不等式证明方法综述
高中数学不等式的证明
![高中数学不等式的证明](https://img.taocdn.com/s3/m/b5ae24aeb9f67c1cfad6195f312b3169a451eada.png)
高中数学不等式的证明高中数学中,不等式是一种重要的课程内容,也是数学证明的一个重要方向。
在本文中,我将对高中数学不等式的证明进行详细讨论。
不等式证明的一般步骤如下:1.提取已知条件:将不等式中的已知条件提取出来,以得到更清晰的表达式。
2.化简和变形:根据不等式的性质,对不等式进行适当的化简和变形操作,以便于进一步的证明。
3.应用不等式性质:应用已知的不等式性质、定理和公式,将给定的不等式与这些知识相结合,引入新的变量或不等式形式。
4.利用已知条件和定理进行推导:根据已知条件和定理,进行推导,从当前推导出的结论重新应用已知条件和定理。
5.逆向思考和反证法:如果直接的推导困难,可以尝试使用逆向思考或反证法来换一种证明的角度。
下面,我将通过实际的例子,对高中数学不等式的证明进行详细解释。
例子1:证明对于任意正实数a、b,有(a+b)² ≥ 4ab。
解:要证明这个不等式,我们可以根据一般的证明步骤来进行推导。
1.提取已知条件:已知条件为a、b是正实数。
2. 化简和变形:将不等式进行展开和化简得到a² + 2ab + b² ≥4ab。
3. 应用不等式性质:根据已知条件和定理,我们可以将不等式右边的4ab化简成2ab + 2ab,即得到a² + 2ab + b² ≥ 2ab + 2ab。
4. 利用已知条件和定理进行推导:我们可以继续推导,将左边的a² + b²进行分解成(a + b)² - 2ab,得到(a + b)² - 2ab ≥ 2ab + 2ab。
5. 逆向思考和反证法:我们可以将不等式进行变形,得到(a + b)² ≥ 4ab,即相当于证明了(a + b)² - 4ab ≥ 0。
由于(a + b)² - 4ab = (a - b)² ≥ 0,这是显然成立的,因为平方数是非负的。
不等式证明的常用方法
![不等式证明的常用方法](https://img.taocdn.com/s3/m/69d2c3f5941ea76e58fa043d.png)
不等式证明的常用方法不等式是高中数学的重要内容,它几乎涉及整个高中数学的各个部分,因此,通过不等式这条纽带,可把中学数学的各部分内容有机地联系起来.而不等式的证明是高中数学的一个难点,加之题型广泛、方法灵活、涉及面广,常受各类考试命题者的青睐,亦成为历届高考中的热点问题.本节通过一些实例,归纳一下不等式证明的常用方法和技巧. 一、比较法证明不等式的比较法分为作差比较与作商比较两类,基本思想是把难于比较的式子变成其差再与0比较,或其商再与 l 比较.当欲证的不等式两端是乘积形式或幂指数形式时,常采用作商比较法.【例1】若,0,0>>b a 证明:2121212212)()(b a ab b a +≥+证法一 (作差比较) 左边-右边)()()(33b a abb a +-+=abb a ab b ab a b a )())((+-+-+=abb ab a b a )2)((+-+=0))((2≥-+=abb a b a∴原不等式成立证法二 (作商比较)右边左边ba ab b a ++=33)()()())((b a ab b ab a b a ++-+=abb ab a )(+-=12=-≥ababab∴原不等式成立.点评 用比较法证明不等式,一般要经历作差(或作商)、变形、判断三个步骤.变形的主要手段是通分、因式分解或配方;此外,在变形过程中,也可利用基本不等式放缩,如证法二.用作差比较法变形的结果都应是因式之积或完全平方式,这样有利于判断符号. 【例2】已知函数)(1)(2R x x x f ∈+=,证明:|||)()(|b a b f a f -≤- 证法一(作商比较)若||||b a =时,|||)()(|0b a b f a f -≤-=,当且仅当b a =时取等号. 若||||b a ≠时,∵0|)()(|>-b f a f ,0||>-b a∴=-+-+=--|||11||||)()(|22b a b a b a b f a f =-+-+b a b a 2211<+++--)11)((2222b a b a b a ≤++22b a ba 1即|||)()(|b a b f a f -≤-综上两种情况,得|||)()(|b a b f a f -≤-当且仅当b a =时取等号.证法二(作差比较))2(])1)(1(22[|||11|2222222222b ab a b a b a b a b a +--++-++=--+-+0])()1()1[(2])1)(1()1[(22222≤-++-+=++-+=b a ab ab b a ab 当且仅当b a =时取等号.点评 作商比较通常在两正数之间进行.本题若直接作差,则表达式复杂很难变形.由于不等式两边均非负,所以先平方去掉绝对值符号后再作差.不论是作差比较还是作商比较,“变形整理”都是关键. 二、基本不等式法 常用的基本不等式① 若R b a ∈,,则ab b a 222≥+(当且仅当b a =时取等号);② 若+∈R b a ,,则ab ba 22≥+(当且仅当b a =时取等号); ③ 若b a ,同号,则2≥+baa b (当且仅当b a =时取等号);④ 若R b a ∈,,则≥+222b a 2)2(b a +(当且仅当b a =时取等号); ⑤ 若+∈R c b a ,,,则abc c b a 3333≥++(当且仅当c b a ==时取等号);⑥ 若+∈R c b a ,,,则33abc cb a ≥++(当且仅当c b a ==时取等号);⑦ 均值不等式nn n a a a na a a ⋅⋅≥+++ 2121(其中++∈∈N n R a a a n ,,,,21 )及它的变式n nn n n a a na a a a ⋅⋅≥+++ 2121,na a a a a a nn n n n +++≤⋅⋅ 2121,nn n na a a a a a )(2121+++≤⋅⋅【 例 3 】 ( 2004 年湖南省高考题)设0,0>>b a ,则以下不等式中不恒成立的是( )A.4)11)((≥++b a b a B 2332ab b a ≥+ C.b a b a 22222+≥++ D.b a b a -≥-||解:∵4122)11)((=⋅≥++abab b a b a ∴A 恒成立∵b a b a b a 221122222+≥+++=++ ∴C 恒成立 当b a ≤时,b a b a -≥-||,显然D 成立;当b a >时,b a b a -≥-||⇔a b b a ≥+-||⇔⇔≥+-+-a b b b a b a )(2)(0)(2≥-b b a 也恒成立∴D 恒成立。
证明不等式的三种措施
![证明不等式的三种措施](https://img.taocdn.com/s3/m/2fa7f8a3ed3a87c24028915f804d2b160b4e8680.png)
解题宝典不等式证明问题是高考中的高频考点.一般地,不等式证明问题的命题方式多变,求解途径多样.在解题时,通常需根据不等式的结构特征,灵活运用不等式的性质,通过恒等变换,将不等式进行合理的变形,然后构造函数、方程、几何图形等,从而证明不等式.本文主要谈一谈下列三种证明不等式的措施.一、采用函数最值法证明函数最值法是证明不等式的常用方法.在解题时,需首先将不等式进行变形,再根据不等式的结构特征,构造出函数的模型,将问题转化为函数最值问题,若f (x )≥a ;则f (x )min ≥a ,若f (x )≤a ,则f (x )max ≤a ;若f (x )>g (x ),则f (x )min >g (x )max .有时可构造一个函数,有时可构造多个函数.然后根据函数的图象和性质,求得函数的最值.例1.求证:-4≤cos 2x +3sin x ≤178.证明:令f ()x =cos 2x +3sin x ,则f ()x =1-2sin 2x +3sin x =-2æèöøsin x -342+178,当sin x =34时,f ()x 取最大值,f ()x max =178;当sin x =-1时,f ()x 取最小值,f ()x min =-4.因此-4≤cos 2x +3sin x ≤178.令f ()x =cos 2x +3sin x ,便可将不等式证明问题转化为函数最值问题.通过三角恒等变换,将函数式转化为关于sin x 的二次函数问题,利用二次函数和正弦函数的性质便可求得最值,从而证明不等式.运用函数最值法解题的关键在于合理构造函数模型.二、利用函数的单调性证明函数的单调性是证明不等式的有力工具.由函数单调性的定义可知,若函数为增函数,当x 1>x 2时,f (x 1)>f (x 2);若函数为减函数,当x 1>x 2时,f (x 1)<f (x 2).利用函数的单调性证明不等式主要有两种思路:一是将不等式两边的式子构造成同构式,找出其自变量,再利用函数的单调性来比较不等式两边式子的大小;二是构造函数式,对函数式求导,根据导函数与函数单调性之间的关系,来判断出函数的单调性,再运用函数的单调性证明不等式.例2.已知x ∈()0,π,试证明:sin x <x .证明:令f ()x =x -sin x ,∴f ′()x =1-cos x ,当x ∈()0,π时,f ′()x >0,∴f ()x =x -sin x 在()0,π上为增函数,∴f ()x >f ()0=0,即f ()x >0,所以x -sin x >0,因此sin x <x .通过构造函数,讨论导函数在定义域上的单调性,便可根据函数的单调性证明不等式.三、根据中值定理进行证明中值定理:如果函数f ()x 在[a ,b ]上连续,且在开区间(a ,b )上可导,那么在(a ,b )内至少有一点ε(a <ε<b ),使得f ()b -f ()a =f ′()ε()b -a .运用中值定理证明不等式,需先判断函数f ()x 在定义域内是否连续,且可导,然后根据不等式,构造f ()b -f ()a =f ′()ε()b -a 或f ′()ε=f ()b -f ()a b -a的形式,便可根据导数的几何意义或函数的单调性来证明不等式.例3.求证:||sin x -sin y ≤||x -y .证明:设f ()x =sin x ,则sin x -sin y =()x -y cos ε,可得||sin x -sin y ≤()x -y cos ε≤||x -y ,所以||sin x -sin y ≤||x -y .解答本题主要运用了中值定理、绝对值不等式的性质以及放缩法.通过上述分析可以看出,利用函数最值法、函数的性质、中值定理来证明不等式,都需构造合适的函数,然后灵活运用函数的性质、最值以及导函数的性质来分析问题.因此在解题时,同学们要学会将不等式与函数、导函数、中值定理关联起来,以快速找到最佳的解题方案.(作者单位:江苏省镇江中学)40。
不等式的证明方法
![不等式的证明方法](https://img.taocdn.com/s3/m/1b719ce9a0c7aa00b52acfc789eb172ded639964.png)
不等式的证明方法第一篇:不等式的证明方法几个简单的证明方法一、比较法:a>b等价于a-b>0;而a>b>0等价于ab>1.即a与b的比较转化为与0或1的比较.使用比较发时,关键是要作适当的变形,如因式分解、拆项、加减项、通分等,这是第一章中许多代数不等式的证明及其他各章初等不等式的证明所常用的证明技巧.二、综合法与分析法:综合法是由因导果,即是由已知条件和已知的不等式出发,推导出所要证明的不等式;分析法是执果索因,即是要逐步找出使结论成立的充分条件或者充要条件,最后归结为已知的不等式或已知条件.对于条件简单而结论复杂的不等式,往往要通过分析法或分析法与综合法交替使用来寻找证明的途径.还要注意:第一,要熟悉掌握第一章的基本不等式和后面各章中著名的各种不等式;第二,要善于利用题中的隐含条件;第三,不等式的各种变性技巧.三、反证法:正难则反.设所要证的不等式不成立,从原不等式的结论的反面出发,通过合理的逻辑推理导出矛盾,从而断定所要证的不等式成立.要注意对所有可能的反面结果都要逐一进行讨论.四、放缩法:要证a<b,又已知(或易证)a<c,则只要证c<b,这是利用不等式的传递性,将原不等式里的某些项适当的放大或缩小,或舍去若干项等以达证题目的.放缩法的方法有:①添加或舍去一些项,如:a2+1>a;n(n+1)>n;②将分子或分母放大(或缩小);③利用基本不等式,如:log3⋅lg5<(n(n+1)<lg3+lg522)2=lg<lg=lg4; n+(n+1);④利用常用结论:k+1-k=1k+1+=11-k1k<12k1k;1k(k+1)1k+11k1k+11k<1k(k-1)1k;>=-(程度大)1k<-1=(k-1)(k+1)=2k-1(-);(程度小)五、换元法:换元的目的就是减少不等式中变量,以使问题化难为易,化繁为简,常用的换元有三角换元和代数换元.如:已知x2+y2=a2,可设x=acosθ,y=asinθ;已知x2+y2≤1,可设x=rcosθ,y=rsinθ(0≤r≤1);已知xaxa2+ybyb=1,可设x=acosθ,y=bsinθ;-=1,可设x=asecθ,y=btanθ;六、数学归纳法法:与自然数n有关的许多不等式,可考虑用数学归纳法证明,数学归纳法法证明不等式在数学归纳法中有专门的研究.但运用数学归纳法时要注意:第一,数学归纳法有多种形式.李大元就证明了下述七种等价的形式:设P(n)是与n有关的命题,则(1)、设P(n0)成立,且对于任意的k>n0,从P(k)成立可推出P(k+1)成立,则P(n)对所有大于n0的n都成立.(2)、设m是任给的自然数,若P(1)成立,且从P(k)(1≤k<m)成立可推出P(k+1)成立,则P(n)对所有不超过m的n都成立.(3)、(反向归纳法)设有无穷多个自然数n(例如n=2m),使得P(n)成立,且从P(k+1)成立可推出P(k)成立,则P(n)对所有n成立.(4)、若P(且P(n)对所有满足1≤n≤k的n成立可推出P(k+1)成立,1)成立,则P(n)对所有n成立.(5)、(最小数原理)自然数集的非空子集中必有一个最小数.(6)、若P)且若P(k),P(k+1)成立可推出P(k+2)成立,则P(n)1(,P(2)成立,对所有n成立.(7)、(无穷递降法)若P(n)对某个n成立可推出存在n1<n,使得P(n1)成立,则P(n)对所有n成立.此外,还有螺旋归纳法(又叫翘翘板归纳法):设有两个命题P(n),Q(n),若P(1)成立,又从P(k)成立可推出Q(k)成立,并且从Q(k)成立可推出P(k+1)成立,其中k为任给自然数,则P(n),Q(n)对所有n都成立,它可以推广到两个以上的命题.这些形式虽然等价,但在不同情形中使用各有方便之处.在使用它们时,若能注意运用变形和放缩等技巧,往往可收到化难为易的奇效.对于有些不等式与两个独立的自然数m,n有关,可考虑用二重数学归纳法,即若要证命题P(m,n)对所有m,n成立,可分两步:①先证P(1,n),P(m,1)对所有m,n成立;②设P(m+1,n),P(m,n+1)成立,证明P(m+1,n+1)也成立.第二,数学归纳法与其它方法的综合运用,例如,证明n∑k=11ksinkx>0,(0<x<π)就要综合运用数学归纳法,反证法与极值法;有时可将n换成连续量x,用微分法或积分法.第三,并不是所有含n的不等式都能用数学归纳法证明的.七、构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.笔者将在第三章中详细地介绍构造法.八、利用基本不等式:善于利用已知不等式,特别是基本不等式去发现和证明新的不等式,是广泛应用的基本技巧.这种方法往往要与其它方法结合一起运用.22例1 已知a,b∈R,且a+b=1.求证:(a+2)+(b+2)≥252.证法一:(比较法)Θa,b∈R,a+b=1∴b=1-a∴(a+2)+(b+2)-252=a+b+4(a+b)-12=2(a-12)≥0=a+(1-a)+4-=2a-2a+即(a+2)2+(b+2)2≥证法二:(分析法)252(当且仅当a=b=时,取等号).(a+2)2+(B+2)≥252⇐a+b+4(a+b)+8≥252⎧b=1-a⎪⇐⎨225122⇐(a-)≥0⎪a+(1-a)+4+8≥22⎩显然成立,所以原不等式成立.点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件.证法三:(综合法)由上分析法逆推获证(略).证法四:(反证法)假设(a+2)2+(b+2)2<252,则 a2+b2+4(a+b)+8<252252.由a+b=1,得b=1-a,于是有a2+(1-a)2+12<1⎫⎛所以(a-)<0,这与 a-⎪≥0矛盾.22⎭⎝.所以(a+2)+(b+2)≥252.证法五:(放缩法)∵a+b=1∴左边=(a+2)+(b+2)⎡(a+2)+(b+2)⎤2125≥2⎢=a+b+4=⎡⎤()⎥⎣⎦222⎣⎦=右边.点评:根据不等式左边是平方和及a+b=1这个特点,选用基本不等式⎛a+b⎫a+b≥2 ⎪.⎝2⎭证法六:(均值换元法)∵a+b=1,所以可设a=12+t,b=-t,1∴左边=(a+2)+(b+2)=(+t+2)2+(-t+2)25⎫5⎫2525⎛⎛2=右边.=t+⎪+t-⎪=2t+≥2⎭2⎭22⎝⎝当且仅当t=0时,等号成立.点评:形如a+b=1结构式的条件,一般可以采用均值换元.证法七:(利用一元二次方程根的判别式法) 设y=(a+2)+(b+2),由a+b=1,有y=(a+2)2+(3-a)2=2a2-2a+13,所以2a2-2a+13-y=0,因为a∈R,所以∆=4-4⋅2⋅(13-y)≥0,即y≥故(a+2)+(b+2)≥252.252.下面,笔者将运用数学归纳法证明第一章中的AG不等式.在证明之前,笔者先来证明一个引理.引理:设A≥0,B≥0,则(A+B)n≥An+nA(n-1)B,其中n∈N+.证明:由二项式定理可知n(A+B)=∑An-iBi≥An+nA(n-1)Bni=0∴(A+B)≥A+nAnn(n-1)B第二篇:证明不等式方法不等式的证明是高中数学的一个难点,题型广泛,涉及面广,证法灵活,错法多种多样,本节通这一些实例,归纳整理证明不等式时常用的方法和技巧。
不等式证明常见技巧详细讲解
![不等式证明常见技巧详细讲解](https://img.taocdn.com/s3/m/6831bf62caaedd3383c4d3bd.png)
k 1 k
1 1 k 1 k 2 k
II)
1 1 1 1 1 1 1 1 ; k 2 k (k 1) k 1 k k 2 k (k 1) k k 1
1 1 1 1 1 1 2 ( ) 程度小 2 k k 1 (k 1)(k 1) 2 k 1 k 1
4. 构造法:通过构造函数、图像与图形、方程、数列、向量或不等式来证明不等式。 例 5. (1)已知实数x, y, z满足:x y z a, x y z
2 2 2
a2 , 其中 a 0, a为常数 2
求证: x,y,z [0, a ] 证明: z a ( x y )代入x y z
典例 讲解
例 2.(1)已知 a b 1, x y 1, 求证ax+by 1
2 2 2 2
4
证明:令 a=sin ,b=cos ,x=cos ,y=sin
ax+by=sin cos c o s s i n
(2) 已知 x, y R , 且x+y=a,求证:x y
+ r23 s i n c o s r2
2 2 cos
3 3 2r 2 r 2 sin 2 (2 sin 2 ) r 2 (*) 2 2 3 1 7 1 又 2 sin 2 [ , ] , 2 x 2 3xy 2 y 2 7 2 2 2 2
1+ n-1 2n n+2 n-1 2n 2 n-1 n 4(n-1) n2
2 n2 -4n+4 0 (n-2) 0,显然成立
综上,
a a1 a an 2 2 2 2 3 2 2n 2 2 2 2 2 a1 a1 a2 a1 a2 a3 a1 a2 an
不等式的几种证明方法及其应用
![不等式的几种证明方法及其应用](https://img.taocdn.com/s3/m/8e37cd48a8114431b90dd88b.png)
不等式的几种证明方法及其应用不等式的证明方法多种多样,常用的证法有初等数学中的综合法、分析法、比较法和数学归纳法等,高等数学中常用的方法是利用函数的单调性、凹凸性等方法.本文将对其中一些典型证法给出系统的归纳与总结,并以例题的形式展示这些方法的应用.1 利用构造法证明不等式“所谓构造思想方法就是指在解决数学问题的过程中,为完成从条件向结论的转化,利用数学问题的特殊性设计一个新的关系结构系统,找到解决原问题的具体方法.利用构造思想方法不是直接解决原问题,而是构造与原问题相关或等价的新问题.”)52](1[P 在证明不等式的问题中,构造思想方法常有以下几种形式:1.1 构造函数证明不等式构造函数指根据所给不等式的特征,巧妙地构造适当的函数,然后利用一元二次函数的判别式或函数的有界性、单调性、奇偶性等来证明不等式.1.1.1 利用判别式在含有两个或两个以上字母的不等式中,若根据题中所给的条件,能与一元二次函数有关或能通过等价形式转化为一元二次函数的,都可考虑使用判别式法.例1 设R z y x ∈,,,证明0)(322≥+++++z y x z y xy x 成立. 解 令22233)3()(z yz y x z y x x f +++++=为x 的二次函数. 由2222)(3)33(4)3(z y z yz y z y +-=++-+=∆知0≤∆,所以0)(≥x f . 故0)(322≥+++++z y x z y xy x 恒成立.对于某些不等式,若能根据题设条件和结论,结合判别式的结构特征,通过构造二项平方和函数)(x f =(11b x a -)2+(x a 2-22)b +…+2)(n n b x a -,由0)(≥x f 得出0≤∆,从而即可得出所需证的不等式.例2 设+∈R d c b a ,,,,且1=+++d c b a ,求证614141414<+++++++d c b a )18](2[P .证明 令)(x f =(x a 14+-1)2+(114-+x b )2+)114(-+x c 2+)114(-+x d 2=4)14141414(282++++++++-x d c b a x (因为1=+++d c b a ).由0)(≥x f 得0≤∆ 即0128)14141414(42≤-+++++++d c b a .所以62414141414<≤+++++++d c b a .1.1.2 利用函数有界性若题设中给出了所证不等式中各个变量的变化范围,可考虑利用函数的有界性来证明,具体做法是将所证不等式视为某个变量的函数.例3 设,1,1,1<<<c b a 求证1->++ca bc ab )18](2[P . 证明 令1)()(+++=ac x c a x f 为x 的一次函数. 因为,1,1<<c a 所以0)1)(1(1)1(>++=+++=c a ac c a f ,0)1)(1(1)()1(>--=+++-=-c a ac c a f .即∀)1,1(-∈x ,恒有0)(>x f .又因为)1,1(-∈b ,所以0)(>b f , 即01>+++ca bc ab . 1.1.3 利用函数单调性在某些问题中,若各种式子出现统一的结构,这时可根据这种结构构造函数,把各种式子看作同一函数在不同点的函数值,再由函数的单调性使问题得到解决.例4 求证121212121111n n n na a a a aa a a a a a a +++≤++++++++++)53](1[P .分析 通过观察可发现式中各项的结构均相似于式子M M +1,于是构造函数xxx f +=1)()0(≥x .证明 构造函数xxx f +=1)( )0(≥x . 因为0)1(1)(2'>+=x x f , 所以)(x f 在),0[+∞上严格递增.令n a a a x +++= 211,n a a a x +++= 212. 因为21x x ≤,所以)()(21x f x f ≤. 所以≤+++++++nn a a a a a a 21211nn a a a a a a +++++++ 21211=+++++na a a a 2111++++++ n a a a a 2121nna a a a ++++ 211nna a a a a a ++++++≤1112211 .1.1.4 利用函数奇偶性 例5 求证221xx x <-)0(≠x .证明 设)(x f 221x x x --=,对)(x f 进行整理得)(x f )21(2)21(xx x -+=, )(x f -=)21(2)21(xx x ---+-=)12(2)12(-+-x x x =)21(2)21(x x x -+=)(x f , 所以)(x f 是偶函数.当0>x 时,12>x ,所以021<-x,所以0)(<x f . 由偶函数的图象关于y 轴对称知,当0<x 时,0)(<x f . 即 当0≠x 时,恒有0)(<x f ,即221xx x <- )0(≠x . 注意 由以上几种情况可以看出,如何构造适当的函数并利用函数的性质来证明不等式是解题的关键.1.2 构造几何图形证明不等式构造几何图形,就是把题中的元素用一些点或线来取代,使题中的各种数量关系得以在图中表现出来,然后借助几何图形的直观性或几何知识来寻求问题的解答.一般是在问题的条件中数量关系有明显的几何意义,或可以通过某种方式与几何形(体)建立联系时宜采用此方法.)52](1[P 这种方法十分巧妙且有效,它体现了数形结合的优越性.下面将具体介绍用几何法证明不等式的几种途径:1.2.1 构造三角形)1](3[P例6 已知z y x ,,为正数,求证22y xy x +++22z xz x ++>22z yz y ++.分析 注意到︒-+=++120cos 22222xy y x y xy x ,于是22y xy x ++可看作是以y x ,为两边,夹角为︒120的三角形的第三边,由此,易得出下面的证明:证 如图1 ,在BC A ∆内取一点O ,分别连接OC OB OA ,,,使图1B︒=∠=∠=∠120COA BOC AOB ,z OC y OB x OA ===,,则22y xy x AB ++=,22z xz x AC ++=,22z yz y BC ++=.由BC AC AB >+, 即得所要证明的不等式.注 该题可做如下推广:已知z y x ,,为正数,πα<<0,πβ<<0,πγ<<0,且πγβα2=++,求证++-22cos 2y xy x α>+-22cos 2z xz x β22cos 2z yz y +-γ,令γβα,,为满足条件的特殊角可设计出一系列的不等式.例7 已知正数k n m c b a ,,,,,满足p k c n b m a =+=+=+,求证2p cm bk an <++. 证明 如图2,构造边长为p 的正三角形ABC ,在边BC AB ,,上依次截取 n FA b CF k EC c BE m DB a AD ======,,,,,.因为ABC FEC DBE ADF S S S S ∆∆∆∆<++所以243434343p bk cm an <++, 即2p cm bk an <++. 1.2.2 构造正方形)1](3[P例8 已知+∈R x ,d c b a ,,,均是小于x 的正数,求证+-+22)(b x a +-+22)(c x b +-+22)(d x c x a x d 4)(22<-+.分析 观察不等式的左边各式,易联想到用勾股定理,每个式子代表一直角三角形的一斜边,且)()()()(d x d c x c b x b a x a -+=-+=-+=-+,所以可构造边长为x 的正方形.证明 如图3,构造边长为x 的正方形ABCD ,在边DA CD BC AB ,,,上 依次截取,a AE =,a x EB -=,d BF =c CG d x FC =-=,,b DHc x GD =-=,,b x HA -=.则四边形EFGH 的周长为+-+22)(b x a +-+22)(c x b +-+22)(d x c 22)(a x d -+.由三角形两边之和大于第三边知,四边形EFGH 的周长小于正方形ABCD 的周长, 从而命题得证.1.2.3 构造矩形图2x-c 图3例9 已知z y x ,,为正数,证明))((z y y x yz xy ++≤+.分析 两个数的乘积,可看作以这两个数为边长的矩形的面积,也可以看成以这两个数为直角边长的三角形面积的两倍.证明 如图4 ,造矩形ABCD ,使,y CD AB ==,x BE =,z EC =设α=∠AED .由AED ECD ABE ABCD S S S S ∆∆∆++=矩形知 =+)(z x y ++yz xy 2121αsin ))((21z y y x ++. 化简得αsin ))((z y y x yz xy ++=+.因为1sin 0≤<α,所以))((z y y x yz xy ++≤+(当且仅当︒=90α时,等号成立).1.2.4 构造三棱锥例10 设,0,0,0>>>z y x 求证22y xy x +->+-+22z yz y 22x zx z +-)129](4[P .分析 注意到22y xy x +-︒-+=60cos 222xy y x ,可以表示以y x ,为边, 夹角为︒60的三角形的第三边,同理22z yz y +-,22x zx z +-也有类似意义.证明 如图5,构造顶点为O 的四面体ABC O -,使︒=∠=∠=∠60AOC BOC AOB ,z OC y OB x OA ===,,,则有22y xy x AB +-=,22z yz y BC +-=,22x xz z AC +-=.在ABC ∆中AC BC AB >+,即得原不等式成立.注 该题还可做如下推广:已知z y x ,,为正数,,0πα<<,0πβ<<πγ<<0时πγβα20<++<且,βαγβα+<<-求证22cos 2y xy x +-α+22cos 2z xz x +-β>22cos 2z yz y +-γ.例10便是当︒===60γβα时的特殊情况.1.3 构造对偶式证明不等式对偶思想是根据矛盾双方既对立又统一的二重性,巧妙地构造对偶数列,从而将问题解决的一种思想.⌒ADCBE y x +图4图5OAC例11 求证1212124321+<-⨯⨯⨯n nn .分析 令=P nn 2124321-⨯⨯⨯ ,由于P 中分子为奇数、分母为偶数,则由奇数的对偶数为偶数可构造出关于P 的一个对偶式Q ,1225432+⨯⨯⨯=n nQ .证明 设=P n n 2124321-⨯⨯⨯ ,构造P 的对偶式Q ,1225432+⨯⨯⨯=n nQ .因为Q P <<0,所以=<PQ P 2)2124321(n n -⨯⨯⨯ 121)1225432(+=+⨯⨯⨯n n n .所以121+<n P ,即原不等式成立.注 构造对偶式的途径很多,本题是利用奇偶性来构造对偶式,此外,还可利用倒数关系、相反关系、对称性关系等来构造对偶式.1.4 构造数列证明不等式这种方法一般用于与自然数有关的不等式证明,当问题无法从正面入手时,可考虑将它转化为数列,然后利用数列的单调性来证明.例12 求证:不等式!21n n ≤-,对任何正整数n 都成立)55](1[P .分析 不等式可变形为,1!21≤-n n n 是正整数,所以可构造数列{},n a 其中1,!211==-a n a n n ,则只需证1a a n ≤即可.对于任意正整数n ,=-+=--+!2)!1(211n n a a n n n n 0)!1(2)1()!1()1(2211≤+-=++---n n n n n n n , 所以{}n a 是递减数列.所以1a a n ≤,即原命题成立.1.5 构造向量证明不等式向量由于其自身的形与数兼备的特性,使得它成了数形结合的桥梁,也是解决一些问题的有利工具.对于某些不等式的证明,若能借助向量模的意义、数量积的性质等,可使不等式得到较易的证明.1.5.1 利用向量模的性质 例13 已知,,,,R d c b a ∈求证++++2222c b b a 2222a d d c +++)(2d c b a +++≥.证明 在原点为O 的直角坐标系内取四个点:()(),,,,c b b a B b a A ++(),,d c b c b a C ++++(),,a d c b d c b a D ++++++则原问题可转化为+,该不等式显然成立.1.5.2 利用向量的几何特征例14 设{}n a 是由正数组成的等比数列,n S 是前n 项和,求证)31](5[12.022.02.0log 2log log P n n n S S S ++>+. 分析 可将上述不等式转化为,212++<⋅n n n S S S 构造向量,用平行四边形的几何特征来证明.证明 设该等比数列的公比为q ,如图6,构造向量(),,11a a OA =(),,1n n qS qS OB +=()()12111,,+++=++=n n n n S S qS a qS a OC ,则OB OA OC +=,故B C A O ,,,构成平行四边形.由于OB OA ,在对角线OC 的两侧,所以斜率OB OA k k ,中必有一个大于OC k ,另一个小于OC k .因为{}n a 是由正数组成的等比数列,所以OA n n OC k S S k =<=++121, 所以OC OB k k <, 即<+1n n S S 21++n n S S . 所以212++<⋅n n n S S S . 此外,还可以利用向量的数量积证明不等式,一般是根据向量的数量积公式θb a =⋅找出不等关系,如b a ≤⋅≤等,然后利用不等关系证明不等式,在此对这种方法不再举例说明.综上所述,利用构造思想证明不等式时,需对题目进行全面分析,抓住可构造的因素,并借助于与之相关的知识,构造出所求问题的具体形式或是与之等价的新问题,通过解决所构造的问题使原问题获得解决.就构造的对象来说它的表现形式是多样的,这就需要我们牢固的掌握基础知识和解题技巧,综合运用所学知识将问题解决.2 利用换元法证明不等式换元法是数学解题中的一种重要方法,换元的目的是通过换元达到减元,或通过换元得到熟悉的问题形式.换元法主要有以下几种形式:图6O xyABC2.1 三角换元法例15 已知,122≤+y x 求证2222≤-+y xy x .证明 设θθsin ,cos r y r x ==()10≤≤r ,则=-+222y xy x θθθθ22222sin sin cos 2cos r r r -+θθθ222sin 2sin cos -+=r224sin 22sin 2cos 222≤≤⎪⎭⎫ ⎝⎛+=+=r r r πθθθ.注 这种方法一般是已知条件在结构上与三角公式相似时宜采用.若题设为,12=+y x 可设;sin 2,cos θθ==y x 题设为,122=-y x 可设θθtan ,sec ==y x 等.2.2 均值换元法例16 设,1,,,=++∈z y x R z y x 求证31222≥++z y x )12](2[P .证明 设,31α+=x ,31β+=y ,31γ+=z 其中0=++γβα 则 =++222z y x ++2)31(α++2)31(β=+2)31(γ31)(231222≥++++++γβαγβα(当且仅当γβα==时取等号).2.3 增量换元法这种方法一般用于对称式(任意互换两个字母顺序,代数式不变)和给定字母顺序的不等式的证明.例17 已知,0>>y x 求证 yx y x -<-)55](6[P .证明 由,0>>y x 可令t y x += )0(>t . 因为2)(2t y yt t y t y +=++<+, 所以t y t y +<+, 即y x y x -<-.总之,证明不等式时适当的引进换元,可以比较容易的找到解题思路,但具体使用何种代换,则因题而异,总的目的是化繁为简.3 利用概率方法证明不等式)51](7[P利用概率方法证明不等式,主要是根据实际问题,构造适当的概率模型,然后利用有关结论解决实际问题.3.1利用概率的性质:对任意事件A ,1)(0≤≤A P ,证明不等式例18 证明若,10,10≤≤≤≤b a 则1+≤+≤ab b a ab .分析 由,10,10≤≤≤≤b a 可把a 看做事件A 发生的概率,b 看做事件B 发生的概率. 证明 设事件A 与B 相互独立,且,)(,)(b B P a A P ==则ab b a B A P B P A P B A P -+=-+=)()()()( .因为,1)(0≤≤B A P 所以10≤-+≤ab b a ,所以1+≤+≤ab b a ab .3.2 利用Cauchy-Schwarz 不等式:2))((ξηE ≤22ηξE E 例19 设0>i a ,0>i b ,,2,1=i …n ,, 则 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .证明 设随机变量ξηηξ,,满足下列要求ξ概率分布:P (ξ=i a )=n 1(n i ,,2,1 =),η概率分布:P (η=i b )=n1(n i ,,2,1 =),ξη概率分布:⎪⎩⎪⎨⎧≠=== )(0)(1)(j i j i nb a P j i ξη, 则 2ξE =∑=n i i a n 121,2ηE =∑=n i i b n 121,)(ξηE =∑=n i i i b a n 11.由2))((ξηE ≤22ηξE E 得 212)(1∑=n i i i b a n ≤)1)(1(1212∑∑==n i i n i i b n a n .即 21)(∑=ni i i b a ≤))((1212∑∑==ni in i i ba .用概率证明不等式比较新颖,开辟了证明不等式的又一途径.但该法用起来不太容易,因为读者必须对概率这部分知识熟悉掌握,才能选择适当的结论加以利用,因此对这种方法只做简单了解即可.4 用微分方法证明不等式在高等数学中我们接触了微分, 用微分方法讨论不等式,为不等式证明方法开辟了新的视野. 4.1利用微分中值定理微分中值定理包括罗尔定理、拉格朗日定理、柯西定理、泰勒定理,下面仅给出拉格朗日中值定理、泰勒定理的应用:拉格朗日中值定理)120](8[P 若函数)(x f 在[]b a ,上连续,()b a ,内可导,则在()b a ,内至少存在一点ξ,使得)('ξf =ab a f b f --)()(.例20 已知0>b ,求证b b bb<<+arctan 12. 证明 函数x arctan 在[]b ,0上满足拉格朗日中值定理的条件,所以有b arctan -0arctan =)0()(arctan '-=b x x ξ=21ξ+b,),0(b ∈ξ. 而b bx b <+<+2211ξ, 故原不等式成立.泰勒定理)138](8[P 若函数)(x f 在[]b a , 上有直至n 阶的连续导数,在()b a ,内存在()1+n 阶导函数,则对任意给定的0,x x ()b a ,∈,使得10)1(00)(200''00'0)()!1()()(!)()(!2)())(()()(++-++-++-+-+=n n nn x x n f x x n x f x x x f x x x f x f x f ξ 该式又称为带有拉格朗日余项的泰勒公式.例21 设函数)(x f 在[]b a ,上二阶可导,且M x f ≤)('',,1,0)2(=-=+a b ba f 试证 4)()(M b f a f ≤+)69](9[P .证明 将函数)(x f 在点20ba x +=展成二阶泰勒公式 ++-+++=)2)(2()2()('b a x b a f b a f x f 2'')2)((21b a x f +-ξ=)2)(2('ba xb a f +-++2'')2)((21b a x f +-ξ. 将b a x ,=代入上式得)21)(2()('b a f a f +-=+)(811''ξf ,)(81)21)(2(')(2''ξf b a f b f ++=. 相加得))()((81)()(2''1''ξξf f b f a f +=+. 取绝对值得))()((81)()(2''1''ξξf f b f a f +≤+≤4M .4.2 利用极值例22 设12ln ->a 为任一常数,求证xeax x <+-122()0>x )188](10[P .证明 原问题可转化为求证012)(2>-+-=ax x e x f x)0(>x .因为0)0(=f ,所以只需证022)('>+-=a x e x f x.由02)(''=-=xe xf 得)('x f 的稳定点2ln =x .当2ln <x 时,0)(''<x f . 当2ln >x 时,0)(''>x f . 所以 02)2ln 1(222ln 22)2(ln )(min ''>+-=+-==>a a f x f x .所以原不等式成立.4.3 利用函数的凹凸性定义)193](10[P )(x f 在区间I 上有定义,)(x f 称为I 上的凸(凹)函数,当且仅当:21,x x ∀∈I ,有)2(21x x f +≤2)()(21x f x f + ()2(21x x f +≥2)()(21x f x f +). 推论)201](10[P 若)(x f 在区间I 上有二阶导数,则)(x f 在I 上为凸(凹)函数的充要条件是:0)(''≥x f (0)(''≤x f ).例23 证明na a a n +++ 21≥n n a a a 21 ),,2,1,0(n i a i =>)125](11[P .证明 令,ln )(x x f =则01)(,1)(2'''<-==xx f x x f ,所以 x x f ln )(=在()+∞,0上是凹函数,对),0(,,,21+∞∈n a a a 有)ln ln (ln 1ln 2121n n a a a nn a a a +++≥⎪⎭⎫ ⎝⎛+++ ,所以na a a n +++ 21≥nn a a a 21.例24 对任意实数,,b a 有)(212b ab a e e e+≤+)80](12[P .证明 设xe xf =)(,则),(,0)(''+∞-∞∈>=x e x f x,所以)(x f 为),(+∞-∞上凸函数.从而对b x a x ==21,有2)()()2(b f a f b a f +≤+. 即)(212b ab a e e e+≤+. 5 利用几个著名的不等式来证明不等式5.1 均值不等式)133](4[P定理 1 设n a a a ,,,21 是n 个正数,则)()()()(n Q n A n G n H ≤≤≤称为均值不等式,其中,111)(21na a a nn H +++=,)(21n n a a a n G =,)(21na a a n A n+++=na a a n Q n22221)(+++=分别称为n a a a ,,,21 的调和平均值,几何平均值,算术平均值,均方根平均值.例25 已知,10<<a ,02=+y x 求证812log )(log +≤+a yx a a a . 证明 由,10<<a ,0,0>>yxa a 有y x y x y x a a a a a +=⋅≥+22,从而得22log )2(log )(log yx a a a a y x a y x a ++=≤++, 故现在只需证812≤+y x 或 41≤+y x 即可. 而4141)21(22≤+--=-=+x x x y x (当21=x 时取等号),所以812log )(log +≤+a yx a a a .5.2 Cauchy 不等式 定理2)135](4[P 设),,2,1(,n i R b a i i =∈,则∑∑∑===≥⋅n i ni i i ni ii b a ba 121122,)(当且仅当nn a b a b a b === 2211时等号成立. 例26 证明三角不等式 2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ≤2112⎪⎭⎫ ⎝⎛∑=ni i a +2112⎪⎭⎫ ⎝⎛∑=ni i b )33](12[P .证明 因为∑=+ni i ib a12)(=∑=+ni i i i a b a 1)(+∑=+ni i i i b b a 1)(根据Cauchy 不等式,可得∑=+ni i i ia b a1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i n i i i a b a . (1)∑=+ni i i i b b a 1)(≤211212)(⎥⎦⎤⎢⎣⎡+∑∑==ni i ni i ib b a . (2) 把(1)(2)两个式子相加,再除以2112)(⎥⎦⎤⎢⎣⎡+∑=ni i i b a ,即得原式成立.5.3 Schwarz 不等式Cauchy 不等式的积分形式称为Schwarz 不等式. 定理3)271](10[P )(),(x g x f 在[]b a ,上可积,则⎰⎰⎰≤b ababadx x g dx x f dx x g x f .)()())()((222若)(),(x g x f 在[]b a ,上连续,其中等号当且仅当存在常数βα,,使得)()(x g x f βα≡时成立(βα,不同时为零).例27 已知)(x f 在[]b a ,上连续,,1)(=⎰badx x f k 为任意实数,求证2)cos )((⎰bakxdx x f 1)sin )((2≤+⎰b akxdx x f )272](10[P .证明 上式左端应用Schwarz 不等式得2)cos )((⎰bakxdx x f 2)cos )(()(⎥⎦⎤⎢⎣⎡=⎰badx kx x f x f⎰⎰⋅≤babakxdx x f dx x f 2cos )()(⎰=bakxdx x f 2cos )(. (1)同理2)sin )((⎰bakxdx x f ⎰≤bakxdx x f 2sin )(. (2)由(1)+(2)即得原不等式成立. 5.4 利用W.H.Young 不等式 定理4)288](10[P 设)(x f 单调递增,在),0[+∞上连续,,0)0(=f )(,0,1x fb a ->表示)(x f 的反函数,则⎰⎰-+≤bady y f dx x f ab 010,)()(其中等号当且仅当b a f =)(时成立.例28 设,0,>b a ,1>p ,111=+qp 试证q b p a ab q p +≤)290](10[P .证明 因为,1>p 所以1)(-=p xx f 单调递增且连续 (当0≥x 时),1111)(---==q p y yy f )111(-=-q p . 应用W.H.Young 不等式有 qb p a dy y f dx x f ab qp ba+=+≤⎰⎰-01)()(.。
不等式证明方法总述
![不等式证明方法总述](https://img.taocdn.com/s3/m/0105cd69ddccda38376baf35.png)
不等式证明方法综述一 不等式的定义及其基本性质(一)不等式的定义用不等号连接的两个代数式所成的式子,叫做不等式。
(二)不等式的性质1、若b a >,则a b <(对称性)2、若b a >,c b >,则c a >(传递性)3、若b a >,c 为任何实数,则c b c a +>+(加法保序性)4、若b a >,d c >,则d b c a +>+(同向不等式相加) 若b a >,d c <,则d b c a ->-(异向不等式相减)5、若b a >,0>c ,则bc ac > 若b a >,0<c ,则bd ac >6、若0>>b a ,则b a 11<若b a >>0,则ba 11<7、若0>>b a ,0>>d c ,则bd ac > 8、若0>>b a ,d c <<0,则db ca >9、若0>>b a ,N n ∈,则n n b a >,n n b a > 10、若0>>b a ,N n m ∈,,则nm nm b a >,nm nm ba--<(三)几个常用的绝对不等式 1、()02≥-b a 2、ab b a 222≥+ 3、若0,0≥≥b a ,则ab ba ≥+2,有且只有b a =时取等号4、若0>a ,则21≥+a a ,有且只有1=a 时取等号5、若b a ,同号,则2≥+baa b ,有且只有b a =时取等号6、若0,0,0≥≥≥c b a ,则33abc c b a ≥++ 7、若),,3,2,1(,0n i a i =>,则nn n a a a na a a ⋅⋅⋅≥+++ 21218、若d b dc ba ,,>同号,则bad b c a dc <++<9、若m b a ,,均为正数,且b a <,则mb ma b a ++<注:因为虚数不能比较大小,所以上述字母的取值范围为实数集合。
证明不等式的八种方法
![证明不等式的八种方法](https://img.taocdn.com/s3/m/867f2110866fb84ae45c8d17.png)
利用导数证明不等式的八种方法构造函数法---1研究其单调性2 极值、最值与0的关系 张红娟学习所得 2012.10.181、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。
2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。
以下介绍构造函数法证明不等式的八种方法:一、移项法构造函数【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(111 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数111)1ln()(-+++=x x x g ,从其导数入手即可证明。
【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 ,即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数,故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g ,∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-+++x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(111,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方;分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f <⇔不等式问题, 即3232ln 21x x x <+,只需证明在区间),1(∞+上,恒有3232ln 21x x x <+成立,设)()()(x f x g x F -=,),1(+∞∈x ,考虑到061)1(>=F 要证不等式转化变为:当1>x 时,)1()(F x F >,这只要证明: )(x g 在区间),1(+∞是增函数即可。
第2节证明不等式的基本方法
![第2节证明不等式的基本方法](https://img.taocdn.com/s3/m/161d304cf02d2af90242a8956bec0975f565a477.png)
第2节证明不等式的基本方法证明不等式的基本方法总结如下:一、利用数学分析中的中值定理、极值、单调性等性质进行证明。
1.利用中值定理:利用连续函数介值定理或拉格朗日中值定理,根据函数的一些性质,可以推出不等式的成立。
例如,证明一个凸函数在区间上的函数值不小于端点的函数值。
2.利用极值:通过求导或其他方法,找到函数的极值点,然后证明这些极值点就是不等式的最小(最大)值点。
例如,证明两数之积不大于它们的平方和,可以通过求导得到函数的极值点,然后通过证明这个极值点为最小值点来完成。
3.利用单调性:如果已知函数在一些区间上是严格递增(递减)的,可以通过证明不等式在一些特殊点成立,并通过函数的单调性推出在整个区间上成立。
例如,证明一个正数的倒数小于它自己,则可以先证明在0到1之间成立,然后利用单调性推出在整个正数范围内成立。
二、利用数学归纳法进行证明。
如果不等式中的变量是正整数,可以利用数学归纳法进行证明。
首先证明当n=1时不等式成立,然后假设当n=k时不等式成立,再证明当n=k+1时不等式也成立。
例如,证明n个正数的平均值不小于它们的几何平均值,可以先证明当n=1时成立,然后假设当n=k时成立,再证明当n=k+1时也成立,最后利用数学归纳法推出结论。
三、利用代数方法。
1.利用等价变形:对于一个复杂的不等式,可以通过进行等价变形来简化证明。
通过将不等式的两边同时加上或减去一些式子,或者将不等式两边同时乘以或除以一些式子,可以得到一个等价的不等式,然后证明这个等价的不等式。
例如,证明正数的n次方大于等于它的平方,可以将不等式两边同时开方,然后证明这个等价的不等式。
2. 利用加减法、乘除法不等式:对于一个分式或多项式不等式,可以通过利用加减法、乘除法的不等式性质,将不等式化简为更简单的形式,再进行证明。
例如,证明a+b≤2ab,则可以将两边同时减去a+b再加上2,利用不等式的性质简化后得到ab≥1,再证明这个等价的不等式。
不等式证明的常用方法
![不等式证明的常用方法](https://img.taocdn.com/s3/m/e4d06df451e2524de518964bcf84b9d528ea2cac.png)
不等式证明的常用方法
不等式证明的常用方法包括:
1. 数学归纳法:通过证明不等式对于特定值或变量范围的成立性,将其推广到更广泛的情况中。
2. 代数证明法:通过变形、移项、乘、除、加、减等代数操作,将不等式化简为易于证明的形式。
3. 几何证明法:利用几何图形、图像等可视化工具,推导出不等式成立的几何关系。
4. 分析证明法:通过借助基本不等式、中值定理、柯西-施瓦茨不等式、柯西不等式等数学定理和方法,推导出不等式的成立性。
5. 经验证明法:通过实际问题、实例、数据分析等方式,验证不等式的成立性。
不等式的推导和证明方法
![不等式的推导和证明方法](https://img.taocdn.com/s3/m/056fac5a1fd9ad51f01dc281e53a580216fc50c4.png)
不等式的推导和证明方法不等式是数学中不可或缺的一个概念,它用于表示数值之间的关系。
不等式的形式可以很简单,例如$x>2$,也可以非常复杂,例如 $\sqrt{x^2+y^2}>\frac{x+y}{2}$。
在解决各类数学问题时,推导和证明不等式的方法是非常重要的一步。
本文将介绍一些常见的不等式的推导和证明方法。
一、数学归纳法数学归纳法是一种证明数学命题的通用方法。
若要证明某个命题对于自然数 $n$ 成立,则需要证明该命题在 $n=1$ 时成立,并证明若该命题在 $n=k$ 时成立,则该命题在 $n=k+1$ 时也成立。
不等式的证明中,归纳法常常被用于证明柯西不等式、阿贝尔不等式等一些数列不等式。
例如,考虑柯西不等式:$(a_1^2+a_2^2+\cdots+a_n^2)(b_1^2+b_2^2+\cdots+b_n^2)\geq(a_1b _1+a_2b_2+\cdots+a_nb_n)^2$。
对于 $n=1$,该不等式显然成立。
假设对于 $n=k$ 时该不等式成立,即$$(a_1^2+a_2^2+\cdots+a_k^2)(b_1^2+b_2^2+\cdots+b_k^2)\geq(a_1b_1+a_2b_2+\cdots+a_kb_k)^2$$现在考虑 $n=k+1$ 时该不等式是否成立。
根据柯西不等式,有\begin{align*}&(a_1^2+a_2^2+\cdots+a_{k+1}^2)(b_1^2+b_2^2+\cdots+b_{k+1 }^2)\\=&[(a_1^2+a_2^2+\cdots+a_k^2)+a_{k+1}^2][(b_1^2+b_2^2+\cd ots+b_k^2)+b_{k+1}^2]\\\geq&(a_1b_1+a_2b_2+\cdots+a_kb_k+a_{k+1}b_{k+1})^2\end{align*}因此,该命题对于 $n=k+1$ 成立,由数学归纳法可知对于所有$n\in\mathbb{N}$,柯西不等式成立。
不等式证明的基本方法
![不等式证明的基本方法](https://img.taocdn.com/s3/m/cd912a679b6648d7c1c74641.png)
分析 这是一个整式不等式,可考虑用
比较法,在配方过程中应体现将a或b看 成主元的思想,在这样的思想下变形, 接下来的配方或因式分解相对容易操作.
(证法一)作差法.
a2+b2-ab-a-b+1=a2-(b+1)a+b2-b+1
=(a=(a-
b 1 2 3 2 3 3 ) + 4 b - 2 b+ 4 2 b 1 2 3 ) + 4 (b-1)2≥0. 2
端实行不同的恒等变形,其目的都是为了有 效地利用有关的基本不等式,这是利用基本 不等式证明不等式的一个难点.“变形”的形 式很多,常见的是拆、并项,也可乘一个数 或加上一个数等. (2)常见已证过的不等式有以下几种形式: ①a2≥0(a∈R); ②|a|≥0(a∈R);
③a2+b2≥2ab(a、b∈R)的变形有: a2+b2≥2|ab|≥±2ab,a2+b2≥
综合法的思维过程的全貌可概括为 下面形式:
“ 已 知 → 可 知 1→ 可 知 2 → …→ 结 论”.
3.分析法是指“执果索因”的思维方法, 即从结论出发,不断地去寻找需知,直至 达到已知事实为止的方法. 分析法的思维全貌可概括下面形式: “结论←需知1←需知2←…←已知”. 4.反证法:从否定结论出发,经过逻辑 推理,导出矛盾,证实结论的否定是错误 的,从而肯定原结论是正确的证明方法. 5.放缩法:欲证A>B,可通过适当放大 和缩小,借助一个或多个中间量,使得 B<B1,B1≤B2,…,B1≤A,再利用传递性,达到 欲证的目的,这种方法叫做放缩法.
,
因为a>b>0,所以 a <1< b 成立,
(完整版)不等式的证明方法大全,推荐文档
![(完整版)不等式的证明方法大全,推荐文档](https://img.taocdn.com/s3/m/2441bb9c376baf1ffd4fad37.png)
不等式的证明一、比较法:比较法是证明不等式的最基本、最重要的方法,它常用的证明方法有两种:1.作差比较法(1)应用范围:当欲证的不等式两端是多项式、分式或对数式时,常用此法。
(2)方法:欲证A>B,只需要证A-B>0(3)步骤:“作差----变形----判断符号”。
(4)使用此法作差后主要变形形式的处理:○将差变形为常数或一常数与几个平方和的形式常用配方法或实数特征a2≥0判断差符号。
○将差变形为几个因式的积的形式,常用因式分解法。
○若变形后得到二次三项式,常用判别式定符号。
2.作商比较法(1)应用范围:当要证的式子两端是乘积的形式或幂、指数时常用此法。
(2)方法:要证A>B,常分以下三种情况:若B>0,只需证明1A B >;若B=0,只需证明A>0;若B<0,只需证明1AB<。
(3)步骤:“作商-----变形-----判断商数与1的大小”例1 已知a ,b ∈R ,且a+b=1. 求证:()()2252222≥+++b a . 解析:用作差比较法a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++-2222911(1)4222(0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)例2:已知a , b , m 都是正数,并且a < b ,求证:bam b m a >++解析:用作差比较法∵)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++∵a ,b ,m 都是正数,并且a <b ,∴b + m > 0 , b a > 0∴0)()(>+-m b b a b m即:bam b m a >++例3:已知a>b>0,求证:()2a b a ba b ab +>解析:用作商比较法∵()222222a b a b a b a b a b a b a b a b a ba aabb ab -++-----+⎛⎫=== ⎪⎝⎭又∵a>b>0,()221,012a b a ba ba ab a b b a b ab -+-⎛⎫∴>>∴> ⎪⎝⎭∴>练习:已知a ,b∈R +,求证a a b b ≥a b b a .例4:已知0 < x < 1, 0 < a < 1,试比较|)1(log | |)1(log |x x a a +-和的大小。
初中数学不等式证明方法总结
![初中数学不等式证明方法总结](https://img.taocdn.com/s3/m/b5063799bdeb19e8b8f67c1cfad6195f312be8be.png)
初中数学不等式证明方法总结初中数学不等式证明方法总结通常不等式中的数是实数,字母也代表实数。
初中数学不等式证明方法总结,希望可以帮助到大家,我们来看看。
初中数学不等式证明方法总结1知识要点:不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)。
不等式的证明1、比较法包括比差和比商两种方法。
2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识要领总结:证明不等式要注意不等式两边都乘以或除以一个负数,要改变不等号的方向。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
探究证明不等式的几种常用方法
![探究证明不等式的几种常用方法](https://img.taocdn.com/s3/m/4907b3ccad51f01dc281f172.png)
探究证明不等式的几种常用方法不等式在数学中占有十分重要的地位,证明不等式的方法和技巧也很多,本文介绍一些常用方法,仅供大家参考。
1.比较法欲比较两个数的大小,可以作它们的差,通过适当变形与零进行比较,最后下结论。
例:已知a、b都是正实数,且ab,求证a 3+b 3>a 2b+ab 2。
证明:由(a 3+b 3)-(a 2b+ab 2)=(a 3-a 2b)-(ab 2-b 3)=a 2(a-b)-b 2(a-b)=(a 2-b 2)(a-b)=(a+b)(a-b) 2∵a,b>0,a+b>0又ab,(a-b) 2>0故(a+b)(a-b) 2>0,即(a 3+b 3)-(a 2b+ab 2)>0a 3+b 3>a 2b+ab 22.增减项法例:已知a>b>0,求证:a+1(a - b)b≥3,证明:原式左端变形为(a-b)+b+1(a - b)b≥33(a-b)•b•1(a - b)b=3。
3.拆项法例:设a、b、c∈R +,且a、b、c两两不相等,abc=1,求证:1a+1b+1c>a+b+c。
证明:=1a+1b+1c=12(1a+1a)+12(1b+1b)+12(1c+1c)=12(1a+1b)+12(1b+1c)+12(1a+1c)>1ab+1bc+1ca=abcab+abcbc+abcca=a+b+c。
4.放缩法所谓放缩法,一是根据不等式的传递性,将和(或积)中的某些项换成较大(或较小)的,使其和(或积)较大(或较小);二是对于分式的分子(或分母)的扩大(或缩小),使其分式值增大(或缩小),再者是把某些项舍去(或添上)等等技巧性方法。
例:求证:19+125+…+1(2n+1) 2c1+c。
证明:设函数f(x)=x1+x.该函数在(0,+∞)上单调递增,又a、b、c是△ABC的三边长,故a+b>c∴f(a+b)=a+b1+a+b>f(c)=c1+c又a1+a+b1+b>a1+a+b+b1+a+b+a+b1+a+b=f(a+b)=a1+a+b1+b>c1+c.6.换元法例:已知a+b+c=1,求证:a 2+b 2+c 2≥13证明:令a=m+13,b=n+13,c=t+13,则m+n+t=0。
高中不等式的常用证明方法归纳总结
![高中不等式的常用证明方法归纳总结](https://img.taocdn.com/s3/m/2a98803dbd64783e09122b4b.png)
不等式的证明方法不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。
注意ab b a 222≥+的变式应用。
常用2222ba b a +≥+ (其中+∈R b a ,)来解决有关根式不等式的问题。
一、比较法比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。
1、已知a,b,c 均为正数,求证:ac c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴0)(4)(44)()(14141)(2≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理0)(414141)(2≥+=+-+-c b bc c b c b c b ,0)(414141)(2≥+=+-+-c a ac a c a c a c 三式相加,可得0111212121≥+-+-+-++ac c b b a c b a ∴ac c b b a c b a +++++≥++111212121 二、综合法综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。
2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:31222≥++c b a证:2222)(1)(3c b a c b a ++=≥++⇔∴2222)()(3c b a c b a ++-++0)()()(222222222222≥-+-+-=---++=a c c b b a cabc ab c b a3、设a 、b 、c 是互不相等的正数,求证:)(444c b a abc c b a ++>++证:∵22442b a b a >+22442c b c b >+22442a c a c >+∴222222444a c c b b a c b a ++>++∵ c ab c b b a c b b a 22222222222=⋅>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+∴)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:)(2222222c b a a cc bb a++≥+++++证明:∵)(22222222)(22b a b a b a b aab ab +≥++≥+∴≥+即2)(222b a b a+≥+,两边开平方得)(222222b a b a b a+≥+≥+ 同理可得)(2222c b c b+≥+)(2222a c a c+≥+三式相加,得 )(2222222c b a a cc bb a++≥+++++5、),0(∞+∈y x 、且1=+y x ,证:9)11)(11(≥++y x 。
不等式的几种证明方法
![不等式的几种证明方法](https://img.taocdn.com/s3/m/fe37ac691eb91a37f1115c7f.png)
不等式证明的几种常用方法一、比较法(1)差值比较法要证明a >b ,只要证明a -b >0。
①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变 形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论。
应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。
【例一】求证:233x x +>证明:()()()222233223333x x x x +-=-+-+23330244x ⎛⎫=-+≥> ⎪⎝⎭233x x ∴+>(2)商值比较法已知a ,b 都是正数,要证明a >b ,只要证明a/b >1 ①作商:将左右两端作商; ②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。
应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。
【例二】已知a,b>0,求证a b b a a b a b ≥证明: =∵a,b>0+,当a >b 时,>1,a-b >0,>1;当a≤b 时,≤1,a -b≤0, ≥1.∴≥1, 即a b b aa b a b ≥二、综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。
其逻辑关系为:A-B1- B2- B3… Bn -B ,即从已知A 逐步推演不等式成立的必要条件从而得出结论B 。
重点:基本不等式【例三】已知a ,b ,c 是不全等的正数,求证 a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .证明: 222a b ab +≥ ,222a c ac +≥,222c b bc +≥()222a b cabc ∴+≥,()222b acabc +≥,()222c ababc +≥∴a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)≥6abc .又因为a ,b ,c 是不全等的正数所以有a (c 2+b 2)+b (a 2+c 2)+c (a 2+b 2)>6abc .三、分析法分析法是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”。
不等式的证明方法
![不等式的证明方法](https://img.taocdn.com/s3/m/78fb1d1b10a6f524ccbf8511.png)
由①②③得
用分析法证题方向明确,思路自然,易于掌握。而分析与综 合联合起来使用更有普遍意义,这种方法对命题复杂时常用,对 含根式的不等式的证明较有效。
四、反证法 是从否定求证的不等式出发,推出与已知条件、定义、定理
七、变量代换法 利用变量代换使不易证明的不等式转化为易于证明的不等 式。常用的代换方法是:三角代换和增量法。 1、三角代换法。若所要证明的不等式中有形如三角函数关 系式的形式出现,则可以利用三角代换使问题简化。 例 8、题目同例 3。 证明:∵ a、b、c、d 均为小于 1 的正数,则
4,5,…。(2005 湖北高考题第 22 题第 1 小题)
证明:设 ,首先利用数学归纳法证明不等式
n=3,4,5,…。
①当 n=3 时,由 知,不等式成立.
②假如当 n=k(k ≥ 3)时,不等式成立,即
二、综合法 综合法就是由已知条件或已知不等式出发,利用不等式的 有关性质,推出所要证的不等式。 例 3: 四个数 a、b、c、d 均为小于 1 的正数,证明下列四个 乘积:4a(1-b), 4b(1-c), 4c(1-d), 4d(1-a) 不可能都大于 1。 证明:设 0 < a ≤ b ≤ c ≤ d < 1 则:
二、“符号”创新
例 2、定义一种运算“*”,对于正整数 n 满足以下运算性质:
⑴ 1*1 = 1;⑵(n+1)*1 = 3(n*1),则 n*1 用含 n 表示的函
数式为 _____。解析:这显然是创设新的运算符号题,按其意义,
可设 a =n*1 ,则 a =(n+1)*1。由条件可得 a =1,a =3a ,则
是边 a 与边 a 的颜色相同,对于这一种涂色方法,如果我们把
n+1
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
令 F ( x) = 1 + 则 F ′( x) =
1 x − 1+ x , 2 , 故 F ′( x ) > 0 ( x > 0) ,
β =1− α, 有: f ( α x1 + β x 2 ) ≤ α f ( x1 ) + β f ( x 2 ) (或 f ( α x1 + β x 2 ) < α f ( x1 ) + β f ( x 2 )) 。
这 说 明 F ( x) = sin x −
参考文献
[1] 同 济 大 学 数 学 教 研 室 . 高 等 数 学 ( 第 四 版)[M].北京:高 等 教 育 出 版 社,1996, 12. [2] 四 川 大 学 数 学 系 高 等 数 学 教 研 室 . 《高 等数学(第三版)[M].北京:高等教育出 版社,1995,3.
下凸的, 于是
f(x)+ f( y) x+ y ,
即 y > 0, x ≠ y ) ,
x ln x + y ln y > ( x + y ) ln ( x > 0, y > 0, x ≠ y )
x+ y 2
na
n −1
(b − a ) < b − a < nb
2 利用函数的单调性证明不等式
当 需 要 证 明 f ( x) > g ( x) 在某区间I 上成 立时, 可考虑令 F ( x ) = f ( x) − g ( x) , 然后讨 论 F ( x) 在区间I上的单调性, 利用单调性和 给定的已知条件, 得到不等式的证明。 例2 证明 1 + 证明:
n n
n
n −1
(b − a)
则 f ( x ) 在 [ a, b ] 上 证明:设 f ( x) = x , 满足拉格朗日中值定理的所有条件, 由拉格 朗日中值定理, 至少有一点 ξ ∈[ a, b ] , 使得
f (b) − f (a ) bn − an = f ′( ξ ) , = nξ n −1 , 即 注 b−a b−a
2 π x (0 < x < ) π 2
f ( x) = x ln x 在 (0,
2 π x, 那么 F ( x ) 在 0, 2 π 上是连续的, 因此必能取到最大值和最小
令 F ( x) = sin x − 2 2 值。 又 F ′( x) = cos x − , 于是: 0 < x < arccos π π 2 π F ′( x ) > 0 ; arccos < x < 时, 时, F ′( x) < 0 , π 2
x+ y 2
F ( x) = g ( x) − f ( x ) 那 就 要 设 法 证 明 F ( x )
的最 小 值 大 于 零 了 。 例3 证明 sin x > 证明:
( x > 0, y > 0, x ≠ y ) 。
令 f ( x) = x ln x , 由于 f ′(x) = ln x + 1, f ′′( x) = 所以 1 > 0 (x > 0) , x + ∞) 内 是 严 格
(x > 0)
4 利用函数的凹凸性证明不等式
我们知道: f ( x ) 在开区间I内下凸(或严格下 凸), 当 且 仅 当 ∀ x1 , x2 ∈ I ,∀α ∈ ( 0, 1 ) ,
中国科教创新导刊 China Education Innovation Herald 67
《高等数学》 是高校理工科的一门重点 基础课, 通过这门课程的学习, 为今后学习 计算机原理及基础、 电子技术基础、 编程原 理、 数控技术及原理、 数据库以及理工科的 各后续课程等提供必要的高等数学基础。 在高等数学传统的教学过程中, 比较重视 演绎及推理, 重视定义及概念的严密严格 性, 重视定理的严格论证, 这对培养学生的 数学素养, 提高学生的数学素质是有益的。 但是, 对于那些以应用为主要学习目的的 学生来说, 需要的往往不是定理论证的过 程, 而是它的结论。 笔者认为对于高校理工 科学生而言, 在高等数学教学中, 应注重传 授问题解决的方法, 把学生从繁杂的数学 推导中解脱出来。 为此, 本文作者结合自己 教学实际, 对高等数学中有关不等式问题 的解决方法归结如下。
意到 0 < a < ξ < b , 所以 na n−1 < nξ n−1 < n >1, 所以 na nb n−1 ,
n −1
(b − a) < b n − a n < nb n−1 (b − a)
x− y x x−y < ln < ( x > y >0) x y y
2 2 x 在 点 x = arccos π π 2 取最大值, 并 且 F ( x ) 在 x = arccos 两侧都 π π 是严格单调的, 加 之 F (0 ) = F ( ) = 0 , 所以 2 2 π F ( x) = sin x − x 在 0, 上最小值为0 , 所 π 2 2 π 以有 sin x > x (0 < x < ) 。 π 2 例4 证明 ∀ x > 0 , ∀α ∈ ( 0, 1 ) 有
1 利用拉格朗日中值定理证明不等式
利用拉格朗日中值定理证明不等式,
f (b) − f (a) = f ′( ξ ) , 就是合理利用等式 b−a 其 变 化 在 f ′(ξ ) 上。 值 得 指 出 的 是: 可 利 用 拉格朗日中值定理证明的不等式是有比较 明显的特征的。 例1 设 0 < a < b , 证明 n >1,
1+ x −1 2 1+ x
f(x) 在开区间I内上凸(或严格上
所以 F ( x) 在 [0, + ∞) 单调递增, 又 F (0 ) = 0 , 1 所以 1 + x > 1 + x (x > 0) 。 2
∀α ∈ ( 0, 1 ) , 凸), 当 且 仅 当 ∀ x1 , x 2 ∈ I , β =1−α , 有: f (α x1 + β x2 ) ≤α f ( x1) + β f ( x2 )
2009 NO.30
教育教学方法
China Education Innovation Herald
中国科教创新导刊
不等式证明方法综述
胡明 ( 景德镇高等专科学校数学与计算机系 江西景德镇 333000) 摘 要 : 提高学生的应用能力是高等数学的主要任务。本文作者结合多年的教学实际,对高等数学中较为典型的不等式问题的解决方 法进行了归纳和总结,以供参考。 关键词 : 不等式 方法 问题的解决。 中图分类号: 文献标识码: A 文章编号 : 1 6 7 3 - 9 7 9 5 ( 2 0 0 9 ) 1 0 ( c ) - 0 0 6 7 - 0 1
x < 1 时 f ′( x ) > 0 ,
x > 1 时 f ′( x ) < 0 , 所 以 x = 1 是 f ( x ) 的最
大值点, 又 f (1) = 0 , 所以 f ( x ) ≤ f ( 1 ) = 0 , 即 xα
− αx + α − 1 ≤ 0 ( ∀ x > 0 )。
1 x > 1+ x 2
(或) f ( α x1 + β x 2 ) < α f ( x1 ) + β f ( x 2 ) 利用函数凹凸性证明不等式常常是非 常好的一种方法。 例5 证明 x ln x + y ln y > ( x + y) ln
3 利用函数的最值 ( 极值 ) 证明不等式
当需要证明 f ( x) < g ( x) 在区间I上成立 然后设法 时。 可考虑令 F ( x) = f ( x) − g ( x) , 证 明 F ( x) 的 最 大 值 小 于 零 。 当然, 如果令
形如 sin x − sin y ≤ x − y ;
x α − αx + α − 1 ≤ 0
证 明 : 令 f ( x) = x α − αx + α − 1 , 由于 所以 x = 1 是 f ( x ) 唯一 f ′( x ) = αx α −1 − α , 的一个稳定点, 并且 0 <
等等都可以用类似的方法得到证明。