一元二次方程的解法与韦达定理练习题

合集下载

(完整版)一元二次不等式的经典例题及详解

(完整版)一元二次不等式的经典例题及详解

一元二次不等式专题练习例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(32<-++x x x .例2 解下列分式不等式: (1)22123+-≤-x x (2)12731422<+-+-x x x x例3 解不等式242+<-x x例4 解不等式04125622<-++-x x x x . 例5 解不等式x xx x x <-+-+222322. 例6 设R m ∈,解关于x 的不等式03222<-+mx x m .例7 解关于x 的不等式)0(122>->-a x a ax . 例8 解不等式331042<--x x .例9 解关于x 的不等式0)(322>++-a x a a x . 例10 已知不等式02>++c bx ax 的解集是{})0(><<αβαx x .求不等式02>++a bx cx 的解集.例11 若不等式1122+--<++-x x b x x x a x 的解为)1()31(∞+-∞,, ,求a 、b 的值. 例12不等式022<-+bx ax 的解集为{}21<<-x x ,求a 与b 的值. 例13解关于x 的不等式01)1(2<++-x a ax . 例14 解不等式x x x ->--81032.例1解:(1)原不等式可化为0)3)(52(>-+x x x把方程0)3)(52(=-+x x x 的三个根3,25,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为⎭⎬⎫⎩⎨⎧><<-3025x x x 或 (2)原不等式等价于⎩⎨⎧>-<-≠⇔⎩⎨⎧>-+≠+⇔>-++2450)2)(4(050)2()5)(4(32x x x x x x x x x 或 ∴原不等式解集为{}2455>-<<--<x x x x 或或说明:用“穿根法”解不等式时应注意:①各一次项中x 的系数必为正;②对于偶次或奇次重根可转化为不含重根的不等式,也可直接用“穿根法”,但注意“奇穿偶不穿”,其法如下图.分析:当分式不等式化为)0(0)()(≤<或x g x f 时,要注意它的等价变形 ①0)()(0)()(<⋅⇔<x g x f x g x f ②0)()(0)(0)()(0)(0)()(0)()(<⋅=⇔≤⎩⎨⎧≠≤⋅⇔≤x g x f x f x g x f x g x g x f x g x f 或或例2(1)解:原不等式等价于⎩⎨⎧≠-+≥+-+-⇔≥+-+-⇔≤+-++-⇔≤+---+⇔≤+--⇔+≤-0)2)(2(0)2)(2)(1)(6(0)2)(2()1)(6(0)2)(2(650)2)(2()2()2(302232232x x x x x x x x x x x x x x x x x x x x xx x x x用“穿根法”∴原不等式解集为[)[)+∞⋃-⋃--∞,62,1)2,(。

一元二次方程专题强化训练

一元二次方程专题强化训练

《一元二次方程》专题练习一、一元二次方程的解法1.已知x 为实数,且满足(x 2+3x )2+3(x 2+3x )﹣18=0,则x 2+3x 的值为 . 2. 若16)3(222=-+y x ,则22y x +的值为 3.已知实数x 满足(x 2﹣5x+5)x =1,实数x 的值可以是 . 4.已知x 是实数且满足(x ﹣3)=0,则相应的代数式x 2+2x ﹣1的值为 .二、一元二次方程的根的定义及韦达定理的运用1.设a ,b 是方程x 2+x ﹣2011=0的两个实数根,则a 2+2a+b 的值为( ) A . 2009 B . 2010 C . 2011 D .2012 2.已知m 、n 是方程x 2﹣2002x+2003=0的两根,则(n 2﹣2003n+2004)与(m 2﹣2003m+2004)的积是 .3.设x 1、x 2是一元二次方程x 2+4x ﹣3=0的两个根,2x 1(x 22+5x 2﹣3)+a=2,则a= . 4.定义:如果一元二次方程ax 2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“凤凰”方程.已知x 2+mx+n=0是“凤凰”方程,且有两个相等的实数根,则mn= .5.定义:如果一元二次方程ax 2+bx+c=0(a≠0)满足a ﹣b+c=0,那么我们称这个方程为“凤凰方程”.已知2x 2﹣mx ﹣n=0是关于x 的凤凰方程,m 是方程的一个根,则m 的值为 . 三、判别式定理的运用1.如果关于x 的一元二次方程kx 2﹣x+1=0有两个不相等的实数根,那么k 的取值范围是( ) A .k < B . k <且k≠0 C .﹣≤k <D .﹣≤k <且k≠02.关于x 的一元二次方程(k ﹣1)x 2﹣2x+1=0有两个不相等的实数根,则实数k 的取值范围是 .3.若m 是非负整数,且关于x 的方程(m ﹣1)x 2﹣2mx+m+2=0有两个实数根,求m 的值及其对应方程的根.四、判别式定理与韦达定理的综合运用1.已知方程x 2﹣(m ﹣1)x+(m+7)=0有一个正根和一个负根,那么( ) A . m >7 B . m >1 C . m <1 D .m <﹣72.已知方程x2﹣(m﹣1)x+m﹣7=0有一个正根一个负根,求m的取值范围.3.如果方程(x﹣1)(x2﹣2x+)=0的三根可以作为一个三角形的三边之长,那么实数k 的取值范围是.4.已知关于x的一元二次方程:x2﹣(2k+1)x+4(k﹣)=0.(1)求证:这个方程总有两个实数根;(2)若等腰△ABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求△ABC 的周长.5.已知x1,x2是关于x的一元二次方程x2﹣2(a+1)x+a2+3=0的两实数根.(1)若(x1﹣1)(x2﹣1)=10,求a的值;(2)已知等腰△ABC的一边为6,另外两边的长都是整数且恰好是方程x2﹣2(a+1)x+a2+3=0的根,求这个三角形的周长.6.已知一元二次方程x2﹣2x+m=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.7.已知x1、x2是方程4x2﹣(3m﹣5)x﹣6m2=0的两根,且,求m的值.8.已知x1,x2是一元二次方程4kx2﹣4kx+k+1=0的两个实数根.(1)是否存在实数k,使(2x1﹣x2)(x l﹣2x2)=成立?若存在,求出k的值;若不存在,请说明理由.(2)求使的值为整数的实数k的整数值.9.已知关于x的一元二次方程x2+(2m+2)x+m2﹣4=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为负整数,且该方程的两个根都是整数,求m的值.10.已知:关于x的一元二次方程(m﹣1)x2﹣2mx+m+1=0 (m>1).(1)求证:方程总有两个不相等的实数根.(2)m为何整数时,此方程的两个实数根都为正整数?11.已知方程a(2x+a)=x(1﹣x)的两个实数根为x 1,x2,设.(1)当a=﹣2时,求S的值;(2)当a取什么整数时,S的值为1;(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.12.已知关于x的一元二次方程x2+(3﹣a)x+a﹣5=0(1)求证:无论a为何实数时方程总有两个不相等的实根;(2)若方程一根大于2,另一根小于2,求实数a的取值范围.五、一元二次方程应用题1.一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.(1)小球滚动了多少时间?(2)平均每秒小球的运动速度减少多少?(3)小球滚动到5m时约用了多少时间(精确到0.1s)?2.某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价为a元,则可卖出(350﹣10a)件.但物价局限定每次商品加价不能超过进价的20%,商品计划要赚400元,需要卖出多少件商品?每件商品的售价应该是多少元?3.某商场购进一批商品,在进价基础上加价120元后,再打九折销售,每件商品售价为360元,每月可售出60件.(1)求该商品的进价.(2)为了扩大销售,商场决定采取适当的降价方式促销,经调查发现,如果每件商品降价a%,那么商场每月可以多售出30a%,要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,求a的值.4.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2010年市政府共投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2012年底共建设了多少万平方米廉租房.5.广安市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.(1)求平均每次下调的百分率.(2)某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?6.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方体盒子(纸板的厚度忽略不计).如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方体盒子.(1)要使折成的长方体盒子的底面积为324cm2,那么剪掉的正方形的边长为多少?(2)折成的长方体盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.7.某工厂拟建一座平面图形为矩形且面积为200平方米的三级污水处理池(平面图如图ABCD所示).由于地形限制,三级污水处理池的长、宽都不能超过16米.如果池的外围墙建造单价为每米400元,中间两条隔墙建造单价为每米300元,池底建造单价为每平方米80元.(池墙的厚度忽略不计)(1)当三级污水处理池的总造价为47 200元时,求池长x;(2)如果规定总造价越低就越合算,那么根据题目提供的信息,以472 00元为总造价来修建三级污水处理池是否最合算?请说明理由.8.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)9.某广告公司制作广告的收费标准是:以面积为单位,在不超过规定面积A(m2)的范围内,每张广告收费1000元,如果超过Am2,则除了要交1000元的基本广告费外,超过部分还按每平方米50A元收费,下表是该公司对两家用户广告面积和收费情况的记载:单位广告面积(单位:m2)收费金额(单位:元)烟草公司 6 1400食品公司 3 1000红星公司要制作一张大型公益广告,其材料形状是矩形,如果它的四周是空白处,并且四周各空0.5米,空白部分不收广告费,中间的矩形部分才是广告面积,若矩形长宽之比为3:2,并且红星公司只能支出110400元的广告费.(1)求A的值.(2)求这张广告的长和宽各是多少米?10.如图,A、B、C、D为矩形的四个顶点,AB=16cm,BC=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止;点Q以2cm/s的速度向点D移动,设运动的时间为t.(1)t为何值时,四边形APQD为矩形?(2)t为何值时,P、Q两点之间的距离是6m?(3)在移动的过程中,PQ能否将矩形ABCD分成面积比为1:2的两部分?若能,求出t的值;若不能,说明理由.11.已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB 边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?(3)求四边形APQC的面积最小值.12.如图,在矩形ABCD中,BC=24cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=x cm(x≠0),则AP=2x cm,CM=3x cm,DN=x2cm.(1)当x为何值时,以P、N两点重合?(2)问Q、M两点能重合吗?若Q、M两点能重合,则求出相应的x的值;若Q、M两点不能重合,请说明理由.(3)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形.。

(必考题)初中九年级数学上册第二十一章《一元二次方程》经典练习卷(答案解析)

(必考题)初中九年级数学上册第二十一章《一元二次方程》经典练习卷(答案解析)

一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.3.下列方程中是一元二次方程的是( )A .210x +=B .220x -=C .21x y +=D .211x x+=B 解析:B【分析】直接利用一元二次方程的定义分析得出答案.【详解】解:A.210x +=,是一元一次方程,故本选项不符合题意.B.220x -=,是一元二次方程,故本选项符合题意.C.21x y +=,是二元二次方程,故本选项不符合题意.D.211x x+=,该方程分式方程,故本选项不符合题意. 故选B .【点睛】 此题主要考查了一元二次方程的定义,正确把握定义是解题关键.4.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=6050D 解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.5.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+= B .2390x x ++= C .2250x x -+= D .25130x x -=D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.6.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%D 解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 7.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x ==A 解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x1=0,x2=1,故选:A.【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.8.下列方程中,有两个不相等的实数根的是()A.x2=0 B.x﹣3=0 C.x2﹣5=0 D.x2+2=0C解析:C【分析】利用直接开平方法分别求解可得.【详解】解:A.由x2=0得x1=x2=0,不符合题意;B.由x﹣3=0得x=3,不符合题意;C.由x2﹣5=0得x1=x2=,符合题意;D.x2+2=0无实数根,不符合题意;故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.9.已知一元二次方程x2﹣6x+c=0有一个根为2,则另一根及c的值分别为()A.2,8 B.3,4 C.4,3 D.4,8D解析:D【分析】设方程的另一个根为t,根据根与系数的关系得到t+2=6,2t=c,然后先求出t,再计算c 的值.【详解】解:设方程的另一个根为t,根据题意得t+2=6,2t=c,解得t=4,c=8.故选:D.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.10.已知方程2202030x x+-=的根分别为a和b,则代数式2a a2020ab++的值为()A.0 B.2020 C.1 D.-2020A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题11.填空:(1)214x x ++________2(7)x =+;(2)29x x -+_______=(x-____)249【分析】运用配方法的运算方法填写即可【详解】解:(1)x2+14x+49=(x+7)2故答案为:49;(2)x2-9x+=(x-)2故答案为:【点睛】此题主要考查了配方法的应用熟练掌握完全平方公解析:49814 92 【分析】运用配方法的运算方法填写即可.【详解】解:(1)x 2+14x+49=(x+7)2故答案为:49;(2)x 2-9x+814=(x-92)2, 故答案为:814,92. 【点睛】此题主要考查了配方法的应用,熟练掌握完全平方公式是关键.12.一元二次方程 x ( x +3)=0的根是__________________.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.13.已知方程2230x x +-=的解是11x =,23x =-,则方程2(3)2(3)30x x +++-=的解是_____.【分析】把(x+3)看成一个整体另一个方程和已知方程的结构形式完全相同所以x+3与已知方程的解也相同根据此题意解题即可【详解】解:∵是已知方程的解由于另一个方程与已知方程的形式完全相同∴x+3=1或 解析:122,6x x =-=-【分析】把(x+3)看成一个整体,另一个方程和已知方程的结构形式完全相同,所以x+3与已知方程的解也相同,根据此题意解题即可.【详解】解:∵ 1213x x ==-,是已知方程2230x x +-=的解,由于另一个方程()()232330x x +++-=与已知方程的形式完全相同,∴x+3=1或x+3=﹣3,解得:1226x x =-=-,.故答案为:1226x x =-=-,.【点睛】本题考查了解一元二次方程,能根据方程的解得出x+3=1和x+3=-3是解此题的关键,此题属于换元法解方程.14.已知()0n n ≠是一元二次方程240x mx n ++=的一个根,则m n +的值为______.【分析】根据一元二次方程的解的定义把代入得到继而可得的值【详解】∵是关于x 的一元二次方程的一个根∴即∵∴即故答案为:【点睛】本题考查了一元二次方程的解的定义因式分解的应用注意:能使一元二次方程左右两解析:4-【分析】根据一元二次方程的解的定义把x n =代入240x mx n ++=得到240n mn n ++=,继而可得m n +的值.【详解】∵n 是关于x 的一元二次方程240x mx n ++=的一个根,∴240n mn n ++=,即()40n n m ++=,∵0n ≠,∴4n m ++,即4m n +=-,故答案为:4-.【点睛】本题考查了一元二次方程的解的定义、因式分解的应用.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.将一元二次方程x 2﹣8x ﹣5=0化成(x +a )2=b (a ,b 为常数)的形式,则b =_____.21【分析】先把常数项移到等号的右边再等号两边同时加上16即可【详解】解:∵x2﹣8x =5∴x2﹣8x+16=5+16即(x ﹣4)2=21故答案为:21【点睛】本题主要考查一元二次方程的配方掌握完全解析:21【分析】先把常数项移到等号的右边,再等号两边同时加上16,即可.【详解】解:∵x 2﹣8x =5,∴x 2﹣8x +16=5+16,即(x ﹣4)2=21,故答案为:21.【点睛】本题主要考查一元二次方程的配方,掌握完全平方公式,是解题的关键.16.已知(x 2+y 2)(x 2+y 2﹣5)=6,则x 2+y 2=_____.6【分析】设x2+y2=m 把原方程转化为含m 的一元二次方程先用因式分解法求解再确定x2+y2的值【详解】设x2+y2=m 原方程可变形为:m(m ﹣5)=6即m2﹣5m ﹣6=0∴(m ﹣6)(m+1)=0 解析:6【分析】设x 2+y 2=m ,把原方程转化为含m 的一元二次方程,先用因式分解法求解,再确定x 2+y 2的值.【详解】设x 2+y 2=m ,原方程可变形为:m (m ﹣5)=6,即m 2﹣5m ﹣6=0.∴(m ﹣6)(m +1)=0,解得m 1=6,m 2=﹣1.∵m =x 2+y 2≥0,∴x 2+y 2=6.故答案为:6.【点睛】本题考查了一元二次方程的解法,掌握换元法和因式分解法解一元二次方程是解决本题的关键.17.三角形两边长分别为3和5,第三边满足方程x2-6x+8=0,则这个三角形的形状是__________.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x1=4,x2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.18.若a是方程210++=的根,则代数式2x x2020a a--的值是________.2021【分析】把x=a代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a代入已知方程,并求得a2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a代入x2+x+1=0,得a2+a+1=0,解得a2+a=-1,所以2020-a2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.已知a 2+1=3a ,b 2+1=3b ,且a ≠b ,则11a b+=_____.【分析】根据一元二次方程根的定义得到ab 是一元二次方程的两根得到a 和b 的和与积再把两根和与两根积求出代入所求的式子中即可求出结果【详解】解:∵a2+1=3ab2+1=3b 且a≠b ∴ab 是一元二次方程解析:3【分析】根据一元二次方程根的定义得到a 、b 是一元二次方程的两根,得到a 和b 的和与积,再把两根和与两根积求出,代入所求的式子中即可求出结果.【详解】解:∵a 2+1=3a ,b 2+1=3b ,且a ≠b∴a ,b 是一元二次方程x 2﹣3x +1=0的两个根,∴由韦达定理得:a +b =3,ab =1, ∴113a b a b ab++==. 故答案为:3.【点睛】 本题考查一元二次方程根与系数关系、一元二次方程根的定义、分式的通分,对一元二次方程根的定义的理解是解题的关键.20.为解决民生问题,国家对某药品价格分两次降价,该药品的原价是48元,降价后的价格是30元,若平均每次降价的百分率均为x ,可列方程.为____________.48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30由此即可求解【详解】解:设平均每次降价的百分率为x 则第一次降价后的价格为48(1-x)第二次降解析:48(1-x)2=30【分析】本题的等量关系为:第一次降价后的价格×第二次降价占第一次降价的百分比=30,由此即可求解.【详解】解:设平均每次降价的百分率为x ,则第一次降价后的价格为48(1-x),第二次降价后的价格为48(1-x)(1-x),由题意,可列方程为:48(1-x)2=30.故答案为:48(1-x)2=30.【点睛】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到相应的等量关系,注意第二次降价后的价格是在第一次降价后的价格的基础上得到的.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.解析:(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.某精准扶贫办对某地甲、乙两个猕猴桃品种进行种植对比实验研究.去年甲、乙两个品种各种植了100亩.收获后甲、乙两个品种的售价均为6元/kg ,且乙的平均亩产量比甲的平均亩产量高500kg ,甲、乙两个品种全部售出后总收入为1500000元. (1)请求出甲、乙两个品种去年平均亩产量分别是多少?(2)今年,精准扶贫办加大了对猕猴桃培育的力度,在甲、乙种植亩数不变的情况下,预计甲、乙两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于乙品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而甲品种的售价不变,甲、乙两个品种全部售出后总收入将在去年的基础上增加58%25a .求a 的值. 解析:(1)甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)a 的值为10.【分析】(1)设 甲、乙两个品种去年平均亩产量分别是 x 千克和 y 千克,根据乙的平均亩产量比甲的平均亩产量高 500kg ,甲、乙两个品种全部售出后总收入为1500000元,列二元一次方程组,即可解得;(2)分别用含a%的式子表示甲,乙的收入,根据销售总收入=甲的收入+乙的收入,可以列一元一次方程,从而解出a 的值.【详解】解:(1)设甲、乙两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,()50010061500000y x x y -=⎧⎨⨯+=⎩解得:10001500x y =⎧⎨=⎩答:甲、乙两个品种去年平均亩产量分别是1000千克和1500千克;(2)甲的收入:6×1000×100(1+a%)乙的收入:6×1500×100(1+2a%)(1+a%)()()()58610001001%6150010012%1%15000001%25a a a a ⎛⎫⨯⨯++⨯⨯++=+ ⎪⎝⎭, 解得:10a =(不合题意,舍去),210a =,答:a 的值为10.【点睛】本题考查了一元一次方程和二元一次方程组,一元二次方程的实际应用,解题的关键是正确假设未知数,找准等量关系,列方程求解.23.(1)解方程290x (直接开平方法)(2)若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,求m 的值.解析:(1)13x =,23x =-;(2)4【分析】(1)利用直接开平方法求解可得答案;(2)根据常数项为0得出关于m 的方程,解之求出m 的值,结合一元二次方程的定义可得答案.【详解】(1)解:290x (直接开平方法)29x =,∴3x =±,∴13x =,23x =-.(2)解:∵关于x 的一元二次方程()221534m x x m m +++-=的常数项为0, ∴210340m m m +≠⎧⎨--=⎩, 解得4m =,1m =-(舍去),∴m 的值为4.【点睛】本题主要考查解一元二次方程的能力,也考查了一元二次方程的定义,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.如图,为了美化街道,刘大爷准备利用自家墙外的空地种两种不同的花卉,墙外宽度无限,墙的最大可用长度是11.5m ,现有长为21m 的篱笆,计划靠着院墙围成一个中间有一道隔栏的长方形花圃.(1)若要围成总面积为36平方米的花圃,边AB 的长应是多少?(2)花的面积能否达到39平方米?若能,求出边AB 的长;若不能,请说明理由.解析:(1)AB 的长应是4米;(2)花的面积不能达到39平方米.【分析】(1)设AB=x 米,根据题意列一元二次方程,解方程,把不合题意的解舍去即可求解; (2)设AB=x 米,根据题意列一元二次方程,方程无实数根,即可求解.【详解】解:(1)设AB=x 米,由题意得 x (21-3x )=36,整理得 27120x x -+=,解得123,4x x ==,当x=3时,21-3x=12>11.5,不合题意,舍去;当x=4时,21-4x=9<11.5,符合题意.答:若要围成总面积为36平方米的花圃,边AB 的长应是4米.(2)设AB=x 米,由题意得 x (21-3x )=39,整理得 27130x x -+=,()2247411330b ac ∆=-=--⨯⨯=-<∴方程无实数根,∴无法围成总面积为39平方米的花圃.答:无法围成总面积为39平方米的花圃.【点睛】本题考查了一元二次方程的应用,根据题意列出方程是解题关键,解题时注意根据题意检验根的合理性.25.已知12,x x 是关于x 的一元二次方程()222110xm x m --+-=两个实数根. (1)求m 取值范围;(2)若()12210x x x -+=,求实数m 的值.解析:(1)54m ≤;(2)0m = 【分析】 (1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-, ()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.26.已知关于x 的一元二次方程x 2-2x+k=0.(1)若方程有实数根,求k 的取值范围;(2)在(1)的条件下,如果k 是满足条件的最大的整数,且方程x 2-2x+k=0一根的相反数是一元二次方程(m-1)x 2-3mx-7=0的一个根,求m 的值.解析:(1)k≤1;(2)2【分析】(1)结合题意,根据判别式的性质计算,即可得到答案;(2)结合(1)的结论,可得k 的值,从而计算得方程x 2-2x+k=0的根,并代入到()21370m x mx ---=,通过求解一元一次方程方程,即可得到答案.【详解】(1)由题意知:44k ∆=-且0∆≥即:4-4k≥0∴k≤1(2)k≤1时,k 取最大整数1当k=1时,221x x -+的解为:121x x ==根据题意,1x =是方程()21370m x mx ---=的一个根 ∴()()()2113170m m -⨯--⨯--= ∴m=2.【点睛】本题考查了一元二次方程、一元一次方程的知识;解题的关键是熟练掌握一元二次方程判别式、一元一次方程的性质,从而完成求解.27.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?解析:30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x 名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x 名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x 1=45,x 2=30.当x 1=45时,2000-40(x-25)=1200<1700,故舍去;当x 2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x 的值. 28.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.解析:(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米.(3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△,方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法知识梳理及典型练习题(含答案)

一元二次不等式及其解法1.一元一次不等式解法任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式.当a>0时,解集为;当a<0时,解集为.2.一元二次不等式及其解法(1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式.(2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________.(3)一元二次不等式的解:(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为f〔x〕g〔x〕的形式.(2)将分式不等式转化为整式不等式求解,如:f 〔x 〕g 〔x 〕>0 ⇔ f (x )g (x )>0; f 〔x 〕g 〔x 〕<0 ⇔ f (x )g (x )<0; f 〔x 〕g 〔x 〕≥0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≥0,g 〔x 〕≠0; f 〔x 〕g 〔x 〕≤0 ⇔ ⎩⎪⎨⎪⎧f 〔x 〕g 〔x 〕≤0,g 〔x 〕≠0.(2021·课标Ⅰ)集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},那么A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1]D.[1,2)解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].应选A .设f (x )=x 2+bx +1且f (-1)=f (3),那么f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1}D.{x |x ≤1}解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b ,解出b =-2,代入原函数,f (x )>0即x 2-2x +1>0,x 的取值范围是x ≠1.应选B. -12<1x <2,那么x 的取值范围是( ) A.-2<x <0或0<x <12 B.-12<x <2C.x <-12或x >2D.x <-2或x >12解:当x >0时,x >12;当x <0时,x <-2.所以x 的取值范围是x <-2或x >12,应选D.不等式1-2xx +1>0的解集是 .解:不等式1-2xx +1>0等价于(1-2x )(x +1)>0,也就是⎝⎛⎭⎫x -12(x +1)<0,所以-1<x <12. 故填⎩⎨⎧⎭⎬⎫x |-1<x <12,x ∈R .(2021·武汉调研)假设一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,那么k的取值范围为________.解:显然k ≠0.假设k >0,那么只须(2x 2+x )max <38k ,解得k ∈∅;假设k <0,那么只须38k <(2x 2+x )min ,解得k ∈(-3,0).故k 的取值范围是(-3,0).故填(-3,0).类型一 一元一次不等式的解法关于x 的不等式(a +b )x +2a -3b <0的解集为⎝⎛⎭⎫-∞,-13,求关于x 的不等式(a -3b )x +b -2a >0的解集.解:由(a +b )x <3b -2a 的解集为⎝⎛⎭⎫-∞,-13, 得a +b >0,且3b -2a a +b=-13,从而a =2b ,那么a +b =3b >0,即b >0, 将a =2b 代入(a -3b )x +b -2a >0,得-bx -3b >0,x <-3,故所求解集为(-∞,-3). 点拨:一般地,一元一次不等式都可以化为ax >b (a ≠0)的形式.挖掘隐含条件a +b >0且3b -2a a +b=-13是解此题的关键.解关于x 的不等式:(m 2-4)x <m +2.解:(1)当m 2-4=0即m =-2或m =2时, ①当m =-2时,原不等式的解集为∅,不符合②当m =2时,原不等式的解集为R ,符合 (2)当m 2-4>0即m <-2或m >2时,x <1m -2.(3)当m 2-4<0即-2<m <2时,x >1m -2.类型二 一元二次不等式的解法解以下不等式:(1)x 2-7x +12>0; (2)-x 2-2x +3≥0; (3)x 2-2x +1<0; (4)x 2-2x +2>0. 解:(1){x |x <3或x >4}. (2){x |-3≤x ≤1}. (3)∅.(4)因为Δ<0,可得原不等式的解集为R .(2021·金华十校联考)函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0, 那么不等式x +(x +1)f (x +1)≤1的解集是( )A.{x |-1≤x ≤2-1}B.{x |x ≤1}C.{x |x ≤2-1}D.{x |-2-1≤x ≤2-1} 解:由题意得不等式x +(x +1)f (x +1)≤1等价于①⎩⎪⎨⎪⎧x +1<0,x +〔x +1〕[-〔x +1〕+1]≤1 或 ②⎩⎪⎨⎪⎧x +1≥0,x +〔x +1〕[〔x +1〕-1]≤1, 解不等式组①得x <-1;解不等式组②得-1≤x ≤2-1. 故原不等式的解集是{x |x ≤2-1}.应选C.类型三 二次不等式、二次函数及二次方程的关系关于x 的不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},求实数b ,c 的值. 解:∵不等式x 2-bx +c ≤0的解集是{x |-5≤x ≤1},∴x 1=-5,x 2=1是x 2-bx +c =0的两个实数根,∴由韦达定理知⎩⎪⎨⎪⎧-5+1=b ,-5×1=c ,∴⎩⎪⎨⎪⎧b =-4,c =-5.不等式ax 2+bx +c >0的解集为{x |2<x <3},求不等式cx 2-bx +a >0的解集.解:∵不等式ax 2+bx +c >0的解集为{x |2<x <3},∴a <0,且2和3是方程ax 2+bx +c =0的两根,由根与系数的关系得⎩⎪⎨⎪⎧-ba=2+3,c a =2×3,a <0.即⎩⎪⎨⎪⎧b =-5a ,c =6a ,a <0.代入不等式cx 2-bx +a >0,得6ax 2+5ax +a >0(a <0). 即6x 2+5x +1<0,∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |-12<x <-13.类型四 含有参数的一元二次不等式解关于x 的不等式:mx 2-(m +1)x +1<0.解:(1)m =0时,不等式为-(x -1)<0,得x -1>0,不等式的解集为{x |x >1}; (2)当m ≠0时,不等式为m ⎝⎛⎭⎫x -1m (x -1)<0. ①当m <0,不等式为⎝⎛⎭⎫x -1m (x -1)>0, ∵1m <1,∴不等式的解集为⎩⎨⎧⎭⎬⎫x |x <1m 或x >1. ②当m >0,不等式为⎝⎛⎭⎫x -1m (x -1)<0. (Ⅰ)假设1m <1即m >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <1;(Ⅱ)假设1m >1即0<m <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x |1<x <1m ;(Ⅲ)假设1m =1即m =1时,不等式的解集为∅.点拨:当x 2的系数是参数时,首先对它是否为零进行讨论,确定其是一次不等式还是二次不等式,即对m ≠0与m =0进行讨论,这是第一层次;第二层次:x 2的系数正负(不等号方向)的不确定性,对m <0与m >0进行讨论;第三层次:1m 与1大小的不确定性,对m <1、m>1与m =1进行讨论.解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).解:不等式整理为ax 2+(a -2)x -2≥0, 当a =0时,解集为(-∞,-1].当a ≠0时,ax 2+(a -2)x -2=0的两根为-1,2a ,所以当a >0时,解集为(-∞,-1]∪⎣⎡⎭⎫2a ,+∞; 当-2<a <0时,解集为⎣⎡⎦⎤2a ,-1; 当a =-2时,解集为{x |x =-1}; 当a <-2时,解集为⎣⎡⎦⎤-1,2a . 类型五 分式不等式的解法(1)解不等式x -12x +1≤1.解:x -12x +1≤1 ⇔ x -12x +1-1≤0 ⇔ -x -22x +1≤0 ⇔ x +22x +1≥0.x +22x +1≥0 ⇔ ⎩⎪⎨⎪⎧〔x +2〕〔2x +1〕≥0,2x +1≠0. 得{xx >-12或x ≤-2}.※(2)不等式x -2x 2+3x +2>0的解集是 .解:x -2x 2+3x +2>0⇔x -2〔x +2〕〔x +1〕>0⇔(x -2)(x +2)(x +1)>0,数轴标根得{x |-2<x <-1或x >2}, 故填{x|-2<x <-1或x >2}. 点拨:分式不等式可以先转化为简单的高次不等式,再利用数轴标根法写出不等式的解集,如果该不等式有等号,那么要注意分式的分母不能为零.※用“数轴标根法〞解不等式的步骤:(1)移项:使得右端为0(注意:一定要保证x 的最高次幂的项的系数为正数).(2)求根:就是求出不等式所对应的方程的所有根..(3)标根:在数轴上按从左到右(由小到大)依次标出各根(不需标出准确位置,只需标出相对位置即可).(4)画穿根线:从数轴“最右根〞的右上方向左下方画线,穿过此根,再往左上方穿过“次右根〞,一上一下依次穿过各根,“奇穿偶不穿〞来记忆.(5)写出不等式的解集:假设不等号为“>〞,那么取数轴上方穿根线以内的范围;假设不等号为“<〞,那么取数轴下方穿根线以内的范围;假设不等式中含有“=〞号,写解集时要考虑分母不能为零.(1)假设集合A ={x |-1≤2x +1≤3},B =⎩⎨⎧⎭⎬⎫x |x -2x ≤0,那么A ∩B =( )A.{x |-1≤x <0}B.{x |0<x ≤1}C.{x |0≤x ≤2}D.{x |0≤x ≤1}解:易知A ={x |-1≤x ≤1},B 集合就是不等式组⎩⎪⎨⎪⎧x 〔x -2〕≤0,x ≠0 的解集,求出B ={}x |0<x ≤2,所以A ∩B ={x |0<x ≤1}.应选B.(2)不等式x -12x +1≤0的解集为( )A.⎝⎛⎦⎤-12,1B.⎣⎡⎦⎤-12,1 C.⎝⎛⎭⎫-∞,-12∪[1,+∞) D.⎝⎛⎦⎤-∞,-12∪[1,+∞) 解:x -12x +1≤0⇔⎩⎪⎨⎪⎧〔x -1〕〔2x +1〕≤0,2x +1≠0得-12<x ≤1.应选A.类型六 和一元二次不等式有关的恒成立问题(1)假设不等式x 2+ax +1≥0对于一切x ∈⎝⎛⎦⎤0,12成立,那么a 的最小值为( ) A.0 B.-2 C.-52D.-3解:不等式可化为ax ≥-x 2-1,由于x ∈⎝⎛⎦⎤0,12, ∴a ≥-⎝⎛⎭⎫x +1x .∵f (x )=x +1x 在⎝⎛⎦⎤0,12上是减函数, ∴⎝⎛⎭⎫-x -1x max=-52.∴a ≥-52.(2)对于任意的a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值总大于0,那么x 的取值范围是( )A.1<x <3B.x <1或x >3C.1<x <2D.x <1或x >2解:记g (a )=(x -2)a +x 2-4x +4,a ∈[-1,1],依题意,只须⎩⎪⎨⎪⎧g 〔1〕>0,g 〔-1〕>0⇒⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0⇒x <1或x >3,应选B.点拨:对于参数变化的情形,大多利用参变量转换法,即参数转换为变量;变量转换为参数,把关于x 的二次不等式转换为关于a 的一次不等式,化繁为简,然后再利用一次函数的单调性,求出x 的取值范围.对于满足|a |≤2的所有实数a ,求使不等式x 2+ax +1>2x +a 成立的x 的取值范围.解:原不等式转化为(x -1)a +x 2-2x +1>0,设f (a )=(x -1)a +x 2-2x +1,那么f (a )在[-2,2]上恒大于0,故有:⎩⎪⎨⎪⎧f 〔-2〕>0,f 〔2〕>0 即⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0 解得⎩⎪⎨⎪⎧x >3或x <1,x >1或x <-1.∴x <-1或x >3.类型七 二次方程根的讨论假设方程2ax 2-x -1=0在(0,1)内有且仅有一解,那么a 的取值范围是( )A.a <-1B.a >1C.-1<a <1D.0≤a <1解法一:令f (x )=2ax 2-x -1,那么f (0)·f (1)<0,即-1×(2a -2)<0,解得a >1. 解法二:当a =0时,x =-1,不合题意,故排除C ,D ;当a =-2时,方程可化为4x 2+x +1=0,而Δ=1-16<0,无实根,故a =-2不适合,排除A.应选B.1.不等式x -2x +1≤0的解集是( )A.(-∞,-1)∪(-1,2]B.[-1,2]C.(-∞,-1)∪[2,+∞)D.(-1,2]解:x -2x +1≤0⇔()x +1()x -2≤0,且x ≠-1,即x ∈(-1,2],应选D.2.关于x 的不等式(mx -1)(x -2)>0,假设此不等式的解集为⎩⎨⎧⎭⎬⎫x |1m <x <2,那么m 的取值范围是( )A.m >0B.0<m <2C.m >12D.m <0解:由不等式的解集形式知m <0.应选D.3.(2021·安徽)一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,那么f (10x )>0的解集为( )A.{x |x <-1或x >lg2}B.{x |-1<x <lg2}C.{x |x >-lg2}D.{x |x <-lg2}解:可设f (x )=a (x +1)⎝⎛⎭⎫x -12(a <0),由f (10x )>0可得(10x +1)⎝⎛⎭⎫10x -12<0,从而10x <12,解得x <-lg2,应选D.4.(2021·陕西)在如下图的锐角三角形空地中,欲建一个面积不小于300 m 2的内接矩形花园(阴影局部),那么其边长x (单位:m )的取值范围是( ) A.[15,20] B.[12,25] C.[10,30]D.[20,30]解:设矩形的另一边为y m ,依题意得x 40=40-y40,即y =40-x ,所以x (40-x )≥300,解得10≤x ≤30.应选C.5.假设关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,那么实数a 的取值范围是( ) A.a <-12 B.a >-4 C.a >-12D.a <-4解:关于x 的不等式2x 2-8x -4-a >0在(1,4)内有解,即a <2x 2-8x -4在(1,4)内有解,令f (x )=2x 2-8x -4=2(x -2)2-12,当x =2时,f (x )取最小值f (2)=-12;当x =4时,f (4)=2(4-2)2-12=-4,所以在(1,4)上,-12≤f (x )<-4.要使a <f (x )有解,那么a <-4.应选D.6.假设不等式x 2-kx +k -1>0对x ∈(1,2)恒成立,那么实数k 的取值范围是____________.解:∵x ∈(1,2),∴x -1>0.那么x 2-kx +k -1=(x -1)(x +1-k )>0,等价于x +1-k >0,即k <x +1恒成立,由于2<x +1<3,所以只要k ≤2即可.故填(-∞,2].7.(2021·江苏)函数f (x )=x 2+mx -1,假设对于任意x ∈[m ,m +1],都有f (x )<0成立,那么实数m 的取值范围是________.解:由题可得f (x )<0对于x ∈[m ,m +1]恒成立,即⎩⎪⎨⎪⎧f 〔m 〕=2m 2-1<0,f 〔m +1〕=2m 2+3m <0, 解得-22<m <0.故填⎝⎛⎭⎫-22,0.8.假设关于x 的不等式x 2-ax -a ≤-3的解集不是空集,求实数a 的取值范围. 解:x 2-ax -a ≤-3的解集不是空集⇔x 2-ax -a +3=0的判别式Δ≥0,解得a ≤-6或a ≥2.9.二次函数f (x )的二次项系数为a ,且不等式f (x )>-2x 的解集为(1,3).(1)假设方程f (x )+6a =0有两个相等的实根,求f (x )的解析式;(2)假设f (x )的最大值为正数,求a 的取值范围.解:(1)∵f (x )+2x >0的解集为(1,3),∴f (x )+2x =a (x -1)(x -3),且a <0.因而f (x )=a (x -1)(x -3)-2x=ax 2-(2+4a )x +3a.①由方程f (x )+6a =0得ax 2-(2+4a )x +9a =0.②因为方程②有两个相等的实根,所以Δ=[-(2+4a )]2-4a ·9a =0,即5a 2-4a -1=0,解得a =1或a =-15. 由于a <0,舍去a =1,将a =-15代入①得f (x )的解析式 f (x )=-15x 2-65x -35. (2)由f (x )=ax 2-2(1+2a )x +3a =a ⎝⎛⎭⎫x -1+2a a 2-a 2+4a +1a , 及a <0,可得f (x )的最大值为-a 2+4a +1a. 由⎩⎪⎨⎪⎧-a 2+4a +1a >0,a <0,解得a <-2-3或-2+3<a <0. 故当f (x )的最大值为正数时,实数a 的取值范围是(-∞,-2-3)∪(-2+3,0).10.解关于x 的不等式:a 〔x -1〕x -2>1(a >0). 解:(x -2)[(a -1)x +2-a ]>0,当a <1时有(x -2)⎝ ⎛⎭⎪⎫x -a -2a -1<0, 假设a -2a -1>2,即0<a <1时,解集为{x |2<x <a -2a -1};假设a -2a -1=2,即a =0时,解集为∅; 假设a -2a -1<2,即a <0时,解集为{x |a -2a -1<x <2}.。

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲

《一元二次方程的解法》经典例题精讲例1解方程025x 2=-.分析:解一元二次方程的方法有四种,而此题用直接开平方法较好.解一元二次方程的方法有四种,而此题用直接开平方法较好.解:025x 2=-,25x 2=,25x ±=,x =±=±55. ∴5x 5x 21-==,.例2解方程2)3x (2=+.分析:如果把x +3看作一个字母y ,就变成解方程2y 2=了.了.解:2)3x (2=+,23x ±=+,23x 23x -=+=+,或, ∴23x 23x 21--=+-=,.例3解方程081)2x (42=--.分析:解此题虽然可用因式分解法、公式法来解,但还是用直接开平方法较好.较好.解:081)2x (42=-- 整理,81)2x (42=-,481)2x (2=-, 292x ±=-,∴25x 213x 21-==,.注意:对可用直接开平方法来解的一元二次方程,一定注意方程有两个解;若a x 2=,则a x ±=;若b )a x (2=-,则a b x +±=.例4解方程02x 3x 2=+-.分析:此题不能用直接开平方法来解,可用因式分解法或用公式法来解.此题不能用直接开平方法来解,可用因式分解法或用公式法来解. 解法一:02x 3x 2=+-,(x (x--2)(x 2)(x--1)1)==0, x -2=0,x -1=0,∴2x 1x 21==,. 解法二: ∵a =1,b =-=-33,c =2, ∴01214)3(ac 4b 22>=´´--=-,∴213x ±=.∴1x 2x21==,.注意:用公式法解方程时,要正确地确定方程各项的系数a 、b 、c 的值,先计算“△”的值,若△先计算“△”的值,若△<0<0<0,则方程无解,就不必解了.,则方程无解,就不必解了.,则方程无解,就不必解了.例5解关于x 的方程0n )n m 2x 3(m x 22=-+--.分析:先将原方程加以整理,化成一元二次方程的一般形式,注意此方程为关于x 的方程,即x 为未知数,为未知数,m m ,n 为已知数.在确定0ac 4b 2³-的情况下,利用公式法求解.利用公式法求解.解:把原方程左边展开,整理,得把原方程左边展开,整理,得0)n mn m 2(mx 3x 222=--+-.∵a =1,b =-=-3m 3m 3m,,22n mn m 2c --=, ∴)n mn m 2(14)m 3(ac 4b 2222--´´--=-22n 4mn 4m ++= 0)n 2m (2³+=.∴2)n 2m (m 3x 2++=2)n 2m (m 3+±=.∴nm x n m 2x 21-=+=,. 注意:解字母系数的一元二次方程与解数字系数的一元二次方程一样,都要先把方程化为一般形式,确定a 、b 、c 和ac 4b 2-的值,然后求解.但解字母系数方程时要注意:系数方程时要注意:(1)(1)(1)哪个字母代表未知数,也就是关于哪个未知数的方程;哪个字母代表未知数,也就是关于哪个未知数的方程;(2)(2)不要把一元二次方程一般形式中的不要把一元二次方程一般形式中的a 、b 、c 与方程中字母系数的a 、b 、c 相混淆;混淆;(3)(3)(3)在在ac 4b 2-开平方时,可能会出现两种情况,但根号前有正负号,开平方时,可能会出现两种情况,但根号前有正负号,已包已包括了这两种可能,因此,)n 2m ()n 2m (2+±=+±.例6用配方法解方程x 73x 22=+.分析:解一元二次方程虽然一般不采用配方法来解,但配方法的方法本身重要,要记住.重要,要记住.解:x 73x 22=+,23x 27x 2=+-,0234747x 27x 22=+÷øöçèæ-÷øöçèæ+-2, 162547x 2=÷øöçèæ-, ∴4547x ±=-. ∴21x3x21==,. 注意:用配方法解一元二次方程,要把二次项系数化为1,方程左边只有二次项,一次项,次项,一次项,右边为常数项,然后方程两边都加上一次项系数一半的平方,左右边为常数项,然后方程两边都加上一次项系数一半的平方,左边就配成了一个二项式的完全平方.边就配成了一个二项式的完全平方.例7不解方程,判别下列方程的根的情况:不解方程,判别下列方程的根的情况:(1)04x 3x 22=-+;(2)y 249y 162=+;(3)0x 7)1x (52=-+.分析:要判定上述方程的根的情况,只要看根的判别式ac 4b 2-=D 的值的符号就可以了.符号就可以了.解:(1)(1)∵∵a =2,b =3,c =-=-44, ∴041)4(243ac 4b 22>=-´´-=-. ∴方程有两个不相等的实数根.∴方程有两个不相等的实数根. (2)(2)∵∵a =1616,,b =-=-242424,,c =9, ∴09164)24(ac 4b 22=´´--=-. ∴方程有两个相等的实数解.∴方程有两个相等的实数解.(3)(3)将方程化为一般形式将方程化为一般形式0x 75x 52=-+,05x 7x 52=+-.∵a =4,b =-=-77,c =5, ∴554)7(ac 4b 22´´--=- =4949--100 =-=-51<051<051<0..∴方程无实数解.∴方程无实数解.注意:对有些方程要先将其整理成一般形式,再正确确定a 、b 、c 的符号.例8已知方程06kx x 52=-+的一个根是2,求另一根及k 的值.的值.分析:根据韦达定理a cx x abxx2121=×-=+,易得另一根和k 的值.再是根据方程解的意义可知x =2时方程成立,即把x =2代入原方程,先求出k 值,再求出方程的另一根.但方法不如第一种.求出方程的另一根.但方法不如第一种.解:设另一根为2x ,则,则56x 25k x 222-=×-=+,,∴53x 2-=,k =-=-77.即方程的另一根为53-,k 的值为-的值为-77. 注意:一元二次方程的两根之和为a b -,两根之积为a c.例9利用根与系数的关系,求一元二次方程01x 3x 22=-+两根的两根的 (1)(1)平方和;平方和;平方和;(2)(2)(2)倒数和.倒数和.倒数和.分析:已知21x x 23xx2121-=×-=+,.要求.要求(1)(1)2221x x +,(2)21x 1x 1+,关键是把2221x x +、21x 1x 1+转化为含有2121x x x x ×+、的式子.的式子.因为两数和的平方,等于两数的平方和加上这两数积的2倍,即ab 2b a )b a (222++=+,所以ab 2)b a (b a 222-+=+,由此可求出,由此可求出(1)(1)(1).同样,可用.同样,可用两数和与积表示两数的倒数和.两数和与积表示两数的倒数和.解:(1)(1)∵∵21x x 23x x 2121-=×-=+,,∴212212221x x 2)x x (x x -+=+÷øöçèæ--÷øöçèæ-=212232149+= 413=; (2)211221x x x x x 1x 1+=+ 2123--==3.注意:利用两根的和与积可求两根的平方和、倒数和,其关键是把平方和、倒数和变成两根的和与积,其变形的方法主要运用乘法公式.倒数和变成两根的和与积,其变形的方法主要运用乘法公式.例10已知方程0m x 4x 22=++的两根平方和是3434,求,求m 的值.的值.分析:已知34x x 2m x x 2x x 22212121=+=×-=+,,,求m 就要在上面三个式子中设法用222121x x x x ++和来表示21x x ,m 便可求出.便可求出.解:设方程的两根为21x x 、,则,则2mx x 2x x 2121=×-=+,.∵212212221x x 2)x x (x x -+=+, ∴)x x ()x x (x x 2222122121+-+=34)2(2--==-=-303030..∵2mxx 21=,∴m =-=-303030..注意:解此题的关键是把式子2221x x x x+变成含2121x x x x 、+的式子,从而求得m 的值.的值.例11求一个一元二次方程,使它的两个根是2、1010..分析:因为任何一元二次方程都可化为因为任何一元二次方程都可化为((二次项系数为1)0q px x 2=++的形式.如设其根为21x x 、,根据根与系数的关系,得q x x p x x 2121=×-=+,.将p 、q 的值代入方程0q px x 2=++中,即得所求方程0x x x )x x (x 21212=×++-.解:设所求的方程为0q px x 2=++.∵2+1010=-=-=-p p ,2×1010==q ,∴p =-=-121212,,q =2020..∴所求的方程为020x 12x 2=+-.注意:以21x x 、为根的一元二次方程不止一个,为根的一元二次方程不止一个,但一般只写出比较简单的一但一般只写出比较简单的一个.个.例12已知两个数的和等于8,积等于9,求这两个数.,求这两个数. 分析:把这两个数看作某个二次项系数为1的一元二次方程的两个根,则这个方程的一次项系数就应该是-这个方程的一次项系数就应该是-88,常数项应该是9,有了这个方程,再求出它的根,即是这两个数.它的根,即是这两个数.解:设这两个数为21x x 、,以这两个数为根的一元二次方程为0q px x 2=++.∵qx x p 8xx2121=×-==+,,∴方程为09x 8x 2=+-.解这个方程得74x 74x21-=+=,,∴这两个数为7474-+和.例13如图22-2-122-2-1,在长为,在长为32m 32m,宽为,宽为20m 的长方形地面上,修筑两条同样宽而且互相垂直的道路,余下的部分作为绿化用草地,要使草地的面积为2m 540,那么道路的宽度应是多少?那么道路的宽度应是多少?分析:设道路的宽度为x m ,则两条道路的面积和为,则两条道路的面积和为2x x 20x 32-+. 题中的等量关系为:草地面积+道路面积=长方形面积.题中的等量关系为:草地面积+道路面积=长方形面积.解:设道路的宽度为x m ,则,则,则 2032x x 20x 325402´=-++. 0100x 52x 2=+-,(x (x--2)(x 2)(x--50)50)==0, x -2=0,x -5050==0, ∴50x 2x21==,.∵x =50不合题意,不合题意, ∴取x =2.答:道路的宽度为2m 2m..注意:两条道路重合了一部分,重合的面积为2x .因此计算两条道路的面积和时应减去重合面积2x .例14某钢铁厂去年1月份钢的产量为5000吨,吨,33月份上升到7200吨,求这两个月平均每月增长的百分率是多少?这两个月平均每月增长的百分率是多少?分析:设平均每月增长的百分率为x ,则增长一次后的产量为5000(15000(1++x)x),,增长两次后的产量是2)x 1(5000+,….增长n 次后的产量b 是n )x 1(5000b +=.这就是重要的增长率公式.这就是重要的增长率公式.解:设平均每月增长的百分率为x .则.则7200)x 1(50002=+,2536)x 1(2=+,56x 1±=+,∴22x 20x 21.,.-==(不合题意,舍去不合题意,舍去)). 答:平均每月增长的百分率是20%20%..注意:解方程时,由1+x 的值求x ,并舍去负值.,并舍去负值.。

八年级秋季班-第5讲一般一元二次方程的解法及韦达定理

八年级秋季班-第5讲一般一元二次方程的解法及韦达定理

一般一元二次方程的解法及韦达定理内容分析利用配方法和求根公式法解一元二次方程是八年级数学上学期第十七章第二节内容,主要对一般的一元二次方程不能运用直接开平方或者是因式分解进行求解的时候,采取的两种方法,重点是对一元二次方程这两种解法的原理和过程的理解,难点是配方法和因式分解在解一元二次方程中的灵活应用.经过本节课学习,我们已经将解方程的常用方法讲解完毕,注意灵活运用和综合提高,在计算的准确度上和选择合适的方法解题上多下功夫.知识结构模块一:一般一元二次方程的解法知识精讲1、配方法的步骤①先把二次项系数化为1:即方程左右两边同时除以二次项系数;②移项:把常数项移到方程右边;③配方:方程两边都加上一次项系数一半的平方,把原方程化成(x +m)2 =n 的形式;④当n ≥ 0 时,用直接开平方的方法解变形后的方程.2例题解析2、求根公式法的一般步骤①把一元二次方程化成一般形式ax 2 + bx + c = 0 ( a ≠ 0 ); ②确定 a 、b 、c 的值;③求出b 2 - 4ac 的值(或代数式);若b 2- 4ac ≥ 0 ,则把 a 、b 、c 及b 2- 4ac 的值代入求根公式 x = 2a ,求出 x 1 、x ;若b 2 - 4ac < 0 ,则方程无解.【例1】 填空:(1) x 2 - 1x + = (x -2b)2; (2) x 2-+ 21= (x - 25b 2)2 ;2(3) x 2 - x + = (x - )2;(4)4xa- += (2x - ) . a 2【例2】 如果 x 2 + ax + 4 是一个完全平方式,那么a 的值可以是()A .4B . -2C .2 或-2D .都不对【例3】 若 m < 0 且 x = 2 时,等式 x 2 - mx + m 2 - 7 = 0 成立,则m 值为.【例4】 如果一元二次方程有一个根为 1,那么这个方程可以是.【例5】 解下列方程(配方法):(1) x 2 + 3x - 4 = 0 ;(2) 0.04x 2 + 0.4x +1 = 0 ;(3) 2x 2 + 4mx + m 2 = 0 ;(4) ax 2 + bx + c = 0(a ≠ 0) .-b b 2- 4ac【例6】解下列方程(求根公式法):(1)x2 = 2(x -1) ;(2)0.2x2 - 0.1x =1;(3)x2 + 2(+1)x +2= 0 ;(4)x2 - 2mx +m2 -n2 = 0 .33【例7】解下列关于x 的方程(用适当的方法):(1)mx2 -nx -p = 0(m ≠ 0) ;(2)(x -5)(x -3) +x(x + 6) =145 .【例8】用指定的方法解下列方程:(1)x2-12x=3(配方法);(2)3(2x -1)2 = 75 (开平方);(3)(1 - 2)x2= (1 + 2)x(因式分解);(4)3x2+12x+7=0(公式法).【例9】已知:(x2 + 2x + 1)0 =x2 - 2x - 2 ,求x 的值.【例10】 x 为何值时,代数式10x 2 - 21x + 9x 2 + 1的值等于零.【例11】 的例题:解方程 x 2 - | x | -2 = 0解:当 x ≥ 0 时,原方程化为 x 2 - x - 2 = 0 ,解得: x = 2 ,x = -1 (舍)12当 x < 0 时,原方程化为 x 2 + x - 2 = 0 ,解得: x = -2 ,x = 1 (舍)12∴原方程的根是 x 1 = 2 ,x 2 = -2请参照例题解方程 x 2 - | x - 1| -1 = 0 .【例12】 解下列关于 x 的方程方程:(1) kx 2 + 2(k - 2)x + (k - 3) = 0 ;(2) (x - 5)(x + 3) + (x - 2)(x + 4) = 49 ;(3) 2x 2 + (3a - b )x - 2a 2 + 3ab - b 2 = 0 .【例13】 已知: y = 2x 2 - 3x + 1,y = 4x 2 + 4x + 7 ,求 x 为何值时, y = y .1212⎨【例14】解关于x 的一元二次方程x2 - 4 =x(mx - 3) ,其中m 是满足不等式⎧3m + 1 > 0的⎩3 - 2m > 0 整数.【例15】求关于x 的方程:5x2 + 5y2 + 8xy + 2 y - 2x + 2 = 0 的实数解.【例16】已知a +b -=-1c - 5 ,求a +b +c 的值.2【例17】已知a ,b ,c 是有理数,试证明关于x 的方程:x2- 2ax +a2-b2-c2+ 2bc = 0 的根也是有理数.【例18】已知关于x 的方程:x2 - 4(m -1)x + 3m2 - 2m + 4k = 0 ,当m 取任意有理数时,方程的根都是有理数,求k 的值或者是k 的取值范围.-b + b 2 - 4ac- b - b 2 - 4ac 51 2韦达定理:如果 x ,x 是一元二次方程 ax 2- bx + c = 0(a ≠ 0) 的两个根,由解方程中的公式法得, x 1 =2a ,x 2 = 2a.那么可推得 x + x = - b ,x ⋅ x = c这是一元二次方程根与系数的关系.1 2a 1 2 a【例19】 若方程 x 2 - (m + 1)x + m = 0 有解,利用适当的方法解这两个根,分别是;若这两个根互为相反数则m 的值是;若两个根互为倒数,则 m 的值是.【例20】 如果 x , x 是方程2x 2 + 3x - 6 = 0 的两个根,那么 x + x =;1212x 1 ⋅ x 2 =.【例21】 若方程: kx 2 - 9x + 8 = 0 的一个根为 1,则 k =;另一个根为 .【例22】 写出一个一元二次方程,使它的两个根分别是5 -23,5 + 3 .2【例23】 已知-1 - 、 是关于 x 的方程ax 2 2 2+ bx + 1 = 0(a ≠ 0) 的两根,求 b 的值. 模块二:韦达定理知识精讲例题解析-1 + 5【例24】已知x ,x 是方程1x2 - 3x -3= 0 的两根,求下列各式的值:1 2 2 2(1)1+1;(2)x 2 -x 2 ;(3)x 2 +x 2 ;(4)| x -x | .x1x2【例25】已知一个直角三角形的两个直角边的长恰好是方程:2x2 - 8x + 7 = 0 两个根,求这个直角三角形的周长.【例26】已知方程:x2 - 4x +a = 0 的一个根大于3,另一个根小于3,求a 的取值范围.【例27】已知2m2 - 5m -1 = 0 ,n2 + 5n - 2 = 0.mn ≠ 1 ,求1+n 的值.m【例28】已知α,β是方程:x2-2x-4=0的两根,求代数式α3 +8 β+6 的值.1 2 1 2 1 2随堂检测【习题1】完成下列填空:(1)x2 - 2 2x + = (x - )2 ;(2)(2 y - )2 = +1 ;(3)3x2 + + 9 =3(x + )2 .【习题2】完成下列填空:(1)对于方程3x2 = 2x ,用法解比较好,其根为;(2)对方程(2x -1)2 = 4 ,用法解比较好,其根为;(3)对方程2x2 - 3x - 6 = 0 ,用法解比较好,其根为.【习题3】已知x2 +ax +a - 2 = 0 的两根互为倒数,则a 的值为.【习题4】用指定的方法解下列方程:(1)ax2 -bx = 0(a ≠ 0) (因式分解);(2)4x2 - 9a2 + 6a -1 = 0(a为已知数) (直接开平方);(3)5x2+6x-9=0(配方法);(4)3x2 - 2x - 4 = 0 (求根公式).【习题5】用适当的方法解下列方程:(1)x2 -x = 1 ;(2)2(2x - 3)2 - 3(2x - 3) = 0 ;(3)3x2 - 2 6x + 2 = 0 ;(4)(3x + 5)2 - 5(3x + 5) + 4 = 0 .【习题6】解关于x 方程:(1)x2 - 2ax +a2 =1;(2)x2 -px +q = 0 .【习题7】如果9x2 - 6(n + 1)x +n2 + 5 是一个完全平方式,求n 的值.【习题8】用配方法说明:不论x 为何值,代数式x2 - 5x + 7 的值总大于 0,再求出当x 为何值时,代数式x2 - 5x + 7 有最小值,最小值是多少?1 2【习题9】已知关于x 的方程(m -1)x2 + (2m -1)x + 3 -m = 0(m为实数) 有两根x ,x ,其中x 1 > 0 ,x2< 0 且| x1|>| x2| ,求m 的取值范围.【习题10】解方程x | x | -3 | x | +2 = 0 .【习题11】已知关于x 的方程(k -1)x2 -px +k = 0 有两个正整数根,求整数k 和p 的值.【习题12】已知实数a ≠b ,且满足(a + 1)2 = 3 - 3(a + 1) ,3(b + 1) = 3 - (b + 1)2 ,求1 2【作业1】 已知代数式3x 2 - 9x + m 是一个完全平方式,则m =.【作业2】 以下说法正确的有几个:(1)方程 x 2 = 0 ,有两个根;(2)方程 x 2 = 4x 两边同除以 x ,解得方程的解为 x = 4 ;(3)因为一个数的平方不可能是负数,所以方程(x - 1 )2 = -x 无解; 2(4)对于方程(x -1)2 = (x + 3)2 ,因为无论 x 取何值, x -1和 x + 3 都不可能相等,所以方程无解.【作业3】 如果 x ,x 是方程5x 2 - 7x + 5 = 0 的两根,求下列各式的值:(1) 1 + 1 ;(2) x 2 + x 2 . x 1 x 2【作业4】 用适当的方法解下列方程:(1) x 2 = 49 ; (2) 3x 2 - 21x = 0 ;(3) 2x 2 - 3x - 5 = 0 ; (4) (x - 4)2 = 5(x - 4) ;(5) 3x 2 - 4x - 2 = 0 ; (6) ( y -1)2 + 5( y -1) + 4 = 0 .课后作业1 2(1)4(x - 2)2 - (3x -1)2 = 0 ;(2)(3x -1)2 - 3(3x -1) + 2 = 0 ;(3)6x2 - 2x - 2 = 0 ;(4)12x2 - 20x -525 = 0 .6【作业6】用适当的方法解下列关于x 方程:(1)x2 +2ax +a2 =1(a为已知常数) ;(2)x2 +ax - 2a2 = 0(a为已知常数) ;(3)-3x2 -xb + 2b2 = 0 ( b为已知常数) .【作业7】若α,β是方程x2 +3x -17=0 的两个根,求α2 +2α-β的值.n m 的值.【作业9】 已知6m 2 - mn - 2n 2 = 0(n ≠ 0) ,求m 的值.n【作业10】 解关于 x 的方程5x 2 - | x | -3 = 0 .【作业11】 已知方程 x 2 - 2x - 12= 0的两根是 α ,β ,设 C =α + β , C =α 2 + β 2 ,..., 1 2 C =α n + β n (n 是正整数).(1) 求C 3 的值;(2) 求证: C n +1 =2C n + 12C n -1 .。

(完整版)解一元二次方程练习题(配方法)(最新整理)

(完整版)解一元二次方程练习题(配方法)(最新整理)

(7) 5x 2 -3x+2 =0
(8) 7x 2 -4x-3 =0
(9) -x 2 -x+12 =0
(10) x 2 -6x+9 =0
韦达定理:对于一元二次方程 ax2 bx c 0(a 0) ,如果方程有两个实数根 x1, x2 ,那么
x1
x2
b a
,
x1x2
c a
说明:(1)定理成立的条件 0
2.已知 x1,x2 是方程 2x2-7x+4=0 的两根,则 x1+x2=
,x1·x2=

(x1-x2)2=
1
3.已知方程 2x2-3x+k=0 的两根之差为 2 ,则 k=
;
2
4.若方程 x2+(a2-2)x-3=0 的两根是 1 和-3,则 a=
;
5.若关于 x 的方程 x2+2(m-1)x+4m2=0 有两个实数根,且这两个根互为倒数,那么 m 的值为
(2)注意公式重
x1
x2
b a
的负号与
b
的符号的区别
根系关系的三大用处
(1)计算对称式的值
例 若 x1, x2 是方程 x2 2x 2007 0 的两个根,试求下列各式的值:
(1) x12 x22 ;
(2) 1 1 ; x1 x2
(3) (x1 5)(x2 5) ;
(4) | x1 x2 | .
25、 5x2 7x 1 0
26、 5x2 8x 1
27、 x2 2mx 3nx 3m2 mn 2n2 0
28、3x2+5(2x+1)=0
29、 (x 1)(x 1) 2 2x
30、 3x2 4x 1

解一元二次方程-公式法、因式分解、韦达定理

解一元二次方程-公式法、因式分解、韦达定理

解一元二次方程-公式法、因式分解、韦达定理课前热身1、公式法解下列方程:(1);(2);2、因式分解解下列方程:(1);(2);(3);3.关于方程式 49x2﹣98x﹣1=0 的解,下列叙述何者正确( )A.无解B.有两正根C.有两负根 D.有一正根及一负根遗漏分析学科原因: 1、对一元二次方程的公式法和因式分解法没有掌握; 2、对一元二次方程根与系数的关系没理解.知识精讲知识点一、公式法 式子 b2-4ac 的值有以下三种情况:1(1)b2-4ac>0,方程有两个不等的实数根,x1= - b b2  4ac - b -,x2=b2  4ac;2a2a(2)b2-4ac=0,方程有两个相等的实数根,x1=x2= - b 2a(3)b2-4ac<0,方程无实数根。

一般地,式子 b2-4ac 叫做一元二次方程 ax2+bx+c=0 根的判别式,通常用希腊字母“△ ”表示b  b2  4acx它,即△ =b2-4ac。

当△ ≥0 时,方程 ax2+bx+c=0(a≠0)的实数根可写为2a的形式,这个式子叫做一元二次方程 ax2+bx+c=0 的求根公式。

解一个具体的一元二次方程时,把各系数直接代入求根公式,可以避免配方过程而直接得出根,这种解一元二次方程的方法叫做公式法。

用求根公式法解一元二次方程的一般步骤为:①把方程化成一般形式 ax2  bx  c  0a  0 ,确定 a,b,c 的值(注意符号);②求出判别式的值,判断根的情况:若>0,则方程有两个不同的实数根;若=0,则方程有两个相同的实数根;若<0,则方程没有实数根.③在的前提下,把 a、b、c 的值代入公式进行计算,求出方程的根。

例 1、用公式法解方程: 2 x2+4 3 x+6 2 =02变式 1、小明同学用配方法推导关于 x 的一元二次方程 ax2+bx+c=0 的求根公式时,对于 b2 ﹣4ac>0 的情况,他是这样做的:小明的解法从第 步开始出现错误;这一步的运算依据应是.知识点二、因式分解法 方程的左边是两个一次因式的乘积,右边是 0。

一元二次不等式及其解法练习题

一元二次不等式及其解法练习题

不等式的解法一、一元二次不等式及其解法:先找对应二次方程的根(可参考十字相乘或求根公式),若有两个不等实根,大于取两边小于取中间,若有两个等根或无根考虑恒成立问题。

例1.解下列不等式(1)x2-7x+12>0(2)-x2-2x+3≥0(3)x2-2x+1<0(4)x2-2x+2<0二、已知解集求参数值:可参考韦达定理,利用两根只和和两根之积。

3.一元二次方程ax2+bx+c=0的根为2,-1,则当a<0时,不等式ax2+bx+c≥0的解集为。

4.已知关于x的不等式ax2+bx+c>0的解集为{x|α<x<β},其中0<α<β,a<0,求cx2+bx+a>0的解集.三、含参数的不等式的解法:先讨论二次项系数,然后找对应二次方程的根(可参考十字相乘或求根公式),若有两个实根讨论根的大小,若无法确定讨论判别式。

5.解不等式21()10x a xa-++=6、解关于x的一元二次不等式:ax2+(a-1)x-1>0.四、恒成立问题,在R上利用判别式和在区间上利用二次函数的最值。

7、函数y = x 2+mx +m 2对一切x ∈R 恒成立,则实数m 的取值范围 8、.已知关于x 的不等式(a 2-4)x 2+(a +2)x -1≥0的解集是空集,则实数a 的取值范围9.已知不等式x 2+px +1>2x +p .(1)如果不等式当|p |≤2时恒成立,求x 的取值范围;(2)如果不等式当2≤x ≤4时恒成立,求p 的取值范围.五、解其他不等式(1).1<x 2-3x+3≤7(2)(x 2+4x-5)(x 2-2x+2)>0(3) (x 2+4x-5)(x 2-4x+4)>0(4)x 4-x 2-6≥0(5) +4-1x x >0(6)-3+7x x ≤0。

《一元二次方程》各节知识点及典型例题

《一元二次方程》各节知识点及典型例题

第二章 一元二次方程第一节 一元二次方程 第二节 一元二次方程的解法 第三节 一元二次方程的应用 第四节 一元二次方程根与系数的关系 五大知识点:1、一元二次方程的定义、一元二次方程的一般形式、一元二次方程的解的概念及应用2、一元二次方程的四种解法(因式分解法、开平方法和配方法、配方法的拓展运用、公式法)3、根的判别式4、一元二次方程的应用(销售问题和增长率问题、面积问题和动态问题)5、一元二次方程根与系数的关系(韦达定理)【课本相关知识点】1、一元二次方程:只含有 未知数,并且未和数的 是2,这样的整式方程叫做一元二次方程。

2、能使一元二次方程 的未知数的值叫做一元二次方程的解(或根)3、一元二次方程的一般形式:任何一个一元二次方程经过化简、整理都可以转化为 的形式,这个形式叫做一元二次方程的一般形式。

其中ax 2是 ,a 是 ,bx 是 ,b 是 ,c是常数项【典型例题】【题型一】应用一元二次方程的定义,求字母的值例1、当a 为何值时,关于x 的方程(a-1)x |a|+1+2x-7=0是一元二次方程?【题型二】一元二次方程解的应用例1、关于x 的一元二次方程(a-1)x 2+x+|a|-1=0的一个根是0,则实数a 的值为( )A .-1B .0C .-1D .-1或1例2、已知多项式ax 2-bx+c ,当x=1时,它的值是0;当x=-2时,它的值是1(1)试求a+b 的值(2)直接写出关于x 的一元二次方程ax 2+bx+c=0的一个根【题型三】一元二次方程拓展开放型题例1、已知关于x 的方程(k 2-1)x 2-(k+1)x-2=0(1)当k 取何值时,此方程为一元一次方程?并求出此方程的根(2)当k 取何值时,此方程为一元二次方程?并写出这个一元二次方程的二次项系数、一次项系数、常数项。

巩 固 练 习1、下列方程中,是一元二次方程的为( )A. x 2= -1B. 2x (x-1)+1=2x 2C. x 2+3x=2x D. ax 2+bx+c-0 2、已知关于x 的方程mx 2+(m-1)x-1=2x 2-x ,当m 取什么值时,这个方程是一元二次方程?3、若关于x 的一元二次方程(a-2)x 2是一元二次方程,则a 的取值范围是4、把方程 (x-1)2-3x (x-2)=2(x+2)+1化成一般形式,并写出它的二次项系数、一次项系数和常数项5、若a 是方程x 2-3x+1=0的一个根,求2a 2-5a-2+231a +的值 6、若关于x 的方程ax 2+bx+c=0(a ≠0)中,abc 满足a+b+c=0和a-b+c=0,则方程的根是( )A. 1,0B. -1,0C. 1,-1D. 1,27、已知x=1是一元二次方程ax 2+bx-40=0的一个解,且a ≠b ,求2222a b a b --的值【课本相关知识点】(一)1、利用因式分解的方法实现“降次”,把解一元二次方程转化为解一元一次方程的方法,叫做因式分解法。

(完整版)解一元二次方程练习题(配方法)

(完整版)解一元二次方程练习题(配方法)

一元二次方程解法练习题一、用直接开平方法解下列一元二次方程。

1、0142=-x 2、2)3(2=-x 3、()512=-x 4、()162812=-x二、用配方法解下列一元二次方程。

1、.0662=--y y2、x x 4232=-3、9642=-x x4、0542=--x x5、01322=-+x x6、07232=-+x x7、01842=+--x x 8、0222=-+n mx x 9、()00222>=--m m mx x三、用公式解法解下列方程。

1、0822=--x x2、22314y y -= 3、y y 32132=+4、01522=+-x x5、1842-=--x x6、02322=--x x四、 用因式分解法解下列一元二次方程。

1、x x 22=2、0)32()1(22=--+x x3、0862=+-x x4、22)2(25)3(4-=+x x5、0)21()21(2=--+x x6、0)23()32(2=-+-x x五、用适当的方法解下列一元二次方程。

1、()()513+=-x x x x2、x x 5322=- 3、2260x y -+=4、01072=+-x x5、()()623=+-x x6、()()03342=-+-x x x7、()02152=--x 8、0432=-y y 9、03072=--x x10、()()412=-+y y 11、()()1314-=-x x x 12、()025122=-+x13、22244a b ax x -=- 14、()b a x a b x +-=-232215、022=-+-a a x x16、3631352=+x x 17、()()213=-+y y 18、)0(0)(2≠=++-a b x b a ax19、03)19(32=--+a x a x 20、012=--x x 21、02932=+-x x22、02222=+-+a b ax x 23、 x 2+4x -12=0 24、030222=--x x25、01752=+-x x 26、1852-=-x x 27、02332222=+---+n mn m nx mx x28、3x 2+5(2x+1)=0 29、x x x 22)1)(1(=-+ 30、1432+=x x31、y y 2222=+ 32、x x 542=- 33、04522=--x x34、()1126=+x x . 35、030222=--x x 36、x 2+4x -12=037、032=-+x x 38、12=+x x 39、y y 32132=+40、081222=+-t t 41、1252+=y y 42、7922++x x =0一元二次方程解法练习题六、用直接开平方法解下列一元二次方程。

一元二次方程公式法例题20道

一元二次方程公式法例题20道

一元二次方程公式法是数学中的一个重要知识点,它的掌握对于学生的数学学习和思维能力培养都有着重要的意义。

在这篇文章中,我将按照从简到繁的顺序,深入浅出地探讨一元二次方程公式法,并根据你提供的要求,撰写20道相关例题以加深理解。

一元二次方程是指形如ax^2+bx+c=0的方程,其中a、b、c为实数且a≠0。

而一元二次方程的解法有很多,其中一元二次方程公式法是一种常用而有效的方法。

通过对一元二次方程公式法的理解和掌握,我们不仅能够解决各种各样的数学问题,还能够培养自身的逻辑思维和数学分析能力。

让我们以一元二次方程公式法的定义为起点,逐步深入探讨这一知识点。

一元二次方程公式法是指通过一元二次方程的一般形式,利用求根公式(-b±√(b^2-4ac))/2a,解出方程的根。

这是一种常用的解一元二次方程的方法,我们可以通过代入系数a、b和c的值,快速、准确地求得方程的解。

接下来,我们将通过解答一系列例题来加深对一元二次方程公式法的理解。

以下是20道例题:1. 求解方程2x^2-5x+2=0的解。

2. 求解方程3x^2+4x-1=0的解。

3. 求解方程x^2-9=0的解。

4. 求解方程4x^2-16=0的解。

5. 求解方程x^2-6x+9=0的解。

6. 求解方程2x^2+3x+1=0的解。

7. 求解方程x^2+5x+6=0的解。

8. 求解方程x^2-4x+4=0的解。

9. 求解方程3x^2-2x-1=0的解。

10. 求解方程4x^2+4x+1=0的解。

11. 求解方程2x^2-7x+3=0的解。

12. 求解方程x^2-8x+16=0的解。

13. 求解方程3x^2+6x+3=0的解。

14. 求解方程5x^2-10x+5=0的解。

15. 求解方程x^2+2x+1=0的解。

16. 求解方程2x^2-9x+9=0的解。

17. 求解方程3x^2-5x+2=0的解。

18. 求解方程4x^2-12x+9=0的解。

19. 求解方程x^2+4x+4=0的解。

一元二次方程知识点总结及相关练习题

一元二次方程知识点总结及相关练习题

一、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

2、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边加一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。

二、一元二次方程的解法1、直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。

直接开平方法适用于解形如b a x =+2)(的一元二次方程。

根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。

2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。

配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式3、公式法公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。

一元二次方程)0(02≠=++a c bx ax 的求根公式: )04(2422≥--±-=ac b aac b b x 公式法的步骤:就把一元二次方程的各系数分别代入,这里二次项的系数为a ,一次项的系数为b ,常数项的系数为c4、因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。

分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式5、韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a ,二根之积=c/a 也可以表示为x1+x2=-b/a,x1x2=c/a 。

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法)

完整版)解一元二次方程练习题(配方法) 一元二次方程解法练题一、用直接开平方法解下列一元二次方程。

1、4x-1=2、(x-3)^2=2、2、(x-1)^2=5、81(x-2)=16二、用配方法解下列一元二次方程。

1、y^2-6y-6=0、3x^2-4x+2=02、x^2-4x-5=0、2x^2+3x-1=03、x^2-4x=9、3x^2+2x-7=04、x^2-4x-5=0、-4x^2-8x=165、2x^2+3x-1=0、(2-3x)^2=46、-4x^2+12x=0三、用公式解法解下列方程。

1、x^2-2x-8=0、4y^2-2y-1=02、2x^2-5x+1=0、-4x^2-8x=16、2x^2-3x-2=0四、用因式分解法解下列一元二次方程。

1、x^2=2x、(x+1)^2-(2x-3)^2=3、x^2-6x+8=02、4(x-3)^2=25(x-2)、(1+2)x^2-(1-2)x=6、(2-3x)^2+(3x-2)^2=1五、用适当的方法解下列一元二次方程。

1、3x/(x-1)=x/(x+5)、2x-3=5x、x-2y+6=22、x^2-7x+10=0、(x-3)(x+2)=6、4(x-3)+x(x-3)=23、(5x-1)^-2=8、3y^2-4y-9=0、x^2-7x-30=24、(y+2)(y-1)=4、x^2-4ax=b^2-4a^2、x^2+(531/36)x=05、4x(x-1)=3、3x^2-9x+2=0一元二次方程解法练题六、用直接开平方法解下列一元二次方程。

1.4x-1=2解:移项得4x=3,两边平方得16x^2=9,即x=±3/4.2.(x-3)^2=2解:展开得x^2-6x+7=0,两边平方得x-3=±√2,即x=3±√2.3.(x-1)^2=5解:展开得x^2-2x-4=0,两边平方得x-1=±√5,即x=1±√5.4.81(x-2)=162解:移项得(x-2)^2=2,两边开平方得x-2=±√2,即x=2±√2.七、用配方法解下列一元二次方程。

一元二次方程的解法与韦达定理练习题

一元二次方程的解法与韦达定理练习题

一元二次方程的解法与韦达定理【知识提要】1.一元二次方程你知道有哪些常用解法?2.还记得如何用配方法解方程吗?配方时需要注意些什么?3.韦达定理是什么?你能推导吗?使用韦达定理的前提条件是什么?【典型例题】例1 (1)一元二次方程的一般形式是____ ___.其解为1x =_ ______,2x =__ _____.(2)将方程x x 2)1(2=+化成一般形式为___ _______.其二次项是__________, 一次项是__________,常数项是_________.例2 用配方法解下列方程(1)0152=-+x x (2)01422=+-x x (3)036412=+-x x 例3 用公式法解下列各方程(1)01252=-+x x (2)061362=++y y (3)7962=++x x例4 用因式分解法解下列方程(1)022=+x x (2)22)12()1(-=+x x (3)4122=+-x x例5 用适当方法解方程:(1)x x 322=+ (2)232+=x x (3)02)3(2=-+y(4) )2(3)2)(1(2+=++x x x x (5))3(215)3(2+-=+x x(6)01242=-+x x (7)0)12(532=++x x根与系数关系式一、填空题与选择题:1、一元二次方程0132=--x x 与032=--x x 的所有实数根的和等于____.2、已知关于x 的方程0142=-+-k x x 的两根之差等于6,那么=k ______3、已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、3 C 、6 D 、94、已知三角形两边长分别为2和9,第三边的长为二次方程048142=+-x x 的一根, 则这个三角形的周长为 ( )A.11B.17C.17或19D.19 二、解答题:5、设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值:(1))3)(3(21--x x ; (2)2221)1()1(+++x x(3))31)(31(1221x x x x ++6、已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且这两个实数根的平方和比它们的积大21,求m 的值.7、m 为何值时,关于x 的一元二次方程0)5()1(22=-++--m m x m x 的两个根互为倒数;8、已知m ,n 是一元二次方程0522=--x x 的两个实数根,求m n m 23222++的值。

一元二次方程(含答案)

一元二次方程(含答案)

第十六期:一元二次方程一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。

题型多样,一般分值在6-9分左右。

知识点1:一元二次方程及其解法例1:方程0232=+-x x 的解是( )A .11=x ,22=xB .11-=x ,22-=xC .11=x ,22-=xD .11-=x ,22=x思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A.例2:若220x x --=的值等于( )A .3B .3C D 3思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3323123222=+-+,选A. 练习:1.关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A .1BC .D .2.如果1-是一元二次方程230x bx +-=的一个根,求它的另一根.3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解:1-是230x bx +-=的一个根,2(1)(1)30b ∴-+--=.解方程得2b =-. ∴原方程为2230x x --=分解因式,得(1)(3)0x x +-=11x ∴=-,23x =.3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题1.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.(2009年XX 省)请你写出一个有一根为1的一元二次方程:.3.(2009XX 省XX 市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x += B .()216x -=C .()229x +=D .()229x -=答案:1.1; 2.答案不唯一,如21x = 3. B 知识点2:一元二次方程的根与系数的关系例1:如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为:(A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02=++c bx ax 的根与系数关系即韦达定理,两根之和是ab-, 两根之积是a c ,易求出两根之和是2。

韦达定理经典例题

韦达定理经典例题

一元二次方程根与系数的关系培优训练例1.已知1x 、2x 是关于x 的一元二次方程0)1(4422=+-+m x m x 的两个非零实数根,问:1x 与2x 能否同号?若能同号请求出相应的m 的取值范围;若不能同号,请说明理由。

例2.已知1x 、2x 是一元二次方程01442=++-k kx kx 的两个实数根。

(1)是否存在实数k ,使23)2)(2(2121-=--x x x x 成立?若存在,求出k 的值;若不存在,请说明理由。

(2)求使21221-+x x x x 的值为整数的实数k 的整数值。

例3.已知关于x的一元二次方程有两个相等的实数根。

求证:(1)方程有两个不相等的实数根;(2)设方程的两个实数根为,若,则 .例4.在等腰三角形ABC 中,∠A、∠B、∠C的对边分别为a、b、c,已知a=3,b和c是关于x的方程的两个实数根,求△ABC的周长.例5.在解方程x2+px+q=0时,小张看错了p,解得方程的根为1与-3;小王看错了q,解得方程的根为4与-2。

这个方程的根应该是什么?例6.已知x1,x2是关于x的方程x2+px+q=0的两根,x1+1、x2+1是关于x的方程x2+qx+p=0的两根,求常数p、q的值。

练习:1.先阅读下列第(1)题的解法,再解答第(2)题.(1)若α、β是方程x2-3x-5=0的两个实数根,求α2+2β2-3β的值;解:∵α、β是方程x2-3x-5=0的两个实根,∴α2-3α-5=0,β2-3β-5=0,且α+β=3.∴α2=3α+5,β2=3β+5∴α2+2β2-3β=3α+5+2(3β+5)-3β=3α+3β+15=3(α+β)+15=24.(2)已知x1、x2是方程x2+x-7=0的两个实数根,不解方程求的值.2.已知关于X的一元二次方程m2x2+2(3-m)x+1=0的两实数根为α,β,若s=1α+1β,求s的取值范围。

3.如果关于x的实系数一元二次方程x2+2(m+3)x+m2+3=0有两个实数根α、β,那么(α-1)2+(β-1)2的最小值是多少?2-(2a-1)x+4(a-1)=0的两个根是斜边长为5的直角三角形4.已知关于x的方程x的两条直角边的长,求这个直角三角形的面积。

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理

一元二次方程的解法及韦达定理编号:撰写人:审核:一、一元二次方程的解法:例题1:用配方法、因式分解、公式法解方程: x2-5x+6=0【总结】以上的三种方法之中,最简单的方法是哪一种【一元二次方程的解法总结】1、直接法:对于形如—x 2=a 的方程,我们可以用直接法。

方程的解为x=推论:对于形如(x+a)2=b 的方程也是用直接开方的方法。

注意点:①二次项的系数为1,且a ≥0②如果a 为根式,注意化简。

例1:解方程:5x 2=1例2:解方程:x 2= 4-例3:解方程:4x 2+12x+9=122、配方法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们可以采用配方法的方法来解。

步骤:①把二次项的系数化为1.两边同时除以a ,可以得到:X 2+ b a x+ c a=0 ②配方: (x+2b a )2+c- 2()2b a =0 ③移项:(x+ 2b a )2=2()2b a-c ④用直接法求出方程的解。

X=-2b a注意点:解除方程的解后,要检查根号内是否要进一步化简。

例:解方程:x 2+x=13、公式法:对于形如:ax 2+bx+c=0(其中a ≠0)的方程,我们也可以采用公式法的方法来解。

根据配方法,我们可以得到方程的解为:X=-2b a 进一步变形,就可以知道:形如:ax 2+bx+c=0(其中a ≠0)的方程的解为:x 1x 2注意点:① 解除方程的解后,要检查根号内是否要进一步化简。

② 解题步骤要规范。

例:解方程:x 2+5x+2=0除了以上几种教材里的方法,一元二次方程还有其他的解法。

4、换元法对于一个方程,如果在结构上有某种特殊的相似性,可以考虑用换元法;或者,当这个题目有比较复杂的根式,换元法也是可以考虑的解法。

例1:解方程:(x2+5x+2)2+(x2+5x+2)-2=0例2:=15、有理化方法:对于一个方程,如果含有两个根式,并且这两个根式内的整式的和或者差是特定的数值,那就可以考虑用有理化的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法与韦达定理
【知识提要】1.一元二次方程你知道有哪些常用解法
2.还记得如何用配方法解方程吗配方时需要注意些什么
3.韦达定理是什么你能推导吗使用韦达定理的前提条件是什么
【典型例题】 例1 (1)一元二次方程的一般形式是____ ___.其解为1x =_ ______,2x =__ _____.
(2)将方程x x 2)1(2=+化成一般形式为___ _______.其二次项是__________, 一次项是__________,常数项是_________.

例2 用配方法解下列方程
(1)0152=-+x x (2)01422=+-x x (3)0364
12=+-x x
例3 用公式法解下列各方程
(1)01252=-+x x (2)061362=++y y (3)7962=++x x
!
例4 用因式分解法解下列方程
(1)022=+x x (2)22)12()1(-=+x x (3)4122=+-x x
例5 用适当方法解方程:

(1)x x 322=+ (2)232+=x x (3)02)3(2
=-+y
(4) )2(3)2)(1(2+=++x x x x (5))3(215)3(2
+-=+x x
(6)01242=-+x x (7)0)12(532=++x x
{
根与系数关系式
一、填空题与选择题:
1、一元二次方程0132=--x x 与032=--x x 的所有实数根的和等于____.
2、已知关于x 的方程0142=-+-k x x 的两根之差等于6,那么=k ______
3、已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )
A 、、3 C 、6 D 、9

4、已知三角形两边长分别为2和9,第三边的长为二次方程048142=+-x x 的一根, 则这个三角形的周长为
( )
或19
二、解答题: 5、设21,x x 是一元二次方程01522=+-x x 的两个根,利用根与系数的关系,求下列各式的值:
(1))3)(3(21--x x ; (2)2221)1()1(+++x x
-
(3))31)(31(1221x x x x ++
6、已知关于x 的方程04)2(222=++-+m x m x 有两个实数根,并且这两个实数根的平方和比它们的积大21,求m 的值.

7、m 为何值时,关于x 的一元二次方程0)5()1(22=-++--m m x m x 的两个根互为倒数;
8、已知m ,n 是一元二次方程0522=--x x 的两个实数根,求m n m 23222++的值。

【课堂训练】
一、填空题:
1.填写适当的数使下式成立:①++x x 62______=2)3(+x
.
②-2x ______1+x =2)1(-x ③++x x 42______=+x (______2)
2.关于x 的方程5)3(72=---x x m m 是一元二次方程,则m =_________.
3.05222=--x x 的根为1x =_________,2x =_________.
4.方程0652=+-x x 与0442=+-x x 的公共根是_________.
5.32-是方程012=-+bx x 的一个根,则b =_________,另一个根是_________.
6.已知方程02=++c bx ax 的一个根是-1,则c b a +-=___________.
7.已知012722=+-y xy x ,那么x 与y 的关系是_________.
二、选择题

8.下列方程中,不是一元二次方程的是( )
A.0722=+x
B.013222=++x x
C.04152=++x
x D.01)1(232=+++x x x 10.方程0)1()23(22=++--x x x 的一般形式是( )
A.0552=+-x x
B.0552=++x x
C.0552=-+x x
D.052=+x
11.方程06)23(2=+++x x 的解是( ) A.6,121==x x B.6,121-=-=x x C.3,221==x x D.3,221-=-=x x
!
12.方程0)()(=-+-x b b x ax 的根是( ) A.a x b x ==21, B.a x b x 1,21== C.b
x a x 1,21== D.2221,a x b x == 13.一元二次方程022=--m x x ,用配方法解该方程,配方后的方程为( )
A.1)1(22+=-m x
B.1)1(2-=-m x
C.m x -=-1)1(2
D.1)1(2+=-m x
14.已知9=xy ,3-=-y x ,则223y xy x ++的值为( )
15.若一元二次方程04)15(3)2(222=-+++-m x m x m 的常数项是0,则m 为( )
B.±2
C.-2
D.-10
&
16.若代数式652++x x 与1+-x 的值相等,则x 的值为( ) A.5,121-=-=x x B.1,621=-=x x C.3,221-=-=x x D.1-=x
17.已知1562+-=x x y ,若0≠y ,则x 的取值情况是( ) A.61≠x 且1≠x B.21≠x C.31≠x D.21≠x 且3
1≠x 18.方程)3(5)3(2+=+x x x 的根是( ) A.25=
x B.3-=x 或25=x C.3-=x D.25-=x 或3=x 三、解答题:
19.设,αβ是方程x 2-3x-5=0的两根,求2223αββ+-的值.
*
20.已知:x 1,x 2是方程x 2-x+a=0的两个实数根,且
3112221=+x x ,求a 的值.
'
21.某公司准备为每位员购买一件运动服举行比赛,一个批发兼零售的服装店规定:凡一次购买运动服40件以上(包括40件),可以按批发价付款,购买40件以下(不包括40件),只能按零售价付款.如果给公司员工每人购买一件运动服,只能按零售价付款,需要3150元;如果多买10件,那么可以按批发价付款,同样需用3150元.
(1)若按批发价购买9件与按零售价购买7件的钱数相同,那么这个公司员工有多少人
(2)这个公司购买运动服至少付款多少元
22.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.
(1)该工艺品每件进价、标价分别是多少
(2)若每件工艺品按(1)中求得的进价进货,标价售出,工艺商场每天可售出该工艺品100件,若每件工艺降价1元,则每天可多售出该工艺品4件,问每件工艺品降价多少元出售,每天获得的利润最大获得的最大利润是多少。

相关文档
最新文档