微分方程模型1
1初识微分方程建模

三、举例
例3 将室内一支读数为60°的温度计放到室外,10min后 温度计的读数为70°,又过了10min,读数为76°,利用牛顿 冷却定律计算室外温度。 牛顿冷却定律:将温度为T的物体放入处于常温m的介质中 T的变化速率正比与T与周围介质的温度差。 解:由牛顿冷却定律可知:dT/dt与T-m成比例 即 方程的解为: 结合给定的三个条件 计算出A,K,m
y = 0.0624 y0
时的t
将y代入上式解得t=22400yr
三、举例
习题 结合例5,计算C14的半衰期是多少? (数量衰减到一半的时间) 解 由例5可知
y0 / 2 = y0 e − t / 8000
ln 0.5 = −t / 8000, t ≈ 5600 yr
三、举例
例6 一只装满水的圆柱型桶,底面半径为10ft,高为20ft 底部有一个直径为1ft的孔,问桶流空要多少时间? 对孔的流速加一个假设:假设时刻t的流速依赖与此刻桶内 水的高度h(t),显然装满水时要比快流空时要快,进一步的假设 无能量损失,那么当少量水流出时,顶部减少的势能须等于 等量的水流出小孔时的动能。即 mgh=1/2mv2, 则可得: v=(2gh)1/2 这是物理中的托利拆里定律,模型这样假设看起来过于简单 但至少速度依赖与高度看来是合理的,接下来进行数学上的分析 解:随着水从小孔流出,桶内水的体积不断的减少, 设A为桶的水平面积,B为孔的水平面积。 则在任意时间间隔dt内,-Adh=Bds,ds为孔dt时间内水流的距离 问题是t=?时h=0。所以要求出h(t)。此时可通过上面的方程求出
四、习题
7、污染物质的含量为2g/L的水以500L/min的速度流过处理 箱。在箱内每分钟处理掉2%的污染物,且水被彻底摇匀。 处理箱可容纳10000L的水,在处理场开张时,箱内装满 纯净水,求流出的水中污染物浓度的函数? 解 设p(t)=箱内污染物的数量 dp/dt=流入-流出=(2g/L)(500L/min) -(p(t)g/10000L)(500L/min) -0.02p(t)g/min 解得dp/dt=1000-0.07p及p=(10000/7)(1-ce-0.07t) 由t=0时,p=0,得c=1
控制工程基础3-第2章 (数学模型1:微分方程,传递函数)

at
sa
2
• 拉氏变换的基本性质 (1) 线性性质
L[af1 (t ) bf 2 (t )] aL[ f1 (t )] bL[ f 2 (t )]
原函数之和的拉氏变换等于各原函数的拉氏变换之和。 (2) 微分性质 L 若[ f (t )] F ( s ) ,则有 L[ f (t )] sF ( s) f (0) f(0)为原函数f(t) 在t=0时的初始值。 (3) 积分性质 则 若 L[ f (t )] F ( s )
该标准型为二阶线性常系数微分方程,系统中存在两个储能元件质 量和弹簧,故方程式左端最高阶次为二。
-
机械旋转系统
• [例2]:设有一个惯性负载和粘性摩擦阻尼器组成的机械 旋转系统,试列出以外力矩M(t)为输入信号,角位移 θ(t)为输出信号的数学模型。
M
J
θ
f
解:
1)确定输入量、输出量
M J θ f
F(t) m f
K x(t)
图 2 2 机 械 系 统
d 2x 3)由牛顿第二定律写原始方程: F F (t ) Fk (t ) F f (t ) m 2 dt dx Fk (t ) kx F f (t ) f 4)写中间变量与输出变量的关系式: dt 2 d x dx 5)将上式代入原始方程消中间变量得: m 2 kx f F (t ) dt dt m d 2 x f dx 1 x F (t ) 6)整理成标准型: 令 T2 m T f 2 k dt k dt k m f 2 k k dx 1 2 d x 则方程化为: Tm dt 2 T f dt x k F (t )
第二章 控制系统的数学模型
导 为什么要介绍本章? 分析、设计控制系统的第一步是建立系统的数学模 型。 读
一阶常微分方程-高阶常微分方程-方程组-差分方程-偏微分方程模型

计可以通过
dN / dt r sN , s r
N
进行线性拟合。其中
Nm
dN / dt N / t
。而
模型的检验也可以通过这两个参数的估计
量与一个实际的人口数量之间进行比较加
以检验。
(5) 阻滞增长模型不仅能够大体上描述人 口及许多物种的变化规律,而且在社会经
济领域中有广泛的应用,如耐用消费品的 销售量也可以用此模型来描述。
新技术推广模型
一项新技术如何在有关企业中推广,是 人们最为关心的问题,也就是说,一旦一家企 业采用了一项新技术,那么行业中的其他企 业将以怎样的速度采用该技术?哪些因素 将影响到技术的推广?下面我们在适当的 条件下讨论此问题。
记p(t)为t 时刻采用该技术的企业数。并
设 p(t)连续可微。假设未采用该技术者之所 以决定采用该技术,是因为其已知有的企 业采用了该技术并具有成效。即是以“眼 见为实”作为决策依据的,亦即“示范效应” 在起作用。
增长率递增的现象),但是随着人口数的 增加,人口的年增长率将呈现逐年递减的 现象。再考虑到环境适应程度的制约,想 象人口的增长不可能超过某个度。
(2)对于其中常数增长率r 的估计可以使用 拟合或者参数估计的方法得到。
(3)在实际情况下,可以使用离散的近似 表达式 N (t) N0 (1 r)t 作为人口的预测表 达式。
在式 (1) 中,设
A A0ert ( A0 , r 0)
即自发支出有一个常数增长率r ,则式 (2) 的
解为
Y (t)
(
A0
r)
e t
Y0
(
A0
r)
e
t
由此可见:
(1)当
r
03-1第三章-第1-8节-微分方程模型市公开课获奖课件省名师示范课获奖课件

(5 13)
将(5-10)和( pr 2
ur
(5 14)
最终f 把 (54-1pA4r2)2m和r(05-6)代r0入(rr5-4)式得 (5 15) r 这里 0 是单位向径,指示向径方向。
(5-15)式表白: (1)行星运动时受旳力旳方向与它旳向径方向
相反,即在太阳—行星连线方向,指向太阳;
若记x(t),y(t)为开始用力后铅球运动轨迹旳水平和 铅垂方向旳坐标。则根据牛顿第二运动定理,由假 设3我们有
mx(t) F cos
my(t) F sin mg
(2 3)
式中m为铅球旳质量,F是对铅球旳推力, 为力旳
方向既铅球旳出手角度。
根据假设2,令t=0时运动员开始用力推球,t t0
22
§4 追踪问题旳数学模型
问题:我辑私舰雷达发觉距d海里处有一艘走私船正
以匀速 a沿直线行驶,辑私舰立即以最大旳速度 (匀v速)追赶。若用雷达进行跟踪,保持舰旳瞬时
速度方向一直指向走私船,试求辑私舰旳运动轨迹 及追上旳时间。
(留作自学)
23
§5 万有引力定律旳发觉
历史背景: 开普勒三定律: 1、各颗行星分别在不同旳椭圆轨道上绕太 阳运营,太阳位于这些椭圆旳一种焦点上。 2、每颗行星运营过程中单位时间内太 阳—行星向径扫过旳面积是常数。 3、各颗行星运营周期旳平方与其椭圆轨道 长半轴旳3次方成正比。
14
x
v2 g
cos
sin
(
v2 g2
sin 2
2h
)
1 2
g
v
cos
v
(
F m
2 2
g2
2F m
g sin )t0
第十二章 微分方程一、二、三节

含有未知函数的导数(或微分)的关系式。
3
常微分方程的发展历史
常微分方程已有悠久的历史,而且继续保持着 进一步发展的活力,其主要原因是它扎根于各种实 际问题之中。
牛顿最早采用数学方法研究天体问题,其中需 要求解的运动方程是常微分方程。他以非凡的积分 技巧解决了它,从而在理论上证实了地球绕太阳的 运动轨道是一个椭圆,澄清了当时关于地球将坠毁 于太阳的一种悲观论点。另外,莱布尼兹也经常与 牛顿在通信中互相提出求解微分方程的挑战。
12
s 9.8 s(0) h, s(0) 0 2 (6) 的通解为 s( t ) 4.9t c1t c2 s( 0) h c 2 h ,
s(0) 0 9.8t c1 t 0 0 c1 0 .
( 6) (7)
5
尤其是地球椭圆轨道的计算、海王星的发现、 弹道轨道的定位、大型机械振动的分析、自动控 制的设计、气象数值预报、按龄人口增长宏观预 测等等, 微分方程为之提供了关键技术支撑。反 过来这些高新技术也推动了微分方程理论走向纵 深, 从过去对平衡点、周期轨道等的定性研究到 今天对非局部分岔、高余维分岔的分析判定, 微 分方程在理论和方法上正经历着一个新的跨越。
x2ddxy?应满足条件应满足条件此外函数此外函数xxyyy?y1微分方程1721??xxy积分得x式两边关于1将cxxxy????32d223得代入将21?c故所求的曲线方程为12??xy初始条件通解特解积分曲线解的几何意义常微分方程解的几何图形称为它的积分曲线
第十二章 微分方程
已知 y f ( x ) , 求 y — 积分问题
的切线的斜率为 2 x,求此曲线 L 的方程.
设曲线的方程为 y y( x),则有 dy (1) 2 x. dx 此外,函数y y(x) 应满足条件
一阶线性微分方程及伯努利介绍

一阶线性微分方程及伯努利介绍为了解如何求解一阶线性微分方程,首先需要了解伯努利方程。
伯努利方程是一类形如dy/dx + P(x)y = Q(x)y^n的微分方程,其中n ≠ 0, 1、当n = 0时,该方程即为一阶线性微分方程。
伯努利方程具有一些特定的性质,使得可以通过变换将其转化为一阶线性微分方程。
具体而言,对于伯努利方程dy/dx + P(x)y = Q(x)y^n,可以通过以下变换将其转化为一阶线性微分方程。
令v = y^(1-n),则dy/dx = (1-n)v'/v。
将此变换代入伯努利方程中,得到(1-n)v'/v + P(x)v^(1-n) = Q(x)。
整理得到v'/v + P(x)v^(-n) - Q(x) = 0,这是一阶线性微分方程。
因此,通过变换v = y^(1-n),可以将伯努利方程转化为一阶线性微分方程。
对于一阶线性微分方程dy/dx + P(x)y = Q(x),可以使用积分因子法求解。
积分因子是一个函数μ(x),满足μ(x)dy/dx + μ(x)P(x)y =μ(x)Q(x)。
这样,对于乘以μ(x)后的方程就可以应用乘积法则,得到(d(μ(x)y)/dx = μ(x)Q(x))。
进一步积分得到μ(x)y =∫μ(x)Q(x)dx + C,其中C是常数。
因此,y = 1/μ(x) *(∫μ(x)Q(x)dx + C)。
要求积分因子μ(x)1. 将方程变为标准形式dy/dx + P(x)y = Q(x)。
2. 计算μ(x) = e^(∫P(x)dx)。
需要注意的是,在实际求解过程中,可能会遇到分母为0的情况。
此时,应当考虑特殊解。
另外,一些方程可能无法精确求解,需要通过数值方法近似求解。
总结起来,一阶线性微分方程是常见的微分方程形式,通过积分因子法可以求解。
伯努利方程是一类特殊的一阶微分方程,通过变换可以将其转化为一阶线性微分方程,从而求解。
对于一阶线性微分方程,积分因子法是常用的求解方法之一,可用于将方程转化为容易求解的形式。
常微分第一章

dt L
论
初值条件为 I t0 I0.
§1 常微分方程模型
(2) RLC电路
第
设R、L、C是常数, 电源电压e(t)是时间t的函
一 数. 当开关合上后有关系式
章
e(t) L d I RI Q ,
dt
C
绪 上式两边求导
论
d2 I dt2
R L
dI dt
I LC
d e(t) . dt
一般的两种群竞争系统模型
第 一 章
d x d t
M
(x,
y)x,
d
y
d t
N (x,
y) y,
绪 这里M(x, y), N(x, y)为相对于x与y的增长率.
论
§1 常微分方程模型
例6 Lorenz方程
第 一 章
d x
d
t
a( y
x),
绪
d y
d
t
xz
论
dy x
dx y
y 1 x2 y 1 x2 x2 y2 1
§2 概念及历史
含有n个独立的任意常数c1, c2 , , cn的解
第
y x, c1, c2, , cn
一
章 称为n阶方程(1.38)的通解.
注 解对常数的独立性是指: 及其直到n 1阶
d
y
d t
y(c
dx).
§1 常微分方程模型
竞争模型
第
假设种群甲和乙的数量分别为x, y, 则种群相
一 章
互竞争同一资源时的生长情况的模型为
微积分-一阶线性微分方程的解

一阶线性微分方程的解你也许想先阅读 微分方程 和 分离变量法!微分方程是有 函数 及其一个或以上的 导数 的方程:dydxy x+5=微分方程(导数)例子:这个方程有函数 y 和它的导数dy dx在这里我们会了解怎样解一种特别的微分方程:一阶线性微分方程一阶"一阶" 的意思是只有dy dx ,而没有 d 2y dx 2 或 d 3y dx3 等线性若微分方程可以写成以下的格式,它便是一阶微分方程:dy + P(x)y = Q(x)dx其中, P(x) 和 Q(x) 是 x 的函数。
我们可以用一个特别的方法来解:建立两个新的 x 的函数,叫 u 和 v ,并设 y=uv 。
接着解 u ,再解 v ,最后整理一下就行了!我们也会利用 y=uv 的导数 (去看 导数法则 (积法则) ):dy = udv + vdu dx dx dx步骤以下我们逐步来解释这个解法:一、 代入 y = uv 和dy = udv + vdu dxdx dx到dy + P(x)y = Q(x)dx二、因式分解有 v 的部分三、设 v 的项为零(结果是 u 和 x 的微分方程,我们在下一步来解)四、用 分离变量法 来解 u五、代入 u 到在第二步得到的方程六、解这个方程来求 v七、最后,代入 u 和 v 到 y = uv 来得到原来的微分方程的解!举个例会比较清楚:例子:解:dy− y x = 1dx首先,这是不是线性的?是,因为格式是dy+ P(x)y = Q(x)dx其中 P(x) = − 1x和 Q(x) = 1好,我们逐步去解:一、 代入 y = uv 和 dy dx = u dv dx + v du dx这个:dy dx − y x = 1变成这个: u dv dx + v du dx − uv x = 1二、因式分解有 v 的部分:因式分解 v:u dv dx + v( du dx − u x ) = 1三、设 v 的项为零v 的项 = 零:du dx − u x = 0所以:du dx = u x四、用 分离变量法 来解 u分离变量:du u = dx x加积分符号:∫du u = ∫dx x求积分:ln(u) = ln(x) + C设 C = ln(k):ln(u) = ln(x) + ln(k)所以:u = kx五、代入 u 到在第二步得到的方程(v 的项等于 0,可以不理):kx dv dx = 1六、解来求 v分离变量:k dv = dx x加积分符号:∫k dv = ∫dxx求积分:kv = ln(x) + C设 C = ln(c):kv = ln(x) + ln(c)所以:kv = ln(cx)所以:v = 1k ln(cx)七、代入到 y = uv 来得到原来的微分方程的解。
第八章 微分方程1

考虑引例1 考虑引例1,对于微分方程 dy = 2x dx 函数y=x2+C是其通解,y=x2+1是其满足初始 是其通解, 函数 是其通解 是其满足初始 条件x 的特解。 条件 0=1,y(x0)=2的特解。 , 的特解
3
微分方程的(部分 积 微分方程的 部分)积 部分 分曲线(0≤C≤2)见右 分曲线 见右 图,其中红色曲线 为满足初始条件的 特解曲线。 特解曲线。
例8.2 求微分方程 x2 y″+xy′+(x2 -1/4)y=0 的通解 s=dsolve('x^2*D2y+x*Dy+(x^2-1/4)*y=0','x') s = (C1*cos(x)+C2*sin(x))/x^(1/2) 注意 (1)若不加自变量 ,则将把 作为常数求解。 若不加自变量x,则将把x作为常数求解 作为常数求解。 若不加自变量 (2)所得结果可以用命令 所得结果可以用命令pretty进行简化。 进行简化。 所得结果可以用命令 进行简化 例 pretty(s) C1 cos(x) + C2 sin(x) --------------------1/2 x
应满足条件x=1时y=2,因此可解得 又y(x)应满足条件 应满足条件 时 ,因此可解得C=1 故所求曲线方程为y=x2+1。 故所求曲线方程为 。
列车在平直路线上以20米 秒的速度行驶 秒的速度行驶, 例2 列车在平直路线上以 米/秒的速度行驶, 当制动时,列车获得加速度-0.4米/秒2,问开始 当制动时,列车获得加速度 米秒 制动后多长时间能停住, 制动后多长时间能停住,以及列车在这段时间 行驶了多少路程? 行驶了多少路程? 设列车开始制动后t秒内行驶了 解:设列车开始制动后 秒内行驶了 米,则 设列车开始制动后 秒内行驶了s米
第三章 数学模型1-微分方程.

线性系统
拉氏 变换 傅氏 变换
传递函数
微分方程
频率特性
•
建模方法
机理分析法
适用于比较简单的系统
实验辨识法
适用于复杂系统
数学模型的概括性
• 许多表面上完全不同的系统(如机械系统、电 气系统、液压系统和经济学系统)有时却可能 具有完全相同的数学模型。 数学模型表达了这些系统的共性。
•
•
数学模型建立以后,研究系统主要是以数学模 型为基础分析并综合系统的各项性能,而不再 涉及实际系统的物理性质和具体特点。
自动控制原理
第三章 线性系统的数学模型
本章知识点: 线性系统的输入-输出时间函数描述 传递函数的定义与物理意义 典型环节的数学模型 框图及化简方法
引言
定义: 控制系统的输入和输出之间动态关系 的数学表达式即为数学模型。 用途: 1)分析实际系统 2)预测物理量 3)设计控制系统
表达形式 时域:微分方程、差分方程、状态方程 (内部描述) 复域:传递函数(外部描述)、动态结 构图 频域:频率特性
目的:从时间域角度,建立系统输入量
(给定值)和系统输出量(被控变量)之 间的关系。
两种描述:微分方程描述、单位脉冲响应
描述。
一.
线性系统的微分方程描述(机理建模法)
SISO线性定常系统的输入输出关系微分方程描 述的标准形式
an1c(t ) anc(t )
1.
c( n) (t ) a1c( n1) (t ) a2c( n2) (t )
列写系统微分方程的步骤
① ② ③
划分不同环节,确定系统输入量和输出量;
写出各环节(元件)的运动方程;
消去中间变量,求取只含有系统输入和输出变 量及其各阶导数的方程; 化为标准形式。
微分方程(1-3)

第9章微分方程与差分方程第1节微分方程的根本概念我们已经知道,利用函数关系可以对客观事物的规律性进展研究.而在许多几何,物理,经济和其他领域所提供的实际问题,即使经过分析、处理和适当的简化后,我们也只是能列出含有未知函数及其导数的关系式.这种含有未知函数的导数的关系式就是所谓的微分方程.求出微分方程中的未知函数的过程就叫解微分方程.本章主要介绍微分方程的一些根本概念和几种常用的微分方程的解法.实际问题中的数据大多数是按等时间间隔周期统计的.因此,有关变量的取值是离散变化的,处理他们之间的关系和变化规律就是本章最后的容——差分方程.含有未知函数的导数或微分的方程称为微分方程.微分方程中出现的未知函数的导数的最高阶数称为微分方程的阶.现实世界中的许多实际问题,例如,物体的冷却,人口的增长,琴弦的振动,电磁波的传播等,都可以归结为微分方程问题.这时微分方程也称为所研究问题的数学模型.例9.1 质量为m 的物体只受重力作用由静止开场自由垂直降落.根据牛顿第二定律:物体所受的力F 等于物体的质量m 与物体运动的加速度的乘积,即F ma =.取物体降落的铅垂线为x 轴,其正向向下.下落的起点为原点.记开场下落的时间0t =,则物体下落的距离x 与时间t 的函数关系()xx t =满足22d xg dt=, (9.1) 其中g 为重力加速度常数.这就是一个2阶微分方程。
例9.2 产品的月产量为x 时的边际本钱1()82c x x '=+, (9.2) 就是一个1阶微分方程.在微分方程中,假设未知函数是一元函数就称为常微分方程;假设未知函数是多元函数,就称为偏微分方程.本章只讨论常微分方程。
n 阶微分方程的一般形式是()(,,,,,)0n F x y y y y '''=,(9.3)其中x 为自变量,()yy x =是未知函数,上式(9.3)中,()n y 必须出现,而其余变量〔包括低阶导数〕可以不出现.如果能从式(9.3)中解出最高阶导数得到微分方程的如下形式()(1)(,,,,,)n n y f x y y y y -'''= (9.4)以后我们只讨论姓如式(9.4)的微分方程,并假设式(9.4)右端的函数f在所讨论的围连续.特别地,式〔9.4〕中的f 如果能写成如下形式()(1)11()()()()n n n n y a x y a x y a x y g x --'++++= (9.5)则称式(9.5)为n 阶线性微分方程.其中1(),,()n a x a x 和()g x 均为自变量x 的函数.把不能表示成形如式(9.5)的微分方程称为非线性微分方程.例9.3 试指出以下方程是什么方程,并指出微分方程的阶数. (1)3dy x y dx =+ (2)sin (cos )tan 0dyx x y x dx++= (3)32235d y dy x y dx dx ⎛⎫-= ⎪⎝⎭(4)33ln d y dy x xy x dx dx ++= 解方程(1)是一阶线性微分方程.因为dydx和y 都是一次.方程(2)也是一阶线性微分方程.因为两边除以sin x 就可看出.方程(3)是2阶非线性微分方程,因为其中含有3dy dx ⎛⎫⎪⎝⎭.方程(4)是3阶线性微分方程.因为33,,d y dyy dx dx都是一次式. 如果一个函数代入微分方程能使方程式为恒等式,则称这个函数为该微分方程的解. 例如,(a)212x gt =,(b)21212x gt c t c =++都是例9.1中的微分方程9.1的解,其中12,c c 为任意常数.通常,称不含任意常数的解为微分方程的特解.而含有相互独立的任意常数,且任意常数的个数与微分方程的阶数相等的解为微分方程的通解〔一般解〕.这里所说的相互独立的任意常数,是指它们取不同的值时就得到不同的解.从而不能通过合并而使得通解中的任意常数的个数减少.上面的解中,(a)和(c)分别是方程(9.1)和(9.2)的特解,(b)和(d)分别是方程(9.1)和(9.2)的通解.在实际问题常都要求寻找满足*些附加条件的解.此时,这类附加条件就可以用来确定通解中的任意常数.这类附加条件称为初始条件,也称为定解条件.一般地,一阶微分方程(,)y f x y '=的初始条件为 00x x y y == (9.6)其中00,x y 都是常数.二阶微分方程(,,)y f x y y '''=的初始条件为00,x x x x y y y y ==''== (9.7)带有初始条件的微分方程称为微分方程的初值问题. 微分方程的解的图形是一条曲线,称为微分方程的积分曲线. 例9.4 验证函数3()cos y xc x =+〔c 为任意常数〕是方程的通解,并求出满足初始条件00x y ==的特解.解要验证一个函数是否是微分方程的通解,只要将函数代入方程,验证是否恒等,再看函数式中所含的独立的任意常数的个数是否与方程的阶数一样.对3()cos y x c x =+,求一阶导数把y 和dydx代入方程左端,得 因为方程两边恒等,且y中含有一个任意常数,方程又是一阶的,故3()cos y x c x =+是题设方程的通解.把初始条件00x y ==代入通解3()cos y x c x =+中,得0c =.从而所求特解为3cos y x x =.习题9-11、 指出以下微分方程的阶数〔1〕220xy yy x '''-+=〔2〕235()sin 0y y x x ''-+=〔3〕22(3)(45)0xdx x y dy +++=2、指出以下各题中的函数是否为所给微分方程的解. 〔1〕22,5xy y y x '== 〔2〕2122220,yy y y c x c x x x'''-+==+ 〔3〕12121212()0,xx y y y y c e c e λλλλλλ'''-++==+3、验证1y cx c=+〔c 为任意常数〕是方程2()10x y yy ''-+=的通解,并求满足初始条件02x y==的特解.4、设曲线在点(,)x y 处的切线的斜率等于该点横坐标的平方,试建立曲线所满足的微分方程,并求出通解.习题9-1答案1、〔1〕2阶〔2〕2阶〔3〕1阶2、〔1〕是〔2〕是〔3〕是3、特解为122yx =+ 4、微分方程为3dyx dx =,通解为414y x c =+ 第2节一阶微分方程微分方程没有统一的解法,必须根据微分方程的不同类型,研究相应的解法.本节我们将介绍可别离变量的微分方程以及一些可以化为这类方程的微分方程,如齐次方程等.一、可别离变量的微分方程. 在一阶微分方程(,)dyF x y dx=中,如果右端函数能分解成(,)()()F x y f x g y =, x 与y 别离,x 的一个函数()f x 与y 的一个函数()g y 相乘的形式,即()()dyf xg y dx= (9.8) 其中()f x ,()g y 都是连续函数.根据这种方程的特点,我们可以通过积分的方法来求解.设()0g y ≠.用()g y 除方程(9.8)的两端,用dx 乘以方程的两端,使得未知函数y 的*函数及其微分与自变量x 的*函数及其微分置于等号的两边〔又一次别离了x 与y 〕得 再对上述等式两边积分,即得1()()dy f x dx g y =⎰⎰ (9.9)积分出来以后就说明y 是x 的一个〔隐〕函数〔关系〕,就是方程(9.8)的解. 如果0()0g y =,则易验证0yy =也是方程(9.8)的解.上述求解可别离变量的微分方程的方法,称为别离变量法. 例9.5 求微分方程 的通解.解先合并,dx dy 的各项得 设210,10y x-≠-≠,别离变量得两端积分211dy xdx y x =--⎰⎰ 得2111ln |1|ln |1|ln ||22y x c -=-+于是221(1)(1)y c x -=±-记1cc =±,则得到题设方程的通解为22(1)(1)y c x -=-例9.6 求微分方程x dye y dx=的通解. 解别离变量后两边积分 得1ln ||ln ||x y e c =+从而1xe y c e =±记1cc =±,则得到题设方程的通解为xey ce =例9.7 一曲线通过点(3,2),它在两坐标轴间的任一切线线段均被切点所平分,求曲线的方程.解设曲线的方程为()yy x =.曲线上任一点(,)x y 的切线方程为由假设,切点(,)x y 的切线位于两坐标轴间的线段的两个端点分别是0X=时,2Y y =和0Y =时,2X x =.将这两个端点代入切线方程都得到曲线所满足的微分方程别离变量后积分,得到通解为xyc =将初始条件3|2x y ==代入通解得6c =. 从而所求的曲线方程为6xy =.二、齐次方程 如果一阶微分方程 中的函数(,)f x y 可以写成y x 的函数,即(,)y f x y x ϕ⎛⎫= ⎪⎝⎭,于是 dy y dx x ϕ⎛⎫= ⎪⎝⎭(9.10) 这称为齐次方程.齐次方程可以通过引进新的未知函数的方法化成为可别离变量的微分方程.令y u x =,u 是x 的一个新的未知函数.则,dy duy ux x u dx dx==+,原齐次方程变成()duxu u dxϕ+= 别离变量后积分得ln ||()du dxx c u u x ϕ==+-⎰⎰记()u Φ为1()u uϕ-的一个原函数,则得通解为()ln ||u x c Φ=+再以y x 代替u ,就得所给齐次方程的通解ln ||y x c x ⎛⎫Φ=+ ⎪⎝⎭例9.8 求微分方程22()()0xy x dx y xy dy ---=的通解.解原方程变形为 就是一个齐次方程 令y ux =,则,dy du y ux x u dx dx==+ 代入齐次方程得21du u x u dx u u-+=- 别离变量,0,0ux ≠≠时,得211u du dx u x=- 两边积分211u du dx u x=-⎰⎰ 得211ln |1|ln ||ln ||2u x c --=+ 以y x 代替u 就得到原方程的通解11ln |1|ln ||ln ||2yx c x--=+ 记211cc =±得21y c x x-= 从而2x xy c -=.注.此题也可以直接别离变量法求解.0y x -≠时,ydy xdx =-积分得22111222y x c =-+ 即22yx c +=为原方程的通解.这样此题得到两个通解形式2x xy c -=和22y x c +=.说明微分方程的通解并不一定要包含所有解!三、一阶线性微分方程 方程()()dyp x y Q x dx+= (9.11) 叫做一阶线性微分方程,它对于未知函数y 及其导数y '都是一次的.如果()0Q x ≡,则方程(9.11)称为齐次的,否则就称为非齐次的.对于齐次一阶线性微分方程()0dyp x y dx+= (9.12) 通过别离变量积分,可得它的通解()p x dxy Ce -⎰= (9.13)而对于非齐次一阶线性微分方程(9.11),我们可以利用它相应的齐次一阶线性微分方程(9.12)的通解(9.13),并使用所谓常数变易法来求非齐次方程(9.11)的通解,这种方法是把齐次方程(9.12)的通解(9.13)中的任意常数C 变易换成x 的未知函数()u x ,即作变换()p x dx y ue -⎰= (9.14)假设(9.14)是非齐次方程(9.11)的解,代入(9.11)中进而求出()u x ,再代入(9.14)就得到非齐次方程(9.11)的解.为此,将(9.14)对x 求导,注意u 是x 的函数,得()()()p x dxp x dx dy du e up x e dx dx--⎰⎰=- (9.15) 将(9.15)和(9.14)代入(9.11),得 别离变量后积分得()()p x dxu Q x e dx C ⎰=+⎰ (9.16)将(9.16)代入(9.14)就得到(9.11)的通解()()()()p x dx p x dx p x dx y Ce e Q x e dx --⎰⎰⎰=+⎰(9.17)易见,一阶非齐次线性方程的通解(9.17)是对应的一阶齐次线性方程的通解(9.13)与其本身的一个特解((9.17)中取0C =的解)之和.此后还可看到,这个结论对高阶非齐次线性方程也成立.例9.9 求方程1cos xy y x x'+=的通解.解题设方程是一阶非齐次线性方程,这时1cos (),()xp x Q x x x==. 于是,按公式(9.17),所求通解为 例9.10 求方程38dyy dx+=的通解. 解这是一个非齐次线性一阶方程.下面不利用公式(9.17),而采用常数变易法来求解. 先求解相应的齐次方程的通解.由 别离变量后积分得相应齐次方程的通解31xy c e-=,其中1c 为任意常数.利用常数变易法,将1c 变易为()u x ,即设原非齐次方程的通解为3x yue -=求导得333xx dy du e ue dx dx--=-代入原非齐次方程得38xdu e dx-= 别离变量后积分得338()83xxu x e dx e C ==+⎰从而得到原非齐次方程的通解为383x yCe -=+ 习题9-21、求以下微分方程的通解 〔1〕22(1)(1)0x y dx y x dy -+-=〔2〕3x y dydx+= 2、求以下微分方程的通解〔1〕0xy y '--=〔2〕2222()()0y xxy y dx x x xy y dy -++++=3、求以下微分方程的通解 〔1〕x y y e -'+=〔2〕sin xy y x '+=4、求以下微分方程的初值问题: 〔1〕0cos (1)sin 0,|4xx ydx e ydy y π-=++==〔2〕20(1)(1),|1x x x y y x e y ='+-=+=5、*产品生产的总本钱C 由可变本钱与固定本钱两局部组成.可变本钱y 是产量x 的函数,且y 关于x 的变化率等于222xy x y +,当10x =时,1y =;固定本钱为100.求总本钱函数()c c x =.习题9-2答案1、〔1〕22(1)(1)xy C --=;〔2〕33x yC -+=2、〔1〕2y Cx+=;〔2〕arctan y x xy Ce⎛⎫- ⎪⎝⎭=3、〔1〕()xy x C e -=+;〔2〕1(cos )y C x x=-4、〔1〕(1)sec xey +=〔2〕(1)xy x e =+5、99()1001)2C x =+- 第3节可降阶的二阶微分方程本节讨论三种特殊形式的二阶微分方程的求解. 一、()y f x ''=型这种简形的方程,其解法就是屡次积分. 在()y f x ''=两端积分,得1()y f x dx C '=+⎰再次积分,得1212[()]()yf x dx C dx C f x dxdx C x C =++=++⎰⎰⎰⎰注:对于n 阶微分方程()()n y f x =,显然也可以连续积分n 次,就得到含有n 个任意常数的通解.例9.11 求方程2sin x y ex ''=+的通解. 解连续积分两次,得这就是所求通解.二、(,)y f x y '''=型这种类型的特征是不显含y ,求解方法是:令()y p x '=,则()y p x '''=,则原二阶方程化成了一阶方程利用上一节的方法求出它的通解1(,)p x C ϕ=,再根据1(,)dy y p x C dx ϕ'===也是一阶方程.直接积分得12(,)y x C dx C ϕ=+⎰,就是原二阶微分方程的通解.注:由于一阶微分方程(,)p f x p '=,我们并不都会求解.因此本类型(,)y f x y '''=方程的求解还不能说都可求出.例9.12 求方程1x y y xe x '''=+的通解. 解令p y '=,原方程化成的一阶线性微分方程.从而即1x p y c x xe '==+因此,原方程的通解为三、(,)y f y y '''=型这种类型的特征是不明显地含x .这时我们把x 看成自变量y 的函数,令p y '=,从而p 也是y 的函数.再利用复合函数的求导法则,把对x 的导数y ''化为对y 的导数,即于是,(,)y f y y '''=就变成了 这样就得到一个关于,y p 的一阶微分方程.设1(,)y p y c ϕ'==是它的通解,则别离变量再积分就得到原方程的通解为21(,)dy x c y c ϕ=+⎰.注.一阶微分方程1(,)dp p y c dyϕ=不一定会求解,因此本类型(,)y f y y '''=也不一定能求出解来.例9.13 求方程y yy '''=的通解. 解令p y '=,将x 看作是y 的函数. 这时dpdpdydpy p dx dy dx dy ''==⋅=代入原方程就得到一个一阶方程 别离变量再积分得2112p y c =+ 再解一阶微分方程2112y p y c '==+别离变量再积分得就是原方程的通解.习题9-31、 求以下方程的通解〔1〕cos y x x ''=-〔2〕y x y '''=+〔3〕(1)y y y '''=+2、求以下微分方程初始问题的特解. 〔1〕300,|0,|0x x x y e y y =='''=== 〔2〕111,|0,|2x x y y y y x ==''''=== 〔3〕200()0,|2,|1x x yy y y y y =='''''--===习题9-3答案1、〔1〕3121cos 6y x x c x c =+++〔2〕12xx y c e xe c =-+〔3〕2x c +=2、〔1〕3111939x y e x =--〔2〕21y x =- 〔3〕1x y e =+。
三种形式的一阶线性微分方程

三种形式的一阶线性微分方程一阶线性微分方程是一种十分常见的数学模型,它可以用来描述物理学、化学、生物学、经济学等不同领域的现象。
一般来说,一阶线性微分方程可以分为三种形式:常数项、单变量和多变量。
常数项常数项一阶线性微分方程是由如下形式构成的:du/dt + c_1u = c_2其中,c_1和c_2是常量,u是未知函数。
这种微分方程用来描述某一个量在时间上的变化,可以用来描述物理学、生物学、化学等多个领域的现象。
例如,在化学反应中,可以用常数项一阶线性微分方程来描述某物质在反应过程中的变化。
单变量单变量一阶线性微分方程可以用如下的形式表示:du/dt + c_1u + f(t) = 0其中,c_1是常数,f(t)是t的函数,u是未知函数。
这一类微分方程可以用来描述某个量在时间上受到外部力引起的变化,而这个外部力可以是化学反应、物理过程、生物进化等等。
它们可以用来模拟许多实际中的现象,比如物质在特定温度和压强下扩散的速度,物质在特定条件下经历反应时的变化,动物在自然环境中的生态系统改变等等。
多变量多变量一阶线性微分方程的一般形式为:du/dt + c_1u + f(t,u) = 0其中,c_1是常数,f(t,u)是两个变量的函数,u是未知函数。
这类微分方程可以用来描述某些量在时间上受外部力和其他量的影响而发生变化。
它们可以用来模拟复杂多变的系统,比如矩阵方程组,用来解决物理系统、生物系统、经济系统等的问题。
总结一阶线性微分方程有三种形式:常数项、单变量和多变量,它们可以用来描述物理学、化学、生物学、经济学等多个领域的现象,并可以用来模拟实际中的场景,进而帮助我们解决实际中的问题。
数学建模公选课:第五讲-微分方程模型

详细描述
龙格-库塔方法具有较高的精度和稳定性,适用于求解各种复杂的一阶和二阶常微分方程。
04
微分方程模型的应用实例
人口增长模型
总结词
描述人口随时间变化的规律
详细描述
人口增长模型通常使用微分方程来描述人口随时间变化的规律。该模型基于假设,如人口增长率与当 前人口数量成正比,来建立微分方程。通过求解该微分方程,可以预测未来人口数量。
模型建立
如何根据实际问题建立合适的微分方 程模型是一个挑战。
02
高维问题
对于高维微分方程,如何求解是一个 难题。
01
03
非线性问题
非线性微分方程的求解更加复杂和困 难。
未来展望
随着科学技术的发展,微分方程模型 的应用领域将更加广泛,求解技术也 将更加成熟和多样化。
05
04
多尺度问题
如何处理不同时间尺度的微分方程是 一个挑战。
数学建模公选课:第五讲 -微分方程模型
• 微分方程模型简介 • 微分方程模型的建立 • 微分方程模型的求解方法 • 微分方程模型的应用实例 • 微分方程模型的发展趋势与展望
01
微分方程模型简介
微分方程的基本概念
微分方程是描述数学模型中变量随时间变化的数学表达式,通常表示为包含未知函 数及其导数的等式。
05
微分方程模型的发展趋势与展望
微分方程模型在各领域的应用前景
物理领域
描述物体的运动规律,如牛顿 第二定律、波动方程等。
经济领域
分析市场供需关系和预测经济 趋势。
工程领域
预测和控制系统的动态行为, 如电路、机械系统等。
生物医学领域
数学中的偏微分方程模型

数学中的偏微分方程模型偏微分方程(Partial Differential Equations, PDE)是数学中的一个重要分支,它涉及到许多领域的理论和应用,如物理、化学、生物学、经济学等等。
PDE模型是对这些领域的实际情况建立的数学描述,它们主要用于预测和研究自然现象的演化、变化和规律。
本文将介绍一些常见的偏微分方程模型及其应用。
一、热传导方程模型热传导是一个基本的物理过程,它涉及到物体内部和周围环境之间的能量交换。
热传导方程(Heat Equation)描述了物体内部温度分布随时间的变化情况,它可以表示为:$$\frac{\partial u}{\partial t}=\alpha\nabla^2u$$其中,$u(\mathbf{x},t)$表示位置$\mathbf{x}$上的温度值,$t$表示时间,$\alpha$为热传导系数,$\nabla^2u$为温度的拉普拉斯算子。
热传导方程模型可以应用于许多领域,例如热力学、地球物理学、材料科学和生物医学等。
在工程应用中,它可以用来优化建筑物、机器设备和电子器件的设计和使用。
二、扩散方程模型扩散是许多自然现象中的普遍现象,它描述了物质之间的传输和分布。
在数学上,扩散的一般形式为扩散方程(Diffusion Equation),它可以表示为:$$\frac{\partial u}{\partial t}=D\nabla^2u$$其中,$u(\mathbf{x},t)$表示位置$\mathbf{x}$上的浓度或密度等物理量值,$t$表示时间,$D$为扩散系数,$\nabla^2u$为物理量的拉普拉斯算子。
扩散方程模型广泛应用于化学、生物学、金融等领域中,例如在生物医学中,它可以用来建立血液中的糖、氧气、白细胞、红细胞等物质的运动和分布模型。
三、波动方程模型波动是自然界中最普遍的现象之一,涉及到声音、光、电磁波等多种形式。
波动方程(Wave Equation)描述的是介质中声波、光波等物理量的传播,它可以表示为:$$\frac{\partial^2 u}{\partial t^2}=c^2\nabla^2u$$其中,$u(\mathbf{x},t)$表示位置$\mathbf{x}$上的波动物理量值,$t$表示时间,$c$为波速,$\nabla^2u$为波动物理量的拉普拉斯算子。
数学物理学中的偏微分方程模型

数学物理学中的偏微分方程模型偏微分方程是数学和物理学中的重要工具,用于描述各种自然现象和工程问题。
偏微分方程可以提供关于物理系统或工程系统的函数的信息,同时可用于解决一些依赖于多个变量的问题。
在数学和物理学中,偏微分方程模型在描述最基本和普遍的现象中起着重要的作用。
下面将介绍一些应用广泛的偏微分方程模型。
热传导方程热传导方程是偏微分方程中应用最广泛的方程之一,它描述了温度分布如何随着时间和空间的变化而演化。
热传导方程的一般形式为:$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}$$其中$u(x,t)$表示在位置$x$和时间$t$时的温度,$\alpha$是一个常数,它描述了物质的热传导性质。
右侧的第二项描述了热源的分布以及对热传导的影响。
这个方程可用于预测各种物体的温度分布。
例如,在热传导方程的应用中,我们可以预测热效应对某些材料的影响,以及设计一些需要控制温度的设备。
波动方程波动方程也是一种非常重要的偏微分方程。
该方程描述了振动在介质中的传播,比如声波与电磁波等。
波动方程的一般形式为:$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partialx^2}$$其中$c$是介质中的波速。
在波动方程的应用中,可以预测声音和光的传播特性,研究震荡的传播以及其他一些振动领域中的现象。
扩散方程扩散方程也是一种常见的偏微分方程模型。
它用于描述由于许多微小颗粒的随机移动而导致的物质传输。
扩散方程通常用于描述化学反应、电子传输和其他类似过程。
扩散方程的一般形式为:$$\frac{\partial u}{\partial t} = D \frac{\partial^2u}{\partial x^2}$$其中$u(x,t)$表示在位置$x$和时间$t$时的物质的浓度,$D$是扩散常数,它描述了物质与周围介质的交互作用。
一阶微分方程标准形式

一阶微分方程标准形式
一阶微分方程是一种常见的数学模型,它可以用来描述许多自然现象和工程问题的变化。
一阶微分方程的标准形式通常由以下三个部分组成:函数表达式、初始条件和边界条件。
1. 函数表达式
一阶微分方程的函数表达式通常是一个包含未知函数及其导数的等式。
例如,一个简单的一阶微分方程的函数表达式可以表示为:
y' = ax + b
其中,y 是未知函数,x 是自变量,a 和b 是常数。
2. 初始条件
初始条件是指给出未知函数在某个特定时刻的值。
在一阶微分方程中,初始条件通常表示为:y(t0) = y0,其中t0 是初始时刻,y0 是未知函数在t0 时刻的值。
例如,考虑一个简单的微分方程y' = 2x,如果我们希望知道当
x = 1 时,y 的值是多少,那么我们可以通过设定初始条件y(1) = 0 来求解这个微分方程。
3. 边界条件
边界条件是指给出未知函数在某个特定边界上的值。
在一阶微分方程中,边界条件通常表示为:y(±∞) = ±∞ 或y'(±∞) = 0 等。
例如,考虑一个简单的微分方程y' = 2x,如果我们希望知道当x 趋于无穷大时,y 的值是多少,那么我们可以设定边界条件y(±∞) = ±∞ 来求解这个微分方程。
总结
一阶微分方程的标准形式通常由函数表达式、初始条件和边界条件三部分组成。
这些条件是求解一阶微分方程的基本要素,通过给定这些条件,我们可以求解出未知函数的表达式和它随时间变化的规律。
一阶常微分方程

一阶常微分方程微分方程是数学中的重要概念,广泛应用于物理、工程、经济等领域。
其中,一阶常微分方程是最简单的微分方程形式之一。
本文将介绍一阶常微分方程的定义、解法和应用。
一、定义一阶常微分方程是指未知函数的导数与自变量的函数关系式,通常表示为dy/dx=f(x),其中dy/dx表示函数y关于自变量x的导数,f(x)表示已知的函数。
二、解法解一阶常微分方程的方法有多种,常用的包括分离变量法、齐次法和一阶线性微分方程解法等。
1. 分离变量法分离变量法是解一阶常微分方程的基本方法之一。
首先将方程分离成形如dy/g(y)=dx/f(x)的形式,然后进行变量分离和积分,得到y的解析解。
2. 齐次法齐次法适用于形如dy/dx=f(y/x)的齐次方程。
通过引入新变量u=y/x,将一阶常微分方程化为一阶可分离变量方程,然后再进行变量分离和积分。
3. 一阶线性微分方程解法一阶线性微分方程是指形如dy/dx+a(x)y=b(x)的方程。
通过利用一阶线性微分方程的特点,可以使用积分因子或者直接应用公式求解。
三、应用一阶常微分方程在自然科学和工程技术领域中有着广泛的应用。
1. 物理学中的应用一阶常微分方程在描述物理过程中的变化规律上起到了重要的作用。
例如,在力学中,牛顿第二定律可以通过一阶常微分方程进行描述;在电路中,RC电路的电压衰减也可以用一阶常微分方程来模拟。
2. 生态学中的应用生态系统中的各种现象和变化过程也可以通过一阶常微分方程进行描述和预测。
例如,物种的数量随时间的变化、种群的增长与环境的关系等,都可以通过一阶常微分方程来建模和分析。
3. 经济学中的应用经济学中的市场供需关系、物价变化等经济现象都可以通过一阶常微分方程进行建模。
通过对这些微分方程的求解,可以预测经济的发展趋势和进行经济政策的研究与决策。
总结一阶常微分方程作为微分方程中的基础概念,具有重要的理论和实际应用价值。
通过对一阶常微分方程的定义、解法和应用进行学习和掌握,可以更好地理解和应用微分方程,进一步推动科学技术的发展和应用。
1一阶微分方程及其建模方法

ln y x 2 C1
y Ce 为所求通解.
x2
14
例 2 衰变问题:衰变速度与未衰变原子含量 M 成 正比,已知 M
t 0
M0 , 求 衰 变 过 程 中 铀 含 量
M ( t )随时间 t 变化的规律.
解 衰变速度 , 由题设条件 dt dM M ( 0衰变系数) dt
分类4: 单个微分方程与微分方程组.
dy dx 3 y 2 z , dz 2 y z , dx
7
3、主要问题-----求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数称之.
设y ( x )在区间 I 上有 n 阶导数,
F ( x, ( x ), ( x ),, ( n) ( x )) 0.
过定点且在定点的切线的斜率为定值的积分曲线.
10
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分
d x 方程 2 k 2 x 0 的解. 并求满足初始条件 dt dx x t 0 A, 0 的特解. dt t 0 dx 解 kC1 sin kt kC2 cos kt , dt 2 d x 2 2 k C cos kt k C 2 sin kt , 1 2 dt 2 d x 将 2 和x的表达式代入原方程 , dt
P ( x ) dx
y u ( x )e
u( x )[ P ( x )]e
,
22
u ( x ) e 将y和y 代入原方程得
P ( x ) dx
Q( x ),
P ( x ) dx dx C , 积分得 u( x ) Q( x )e
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1
ck 2 1 k
ck abc 2 即走私船被缉私舰捕捉前 1 k 2 b a2 ck abc y 2 所跑过的距离为 1 k 2 b a2 y bc t 2 所花的时间为 a b a2 1 x2 c2 x y c ln (2)若a=b,即k=1,由积分式得 2 2c c y 当x=0时,
净变化率=输入率-输出率(守恒原理)
引例一
在凌晨1时警察发现一具尸体,测得尸体温度是 29oC,当时环境的温度是21oC。1h后尸体温度下 降到27oC,若人体的正常温度是37oC,估计死者 的死亡时间。
解:设T(t)为死者在被杀害后t时刻尸体的温度;k 为比例系数。由牛顿冷却定律,得
则通解为
dT k (T T0 ) dt
T Ce
kt
21
由已知,T (0) 37 , T (t ) 29 , T (t 1) 27
可得微分方程的特解: t 4 T (t ) 16 21 3 由 T (t ) 29 ,代入解得 t 2.4094 因此死者大约是在前一天的夜晚10:35被害的。
W (t ) 81.25 C3e
C3 23.9968
则
0.0016 t
初始条件为: (4) 57.40625,代入解出 W
W (t ) 81.25 23.9968e
0.0016t
最后得到不同阶段的微分方程是:
81.25 24.0974e , 0t 3 0.0016 t W (t ) 143.75 86.8981e , 3t 4 81.25 23.9968e0.0016t , t 4
显然x不能取零值,即缉私舰不可能追上走私船。 (3)若a>b,即k>1,显然缉私舰也不可能追上走私船。
案例4 湖泊污染问题
如图所示一个容量为2000m3的小湖的示
意图,通过小河A水以0.1m3/s的速度流入,
以相同的流量湖水通过B流出。在上午11:05 时,因交通事故一个盛有毒性化学物质的容
图3 小湖示意图
微分方程模型
一、微分方程建模简介
二、微分方程模型
三、微分方程案例分析 四、微分方程的MATLAB求解 五、微分方程综合案例分析
一、微分方程模型简介
微分方程是研究变化规律的有力工具,在科 技、工程、经济管理、生态、环境、人口和 交通各个领域中有广泛的应用。 不少实际问题当我们采用微观眼光观察时都 遵循着下面的模式:
Z取不同值时的浓度C(30)和时间T
Z / m3 C (30) / m3
T / min
5 0.00239 552
10 0.00478 738
15 0.00717 918
20 0.00956 1014
解
1、翻译或转化:
2、配备物理单位:
3、建立表达式: 4、确定条件:
1、“每天”:体重的变化=输入一输出 其中输入指扣除了基本新陈代谢之后的净重量 吸收;输出是进行健身训练时的消耗.
2、上述陈述更好的表示结构式: 取天为计时单位,记W(t)为t天时体重(kg),则: 每天的净吸收量=2500 – 1200 =1300(cal) 每天的净输出量=16(cal)×W=16W(cal) 转换成脂肪量=1300 – 16W(cal)
则
0.0016 t
初始条件为: (3) 57.26799,代入解出 W
W (t ) 81.25 86.89812e
0.0016t
W (4) 57.40625kg
(2)当 t
4 时,食物的摄入量恢复正常
dW (2500 1200) 16W dt 10000
积分后可求得其通解为:
设湖水在t时的污染程度为C(t),
X A
即每立方米受污染的水中含有Cm3
的化学物质和(1-C)m3的清洁水。用 分钟作为时间t的单位。在0<t<30的
B
时间内,污染物流入湖中
小湖示意图
的速率是Z/30(m3/min),而排出湖外的污染物的速 率是60×0.1C (m3/min),因为每立方流走的水中含 有Cm3的污染物,而湖水始终保持2000m3的容积不
3、建立表达式:
4、确定条件:
建立表达式 (1)当 0 t 3 时,每天体重的变化:
dW (2500 1200 ) 16W dt 10000
积分后可求得其通解为:
W (t ) 81.25 C1e
则
0.0016 t
ห้องสมุดไป่ตู้
初始条件为: 0 57 .1526 ,代入解出 C1 24.0974 W
X A
器倾翻,图中X点处注入湖中。在采取紧急 措施后,于11:35事故得到控制,但数量不详
B
的化学物质Z已泻入湖中,初步估计Z的量在5~20m3之间。 建立一个模型,通过它来估计湖水污染程度随时间的变化
并估计:
(1)湖水何时到达污染高峰; (2)何时污染程度可降至安全水平(<0.05%)
湖泊污染问题分析
dC 因污染源被截断,故微分方程变为 2000 6C dt
它的特解为: C (t ) C (30)e
630 2000
当达到安全水平,即C(t)=0.0005时,可求出 此时的t=T,即
T 30 (2000 / 6) ln(0.0005 / C(30))
解得
T 30 (2000 / 6) ln(0.9564Z )
dW 0.0016W (3)由于每天不摄取能量,所以 dt
解得 W (t ) W (0)e0.0016t 57.1526e0.0016t 因此,n周后的体重为W (7n) 57.1526e0.00167 n
案例2 在一个巴基斯坦洞穴里,发现了具有古代 尼安德特人特征的人骨碎片,科学家们把它们带 到实验室,作碳14年代测定。分析表明C14与C12的 比例仅仅是活组织内的6.24%,此人生活在多少年 前?
二、微分方程模型
微分方程的建模步骤
1、翻译或转化: 在实际问题中许多表示导数的常用词,如 “速率”、‘增长”(在生物学以及人口问题研究中), “衰变”(在放射性问题中),以及“边际的”(在经 济学中)等. 2、建立瞬时表达式: 根据自变量有微小改变△t时,因变量的增 量△W,建立起在时段△t上的增量表达式,令 dW △t →0,即得到 的表达式.
W (t ) 81.25 24.0974e
0.0016t
W (3) 57.26799kg
(2)当 3 t
4 时,每天体重的变化:
dW (3500 1200) 16W dt 10000
积分后可求得其通解为:
W (t ) 143.75 C2e
C2 86.89812
(碳14年代测定:活体中的碳有一小部分是放射性同位素 C14。这种放射性碳是由于宇宙射线在高层大气中的撞击引 起的,经过一系列交换过程进入活组织中,直到在生物体 中达到平衡浓度。这意味着在活体中,C14的数量与稳定的 C12的数量成定比。生物体死亡后,交换过程就停止了,放 射性碳便以每年八千分之一的速度减少)
如何消去时间t?
d2y dt x 2 a 1、求导: dx dx
2、速度与路程的关系: b ds
dt 3、分解 dx 得:
dt
dt dt ds 1 dy 1 dx ds dx b dx
2
4、将第2、3步代入第1步,可得模型
追线模型:
2 d2y dy x 2 k 1 dx dx y (c) 0 , y(c) 0
(1)问题分析与模型的建立
1、放射性衰变的这种性质还可描述为“放射性物 质在任意时刻的衰变速度都与该物质现存的数量 成比例”。而C14的比例数为每年八千分之一。 2、碳14年代测定可计算出生物体的死亡时间;所 以,我们问题实际上就是:“这人死去多久了?” 若设t为死后年数,y(t)为比例数,则y(t)=C14/C12 (mgC14/mgC12),则上文中最后一句话就给出了我 们的微分方程,单位为mgC14/mgC12/yr(与关键词 “速率”相当) dy y
模型的解:
x k dy 1 p dx 2 c c x
k
y (c ) 0
解的进一步讨论
(1)若a<b,从而k<1,由积分式得
c 1 x y 2 1 k c
1 k
1 x 1 k c
dt 8000
(2)解 微分方程的通解为:
y ke
由初始条件 k
t 8000
y0 ,故有
y y0e
由问题,当
t 8000
y 0.0624 y0 ,代入原方程
0.0624 y0 y0e
t 8000
t 8000ln 0.0624 22400 (年)
案例3、追线问题
W 3、体重的变化/天= t
dW (千克/天) t 0 dt
1、翻译或转化: 2、配备物理单位:
3、建立表达式:
4、确定条件:
单位匹配
有些量是用能量(cal)的形式给出的,而另外 一些量是用重量的形式(cal)给出,考虑单位
的匹配,利用
cal 1kg 10000
1、翻译或转化: 2、配备物理单位:
图1 尸体的温度 下降曲线
建立微分方程的常用方法
1、按变化规律直接列方程,如: 利用人们熟悉的力学、数学、物理、化学等学科中的规律, 如牛顿第二定律,放射性物质的放射规律等。对某些实际问题 直接列出微分方程. 2、利用微元分析方法建模 根据已知的规律或定理,通过寻求微元之间的关系式得出 微分方程。 3、模拟近似法,如: 在生物、经济等学科中,许多现象所满足的规律并不很清 楚,而且现象也相当复杂,因而需根据实际资料或大量的实验 数据,提出各种假设,在一定的假设下,给出实际现象所满足 的规律,然后利用适当的数学方法得出微分方程。