随机过程Markov链作业 中科大
(解答)《随机过程》第二章习题

第二章 Markov 过程 习题解答1、 设}1,{≥n n ξ为相互独立同分布的随机变量序列,其分布为:01}0{,0}1{>-===>==p q P p P n n ξξ定义随机序列}2,{≥n X n 和}2,{≥n Y n 如下:⎪⎪⎩⎪⎪⎨⎧=========----;1,1,3;0,1,2;1,0,1;0,0,01111n nn n n n n nn X ξξξξξξξξ ⎩⎨⎧===-;,1;0,0,01其它n n n Y ξξ试问随机序列}2,{≥n X n 和}2,{≥n Y n 是否为马氏链?如果是的话,请写出其一步转移概率矩阵并研究各个状态的性质。
不是的话,请说明理由。
解:(1)显然,随机序列}2,{≥n X n 的状态空间为}3,2,1,0{=S 。
任意取S i i i j i n ∈-132,,,,, ,由于当i X n =给定时,即1,-n n ξξ的值给定时,就可以确定1+n X 的概率特性,即我们有:}{},,,,{12233111i X j X P i X i X i X i X j X P n n n n n n ========+--+因此}2,{≥n X n 是齐次马氏链,其一步转移概率矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=p qp q p q p qP 0000000 由于01,0>-=>p q p ,画出状态转移图,可知各个状态都相通,且都是非周期的,因此此链是不可约的遍历链。
(也可以利用02>P 判定此链是不可约的遍历链)(2)显然,}2,{≥n Y n 的状态空间为}1,0{=S ,由于:}1,1{}1,1,0{}1,10{23234234=========Y Y P Y Y Y P Y Y Y P}0,1{}0,1,0{}0,10{23234234=========Y Y P Y Y Y P Y Y Y P由}2,{≥n Y n 的定义,可知}1,1,1{}1,1,0{}0,1,1{}0,1,0{}1,0,1{}1,1{12312312312312323===⋃===⋃===⋃⋃===⋃======ξξξξξξξξξξξξξξξY Y}1,1,0,0{}0,1,0,0{}1,1,0{12341234234====⋃========ξξξξξξξξY Y Y}0,0,1{}0,1{12323======ξξξY Y , ∅====}0,1,0{234Y Y Y利用}1,{≥n n ξ是相互独立同分布的随机变量序列及其分布,我们有:322233}1,1{q q p pq Y Y P ++=== 223234}1,1,0{q p pq Y Y Y P +==== 223}0,1{pq Y Y P ===0}0,1,0{234====Y Y Y P即有:22222343}1,10{q p pq qp pq Y Y Y P +++==== 0}0,10{234====Y Y Y P由于01,0>-=>p q p ,因此有}0,10{}1,10{234234===≠===Y Y Y P Y Y Y P根据马氏链的定义可知}2,{≥n Y n 不是马氏链。
随机过程第4章Markov过程(PDF)

第四章 Markov 过程本章我们先讨论一类特殊的参数离散状态空间离散的随机过程,参数为0{0,1,2,}T N ==L ,状态空间为可列{1,2,}I =L 或有限{1,2,,}I n =L 的情况,即讨论的过程为Markov 链。
Markov 链最初由Markov 于1906年引入,至今它在自然科学、工程技术、生命科学及管理科学等诸多领域中都有广泛的应用。
之后我们将讨论另一类参数连续状态空间离散的随机过程,即纯不连续Markov 过程。
§4.1 Markov 链的定义与性质一、Markov 链的定义定义 4.1设随机序列{;0}n X n ≥的状态空间为I ,如果对0n N ∀∈,及0110011,,,,,{,,,}0n n n n i i i i I P X i X i X i +∈===>L L ,有:11001111{,,,}{}n n n n n n n n P X i X i X i X i P X i X i ++++=======L (4.1.0)则称{;0}n X n ≥为Markov 链。
注1:等式(4.1.0)刻画了Markov 链的特性,称此特性为Markov 性或无后效性,简称为马氏性。
Markov 链也称为马氏链。
定义4.2 设{;0}n X n ≥为马氏链,状态空间为I ,对于,i j I ∀∈,称1{}()ˆn n i j P X j X i p n +===为马氏链{;0}n X n ≥在n 时刻的一步转移概率。
注2:一步转移概率满足:()0,,()1,i j i jj Ip n i j Ipn i I ∈≥∈=∈∑若对于,i j I ∀∈,有1{}()ˆn n i j i j P X j X i p n p +===≡即上面式子的右边与时刻n 无关,则称此马氏链为齐次(或时齐的)马氏链。
设{}0()(0),p i P X i i I ==∈,如果对一切i I ∈都有00()0,()1i Ip i p i ∈≥=∑,称0()p i 为马氏链的初始分布。
应用随机过程markov链5.1例题

随机过程是概率论的一个重要分支,而Markov链则是随机过程中的一个经典模型。
在实际应用中,Markov链可以用来描述各种随机现象,比如金融市场的走势、气候的变化、信息的传递等等。
今天,我们就来探讨一下应用随机过程中的Markov链,并通过一个例题来深入理解这个概念。
让我们来简单回顾一下Markov链的基本概念。
在一个Markov链中,假设我们有一些状态,每个状态发生的概率只与其前一状态有关,而与其他状态无关。
这个性质就是所谓的“无记忆性”,也就是说,一个状态的发生只受到前一个状态的影响,而与更早的状态无关。
这种性质使得Markov链在描述许多现实问题时非常方便,因为它可以有效地简化问题的复杂度。
接下来,我们将以一个例题来具体说明Markov链的应用。
假设我们有一个赌徒,他每天的赌博结果只与前一天的输赢有关,如果前一天赢了,那么第二天继续赢的概率为0.6,输的概率为0.4;如果前一天输了,那么第二天继续输的概率为0.7,赢的概率为0.3。
现在我们要求这个赌徒在连续三天内至少赢两次的概率是多少。
根据上述情况,我们可以建立这个问题的Markov链模型。
假设赌徒的状态有两种,分别表示赢和输。
然后我们可以根据给定的转移概率来构建状态转移矩阵,从而求出连续三天内至少赢两次的概率。
在实际操作中,我们可以通过矩阵乘法或者迭代法来得到最终的概率结果。
具体的计算过程可以参考相关的数学推导。
通过这个例题,我们不仅深入理解了Markov链的基本概念,还学会了如何将其应用到实际问题中。
我们也可以发现,在实际问题中,Markov链的应用往往需要一定的数学知识和计算技巧来解决。
对于这个主题,我们除了要了解其基本概念外,还需要具备一定的数学建模和求解能力。
应用随机过程中的Markov链是一个相当有趣且广泛应用的领域。
通过学习和掌握Markov链的相关知识,我们不仅可以更好地理解许多随机现象,还可以应用到实际问题中去解决各种复杂的情况。
随机过程 第三章 马尔科夫链

4
设P表示一步转移概率所组成的矩阵,则
p11 p12 p1n P p21 p22 p2n
称为系统状态的一步转移概率矩阵,它具有如下性质:
1、pij 0, i, j I
2、
p
jI
ij
1, i, j I
满足上述两个性质的矩阵称为随机矩阵。
p j (n)
pj
(n) p (n 1) p
( pi pijn) iI
i
ij
iI
PT (n) PT (0)P ( n)
P T (n) P T (n 1)P
13
定理 设{Xn,n∈T}为马尔可夫链,则对任意i1, …,in∈I和n≥1,有
P{X1 i1 ,, X n in }
22
状态的常返性 例:状态转移概率图
1 1/2
1
1
2
3
4
1/2
1
23
首中概率 它表示质点由i出发,经n步首次到达j 的概率
f ij( n ) P( X m v j,1 v n 1, X m n j | X m i)
定理 对任一状态i, j及1 n , 有 p
5
例:一维随机游动。设一醉汉Q(或看作一随机游动的 质点)在直线上的点集I={1,2,3,4,5}作随机游动, 游动的概率规则是:如果Q现在位于点i(1<i<5), 则下一时刻各以1/3的概率向左或向右移动一格, 或以1/3的概率留在原处;如果Q现在处于1(或5) 这一点上,则下一时刻就以概率1移动到2(或4)这点上, 1和5这两点称为反射壁,这种游动称为带有两个反射壁 的随机游动。
随机过程与马尔可夫链

随机过程与马尔可夫链随机过程是数学中一种常见的描述随机变量随时间变化的模型。
它可以用于建模和分析各种随机现象,如股票价格的波动、人员流动、网络数据传输等。
而马尔可夫链则是一种常见的随机过程,它具有马尔可夫性质,即未来状态的概率分布仅依赖于当前状态,与过去的状态无关。
一、随机过程的定义与特点随机过程可以用数学模型来描述,其中最常见的是通过概率函数来定义。
对于离散时间的随机过程,我们可以用一个序列{Xn}来表示,其中Xn表示在第n个时间点的随机变量。
同样地,对于连续时间的随机过程,我们可以用一个函数X(t)来表示,在不同的时间点t上取不同的随机值。
随机过程具有以下几个特点:1. 随机过程描述了随机变量在时间上的演化规律;2. 随机过程是随机变量的集合,它可以包含无穷个甚至连续无穷个随机变量;3. 随机过程可以是离散时间的,也可以是连续时间的;4. 随机过程可以是有限维的,也可以是无限维的。
二、马尔可夫链的定义与性质马尔可夫链是一种特殊的随机过程,它满足马尔可夫性质。
具体来说,给定一个随机过程{Xn},如果对于任意的时刻n,给定过去的状态Xn-1,未来状态Xn+1的条件概率分布仅依赖于当前状态Xn,则称该过程具有马尔可夫性质。
马尔可夫链的定义包括以下几个要素:1. 状态空间:马尔可夫链的状态空间是指随机变量Xn取值的范围,可以是有限的或者可数的。
2. 转移概率:对于任意两个状态i和j,转移概率Pij表示从状态i转移到状态j的概率。
3. 初始概率:初始概率πi表示初始状态为i的概率。
马尔可夫链具有以下几个重要性质:1. 马尔可夫性质:未来状态的概率分布只依赖于当前状态,与过去的状态无关。
2. 时齐性:马尔可夫链的转移概率在时间上保持不变。
3. 不可约性:任意两个状态之间存在一条路径,使得转移到目标状态的概率大于0。
4. 非周期性:不存在周期性的状态循环。
三、马尔可夫链的应用马尔可夫链在实际问题中有着广泛的应用。
Markov过程(随机过程报告)

这条性质也就是说,如果过程在时刻 处于状态 ,那么不管它以前处于什么状态,过程以后处于什么状态的概率是一样的。这就说明了,Markov链在已知“现在”的条件下,“将来”与“过去”是条件独立的。
此外,对于Markov链 及 及任意状态 ,有
对状态空间 上的任意有界实值函数 有
二、概率转移矩阵
记
并定义无穷矩阵
由于此无穷矩阵的分量都是非负的且不超过1,易见这种无穷矩阵的乘法满足结合律,又因为
所以, (无穷Βιβλιοθήκη 位阵),特别的, 称为时刻 的(一步)转移概率矩阵。
如果Markov链的概率转移矩阵 与 无关,则称其为时齐的Markov链,我们把此矩阵简记为 。
三、Markov链的例
独立同分布的随机变量的部分和序列,称为随机徘徊,它是时间参数离散情形时的时齐的独立增量过程,又若其中的随机变量只取-1和1两个值,则称为简单随机徘徊。
今考虑一个简单随机徘徊 ,其状态空间为 ,由 的定义
其中 为独立同分布随机变量序列,满足
这里 表示一个粒子分别以概率 与 向右与向左走一格。由于随机徘徊是时齐的独立增量过程,由第3章可知它也是时齐的Markov链。又因为 都是 的部分和,所以,它们和 独立,故
随机过程课程报告
——离散Markov链(李继刚)
考虑一个随机过程 ,我们假设随机变量 的取值在某个集合 中, 则集合 称为状态空间.
独立随机试验模型最直接的推广就是Markov模型. 粗略地说, 一个随机过程如果给定了当前时刻 的值 , 未来 的值 不受过去 的影响就称为是有Markov性. 如果一个过程具有Markov性, 则称该过程为Markov过程. 特别地, 当状态空间S为至多可列集时, Markov过程称为Markov链.
随机过程中的马尔可夫链

随机过程中的马尔可夫链随机过程是指一种具有随机性质的过程,而马尔可夫链是随机过程中的一种基本模型。
马尔可夫链是一种具有马尔可夫性质的随机过程。
所谓马尔可夫性质,是指在一个随机过程中,当前状态的概率分布仅依赖于当前状态,而不依赖于历史状态。
马尔可夫链广泛应用于各个领域,如物理学、生物学、计算机科学等。
一、马尔可夫链的定义与性质马尔可夫链是一种随机过程,其状态空间可以是一个有限集合或可数集合。
若设Xn表示马尔可夫链在时间n的状态,则马尔可夫链具有以下性质:1.满足马尔可夫性质:在给定现在状态下,未来状态的概率分布与过去状态无关。
2.具有无后效性:状态的转移只受当前状态影响,与之前的状态无关。
3.具有Markov性:任意时刻t,下一状态Xt+1只与当前状态Xt有关,与过去状态无关。
二、转移矩阵转移矩阵是马尔可夫链中的重要概念。
假设状态集合为{1,2,3,...,N},若Xn=j,则转移矩阵Pij表示从状态j转移到状态i的概率。
即在马尔可夫链的当前状态为j时,下一时刻转移至状态i的概率为Pij。
满足下列条件:1.所有元素的值都是非负数;2.每行元素的和等于1。
3.初始转移概率矩阵为pc,则$t\in N^{*}$时,$i, j\in{1,2,3,...,N}$$ P_{ij} P_{j1}=P_{i1}$$ P_{ij} P_{j2}=P_{i2}$$ P_{ij} P_{jr}=P_{ir}$也就是说,转移矩阵是一个n阶方阵,矩阵中的元素为非负实数并且每行的和为1。
三、平稳分布在马尔可夫链中,若转移矩阵满足一定条件,那么存在一个平稳分布,在链条经过足够多的转移后,状态分布不再增长或减少,变得稳定,称之为稳态或平稳分布。
平稳分布是指当马尔可夫链在经过一定转移后,概率分布已经趋于稳定,不再发生变化的状态分布。
平稳分布的计算是求解方程$P_\infty=P_\infty P$。
其中$P_\infty$为平稳分布,$P$为转移矩阵。
中科院随机过程习题解答(一)

∑ξ ξ
i
j
)=
2
1≤i ≤ n1 1≤ j ≤ n2
∑ E (ξ ξ
i
j
)
当 i = j 时, E (ξ i ξ j ) = 1 ;否则 E (ξ i ξ j ) = ( p − q ) 令 n = min(n1 , n 2 ) , N = max(n1 , n2 ) ,则有
Rηη (n1 , n 2 ) =
中科院研究生院 2004~2005 第一学期
随机过程讲稿
孙应飞
随机过程习题解答(一)
第一讲作业:
1、设随机向量 ( X , Y ) 的两个分量相互独立,且均服从标准正态分布 N (0,1) 。 (a)分别写出随机变量 X + Y 和 X − Y 的分布密度 (b)试问: X + Y 与 X − Y 是否独立?说明理由。 解: (a) X + Y ~ N (0,2), (b)由于:
) ( µσ
=
2 1
σ1 µ2
2 2 2 2 + σ 12 µ 2 + σ 12σ 2
)
(b)当 ρ XZ = 的时候, Z 和 X 线性相关,即
2 2 2 2 µ12σ 2 + σ 12 µ 2 + σ 12σ 2 = σ 12 µ 2
3 、 设 { X (t ), t ≥ 0} 是 一 个 实 的 均 值 为 零 , 二 阶 矩 存 在 的 随 机 过 程 , 其 相 关 函 数 为
1 2π
0 ≤ ϕ ≤ 2π
(3)给定一时刻 t ,由于 ξ , η 独立、服从正态分布,因此 ς (t ) 也服从正态分布,且
E (ς (t )) = E (ξ cos ωt + η sin ωt ) = cos ωtE (ξ ) + sin ωtE (η ) = 0 D(ς (t )) = D(ξ cos ωt + η sin ωt ) = D(ξ cos ωt ) + D(η sin ωt ) = cos 2 ωtD(ξ ) + sin 2 ωtD(η ) = 1
中科大随机过程引论例题集含解答

1
(d) Poisson 过程; (e) Gauss 过程。
【“平稳增量过程”定义:令 Y (t) = X(t + s) − X(t),其中 s > 0,则 Y (t) 为平稳过程。 “平稳独立增量过程是“独立增量过程”加上“平稳增量过程”。】
1 2
,D(Y ) =
1 4
+
n−1 3n
。
【因为
Y |X
=
x
∼
B(n, x),所以
E{Y |X
=
x}
=
n·
x n
=
x,D{Y |X
=
x}
=
n·
x n
·
2.3 Wiener 过程
4. 设 Brown 运动 W (t), t ≥ 0 是标准 Brown 运动过程(取 C=1),则 W (t) 满足 a, c 。 (a) E{W (t)W (s)} = min(t, s); (b) W (t) − W (s) ∼ N (0, t − s); (c) 对任意 0 ≤ t1 < t2 < t3 < t4, E{(W (t2) − W (t1))(W (t4) − W (t2))} = 0; (d) W (t) ∼ N (0, 1)。
2.2 二阶矩过程
2. 设 Xn, x ∈ H 分别是二阶矩随机变量序列和随机变量,称 Xn 以均方收敛到 X,则下述 等价说法正确的是 b, d 。 (a) limn→∞ Xn = X; (b) limn→∞ d(Xn, X) = 0; (c) limn→∞(Xn, X) = 0; (d) limn→∞ ∥Xn − X∥ = 0。
随机过程中的马尔可夫链与随机游走

随机过程中的马尔可夫链与随机游走马尔可夫链和随机游走是随机过程中两个重要的概念,它们在各个领域的建模和分析中都有着广泛的应用。
本文将介绍马尔可夫链和随机游走的基本概念、性质和应用,帮助读者全面了解和认识这两个重要的随机过程。
一、马尔可夫链1. 马尔可夫链的定义马尔可夫链是一种离散时间的随机过程,在某一时刻的状态只依赖于前一时刻的状态,与之前的状态无关。
马尔可夫链具有马尔可夫性质,即未来的状态只与当前的状态有关,与过去的状态无关。
2. 马尔可夫链的转移概率马尔可夫链的状态转移是通过概率矩阵描述的。
概率矩阵P=(pij)的第i行第j列元素pij表示从状态i转移到状态j的概率。
概率矩阵满足以下条件:每一行的元素之和为1,且所有元素都非负。
3. 马尔可夫链的平稳分布如果一个马尔可夫链满足某些条件,那么它将具有平稳分布。
平稳分布是指在长时间运行后,马尔可夫链中各个状态的概率趋于稳定,不再发生变化。
二、随机游走1. 随机游走的定义随机游走是一种在数学上描述随机过程的模型,其基本思想是在某个状态空间中随机地进行步长为1的移动。
每次移动的方向和位置都是根据特定的概率分布决定的。
2. 随机游走的简单例子一个简单的随机游走的例子是一维平面上的步长为1的游走。
从原点开始,每次向左或向右移动,移动方向由一个公平的硬币决定。
经过n次移动后,游走的位置可以用一个整数表示。
3. 随机游走的性质随机游走具有一些有趣的性质。
首先,随机游走是马尔可夫链的一个特例,因为每一步的移动只依赖于当前的位置。
其次,随着游走次数的增加,游走的位置呈现出一定的规律性,如对称性、回归性等。
这些性质在实际问题的建模和分析中有重要的应用价值。
三、马尔可夫链与随机游走的应用1. 马尔可夫链的应用马尔可夫链在很多领域有广泛的应用。
在自然语言处理中,马尔可夫链可以用于语言模型的建立。
在金融领域,马尔可夫链可以用于股票价格模型的构建。
此外,在生物学、物理学、工程学等领域,马尔可夫链也有着重要的应用。
随机过程中的马尔可夫链与随机游走

随机过程中的马尔可夫链与随机游走随机过程是概率论和数理统计中的一个重要概念,它描述了随机变量在时间序列中的演变规律。
而马尔可夫链是随机过程的一个特殊形式,它具有“无后效性”和“马尔可夫性”两个关键特征。
在本文中,我们将介绍马尔可夫链及其在随机过程中的应用——随机游走。
一、马尔可夫链的定义及性质马尔可夫链是一类离散随机过程,其演变满足一个重要条件:未来状态的概率分布只与当前状态有关,与过去的状态无关。
这个特性被称为“无后效性”,它是马尔可夫链的基本定义。
马尔可夫链还具有“马尔可夫性”,即状态的转移概率只与当前状态有关,与时间无关。
换句话说,未来的状态仅取决于当前状态,而与时间的推移无关。
这使得马尔可夫链在许多实际问题中具有广泛的应用价值。
二、随机游走的定义及相关概念随机游走是一种特殊的马尔可夫链,它描述了一个对象在空间中随机移动的过程。
在每个时刻,对象可以从当前位置向相邻的位置移动,而移动的方向和距离是随机确定的。
随机游走可以用于模拟无规律的运动现象,如分子在溶液中的扩散、股票价格的涨跌等。
在随机游走中,有几个重要的概念需要了解。
首先是状态空间,它包含了对象可能出现的所有位置。
其次是转移概率,它描述了对象从一个位置转移到另一个位置的概率。
最后是平稳分布,它表示随机游走在长时间模拟中达到的状态分布。
平稳分布是随机游走的一个重要性质,它不受初始状态的影响,最终会趋于稳定。
三、马尔可夫链与随机游走的应用马尔可夫链和随机游走在各个领域都有广泛的应用。
在物理学中,马尔可夫链可用于描述粒子的随机运动,从而推导出统计物理学中的一些重要结果。
在经济学中,马尔可夫链可以用来建模金融市场的波动,预测股票价格的变化趋势。
在计算机科学中,马尔可夫链被用于搜索引擎的排序算法和机器学习模型中。
随机游走则在网络分析、搜索算法、模拟实验等方面有着广泛应用。
例如,在网页排名算法中,随机游走可以模拟用户点击行为,从而指导搜索引擎对网页进行排序。
随机过程-第五章 马尔可夫链

0.95 0.02 0.02 0.01 0.3 0.6 0.06 0.04 P 0.2 0.1 0.7 0 0.2 0.2 0.1 0.5
P
jS
ij
1, i S 。则称该矩阵为随机矩阵。
显然,随机矩阵的各行元素之和都等于 1。
例 5.1 赌徒输光问题 :考虑一赌徒,在每局赌博中他以概率 p 赢得 1 元,以概率
q 1 p 输掉 1 元,假设各局赌博是相互独立的,赌徒开始有 i ( ቤተ መጻሕፍቲ ባይዱ i n )元,且他在赌
显然, Markov 链的统计特征由其初始分布 P{ X 0 i0 } 和转移概率 P{ X k i X k 1 ik 1} ( k 1, 2,, n )决定。
定义 5.3 时齐 Markov 链: 当 Markov 链的转移概率 P{ X n1 j X n i} 只与状态 i, j 有
m n m, n 0 使得 P ij 0, Pjk 0 ,利用 C-K 方程(1)可知
n n Pikm n Pirm Prk Pijm Pjk 0 rS
K 类似地可以证明存在 K 0 使得 Pki 0 。
称互通的两个状态属于同一个类,且由命题 5.1 可知,任何一个状态不能同时属于两个 不同的类,即任意两个不同的类不相交。 思考:对例 5.1 中的赌徒问题的状态分类? 定义 5.7 可约:若 Markov 链只存在一个类,则称它为不可约的;否则称为可约的。 在不可约的 Markov 链中,一切状态都是彼此互通的。
随机过程与马尔可夫链

随机过程与马尔可夫链随机过程是描述随时间变化的一组随机变量的数学模型,在实际问题中具有广泛应用。
其中一种重要的随机过程是马尔可夫链,它具有马尔可夫性质,即未来状态的概率只与当前状态相关,与过去状态无关。
1. 随机过程的介绍随机过程是一族随机变量的集合,即一组随机变量随时间的变化。
随机过程可以用概率分布函数或概率密度函数描述。
它可以是离散的,在一系列固定的时间点上取值,也可以是连续的,在一段时间内变化。
随机过程可以分为平稳和非平稳两类,平稳的随机过程表示各个时刻的统计特性不随时间的推移而变化。
2. 马尔可夫链的定义马尔可夫链是一种随机过程,具有马尔可夫性质。
设X={X1,X2,...,Xn}是随机过程,若对于任意时刻t,以及任意状态i和j,当知道状态Xt时,下一状态Xt+1的概率只与当前状态Xt相关,而与过去状态Xt-1,Xt-2,...,X1无关,则称X为马尔可夫链。
3. 马尔可夫链的性质马尔可夫链具有一些重要性质。
首先,马尔可夫链满足无后效性,即过去的状态不会影响未来的状态,只有当前状态对未来状态的概率产生影响。
其次,马尔可夫链具有马尔可夫性,即未来状态的条件概率只与当前状态有关。
此外,马尔可夫链还具有平稳性,即某一时刻t 的状态概率分布与任意时刻的状态概率分布相同。
4. 马尔可夫链的转移概率矩阵马尔可夫链可以用转移概率矩阵描述,该矩阵为一个n×n矩阵,其中n为状态的个数。
转移概率矩阵的第(i,j)个元素表示从状态i转移到状态j的概率。
转移概率矩阵的每一行都满足概率的性质,即每一行元素之和为1。
5. 马尔可夫链的稳定分布马尔可夫链可能存在稳定分布,即当经过足够长时间后,状态分布不再变化,达到一个稳定的状态。
若马尔可夫链的状态转移概率矩阵满足一定条件,则存在唯一的稳定分布。
稳定分布可以通过求解方程πP=π得到,其中π为稳定分布向量,P为状态转移概率矩阵。
6. 马尔可夫链的应用马尔可夫链在许多领域有广泛的应用。
随机过程中的马尔可夫链与转移概率矩阵计算

金融领域:马尔可夫链模型可以用 于股票价格预测、风险评估和投资 组合优化等方面
添加标题
添加标题
添加标题
添加标题
机器学习:利用马尔可夫链模型进 行概率图模型的建模,如朴素贝叶 斯分类器等
生物信息学:利用马尔可夫链模型 对基因序列、蛋白质序列等进行建 模和预测
Part Three
转移概率矩阵的计 算
转移概率矩阵的定义
06 马 尔 可 夫 链 的 模 拟 与仿真
Part One
单击添加章节标题
Part Two
马尔可夫链的概述
马尔可夫链的定义
定义:马尔可夫链 是一个随机过程, 其中每个状态只与 前一个状态有关, 当前状态与过去状 态无关。
特点:未来状态只 与当前状态有关, 与过去状态无关。
数学表示:马尔可 夫链可以用一个状 态转移矩阵来表示 ,其中每个元素表 示从某一状态转移 到另一状态的概率 。
随机数生成:根据转移概率矩阵生成随机数,用于模拟状态转移 状态转移判断:根据当前状态和随机数,判断下一个状态 状态转移实现:根据判断结果,更新当前状态,进行状态转移 模拟过程重复:重复上述步骤,直到达到模拟终止条件
模拟结果的分析与解读
模拟结果的可 靠性验证
模拟结果的统 计特性分析
模拟结果与真 实情况的比较
定义:转移概率矩阵是描述马尔可夫链中状态之间转移概率的矩阵 特点:每一行元素之和为1,表示从某一状态转移到其他任意状态的概率之和 计算方法:根据历史数据或实验结果,统计状态转移的次数,计算转移概率 应用:在随机过程中,转移概率矩阵是描述系统状态变化的重要工具
转移概率矩阵的计算方法
定义:转移概率矩阵描述状态之间 的转移概率
添加标题
添加标题
随机过程中的马尔可夫链应用

随机过程中的马尔可夫链应用马尔可夫链(Markov Chain)是一种数学模型,用于描述一系列随机事件之间的转移关系。
它是通过状态和概率转移矩阵来表示的。
在现实生活中,马尔可夫链在许多领域中都有广泛的应用,如经济学、生态学、计算机科学等。
本文将从几个具体的应用领域出发,介绍随机过程中马尔可夫链的应用。
一、经济学中的马尔可夫链应用在经济学中,马尔可夫链被广泛用于描述和分析经济系统的状态转移。
例如,在宏观经济中,可以将经济的不同状态定义为就业、通货膨胀和经济增长等。
通过构建一个状态空间和状态转移概率矩阵,可以模拟和预测不同状态之间的转移情况。
这对于政府制定经济政策和公司的投资决策具有重要意义。
二、生态学中的马尔可夫链应用在生态学研究中,马尔可夫链可以用于分析生态系统的演替和物种多样性变化。
生态系统中的物种组成和数量通常会发生变化,而马尔可夫链可以描述不同物种之间的种群转移。
通过观察和记录不同物种间的转移规律,可以更好地理解和预测生态系统的演替过程,为保护生物多样性提供科学依据。
三、计算机科学中的马尔可夫链应用在计算机科学中,马尔可夫链被广泛用于模拟和预测随机过程。
例如,在自然语言处理中,可以通过构建一个基于马尔可夫链的模型来生成自然语言的句子和文本。
通过学习和分析大量的文本数据,模型可以识别出不同单词之间的转移规律,从而生成具有连贯性和自然性的句子。
另外,在搜索引擎中,马尔可夫链也可以用于优化搜索结果的排序。
通过分析用户的搜索行为和点击模式,可以构建一个基于马尔可夫链的模型,预测用户在搜索结果中的点击概率。
这样,搜索引擎可以根据用户的偏好和行为,为其提供更加准确和个性化的搜索结果。
总结:以上介绍了随机过程中马尔可夫链的几个应用领域,包括经济学、生态学和计算机科学。
在这些领域中,马尔可夫链提供了一种有效的数学工具,用于模拟和预测随机事件的转移情况。
通过构建状态空间和转移概率矩阵,我们可以更好地理解和掌握系统的演变规律,并为相关领域的决策和优化提供科学依据。
应用随机过程markov链经典例题

应用随机过程markov链经典例题
随机过程是指随机事件随时间的推移而发生的过程,而马尔可夫过程则是一种特殊的随机过程,其特点是未来状态的概率只取决于当前状态,而与过去状态无关。
经典的马尔可夫链例题是假设某个小球在三个盒子之间随机跳跃,每次跳跃只能移动到相邻的盒子,且概率相等。
问当小球在盒子1时,经过n次跳跃后恰好回到盒子1的概率是多少
首先,我们可以用矩阵表示小球在不同盒子之间跳跃的概率。
假设矩阵P表示小球从一个盒子跳到另一个盒子的概率,即:
P = [0 1/2 1/2; 1/2 0 1/2; 1/2 1/2 0]
其中,第i行第j列的元素表示小球从盒子i跳到盒子j的概率。
例如,P(1,2)表示小球从盒子1跳到盒子2的概率为1/2。
接下来,我们需要用这个矩阵来计算小球从盒子1跳跃n次后回到盒子1的概率。
假设矩阵P的n次方为P^n,则小球从盒子1跳跃n次后回到盒子1的概率为P^n(1,1)。
例如,当n=2时,P^2为:
P^2 = [1/2 1/4 1/4; 1/4 1/2 1/4; 1/4 1/4 1/2]
则小球从盒子1跳跃2次后回到盒子1的概率为P^2(1,1)=1/2。
因此,当小球在盒子1时,经过n次跳跃后恰好回到盒子1的概率为P^n(1,1)。
我们可以通过不断计算矩阵P的幂来得到不同次数下的概率。
随机过程中的马尔可夫链

随机过程中的马尔可夫链随机过程是描述随机演化的数学模型。
其中,马尔可夫链是一种广泛应用于许多领域的随机过程。
马尔可夫链具有马尔可夫性质,即未来的演化仅依赖于当前状态,而与历史状态无关。
本文将介绍马尔可夫链的基本概念和特性,并探讨其在不同领域中的应用。
一、马尔可夫链的定义马尔可夫链是一个离散状态的随机过程,其转移概率只与当前状态有关,与历史状态无关。
具体而言,设S为状态空间,P为状态转移概率矩阵,则对于任意的状态i和j,转移概率满足条件P(i, j) ≥ 0,且对于任意的i,ΣP(i, j) = 1。
二、马尔可夫链的特性1. 马尔可夫性质:马尔可夫链的核心特性是马尔可夫性质,即未来的状态只与当前状态有关。
这一性质使得马尔可夫链具有一种"无记忆"的特点,使得其在很多问题中提供了简化假设的可能。
2. 连通性:如果对于任意的状态i和j,存在一系列状态k1, k2, ..., kn,使得从状态i出发,通过这些状态最终能够到达状态j,则称该马尔可夫链是连通的。
3. 遍历性:如果从任意一个状态出发,经过有限步骤,能够回到该状态,则称该马尔可夫链是遍历的。
4. 非周期性:如果从任意一个状态出发,经过有限步骤,能够回到该状态的概率为1,则称该马尔可夫链是非周期的。
三、马尔可夫链的应用1. 自然语言处理:马尔可夫链被广泛应用于自然语言处理领域,用于语言模型的建模。
通过分析文本数据中的词语之间的转移概率,可以生成具有一定连贯性的文本。
2. 金融市场:马尔可夫链在金融市场中的应用较为广泛。
通过分析过去的市场数据,可以构建马尔可夫链模型,预测未来的市场状态,用于投资决策和风险管理。
3. 生物信息学:马尔可夫链在DNA序列分析和蛋白质结构预测等生物信息学问题中得到了应用。
通过建立马尔可夫链模型,可以推断基因序列中的隐藏状态和转移概率,进而揭示生物系统的运作机制。
4. 推荐系统:马尔可夫链在推荐系统中也有一定的应用。
随机过程的马尔可夫链与转移矩阵

随机过程的马尔可夫链与转移矩阵马尔可夫链与转移矩阵是随机过程中重要的概念,它们能够描述系统在不同状态之间转移的概率。
本文将详细介绍马尔可夫链的概念和性质,并解释转移矩阵的作用和计算方法。
一、马尔可夫链的概念马尔可夫链是指一个具有马尔可夫性质的随机过程。
马尔可夫性质是指一个系统在给定当前状态下的未来状态只与当前状态有关,与过去状态无关。
例如,假设有一个赌徒每天可以处于三种状态之一:赢钱、亏钱或者保持不变。
如果该赌徒在第n天状态改变的概率只与第n-1天的状态有关,而与之前的状态无关,那么该赌徒的行为就可以用马尔可夫链来描述。
二、转移概率与转移矩阵在马尔可夫链中,转移概率是指系统从一个状态转移到另一个状态的概率。
转移概率可以用一个矩阵表示,这个矩阵称为转移矩阵。
转移矩阵的行和列分别对应系统的状态,矩阵中的元素表示系统从某个状态转移到另一个状态的概率。
每行的元素之和应等于1,表示在某个状态下,系统一定要转移至另一个状态。
三、转移矩阵的计算计算转移矩阵需要获取系统在不同状态之间的转移概率。
通常通过观察大量的历史数据或者统计样本数据来估计这些概率。
例如,假设有一个天气马尔可夫链,状态可以是晴天、多云或者雨天。
通过对过去一年的天气数据进行分析,可以计算出系统在不同天气状态之间转移的概率。
根据这些计算结果,可以构建出转移矩阵。
例如:晴天多云雨天晴天 0.7 0.2 0.1多云 0.4 0.3 0.3雨天 0.2 0.4 0.4四、马尔可夫链的性质马尔可夫链具有一些特殊的性质,这些性质在实际应用中具有重要意义。
1. 长期稳定性:马尔可夫链经过足够长的时间后,系统的状态分布会趋于一个稳定状态。
2. 遍历性:从任意一个状态出发,最终都能够到达其他所有状态。
3. 不可约性:系统的状态空间中的所有状态都可以互相转换。
4. 周期性:系统中的某些状态可能会进入一个周期循环,无法转移到其他状态。
通过研究马尔可夫链的性质,可以更好地理解系统的演化规律,并且对系统进行预测和控制。
随机过程Markov链 中科大

个袋子中个随机取一个球, 并放入对方袋中. 若以Xn 表示第n次取球后甲袋中的黑球数, 则{Xn , n ≥ 0}为一Markov链.
为止, 甲赢的概率为p, 输的概率为q . 现以Xn 表示第n局结束时甲所有的赌资, 则{Xn , n ≥
0}为马氏链. 试求甲输光的概率. 17. 考虑赌徒输光模型, 其中赌徒甲的初始赌资为a(> 10), 赌徒乙的初始赌资为b(> 10). 求
赌徒甲的赌资在减少到5 之前达到a + b − 3的概率.
15. 三种同类的商品(1, 2, 3)的市场占有率开始为1/3, 一个季度以后顾客的转移概率矩阵为 1 0.6 0.3 0.1 P = 2 0.3 0.2 0.5 . 3 0.1 0.2 0.7
试求
(a) 半年之后的三种商品的市场占有率; (b) 从状态2到状态3的平均首达时间; (c) 平稳状态下三种商品的市场占有率. 16. 甲有a元, 乙有b元(a, b为正整数). 二人进行赌博, 每局输赢为1元, 一直赌到其中一人输光
(n)
i ∈ I.
以q = 1 − p逆时针方向游动一格.
(a) 试求该Markov链的转移概率矩阵P ; (b) 对该链进行状态分类(关于可约、 周期、 常返、 正常返); (c) 求该链的平稳分布. 问 lim P (n) 是否存在?
n→∞
提示 : 注意N 的奇偶.
4. 考虑从0出发的简单对称随机游动 (见课本例子3.8) . 若以Nn 表示到时刻n为止过程返回
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
试求
n; (a) lim Pi,j n→∞
(b) 每个状态的平均返回时间; (c) 初始分布为何时, 该链为平稳序列。 3. 设Markov链{Xn , n ≥ 0}的状态空间I = {0, 1, 2, . . .}, 转移概率为 1 P0,0 = Pi,i+1 = Pi,0 = , 2 (a) 试求f00 和f00 ; (b) 从0出发首次返回0的平均步长µ0 ; (c) 证明此链不可约遍历。 4. 一质点在圆周上作随机游动,圆周上共有N (≥ 2) 格,质点以概率p 顺时针方向游动一
(a) 试求该链转移矩阵P; (b) 证明该链不可约遍历; (c) 试求极限 lim Pi,j 。
n→∞ (n)
7. 一质点在区间[0, N ]的整数点上作随机游动, 每次往正向和反向移动一格的概率为p, 0 < p< 1 N 为反射壁(即PN,N −1 = 1) 。若以Xn 表 2 , 而以q = 1 − 2p留在原处− p逆时针方向游动一格。
(a) 试求该Markov链的转移概率矩阵P; (b) 对该链进行状态分类(关于可约、 周期、 常返、 正常返) ; (c) 求该链的平稳分布。问 lim P(n) 是否存在?
n→∞
提示 : 注意N 的奇偶。
5. 考虑从0出发的简单对称随机游动 (见课本例子3.8) 。 若以Nn 表示到时刻n为止过程返回
(a) 转移矩阵P; (b) 状态分类(关于可约、 周期、 常返、 正常返); (c) 极限分布。
2
示时刻n质点所处的位置, 则{Xn , n ≥ 0}为一Markov链。
(a) 试求该链转移矩阵P; (b) 若该质点从n出发, 求它被0吸收的概率un , 以及它被吸收的平均步数vn , n = 1, 2, . . . , N . 8. 某车间有两台相同的机器, 每天之多使用其中的一台, 工作着的机器在一天内损坏的概
1. 考虑赌徒输光模型,其中赌徒甲的初始赌资为a(> 10), 赌徒乙的初始赌资为b(> 10)。求
赌徒甲的赌资在减少到5 之前达到a + b − 3的概率。
2. 考虑一个状态为{1, 2, 3}的Markov链, 其转移矩阵为 0.6 0.4 0 P = 0.35 0.3 0.35 0 0.2 0.8 .
到0的次数。证明:
(a) E N2 n ) 2n −2n = (2n + 1) 2 − 1; n 1 (
√ (b) 当n充分大时, ENn 与 n成比例。 6. 2N 个球(N 个白球N 个黑球)随机装到甲、乙两个袋子里,每袋各装N 个球,每次从两
个袋子中个随机取一个球, 并放入对方袋中。 若以Xn 表示第n次取球后甲袋中的黑球数, 则{Xn , n ≥ 0}为一Markov链。
率为p。 车间里有一名修理工, 他一次只能修理一台机器, 且要花两天时间才能修复。 当 一台机器损坏之后,当天即停止生产。若另一台机器是好的,则第二天使用这台好的, 并修理那台坏的。 系统的状态可用数对(x, y ) 来表示, 其中x是一天结束时仍未损坏的机 器数, 而当损坏的机器已经修理了一天时y 取1, 否则取0。 试用一个Markov链{Xn , n ≥ 0} 来描述这个系统(状态空间I = {a = (2, 0), b = (1, 0), c = (1, 1), d = (0, 1)}) 。试求该链的