高三数学一轮复习 专题 直线的参数方程导学案

合集下载

高中数学必修4《直线的参数方程》导学案

高中数学必修4《直线的参数方程》导学案

§2.3 直线的参数方程1,了解直线参数方程的条件及参数的意义2,能根据直线的几何条件,写出直线的参数方程及参数的意义 3,通过观察、探索、发现的创造性过程,培养创新意识。

【重点、难点】\教学重点:曲线参数方程的定义及方法教学难点:选择适当的参数写出曲线的参数方程. 二、学习过程 【情景创设】1.写出圆方程的标准式和对应的参数方程。

圆222r y x =+参数方程⎩⎨⎧==θθsin cos r y r x (θ为参数)(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θθsin cos 00r y y r x x (θ为参数)2.写出椭圆参数方程.3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参 【导入新课】1、问题的提出:一条直线L 的倾斜角是030,并且经过点P (2,3),如何描述直线L 上任意点的位置呢?如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢?2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的参数方程 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)三 、典例分析 1、直线)(sin cos 为参数θθθ⎩⎨⎧==t y t x 与圆)(sin 2cos 24为参数ϕϕϕ⎩⎨⎧=+=y x 相切,那么直线的倾斜角为(A )A .6π或65πB .4π或43πC .3π或32πD .6π-或65π-2、(2009广东理)(坐标系与参数方程选做题)若直线112,:()2.x t l t y kt =-⎧⎨=+⎩为参数与直线2,:12.x s l y s =⎧⎨=-⎩(s 为参数)垂直,则k = .【变式拓展】(2009天津理)设直线1l 的参数方程为113x ty t=+⎧⎨=+⎩(t 为参数),直线2l 的方程为y=3x+4则1l 与2l 的距离为_______四、总结反思1,参数方程化为普通方程的过程就是消参过程常见方法有三种: (1) 代入法:利用解方程的技巧求出参数t ,然后代入消去参数 (2) 三角法:利用三角恒等式消去参数(3) 整体消元法:根据参数方程本身的结构特征,从整体上消去。

高中数学第二讲参数方程三直线的参数方程导学案

高中数学第二讲参数方程三直线的参数方程导学案

三 直线的参数方程庖丁巧解牛知识·巧学直线参数方程的形式过定点M 0(x 0,y 0)、倾斜角为α的直线l 的参数方程为⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数),我们把这一形式称为直线参数方程的标准形式,其中t 为参数.直线参数方程中参数t 的几何意义:表示直线l 上以定点M 0为起点,任意一点M (x ,y )为终点的有向线段M M 0的数量M 0M 。

联想发散 很明显,我们也可以把参数t 理解为以M 0为原点,直线l 向上的方向为正方向的数轴上点M 的坐标,其长度单位与原直角坐标系的长度单位相同.t 是直线上有向线段的数量,当α∈(0,π)时,M 在M 0的上方时,t 〉0;M 在M 0的下方时,t<0;M 与M 0重合时,t=0。

当α=90°时,⎩⎨⎧+=+=ααsin ,cos 00t y y t x x (t 为参数)可化为x=x 0,因此在使用时,不必研究直线斜率不存在时的情况.特别地,若直线l 的倾角α=0时,直线l 的参数方程为⎩⎨⎧=+=,,00y y t x x 当t>0时,点M 在点M 0的右侧;当t=0时,点M 与点M 0重合;当t<0时,点M 在点M 0的左侧.深化升华 若直线的参数方程为一般形式⎩⎨⎧+=+=bt y y at x x 00,(t 为参数),可把它化为标准形式:⎩⎨⎧'+='+=ααsin ,cos 00t y y t x x (t′为参数),其中α是直线的倾斜角tanα=a b ,此时参数t′才有如前所说的几何意义。

同一直线方程的参数方程有多种形式,如⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 222,221(t 为参数)和 ⎩⎨⎧+=-=t y t x 2,1(t 为参数)表示同一条直线,但后者参数t 没有几何意义.直线的参数方程⎩⎨⎧+=+=bty y at x x 00,(t 为参数)只有当a 2+b 2=1且b≥0时,参数t 才有意义. 对于⎪⎪⎩⎪⎪⎨⎧++=++=t b a b y y t b a a x x 220220,(t 为参数),其中b≥0,若a>0,则直线的倾斜角α为锐角;若a<0,则直线的倾斜角α为钝角;若a=0,则直线的倾斜角α为直角.问题·探究问题1 在解决某些问题时可以使用某些已知的结论或公式,正确使用这些结论可以简化运算,使问题的解决更快捷.那么对于直线的参数方程又有哪些常用的结论呢?探究:根据直线参数方程中参数的几何意义,设直线l 的参数方程为⎩⎨⎧+=+=ααtsin ,cos 00y y t x x (t 为参数),直线l 上点A ,B 对应的参数分别为t A 、t B ,则(1)A 、B 两点之间的距离为|AB |=|t a -t b |,特别地,A 、B 两点到点M 0的距离分别为|t A |、|t B |;(2)A 、B 两点的中点所对应的参数为2B A t t +,若点M 0是线段AB 的中点,则t A +t B =0,反之亦然; (3)若直线上的点C 所对应的参数为t C ,C 点分AB 所成的比为λ,则t c =λλ++1B A t t 。

高三一轮复习精细化数学课件:参数方程(28页)

高三一轮复习精细化数学课件:参数方程(28页)

d

17
17
当 a 4 0,即 a 4 时 当sin 1 时,d 取最大值
dmax

a9 17

17
a 8
综上所述:a 8 或 a 16
极坐标
知识储备
极坐标系:在平面上取一个定点O,由O 点出发的一条射线Ox ,一个长度单位
及计算角度的正方向通常取逆时针方向 ,合称为一个极坐标系.
6
y 2sin 5 1
6


2, 11
6

的直角坐标为:

3,1
点在直角坐标中的象限,与极坐标的极角所在象限相同.
例2、将下列各点的直角坐标化为极坐标:
1 3,3
; 2 1, 1
;33, 0
;
2
解:1 2 3 32 12 2 3
y
P0 x0 , y0

P x0 t cos, y0 t sin
t2 cos2 t2 sin2
0
x
t
t 表示直线上动点P 到定点P0 的距离.
若P1 、P2 是 l 上的两点,它们所对应的参数分别为 t1 , t2 ,则
1 P1,P2 的坐标分别为 x0 t1 cos, y0 t1 sin , x0 t2 cos, y0 t2 sin
椭圆 x2 a2

y2 b2
1a b 0的参数方程是:
x

y

a cos b sin

为参数
椭圆 y2 a2
x2 b2
1a b 0的参数方程是:

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

统考版2022届高考数学一轮复习选修4_4.2参数方程课时作业理含解析

课时作业72 参数方程[基础达标]1.[2021·某某省示X 高中名校高三联考]在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆.(1)求曲线C 1的极坐标方程和C 2的直角坐标方程;(2)已知射线θ=π3(ρ≥0)分别与曲线C 1,C 2交于点A ,B (点B 异于坐标原点O ),求线段AB 的长.2.[2021·黄冈中学,华师附中等八校第一次联考]在直角坐标系xOy 中,倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为ρ2=2ρcos θ+8.(1)求直线l 的普通方程与曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,且|AB |=42,求直线l 的倾斜角.3.[2021·某某省七校联合体高三第一次联考试题]在平面直角坐标系xOy 中,已知曲线C 1:x +y =1与曲线C 2:⎩⎪⎨⎪⎧x =2+2cos φy =2sin φ(φ为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 1,C 2的极坐标方程;(2)在极坐标系中,已知l :θ=α(ρ>0)与C 1,C 2的公共点分别为A ,B ,α∈⎝ ⎛⎭⎪⎫0,π2,当|OB ||OA |=4时,求α的值.4.[2021·某某市高三年级摸底考试]在极坐标系中,圆C:ρ=4cosθ.以极点O为原点,极轴为x轴的正半轴建立直角坐标系xOy,直线l经过点M(-1,-33)且倾斜角为α.(1)求圆C的直角坐标方程和直线l的参数方程;(2)已知直线l与圆C交于A,B两点,满足A为MB的中点,求α.5.[2020·全国卷Ⅱ]已知曲线C 1,C 2的参数方程分别为C 1:⎩⎪⎨⎪⎧x =4cos 2θ,y =4sin 2θ(θ为参数),C 2:⎩⎪⎨⎪⎧x =t +1t,y =t -1t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.6.[2021·某某市高三年级摸底测试卷]在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数),在同一平面直角坐标系中,曲线C 经过伸缩变换⎩⎪⎨⎪⎧x ′=2x y ′=y得到曲线C 1,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系(ρ为极径,θ为极角).(1)求曲线C 的普通方程和曲线C 1的极坐标方程;(2)若射线OA :θ=β(ρ>0)与曲线C 1交于点A ,射线OB :θ=β+π2(ρ>0)与曲线C 1交于点B ,求1|OA |2+1|OB |2的值.[能力挑战]7.[2021·某某省豫北名校高三质量考评]在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos φy =y 0+t sin φ(t 为参数,φ∈[0,π)).以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ.(1)求圆C 的直角坐标标准方程;(2)设点P (x 0,y 0),圆心C (2x 0,2y 0),若直线l 与圆C 交于M ,N 两点,求|PM ||PN |+|PN ||PM |的最大值.课时作业721.解析:(1)由曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos φy =sin φ(φ为参数),消去参数φ得x 24+y 2=1,将⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ代入x 24+y 2=1得曲线C 1的极坐标方程为ρ2=4cos 2θ+4sin 2θ=41+3sin 2θ.由曲线C 2是圆心的极坐标为⎝⎛⎭⎪⎫7,π2且经过极点的圆,可得其极坐标方程为ρ=27sin θ,从而得C 2的直角坐标方程为x 2+y 2-27y =0.(2)将θ=π3(ρ≥0)代入ρ=27sin θ得ρB =27sin π3=21,将θ=π3(ρ≥0)代入ρ2=4cos 2θ+4sin 2θ得ρA =4cos 2π3+4sin 2π3=41313, 故|AB |=ρB -ρA =1321-41313.2.解析:(1)因为直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t cos αy =3+t sin α(t 为参数),所以当α=π2时,直线l 的普通方程为x =2,当α≠π2时,直线l 的普通方程为y -3=tan α(x -2),即y =x tan α+3-2tan α.因为ρ2=x 2+y 2,ρcos θ=x ,ρ2=2ρcos θ+8,所以x 2+y 2=2x +8. 所以曲线C 的直角坐标方程为x 2+y 2-2x -8=0.(2)解法一 曲线C 的直角坐标方程为x 2+y 2-2x -8=0, 将直线l 的参数方程代入曲线C 的直角坐标方程整理,得t 2+(23sin α+2cos α)t -5=0.因为Δ=(23sin α+2cos α)2+20>0,所以可设该方程的两个根分别为t 1,t 2,则t 1+t 2=-(23sin α+2cos α),所以|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=[-(23sin α+2cos α)]2+20=42.整理得(3sin α+2cos α)2=3,故2sin ⎝ ⎛⎭⎪⎫α+π6=± 3.因为0≤α<π,所以α+π6=π3或α+π6=2π3,解得α=π6或α=π2,综上所述,直线l 的倾斜角为π6或π2.解法二 直线l 与曲线C 交于A ,B 两点,且|AB |=42,曲线C 为圆:(x -1)2+y 2=9,故圆心C (1,0)到直线l 的距离d =9-(22)2=1.①当α=π2时,直线l 的普通方程为x =2,符合题意.②当α∈⎣⎢⎡⎭⎪⎫0,π2∪⎝ ⎛⎭⎪⎫π2,π时,直线l 的方程为x tan α-y +3-2tan α=0,所以d =|tan α-0+3-2tan α|1+tan 2α=1,整理得|3-tan α|=1+tan 2α,解得α=π6. 综上所述,直线l 的倾斜角为π6或π2.3.解析:(1)由x =ρcos θ,y =ρsin θ,可得曲线C 1的极坐标方程为ρcos θ+ρsin θ=1,即ρsin ⎝ ⎛⎭⎪⎫θ+π4=22.曲线C 2的普通方程为(x -2)2+y 2=4,即x 2+y 2-4x =0, 又x =ρcos θ,y =ρsin θ,所以曲线C 2的极坐标方程为ρ=4cos θ. (2)由(1)知|OA |=ρA =1cos α+sin α,|OB |=ρB =4cos α,∴|OB ||OA |=4cos α(cos α+sin α)=2(1+cos2α+sin2α)=2+22sin ⎝ ⎛⎭⎪⎫2α+π4.∵|OB ||OA |=4,∴2+22sin ⎝ ⎛⎭⎪⎫2α+π4=4,sin ⎝ ⎛⎭⎪⎫2α+π4=22.由0<α<π2,知π4<2α+π4<5π4,∴2α+π4=3π4,∴α=π4.4.解析:(1)由圆C :ρ=4cos θ可得ρ2=4ρcos θ, 因为ρ2=x 2+y 2,x =ρcos θ,所以x 2+y 2=4x ,即(x -2)2+y 2=4,故圆C 的直角坐标方程为(x -2)2+y 2=4. 直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos αy =-33+t sin α(t 为参数,0≤α<π).(2)设A ,B 对应的参数分别为t A ,t B ,将直线l 的参数方程代入C 的直角坐标方程并整理,得t 2-6t (3sin α+cos α)+32=0,Δ=36(3sin α+cos α)2-4×32>0 ①,所以t A +t B =6(3sin α+cos α),t A ·t B =32.又A 为MB 的中点,所以t B =2t A ,因此t A =2(3sin α+cos α)=4sin ⎝ ⎛⎭⎪⎫α+π6,t B =8sin ⎝⎛⎭⎪⎫α+π6,所以t A ·t B=32sin 2⎝ ⎛⎭⎪⎫α+π6=32,即sin 2⎝ ⎛⎭⎪⎫α+π6=1.因为0≤α<π,所以π6≤α+π6<7π6,从而α+π6=π2,即α=π3,又α=π3满足①式,所以所求α=π3.5.解析:(1)C 1的普通方程为x +y =4(0≤x ≤4).由C 2的参数方程得x 2=t 2+1t 2+2,y 2=t 2+1t 2-2,所以x 2-y 2=4.故C 2的普通方程为x 2-y 2=4.(2)由⎩⎪⎨⎪⎧x +y =4,x 2-y 2=4得⎩⎪⎨⎪⎧x =52,y =32,所以P 的直角坐标为⎝ ⎛⎭⎪⎫52,32.设所求圆的圆心的直角坐标为(x 0,0),由题意得x 20=⎝⎛⎭⎪⎫x 0-522+94,解得x 0=1710.因此,所求圆的极坐标方程为ρ=175cos θ.6.解析:(1)将曲线C 的参数方程⎩⎪⎨⎪⎧x =2cos αy =2sin α(α∈[0,2π),α为参数)消去参数,得x 2+y 2=4,所以曲线C 的普通方程为x 2+y 2=4.曲线C 经过伸缩变换得到曲线C 1,则曲线C 1的参数方程为⎩⎪⎨⎪⎧x ′=4cos αy ′=2sin α,得x ′2+4y ′2=16,将x ′=ρcos θ,y ′=ρsin θ,代入上式得曲线C 1的极坐标方程为ρ2cos 2θ+4ρ2sin 2θ=16. (2)将θ=β(ρ>0)代入ρ2cos 2θ+4ρ2sin 2θ=16,得1ρ2=cos 2β16+sin 2β4,即1|OA |2=cos 2β16+sin 2β4,同理1|OB |2=cos 2⎝ ⎛⎭⎪⎫β+π216+sin 2⎝ ⎛⎭⎪⎫β+π24=sin 2β16+cos 2β4,所以1|OA |2+1|OB |2=116+14=516.7.解析:(1)圆C 的极坐标方程为ρ=8cos ⎝ ⎛⎭⎪⎫π3-θ=4cos θ+43sin θ,所以ρ2=43ρsin θ+4ρcos θ.因为ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y , 所以x 2+y 2-4x -43y =0,所以圆C 的直角坐标标准方程为(x -2)2+(y -23)2=16.(2)由(1)知圆C 的圆心的直角坐标为(2,23),则⎩⎪⎨⎪⎧2x 0=22y 0=23,所以⎩⎪⎨⎪⎧x 0=1y 0=3,所以直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos φy =3+t sin φ(t 为参数,φ∈[0,π)).将直线l 的参数方程代入(x -2)2+(y -23)2=16,得t 2-(23sin φ+2cos φ)t -12=0.设点M ,N 对应的参数分别为t 1,t 2, 则t 1+t 2=23sin φ+2cos φ,t 1t 2=-12.故|PM ||PN |+|PN ||PM |=|PM |2+|PN |2|PM |·|PN |=|t 1|2+|t 2|2|t 1||t 2|=(t 1+t 2)2-2t 1t 2|t 1t 2|=112[23sin φ+2cos φ)2+24]=112⎣⎢⎡⎦⎥⎤4sin ⎝⎛⎭⎪⎫φ+π62+2,因此,当φ=π3时,|PM ||PN |+|PN ||PM |取得最大值,最大值为103.。

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型讲义-2022届高三数学一轮复习

极坐标与参数方程题型汇总题型一.直线参数方程t 的几何意义1.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22;(2)|PM |=|t 0|=t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)⎪⎩⎪⎨⎧>+<-+=-=+=+0,0,4)(212121212212121t t t t t t t t t t t t t t PB PA 当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |. 直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-; 2.解题思路第一步:曲线化成普通方程,直线化成参数方程第二步:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第三步:韦达定理:a ct t a b t t =-=+2121,第四步:选择公式代入计算。

1.以直角坐标系的原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C的直角坐标方程;(2)若直线l的参数方程为(t为参数),设点P(1,1),直线l与曲线C相交于A,B两点,求|P A|+|PB|的值.2.在直角坐标系xOy中,直线l过点P(0,1)且斜率为1,以O为极点,x轴的非负半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=2sinθ+2cosθ.(Ⅰ)求直线l的参数方程与曲线C的直角坐标方程;(Ⅱ)若直线l与曲线C的交点为A、B,求|P A|+|PB|的值.3.在直角坐标系xOy中,直线l的参数方程为(t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρsin2θ﹣2cosθ=0.(1)写出直线l的普通方程及曲线C的直角坐标方程;(2)已知点P(0,1),点Q(,0),直线l过点Q且曲线C相交于A,B两点,设线段AB的中点为M,求|PM|的值.4.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是(t为参数).(1)求曲线C的直角坐标方程和直线L的普通方程;(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|P A|•|PB|=1,求实数m的值.5.在平面直角坐标系中,直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴非负半轴为极轴建立极坐标系.(1)求的极坐标方程;(2)设点,直线与曲线相交于点,求的值.6.在平面直角坐标系中,以原点为极点,以轴非负半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线的极坐标方程为.(Ⅰ)写出曲线和直线的直角坐标方程;(Ⅱ)设直线过点与曲线交于不同两点,的中点为,与的交点为,求.7.在平面直角坐标系中,直线的参数方程为(其中为参数).现以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出直线普通方程和曲线的直角坐标方程;(2)过点,且与直线平行的直线交于两点,求.8.在平面直角坐标系中,直线过点,且倾斜角为,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(Ⅰ)写出直线的参数方程及曲线的直角坐标方程;(Ⅱ)若直线与曲线交于,两点,且弦的中点为,求的值.9.在直角坐标系中,过点的直线的参数方程为(为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为.(1)若点的直角坐标为,求直线及曲线的直角坐标方程;(2)若点在上,直线与交于两点,求的值.10.在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线的参数方程为(为参数),其中,直线与曲线相交于,两点.(1)求曲线的直角坐标方程;(2)若点满足,求的值.11.在平面直角坐标系xOy中,点P(0,−1),直线l的参数方程为{x=tcosαy=−1+tsinα(t为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ+ρcos2θ= 8sinθ.(1)求曲线C的直角坐标方程;(2)若直线l与曲线C相交于不同的两点A,B,M是线段AB的中点,当|PM|=409时,求sinα的值.12.在直角坐标系xOy 中,曲线C 1的参数方程为{x =1−√22t y =1+√22t(t 为参数),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cosθ. (1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A,B 两点,点P 的极坐标为(√2,π4),求1|PA|+1|PB|的值.题型二.极径的应用:一直线与两曲线分别相交,求交点间的距离(1)思路:一般采用直线极坐标与曲线极坐标联系方程求出2个交点的极坐标,利用极径相减即可,|=AB |B A 2B A B A 4)(||ρρρρρρ-+=-(2)过原点,倾斜角为α的直线的极坐标方程为:)(R ∈=ραθ 1.在平面直角坐标系中,直线l 的参数方程是(t 为参数),以坐标原点为极点,x 轴的正半轴为板轴,建立极坐标系,已知曲线C 的极坐标方程为ρ2cos 2θ+ρ2sin 2θ﹣2ρsin θ﹣3=0.(1)求直线l 的极坐标方程;(2)若直线l 与曲线C 相交于A ,B 两点,求AB 的长.2.已知曲线,是曲线上的动点,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,以极点为中心,将点绕点逆时针旋转得到点,设点的轨迹方程为曲线.(Ⅰ)求曲线,的极坐标方程;(Ⅱ)射线与曲线,分别交于,两点,定点,求的面积.3.在平面直角坐标系xOy中,曲线C1的参数方程为{x=2+2cosφy=2sinφ(φ为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ.(1)求C1的普通方程和C2的直角坐标方程;(2)已知直线C3的极坐标方程为θ=α(0<α<π,ρ∈R),A是C3与C1的交点,B是C1与C2的交点,且A,B均异于原点O,|AB|=4√2,求a的值.4.在平面直角坐标系xOy 中,曲线C 的参数方程为{x =2+√3cosαy =√3sinα(α为参数),直线l 的参数方程为{x =tcosβy =tsinβ(t 为参数,0≤β<π),以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)已知直线l 与曲线C 相交于A 、B 两点,且|OA |−|OB |=2,求β.5.在直角坐标系xOy 中,直线l 的参数方程为{x =34+√3t y =a +√3t(t 为参数),圆C 的标准方程为(x −3)2+(y −3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程;(2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.题型三.距离、最值、取值范围 (一)与圆有关的题型1.圆与直线的位置关系(圆与直线的交点个数问题)----利用圆心到直线的距离与半径比较 相离,无交点;:r d >个交点;相切,1:r d =个交点;相交,2:r d < 用圆心(x 0,y 0)到直线Ax+By+C=0的距离2200BA C By Ax d +++=,算出d ,在与半径比较。

高三数学一轮复习精品教案1:第2讲 参数方程教学设计

高三数学一轮复习精品教案1:第2讲 参数方程教学设计

第二节参_数_方_程1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么,⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程.2.常见曲线的参数方程和普通方程点的轨迹 普通方程 参数方程直线y -y 0=tan α(x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数) 圆 x 2+y 2=r 2 ⎩⎪⎨⎪⎧ x =r cos θy =r sin θ(θ为参数) 椭圆x 2a 2+y 2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos φy =b sin φ(φ为参数)1.不明确直线的参数方程中的几何意义导致错误,对于直线参数方程⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α.(t 为参数)注意:t 是参数,α则是直线的倾斜角.2.参数方程与普通方程互化时,易忽视互化前后的等价性. 『练一练』1.若直线的参数方程为⎩⎪⎨⎪⎧x =1+2t ,y =2-3t (t 为参数),则直线的斜率为________.『解析』∵y -2x -1=-3t 2t =-32,∴tan α=-32.『答案』-322.参数方程为⎩⎪⎨⎪⎧x =3t 2+2y =t 2-1(0≤t ≤5)的曲线为________.(填“线段”“射线”“圆弧”或“双曲线的一支”)『解析』化为普通方程为x =3(y +1)+2, 即x -3y -5=0, 由于x =3t 2+2∈『2,77』, 故曲线为线段. 『答案』线段1.化参数方程为普通方程的方法消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:①代入消元法;②加减消元法;③乘除消元法;④三角恒等式消元法.2.利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|. 『练一练』1.已知P 1,P 2是直线⎩⎨⎧x =1+12t ,y =-2+32t (t 为参数)上的两点,它们所对应的参数分别为t 1,t 2,则线段P 1P 2的中点到点P (1,-2)的距离是________.『解析』由t 的几何意义可知,线段P 1P 2的中点对应的参数为t 1+t 22,P 对应的参数为t=0,∴线段P 1P 2的中点到点P 的距离为|t 1+t 2|2.『答案』|t 1+t 2|22.已知直线⎩⎨⎧x =2-12t ,y =-1+12t (t 为参数)与圆x 2+y 2=4相交于B ,C 两点,则|BC |的值为________.『解析』∵⎩⎨⎧x =2-12t =2-22t ′,y =-1+12t =-1+22t ′,⎝⎛⎭⎫t ′=22t 代入x 2+y 2=4,得⎝⎛⎭⎫2-22t ′2+⎝⎛⎭⎫-1+22t ′2=4,t ′2-32t ′+1=0,∴|BC |=|t ′1-t ′2|=(t ′1+t ′22-4t ′1t ′2)=(32)2-4×1=14.『答案』14考点一参数方程与普通方程的互化1.曲线⎩⎨⎧x =23cos θy =32sin θ(θ为参数)中两焦点间的距离是________.『解析』曲线化为普通方程为y 218+x 212=1,∴c =6,故焦距为2 6.『答案』262.(2014·西安质检)若直线3x +4y +m =0与圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ(θ为参数)相切,则实数m 的值是________.『解析』圆⎩⎪⎨⎪⎧x =1+cos θ,y =-2+sin θ消去参数θ,化为普通方程是(x -1)2+(y +2)2=1.因为直线与圆相切,所以圆心(1,-2)到直线的距离等于半径,即|3+4×(-2)+m |5=1,解得m =0或m =10.『答案』0或103.(2014·武汉调研)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.已知直线⎩⎨⎧x =-t ,y =3t(t 为参数,t ∈R )与曲线C 1:ρ=4sin θ异于点O 的交点为A ,与曲线C 2:ρ=2sin θ异于点O 的交点为B ,则|AB |=________.『解析』由题意可得,直线y =-3x ,曲线C 1:x 2+(y -2)2=4,曲线C 2:x 2+(y -1)2=1,画图可得,|AB |=4cos 30°×12= 3.『答案』3『备课札记』 『类题通法』参数方程是以参变量为中介来表示曲线上点的坐标的方程,是曲线在同一坐标系下的另一种表示形式,参数方程化为普通方程关键在于消参,消参时要注意参变量的范围.考点二参数方程的应用『典例』 (2014·郑州模拟)已知直线C 1:⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求点P 轨迹的参数方程,并指出它是什么曲线.『解』 (1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1,联立方程⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点坐标分别为(1,0),⎝⎛⎭⎫12,-32.(2)依题意,C 1的普通方程为x sin α-y cos α-sin α=0,则A 点的坐标为(sin 2α,-sin αcos α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧x =12sin 2α,y =-12sin αcos α(α为参数),∴点P 轨迹的普通方程为(x -14)2+y 2=116.故点P 的轨迹是圆心为(14,0),半径为14的圆.『备课札记』在本例(1)条件下,若直线C 1:⎩⎪⎨⎪⎧x =1+t cos αy =t sin α,(t 为参数),与直线C 2⎩⎪⎨⎪⎧x =s ,y =1-as (s 为参数)垂直,求a . 解:由(1)知C 1的普通方程为y =3(x -1),C 2的普通方程为y =1-ax ,由两线垂直得-a ×3=-1,故a =33. 『类题通法』1.解决直线与圆的参数方程的应用问题时一般是先化为普通方程再根据直线与圆的位置关系来解决问题.2.对于形如⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题. 『针对训练』(2013·新课标卷Ⅱ)已知动点P ,Q 在曲线C :⎩⎪⎨⎪⎧x =2cos t ,y =2sin t(t 为参数)上,对应参数分别为t =α与t =2α为(0<α<2π),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点. 解:(1)依题意有P (2cos α,2sin α),Q (2cos2α,2sin2α), 因此M (cos α+cos2α,sin α+sin2α).M 的轨迹的参数方程为⎩⎪⎨⎪⎧x =cos α+cos 2α,y =sin α+sin 2α(α为参数,0<α<2π).(2)M 点到坐标原点的距离d =x 2+y 2=2+2cos α(0<α<2π). 当α=π时,d =0,故M 的轨迹过坐标原点.考点三极坐标、参数方程的综合应用『典例』 (2013·福建高考)在平面直角坐标系中,以坐标原点为极点,x 轴的非负半轴为极轴建立极坐标系.已知点A 的极坐标为⎝⎛⎭⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.『解』 (1)由点A ⎝⎛⎭⎫2,π4在直线ρcos ⎝⎛⎭⎫θ-π4=a 上, 可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2, 从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1, 所以圆C 的圆心为(1,0),半径r =1, 因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.『备课札记』 『类题通法』涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.『针对训练』(2014·石家庄质检)已知P 为半圆C :⎩⎪⎨⎪⎧x =cos θ,y =sin θ(θ为参数,0≤θ≤π)上的点,点A 的坐标为(1,0),O 为坐标原点,点M 在射线OP 上,线段OM 与半圆C 的弧AP 的长度均为π3.(1)以O 为极点,x 轴的正半轴为极轴建立极坐标系,求点M 的极坐标; (2)求直线AM 的参数方程.解:(1)由已知,点M 的极角为π3,且|OM |=π3,故点M 的极坐标为(π3,π3).(2)由(1)可得点M 的直角坐标为(π6,3π6),A (1,0),故直线AM 的参数方程为⎩⎨⎧x =1+(π6-1)t ,y =3π6t(t 为参数).『课堂练通考点』1.(2013·重庆高考)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.若极坐标方程为ρcos θ=4的直线与曲线⎩⎪⎨⎪⎧x =t 2,y =t 3(t 为参数)相交于A ,B 两点,则|AB |=________.『解析』ρcos θ=4化为直角坐标方程为x =4①,⎩⎪⎨⎪⎧x =t 2,y =t 3,化为普通方程为y 2=x 3 ②,①②联立得A (4,8),B (4,-8),故|AB |=16. 『答案』162.(2013·江西高考)设曲线C 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t 2(t 为参数),若以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.『解析』消去曲线C 中的参数t 得y =x 2,将x =ρcos θ,y =ρsin θ代入y =x 2中,得ρ2cos 2θ=ρsin θ,即ρcos 2θ-sin θ=0.『答案』ρcos 2θ-sin θ=03.(2014·合肥模拟)在平面直角坐标系中,直线l 的参数方程为⎩⎨⎧x =12t ,y =22+32t(t 为参数),若以直角坐标系的原点O 为极点,x 轴非负半轴为极轴,且长度单位相同,建立极坐标系,曲线C 的极坐标方程为ρ=2cos ⎝⎛⎭⎫θ-π4.若直线l 与曲线C 交于A ,B 两点,则|AB |=________.『解析』首先消去参数t ,可得直线方程为3x -y +22=0,极坐标方程化为直角坐标方程为⎝⎛⎭⎫x -222+⎝⎛⎭⎫y -222=1,根据直线与圆的相交弦长公式可得|AB |=21-⎝⎛⎭⎫642=102. 『答案』1024.(2014·苏州模拟)在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C 的极坐标方程为:ρsin 2θ=cos θ.(1)求曲线C 的直角坐标方程;(2)若直线l 的参数方程为⎩⎨⎧x =2-22t ,y =22t(t 为参数),直线l 与曲线C 相交于A ,B 两点,求|AB |的值.解:(1)将y =ρsin θ,x =ρcos θ代入ρ2sin 2θ=ρcos θ中,得y 2=x , ∴曲线C 的直角坐标方程为:y 2=x .(2)把⎩⎨⎧x =2-22t ,y =22t ,代入y 2=x 整理得,t 2+2t -4=0,Δ>0总成立.设A ,B 两点对应的参数分别为t 1,t 2, ∵t 1+t 2=-2,t 1t 2=-4,∴|AB |=|t 1-t 2|=(-2)2-4×(-4)=3 2.。

2019年高考数学(文)一轮复习精品资料:专题56参数方程(教学案)含解析

2019年高考数学(文)一轮复习精品资料:专题56参数方程(教学案)含解析

2019年高考数学(文)一轮复习精品资料1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和圆锥曲线的参数方程.3.了解圆的平摆线、渐开线的形成过程,并能推导出它们的参数方程.一、参数方程和普通方程的互化 1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.将参数方程化为普通方程需消去参数.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么y =g(t x =f(t ,就是曲线的参数方程.【特别提醒】在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致. 2.几种常见的参数方程 (1)圆的参数方程若圆心在点M 0(x 0,y 0),半径为r ,则圆的参数方程为y =y0+rsin θx =x0+rcos θ,(θ为参数). (2)椭圆a2x2+b2y2=1(a >b >0)的参数方程为y =bsin θx =acos θ,(θ为参数). (3)双曲线a2x2-b2y2=1(a >0,b >0)的参数方程为y =btan θ,(θ为参数). (4)抛物线y 2=2px (p >0)的参数方程为y =2pt x =2pt2,(t 为参数). 二、直线的参数方程利用直线参数方程中参数的几何意义求解问题的方法经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为y =y0+tsin αx =x0+tcos α,(t 为参数).若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=2t1+t2;(2)|PM |=|t 0|=2t1+t2; (3)|AB |=|t 2-t 1|; (4)|P A |·|PB |=|t 1·t 2|.【特别提醒】直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.三、极坐标与参数方程的综合应用规律1.化归思想的应用,即对于含有极坐标方程和参数的题目,全部转化为直角坐标方程后再求解.2.数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.高频考点一 参数方程与普通方程的互化【例1】 已知直线l 的参数方程为y =-4t x =a -2t ,(t 为参数),圆C 的参数方程为y =4sin θx =4cos θ(θ为参数). (1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【方法规律】 (1)将参数方程化为普通方程,消参数常用代入法、加减消元法、三角恒等变换消去参数.(2)把参数方程化为普通方程时,要注意哪一个量是参数,并且要注意参数的取值对普通方程中x 及y 的取值范围的影响,一定要保持同解变形.【变式探究】 在平面直角坐标系xOy 中,若直线l :y =t -a x =t ,(t 为参数)过椭圆C :y =2sin φx =3cos φ,(φ为参数)的右顶点,求常数a 的值.解 直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为9x2+4y2=1,∴椭圆C 的右顶点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3.高频考点二 参数方程及应用【例2】已知曲线C :4x2+9y2=1,直线l :y =2-2t x =2+t ,(t 为参数). (1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【方法规律】(1)解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决问题.(2)对于形如y =y0+bt x =x0+at ,(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.【变式探究】 平面直角坐标系xOy 中,曲线C :(x -1)2+y 2=1.直线l 经过点P (m ,0),且倾斜角为6π.(1)求圆C 和直线l 的参数方程;(2)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.解 (1)由曲线C :(x -1)2+y 2=1. 得参数方程为y =sin θx =1+cos θ,(θ为参数). 直线l 的参数方程为t 1(t 为参数).(2)设A ,B 两点对应的参数分别为t 1,t 2,将直线l 的参数方程代入x 2+y 2=2x 中,得t 2+(m -)t +m 2-2m =0,所以t 1t 2=m 2-2m , 由题意得|m 2-2m |=1,得m =1,m =1+或m =1-.高频考点三 参数方程与极坐标方程的综合应用【例3】 (2016·全国Ⅲ卷)在直角坐标系xOy 中,曲线C 1的参数方程为y =sin α3cos α,(α为参数),以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin 4π=2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标.的距离d (α)的最小值.d (α)=23cos α+sin α-4|=-2π,当且仅当α=2k π+6π(k ∈Z)时,d (α)取得最小值,最小值为,此时P 的直角坐标为21.【方法规律】(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.【变式探究】 在直角坐标系xOy 中,圆C 的参数方程y =sin φx =1+cos φ,(φ为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)直线l 的极坐标方程是ρ(sin θ+cos θ)=3,射线OM :θ=3π与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长.1. (2018年全国I 卷)[选修4—4:坐标系与参数方程]在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程.【答案】(1).(2).【解析】(1)由,得的直角坐标方程为.(2)由(1)知是圆心为,半径为的圆.由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.2. (2018年全国卷Ⅱ)[选修4-4:坐标系与参数方程]在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.【答案】见解析【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.3. (2018年全国III卷)[选修4—4:坐标系与参数方程]在平面直角坐标系中,的参数方程为(为参数),过点且倾斜角为的直线与交于两点.(1)求的取值范围;(2)求中点的轨迹的参数方程.【答案】(1)(2)为参数,【解析】(1)的直角坐标方程为.当时,与交于两点.当时,记,则的方程为.与交于两点当且仅当,解得或,4. (2018年江苏卷)[选修4—4:坐标系与参数方程]在极坐标系中,直线l的方程为,曲线C的方程为,求直线l被曲线C截得的弦长.【答案】直线l被曲线C截得的弦长为【解析】因为曲线C的极坐标方程为,所以曲线C的圆心为(2,0),直径为4的圆.1.【2017课标1,文22】在直角坐标系xOy中,曲线C的参数方程为(θ为参数),直线l的参数方程为.(1)若,求C与l的交点坐标;(2)若C上的点到l的距离的最大值为,求.【答案】(1),;(2)或.【解析】(1)曲线的普通方程为.当时,直线的普通方程为.由解得或.从而与的交点坐标为,.(2)直线的普通方程为,故上的点到的距离为.当时,的最大值为.由题设得,所以;当时,的最大值为.由题设得,所以.综上,或.2.【2017课标II,文22】在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为。

高考数学一轮复习学案 第67讲 参数方程(原卷版)

高考数学一轮复习学案  第67讲 参数方程(原卷版)

第67讲 参数方程(原卷版)考点 内容解读要求 常考题型 1.参数方程的判定参数方程与普通方程的互化与等价性判定Ⅰ选择题,填空题,大题 2.参数方程的意义 参数方程所表示的曲线的性质. Ⅱ选择题,填空题,大题一、参数方程的概念(1)定义:一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t的函数:⎩⎪⎨⎪⎧x =f (t )y =g (t )①,并且对于t 的每一个允许值,由方程组①所确定的点M(x ,y)都在这条曲线上,那么方程①就叫做这条曲线的 ,联系变数x ,y 的变数t 叫做参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做 . (2)参数的意义:参数是联系变数x ,y 的桥梁,可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数. 2.参数方程与普通方程的区别与联系(1)区别:普通方程F(x ,y)=0,直接给出了曲线上点的坐标x ,y 之间的关系,它含有x ,y 两个变量;参数方程⎩⎪⎨⎪⎧x =f (t )y =g (t )(t 为参数)间接给出了曲线上点的坐标x ,y 之间的关系,它含有三个变量t ,x ,y ,其中x 和y 都是参数t 的函数.(2)联系:普通方程中自变量有一个,而且给定其中任意一个变量的值,可以确定另一个变量的值;参数方程中自变量也只有一个,而且给定参数t 的一个值,就可以求出唯一对应的x ,y 的值.这两种方程之间可以进行互化,通过消去参数可以把参数方程化为普通方程,而通过引入参数,也可把普通方程化为参数方程. 2.圆的参数方程1.圆心在坐标原点,半径为r 的圆的参数方程 如图圆O 与x 轴正半轴交点M0(r ,0).(1)设M(x ,y)为圆O 上任一点,以OM 为终边的角设为θ,则以θ为参数的圆O 的参数方程是⎩⎪⎨⎪⎧x =rcos θy =rsin θ(θ为参数).其中参数θ的几何意义是OM0绕O 点逆时针旋转到OM 的位置时转过的角度.(2)设动点M 在圆上从M0点开始逆时针旋转作匀速圆周运动,角速度为ω,则OM0经过时间t 转过的角θ=ωt ,则以t 为参数的圆O 的参数方程为⎩⎪⎨⎪⎧x =rcos ωt y =rsin ωt (t 为参数).其中参数t 的物理意义是 . 2.圆心为C(a ,b),半径为r 的圆的参数方程圆心为(a ,b),半径为r 的圆的参数方程可以看成将圆心在原点,半径为r 的圆通过坐标平移得到,所以其参数方程为⎩⎪⎨⎪⎧x =a +rcos θ,y =b +rsin θ(θ为参数).3.参数方程和普通方程的互化 曲线的参数方程和普通方程的互化(1)曲线的参数方程和普通方程是在同一平面直角坐标系中表示曲线的方程的两种不同形式,两种方程是等价的可以互相转化.(2)将曲线的参数方程化为普通方程,有利于识别曲线的类型.参数方程通过消去参数就可得到普通方程.(3)普通方程化参数方程,首先确定变数x ,y 中的一个与参数t 的关系,例如x =f(t),其次将x =f(t)代入普通方程解出y =g(t),则 就是曲线的参数方程. (4)在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.二、圆锥曲线的参数方程 1.椭圆的参数方程(1)中心在原点,焦点在x 轴上的椭圆x2a2+y2b2=1(a>b>0)的参数方程是 ,规定参数φ的取值范围是[0,2π).(2)中心在原点,焦点在y 轴上的椭圆y2a2+x2b2=1(a>b>0)的参数方程是 ,规定参数φ的取值范围是[0,2π).(3)中心在(h ,k)的椭圆普通方程为(x -h )2a2+(y -k )2b2=1,则其参数方程为 .2.双曲线的参数方程和抛物线的参数方程 1.双曲线的参数方程(1)中心在原点,焦点在x 轴上的双曲线x2a2-y2b2=1的参数方程是⎩⎪⎨⎪⎧x =asec φy =btan φ(φ为参数),规定参数φ的取值范围为φ∈[0,2π)且φ≠π2,φ≠3π2.(2)中心在原点,焦点在y 轴上的双曲线y2a2-x2b2=1的参数方程是⎩⎪⎨⎪⎧x =btan φy =asec φ(φ为参数).2.抛物线的参数方程(1)抛物线y2=2px 的参数方程为 .(2)参数t 的几何意义是抛物线上除顶点外的任意一点与原点连线的斜率的倒数. 三、直线的参数方程 1.直线的参数方程经过点M0(x0,y0),倾斜角为α的直线l 的参数方程为 . 2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M0的距离.(2)当M0M →与e(直线的单位方向向量)同向时,t 取正数.当M0M →与e 反向时,t 取负数,当M 与M0重合时,t =0. 3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M0(x0,y0),倾斜角为α的直线,选取参数t =M0M 得到的参数方程⎩⎪⎨⎪⎧x =x0+tcos αy =y0+tsin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M0(x0,y0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x0+at y =y0+bt (t 为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义. 四、渐开线与摆线1.渐开线的概念及参数方程 (1)渐开线的产生过程及定义把一条没有弹性的细绳绕在一个圆盘上,在绳的外端系上一支铅笔,将绳子拉紧,保持绳子与圆相切,逐渐展开,铅笔画出的曲线叫做 ,相应的定圆叫做 . (2)圆的渐开线的参数方程以基圆圆心O 为原点,直线OA 为x 轴,建立如图所示的平面直角坐标系.设基圆的半径为r ,绳子外端M 的坐标为(x ,y),则有 .这就是圆的渐开线的参数方程.2.摆线的概念及参数方程 (1)摆线的产生过程及定义平面内,一个动圆沿着一条定直线无滑动地滚动时圆周上一个固定点所经过的轨迹,叫做平摆线,简称 ,又叫旋轮线.(2)半径为r 的圆所产生摆线的参数方程为⎩⎪⎨⎪⎧x =r (φ-sin φ),y =r (1-cos φ)(φ是参数).五、曲线的普通方程与曲线的参数方程的区别与联系 曲线的普通方程=0是相对参数方程而言,它反映了坐标变量与y 之间的直接联系;而参数方程t 是通过参数t 反映坐标变量与y 之间的间接联系.曲线的普通方程中有两个变数,变数的个数比方程的个数多1;曲线的参数方程中,有三个变数两个方程,变数的个数比方程的个数多1个.从这个意义上讲,曲线的普通方程和参数方程是“一致”的. 这时普通方程和参数方程是同一曲线的两种不同表达形式.考点一、参数方程化普通方程例1:化参数方程(t≥0,t为参数)为普通方程,说明方程的曲线是什么图形. 【答案】由(2)解出t,得t=y-1,代入(1)中,得(y≥1)即(y≥1)方程的曲线是顶点为(0,1),对称轴平行于x轴,开口向左的抛物线的一部分.【解析】先由一个方程解出t,再代入另一个方程消去参数t,得到普通方程,这种方法是代入消参法.例2:当t R时,参数方程(t为参数),表示的图形是()A 双曲线B 椭圆C 抛物线D 圆【答案】解法1:原方程可化为(1)÷(2)得:代入(2) 得(y≠-1) 答案选B解法2:令tg=Z) 则消去,得(y≠-1)【解析】解法1使用了代数消元法,解法2观察方程(1)、(2)的“外形”很像三角函数中的万能公式,使用了三角消参法.当x和y是t的有理整函数时,多用代入或加减消元法消去参数;当x和y是t的有理分式函数时,也可以用代入消参法,但往往需要做些技巧性的处理.至于三角消参法,只在比较巧合的情况下使用.类题通法将参数方程化普通方程方法:(基本思想是消参)(1)代入消参法;(2)代数变换法(+,-,×,÷,乘方)(3)三角消参法注意:参数取值范围对取值范围的限制.(参数方程与普通方程的等价性)变式训练1. 将下列方程化为普通方程:(1)(为参数)(2) (t为参数)考点二、普通方程化参数方程例3:设,为参数,化方程为参数方程。

2020高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4

2020高考数学一轮复习 坐标系与参数方程第2讲 参数方程教案 理 选修4-4

第2讲 参数方程【2020年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.基础梳理1.参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数⎩⎪⎨⎪⎧x =f t ,y =ft ,并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式(1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量.(2)圆的参数方程⎩⎪⎨⎪⎧x =r cos θ,y =r sin θ(θ为参数).(3)圆锥曲线的参数方程椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧ x =a sec φ,y =tan φ(φ为参数).抛物线y2=2px 的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt(t 为参数).双基自测1. 极坐标方程ρ=cos θ和参数方程⎩⎪⎨⎪⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是( ).A .直线、直线B .直线、圆C .圆、圆D .圆、直线解析 ∵ρcos θ=x ,∴cos θ=xρ代入到ρ=cos θ,得ρ=x ρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 D2.若直线⎩⎪⎨⎪⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -6 3.二次曲线⎩⎪⎨⎪⎧x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标是________.解析 题中二次曲线的普通方程为x 225+y 29=1左焦点为(-4,0).答案 (-4,0)4.(2020·广州调研)已知直线l的参数方程为:⎩⎪⎨⎪⎧x =2t ,y =1+4t (t 为参数),圆C 的极坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________.解析 将直线l的参数方程:⎩⎪⎨⎪⎧x =2t ,y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为2-11+4,因为该距离小于圆的半径,所以直线l 与圆C 相交. 答案 相交5.(2020·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________.解析 由⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)得,x 25+y 2=1(y ≥0)由⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R )得,x=54y 2,∴5y 4+16y 2-16=0. 解得:y 2=45或y 2=-4(舍去).则x =54y 2=1又θ≥0,得交点坐标为⎝⎛⎭⎪⎫1,255.答案 ⎝⎛⎭⎪⎫1,255考向一 参数方程与普通方程的互化【例1】►把下列参数方程化为普通方程:(1)⎩⎪⎨⎪⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .[审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t .解 (1)由已知⎩⎪⎨⎪⎧cos θ=x -3,sin θ=2-y ,由三角恒等式cos 2 θ+sin 2θ=1,可知(x -3)2+(y -2)2=1,这就是它的普通方程. (2)由已知t =2x -2,代入y =5+32t 中, 得y =5+32(2x -2),即3x -y +5-3=0就是它的普通方程. 参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.【训练1】 (2020·陕西)参数方程⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 由⎩⎪⎨⎪⎧x =cos α,y =1+sin α,得 ⎩⎪⎨⎪⎧x =cos α, ①y -1=sin α, ②①2+②2得:x 2+(y -1)2=1. 答案 x 2+(y -1)2=1考向二 直线与圆的参数方程的应用【例2】►已知圆C :⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值;(2)当直线l 与圆C 有公共点时,求α的取值范围.[审题视点] (1)求圆心到直线l 的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t 的一元二次方程,这个方程的Δ≥0.解 (1)当α=2π3时,直线l 的直角坐标方程为3x +y -33=0,圆C 的圆心坐标为(1,0),圆心到直线的距离d =232=3,圆的半径为1,故圆上的点到直线l 距离的最小值为3-1.(2)圆C 的直角坐标方程为(x -1)2+y 2=1,将直线l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α+3sin α)t +3=0,这个关于t 的一元二次方程有解,故Δ=4(cos α+3sin α)2-12≥0,则sin 2⎝ ⎛⎭⎪⎫α+π6≥34,即sin ⎝ ⎛⎭⎪⎫α+π6≥32或sin ⎝ ⎛⎭⎪⎫α+π6≤-32.又0≤α<π,故只能sin ⎝⎛⎭⎪⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2. 如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.【训练2】 已知直线l的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长.解 由⎩⎪⎨⎪⎧ x =1+t ,y =4-2t 消参数后得普通方程为2x +y -6=0,由⎩⎪⎨⎪⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考向三 圆锥曲线的参数方程的应用【例3】►求经过点(1,1),倾斜角为135°的直线截椭圆x 24+y 2=1所得的弦长.[审题视点] 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决.解由条件可知直线的参数方程是⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),代入椭圆方程可得⎝ ⎛⎭⎪⎫1-22t 24+⎝⎛⎭⎪⎫1+22t 2=1, 即52t 2+32t +1=0.设方程的两实根分别为t 1、t 2,则由二次方程的根与系数的关系可得⎩⎪⎨⎪⎧t 1+t 2=-625,t 1t 2=25,则直线截椭圆的弦长是|t 1-t 2|=t 1+t 22-4t 1t 2=⎝ ⎛⎭⎪⎫-6252-4×25= 425.普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系x =f (t )(或y =φ(t )),再代入普通方程F (x ,y )=0,求得另一关系y =φ(t )(或x =f (t )).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.【训练3】 (2020·南京模拟)过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t (t 为参数)相交于A 、B 两点,求线段AB 的长.解 直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s (s 为参数),又曲线⎩⎪⎨⎪⎧x =t +1t,y =t -1t (t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2.∴s 1+s 2=63,s 1s 2=10.∴|AB |=|s 1-s 2|=s 1+s 22-4s 1s 2=217.如何解决极坐标方程与参数方程的综合问题从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题.【示例】► (本题满分10分)(2020·新课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.第(1)问:利用代入法;第(2)问把曲线C 1、曲线C 2均用极坐标表示,再求射线θ=π3与曲线C 1、C 2的交点A 、B 的极径即可. [解答示范] (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y2. 由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α.从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(5分)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以|AB |=|ρ2-ρ1|=2 3.(10分)很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力.【试一试】 (2020·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎪⎨⎪⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎪⎨⎪⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.[尝试解答] 由题设知,椭圆的长半轴长a =5,短半轴长b =3,从 而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0.。

2020版高考数学一轮复习教案 选修4-4_第2节_参数方程(含答案解析)

2020版高考数学一轮复习教案 选修4-4_第2节_参数方程(含答案解析)

第二节 参数方程[考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数Error!并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)Error!(t 为参数)圆x 2+y 2=r 2Error!(θ为参数)椭圆+=1(a >b >0)x 2a 2y 2b 2Error!(φ为参数)[常用结论]根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2.(1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0;(3)|M 0M 1||M 0M 2|=|t 1t 2|.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)参数方程Error!中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为Error!(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段的数量.M 0M →( )(3)方程Error!表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程Error!(t 为参数),点M 在椭圆上,对应参数t =,点O 为原π3点,则直线OM 的斜率为.( )3[答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线Error!(θ为参数)的对称中心( )A .在直线y =2x 上 B .在直线y =-2x 上C .在直线y =x -1上 D .在直线y =x +1上B [由Error!得Error!所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.]3.直线l 的参数方程为Error!(t 为参数),则直线l 的斜率为________.-3 [将直线l 的参数方程化为普通方程为y -2=-3(x -1),因此直线l 的斜率为-3.]4.曲线C 的参数方程为Error!(θ为参数),则曲线C 的普通方程为________.y =2-2x 2(-1≤x ≤1) [由Error!(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).]5.(教材改编)在平面直角坐标系xOy 中,若直线l :Error!(t 为参数)过椭圆C :Error!(φ为参数)的右顶点,则a =________.3 [直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为+=1,∴椭圆C 的右顶x 29y 24点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3.]参数方程与普通方程的互化1.将下列参数方程化为普通方程.(1)Error!(t 为参数);(2)Error!(θ为参数).[解] (1)∵+=1,∴x 2+y 2=1.(1t ) 2 (1tt 2-1)2∵t 2-1≥0,∴t ≥1或t ≤-1.又x =,∴x ≠0.1t当t ≥1时,0<x ≤1;当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中Error!或Error!(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2,∴y =-2x +4,∴2x +y -4=0.∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3).2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.[解] 圆的半径为,12记圆心为C ,(12,0)连接CP ,则∠PCx =2θ,故x P =+cos 2θ=cos 2θ,1212y P =sin 2θ=sin θcos θ(θ为参数).12所以圆的参数方程为Error!(θ为参数).[规律方法] 消去参数的方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如例1.参数方程的应用【例1】 (2019·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为Error!(θ为参数),直线l 经过点P (1,2),倾斜角α=.π6(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.[解] (1)由Error!消去θ,得圆C 的普通方程为x 2+y 2=16.又直线l 过点P (1,2)且倾斜角α=,π6所以l 的参数方程为Error!即Error!(t 为参数).(2)把直线l 的参数方程Error!代入x 2+y 2=16,得2+2=16,t 2+(+2)t -11=0,(1+32t)(2+12t )3所以t 1t 2=-11,由参数方程的几何意义,|PA |·|PB |=|t 1t 2|=11.[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.2.对于形如(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(2019·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为Error!(t 为参数),直线l 与曲线C :Error!(θ为参数)相交于不同的两点A ,B .(1)若α=,求线段AB 的中点的直角坐标;π3(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值.[解] (1)由曲线C :Error!(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=时,直线l 的参数方程为Error!(t 为参数),π3代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t ==3,t 1+t 22故线段AB 的中点的直角坐标为.(92,332)(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0,则|PA |·|PB |=|t 1t 2|=|8cos2α-sin2α|=,|8(1+tan2α)1-tan2α|由已知得tan α=2,故|PA |·|PB |=.403极坐标、参数方程的综合应用【例2】 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是Error!(t 为参数),l 与C 交于A ,B 两点,|AB |=,求l 的斜10率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)法一:由直线l 的参数方程Error!(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5.又|AB |=,由垂径定理及点到直线的距离公式得=,即=10|-6k |1+k 225-(102)236k 21+k 2904,整理得k 2=,解得k =±,即l 的斜率为±.53153153法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=.144cos2α-44由|AB |=得cos 2α=,tan α=±.1038153所以l 的斜率为或-.153153[规律方法] 处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为Error!(t 为参数),直线l 2的参数方程为Error!(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-=0,2M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =(x +2).1k 设P (x ,y ),由题设得Error!消去k 得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立Error!得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-,从而cos 2θ=,sin 2θ=.13910110代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为.51.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为Error!(θ为参数),直线l 的参数方程为Error!(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.[解] (1)曲线C 的直角坐标方程为+=1.x 24y 216当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α,当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-,故2cos α+sin α=0,于是直线l 的斜率k =tan α=4(2cos α+sin α)1+3cos2α-2.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为Error!(θ为参数),过点(0,-)且倾斜角为α的直线l 与⊙O 交2于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.[解] (1)⊙O 的直角坐标方程为x 2+y 2=1.当α=时,l 与⊙O 交于两点.π2当α≠时,记tan α=k ,则l 的方程为y =kx -.l 与⊙O 交于两点当且仅当<π22|21+k 2|1,解得k <-1或k >1,即α∈或α∈.(π4,π2)(π2,3π4)综上,α的取值范围是.(π4,3π4)(2)l 的参数方程为Error!(t 为参数,<α<).π43π4设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =,且t A ,t B 满足t 2-2t sin α+1tA +tB 22=0.于是t A +t B =2sin α,t P =sin α.22又点P 的坐标(x ,y )满足Error!所以点P 的轨迹的参数方程是Error!.(α为参数,π4<α<3π4)。

2020高考数学文科大一轮复习导学案:选修4-4 坐标系与参数方程4.4.1 Word版含答案

2020高考数学文科大一轮复习导学案:选修4-4 坐标系与参数方程4.4.1 Word版含答案

姓名,年级:时间:选考部分选修4-4 坐标系与参数方程第一节错误!知识点一平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换φ:错误!的作用下,点P(x,y)对应到点P′(x′,y′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.1.(选修4-4P4例题改编)设平面内伸缩变换的坐标表达式为错误!则在这一坐标变换下正弦曲线y=sin x的方程变为y=3sin2x.解析:由已知得错误!代入y=sin x,得错误!y′=sin2x′,即y′=3sin2x′,所以y=sin x的方程变为y=3sin2x。

知识点二极坐标系1.极坐标系的建立:在平面上取一个定点O,叫做极点,从O 点引一条射线Ox,叫做极轴,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就确定了一个极坐标系.如图,设M是平面内一点,极点O与点M的距离OM叫做点M 的极径,记为ρ,以极轴Ox为始边,射线OM为终边的角叫做点M的极角,记为θ。

有序数对(ρ,θ)叫做点M的极坐标,记作M(ρ,θ).2.极坐标与直角坐标的关系:把直角坐标系的原点作为极点,x轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,它的直角坐标是(x,y),极坐标为(ρ,θ),则它们之间的关系为x=ρcosθ,y=ρsinθ.另一种关系为ρ2=x2+y2,tanθ=错误!.2.(选修4-4P11例4改编)点P的直角坐标为(1,-错误!),则点P的极坐标为错误!.解析:因为点P(1,-错误!)在第四象限,与原点的距离为2,且OP与x轴所成的角为-π3,所以点P的极坐标为错误!.3.(选修4-4P15T3)若以直角坐标系的原点为极点,x轴的正半轴为极轴建立极坐标系,则线段y=1-x(0≤x≤1)的极坐标方程为( A )A.ρ=错误!,0≤θ≤错误!B.ρ=错误!,0≤θ≤错误!C.ρ=cosθ+sinθ,0≤θ≤错误!D.ρ=cosθ+sinθ,0≤θ≤错误!解析:∵y=1-x(0≤x≤1),∴ρsinθ=1-ρcosθ(0≤ρcosθ≤1,0≤ρsinθ≤1);∴ρ=错误!错误!.知识点三常见曲线的极坐标方程4.(选修4-4P15T4)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是( B )A。

67东北师大附属中学高三第一轮复习导学案-参数方程A

67东北师大附属中学高三第一轮复习导学案-参数方程A
三、解答题
11.(2012年高考23).(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C1的参数方程是(φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程是ρ=2.正方形ABCD的顶点都在C2上,且A、B、C、D以逆时针次序排列,点A的极坐标为(2,).
(Ⅰ)求点A、B、C、D 的直角坐标;
(2) x+y= 3+cosθ+ 2+sinθ=5+ sin( )∴ x+y的最大值为5+ ,最小值为5 - 。
(3) = 显然当sin( )= 1时,d取最大值,最小值,分别为 , .
例6:过点(2,1)的直线被圆x2+y2-2x+4y=0截得的最长弦所在的直线方程是_________;截得的最短弦所在的直线方程是__________;
二、题型探究
探究一:把参数方程化为普通方程
例1:已知曲线C1: ,C2:
(1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线;
(2)若C1上的点P对应的参数为 ,Q为C2上的动点,求PQ中点M到直线 C3 的距离的最小值。
解答:(Ⅰ)C1 + =1,C2:
C1为圆心是(-4,3),半径是1的圆。
(3)圆心到直线AB的距离 ,圆的半径为r=
所以
探究五:参数方程的综合应用
例5:已知点P(x,y)是圆 上动点,
求(1) 的最值,
(2)x+y的最值,
(3)P到直线x+y- 1=0的距离d的最值。
解:圆 即 ,用参数方程表示为
由于点P在圆上,所以可设P(3+cosθ,2+sinθ),
(1)

第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)

第04讲-直线参数t的几何意义-2020届一轮复习数学套路之极坐标与参数方程(解析版)

第四讲 直线参数t 的几何意义1.直线的参数方程(1)过点M 0(x 0,y 0),倾斜角为α的直线l 的参数为00cos (sin x x t t y y t αα=+⎧⎪⎨=+⎪⎩为参数)(2)由α为直线的倾斜角知α∈[0,π)时,sin α≥0. 2.直线参数方程中参数t 的几何意义参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(1)当0M M u u u u u r与e (直线的单位方向向量)同向时,t 取正数.(2)当0M M u u u u u r与e 反向时,t 取负数,(3)当M 与M 0重合时,t =0.3.经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为为参数)t t y y t x x (sin cos 00⎩⎨⎧+=+=αα若A ,B 为直线l 上两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到: (1)t 0=t 1+t 22; (2)|PM |=|t 0|=t 1+t 22; (3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|(5)212121212121212()4,0,0t t t t t t t t PA PB t t t t t t ⎧-=+-<⎪+=+=⎨+>⎪⎩当当(注:记住常见的形式,P 是定点,A 、B 是直线与曲线的交点,P 、A 、B 三点在直线上) 【特别提醒】(1)直线的参数方程中,参数t 的系数的平方和为1时,t 才有几何意义且其几何意义为:|t |是直线上任一点M (x ,y )到M 0(x 0,y 0)的距离,即|M 0M |=|t |.(2)直线与圆锥曲线相交,交点对应的参数分别为12,t t ,则弦长12l t t =-;知识解读考向一 参数t 的系数的平方和为1【例1】已知在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+4cos θ,y =2+4sin θ(θ为参数),直线l 经过定点P (3,5),倾斜角为π3.(1)写出直线l 的参数方程和曲线C 的标准方程;(2)设直线l 与曲线C 相交于A ,B 两点,求|PA |·|PB |的值.【答案】(1)见解析 (2)3【解析】(1)曲线C :(x -1)2+(y -2)2=16,直线l :⎩⎪⎨⎪⎧x =3+12t ,y =5+32t(t 为参数).(2)将直线l 的参数方程代入圆C 的方程可得t 2+(2+33)t -3=0,设t 1,t 2是方程的两个根,则t 1t 2=-3,所以|PA ||PB |=|t 1||t 2|=|t 1t 2|=3. 学科&网【举一反三】1.已知曲线C 1的极坐标方程为2sin 4cos ρθθ=, C 2的参数方程为32(32x t t y t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)(1)将曲线C 1与C 2的方程化为直角坐标系下的普通方程; (2)若C 1与C 2相交于A 、B 两点,求AB .【答案】(1)曲线C 1的普通方程y 2=4x ,C 2的普通方程x+y-6=0 ;(2)AB 【解析】(1)曲线C 1的普通方程为y 2=4x , 曲线C 2的普通方程为x+y-6=0(2)将C 2的参数方程代入C 1的方程y 2=4x,得23=43-+()()整理可得260t +-=,由韦达定理可得12126t t t t +=-=-12AB t t =-==2.已知曲线C 的极坐标方程是4sin 0ρθ-=,以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 过点M (1,0),倾斜角为34π. (Ⅰ)求曲线C 的直角坐标方程与直线l 的参数方程; (Ⅱ)设直线l 与曲线C 交于A 、B 两点,求MA MB +的值. 【答案】(Ⅰ)曲线C 的直角坐标方程为:x 2+(y-2)2=4,直线l的参数方程为1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ).【解析】(Ⅰ)因为曲线C 的极坐标方程是4sin 0ρθ-=即曲线C 的直角坐标方程为:x 2+(y-2)2=4直线l 的参数方程31+t cos 4(3sin 4x t y t ππ⎧=⎪⎪⎨⎪=⎪⎩为参数)即1(x t y ⎧=-⎪⎪⎨⎪=⎪⎩为参数)(Ⅱ)设点A 、B 对应的参数分别为t 1,t 2将直线l 的参数方程代入曲线C的直角坐标方程得22(1)2)4-+-=整理,得210t -+=,由韦达定理得12121t t t t +== 因为t 1t 2>0,所以1212MA MB t t t t +=+=+=考向二 t 系数平方和不等于1【例2】在平面直角坐标系xOy 中,已知曲线1C 的参数方程为12{22x t y t=+=-(t 为参数),以O 为极点, x 轴的非负半轴为极轴,曲线2C 的极坐标方程为: 22cos sin θρθ=. (Ⅰ)将曲线1C 的方程化为普通方程;将曲线2C 的方程化为直角坐标方程; (Ⅱ)若点()1,2P ,曲线1C 与曲线2C 的交点为A B 、,求PA PB +的值.【答案】(Ⅰ) 12:30,:C x y C +-= 22y x =;(Ⅱ).【解析】(Ⅰ) 1:3C x y +=,即: 30x y +-=;222:sin 2cos C ρθρθ=,即: 22y x =(Ⅱ)方法一:由t 的几何意义可得C 1的参数方程为12(t 22x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩为参数)代入22:2C y x =得26240t t ++=∴1262t t +=-,∴1262PA PB t t +=+=. 方法二:把1:3C x y +=代入22:2C y x =得2890x x -+=所以128x x +=, 129x x = 所以()221212*********PA PB x x x x +=+-++-=⨯-+-()()1221128262x x =⨯-+-=⨯-=【举一反三】1.在平面直角坐标系xOy 中,直线的参数方程为3(3x tt y t⎧=⎪⎨⎪=-⎩为参数)数),以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,已知曲线C 的极坐标方程为cos ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点3,0),直线l 与曲线C 交于不同的两点A 、B ,求MA MB ⋅的值. 【答案】(1)直线l 330x y +-=,【总结套路】直线参数t 几何意义运用最终版套路 第一步--化:曲线化成普通方程,直线化成参数方程;第二步--查:检查直线参数t 的系数平方和是否为1,如果是,进行第三步;如果否,则先化1.2202200022(t a b y t a x x t x x at a b t y y bt b y y t a b ±+⎧=+⎪=+⎧+⎪⎪−−−−−→⎨⎨=+⎪⎪⎩=+⎪+⎩前的系数同时除以保证中的的系数为正数为参数) 第三步--代:将直线的参数方程代入曲线的普通方程,整理成关于t 的一元二次方程:02=++c bt at第四步--写:写出韦达定理:a c t t a b t t =-=+2121,曲线C 的直角坐标方程(x-2)2+y 2=4; (2)3MA MB ⋅=-【解析】(1)直线l30y +-= 因为曲线C 的极坐标方程为cos ρθ=. 所以曲线C 的直角坐标方程(x-2)2+y 2=4;(2)点在直线l 上,且直线l 的倾斜角为120°,可设直线的参数方程为:12(x t t y ⎧=⎪⎪⎨⎪=⎪⎩为参数)代入到曲线C 的方程得:30t +-=,由韦达定理得12122,t t t t +==-由参数的几何意义知123MA MB t t ⋅==。

江苏省灌南高级中学高三数学 直线方程复习导学案

江苏省灌南高级中学高三数学 直线方程复习导学案

江苏省灌南高级中学高三数学复习导学案:直线方程
高考要求:C 级 学习目标:⑴了解两个独立条件确定一条直线,掌握直线方程的截距式,斜截式,掌握直线 方程的点斜式、两点式和一般式,并会求直线方程的一般式。

⑵能灵活运用直线方程的五种形式求直线的方程
自主梳理
基础检测
见导航134页 典型例题
例1 见导航135页例1
变式训练1 已知直线m 过点A(-2,1),分别求m 的方程:
(1)倾斜角的正弦值为5
4; (2)B (-1,-2),C (-3,6)到m 的距离相等;
(3)在x 轴上的截距为y 轴上的两倍;(4)B (-1,-2)到m 的距离为1.
例2 见导航135页例2
例3 见导航135页例3
变式训练2 过点P (2,1)作直线m 交x 轴、y 轴正半轴分别于A ,B ,分别求m 的方程 (1)ABO s ∆最小; (2)B A 00+最小; (3)6=PB PA。

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

高三数学一轮复习课时作业11:第2讲 参数方程

高三数学一轮复习课时作业11:第2讲 参数方程

第2课时 参数方程1.(2018·保定模拟)在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =3+12t ,y =32t(t 为参数).以原点为极点,x 轴正半轴为极轴建立极坐标系,⊙C 的极坐标方程为ρ=23sin θ.(1)写出⊙C 的直角坐标方程;(2)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标. 解 (1)由ρ=23sin θ,得ρ2=23ρsin θ, 所以x 2+y 2=23y ,所以⊙C 的直角坐标方程为x 2+(y -3)2=3. (2)设P ⎝⎛⎭⎫3+12t ,32t ,又C (0,3),则|PC |=⎝⎛⎭⎫3+12t 2+⎝⎛⎭⎫32t -32=t 2+12, 故当t =0时,|PC |取得最小值,此时,点P 的直角坐标为(3,0).2.在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎨⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解 直线l 的参数方程化为普通方程为3x -y -3=0, 椭圆C 的参数方程化为普通方程为x 2+y 24=1,联立方程组⎩⎪⎨⎪⎧3x -y -3=0,x 2+y 24=1,解得⎩⎪⎨⎪⎧x 1=1,y 1=0或⎩⎨⎧x 2=-17,y 2=-837,不妨取A (1,0),B ⎝⎛⎭⎫-17,-837,则|AB |=⎝⎛⎭⎫1+172+⎝⎛⎭⎫0+8372=167.3.已知在直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =22t -2,y =22t(t 为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,求以极点为圆心且与直线l 相切的圆的极坐标方程.解 ∵直线l 的直角坐标方程为x -y +2=0, ∴原点到直线l 的距离r =22=1. ∴以极点为圆心且与直线l 相切的圆的极坐标方程为ρ=1.4.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t ,y =2t 2(t 为参数),在以O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 2的方程为ρsin ⎝⎛⎭⎫θ+π4=22,求曲线C 1与曲线C 2的交点个数.解 曲线C 1,C 2化为普通方程和直角坐标方程分别为x 2=2y ,x +y -4=0,联立⎩⎪⎨⎪⎧x 2=2y ,x +y -4=0,消去y 得x 2+2x -8=0,因为判别式Δ>0,所以方程有两个实数解.故曲线C 1与曲线C 2的交点个数为2.5.已知直线l 的参数方程为⎩⎨⎧x =-1-32t ,y =3+12t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)求圆C 的直角坐标方程;(2)点P (x ,y )是直线l 与圆面ρ≤4sin ⎝⎛⎭⎫θ-π6的公共点,求3x +y 的取值范围. 解 (1)因为圆C 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ. 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以圆C 的直角坐标方程为x 2+y 2+2x -23y =0. (2)设z =3x +y ,由圆C 的直角坐标方程为x 2+y 2+2x -23y =0, 得(x +1)2+(y -3)2=4,所以圆C 的圆心是(-1,3),半径是2.将⎩⎨⎧x =-1-32t ,y =3+12t 代入到z =3x +y ,得z =-t .又直线l 过C (-1,3),圆C 的半径是2,所以-2≤t ≤2,所以-2≤-t ≤2,即3x +y 的取值范围是『-2,2』.6.(2016·全国Ⅱ)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解 (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0. (2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入到C 的极坐标方程,得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11. |AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10,得cos 2α=38,tan α=±153.所以l 的斜率为153或-153.7.(2018·洛阳模拟)在极坐标系中,曲线C 的极坐标方程为ρ=42·sin ⎝⎛⎭⎫θ+π4.现以极点O 为原点,极轴为x 轴的正半轴建立平面直角坐标系,直线l 的参数方程为⎩⎨⎧x =-2+12t ,y =-3+32t (t为参数).(1)写出直线l 的普通方程和曲线C 的直角坐标方程;(2)设直线l 和曲线C 交于A ,B 两点,定点P (-2,-3),求|P A |·|PB |的值. 解 (1)因为ρ=42sin ⎝⎛⎭⎫θ+π4=4sin θ+4cos θ, 所以ρ2=4ρsin θ+4ρcos θ, 所以x 2+y 2-4x -4y =0,即曲线C 的直角坐标方程为(x -2)2+(y -2)2=8; 直线l 的普通方程为3x -y +23-3=0. (2)把直线l 的参数方程代入到圆C : x 2+y 2-4x -4y =0中, 得t 2-(4+53)t +33=0,t 1,2=4+53±403-412,则t 1t 2=33.点P (-2,-3)显然在直线l 上.由直线标准参数方程下t 的几何意义知,|P A |·|PB |=|t 1t 2|=33,所以|P A |·|PB |=33.8.已知曲线C 1:⎩⎪⎨⎪⎧ x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)若C 1上的点P 对应的参数为t =π2,Q 为C 2上的动点,求PQ 中点M 到直线C 3:⎩⎪⎨⎪⎧x =3+2t ,y =-2+t(t 为参数)的距离的最小值.解 (1)曲线C 1:(x +4)2+(y -3)2=1, 曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是以坐标原点为中心,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆. (2)当t =π2时,P (-4,4),Q (8cos θ,3sin θ),故M ⎝⎛⎭⎫-2+4cos θ,2+32sin θ. 曲线C 3为直线x -2y -7=0,M 到C 3的距离d =55|4cos θ-3sin θ-13|, 从而当cos θ=45,sin θ=-35时,d 取最小值855.9.已知曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2cos θ,y =2+2sin θ(θ为参数),以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=-4cos θ. (1)求曲线C 1与C 2的交点的极坐标;(2)A ,B 两点分别在曲线C 1与C 2上,当|AB |最大时,求△OAB 的面积(O 为坐标原点).解 (1)由⎩⎪⎨⎪⎧ x =2cos θ,y =2+2sin θ,得⎩⎪⎨⎪⎧x =2cos θ,y -2=2sin θ,两式平方相加,得x 2+(y -2)2=4,即x 2+y 2-4y =0.①由ρ=-4cos θ,得ρ2=-4ρcos θ,即x 2+y 2=-4x .② ①-②得x +y =0,代入①得交点为(0,0),(-2,2). 其极坐标为(0,0),⎝⎛⎭⎫22,3π4. (2)如图.由平面几何知识可知,A ,C 1,C 2,B 依次排列且共线时|AB |最大, 此时|AB |=22+4,点O 到AB 的距离为 2. ∴△OAB 的面积为S =12×(22+4)×2=2+2 2.10.已知曲线C 的参数方程是⎩⎨⎧ x =a cos φ,y =3sin φ(φ为参数,a >0),直线l 的参数方程是⎩⎪⎨⎪⎧x =3+t ,y =-1-t (t 为参数),曲线C 与直线l 有一个公共点在x 轴上,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的普通方程;(2)若点A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+2π3,C ⎝⎛⎭⎫ρ3,θ+4π3在曲线C 上,求1|OA |2+1|OB |2+1|OC |2的值. 解 (1)直线l 的普通方程为x +y =2,与x 轴的交点为(2,0). 又曲线C 的普通方程为x 2a 2+y 23=1,所以a =2,故所求曲线C 的普通方程是x 24+y 23=1.(2)因为点A (ρ1,θ),B ⎝⎛⎭⎫ρ2,θ+2π3,C ⎝⎛⎭⎫ρ3,θ+4π3在曲线C 上,即点A (ρ1cos θ,ρ1sin θ), B ⎝⎛⎭⎫ρ2cos ⎝⎛⎭⎫θ+2π3,ρ2sin ⎝⎛⎭⎫θ+2π3, C ⎝⎛⎭⎫ρ3cos ⎝⎛⎭⎫θ+4π3,ρ3sin ⎝⎛⎭⎫θ+4π3在曲线C 上, 故1|OA |2+1|OB |2+1|OC |2=1ρ21+1ρ22+1ρ23=14⎣⎡⎦⎤cos 2θ+cos 2⎝⎛⎭⎫θ+2π3+cos 2⎝⎛⎭⎫θ+4π3+ 13⎣⎡⎦⎤sin 2θ+sin 2⎝⎛⎭⎫θ+2π3+sin 2⎝⎛⎭⎫θ+4π3=14⎣⎢⎡⎦⎥⎤1+cos 2θ2+1+cos ⎝⎛⎭⎫2θ+4π32+1+cos ⎝⎛⎭⎫2θ+8π32+ 13⎣⎢⎡⎦⎥⎤1-cos 2θ2+1-cos ⎝⎛⎭⎫2θ+4π32+1-cos ⎝⎛⎭⎫2θ+8π32 =14×32+13×32=78.。

直线的参数方程导学案.doc

直线的参数方程导学案.doc

《直线的参数方程》导学案紫云民族高级中学高二数学组学习目标:1、了解直线的参数方程及参数的的意义2、能选取适当的参数,求直线的参数方程教学重点:联系数轴、向量等知识,写出直线的参数方程.教学难点:通过向量法,建立参数t(数轴上的点坐标)与点在直角坐标系中的坐标,x y之间的联系.一、回忆旧知,做好铺垫1.→a与→b共线向量的充要条件是什么?________________________2.直线l的方向向量怎样表示?________________________3.什么是单位向量?________________________4.斜率存在且为k的直线l的方向向量怎样表示?________________________5.倾斜角为α的直线l的单位方向向量怎样表示?________________________6直线方程的有几种形式?二直线参数方程探究问题1:经过点M(x0,y0),倾斜角为⎪⎭⎫⎝⎛≠2παα 的直线l 的普通方程是________________________;合作探究:过定点0M ),(00y x ,倾斜角为α的直线l 的参数方程如何建立?得出结论:定点 ),(000y x M 倾斜角 α直线的参数方程为观察直线的参数方程,知道那些量可以把直线的参数方程写出来? 练一练1.写出满足下列条件直线的参数方程:yxO(x M →e(0xM αl(1)过点(2,3)倾斜角为4π(2)过点(4,0)倾斜角为32π知识探究一:由 e t M M =0 ,你能得到直线l 的参数方程中参数t 的几何意义吗?知识探究二:M0M如图所示:请讨论参数t的符号;利用t的几何意义,如何求过M0直线上两点AB的距离?点A,点B在M0同侧点A,点B在M0异侧三.例题讲解例1 已知直线l:+yx1=-与抛物线2xy=交于 A,B两点,求线段AB 的长和M (-1,2)到A 、B 两点的距离之积。

课堂练习 巩固新知习题1(课本P39):设直线 l 经过点 )5,1(0M 、倾斜角为3π(1)求直线 l 的参数方程;(2)求直线 l 和圆1622=+y x 的两个交点到点 )5,1(0M 的距离的和与积。

《直线的参数方程(1)》导学案3

《直线的参数方程(1)》导学案3

直线的参数方程()》导学案
三维目标:
知识与技能:了解直线参数方程的条件及参数的意义过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

学习重点:参数的含义,直线单位方向向量的含义。

学习难点:如何引入参数,理解和写直线单位方向向量
学法指导:认真阅读教材,按照导学案的导引,深刻领会数学方法,认真思考、独立规范作
答。

知识链接: 我们学过的直线的普通方程都有哪些?
学习过程:
问题已知一条直线过点,倾斜角,求这条直线方程。

问题在直线上,任取一个点,求坐标。

问题试用直线的倾斜角表示直线的方向单位向量。

问题设,则与具有什么位置关系?用能否表示出这种关系。

问题通过坐标运算,用,,把在直线上,任取一点的坐标表示出来
即过定点倾斜角为的直线的参数方程:
问题在直线的参数方程中,哪些是变量,哪些是常量?
问题
问题参数的取值范围是什么?分别代表什么含义?
练习、直线(为参数)的倾斜角是()
5 5 5 5
、求直线的一个参数方程。

、若点是极坐标方程为的直线与参数方程为(为参数)的曲线的交点,则点的坐标为___________ .
例:已知直线与抛物线交与两点,求线段的长度和点到的距离之积
问题直线与曲线交于两点,对应的参数分别为
()曲线的弦的长是多少?
()线段的中点对应的参数的值是多少?
课堂小结
课堂反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三课时 直线的参数方程
一、教学目标:
知识与技能:了解直线参数方程的条件及参数的意义
过程与方法:能根据直线的几何条件,写出直线的参数方程及参数的意义 情感、态度与价值观:通过观察、探索、发现的创造性过程,培养创新意识。

二重难点:教学重点:曲线参数方程的定义及方法
教学难点:选择适当的参数写出曲线的参数方程.
三、教学方法:启发、诱导发现教学. 四、教学过程 (一)、复习引入:
1.写出圆方程的标准式和对应的参数方程。

圆222r y x =+参数方程⎩

⎧==θθ
sin cos r y r x (θ为参数)
(2)圆22020)\()(r y y x x =+-参数方程为:⎩⎨⎧+=+=θ
θ
sin cos 00r y y r x x (θ为参数)
2.写出椭圆参数方程.
3.复习方向向量的概念.提出问题:已知直线的一个点和倾斜角,如何表示直线的参数方程?
(二)、讲解新课:
1、问题的提出:一条直线L 的倾斜角是0
30
,并且经过点P (2,3),如何描述直线L
上任意点的位置呢? 如果已知直线L 经过两个 定点Q (1,1),P (4,3), 那么又如何描述直线L 上任意点的 位置呢?
2、教师引导学生推导直线的参数方程: (1)过定点),(00y x P 倾斜角为α的直线的
参数方程
⎩⎨
⎧+=+=α
α
sin cos 00t y y t x x (t 为参数)
【辨析直线的参数方程】:设M(x,y)为直线上的任意一点,参数t 的几何意义是指从点P 到点M 的位移,可以用有向线段PM 数量来表示。

带符号. (2)、经过两个定点Q 1
1
(
,)y x ,P 2
2
(,)y x (其中12x x ≠)的直线的参数方程为
12112
1(1){
x X y y x y λλ
λλλλ++++=
=≠-为参数,。

其中点M(X,Y)为直线上的任意一点。

这里
参数λ的几何意义与参数方程(1)中的t 显然不同,它所反映的是动点M 分有向线段QP 的
数量比QM
MP 。

当o λ
>时,M 为内分点;当o λ<且1λ≠-时,M 为外分点;当o λ=时,
点M 与Q 重合。

例题演练:
例1、 已知直线l :10x y +-=与抛物线2
y x =相交于A,B 两点,求线段AB 的长和点
M (1,2)-到A,B 两点的距离之积。

例2、 经过点M(2,1)作直线l ,交椭圆
22
1164
x y +=于A,B 两点,如果点M 恰好为线段AB 的中点,求直线l 的方程。

例3、1cos 2sin x t y t α
α
=+⎧⎨
=-+⎩ (t 为参数,0≤α<π)必过点 ( )
A.(1,-2)
B.(-1,2)
C.(-2,1)
D.(2,-1)
☆ 变式:直线l 的参数方程1sin 252cos 25
x t y t ︒

⎧=-⎨=+⎩ (t 为参数),那么直线l 的倾斜角是( ) A.65︒
B.25︒
C. 155︒
D.115︒
★例4、经过点P (-1,2),倾斜角为
4
π
的直线l 与圆229x y +=相交于A,B 两点,求PA PB +和PA PB ∙的值。

【课后作业与练习】
1、对于参数方程1cos302sin 30x t y t ︒︒⎧=-⎨=+⎩ (t 为参数)和1cos302sin 30x t y t ︒

⎧=+⎨=-⎩
(t 为参数)则
下列结论正确的是( ) A.倾斜角为30︒
的两平行直线。

B.倾斜角为150︒的两重合直线。

C.两条互相垂直而且相交于点(1,2)的直线。

D.两条不垂直而且相交于点(1,2)的直线。

☆2、曲线的参数方程22
32
1x t y t
⎧=+⎨=-⎩ (t 为参数)则曲线是( ) A.线段 B.双曲线的一支 C.圆弧 D.射线
☆3、已知12
,P P
是直线1122x t y ⎧=+⎪⎪
⎨⎪=-+⎪⎩ (t 为参数)上的两点,它们所对应的参数分别为12,t t ,则线段12PP 的中点到点P(1,-2)的距离是 ( )
A.
122t t + B.122t t + C.12
2t t - D.122
t t - ☆4、过点(1,1),倾斜角为150︒
的直线截圆22
4x y +=所得的弦长为 ( )
A.
5
B.5
C.
D.5
5、已知直线l 的斜率k=-1,经过点0(2,1)M -,点M 在直线上,以0M M 的数量t 为参数,则直线l 的参数方程为____
6、直线l
:11x y t
⎧=-+⎪⎨
=+⎪⎩ (t 为参数)上的点P(-4,1
-到直线l 与轴交点间的距离是
____。

☆7、直线l :123x t
y t
=+⎧⎨
=⎩ (t 为参数),截抛物线23y x =所得的弦长是____。

☆8、求经过点(1,1),倾斜角为135︒
的直线截椭圆2
214
x y +=所得的弦长。

9、已知直线l 经过点P (1,1),倾斜角α=6
π。

(1)写出直线l 的参数方程;
★(2)设l 与圆224x y +=相交于A 和点B,求点P 到A,B 两点的距离之积。

10、在直角坐标系xOy 中,直线l
的参数方程为32x y ⎧=-⎪⎪⎨⎪=⎪⎩ (t 为参数).在极坐标系中,圆C
的方程ρθ= (1)求圆C 的直角坐标方程
★(2)设圆C 与直线l 交于点A,B 若点P 的坐标为(3
),求PA PB +。

相关文档
最新文档