(完整版)04183概率论与数理统计(经管类)_1001

合集下载

概率论与数理统计答案详解

概率论与数理统计答案详解

全国2022年10月高等教育自学考试(概率论与数理统计)(经管类)试题及答案详解课程代码:04183一、单项选择题〔本大题共10小题,每题2分,共20分〕1.已知事件A ,B ,B A 的概率分别为5.0,4.0,6.0,则=)(B A P 〔 B 〕 A .1.0B .2.0C .3.0D .5.0A .0)(=-∞F ,0)(=+∞FB .1)(=-∞F ,0)(=+∞FC .0)(=-∞F ,1)(=+∞FD .1)(=-∞F ,1)(=+∞F3.设),(Y X 服从地域1:22≤+y x D 上的均匀分布,则),(Y X 的概率密度为〔 D 〕 A .1),(=y x fB .⎩⎨⎧∈=其他,0),(,1),(Dy x y x fC .π1),(=y x fD .⎪⎩⎪⎨⎧∈=其他,0),(,1),(Dy x y x f π4.设随机变量X 服从参数为2的指数分布,则=-)12(X E 〔 A 〕 A .0B .1C .3D .4A .92 B .2 C .4 D .621n 11=⎭⎬⎫⎩⎨⎧≤∑=→∞0lim 1n i i n X P 〔 C 〕 A .0B .25.0C .5.0D .17.设n x x x ,,,21 为来自总体),(σμN 的样本,,σμ是未知参数,则以下样本函数为统计量的是〔 D 〕 A .μ-∑=ni i x 1B .∑=ni i x 121σC .∑=-ni i x n 12)(1μD .∑=n i i x n 121A .置信度越大,置信区间越长B .置信度越大,置信区间越短C .置信度越小,置信区间越长D .置信度大小与置信区间长度无关01A .1H 成立,拒绝0H B .0H 成立,拒绝H 0 C .1H 成立,拒绝1HD .0H 成立,拒绝1H10.设一元线性回归模型:i i i x y εββ++=10,i ε~),0(σN 〔n i ,,2,1 =〕,且各i ε相互独立.依据样本),(i i y x 〔n i ,,2,1 =〕,得到一元线性回归方程x y 10ˆˆˆββ+=,由此得ix 对 应的回归值为i y ˆ,i y 的平均值∑==ni i y n y 11〔0≠y 〕,则回归平方和回S 为〔 C 〕A .∑=-ni i y y 12)(B .∑=-ni i i yy 12)ˆ( C .∑=-ni i y y12)ˆ( D .∑=ni i y12ˆ21ˆnii y=∑二、填空题〔本大题共15小题,每题2分,共30分〕11.设甲、乙两人独立地向同一目标射击,甲、乙击中目标的概率分别为8.0,5.0,则甲、乙两人同时击中目标的概率为___________.12.设A ,B 为两事件,且)()(==B P A P ,)|(=B A P ,则=)|(B A P ___________.15.设随机变量X ~)2,1(N ,则=≤≤-}31{X P ___________.(附:8413.0)1(=Φ)16.设随机变量X 服从区间],2[θ上的均匀分布,且概率密度⎪⎩⎪⎨⎧≤≤=其他,02,41)(θx x f 则则==}{Y X P ___________.X则=+)(Y X E ___________.有=⎭⎬⎫⎩⎨⎧<-→∞εp n m P n lim ___________.n 21x )xn 21α分位数,则μ的置信度为96.0的置信区间长度是___________.25.设总体X ~),(σμN ,σ未知,n x x x ,,,21 为来自总体的样本,x 和s 分别是样本均值和样本方差,则检验假设00:μμ=H ;01:μμ≠H 采纳的统计量表达式为___________.26.一批零件由两台车床同时加工,第—台车床加工的零件数比第二台多一倍.第—台车床出现不合格品的概率是03.0,第二台出现不合格品的概率是06.0. 〔1〕求任取一个零件是合格品的概率;〔2〕如果取出的零件是不合格品,求它是由第二台车床加工的概率.解:设=A (取出第—台车床加工的零件),=B (取出合格品),则所求概率分别为: 〔1〕96.0252494.03197.032)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P ; 〔2〕3264.01442796.094.031)()|()()|(≈=⨯==B P A B P A P B A P .27.已知二维随机变量),(Y X 的分布律为求:〔1〕X 和Y 的分布律;〔2〕),cov(Y X 解:〔1〕X 和Y 的分布律分别为〔2()(=Y E 1.00113.0011.0)1(11.0102.0003.0)1(0)(-=⨯⨯+⨯⨯+⨯-⨯+⨯⨯+⨯⨯+⨯-⨯=XY E , 02.0)3.0(4.01.0)()()(),cov(=-⨯--=-=Y E X E XY E Y X .四、综合题〔本大题共2小题,每题12分,共24分〕28.某次抽样结果说明,考生的数学成绩〔百分制〕近似地服从正态分布),75(2σN ,已知85分以上的考生数占考生总数的5%,试求考生成绩在65分至85分之间的概率. 解:用X 表示考生的数学成绩,由题意可得05.0}85{=>X P ,近似地有05.075851=⎪⎭⎫ ⎝⎛-Φ-σ,05.0101=⎪⎭⎫⎝⎛Φ-σ,95.010=⎪⎭⎫ ⎝⎛Φσ,所求概率为9.0195.021102=-⨯=-⎪⎭⎫⎝⎛Φ=σ.29.设随机变量X 服从区间]1,0[上的均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立.求:〔1〕X 及Y 的概率密度;〔2〕),(Y X 的概率密度;〔3〕}{Y X P >.解:〔1〕X 的概率密度为⎩⎨⎧≤≤=其他,010,1)(x x f X ,Y 的概率密度为⎩⎨⎧≤>=-0,00,)(y y e y f y Y ;〔2〕因为X 与Y 相互独立,所以),(Y X 的概率密度为=),(y x f )(x f X ⎪⎩⎪⎨⎧>≤≤=-其他,00,10,)(y x e y f yY ; 〔3〕⎰⎰⎰⎰⎰⎰--->-=-=⎪⎪⎭⎫ ⎝⎛==>10100100)1()(),(}{dx e dx e dx dy e dxdy y x f Y X P x x yx y y x11)(--=+=e e x x .五、应用题〔10分〕30.某种产品用自动包装机包装,每袋重量X ~)2,500(2N 〔单位:g 〕,生产过程中包装机工作是否正常要进行随机检验.某天开工后抽取了9袋产品,测得样本均值g x 502=.问:当方差不变时,这天包装机工作是否正常〔05.0=α〕?〔附:96.1025.0=u 〕 解:0H :500=μ,1H :500≠μ.已知5000=μ,20=σ,9=n ,502=x ,05.0=α,96.1025.02/==u u α,算得2/0096.139/2500502/||ασμu n x u =>=-=-=,拒绝0H ,这天包装机工作不正常.。

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

最新全国07月自学考试04183《概率论与数理统计(经管类)》历年真题参考详解答案

2013年7月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)试卷(课程代码04183)一、单选题(本大题共10小题,每小题2分,共20分) 1、若A B ⊂,2.0)(=A P ,3.0)(=B P ,则=)(A B P ( ) A.0.1 B.0.2 C.0.3 D.0.42、设随机变量A 与B 互不相容,且P(A)>0,P(B)>0,则有 ( ) A.P(A)=1-P(B) B.P(AB)=P(A)P(B) C.P(A ∪B)=1 D.P(BA)=13、设随机变量X 的分布律为P(X=k)=k/10(k=1,2,3,4),则P(0.2<X ≤2.5)= ( ) A.0.1 B.0.3 C.0.5 D.0.64、设随机变量X 的概率密度,,10,0,10,)(2⎪⎩⎪⎨⎧≤>=x x x ax f 则常数a= ( )A.-10B. 5001-C. 5001D.10 5、随机变量(X,Y )的分布律如下表所示,当X 与Y 相互独立时,(a ,b )= ( ) A. ⎪⎭⎫ ⎝⎛92,91 B. ⎪⎭⎫ ⎝⎛181,92 C. ⎪⎭⎫ ⎝⎛181,91 D. ⎪⎭⎫ ⎝⎛91,181 6、设连续型随机变量(X,Y )服从区域G:0≤X ≤2,2≤Y ≤5上的均匀发布,则其概率密度函数=),(y x f ( )A.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,6),(B. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,61),( C.⎩⎨⎧∉∈=G y x G y x y x f )()(,,0,,4),( D. ⎪⎩⎪⎨⎧∉∈=G y x G y x y x f )()(,,0,,41),(7、设随机变量X 服从参数为3的泊松分布,Y ~B )31,8(,且X,Y 相互独立,则D (X-3Y-4)= ( ) A.0.78 B.4.78 C.19 D.238、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,x 是样本均值,2s 是样本方差,则有 ( )A. 2222)(σμ-=--s xE B. 2222)(σμ+=+-s x E C.22)(σμ+=-s x E D.22)(σμ+=+s x E9、设n x x x ,...,21是来自总体X ~N (),(2σμ的一个样本,要使3216131x ax x ++=∧μ,是未知参数μ 的无偏估计,则常数 =a ( )A. 61B. 31C. 21D. 110、设总数X 服从正态分布,其均值未知,对于需要检验的假设202:0:σσ≤H ,则其拒绝域为 ( )A. )(1-22n x x a >B. )(1-2-12n x x a <C. )(n x x a 22>D. )(n x x a 22< 二、填空题(本大题共15小题,每小题2分,共30分)11、设p )(=A P ,q )(=B P , r )(=B A P ,则=)(B A P12、从一副扑克牌(计52张)中连续抽取2张(不放回抽取),这2张均为红色的概率是13、假设患者从某种心脏外科手术中康复的概率是0.8,现对3位患者施行这种手术,其中恰恰有2人康复的概率是14、设连续型随机变量X 的发布函数,0,00,-1)(3-⎩⎨⎧≤>=x x e x F x 其概率密度为),(x f 则=)1(f 15、设随机变量K ~U (0,5),则关于x 的一元二次方程024X 42=+++K KX 有实根的概率是16、设连续型随机变量X 服从参数为)(0>λλ的泊松分布,且{}{}2210====X P X P ,则参数=λ 17、设二维随机变量(X,Y )服从区域G:0≤X ≤3,0≤Y ≤3上的均匀发布,则概率{}=≤≤=1,1Y X P18、设二维随机变量(X,Y )的概率密度为(),,000,),(2⎩⎨⎧>>=+-其他,y x Ae y x f y x 则常数A=19、设二维随机变量(X,Y )的分布律为 则{}=-==1XY P20、设随机变量X 服从参数为λ的指数分布,已知()82==X E ,则其方差D(X)=21、设随机变量X ~B (10000,0.8),试用切比雪夫不等式计算{}≥<<82007800X P22、设总体X ~N (),(2σμ,4321,,,x x x x 为来自总体X 的样本,i 41i 41x x ∑==,则2i 41i 2)(1x x -∑=σ服从自由度为的2x 分布。

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

最新高等教育自学考试概率论与数理统计(经管类)04183试题及答案

2008年7月高等教育自学考试全国统一命题考试、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的 括号内。

错选、1.设随机事件 A . 0 C . 0.4x ::: 0C .-12 0 0 1/6 5/12 1/3 1/12 0 0 11/36.已知 Y 的联合概率分布如题6表所示概率论与数理统计(经管类)试卷课程代码4183多选或未选均无分。

A 与B 互不相=0.2 , P(B)=0.4,贝U P ( B|A )= B . 0.2 D . 12 .设事件A , B 互不相容,已知(A) =0.4, P(B)=0.5,则 P(A B )=(A . 0.1 C . 0.93 .已知事件 A , B 相互独立,且(A) B . D . >0, 0.4 1P (B )>0,则下列等式成立的是A . P(A B)=P(A)+P(B) P(A B)=1-P( A )P(B )C . P(A B)=P(A)P(B)4.某人射击三次, A . 0.002 C . 0.08 其命中率为 0.8,D . 则三次中至多命中一次的概率为(B . D . P(A B)=10.04 0.1045.已知随机变量X 的分布函数为( F(x)=12 23 10 乞 x :::1x _3 斗=题6表1F ( x,y )为其联合分布函数,则 F ( 0,31 121 47.设二维随机变量(X , Y )的联合概率密度为e _(xdy)x >0, y =0f(x,y)=其它2 3 已知随机变量X 服从参数为1 23 4则随机变量 X 的期望为(所满足的切比雪夫不等式为(I —.丿 \ncr 2~2~2 nc~2二2ns 2p { X —n ^>3 h 零A . Z=X 」0匚/ ■ nC. T=X 」0S/J n二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

2023年10月自考04183概率论与数理统计(经管类)

2023年10月自考04183概率论与数理统计(经管类)

2023年10月自考04183概率论与数理统计(经管类)引言概率论与数理统计作为经管类考试中的一门重要课程,为学生提供了解决现实生活中统计数据和不确定性问题的基本工具。

本文将介绍2023年10月自考04183概率论与数理统计(经管类)考试的相关内容和考试要点。

一、考试大纲概述2023年10月自考04183概率论与数理统计(经管类)的考试大纲主要包括三个部分:概率论、数理统计基础和应用统计分析。

下面将对这三个部分进行简要介绍:1.1 概率论概率论是研究随机现象的数量规律和数字特征的数学分支。

在概率论部分,考生需要熟练掌握概率的基本概念、概率计算方法、常见的离散型和连续型概率分布、随机变量及其分布特征等内容。

还需要了解概率的运算规则、条件概率、独立性、随机事件的概率、大数定律等重要概念。

1.2 数理统计基础数理统计是概率论在统计学研究中的应用,用于从样本数据中推断总体参数,并对统计结论进行可靠性评估。

考试大纲中的数理统计基础部分涵盖了统计数据的描述和汇总、样本数据的分布特征、点估计和区间估计、假设检验、回归与相关等知识点。

考生需要掌握样本统计量的性质、抽样分布的基本概念、参数估计的方法和判断标准、假设检验的步骤和原理等内容。

1.3 应用统计分析应用统计分析是将概率论和数理统计的理论与实际问题相结合,用统计方法对实际问题进行分析和解决的过程。

考试大纲中的应用统计分析部分包括相关系数与回归分析、方差分析、非参数检验、贝叶斯统计等内容。

考生需要了解各种统计方法的应用场景、分析步骤和结果解释。

二、备考要点为了顺利通过2023年10月自考04183概率论与数理统计(经管类)考试,考生需要注意以下备考要点:2.1 理论学习与实践应用的结合概率论与数理统计是一门理论实践型的学科,理论学习和实践应用并重。

考生在备考过程中应该注重理论知识的学习,理解关键概念和方法的含义和应用场景。

同时,要将理论知识与实际问题相结合,学会灵活运用所学知识解决实际问题。

2021年4月自考04183概率论与数理统计真题及答案

2021年4月自考04183概率论与数理统计真题及答案

2021年4月高等教育自学考试概率论与数理统计(经管类)试题(课程代码04183)一、单项选择题:本大题共10小题,每小题2分共20分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.某人打靶时连续射击两次,事件“至少有一次中靶”的对立事件是A.“两次都不中靶”B.“两次都中靶”C.“只有一次中靶”D.“至多有一次中靶”2.设事件A与B互不相容,且P(A)=0.5,P(B)=0.3,则P(A-B)=A.0.2B.0.3C.0.5D.0.83.甲、乙两人对弈一局,两人下成和棋的概率是1/2,乙获胜的概率是1/3,则甲获胜的概率是A.1/6B.1/3C.1/2D.2/34.设随机变量X~N(3,2²),且P{X>c}=P{x≤c},则常数c=A.0B.2C.3D.45.对于任意参数,随机变量X均可满足E(X)=D(X),则X服从的分布一定是A.均匀分布B.指数分布C.二项分布D.泊松分布6.设随机变量X~N(1,4²),Y~N(0,2²),X与Y相互独立,则D(X-Y)=A.2B.6C.12D.207.设X1,X2,X3,X4是来自总体X~N(0,4)的样本, Y=a(X1-2X2)²+b(3X3-4X4)²,如果Y~x ²(2),则常数a,b的值分别为A. BC.a=20,b=100D.a=12,b=288.设总体X~N(0,σ²),X1,X2,…,X n (n>1)为来自X的样本, 为样本均值,则未知参数σ²的无偏估计是A. B.C. D.9.设总体已知,μ的置信度为1-α的置信区间长度为l,则当α增大时,l的变化为A.增大B.减小C.不变D.不确定10.在线性回归模型中,总的偏差平方和为SST,剩余平方和为SSE,回归平方和为SSR,三者之间的关系是A. SSE= SST +SSRB. SSR=SST+SSEC. SST=SSE+SSRD. SST+SSE+SSR=0二、填空题:本大题共15小题,每小题2分,共30分。

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,下列结论错误的是 D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++= CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=及2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为 B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量的联合分布函数为,其联合分布律为则(0,1)F = C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则 B 。

A .21)0(=≤+Y X P B .21)1(=≤+Y X PC .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

04183 概率论与数理统计(经管类)

04183 概率论与数理统计(经管类)

课程名称:概率论与数理统计(经管类)课程代码:04183第一章随机事件及其概率一、单项选择题1.设当A和B同时发生时,事件C必发生,则()。

A.B.C.D.2.设A.0.1B.0.2C.0.3D.0.43.设A、B、C为三个随机事件,且A.0.15B.0.25C.0.35D.0.454.设对于事件A、B、C有则A、B、C至少发生一个的概率为()。

A.3/8B.5/8C.7/8D.1/25.设两个相互独立的事件A与B都不发生的概率为1/9,A发生B不发生的概率与B发生A不发生的概率相等,则P(A)=()A.2/9B.5/9C.2/3D.1/36.若A.0.7B.0.8C.0.9D.0.17.设A,B为随机事件,则()。

A.AB.BC.ABD.φ8.对掷一枚硬币的试验, “出现正面”称为()。

A.样本空间B.必然事件C.不可能事件D.随机事件9.事件A,B相互独立,且P(A)=0.7,P(B)=0.6,P(A-B)=()。

A.0.28B.0.42C.0.88D.0.1810.事件A,B相互独立,且P(A)=0.7,P(B)=0.2,P(A-B)=()。

A.0.46B.0.42C.0.56D.0.1411.设A,B为两个随机事件,且P(B)>0,P(A│B)=1则有()。

A.P(A∪B)>P(A)B.P(A∪B)>P(B)C.P(A∪B)=P(A)D.P(A∪B)=P(B)12.设A,B为两随机事件,且,则下列式子正确的是()。

A.P(A∪B)=P(B)B.P(AB)=P(B)C.P(B|A)=P(B)D.P(B-A)=P(B)-P(A)13.从装有2只红球,2只白球的袋中任取两球,记:A=“取到2只白球”则=()。

A.取到2只红球B.取到1只红球C.没有取到白球D.至少取到1只红球14.设对于随机事件A、B、C,有P(A)=P(B)=P(C)=1/4,且P(AB)=P(BC)=0,,则三个事件A、B、C, 至少发生一个的概率为()。

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

2011年4月自考04183概率论与数理统计(经管类)》试题及答案

全国2011年4月高等教育自学考试概率论与数理统计(经管类)试题课程代码:04183一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A,B,C为随机事件,则事件“A,B,C都不发生”可表示为( )A.错误!未找到引用源。

B.错误!未找到引用源。

BCC.ABC D.错误!未找到引用源。

2.设随机事件A与B相互独立,且P(A)=错误!未找到引用源。

,P(B)=错误!未找到引用源。

,则P(A 错误!未找到引用源。

B)=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

3.设随机变量X~B(3,0.4),则P{X≥1}=( )A.0.352B.0.432C.0.784D.0.9364.已知随机变量X的分布律为P{-2<X≤4 }=( )A.0.2C.0.55D.0.85.设随机变量X的概率密度为f(x)=错误!未找到引用源。

,则E(X),D(X)分别为( )A.-3,错误!未找到引用源。

B.-3,2C.3,错误!未找到引用源。

D.3,26.设二维随机变量(X,Y)的概率密度为f(x,y)=错误!未找到引用源。

则常数c=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.2D.47.设随机变量X~N(-1,22),Y~N(-2,32),且X与Y相互独立,则X-Y~( )A.N(-3,-5)B.N(-3,13)C.N (1,错误!未找到引用源。

)D.N(1,13)8.设X,Y为随机变量,D(X)=4,D(Y)=16,Cov(X,Y)=2,则错误!未找到引用源。

XY=( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

9.设随机变量X~错误!未找到引用源。

2(2),Y~错误!未找到引用源。

04183概率论与数理统计(经管类)(有答案)

04183概率论与数理统计(经管类)(有答案)

1 / 1204183概率论与数理统计(经管类)一、单项选择题1.若E(XY)=E(X))(Y E ⋅,则必有( B )。

A .X 与Y 不相互独立B .D(X+Y)=D(X)+D(Y)C .X 与Y 相互独立D .D(XY)=D(X)D(Y2.一批产品共有18个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为 A 。

A .0.1B .0.2C .0.3D .0.43.设随机变量X 的分布函数为)(x F ,以下结论错误的是D 。

A .1)(=+∞FB .0)(=-∞FC .1)(0≤≤x FD .)(x F 连续4.当X 服从参数为n ,p 的二项分布时,P(X=k)= ( B )。

A .nk k m q p CB .kn k k n q p C -C .kn pq-D .kn k qp -5.设X 服从正态分布)4,2(N ,Y 服从参数为21的指数分布,且X 与Y 相互独立,则(23)D X Y ++=CA .8B .16C .20D .246.设n X X X 21独立同分布,且1EX μ=与2DX σ=都存在,则当n 充分大时,用中心极限定理得()1n i i P X a a =⎧⎫≥⎨⎬⎩⎭∑为常数的近似值为B 。

A .1a n n μσ-⎛⎫-Φ⎪⎝⎭ B.1-Φ C .a n n μσ-⎛⎫Φ ⎪⎝⎭ D.Φ7.设二维随机变量),(Y X 的联合分布函数为),(y x F ,其联合分布律为则(0,1)F =C 。

A .0.2B .0.4C .0.6D .0.88.设k X X X ,,,21 是来自正态总体)1,0(N 的样本,则统计量22221k X X X ++服从( D )分布A .正态分布B .t 分布C .F 分布D .2χ分布9.设两个相互独立的随机变量X 与Y 分别服从)1,0(N 和)1,1(N ,则B 。

A .21)0(=≤+Y X PB .21)1(=≤+Y X P2 / 12C .21)0(=≤-Y X PD .21)1(=≤-Y X P10.设总体X~N (2,σμ),2σ为未知,通过样本n x x x 21,检验00:μμ=H 时,需要用统计量( C )。

2018年10月自考04183概率论与数理统计(经管类)试卷及答案

2018年10月自考04183概率论与数理统计(经管类)试卷及答案

2018年l0月高等教育自学考试全国统一命题考试概率论与数理统计(经管类)(课程代码04183)试题+答案清晰本试卷共4页,满分l00分,考试时间l50分钟。

考生答题注意事项:1.本卷所有试题必须在答题卡上作答。

答在试卷上无效,试卷空白处和背面均可作草稿纸。

2.第一部分为选择题。

必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑. 3.第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4.合理安排答题空间,超出答题区域无效。

第一部分选择题一、单项选择题:本大题共l0小题,每小题2分,共20分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.有6部手机,其中4部是同型号甲手机,2部是同型号乙手机,从中任取3部,恰好取到一部乙手机的概率是2.设事件A,B互不相容,且P(A)=0.2,P(B)=0.3,则P(A∪B)= A.0.28.0.3C.0.5D.0.565.设二维随机变量(X,Y)的分布律为则P{x=O}=A.0.1B.0.2C.0.3D.0.5四、综合题:本大题共2小题,每小题l2分,共24分。

28.将一颗骰子独立地投掷4次,观察出现的点数.事件A表示每次投掷“出现小于5的偶数点”.求:(1)在4次投掷中,事件么恰好发生一次的概率P1;(2)在4次投掷中,事件么恰好发生两次的概率P2:;(3)在4次投掷中,事件么至少发生一次的概率P3参考答案1、正确答案D2、正确答案C3、正确答案B4、正确答案B5、正确答案D6、正确答案A7、正确答案D8、正确答案C9、正确答案B10、正确答案A11、答案0.1812、答案13、答案14、答案16、答案17、答案18、答案0.119、答案820、答案3/421、答案022、答案923、答案24、答案[2.726,3.274]26、答案27、答案29、答案30、答案。

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

全国2019年10月自学考试04183概率论与数理统计(经管类)试题答案

求:(1)X 与 Y 的概率密度 f X x 与 fY y ;
(2)(X,Y)的概率密度 f x, y ;
(3)P{Y≤X} 答:
(1)X 与 Y 的概率密度 f X x 与 fY y ;
fX
x
1, 0 0,
x 1, 其他,fY
y
e y , 0,
y>0, y 0;
4分
(2)(X,Y)的概率密度 f x, y ;
A. A1 A2
B. A1 A2
C. A1 A2
D. A1 A2
2.设事件 A 与 B 相互独立,P(A)=0.4,P(B)=0.2,则 P(B∣A)=(A)
A.0.2
B.0.4
C.0.5
D.0.6
X0 1 2
3.已知随机变量 X 的分布律为
,则 P{X≥1}=(D)
P 0.3 0.2 0.5
A.0.2
__ 1 ___。 2
17.设随机变量 X 服从区间[-1,1]上的均匀分布,则 E( X 2 ) =__ 1 ___。
3
18.设随机变量 X 的分布律为 X P
1 a
0 b
1 0.4,a
,b为常数,且a
b
0.2
,则
D(X)=__0.8___。
19.设随机变量 X 与 Y 的相关系数为 0.6,且 D(X)=D(Y)=10,则 Cov X ,Y =__6___。
的 2.28%,试求考生的数学成绩在 60 分至 84 分之间的概率 p。(附:Φ(1)=0.8413,Φ(2)=0.9772)
答:
由题意可知,X ~ N (72, 2 ),PX>96 0.0228,
所以P
X>96
P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙04183# 概率论与数理统计(经管类)试题 第 1 页(共 5 页)
全国2010年1月高等教育自学考试
概率论与数理统计(经管类)试题
课程代码:04183
一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.若A 与B 互为对立事件,则下式成立的是( ) A.P (A ⋃B )=Ω B.P (AB )=P (A )P (B ) C.P (A )=1-P (B )
D.P (AB )=φ
2.将一枚均匀的硬币抛掷三次,恰有一次出现正面的概率为( ) A.8
1 B.41
C.8
3
D.
2
1 3.设A ,B 为两事件,已知P (A )=31,P (A|B )=32,53
)A |B (P =,则P (B )=( )
A. 51
B. 52
C.
5
3 D.
5
4 4.设随机变量X
则k= A.0.1 B.0.2 C.0.3
D.0.4 5.设随机变量X 的概率密度为f(x),且f(-x)=f(x),F(x)是X 的分布函数,则对任意的实数a ,有( ) A.F(-a)=1-⎰
a
0dx )x (f
B.F(-a)=

-a
dx )x (f 21 C.F(-a)=F(a)
D.F(-a)=2F(a)-1
6.设二维随机变量(X ,Y )的分布律为
浙04183# 概率论与数理统计(经管类)试题 第 2 页(共 5 页)
则P{XY=0}=( )
A. 121
B. 61
C.
3
1 D.
3
2 7.设随机变量X ,Y 相互独立,且X~N (2,1),Y~N (1,1),则( )
A.P{X-Y ≤1}=21
B. P{X-Y ≤0}=21
C. P{X+Y ≤1}=
2
1 D. P{X+Y ≤0}=
2
1 8.设随机变量X 具有分布P{X=k}=5
1
,k=1,2,3,4,5,则E (X )=( ) A.2 B.3 C.4
D.5
9.设x 1,x 2,…,x 5是来自正态总体N (2,σμ)的样本,其样本均值和样本方差分别为∑
==
5
1
i i x 5
1x 和25
1
i i
2
)x x
(41
s ∑=-=
,则
s
)
x (5μ-服从( ) A.t(4) B.t(5) C.)4(2χ
D. )5(2χ
10.设总体X~N (2
,σμ),2
σ未知,x 1,x 2,…,x n 为样本,∑=--=
n
1
i 2i
2
)x x
(1
n 1
s ,检验假
设H 0∶2σ=2
0σ时采用的统计量是( )
浙04183# 概率论与数理统计(经管类)试题 第 3 页(共 5 页)
A.)1n (t ~n
/s x t -μ-=
B. )n (t ~n
/s x t μ-=
C. )1n (~s )1n (22
2
2-χσ-=χ D. )n (~s )1n (22
2
2
χσ-=χ 二、填空题(本大题共15小题,每小题2分,共30分) 请在每小题的空格中填上正确答案。

错填、不填均无分。

11.设P (A )=0.4,P (B )=0.3,P (A ⋃B )=0.4,则P (B A )=___________. 12.设A ,B 相互独立且都不发生的概率为
9
1
,又A 发生而B 不发生的概率与B 发生而A 不发生的概率相等,则P (A )=___________.
13.设随机变量X~B (1,0.8)(二项分布),则X 的分布函数为___________. 14.设随机变量X 的概率密度为f(x)=⎩⎨⎧≤≤,,
0,c x 0,x 242其他则常数c=___________.
15.若随机变量X 服从均值为2,方差为2σ的正态分布,且P{2≤X ≤4}=0.3, 则P{X ≤0}=___________.
16.设随机变量X ,Y 相互独立,且P{X ≤1}=
21,P{Y ≤1}=3
1,则P{X ≤1,Y ≤1}=___________. 17.设随机变量X 和Y 的联合密度为f(x,y)= ⎩

⎧≤≤≤--0,,0,
1y x 0,e 2y x 2其他则P{X>1,Y>1}= ___________.
18.设二维随机变量(X ,Y )的概率密度为f(x,y)= ⎩
⎨⎧>>,,0,
0y ,0x ,x 6其他则Y 的边缘概率密度
为___________.
19.设随机变量X 服从正态分布N (2,4),Y 服从均匀分布U (3,5),则E (2X-3Y )= __________. 20.设n μ为n 次独立重复试验中事件A 发生的次数,p 是事件A 在每次试验中发生的概率,则对任意的}|p n
{|
P lim ,0n
n ε<-μ>ε∞
→=___________. 21.设随机变量X~N (0,1),Y~(0,22)相互独立,设Z=X 2+
C
1Y 2
,则当C=___________
浙04183# 概率论与数理统计(经管类)试题 第 4 页(共 5 页)
时,Z~)2(2χ.
22.设总体X 服从区间(0,θ)上的均匀分布,x 1,x 2,…,x n 是来自总体X 的样本,x 为样本均值,0>θ为未知参数,则θ的矩估计θ
ˆ= ___________. 23.在假设检验中,在原假设H 0不成立的情况下,样本值未落入拒绝域W ,从而接受H 0,称这种错误为第___________类错误.
24.设两个正态总体X~N (211,σμ),Y~N(222,σμ),其中2
2221σ=σ=σ未知,
检验H 0:21μ=μ,H 1:21μ≠μ,
分别从X ,Y 两个总体中取出9个和16个样本,其中,计算得x =572.3, 1.569y =,样本方差25.149s 2
1=,2.141s 22=,
则t 检验中统计量t=___________(要求计算出具体数值). 25.已知一元线性回归方程为x 5y 0+β=)
),且x =2, y =6,则0β)=___________.
三、计算题(本大题共2小题,每小题8分,共16分)
26.飞机在雨天晚点的概率为0.8,在晴天晚点的概率为0.2,天气预报称明天有雨的概率为0.4,试求明天飞机晚点的概率.
27.已知D(X)=9, D(Y)=4,相关系数4.0XY =ρ,求D (X+2Y ),D (2X-3Y ). 四、综合题(本大题共2小题,每小题12分,共24分) 28. 设某种晶体管的寿命X (以小时计)的概率密度为
f(x)=⎪⎩⎪⎨⎧≤>.100x ,
0,
100x ,x 100
2
(1)若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间不到200小时的概率是多少?
(2)若一个电子仪器中装有3个独立工作的这种晶体管,在使用150小时内恰有一个晶体管损坏的概率是多少?
29.某柜台做顾客调查,设每小时到达柜台的顾额数X 服从泊松分布,则X~P (λ),若已
知P (X=1)=P (X=2),且该柜台销售情况Y (千元),满足Y=21
X 2+2.
试求:(1)参数λ的值;
(2)一小时内至少有一个顾客光临的概率;
(3)该柜台每小时的平均销售情况E(Y).
五、应用题(本大题共1小题,10分)
30.某生产车间随机抽取9件同型号的产品进行直径测量,得到结果如下:
21.54, 21.63, 21.62, 21.96, 21.42, 21.57, 21.63, 21.55, 21.48
根据长期经验,该产品的直径服从正态分布N(μ,0.92),试求出该产品的直径μ的置信度为0.95的置信区间.(μ0.025=1.96, μ0.05=1.645)(精确到小数点后三位)
浙04183# 概率论与数理统计(经管类)试题第5 页(共5 页)。

相关文档
最新文档