某品牌运动鞋销售商在进行市场占有率的调查时,他最关注的是()A.运动鞋型号的平均数B.运动鞋型号的众数C.运动鞋型号的中位数D.运动鞋型号的极差5.下列计算正确的是()A.2a+5b=5ab B.a6÷a3=a2C.a2•a3=a6D.6.某服装店老板以60元出售一件衣服,结果获利25%,问这件衣服的进价是()A.40 B.48 C.50 D.807.一次函数y=kx+b(k≠0,k与b都是常数)图象如图示,当y<2时,变量x的取值范围是()A.x>0 B.x<0 C.x<2 D.x>28.二元一次方程组的解是()A.B. C.D.9.如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.310.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3 B.4 C.5 D.711.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是()A.B.C.D.12.如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A.B.C.1﹣D.1﹣二、填空题(共4小题,每小题3分,满分12分)13.分解因式:ax2﹣4ax+4a= .14.如图,三张卡片形状、大小、质地相同,分别印数字1、2、3,现将它们放入盒子.若从盒子中任取一张卡片,求取到数字是奇数的卡片的概率是.15.从四边形的一个顶点出发,可得一条对角线;从五边形的一个顶点出发可得二条对角线;从六边形的一个顶点出发可得三条对角线;…按此规律,从n(n≥4,且n是整数)边形的一个顶点出发可得对角线条.16.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a﹣b的值是.三、解答题(共7小题,满分52分)17.计算:﹣(﹣1.414)0+|﹣2|﹣32﹣tan30°+.18.先化简,再求值:,其中x=2.19.如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.20.如图1是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图2.(1)该班有多少名学生;(2)补上人数分布直方图的空缺部分;(3)若全年级有800人,估计该年级步行有名学生.21.“红树林小组”全体组员参加了义务植树活动,领得准备种植的树苗一批,组长决定采用分工负责制,经计算发现:若每位组员种植10棵树苗,则还剩88棵;若每位组员种植12棵树苗,则有一位组员种植的树苗不到4棵,求准备种植树苗的棵数和“红树林小组”的人数.22.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE 于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2①求值;②求图中阴影部分的面积.23.如图,已知抛物线y=ax2﹣2ax﹣b(a>0)与x轴的一个交点为B(﹣1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.2016年广东省深圳市联盟学校联考中考数学二模试卷参考答案与试题解析一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确的)1.计算|﹣2|的结果是()A.2 B.C.﹣ D.﹣2【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣2|的结果是2.故选:A.【点评】本题考查了绝对值,利用了负数的绝对值它的相反数是解题关键.2.据统计,全球每分钟约有8500000吨污水排入江河湖海,这个排污量用科学记数法表示是()A.8.5×106吨B.8.5×105吨C.8.5×107吨D.85×106吨【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:8500000=8.5×106,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图,只是中心对称图形不是轴对称图形的是()A.B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.某品牌运动鞋销售商在进行市场占有率的调查时,他最关注的是()A.运动鞋型号的平均数B.运动鞋型号的众数C.运动鞋型号的中位数D.运动鞋型号的极差【考点】统计量的选择.【分析】根据题意可得:销售商应该关注鞋的型号的销售量,特别是销售量最大的鞋型号即众数.【解答】解:销售商应该关注的各种鞋型号的销售量,特别是销售量最大的鞋型号,由于众数是数据中出现次数最多的数,故最应该关注的是众数.故选B.【点评】此题主要考查统计的有关知识,主要包括平均数、中位数、众数和极差.反映数据集中程度的统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.下列计算正确的是()A.2a+5b=5ab B.a6÷a3=a2C.a2•a3=a6D.【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项系数相加字母及指数不变,同底数幂的除法底数不变指数相减,同底数幂的乘法底数不变指数相加,积的乘方等于乘方的积,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、同底数幂的除法底数不变指数相减,故B错误;C、同底数幂的乘法底数不变指数相加,故C错误;D、积的乘方等于乘方的积,故D正确;故选:D.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.6.某服装店老板以60元出售一件衣服,结果获利25%,问这件衣服的进价是()A.40 B.48 C.50 D.80【考点】一元一次方程的应用.【分析】设这件衣服的进价为x元,根据:售价﹣进价=10%×进价,可得出方程,解出即可.【解答】解:设这件衣服的进价为x元,由题意得,60﹣x=25%x,解得:x=48,即这件衣服的进价是48元.故选B.【点评】此题考查了一元一次方程的应用,关键是仔细审题,得出等量关系,列出方程,难度一般.7.一次函数y=kx+b(k≠0,k与b都是常数)图象如图示,当y<2时,变量x的取值范围是()A.x>0 B.x<0 C.x<2 D.x>2【考点】一次函数的性质.【分析】根据一次函数的图象与y轴的交点坐标可直接解答.【解答】解:由函数的图象可知,当y<2时,函数的图象在x轴的正半轴上,此时x>0.故选A.【点评】此题考查的是用数形结合的方法求不等式的解集,正确观察函数图象是解答此题的关键.8.二元一次方程组的解是()A.B. C.D.【考点】二元一次方程组的解.【专题】计算题;一次方程(组)及应用.【分析】利用加减消元法求出方程组的解即可.【解答】解:,①×2+②得:7x=7,解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为,故选C【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.如图,在△ABC中,AB=BC=10,BD是∠ABC的平分线,E是AB边的中点.则DE的长是()A.6 B.5 C.4 D.3【考点】三角形中位线定理;等腰三角形的性质.【专题】计算题.【分析】因为在△ABC中,AB=BC=10,BD是∠ABC的平分线,所以D是AC的中点,E是AB边的中点,所以DE是BC的中位线,可求结果.【解答】解:∵在△ABC中,AB=BC=10,BD是∠ABC的平分线,∴D是AC的中点.∵E是AB边的中点,∴DE=BC=×10=5.故选B.【点评】本题考查了等腰三角形的性质,三线合一,以及三角形的中位线定理.10.如图,矩形ABCD中,E在AD上,且EF⊥EC,EF=EC,DE=2,矩形的周长为16,则AE的长是()A.3 B.4 C.5 D.7【考点】矩形的性质;全等三角形的判定与性质.【专题】计算题.【分析】根据矩形的性质和EF⊥EC,EF=EC求证△AEF≌△DCE,可得AE=CD,再利用矩形的周长为16,即可求出AD,然后用AD减DE即可得出答案.【解答】解:∵矩形ABCD中,EF⊥EC,∴∠DEC+∠DCE=90°,∠DEC+∠AEF=90°∴∠AEF=∠DCE,又∵EF=EC,∴△AEF≌△DCE,∴AE=CD,∵矩形的周长为16,即2CD+2AD=16,∴CD+AD=8,∴AD﹣2+AD=8,AD=5,∴AE=AD﹣DE=5﹣2=3.故选A.【点评】此题主要考查学生对全等三角形的判定与性质和矩形性质的理解和掌握,解答此题的关键是求证△AEF≌△DCE.11.已知a>b,且a≠0,b≠0,a+b≠0,则函数y=ax+b与在同一坐标系中的图象不可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据两函数图象所过的象限进行逐一分析,再进行选择即可.【解答】解:A、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b>0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;B、由函数y=ax+b过二、三、四象限可知,a<0,b<0;由函数的图象可知,a+b>0,两结论相矛盾,故不可能成立;C、由函数y=ax+b过一、三、四象限可知,a>0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;D、由函数y=ax+b过一、三、四象限可知,a<0,b<0;由函数的图象可知,a+b<0,与已知a>b,且a≠0,b≠0,a+b≠0,相吻合,故可能成立;故选B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.12.如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A.B.C.1﹣D.1﹣【考点】旋转的性质.【分析】设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积﹣四边形ABED′的面积,列式计算即可得解.【解答】解:如图,D′C′与BC的交点为E,连接AE,在Rt△AD′E和Rt△ABE中,∵,∴Rt△AD′E≌Rt△ABE(HL),∴∠BAE=∠D′AE,∵旋转角为30°,∴∠BAD′=60°,∴∠BAE=×60°=30°,∴BE=1×=,∴阴影部分的面积=1×1﹣2×(×1×)=1﹣.故选C.【点评】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.二、填空题(共4小题,每小题3分,满分12分)13.分解因式:ax2﹣4ax+4a= a(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式a,再利用完全平方公式进行二次分解.【解答】解:ax2﹣4ax+4a,=a(x2﹣4x+4),=a(x﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意要分解彻底.14.如图,三张卡片形状、大小、质地相同,分别印数字1、2、3,现将它们放入盒子.若从盒子中任取一张卡片,求取到数字是奇数的卡片的概率是.【考点】概率公式.【分析】根据有三张形状、大小、质地相同的卡片,其中奇数有1,3共2个,再根据概率公式即可得出答案.【解答】解:∵解:∵共有3个数字,奇数有2个,∴抽出的数字是奇数的概率是,故答案为:.【点评】本题考查的是概率的求法.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.从四边形的一个顶点出发,可得一条对角线;从五边形的一个顶点出发可得二条对角线;从六边形的一个顶点出发可得三条对角线;…按此规律,从n(n≥4,且n是整数)边形的一个顶点出发可得对角线(n﹣3)条.【考点】多边形的对角线.【分析】多边形有n条边,则经过多边形的一个顶点的所有对角线有(n﹣3)条,根据以上规律即可求解.【解答】解:从四边形的一个顶点出发,可得一条对角线;从五边形的一个顶点出发可得二条对角线;从六边形的一个顶点出发可得三条对角线;…按此规律,从n(n≥4,且n是整数)边形的一个顶点出发可得对角线(n﹣3)条.故答案为:(n﹣3).【点评】考查了多边形的对角线,关键是熟练掌握n边形从一个顶点出发可引出(n﹣3)条对角线.16.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=5,CD=4,AB与CD的距离为6,则a﹣b的值是.【考点】反比例函数图象上点的坐标特征.【分析】利用反比例函数k的几何意义得出a﹣b=4•OE,a﹣b=5•OF,求出+=6,即可求出答案.【解答】解:∵由题意知:a﹣b=4•OE,a﹣b=5•OF,∴OE=,OF=,又∵OE+OF=6,∴+=6,∴a﹣b=,故答案为.【点评】本题考查了反比例函数图象上点的坐标特征,能求出方程+=6是解此题的关键.三、解答题(共7小题,满分52分)17.计算:﹣(﹣1.414)0+|﹣2|﹣32﹣tan30°+.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】分别进行零指数幂、绝对值的化简、乘方、特殊角的三角函数值、二次根式的化简等运算,然后合并即可.【解答】解:原式=﹣1+2﹣9﹣+3=﹣8+.【点评】本题考查了实数的运算,涉及了零指数幂、绝对值的化简、乘方、特殊角的三角函数值、二次根式的化简等知识,解答本题的关键是掌握各知识点的运算法则.18.先化简,再求值:,其中x=2.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=•﹣=﹣=,当x=2时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.19.如图,菱形ABCD中,E是对角线AC上一点.(1)求证:△ABE≌△ADE;(2)若AB=AE,∠BAE=36°,求∠CDE的度数.【考点】菱形的性质;全等三角形的判定与性质.【分析】(1)由菱形的性质可得到AD=AB,∠CAB=∠CAD,结合公共边可证得结论;(2)由等腰三角形的性质可求得∠AEB=∠ABE,再结合(1)的结论,可求得∠AED,结合菱形的性质可求出∠CDE的大小.【解答】(1)证明:∵四边形ABCD是菱形,∴AB=AD,∠CAB=∠CAD,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS);(2)解:∵AB=AE,∠BAE=36°,∴∠AEB=∠ABE=,∵△ABE≌△ADE,∴∠AED=∠AEB=72°,∵四边形ABCD是菱形,∴AB∥CD,∴∠DCA=∠BAE=36°,∴∠CDE=∠AED﹣∠DCA=72°﹣36°=36°.【点评】本题主要考查菱形的性质及全等三角形的判定,掌握菱形的四边相等、对边平行及等腰三角形的等边对等角是解题的关键.20.如图1是某班学生上学的三种方式(乘车、步行、骑车)的人数分布直方图和扇形图2.(1)该班有50 多少名学生;(2)补上人数分布直方图的空缺部分;(3)若全年级有800人,估计该年级步行有160 名学生.【考点】扇形统计图;用样本估计总体;频数(率)分布直方图.【分析】(1)根据乘车的25人占总人数50%,即可计算学生总数;(2)根据学生总数进行计算,然后补全统计图即可;(3)根据样本中步行所占的百分比进行估算800人中步行的人数.【解答】解:(1)该班的总人数为:25÷50%=50(人),故答案为:50;(2)“步行”的人数为:50﹣25﹣15=10(人),补全图形如图:(3)估计该年级步行的学生有800×=160(人),故答案为:160.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.“红树林小组”全体组员参加了义务植树活动,领得准备种植的树苗一批,组长决定采用分工负责制,经计算发现:若每位组员种植10棵树苗,则还剩88棵;若每位组员种植12棵树苗,则有一位组员种植的树苗不到4棵,求准备种植树苗的棵数和“红树林小组”的人数.【考点】一元一次不等式组的应用.【分析】设有人数x人,植树(10x+88)棵,根据若每位组员种植12棵树苗,则有一位组员种植的树苗不到4棵,列出不等式组求解.【解答】解:设有人数x人,植树(10x+88)棵,,48<x<50.故有49人.49×10+88=578(棵).故有49人,植树578棵.【点评】本题考查一元一次不等式组的应用,设出人数,表示出棵,根据若每位组员种植12棵树苗,则有一位组员种植的树苗不到4棵,做为不等量关系列不等式组求解.22.如图,已知AB是⊙O的直径,C是⊙O上一点,∠BAC的平分线交⊙O于点D,交⊙O的切线BE 于点E,过点D作DF⊥AC,交AC的延长线于点F.(1)求证:DF是⊙O的切线;(2)若DF=3,DE=2①求值;②求图中阴影部分的面积.【考点】相似三角形的判定与性质;勾股定理;切线的判定与性质;扇形面积的计算.【专题】证明题;几何综合题.【分析】(1)作辅助线,连接OD.根据切线的判定定理,只需证DF⊥OD即可;(2)①连接BD.根据BE、DF两切线的性质证明△BDE∽△ABE;又由角平分线的性质、等腰三角形的两个底角相等求得△ABE∽△AFD,所以△BDE∽△AFD;最后由相似三角形的对应边成比例求得;②连接OC,交AD于G.由①,设BE=2x,则AD=3x.利用①中的△BDE∽△ABE的对应边成比例的性质求得,据此列出关于x的方程,解方程求得x=2,继而可以求出AD=3x=6,BE=2x=4,AE=AD+DE=8;然后由勾股定理知AB=4,在直角三角形ABE中求得∠1=30°;再由三角形的角平分线的性质、等腰三角形的性质及边角关系求得AG=DG,所以△ACG≌△DOG;最后根据两个全等三角形的面积相等的性质求扇形的面积即可.【解答】证明:(1)连接OD∵OA=OD,∴∠1=∠2∵∠1=∠3,∴∠2=∠3∴OD∥AF∵DF⊥AF,∴OD⊥DF∴DF是⊙O的切线(2)①解:连接BD∵直径AB∴∠ADB=90°∵圆O与BE相切∴∠ABE=90°∵∠DAB+∠DBA=∠DBA+∠DBE=90°∴∠DAB=∠DBE∴∠DAB=∠FAD∵∠AFD=∠BDE=90°∴△BDE∽△AFD∴(2)②解:连接OC,交AD于G由①,设BE=2x,则AD=3x∵△BDE∽△ABE∴∴解得:x1=2,(不合题意,舍去)∴AD=3x=6,BE=2x=4,AE=AD+DE=8∴AB=,∠1=30°∴∠2=∠3=∠1=30°,∴∠COD=2∠3=60°∴∠OGD=90°=∠AGC,∴AG=DG∴△ACG≌△DOG,∴S△AGC=S△DGO∴S阴影=S扇形COD=【点评】本题考查的是切线的性质、相似三角形的判定与性质、勾股定理及扇形面积的计算.比较复杂,解答此题的关键是作出辅助线,利用数形结合解答.23.如图,已知抛物线y=ax2﹣2ax﹣b(a>0)与x轴的一个交点为B(﹣1,0),与y轴的负半轴交于点C,顶点为D.(1)直接写出抛物线的对称轴,及抛物线与x轴的另一个交点A的坐标;(2)以AD为直径的圆经过点C.①求抛物线的解析式;②点E在抛物线的对称轴上,点F在抛物线上,且以B,A,F,E四点为顶点的四边形为平行四边形,求点F的坐标.【考点】二次函数综合题.【专题】压轴题.【分析】(1)已知抛物线解析式和点B的坐标求出a值,利用对称轴x=﹣求出对称轴以及点A 的坐标.(2)①本题要靠辅助线的帮助.连接AC,AD,过DM⊥y轴于点M.证明△AOC∽△CMD后可推出a,b的值.②证明四边形BAFE为平行四边形,求出BA,EF得出点F的坐标.【解答】解:(1)对称轴是直线:x=1,点A的坐标是(3,0);(2)①如图,连接AC、AD,过D作DM⊥y轴于点M,解法一:利用△AOC∽△CMD,在y=ax2﹣2ax﹣b(a>0)中,当x=1时,y=﹣a﹣b,则D的坐标是(1,﹣a﹣b).∵点A、D、C的坐标分别是A(3,0),D(1,﹣a﹣b)、C(0,﹣b),∴AO=3,MD=1.由,得,∴3﹣ab=0.又∵0=a•(﹣1)2﹣2a•(﹣1)﹣b,(4分)∴由,得,(5分)∴函数解析式为:y=x2﹣2x﹣3.解法二:利用以AD为直径的圆经过点C,∵点A、D的坐标分别是A(3,0)、D(1,﹣a﹣b)、C(0,﹣b),∴AC=,CD=,AD=∵AC2+CD2=AD2∴3﹣ab=0①又∵0=a•(﹣1)2﹣2a•(﹣1)﹣b②(4分)由①、②得a=1,b=3(5分)∴函数解析式为:y=x2﹣2x﹣3.②F点存在.如图所示,当四边形BAFE为平行四边形时则BA∥EF,并且BA=EF.∵BA=4,∴EF=4由于对称轴为x=1,∴点F的横坐标为5.(7分)将x=5代入y=x2﹣2x﹣3得y=12,∴F(5,12).(8分)根据抛物线的对称性可知,在对称轴的左侧抛物线上也存在点F,使得四边形BAEF是平行四边形,此时点F坐标为(﹣3,12).(9分)当四边形BEAF是平行四边形时,点F即为点D,此时点F的坐标为(1,﹣4).(10分)综上所述,点F的坐标为(5,12),(﹣3,12)或(1,﹣4).【点评】本题考查的是二次函数的综合运用以及平行四边形的判定定理,难度中上.。

广东省深圳市南山区2016年中考数学二模试卷及参考答案

广东省深圳市南山区2016年中考数学二模试卷及参考答案

(i)求证:ED=FC.
(ii)若∠ADE=20°,求∠DMC的度数.
21. 某中学在百货商场购进了A、B两种品牌的篮球,购买A品牌篮球花费了2400元,购买B品牌篮球花费了1950元, 且购买A品牌篮球数量是购买B品牌篮球数量的2倍,已知购买一个B品牌篮球比购买一个A品牌篮球多花50元.
(1) 求购买一个A品牌、一个B品牌的篮球各需多少元? (2) 该学校决定再次购进A、B两种品牌篮球共30个,恰逢百货商场对两种品牌篮球的售价进行调整,A品牌篮球售 价比第一次购买时提高了10%,B品牌篮球按第一次购买时售价的9折出售,如果这所中学此次购买A、B两种品牌篮球的 总费用不超过3200元,那么该学校此次最多可购买多少个B品牌篮球? 22. 如图,⊙O中,点A为 中点,BD为直径,过A作AP∥BC交DB的延长线于点P.
A . 有两个相等的实数根 B . 只有一个实数根 C . 没有实数根 D . 有两个不相等的实数根 4. 如图是由七个相同的小正方体堆砌而成的几何体,则这个几何体的俯视图是( )
A.
B.
C.
D.
5. 下列等式成立的是( )
A . (a+4)(a﹣4)=a2﹣4 B . 2a2﹣3a=﹣a C . a6÷a3=a2 D . (a2)3=a6 6. 如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是( )
广东省深圳市南山区2016年中考数学二模试卷
一、选择题
1. ﹣5的倒数是( ) A . B . C . ﹣5 D . 5 2. 人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做 了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为( ) A . 0.2×107 B . 2×107 C . 0.2×108 D . 2×108 3. 方程x2﹣4x+4=0的根的情况是( )

2016年广东省深圳市17校联考中考数学二模试卷

2016年广东省深圳市17校联考中考数学二模试卷
()
A.B.
C.D.
4.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次
做了四个题,但只做对了一个,他做对的是()
A.a8÷a4=a2B.a3•a4=a12C.=±2D.2x3•x2=2x5
5.(3分)下列各图中,描述∠1与∠2互为余角关系最准确的是()
A.B.
C.D.
第1页(共27页)
2016年广东省深圳市17校联考中考数学二模试卷
一、选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四
个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在
答题卡相应位置上)
1.(3分)给出四个数0,
A.0B.
,π,﹣1,其中最小的是()
C.πD.﹣1
2.(3分)据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域
最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨
头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为
(1D.0.818×1011
3.(3分)在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是
6.(3分)如图,正三棱柱的主视图为()

中考数学二模试卷17

中考数学二模试卷17

2016年广东省深圳市宝安区中考数学二模试卷一、选择题(本题共12小题,每小题3分,共36分)1.﹣5的绝对值是()A.5 B.C.±5 D.﹣2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C. D.3.根据深圳统计局公布数据,2015年深圳公共财政收入达7240亿元,同比增长30.2%,数据“7240亿”用科学记数法表示为()A.0.724×1013B.7.24×1012C.7.24×1011D.72.4×10114.深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是()A.25,26 B.25,26.5 C.27,26 D.25,285.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b26.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价()A.24元B.26元C.28元D.30元7.不等式组的解集是()A.x>2 B.x≤3 C.2<x≤3 D.x≥38.如图,⊙O是△ABC的外接圆,已知∠C=60°,则∠BAO的度数是()A.15° B.30° C.60° D.120°9.如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A.15B.30C.45D.6010.如图,在△ABC中,AB=8,BC=10,以B为圆心,任意长为半径画弧分别交BA、BC于点M和N,再分别以M、N为圆心,大于MN长为半径画弧,两弧交于点P,连结BP并延长交AC于点D,若△BDC的面积为20,则△ABD的面积为()A.20 B.18 C.16 D.1211.如图,所示是二次函数y=ax2+bx+c图象的一部分,图象过点A(5,0),对称轴为直线x=1,下列结论中错误的是()A.abc>0B.当x<1时,y随x的增大而增大C.a+b+c>0D.方程ax2+bx+c=0的根为x1=﹣3,x2=512.如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB ∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y=图象恰好过点D,则k的值为()A.6 B.﹣6 C.9 D.﹣9二、填空题(本题共4小题,每小题3分,共12分)13.因式分解:3x2+6x+3=______.14.现有甲、乙、丙三位好朋友随机站成一排照合影,则甲站在中间的概率为______.15.将边长为1的正方形纸片按图1进行二等分分割,其阴影图形面积为S1,继续将图2剩下空白部分二等分分割的图形面积为S2,…,按此方法如图3第n次分割后得到的图形面积为S n,求S1+S2+S3+…+S n=______.16.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.三、解答题(本题共7小题,共52分)17.计算:6cos30°﹣(π﹣)0﹣+()﹣1.18.先化简,再求值:(﹣)÷,其中x=﹣2+.19.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动.小明从学校同学中随机抽取一部分同学,对他们参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请根据所绘制的统计图回答下面问题:(1)在此次调查中,小明共调查了______位同学;(2)请在图1中将“乒乓球”部分的图形补充完整;(3)图2中表示“足球”的扇形的圆心角的度数为______度;(4)如果该学校共有学生2500人,则参加“篮球”运动项目的人数约有______人.20.如图,矩形ABCD 中,对角线AC 和BD 相交于点O ,过O 作EF ⊥AC ,交AD 于E ,交BC 于F ,连接AF 、CE .(1)求证:四边形AECF 是菱形(2)若AB=3,BC=4,则菱形AECF 的周长?21.某玩具厂熟练工人工资为:每月底薪700元,加奖励工资按件计算,一个月工作日为25天,每天工作8小时,加工1件A 种玩具计酬10元,加工1件B 种玩具计酬8元.在工作中发现一名熟练工人加工1件A 种玩具和2件B 种玩具需4小时,加工3件A 种玩具和1件B 种玩具需7小时.(工人月工资=底薪+计件工资)(1)求熟练工人每加工一件A 种玩具和一件B 种玩具,分别需要多少时间?(2)深圳市规定最低工资标准为每月2030元,但玩具厂规定:“每名工人每月必须加工A 、B 两种工具,且加工A 种玩具数量不少于B 种玩具的一半”.若设一名熟练工人每月加工A种玩具a件,工资总额为w元,请你运用所学知识判断该公司在执行规定后是否违背了深圳市最低工资标准?22.如图1,在直角坐标系xoy中,直线l与x、y轴分别交于点A(4,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求证:y轴是⊙G的切线;(2)请求⊙G的半径r,并直接写出点C的坐标;(3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?23.如图1,抛物线l1;y=ax2+bx+c(a<0)经过原点,与x轴的另一个交点为B(4,0),点A为顶点,且直线OA的解析式为y=x.(1)如图1,求抛物线l1的解析式;(2)如图2,将抛物线l1绕原点O旋转180°,得到抛物线l2,l2与x轴交于点B′,顶点为A′,点P为抛物线l1上一动点,连接PO交l2于点Q,连接PA、PA′、QA′、QA.请求:平行四边形PAQA′的面积S与P点横坐标x(2<x≤4)之间的关系式;(3)在(2)的条件下,如图11﹣3,连接BA′,抛物线l1或l2上是否存在一点H,使得HB=HA′?若存在,请求出点H的坐标;若不存在,请说明理由.2016年广东省深圳市宝安区中考数学二模试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.﹣5的绝对值是()A.5 B.C.±5 D.﹣【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选A【点评】此题考查绝对值问题,解题的关键是掌握绝对值的性质.2.下列图形中既是中心对称图形又是轴对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、是轴对称图形,不是中心对称图形,错误;B、不是轴对称图形,是中心对称图形,错误;C、是轴对称图形,不是中心对称图形,错误;D、是轴对称图形,也是中心对称图形,正确.故选:D.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.根据深圳统计局公布数据,2015年深圳公共财政收入达7240亿元,同比增长30.2%,数据“7240亿”用科学记数法表示为()A.0.724×1013B.7.24×1012C.7.24×1011D.72.4×1011【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:数据“7240亿”用科学记数法表示为7.24×1012,故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.深圳今年4月份某星期的最高气温如下(单位℃):26,25,27,28,27,25,25,则这个星期的最高气温的众数和中位数分别是()A.25,26 B.25,26.5 C.27,26 D.25,28【考点】众数;中位数.【分析】根据众数和中位数的定义,结合所给数据即可得出答案.【解答】解:将这组数据按从小到大的顺序排列为:25,25,25,26,27,27,28,出现最多的数字为:25,故众数是25,中位数为:26.故选:A.【点评】本题考查了众数及中位数的知识,属于基础题,掌握众数及中位数的定义是解答本题的关键.5.下列运算正确的是()A.﹣2x2﹣3x2=﹣5x2B.6x2y3+2xy2=3xyC.2x3•3x2=6x6D.(a+b)2=a2﹣2ab+b2【考点】完全平方公式;合并同类项;单项式乘单项式.【分析】根据合并同类项法则、单项式乘单项式法则、完全平方公式逐一判断即可.【解答】解:A、﹣2x2﹣3x2=﹣5x2,此选项正确;B、6x2y3与2xy2不是同类项,不能合并,此选项错误;C、2x3•3x2=6x5,此选项错误;D、(a+b)2=a2+2ab+b2,此选项错误;故选:A.【点评】本题主要考查合并同类项、单项式乘单项式、完全平方公式,熟练掌握法则和公式是解题的关键.6.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价()A.24元B.26元C.28元D.30元【考点】一元一次方程的应用.【分析】根据题意,实际售价=进价+利润.八折即标价的80%;可得一元一次的等量关系式,求解可得答案.【解答】解:设标价是x元,根据题意有:0.8x=20(1+20%),解可得:x=30.故标价为30元.故选:D.【点评】本题考查一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答.7.不等式组的解集是()A.x>2 B.x≤3 C.2<x≤3 D.x≥3【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>2,由②得,x≤3,故不等式组的解集为:2<x≤3.故选C.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,⊙O是△ABC的外接圆,已知∠C=60°,则∠BAO的度数是()A.15° B.30° C.60° D.120°【考点】圆周角定理.【分析】连接OB,根据圆周角定理求出∠AOB的度数,根据等腰三角形的性质和三角形内角和定理计算即可.【解答】解:连接OB,由圆周角定理得,∠AOB=2∠C=120°,又OA=OB,∴∠BAO=(180°﹣120°)=30°,故选:B.【点评】本题考查的是圆周角定理和三角形内角和定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.9.如图,小强从热气球上测量一栋高楼顶部的倾角为30°,测量这栋高楼底部的俯角为60°,热气球与高楼的水平距离为45米,则这栋高楼高为多少(单位:米)()A.15B.30C.45D.60【考点】解直角三角形的应用-仰角俯角问题.【分析】过A作AD⊥BC,垂足为D,在直角△ABD与直角△ACD中,根据三角函数即可求得BD和CD,即可求解.【解答】解:过A作AD⊥BC,垂足为D,在Rt△ABD中,∵∠BAD=30°,AD=45m,∴BD=AD•tan30°=45×=15m,在Rt△ACD中,∵∠CAD=60°,AD=45m,∴CD=AD•tan60°=45×=45m,BC=15+45=60m.故选D.【点评】本题主要考查了仰角与俯角的计算,一般三角形的计算,常用的方法是利用作高线转化为直角三角形的计算.10.如图,在△ABC中,AB=8,BC=10,以B为圆心,任意长为半径画弧分别交BA、BC于点M和N,再分别以M、N为圆心,大于MN长为半径画弧,两弧交于点P,连结BP并延长交AC于点D,若△BDC的面积为20,则△ABD的面积为()A.20 B.18 C.16 D.12【考点】作图—基本作图;角平分线的性质.【分析】根据角平分线的作法可得BD平分∠ABC,再根据角平分线的性质得到DE=DF=4,然后根据三角形的面积公式即可得到结论.【解答】解:由作图知,BD平分∠ABC,过D作DE⊥BC于E,DF⊥AB于F,则DE=DF,∵△BDC的面积为20,BC=10,∴DE=DF=4,∵AB=8,∴△ABD的面积=AB•DF=×8×4=16,故选C.【点评】此题主要考查了角平分线的作法以及角平分线的性质,熟练根据角平分线的性质得出∠ADB度数是解题关键.11.如图,所示是二次函数y=ax2+bx+c图象的一部分,图象过点A(5,0),对称轴为直线x=1,下列结论中错误的是()A.abc>0B.当x<1时,y随x的增大而增大C.a+b+c>0D.方程ax2+bx+c=0的根为x1=﹣3,x2=5【考点】二次函数图象与系数的关系.【分析】利用抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,于是可对A选项进行判断;根据二次函数的性质可对B选项进行判断;利用自变量为1时函数值为正可对C选项进行判断;利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(﹣3,0),然后利用抛物线与x轴的交点问题可对D选项进行判断.【解答】解:A、抛物线开口向下得a<0,抛物线的对称轴在y轴右侧得b>0,抛物线与y 轴的交点在x轴上方得c>0,则abc<0,所以A选项的结论错误;B、a<0,当x<1时,y随x的增大而增大,所以B选项的结论正确;C、当x=1时,y>0,即a+b+c=0,所以C选项的结论正确;D、点(5,0)关于直线x=1的对称点为(﹣3,0),所以方程ax2+bx+c=0的根为x1=﹣3,x2=5,所以D选项的结论正确.故选A.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.判断D选项的关键是利用抛物线的对称性确定抛物线与x轴的另一个交点.12.如图,在平面直角坐标系上,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB ∥y轴,点B(1,3),将△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,恰好有一反比例函数y=图象恰好过点D,则k的值为()A.6 B.﹣6 C.9 D.﹣9【考点】反比例函数图象上点的坐标特征;坐标与图形变化-旋转.【分析】先根据旋转的性质得BD=BA=3,∠DBA=90°,则BD∥x轴,易得D(﹣2,3),然后利用待定系数法求反比例函数解析式.【解答】解:如图,∵△ABC以点B为旋转中心顺时针方向旋转90°得到△DBE,点B(1,3),AB∥y轴,∴BD=BA=3,∠DBA=90°,∴BD∥x轴,∴DF=3﹣1=2,∴D(﹣2,3).∵反比例函数y=图象恰好过点D,∴3=,解得k=﹣6.故选B.【点评】本题考查了待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);再把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.也考查了旋转的性质.二、填空题(本题共4小题,每小题3分,共12分)13.因式分解:3x2+6x+3= 3(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(x2+2x+1)=3(x+1)2,故答案为:3(x+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.现有甲、乙、丙三位好朋友随机站成一排照合影,则甲站在中间的概率为.【考点】列表法与树状图法.【分析】画树状图展示所有6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率==.故答案为.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.15.将边长为1的正方形纸片按图1进行二等分分割,其阴影图形面积为S1,继续将图2剩下空白部分二等分分割的图形面积为S2,…,按此方法如图3第n次分割后得到的图形面积为S n,求S1+S2+S3+…+S n= 1﹣.【考点】规律型:图形的变化类.【分析】先分别计算S1,S1+S2,S1+S2+S3,再根据计算结果找出规律即可求得S1+S2+S3+…+S n.【解答】解:S1==1﹣S1+S2=+=1﹣=1﹣S1+S2+S3=++=1﹣=1﹣…S1+S2+S3+…+S n=+++…+=1﹣故答案为:1﹣【点评】本题主要考查了列代数式,解决问题的关键是根据计算S1,S1+S2,S1+S2+S3所得的结果找出规律.探寻规律时要认真观察、仔细思考,善用联想来解决这类问题.16.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是2﹣2 .【考点】菱形的性质;翻折变换(折叠问题).【分析】根据题意,在N的运动过程中A′在以M为圆心、AD为直径的圆上的弧AD上运动,当A′C取最小值时,由两点之间线段最短知此时M、A′、C三点共线,得出A′的位置,进而利用锐角三角函数关系求出A′C的长即可.【解答】解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为4的菱形ABCD中,∠A=60°,M为AD中点,∴MD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴MC==2,∴A′C=MC﹣MA′=2﹣2.故答案为:2﹣2.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.三、解答题(本题共7小题,共52分)17.计算:6cos30°﹣(π﹣)0﹣+()﹣1. 【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果.【解答】解:原式=6×﹣1﹣3+3=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简,再求值:(﹣)÷,其中x=﹣2+. 【考点】分式的化简求值.【分析】将除式分子因式分解后除法转化为乘法,再根据乘法分配律展开后化为同分母分式相减,依据分式减法法则计算即可化简原式,将x 的值代入计算可得.【解答】解:原式=(﹣)•=•﹣•=﹣==,当x=﹣2+时,原式===.【点评】本题主要考查分式的化简求值的能力,熟练掌握分式的混合运算顺序和运算法则是解题的关键.19.为响应国家要求中小学生每天锻炼1小时的号召,某校开展了形式多样的“阳光体育运动”活动.小明从学校同学中随机抽取一部分同学,对他们参加锻炼的情况进行了统计,并绘制了下面的图1和图2,请根据所绘制的统计图回答下面问题:(1)在此次调查中,小明共调查了50 位同学;(2)请在图1中将“乒乓球”部分的图形补充完整;(3)图2中表示“足球”的扇形的圆心角的度数为72 度;(4)如果该学校共有学生2500人,则参加“篮球”运动项目的人数约有1000 人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)参加“篮球”运动项目的人数除以它所占的百分比即可得到调查的总人数;(2)用总人数分别减去其它运动项目的人数得到参加乒乓球的人数,然后补全条形统计图;(3)用参加足球的人数所占的百分比乘以360°即可得到扇形统计图中表示“足球”的扇形的圆心角的度数;(4)用样本中参加“篮球”运动项目的百分比乘以2500即可.【解答】解:(1)在此次调查中,小明共调查的同学数=20÷40%=50(人);(2)参加乒乓球的人数=50﹣20﹣10﹣15=5(人),补全条形统计图为:(3)图2中表示“足球”的扇形的圆心角的度数=×360°=72°;(4)2500×40%=1000,所有估计参加“篮球”运动项目的人数约有1000人.故答案为50,72,1000.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.从条形图可以很容易看出数据的大小,便于比较.也考查了样本估计总体.20.如图,矩形ABCD中,对角线AC和BD相交于点O,过O作EF⊥AC,交AD于E,交BC 于F,连接AF、CE.(1)求证:四边形AECF是菱形(2)若AB=3,BC=4,则菱形AECF的周长?【考点】矩形的性质;菱形的判定与性质.【分析】(1)利用已知条件和矩形的性质易证△AEO≌△CFO,进而可得四边形AECF是平行四边形,又因为EF⊥AC,所以可证明四边形AECF是菱形(2)设AE=CE=x,则DE=4﹣x,在直角三角形EDC中,利用勾股定理可求出x的值,进而可求出菱形的周长.【解答】(1)证明:∵四边形ABCD是矩形,∴AO=CO,AD∥BC,∴∠OAE=∠OCF,∵EF⊥AC,∴∠AOE=∠COF=90°,在△AEO和△CFO中,,∴△AEO≌△CFO,∴OE=OF,∵AO=CO,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形;(2)解:∵四边形ABCD是矩形,∴AB=CD=3,BC=AD=4,AE=CE=x,则DE=4﹣x,在直角三角形EDC中由勾股定理可得:CE2=DE2+CD2,即a2=(4﹣a)2+32,解得:a=,∴菱形AECF的周长=4×=12.5.【点评】本题考查了矩形的性质、菱形的判定和性质以及勾股定理的运用,熟记各种特殊四边形的判定方法和性质是解题关键.21.某玩具厂熟练工人工资为:每月底薪700元,加奖励工资按件计算,一个月工作日为25天,每天工作8小时,加工1件A种玩具计酬10元,加工1件B种玩具计酬8元.在工作中发现一名熟练工人加工1件A种玩具和2件B种玩具需4小时,加工3件A种玩具和1件B种玩具需7小时.(工人月工资=底薪+计件工资)(1)求熟练工人每加工一件A种玩具和一件B种玩具,分别需要多少时间?(2)深圳市规定最低工资标准为每月2030元,但玩具厂规定:“每名工人每月必须加工A、B两种工具,且加工A种玩具数量不少于B种玩具的一半”.若设一名熟练工人每月加工A 种玩具a件,工资总额为w元,请你运用所学知识判断该公司在执行规定后是否违背了深圳市最低工资标准?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设熟练工加工1件A种玩具需要x小时,加工1件B种玩具需要y小时,根据“加工1件A种玩具和2件B种玩具需4小时,加工3件A种玩具和1件B种玩具需7小时”即可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)当一名熟练工一个月加工A种玩具a件时,则还可以加工B种玩具(25×8﹣2a)件,根据“加工1件A种玩具计酬10元,加工1件B种玩具计酬8元”即可得出w关于a的一次函数,再根据“每名工人每月必须加工A、B两种工具,且加工A种玩具数量不少于B种玩具的一半”,即可得出关于a的一元一次不等式,解不等式即可求出a的值,利用一次函数的单调性即可解决最值问题.【解答】解:(1)设熟练工加工1件A种玩具需要x小时,加工1件B种玩具需要y小时,由题意得:,解得:,答:熟练工加工1件A种玩具需要2小时,加工1件B种玩具需要1小时.(2)当一名熟练工一个月加工A种玩具a件时,则还可以加工B种玩具(25×8﹣2a)件,∴w=10a+8(25×8﹣2a)+700=﹣6a+2300,又∵a≥(25×8﹣2a),解得:a≥50.∵﹣6<0,∴w随着a的增大而减小,∴当a=50时,w取最大值,最大值为2000.∵2000<2030,∴该公司违背了深圳市最低工资标准.【点评】本题考查了一次函数的应用已经二元一次方程组的应用,解题的关键是:(1)列出关于x、y的二元一次方程组;(2)根据一次函数的性质解决最值问题.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程组(或函数关系式)是关键.22.如图1,在直角坐标系xoy中,直线l与x、y轴分别交于点A(4,0)、B(0,)两点,∠BAO的角平分线交y轴于点D.点C为直线l上一点,以AC为直径的⊙G经过点D,且与x轴交于另一点E.(1)求证:y轴是⊙G的切线;(2)请求⊙G的半径r,并直接写出点C的坐标;(3)如图2,若点F为⊙G上的一点,连接AF,且满足∠FEA=45°,请求出EF的长?【考点】圆的综合题.【分析】(1)要证明y轴是⊙G的切线,只需要连接GD后证明GD⊥OB即可.(2)由(1)可知GD∥OA,则△BDG∽△BOA,设半径为r后,利用对应边的比相等列方程即可求出半径r的值.(3)由于∠FEA=45°,所以可以连接CE、CF构造直角三角形.由于要求的EF是弦,所以过点A作AH⊥EF,然后利用垂径定理即可求出EF的长度.【解答】解:(1)连接GD,∵∠OAB的角平分线交y轴于点D,∴∠GAD=∠DAO,∵GD=GA,∴∠GDA=∠GAD,∴∠GDA=∠DAO,∴GD∥OA,∴∠BDG=∠BOA=90°,∵GD为半径,∴y轴是⊙G的切线;(2)∵A(4,0),B(0,),∴OA=4,OB=,在Rt△AOB中,由勾股定理可得:AB=,设半径GD=r,则BG=﹣r,∵GD∥OA,∴△BDG∽△BOA,∴=,∴r=4(﹣r),∴r=;∴C的坐标为(1,4);(3)过点A作AH⊥EF于H,连接CE、CF,∵AC是直径,∴AC=2×=5∴∠AEC=∠AFC=90°∵∠FEA=45°∴∠FCA=45°∴在Rt△AEH中,由勾股定理可知:AF=CF=,设OE=a∴AE=4﹣a∵CE∥OB∴△ACE∽△ABO∴=∴CE=∵CE2+AE2=AC2,∴(4﹣a)2+(4﹣a)2=25∴a=1或a=7(不合题意,舍去)∴AE=3∴在Rt△AEH中,由勾股定理可得,AH=EH=,∴在Rt△AEH中,由勾股定理可知:FH2=AF2﹣AH2=﹣=8,∴FH=2,∴EF=EH+FH=.【点评】此题属于圆的综合题,涉及了切线的判定、相似三角形的判定与性质、勾股定理的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来,灵活运用.23.如图1,抛物线l1;y=ax2+bx+c(a<0)经过原点,与x轴的另一个交点为B(4,0),点A为顶点,且直线OA的解析式为y=x.(1)如图1,求抛物线l1的解析式;(2)如图2,将抛物线l1绕原点O旋转180°,得到抛物线l2,l2与x轴交于点B′,顶点为A′,点P为抛物线l1上一动点,连接PO交l2于点Q,连接PA、PA′、QA′、QA.请求:平行四边形PAQA′的面积S与P点横坐标x(2<x≤4)之间的关系式;(3)在(2)的条件下,如图11﹣3,连接BA′,抛物线l1或l2上是否存在一点H,使得HB=HA′?若存在,请求出点H的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据O、B关于对称轴对称,可得OD的长,根据A在直线y=x上,可得A点坐标,根据待定系数法,可得答案;(2)根据平行四边形的性质,可得S平行四边形PAQA′=4S△AOP,根据平行于x轴的直线上两点间的距离是较大的横坐标减较小的横坐标,可得PF的长,根据三角形的面积,可得答案;(3)根据线段垂直平分线上的点到线段两端点的距离相等,可得H在线段A′B的垂直平分线上,根据解方程组,可得H点的坐标.【解答】解:(1)如图1,过A作AD⊥OB于D点,∵抛物线l1:y=ax2+bx+c(a<0)过原点和B(4,0).顶点为A.OD=OB=2.又∵直线OA的解析式为y=x,∴AD=OD=2.∴点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,,解得,∴抛物线C的解析式为y=﹣x2+2x;(2)如图2,,∵AO=A′O,PO=PQ,∴四边形PAQA′是平行四边形,∴S平行四边形PAQA′=4S△AOP.过点P作PE⊥y轴于E交AO于F.设P(x,﹣ x2+2x),则F(﹣x2+2x,﹣ x2+2x),若P点在抛物线AB段(2<x≤4)时,S△AOP=|x P﹣x F|×|y A|= [x﹣(﹣x2+2x)]×2=x2﹣x,则S平行四边形PAQA′=4S△AOP=2x2﹣4x(2<x≤4);(3)如图3,,作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由旋转的性质,得l2的顶点坐标A′(﹣2,﹣2),故A′B的中点M的坐标(1,﹣1).作MT⊥x轴于T,在Rt△NMB中,MT⊥NB于T,∠NMT+∠BMT=90°,∠TBM+∠BMT=90°,∴∠NMT=∠TBM,又∵∠NTM=∠BTM=90°,∴△MTN∽△BTM,=,MT2=TN•TB,即12=(1﹣n)(4﹣1).∴n=,即N点的坐标为(,0).直线l过点M(1,﹣1)、N(,0),∴直线l的解析式为y=﹣3x﹣2.解,得x=5.在抛物线l1上存在两点使得HB=HA′,其坐标分别为(5+,﹣13﹣3),(5﹣,﹣13﹣3).解得x=﹣5,在抛物线l2上存在两点使得HB=HA′,其坐标分别为(﹣5+,17﹣3),(﹣5﹣,17+3);综上所述:(5+,﹣13﹣3),(5﹣,﹣13﹣3),(﹣5+,17﹣3),(﹣5﹣,17+3).【点评】本题考查了二次函数综合题,利用函数值相等点关于关于对称轴对称得出OD是解题关键;利用平行四边形的性质得出S平行四边形PAQA′=4S△AOP是解题关键;利用线段垂直平分线上的点到线段两端点的距离相等得出H在线段A′B的垂直平分线上是解题关键,又利用了解方程组得出H点的坐标.。

深圳市龙华区2016-2017年第二次摸拟数学测试卷

深圳市龙华区2016-2017年第二次摸拟数学测试卷

龙华区2016-2017 学年度九年级第二次调研测试说明:.答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好..全卷分两部分,第一部分为选择题,第二部分为非选择题,共 页.考试时间 分钟,满分 分..本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效.答题卡必须保持清洁,不能折叠..本卷选择题 — ,每小题选出答案后,用 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选择涂其它答案;非选择题 — ,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区内..考试结束后,请将本试卷和答题卡一并交回.第一部分 选择题(本部分共 小题,每小题 分,共 分.每小题给出 个选项,其中只有一个是正确的).如果向东走 米记作 米,那么向西走 米记作( ) .21米 .21-米 . 米 .– 米 .据龙华区发展和财政局公布, 年 月龙华区一般公共预算支出约 亿元,数据 亿用科学记数法表示为( ).10106.2⨯ .111026.0⨯ .91026⨯ .9106.2⨯ .下列运算正确的是( ). 422a a a =+ .22)(ab ab = .326a a a =÷ .6328)2(a a = .下列图形均是一些科技创新公司标志图,其中既是中心对称图形又是轴对称图形的是( ).据报道,深圳今年 月 日至月 日每天的最高气温变化如图 所示.则关于这七天的最高气温的数据,下列判断中错误的是( ).平均数是 ;.众数是 ;.中位数是 ;.方差是74.已知三角形三边的长分别为 、 、 ,则 的取值范围在数轴上表示为( ).一个几何体由若干大小相同的小立方块搭成,图分别是从它的正面、上面看到的形状图,则搭成该几何体的小立方块至少需要( ). 块 . 块. 块 . 块.如图 ,已知∠ º,点 为 上一点.用尺规按如下过程作图:气温/°C8日7日6日5日4日3日2日2525272726262627.52726.52625.5252424.5图图以点 为圆心,以任意长为半径作弧,交 于点 ,交 于点 ;以点 为圆心,以 为半径作弧,交 于点 ;以点 为圆心,以 为半径作弧,交前面的弧于点 ;连接 并延长交 于点 .则∠ 的度数为( ) . º . º . º . º .如图 ,已知五边形 是⊙ 的内接正五边形,且⊙ 的半径为 .则图中阴影部分的面积是( ). π51 .π52. π31 .π125.下列命题中是真命题的是( ) .同位角相等;.有两边及一角分别相等的两个三角形全等; .两组对边分别相等的四边形是平行四边形; .垂直于半径的直线是圆的切线..定义一种运算“◎”,规定 ◎ = – ,其中 、 为常数,且 ◎ = , ◎ = ,则 的值是( ). .– .316. .已知函数c bx ax y ++=2( ≠ )的图象与函数 23的图象如图 所示,则下列结论:①0>ab ;②23->c ;③21-<++c b a ;④方程023)1(2=++-+c x b ax 有两个不相等的实数根.其中正确的有( ). 个 . 个 . 个 . 个图图第二部分 非选择题填空题(本题共有 小题,每小题 分,共 分) .分解因式:=+-32244b ab b a ..在31, ,2 ,– 这四个数中随机取出两个数,则取出的两个数均为正数的概率是 ..如图 ,已知函数 与函数xky =的图象交于 、 两点,过点 作 ⊥ 轴,垂足为 ,连接 .若△ 的面积为 ,则 的值为 ..如图 ,在平面直角坐标系中,已知矩形 的顶点 在 轴上, , ,点 为 边上一点,以 为一边在与点 的同侧作正方形 ,连接 。

2016年深圳市龙华新区中考数学二模试卷及解析

2016年深圳市龙华新区中考数学二模试卷及解析

2016年深圳市龙华新区中考数学二模试卷及解析2016年深圳市龙华新区中考数学二模试卷及解析说明:1. 本试卷分为第Ⅰ卷和第Ⅱ卷. 第Ⅰ卷1~2页,第Ⅱ卷3~8页. 请将第Ⅰ卷的正确选项用2B 铅笔填涂在机读答题卡上;第Ⅱ卷用蓝、黑色的钢笔或签字笔解答在试卷上,其中的解答题都应按要求写出必要的解答过程.2. 本试卷满分为120分,答题时间为120分钟.3. 不使用计算器解题.第Ⅰ卷选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分)在每小题给出的四个选项中,有且仅有一项是符合题目要求的.1. 若m-n=-1,则(m-n)2-2m+2n的值是()A. 3B. 2C. 1D. -12. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则ba 的值为A. 1B. 5C.图1P OB AC 6 D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12,B .15,C .12或15,D .184. 下列图形中,既是轴对称图形又是中心对称图形的有①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个 5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°,∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35°6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨.B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上.图2EOABC.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61. 7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m的值为A. 2012B. 2013C.2014 D. 20158. 用配方法解方程0142=++x x,配方后的方程是A. 3)2(2=-x B. 3)2(2=+x C.5)2(2=-xD.5)2(2=+x9. 要使代数式12-a a 有意义,则a 的取值范围是 A.≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为 A. 4 cm B. 23cm C.32cmD.62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+x D.450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ;⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④ C. ③④⑤D. ②③⑤2016年深圳市龙华新区中考数学二模试卷及解析第Ⅱ卷总分表题号 二 三 四 五 六 总 分总分人复查人 得分第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分) .13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________.14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________.15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长得 分 评卷人为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x,则21____y y(填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为. 18. 已知101=-aa ,则aa 1+的值是______________. 三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题1220分)19.(1)计算题:2)1(3112)3(----+--; (2)解方程:1222+=-x x x .得 分 评卷人20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=-x+5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A .(1)画出△11OB A ,直接写出点1A ,1B 的坐标;(2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.得 分 评卷人OB A22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个. (1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元?(2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?AOBED五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E . (1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE. (3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)得 分 评卷人得分评卷人六、综合题(本大题满分14分)1x2+bx-2与x轴交于A、24. 如图,抛物线y=2B两点,与y轴交于C点,且A(一1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,证明你的结论;(3)点M是x轴上的一个动点,当△DCM的周长最小时,求点M的坐标.数学试题参考答案及评分标准一、选择题(本大题共12个小题,每小题3分,满分36分)题 1 2 3 4 5 6 7 8 9 111号 0 1 2答案B D BCD D C B C B A B二、填空题(本大题共6个小题,每小题3分,满分18分)13. -3 14. 0或 2 15. 1.6 16. > 17.52 18.14±三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.计算题:(1)原式=1)13(321--+-(注:每项1分) ………………3分=13--. ……………………………………………………4分(2)解:整理原方程,得:142=--x x . (1)分解这个方程:……(方法不唯一,此略).52,5221-=+=∴x x ……………………………………………………4分 20. 解:画树状图得:(1)点Q所有可能的坐标有:(1,2),(1,3),(1,4)(2,1),(2,3),(2,4)(3,1),(3,2),(3,4)(4,1),(4,2),(4,3)共12种. …………4分(2)∵共有12种等可能的结果,其中在函数y=﹣x+5的图象上的有4种,即:(1,4),(2,3),(3,2),(4,1),……………………………………………5分∴点(x,y)在函数y=﹣x+5的图象上的概率为:=. …………………7分(3)∵x、y满足xy>6有:(2,4),(3,4),(4,2),(4,3)共4种情况,x、y满足xy<6有(1,2),(1,3),(1,4),(2,1),(3,1),(4,1)共6种情况.……………………………………………………9分()31124==小明胜P Θ,()21126==小红胜P……………………………10分游戏不公平∴≠2131Θ. …………………………………………………11分公平的游戏规则为:若x 、y 满足6≥xy 则小明胜,若x、y满足xy<6则小红胜. (12)分四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分) 21.(1)如图,)3,3(1-A ,)1,2(1-B …………………………………………3分注:画图1分,两点坐标各1分.(2)由)2,1(B 可得:5=OB , ……………4分 弧1BB =πππ255241241=⨯⨯=⋅r …6分B 1A 1OB A(3)由)3,3(A 可得:23=OA ,又5=OB ,πππ2918414121=⨯⨯=⋅=OA S OAA 扇形,πππ455414121=⨯⨯=⋅=OB S OBB 扇形, ……………………………8分则线段AB 所扫过的面积为:πππ4134529=- . ……………………10分22.解:(1)设售价应涨价x 元,则:770)10120)(1016(=--+x x , …………………………………………2分解得:11=x ,52=x . ……………………………………………………3分又要尽可能的让利给顾客,则涨价应最少,所以52=x(舍去).∴ 1=x .答:专卖店涨价1元时,每天可以获利770元. ……………………………4分(2)设单价涨价x 元时,每天的利润为W 1元,则: 810)3(107206010)10120)(1016(221+--=++-=--+=x x xx x W (0≤x ≤12)即定价为:16+3=19(元)时,专卖店可以获得最大利润810元. ……6分设单价降价z 元时,每天的利润为W 2元,则: 750)1(307206030)30120)(1016(222+--=++-=+--=z z z z z W(0≤z ≤6)即定价为:16-1=15(元)时,专卖店可以获得最大利润750元. ………8分综上所述:专卖店将单价定为每个19元时,可以获得最大利润810元. …10分 五、几何题(本大题满分12分) 23.(1)证明:连接OD ,∵BC 是⊙O 的切线,∴∠ABC=90°, …………1分∵CD=CB , ∴∠CBD=∠CDB , ∵OB=OD ,∴∠OBD=∠ODB , ∴∠ODC=∠ABC=90°,即OD ⊥CD , ……………3分∵点D 在⊙O 上, ∴CD 为⊙O 的切线. ………4分(2)如图,∠DOE=∠ODB+∠OBD=2∠DBE ,…………………6分由(1)得:OD ⊥EC 于点D ,∴∠E+∠C=∠E+∠DOE =90°, ………………7分∴∠C=∠DOE =2∠DBE. ………………………………………………………8分(3)作OF ⊥DB 于点F,连接AD ,由EA=AO 可得:AD 是Rt △ODE 斜边的中线, ∴AD=AO=OD,∴∠DOA=60°,∴∠OBD=30°, ………………………………9分又∵OB=AO=2,OF ⊥BD ,∴ OF=1,BF=, ………………………………10分∴BD=2BF=2,∠BOD=180°-∠DOA =120°, ……………………………11分∴3341322136021202-=⨯⨯-⨯=-=ππBODOBD S S S三角形扇形阴影.…12分注:此大题解法不唯一,请参照给分. 六、综合题(本大题满分14分)24.解:(1)∵点)01(,-A 在抛物线221y 2-+=bx x 上, ∴02)1()1(212=--⨯+-⨯b ,∴23-=b , …………………………………2分∴抛物线的解析式为223212--=x x y . ………………………………………3分∵825)23(212232122--=--=x x xy , ∴顶点D的坐标为)825,23(-. …………………………………………………5分(2)△ABC 是直角三角形. 当0=x 时,2-=y ,∴)2,0(-C ,则2=OC . …6分当0=y 时,0223212=--x x,∴4,121=-=x x,则)0,4(B . ………7分∴1=OA ,4=OB , ∴5=AB . ∵252=AB ,5222=+=OC OA AC,20222=+=OB OC BC,∴222AB BC AC =+, ……………………………………………………8分 ∴△ABC是直角三角形. ……………………………………………………9分(3)作出点C 关于x 轴的对称点C ′,则)2,0('C .连接C ′D 交x 轴于点M ,根据轴对称性及两点之间线段最短可知,CD 一定,当MC+MD 的值最小时,△CDM 的周长最小. ………………10分设直线C ′D 的解析式为b ax y +=,则: 则⎪⎩⎪⎨⎧-=+=825232b a b ,解得2,1241=-=b a ,…11分∴21241'+-=x yDC (12)分当0=y 时,021241=+-x ,则4124=x ,……13分 ∴)0,4124(M . …………………………………14分2016年深圳市龙华新区中考数学二模试卷及解析第Ⅰ卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题所给的四个选项中,只有一项是符合题目要求的.)1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是( )A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,10 6.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y =2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426- 9.已知2x y 32x y 0-+++=(),则x+y 的值为( )A.0B.-1C.1D.510.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°,∠C = 50°,那么sin ∠AEB 的值为( )33A.2321C.D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.15 13.2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( ) A.科比罚球投篮2次,一定全部命中 B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( )A.60°B.90°C.120°D.180°15.如图,在正方形ABCD 中,AB=3 cm ,动点M 自A 点出发沿AB 方向以每秒1 cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (s ),则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 13b 0a b -++=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”). 18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x轴反射,过点B(5,3),则这束光从点A到点B所经过的路径的长为______.20.若圆锥的母线长为5 cm,底面半径为3 cm,则它的侧面展开图的面积为________cm2(结果保留π).21.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F= 72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.)22.(本小题满分7分)(1)解方程组:x3y1, 3x2y8.+=-⎧⎨-=⎩(2)解不等式组2x312x0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元. (1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?25.(本小题满分8分)自实施新教育改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分同学进行了为期半个月的跟踪调查,并将调查结果分为四类:A.特别好;B.好;C.一般;D.较差,并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了多少名同学?(2)求出调查中C类女生及D类男生的人数,将条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(本小题满分9分)如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P 为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA 交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P 在线段BC 上运动时,点E 总在线段CD 上,求m 的取值范围;(3)如图2,若m=4,将△PEC 沿PE 翻折至△PEG 位置,∠BAG=90°,求BP 长.27.(本小题满分9分) 已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0). (1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P运动的时间t的值;若不存在,请说明理由. (3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似,若存在,求a的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y 轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C16.4 17.假 18.2 19.52π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x 312x 0+>⎧⎨-≥ ⎩,①,②由①得:x>-1; 由②得:x ≤2.不等式组的解集为:-1<x ≤2, 在数轴上表示为:23.(1)证明:连接OE. ∵BE 是∠CBA 的角平分线, ∴∠ABE=∠CBE.∵OE=OB ,∴∠ABE=∠OEB , ∴∠OEB=∠CBE , ∴OE ∥BC ,∴∠OEC=∠C=90°, ∴AC 是⊙O 的切线.(2)证明:∵AB=AC ,AD 是BC 的边上的中线, ∴AD ⊥BC , ∴∠ADB=90°.∵四边形ADBE 是平行四边形, ∴平行四边形ADBE 是矩形.24.解:(1)设甲公司单独完成此项工程需x 天,则乙公司单独完成此项工程需1.5x 天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天.(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C类女生人数:20×25%-3=2(人);D类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12.26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°, ∴∠APB=∠CEP.又∵∠B=∠C=90°, ∴△ABP ∽△PCE ,2AB BP 2x 1m,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+Q∴当mx 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m 1,m 2 2.8∴≤≤解得 ∴m 的取值范围为:0m 2 2.<≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE. 又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°, ∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC , ∴∠GAP=∠APB , ∴∠GAP=∠APG ,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x , 在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2, 即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①. 2221m1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC . ∵AG ∥PC ,AG=PC ,∴四边形APCG 为平行四边形,∴AP=CG . 易证△ABP ≌GNC ,∴CN=BP=x . 过点G 作GN ⊥PC 于点N ,则 GH=2,PN=PC-CN=4-2x .在Rt △GPN 中,由勾股定理得:PN 2+GN 2=PG 2, 即:(4-2x )2+22=(4-x )2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C 的坐标为(4,3).设符合条件的点P 存在,令P (a ,0).当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F. ∵∠BPC=90°, ∴∠BPO+∠CPF=90°. 又∵∠OBP+∠BPO=90°, ∴∠OBP=∠CPF, ∴Rt △BOP ∽Rt △PFC ,BO OP 1t,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0, 解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0), ∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似. 设运动时间为t ,则AP=2t ,AQ=at. ∵∠BAD=∠PAQ , ∴当AP AQ AP AQAB AD AD AB==或时,两三角形相似. at 2t AB 5AD 33355655a a ,53====∴==Q ,,或∴存在a 使两三角形相似且6525a a 53== 28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()()∵抛物线经过(0,2),22a 042,3∴--=() 解得:a=16,22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时,解得:x=2或x=6, ∴A (2,0),B (6,0). (2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC 的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2, BC 210,AP CP BC 210,∴=∴+== ∴AP+CP 的最小值为210.(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE, ∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,,∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年广东省深圳市17校联考中考数学二模试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣12.(3分)据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为()美元.A.8.18×109B.8.18×1010C.8.18×1011D.0.818×1011 3.(3分)在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.4.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a8÷a4=a2B.a3•a4=a12C.=±2D.2x3•x2=2x5 5.(3分)下列各图中,描述∠1与∠2互为余角关系最准确的是()A.B.C.D.6.(3分)如图,正三棱柱的主视图为()A.B.C.D.7.(3分)2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x 场,则可列方程为()A.3x+(29﹣x)=67B.x+3(29﹣x)=67C.3 x+(30﹣x)=67D.x+3(30﹣x)=678.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个9.(3分)深圳空气质量优良指数排名近年来一直排在全国城市前十.下表是深圳市气象局于2016年3月22日在全市十一个监测点监测到空气质量指数(AQI)数据如表上述(AQI)数据中,众数和中位数分别是()A.25,25B.31,25C.25,24D.31,24 10.(3分)如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD 于F,再分别以B、F为圆心,大于BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为()A.11B.6C.8D.1011.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②③④B.③④C.①③④D.①②12.(3分)如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1B.2﹕C.2﹕1D.29﹕14二、填空题(本大题共4小题,每小题3分,共12分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)13.(3分)已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则的值是.14.(3分)周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有个学生去过该景点.15.(3分)将一些相同的“○”按如图所示的规律依次摆放,观察每个“稻草人”中的“○”的个数,则第20个“稻草人”中有个“○”.16.(3分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题10分,共52分)17.(5分)计算:|﹣|+(2016﹣π)0﹣2sin45°+()﹣2.18.(6分)解不等式组.并写出它的整数解.19.(7分)九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有名;该班参加“爱心社”的人数为名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为;(2)一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.20.(8分)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求sin∠AED的值.21.(8分)如图,河坝横断面背水坡AB的坡角是45°,背水坡AB长度为20米,现在为加固堤坝,将斜坡AB改成坡度为1:2的斜坡AD【备注:AC⊥CB】(1)求加固部分即△ABD的横截面的面积;(2)若该堤坝的长度为100米,某工程队承包了这一加固的土石方工程,为抢在在汛期到来之际提前完成这一工程,现在每天完成的土方比原计划增加25%,这样实际比原计划提前10天完成了,求原计划每天完成的土方.【提示土石方=横截面x堤坝长度】22.(8分)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC 切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.2016年广东省深圳市17校联考中考数学二模试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)给出四个数0,,π,﹣1,其中最小的是()A.0B.C.πD.﹣1【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<π,故给出四个数0,,π,﹣1,其中最小的是﹣1.故选:D.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为()美元.A.8.18×109B.8.18×1010C.8.18×1011D.0.818×1011【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:818亿美元可用科学记数法表示为8.18×1010美元,故选:B.【点评】此题考查科学记数法问题,将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.3.(3分)在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念,结合图形特征即可求解.【解答】解:A、C、D都不是中心对称图形,是中心对称图形的只有B.故选B.【点评】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.4.(3分)马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a8÷a4=a2B.a3•a4=a12C.=±2D.2x3•x2=2x5【分析】直接利用同底数幂的除法运算法则以及单项式乘以单项式运算法则求出答案.【解答】解:A、a8÷a4=a4,故此选项错误;B、a3•a4=a7,故此选项错误;C、=2,故此选项错误;D、2x3•x2=2x5,正确.故选:D.【点评】此题主要考查了同底数幂的除法运算法则以及单项式乘以单项式,正确掌握运算法则是解题关键.5.(3分)下列各图中,描述∠1与∠2互为余角关系最准确的是()A.B.C.D.【分析】根据互为余角的两个角的和等于90°对各选项分析判断即可得解.【解答】解:A、∠1=∠2,不是互为余角关系,故本选项错误;B、∠1=∠2,是对顶角,不是互为余角关系,故本选项错误;C、∠1与∠2互为余角关系,故本选项正确;D、∠1与∠2互为补角关系,故本选项错误.故选:C.【点评】本题考查了余角和补角,熟练掌握余角的概念并准确识图是解题的关键.6.(3分)如图,正三棱柱的主视图为()A.B.C.D.【分析】根据正三棱柱的主视图是矩形,主视图中间有竖着的实线,即可解答.【解答】解:正三棱柱的主视图是矩形,主视图中间有竖着的实线.故选:B.【点评】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.7.(3分)2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外,其它场次全部保持不败,取得了67个积分的骄人成绩,已知胜一场得3分,平一场得1分,负一场得0分,设广州恒大一共胜了x 场,则可列方程为()A.3x+(29﹣x)=67B.x+3(29﹣x)=67C.3 x+(30﹣x)=67D.x+3(30﹣x)=67【分析】设该队共胜了x场,则平了(29﹣x)场,根据得出总分为67分列出方程解答即可.【解答】解:设该队共胜了x场,则平了(29﹣x)场,由题意得3x+(29﹣x)=67,故选:A.【点评】此题考查一元一次方程的实际运用,理解题意,找出得分的计算方法是解决问题的关键.8.(3分)两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD ≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.0个B.1个C.2个D.3个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积==AC•BD,故③正确;故选:D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD 全等和利用SAS证明△AOD与△COD全等.9.(3分)深圳空气质量优良指数排名近年来一直排在全国城市前十.下表是深圳市气象局于2016年3月22日在全市十一个监测点监测到空气质量指数(AQI)数据如表上述(AQI)数据中,众数和中位数分别是()A.25,25B.31,25C.25,24D.31,24【分析】一组数据中出现次数最多的数据叫做众数;把这组数据按照从小到大的顺序排列,第6个数是中位数.【解答】解:把这组数据按照从小到大的顺序排列15,20,24,24,25,25,25,26,31,31,34,第6个数是25,所以中位数是25;在这组数据中出现次数最多的是25,即众数是25.故选:A.【点评】本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从的大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.一组数据中出现次数最多的数据叫做众数.10.(3分)如图,在平行四边形ABCD中,以A为圆心,AB为半径画弧,交AD 于F,再分别以B、F为圆心,大于BF的长为半径画弧,两弧相交于点G,若BF=6,AB=5,则AE的长为()A.11B.6C.8D.10【分析】连接EF,根据题意得出AE垂直平分BF,AF=AB=5,得出OB=OF=3,∠BAE=∠FAE,由勾股定理求出OA,再证出BE=AB=AF,得出四边形ABEF是平行四边形,由平行四边形的性质得出OA=OE=AE,即可得出结果.【解答】解:连接EF,如图所示:根据题意得:AE垂直平分BF,AF=AB=5,∴∠AOF=90°,OB=OF=3,∠BAE=∠FAE,∴OA==4,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴BE=AB=AF,∴四边形ABEF是平行四边形,∴OA=OE=AE,∴AE=2OA=8;故选:C.【点评】本题考查了平行四边形的性质与判定、垂直平分线的性质、勾股定理;熟练掌握平行四边形的性质,证明四边形ABEF是平行四边形是解决问题的关键.11.(3分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③a﹣b+c=0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是()A.①②③④B.③④C.①③④D.①②【分析】根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号即可判断①;根据对称轴求出b=﹣a,即可判断②;求得点(2,0)关于对称轴的对称点为(﹣1,0),把x=﹣1代入函数关系式,即可判断③;求出点(0,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.【解答】解:∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴﹣=,∴b=﹣a>0,∴abc<0.故①正确;∵由①中知b=﹣a,∴a+b=0,故②正确;由对称轴为x=,点(2,0)的对称点是(﹣1,0),∴当x=﹣1时,y=0,即a﹣b+c=0.故③正确;∵(0,y1)关于直线x=的对称点的坐标是(1,y1),∴y1=y2.故④正确;综上所述,正确的结论是①②③④.故选:A.【点评】本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.12.(3分)如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1B.2﹕C.2﹕1D.29﹕14【分析】首先根据反比例函数y2=的解析式可得到S△ODB=S△OAC=×3=,再由阴影部分面积为6可得到S=9,从而得到图象C1的函数关系式为y=,矩形PDOC再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC的值.【解答】解:∵B、C反比例函数y2=的图象上,=S△OAC=×3=,∴S△ODB∵P在反比例函数y1=的图象上,∴S=k1=6++=9,矩形PDOC∴图象C1的函数关系式为y=,∵E点在图象C1上,=×9=,∴S△EOF∴==3,∵AC⊥x轴,EF⊥x轴,∴AC∥EF,∴△EOF∽△AOC,∴=,故选:A.【点评】此题主要考查了反比例函数系数k的几何意义,以及相似三角形的性质,关键是掌握在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.二、填空题(本大题共4小题,每小题3分,共12分,不需要写出解答过程,请把答案直接填写在答题卡相应位置上)13.(3分)已知a≠0,a≠b,x=1是方程ax2+bx﹣10=0的一个解,则的值是5.【分析】根据一元二次方程根与系数的关系和代数式变形求则可.欲求的值,可先将此代数式进行分解因式化简.化简后为,再将x=1代入方程ax2+bx﹣10=0中求出a+b的值即可.【解答】解:==,将x=1代入方程ax2+bx﹣10=0中可得a+b﹣10=0,解得a+b=10则=5,故填5.【点评】本题综合考查了分式的化简与方程解的定义.解这类题的关键是利用分解因式的方法化简分式,将已知量与未知量联系起来.14.(3分)周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中有50名学生去过该景点,由此估计全区九年级学生中有1000个学生去过该景点.【分析】首先求出随机抽取的400名学生中去过该景点的学生所占的百分比,然后再乘以8000,即可得出答案.【解答】解:∵随机抽取400名九年级学生,其中有50名学生去过该景点,∴估计全区九年级学生去过该景点的人数为:×8000=1000(个).故答案为:1000.【点评】本题考查了用样本估计总体的知识,解答本题的关键在于求出随机抽取的400名学生中去过该景点的学生所占的百分比,然后乘以全区九年级学生人数.15.(3分)将一些相同的“○”按如图所示的规律依次摆放,观察每个“稻草人”中的“○”的个数,则第20个“稻草人”中有385个“○”.【分析】分析数据可得:第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…由此得出第n个图形中小圆的个数为1+(n+3)+(n ﹣1)2.据此可以求得答案.【解答】解:∵第1个图形中小圆的个数为1+4=5;第2个图形中小圆的个数为1+5+1=7;第3个图形中小圆的个数为1+6+4=11;第4个图形中小圆的个数为1+7+9=17;…∴第n个图形中小圆的个数为1+(n+3)+(n﹣1)2.∴第20个“稻草人”中的“○”的个数为1+23+192=385,故答案为:385.【点评】此题主要考查了图形的变化规律以及数字规律,通过归纳与总结结合图形得出数字之间的规律是解决问题的关键,注意公式必须符合所有的图形.16.(3分)如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为2﹣2.【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的⊙O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出OC=2,从而得到CE的最小值为2﹣2.【解答】解:连结AE,如图1,∵∠BAC=90°,AB=AC,BC=,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的⊙O上,∵⊙O的半径为2,∴当点O、E、C共线时,CE最小,如图2,在Rt△AOC中,∵OA=2,AC=4,∴OC==2,∴CE=OC﹣OE=2﹣2,即线段CE长度的最小值为2﹣2.故答案为2﹣2.【点评】本题考查了圆的综合题:熟练掌握圆周角定理和等腰直角三角形的性质;会利用勾股定理计算线段的长.解决本题的关键是确定E点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题.三、解答题(本题共7小题,其中第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题10分,共52分)17.(5分)计算:|﹣|+(2016﹣π)0﹣2sin45°+()﹣2.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=+1﹣2×+4=5.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(6分)解不等式组.并写出它的整数解.【分析】分别求出不等式组中两不等式的解集,找出两解集的公共部分确定出不等式组的解集,找出解集中的整数解即可.【解答】解:由①得:x≥2,由②得:x<4,所以这个不等式组的解集为:2≤x<4.不等式组的整数为:2、3.【点评】此题考查了解一元一次不等式组,熟练掌握不等式组取解集的方法是解本题的关键.19.(7分)九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有40名;该班参加“爱心社”的人数为8名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为36°;(2)一班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.【分析】(1)利用参加“读书社”的学生数和它所占比例可计算出调查的学生总数,再用学生总数乘以“爱心社”所占的百分比得到该班参加“爱心社”的人数,然后计算出该班参加“吉他社”的百分比,用此百分比乘以360度即可得到“吉他社”对应扇形的圆心角的度数;(3)画树状图展示所有8种等可能的结果数,再找出恰好选中甲和乙的结果数,然后根据概率公式求解.【解答】解:(1)因为参加“读书社”的学生有10人,且在扇形统计图中,所占比例为25%,所以该班的学生共有10÷25%=40(人);该班参加“爱心社”的人数=40×20%=8(名);参加“吉他社”的学生在全班学生中所占比为(1﹣25%﹣15%﹣20%﹣20%)=10%,所以“吉他社”对应扇形的圆心角的度数为:360°×10%=36°;故答案为40,8,36°;(3)画树状图如下:共有8种等可能的结果数,其中恰好选中甲和乙的情况有2种,所以P(选中甲和乙)==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图.20.(8分)如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=2时,求sin∠AED的值.【分析】(1)根据平行四边形的判定得出边形OCED是平行四边形,根据菱形的性质求出∠COD=90°,根据矩形的判定得出即可;(2)解直角三角形求出AO、DO、求出AC、CE,根据勾股定理求出AE,解直角三角形求出即可.【解答】(1)证明:∵DE∥AC,CE∥BD,∴DE∥OC,CE∥OD,∴四边形OCED是平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°,∴四边形OCED是矩形;(2)解:∵∠ADB=60°,AD=2,∴OD=,AO=3,∴CE=,AC=6,由勾股定理得:AE===,∴sin∠AED=sin∠CAE==.【点评】本题考查了菱形的性质,矩形的判定,平行四边形的判定和性质,勾股定理的应用,能综合运用知识点进行推理是解此题的关键,注意:菱形的对角线互相平分且垂直.21.(8分)如图,河坝横断面背水坡AB的坡角是45°,背水坡AB长度为20米,现在为加固堤坝,将斜坡AB改成坡度为1:2的斜坡AD【备注:AC⊥CB】(1)求加固部分即△ABD的横截面的面积;(2)若该堤坝的长度为100米,某工程队承包了这一加固的土石方工程,为抢在在汛期到来之际提前完成这一工程,现在每天完成的土方比原计划增加25%,这样实际比原计划提前10天完成了,求原计划每天完成的土方.【提示土石方=横截面x堤坝长度】【分析】(1)在直角△ABC中,首先求得AC的长,根据坡度的定义求得CD的长,进而求的BD的长,然后利用三角形的面积公式求解;(2)设原计划每天完成的土方为x立方,则实际每天完成的土石方为(1+25%)x,然后根据每天完成的土方比原计划增加25%,这样实际比原计划提前10天完成即可列方程求解.【解答】解(1)由题意可知∠ABC=45°,AB=20,AC:CD=1:2,∵∠ABC=45° AB=20,∴AC=BC=20.∵AC:CD=1:2,∴CD=40,BD=20,∴△ABD的面积=200;②堤坝的土石方总量=100x200=20000.设原计划每天完成的土方为x立方,则实际每天完成的土石方为(1+25%)x,由题意可得:﹣=10,解得x=400.经检验x=400是原方程的解.答:原计划每天完成的土方为400立方米.【点评】本题考查了解直角三角形以及分式方程的应用,正确求得△ABD的面积是关键.22.(8分)如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC 切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠BAC=60°,OA=2,求阴影部分的面积(结果保留π).【分析】(1)由Rt△ABC中,∠C=90°,⊙O切BC于D,易证得AC∥OD,继而证得AD平分∠CAB.(2)如图,连接ED,根据(1)中AC∥OD和菱形的判定与性质得到四边形AEDO 是菱形,则△AEM≌△DMO,则图中阴影部分的面积=扇形EOD的面积.【解答】(1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB;(2)设EO与AD交于点M,连接ED.∵∠BAC=60°,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,∴AE=AO=OD,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.【点评】此题考查了切线的性质、等腰三角形的性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.23.(10分)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).(1)求b、c的值;(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求的最大值;(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标带入到抛物线解析式中,得出关于b、c的二元一次方程组,解方程组即可得出结论;(2)作DN∥CF交CB于N,由DN∥CF可得出△DEN∽△FEC,根据相似三角形的性质得出,由(1)可得出抛物线的解析式,令抛物线解析式中x=0则可得出点C的坐标,由点B、C的坐标可得出直线BC的解析式,设出点D 的坐标,则可得出点N的坐标,由直线DF的解析式可得出点F的坐标,从而得出DN、CF的长度,由DN的长度结合二次函数的性质即可得出结论;(3)假设存在符合题意的点Q.设PM与x轴交于点G,过点G作作直线BC的平行线.由抛物线的解析式可得出顶点P的坐标,由此得出对称轴的解析式,结合直线BC的解析式可得出点M的坐标,结合点G的坐标可知PM=GM,由此得出满足题意的点Q为“过点G与直线BC平行的直线和抛物线的交点”,由G点的坐标结合直线BC的解析式即可得出过点G与BC平行的直线的解析式,联立直线与抛物线解析式得出关于x、y的二元二次方程组,解方程即可得出结论.【解答】解:(1)将点A(﹣1,0)、B(3,0)带入到抛物线解析式中得:。

相关文档
最新文档