蓝白斑筛选的原理及方法
简述蓝白斑筛选原理
简述蓝白斑筛选原理蓝白斑筛选(Blue-WhiteScreening)是一种分子生物学方法,它用于鉴定具有特定基因的细菌株。
蓝白斑筛选的最初想法是从一种确定的细菌介质中检测特定基因的存在,该介质受到结合的载体(如DNA或细菌DNA的封闭抗体)的支配。
其基本原理是将细菌介质中的细菌冲洗悬浮,并加入一种特定的抗性素(例如培养基中的抗生素),使得只有携带具有抗性基因的细菌才能生存,而未携带这样基因的细菌死亡。
这种方法可以快速准确地检测出细菌株中具有抗性基因的细菌株,而无需耗费大量的时间进行实验。
蓝白斑筛选的过程主要包括四个步骤:(1)细菌介质中的细菌悬浮被加入到一种细胞毒性物质(如抗生素)中;(2)悬浮物经过一定时间和条件后,只有携带具有抗毒性基因的细菌存活,没有携带这样基因的细菌死亡;(3)将抗毒性素从细菌介质中洗掉;(4)通过比较死亡和存活的细菌,从而可以将具有特定抗毒性基因的细菌株辨别出来。
在蓝白斑筛选的实验中,抗毒性素可以是任何特定的化合物,例如抗生素,甲基红,乙醛等。
从抗毒性素的效果来看,它不能完全消灭整个细菌群,而是将这些细菌分为两组:一组是抗毒性素不易受到影响的细菌,即携带有特定抗毒性基因的细菌;另一组是抗毒性素很容易受到影响的细菌,即没有携带特定抗毒性基因的细菌。
然后,洗掉抗毒性素后,可以通过观察实验中死亡和存活的细菌,从而将那些携带特定抗毒性基因的细菌株辨别出来。
蓝白斑筛选法的优点在于它比其他基因组学技术更加快速,也比其他基因筛选方法更加简单,可以在不到一个月的时间内,快速准确地检测出携带特定基因的细菌株。
另外,由于它只需要很少的实验操作,因此可以大大节省实验时间和成本。
但是,蓝白斑筛选也有一些缺点,其中最重要的是,它只可以检测携带一个特定基因的细菌株,而无法检测其余的基因。
其次,对抗毒性的效果也不一定非常稳定,在抗毒性素的浓度较低的情况下,有时会出现抗毒性不足的情况。
总的来说,蓝白斑筛选是一种简单有效的基因筛选方法,它可以有效地检测携带特定基因的细菌株,从而节约大量的实验时间和成本。
蓝白斑筛选原理
蓝白斑筛选原理
在许多工业领域中,蓝白斑筛选是一种常见的物料分类方法。
这种筛选方式利
用材料的大小、形状等特征将物料分为不同的等级,并可以高效地分离目标物料。
蓝白斑筛选的原理包括多个方面,下面将详细介绍这一原理。
原理一:筛网孔径
蓝白斑筛选的第一个原理是筛网孔径。
筛网的孔径大小直接影响了筛选效果。
当物料通过筛网时,只有小于筛网孔径的颗粒才能通过,大于筛网孔径的颗粒将被阻挡。
因此,通过控制筛网的孔径大小,可以实现对物料的筛选分级。
原理二:筛网振动
筛网振动是蓝白斑筛选的关键原理之一。
筛网在振动的作用下,可以使物料在
筛网上跳跃运动,从而加速筛分过程。
筛网振动还可以防止筛孔被堵塞,提高筛分效率。
原理三:物料特性
物料的特性也是影响蓝白斑筛选效果的重要因素。
不同的物料具有不同的大小、形状、密度等特性,这些特性会影响物料在筛网上的筛选行为。
因此,在进行蓝白斑筛选时,需要考虑物料的特性,并选择合适的筛网和筛分参数。
原理四:筛选过程
蓝白斑筛选的过程包括物料的进料、筛选、分级等步骤。
在进料过程中,物料
通过进料口进入筛分系统;在筛选过程中,物料在筛网上受到振动作用,根据大小和形状被分离;在分级过程中,不同大小的物料被分为不同的等级。
通过合理控制这些步骤,可以实现高效的物料筛选。
结论
综上所述,蓝白斑筛选是一种常见的物料分类方法,其原理包括筛网孔径、筛
网振动、物料特性和筛选过程等多个方面。
通过深入理解这些原理,并合理控制筛选参数,可以实现高效的物料筛选和分级,提高生产效率,降低生产成本。
蓝白斑筛选的原理和案例
蓝白斑筛选的原理和案例
蓝白斑筛选是一种常见的分子生物学技术,主要应用于检测目标DNA序列是否存在。
其原理是利用互补匹配的原则,在PCR反应中引入一个包含融合基因的载体,其中融合基因含有β-半乳糖苷酶和蛋白X两个基因。
将PCR扩增的目标DNA序列与载体连接,再将连接后的产品转化到大肠杆菌中进行筛选。
如果目标序列正确定位到融合基因上,则能够产生一个含有β-半乳糖苷酶和蛋白X的融合蛋白,该融合蛋白可以与含有5-溴亚基半乳糖苷的成分结合,形成蓝色的沉淀。
而那些没有成功获得目标序列的大肠杆菌无法产生蓝色沉淀,因此被筛选出来。
蓝白斑筛选的一个常见案例是接合质粒含有靶标基因的身份鉴定,例如对于转基因作物来说,应该包含外来基因序列,而如果通过蓝白斑筛选能够在菌落中观察到蓝色沉淀,就可以确认样品中存在目标基因。
此外,蓝白斑筛选还可以用于检测细菌中的嵌合质粒是否已经成功插入到细菌染色体中,并且是否含有目标序列。
蓝白斑筛选的原理及方法
蓝白斑筛选的原理及方法载体pGEMZ在β-半乳糖苷酶(lacZ)的α-肽编码区内具有多克隆区域。
在重组质粒中插入片段使α-肽失活,可在指示平板上通过颜色筛选鉴别。
不带有插入片段的载体,表达有功能的β-半乳糖苷酶,所用的宿主菌在染色体或附加体上缺失掉lacZM15基因,导致内源α-肽失活。
载体pGEMZ或其它含lacZ基因的α-肽互补细菌,具有β-半乳糖苷酶的ω片段,所得功能β-半乳糖苷酶(α-肽加ω片段)将底物X-Gal转化为有颜色的产物,得到蓝色菌落。
在载体pGEMZ 的多克隆区域,克隆上插入片段导致α-肽编码区的破坏,使β-半乳糖苷酶失活,得到白色菌落。
α-肽编码区读码框内小的插入片段产生浅兰色菌落,因β-半乳糖苷酶只是部分失活。
重组质粒转化到合适的菌株中(JM109,DH5α),然后涂布到含0.5mMIPTG, 40ug/mlX-Gal指示平板上。
可将50ul的X-Gal和100 ulIPTG贮液直接加入到平板中,扩散到整个平板中,在37oC保温30分钟使液体扩散。
IPTG溶于水中,贮液浓度为100mM,X- Gal溶于DMF,贮液浓度为50mg/ml。
IPTG 和X- Gal需分装后保存在-20 oC,可保存2-4个月。
◆IPTG即Isopropyl β-D-1-thiogalactopyranoside,也称Isopropyl β-D-thiogalactoside,中文名为异丙基-β-D-硫代半乳糖苷。
分子式为C9H18O5S ,分子量为238.30,CAS Number 367-93-1,Ultra Pure,dioxane free,纯度>99.6%。
我公司提供Merck公司该产品。
◆本产品为接近白色的粉末常用分子生物学试剂,常用于蓝白斑筛选及IPTG诱导的细菌内的蛋白表达等。
IPTG是β–半乳糖苷酶的活性诱导物质。
基于这个特性,当pUC系列的载体DNA(或其他带有lacZ 基因载体DNA)以lacZ 缺失细胞为宿主进行转化时、或用M13噬菌体的载体DNA进行转染时,如果在平板培养基中加入X–Gal和IPTG,由于β–半乳糖苷酶的α–互补性,可以根据是否呈现白色菌落(或噬菌斑)而方便地挑选出基因重组体。
简述蓝白斑筛选原理
简述蓝白斑筛选原理蓝白斑筛选(Blue-WhiteScreening)是一种用于染色体工程和基因克隆的技术,是一种基于位点突变的分子遗传学技术,它可以帮助分子生物学家更快地检测和鉴定特定的DNA序列,有助于分析基因的结构和功能。
蓝白斑筛选技术基本原理是将宿主菌株与抗性菌株进行比较,以检测是否存在抗性基因。
若菌株有抗性基因,则该基因位点就会产生变异,而这种变异可以使对应的DNA序列由颜色变化从而被观察到。
蓝白斑筛选的基础是基因克隆的技术,也就是将一段DNA片段克隆到宿主细菌中,使其培养出特定的抗性菌株。
细菌抗性基因是一种向细菌表达出非自身的抗性特性的遗传单位,其特征是细菌抗性基因同源,在细菌中可表现出对离子、类固醇等抗性,从而形成抗性拷贝。
而蓝白斑筛选技术即是利用抗性拷贝形成的抗性基因来筛选拷贝和鉴定拷贝特异性的一种技术。
蓝白斑筛选反映的原理是:细菌可以在其DNA中产生“突变”,此突变会导致细菌的抗性发生改变,若细菌的DNA序列中存在抗性拷贝,则细菌就会发生变异而产生抗性现象。
由此,蓝白斑筛选技术首先将受试菌株在其菌液中进行培养,并将其与参照菌株(一般是不含有抗性基因的菌株)进行比较,若存在抗性基因,则该基因位点就会产生变异。
然后,将两种菌株混合,将其培养在拷贝特异性培养基(X-Gal)中,并将其对比,当培养液由蓝色变为白色时,即表明存在抗性基因的细菌株可以生存,而无此抗性基因的细菌株则会被细菌溶解,被直接杀死,从而形成白色液体。
因此,蓝白斑筛选利用了抗性突变和拷贝特异性来检测是否存在抗性基因。
再结合能够引发抗性突变的特定DNA序列,有助于我们进行更加精细的基因分析,做出相应的基因调控等。
蓝白斑筛选不仅是一种应用于基因工程技术中的技术,在疾病的诊断和治疗方面也有着重要的意义,可以帮助医生更好的判断病患的具体状况,以及采取相应的疗法。
总之,蓝白斑筛选是一种重要的分子遗传学技术,具有广泛的应用,深刻地改变了医学,生物科学和基因工程领域的研究工作,为科学研究提供支持。
蓝白斑筛选
蓝白斑筛选原理(入门级)蓝白斑筛选是一种基因工程常用的重组菌筛选方法。
野生型大肠杆菌产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
有色物质可以使整个培养菌落产生颜色变化,而颜色变化是鉴定和筛选的最直观有效的方法。
设计适用于蓝白斑筛选的基因工程菌为β-半乳糖苷酶缺陷型菌株。
这种宿主菌的染色体基因组中编码β-半乳糖苷酶的基因突变,造成其编码的β-半乳糖苷酶失去正常N段一个146个氨基酸的短肽(即α肽链),从而不具有生物活性,即无法作用于X-gal产生蓝色物质。
用于蓝白斑筛选的载体具有一段称为lacz'的基因,lacz'中包括:一段β-半乳糖苷酶的启动子;编码α肽链的区段;一个多克隆位点(MCS)。
MCS位于编码α肽链的区段中,是外源DNA的选择性插入位点,但其本身不影响载体编码α肽链的功能活性。
虽然上述缺陷株基因组无法单独编码有活性的β-半乳糖苷酶,但当菌体中含有带lacz'的质粒后,质粒lacz'基因编码的α肽链和菌株基因组表达的N端缺陷的β-半乳糖苷酶突变体互补,具有与完整β-半乳糖苷酶相同的作用X-gal生成蓝色物质的能力,这种现象即α-互补。
操作中,添加IPTG(异丙基硫代-β-D-半乳糖苷)以激活lacz'中的β-半乳糖苷酶的启动子,在含有X-gal的固体平板培养基中菌落呈现蓝色。
以上是携带空载体的菌株产生的表型。
当外源DNA(即目的片断)与含lacz'的载体连接时,会插入进MCS,使α肽链读码框破坏,这种重组质粒不再表达α肽链,将它导入宿主缺陷菌株则无α互补作用,不产生活性β-半乳糖苷酶,即不可分解培养基中的X-gal产生蓝色,培养表型即呈现白色菌落。
实验中,通常蓝白筛选是与抗性筛选一同使用的。
含X-gal的平板培养基中同时含有一种或多种载体所携带抗性相对应的抗生素,这样,一次筛选可以判断出:未转化的菌不具有抗性,不生长;转化了空载体,即未重组质粒的菌,长成蓝色菌落;转化了重组质粒的菌,即目的重组菌,长成白色菌落。
蓝白斑筛选法
蓝白斑筛选法
蓝白斑筛选是一种基因工程常用的细菌重组子的筛选方法。
其原理是利用野生型埃希氏大肠杆菌(E.Coli)产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
5-溴-4-靛蓝可使整个菌落产生蓝色变化。
在经人工插入外源基因后,突变型大肠杆菌的β半乳糖苷酶基因被插入的外源基因切断,无法形成完整的β半乳糖苷酶,故不能对无色化合物X-gal进行切割,菌落呈白色。
蓝白斑筛选在指示培养基上,未转化质粒的菌落因无抗生素抗性而不能生长,重组质粒的菌落是白色的,非重组质粒的菌落是蓝色的,以颜色不同为依据直接筛选重组克隆的方法。
这种重组子的筛选,称为蓝白斑筛选。
如需更多关于“蓝白斑筛选法”的相关信息,建议查阅基因工程学相关书籍。
蓝白斑筛选的原理及应用
蓝白斑筛选的原理及应用1. 前言蓝白斑筛选(Blue-white screening)是一种常用的分子生物学技术,用于检测DNA重组是否成功。
通过该技术,可以筛选出含有重组DNA的菌落,从而实现对目标基因的定位和表达。
2. 原理蓝白斑筛选的原理基于β-半乳糖苷酶(β-galactosidase)的活性差异。
在该筛选系统中,包含有DNA重组产物的细菌表型为蓝色,未重组的细菌表型为白色。
具体的实验步骤如下:1.在含有相应选择性抗生素的培养基上培养细菌。
2.通过转化技术将重组的质粒DNA导入细菌宿主中。
3.将转化后的细菌涂布在含有X-半乳糖苷(X-Gal)的琼脂糖平板上。
4.在琼脂糖平板上,转化成功的细菌会表现为蓝色的菌落,未转化的细菌则为白色。
3. 应用蓝白斑筛选广泛应用于基因克隆、基因工程、蛋白质表达等研究领域。
3.1 基因克隆在基因克隆中,蓝白斑筛选常用于检测重组质粒的构建是否成功。
通过筛选出蓝色的菌落,可以快速确定重组质粒中是否含有目标基因。
3.2 基因工程在基因工程中,蓝白斑筛选被用于定位和筛选带有特定序列的质粒。
通过构建含有目标基因的质粒,将其导入细菌中,可以筛选出含有目标基因的蓝色菌落,从而实现对基因的定位和表达。
3.3 蛋白质表达蓝白斑筛选还可以用于蛋白质表达的研究。
通过将目标蛋白基因插入表达载体中,并导入细菌中进行表达,可以通过蓝白斑筛选系统筛选出表达目标蛋白的菌落。
4. 优势和局限性4.1 优势•简单易行:蓝白斑筛选是一种简单易行的筛选方法,无需复杂的仪器设备,只需要琼脂糖平板和相应的培养基。
•高效性:通过蓝白斑筛选系统,可以快速筛选出重组细菌,提高工作效率。
•直观可视化:转化成功的细菌会在琼脂糖平板上形成蓝色的菌落,使得检测结果可以直观地通过肉眼观察。
4.2 局限性•假阳性筛选:由于β-半乳糖苷酶活性的变异性,部分非重组菌落也可能呈现蓝色。
因此,在分析筛选结果时需采取其他方法进行验证。
简述蓝白斑筛选原理
简述蓝白斑筛选原理蓝白斑筛选原理是一种遗传学技术,用于检测杂合(复合)体中基因突变的位点,或者在遗传研究中用于突变型定位。
它可以有效地排除数量性状的遗传研究中的隐性基因位点,更重要的是,它可以作为一种有效的基因突变检测工具,用于检测罕见的基因多态性,以及潜在的功能性突变。
蓝白斑筛选原理主要利用特殊处理后的哺乳动物细胞,用一定量的蓝色和白色染料将复制有基因突变的杂合子的DNA进行染色,成为蓝白斑染色的DNA片段,并将其进行筛选。
与普通DNA结构相比,蓝白斑染色的DNA片段外表有明显的蓝白色斑点,且其含量较普通DNA 片段有所差异。
这种差异代表的是在突变的位点上发生的变异,从而形成了蓝白斑染色的DNA片段。
蓝白斑筛选原理的基本操作步骤包括:(1)获取细胞样品,通常用于获取杂合子DNA样本;(2)将样本中的染色体分离出来,并将染色体发生变异的基因突变位点的DNA片段进行染色;(3)确定染色体的变异位点(如基因突变等),并将其进行筛选;(4)根据筛选结果,对不同类型的 DNA段进行分类;(5)根据筛选结果,进一步确定突变位点,并进行基因定位及功能分析。
由于蓝白斑筛选原理可以有效检测杂合子中基因突变的位点,因此在基因突变检测方面被广泛应用,如在遗传研究中,用于诊断染色体突变及重组,检测遗传性疾病的致病基因,以及研究罕见的变异位点的含义,等等。
此外,由于蓝白斑筛选原理不需要使用复杂的基因工程技术,操作简便。
同时,它也具有很高的灵敏度和特异性,可以有效的排除多态性筛选中的假阳性,从而提高基因多态性筛选的准确性。
因此,在遗传学研究方面,蓝白斑筛选原理具有重要意义,不仅可以有效检测杂合子中基因突变的位点,而且还可以用于检测罕见的基因多态性,以及潜在的功能性突变。
因此,未来蓝白斑筛选原理应用于基因突变检测,对遗传学研究和潜在功能突变位点定位具有重要的意义。
简述蓝白斑筛选的原理
简述蓝白斑筛选的原理蓝白斑筛选是一种用于鉴定外源基因是否已经被成功转化到目标物种的常用方法。
其原理基于β-葡萄糖苷酶(β-Glucuronidase)的活性与蓝白斑形成之间的关系。
在进行蓝白斑筛选之前,研究人员需要将目标基因与载体DNA进行重组,使其形成融合蛋白。
该融合蛋白包含β-葡萄糖苷酶的编码序列和目标基因的编码序列。
通常,目标基因的编码序列会紧随β-葡萄糖苷酶的编码序列,以便在转化成功后能够一同表达。
在转化后,研究人员将转基因植物细胞或细菌培养在含有特定培养基的琼脂平板上。
这种培养基中含有化学物质X-葡萄糖苷(X-Gluc),它是无色的。
当β-葡萄糖苷酶结合到X-Gluc上时,会发生反应并生成一种有颜色的沉淀物——蓝白斑。
如果转化成功,转基因植物细胞或细菌中会产生大量的β-葡萄糖苷酶,这些酶会与培养基中的X-Gluc反应,形成蓝白斑。
通过观察琼脂平板上的蓝白斑形成,研究人员可以判断目标基因是否已经成功转化到了目标物种中。
这种蓝白斑筛选方法具有简便、操作方便且可靠的优点。
通过蓝白斑筛选,研究人员可以快速判断转化是否成功,并筛选出带有目标基因的转基因植物或细菌。
这对于转基因科研和应用具有重要意义。
不仅如此,蓝白斑筛选方法的广泛应用也为基因工程领域的其他研究提供了思路和借鉴。
例如,通过改变X-Gluc的结构,也可以用蓝白斑筛选法检测其他蛋白质的活性。
此外,蓝白斑筛选还可以用于检测细菌或细胞的活性,对于药物研发和疾病研究有着重要的应用价值。
总之,蓝白斑筛选以β-葡萄糖苷酶的活性与蓝白斑形成之间的关系为基础,为基因转化研究提供了一种简便、直观且有效的方法。
其在转基因科研和应用中的广泛应用,不仅为科学研究提供了便利,同时也为其他领域的研究带来了借鉴和启示。
蓝白斑筛选的原理
• 这样,lacZ基因在缺少近操纵基因区段的宿主细 胞与带有完整近操纵基因区段的质粒之间实现了 互补,称为α-互补。由α-互补而产生的LacZ+细菌 在诱导剂IPTG的作用下,在生色底物X-Gal存在 时产生蓝色菌落,因而易于识别。然而,当外源 DNA插入到质粒的多克隆位点后,几乎不可避免 地导致无α-互补能力的氨基端片段,使得带有重 组质粒的细菌形成白色菌落。这种重组子的筛选, 又称为蓝白斑筛选。如用蓝白斑筛选则经连接产 物转化的钙化菌平板37℃温箱倒置培养12-16hr后, 有重组质粒的细菌形成白色菌落。
简述蓝白斑筛选原理
简述蓝白斑筛选原理
蓝白斑筛选原理是一种用于分析基因突变影响的非常有用的方法。
它利用蓝白斑DNA探针和含有基因突变的DNA样本,可以快速准确地检测出受影响的基因。
蓝白斑筛选技术主要分为四个步骤,分别是构建DNA探针库、选择合适的探针、进行杂交扩增和电泳分析。
首先,构建DNA探针库。
蓝白斑筛选技术所用的探针是根据受检测的基因突变特异性的集合,只有当基因突变发生时,才会出现该特异性。
为了确保提取出合理的特异性,通常采用多个探针,以确保提取出足够合理的特异性,这样就可以最精确地反映基因突变的结果。
其次,选择合适的探针。
当DNA探针库构建完成之后,需要根据检测的基因突变,筛选出最能够特异性反映这种基因突变的基因突变探针。
为了确保正确性,一般会使用多个探针,并且进行大量的多次试验,以确保精确性,最终确定最佳的探针。
第三,进行杂交扩增。
包含基因突变的DNA样本和被选择的探针库被混合放在一起,当探针和DNA配对时,就可以在质粒中复制出特异性的基因突变,该现象被称为杂交扩增。
最后,进行电泳分析。
当杂交扩增完成之后,混合物被放入电泳槽中,通过电泳技术把复制出来的特异性基因突变分离出来,最终得到特异性的基因突变。
总之,蓝白斑筛选原理是一种基因突变分析的优秀方法,它可以快速准确反映基因突变的结果,使得分析基因变异的过程变得容易得多。
它的使用广泛,已经发挥出重要作用,在基因编辑、基因疾病和
药物开发等领域都发挥了重要作用。
蓝白斑筛选原理doc
蓝白斑筛选原理 doc 蓝白斑筛选是一种常用的基因克隆筛选方法,其原理是根据重组DNA分子中是否含有β-半乳糖苷酶基因来筛选蓝白斑菌落。
下面将详细介绍蓝白斑筛选的原理、操作流程和优缺点。
一、蓝白斑筛选原理蓝白斑筛选是一种基于重组DNA分子在细菌培养基上产生蓝色或白色斑点的表型特征进行筛选的方法。
在含有X-gal(5-溴-4-氯-3-吲哚-β-半乳糖苷)的培养基上,携带β-半乳糖苷酶基因的重组分子会产生蓝色斑点,而没有β-半乳糖苷酶基因的分子则产生白色斑点。
因此,通过观察菌落的颜色,可以快速、简便地筛选出含有目的基因的重组分子。
二、蓝白斑筛选操作流程1.转化:将目的基因与质粒DNA进行连接,得到重组DNA分子。
2.转化子培养:将连接产物导入宿主细胞(如大肠杆菌),并在含有X-gal的培养基上培养转化子。
3.筛选:在培养基上观察菌落的颜色,筛选出产生蓝色斑点的转化子,即为阳性克隆。
4.验证:对阳性克隆进行DNA和蛋白质水平上的检测,确认目的基因是否正确连接在质粒上,并验证目的基因的表达情况。
三、蓝白斑筛选的优缺点1.优点:(1)灵敏度高:可以检测出单个重组分子;(2)操作简便:只需观察菌落颜色即可判断是否含有目的基因;(3)成本低廉:使用的试剂和设备相对简单,成本较低。
2.缺点:(1)可能出现假阳性:由于不同菌株之间的差异,有些非重组分子也可能产生蓝色斑点;(2)需要使用抗生素或其他选择压力:为了筛选出重组分子,需要使用抗生素或其他选择压力来抑制非重组分子的生长;(3)无法确定目的基因的方向:无法通过蓝白斑筛选确定目的基因在质粒上的方向;(4)不适用于大规模筛选:在大规模筛选时,需要大量时间和人力成本。
四、蓝白斑筛选的应用范围蓝白斑筛选被广泛应用于基因克隆和表达载体的构建中,特别是对于那些无法通过其他方法进行克隆和表达的基因。
此外,蓝白斑筛选也常用于文库的筛选、突变体分析和基因定位等研究领域。
蓝白斑筛选是一种简单、快捷、灵敏度高且成本低廉的基因克隆筛选方法。
蓝白斑筛选
简介蓝白斑筛选蓝白斑筛选是一种基因工程常用的重组菌筛选方法。
野生型大肠杆菌产生的β-半乳糖苷酶可以将无色化合物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)切割成半乳糖和深蓝色的物质5-溴-4-靛蓝。
有色物质可以使整个培养菌落产生颜色变化,而颜色变化是鉴定和筛选的最直观有效的方法。
编辑本段适用方面设计适用于蓝白斑筛选的基因工程菌为β-半乳糖苷酶缺陷型菌株。
这种宿主菌的染色体基因组中编码β-半乳糖苷酶的基因突变,造成其编码的β-半乳糖苷酶失去正常N段一个146个氨基酸的短肽(即α肽链),从而不具有生物活性,即无法作用于X-gal产生蓝色物质。
用于蓝白斑筛选的载体具有一段称为lacz'的基因,lacz'中包括:一段β-半乳糖苷酶的启动子;编码α肽链的区段;一个多克隆位点(MCS)。
MCS位于编码α肽链的区段中,是外源DNA的选择性插入位点。
虽然上述缺陷株基因组无法单独编码有活性的β-半乳糖苷酶,但当菌体中含有带lacz'的质粒后,质粒lacz'基因编码的α肽链和菌株基因组表达的N端缺陷的β-半乳糖苷酶突变体互补,具有与完整β-半乳糖苷酶相同的作用X-gal生成蓝色物质的能力,这种现象即α-互补。
操作中,添加IPTG(异丙基硫代-β-D-半乳糖苷)以激活lacz'中的β-半乳糖苷酶的启动子,在含有X-gal的固体平板培养基中菌落呈现蓝色。
以上是携带空载体的菌株产生的表型。
当外源DNA(即目的片段)与含lacz'的载体连接时,会插入进MCS,使α肽链读码框破坏,这种重组质粒不再表达α肽链,将它导入宿主缺陷菌株则无α互补作用,不产生活性β-半乳糖苷酶,即不可分解培养基中的X-gal产生蓝色,培养表型即呈现白色菌落。
实验中,通常蓝白筛选是与抗性筛选一同使用的。
含X-gal的平板培养基中同时含有一种或多种载体所携带抗性相对应的抗生素,这样,一次筛选可以判断出:未转化的菌不具有抗性,不生长;转化了空载体,即未重组质粒的菌,长成蓝色菌落;转化了重组质粒的菌,即目的重组菌,长成白色菌落。
蓝白斑筛选的原理及判定标准
蓝白斑筛选的原理及判定标准蓝白斑筛选是一种常用的分子生物学技术,用于快速筛选和检测目标基因或质粒。
它基于大肠杆菌在蓝白斑筛选培养基上形成蓝白斑的特性,通过观察菌落颜色来判定是否含有目标基因或质粒。
蓝白斑筛选的原理是基于基因重组和底物转化。
在蓝白斑筛选中,质粒被嵌入到大肠杆菌中,同时携带了一段插入片段(可以是目标基因)。
质粒还含有启动子和转录终止序列,它们能够控制目标基因的表达。
当质粒成功转入大肠杆菌中后,细菌将表达质粒中的目标基因。
在蓝白斑筛选培养基中,含有两种底物:X-α-gal和IPTG。
X-α-gal是一种人工底物,它在存在产物酶(β-萘乙酸葡萄糖苷酶)的情况下会形成蓝色产物,而无产物酶的菌落则为白色。
IPTG是一种人工诱导剂,能够激活质粒中的启动子,促进目标基因的表达。
通过将含有插入片段的质粒导入大肠杆菌中进行培养,可以形成包含目标基因的细菌菌落和不含目标基因的菌落。
在蓝白斑筛选中,我们可以通过观察大肠杆菌菌落的颜色来判定是否含有目标基因。
通常,蓝色的菌落代表含有目标基因的细菌。
这是因为质粒中的目标基因能够被转录、翻译为产物酶,进而将X-α-gal转化为蓝色产物。
而白色的菌落代表不含目标基因的细菌。
这是因为没有目标基因的质粒无法产生产物酶,无法将X-α-gal 转化为蓝色产物。
蓝白斑筛选的判定标准主要是根据菌落的颜色进行判断。
除了蓝色和白色,还可能会出现其他颜色的菌落,这些菌落大多是由于其他基因突变导致的。
因此,判断蓝白斑的准确性还需要进行进一步验证。
蓝白斑筛选的应用非常广泛。
例如,在基因工程中,蓝白斑筛选可以帮助科研人员快速鉴定具有目标基因的细菌,从而筛选出符合要求的重组细菌株。
此外,蓝白斑筛选还可以用于检测DNA序列的一致性,帮助鉴定目标序列的正确性。
总之,蓝白斑筛选是一种简便而有效的分子生物学技术,通过观察大肠杆菌菌落的颜色,可以快速判断是否含有目标基因。
蓝白斑筛选的原理是基于大肠杆菌在特定培养基上形成蓝白斑的特性,判定标准主要是根据菌落的颜色进行判断。
简述蓝白斑筛选的基本原理
简述蓝白斑筛选的基本原理蓝白斑筛选是一种广泛应用于分子生物学领域的技术,它可以迅速、高效地筛选出感兴趣的DNA序列。
本文将对蓝白斑筛选的基本原理进行简要介绍。
一、蓝白斑筛选的概念蓝白斑筛选是一种基于质粒载体的DNA重组技术,它可以通过改变质粒载体中的DNA序列,实现对菌落颜色的调控。
蓝白斑筛选原理的核心是利用β-半乳糖苷酶的活性差异,将质粒中的DNA序列与β-半乳糖苷酶编码基因lacZ结合,从而实现对菌落颜色的控制。
二、蓝白斑筛选的步骤蓝白斑筛选的步骤包括质粒载体构建、DNA重组、细胞转化和菌落筛选等。
具体步骤如下:1. 质粒载体构建:将目标DNA序列克隆到质粒载体中,构建重组质粒。
2. DNA重组:将重组质粒转化到大肠杆菌中,利用同源重组原理将质粒中的目标DNA序列与lacZ基因相连。
3. 细胞转化:将重组后的大肠杆菌进行细胞转化,使其成为能够生长和繁殖的细胞。
4. 菌落筛选:利用β-半乳糖苷酶的活性差异,筛选出含有目标DNA序列的细胞,从而实现对菌落颜色的调控。
三、蓝白斑筛选的原理蓝白斑筛选的原理可以简单概括为:将目标DNA序列与lacZ基因连接在一起,从而实现对β-半乳糖苷酶活性的调控,进而控制菌落颜色的变化。
β-半乳糖苷酶是一种酶,它可以将含有β-半乳糖苷酶底物的溶液转化为蓝色产物。
而在大肠杆菌中,lacZ基因可以编码β-半乳糖苷酶。
因此,当目标DNA序列与lacZ基因连接在一起时,β-半乳糖苷酶的活性就会受到影响。
如果目标DNA序列中含有启动子、编码序列等功能区域,那么它就会影响lacZ基因的表达,进而影响β-半乳糖苷酶的活性。
如果目标DNA序列能够抑制lacZ基因的表达,那么β-半乳糖苷酶的活性就会降低,菌落颜色就会变为白色;反之,如果目标DNA序列能够促进lacZ基因的表达,那么β-半乳糖苷酶的活性就会增强,菌落颜色就会变为蓝色。
四、蓝白斑筛选的应用蓝白斑筛选是一种广泛应用于分子生物学领域的技术,它可以用于筛选出含有目标DNA序列的细胞,进而实现对DNA序列的分析和研究。
蓝白斑筛选的原理
蓝白斑筛选的原理
蓝白斑筛选是一种常用的基因克隆技术,用于定位和筛选含有目标基因的克隆DNA。
它基于青霉素酶和X-α-半乳糖苷酶的功能差异,通过对克隆表达基因区域进行片段插入或删除,从而产生对这两种酶敏感或抗性的变化,进而实现筛选目标基因克隆的目的。
具体原理如下:
1. 青霉素酶敏感性(Blue):通常将青霉素酶基因(bla)与目标基因克隆在同一载体上,在克隆表达区域内插入外源DNA片段。
插入外源DNA后,原本完整的青霉素酶基因会发生部分或全部破坏,导致青霉素酶无法正常表达。
因此,带有插入外源DNA的克隆在含有青霉素的培养基上生长,形成白色菌落。
2. X-α-半乳糖苷酶抗性(White):一般会将X-α-半乳糖苷酶基因(lacZ)与目标基因克隆同在另一载体上,插入外源DNA片段后,原本完整的X-α-半乳糖苷酶基因可能发生部分或全部破坏,导致X-α-半乳糖苷酶无法正常表达。
因此,带有插入外源DNA的克隆在含有X-α-半乳糖苷酶底物——X-α-半乳糖苷(X-Gal)的培养基上生长,形成蓝色菌落。
利用以上原理,操作者可将含有插入外源DNA的菌落从青霉素酶培养基上转移到X-α-半乳糖苷酶培养基上。
这样,目标基因克隆会在X-α-半乳糖苷酶培养基上表达,使得菌落变为白色,便于从复杂的混合克隆中筛选出目标基因。
蓝白斑筛选原理
蓝白斑筛选原理
1 蓝白斑筛选原理
蓝白斑筛选是一种常用的基因解码技术,它利用染料染色作为检
测特定基因的标记,并将染色物质按照其可见度进行分类,进行基因
鉴定,有效地获得并鉴定变异位点,具有检测靶基因快速、高效、精
确等特点。
一、基因分析原理
蓝白斑筛选的基因分析原理,是利用小分子染料染色作为检测特
定基因的标记,并将染料按照染色度进行分类,用以鉴定基因位点。
当特殊小分子染料结合DNA上的某些特定位点时会发生发光,因此可
以通过测量染料发光程度来确定DNA中特定位点是否在变化。
而蓝白
斑筛选就是以这一原理为基础进行筛选,从而发现新的变异基因。
二、蓝白斑筛选流程
蓝白斑筛选的处理步骤一共分成四个步骤:
1、DNA提取:首先对样本(细胞、Viurs、血液等)进行DNA鉴定,以提取需要的DNA片段。
2、添加染料:将小分子染料加入DNA溶液中,结合到特定的位置上,作为基因的标记物。
3、分级归类:检测染料发光程度,分为三类:弱、正常、强。
4、鉴定分析:通过数据比较,建立特定基因位点的变异特征,实现基因鉴定分析。
三、蓝白斑筛选应用
蓝白斑筛选用于检测和诊断基因病,比如:脑瘫、唐氏综合征、重症肌无力以及癌症治疗和指导。
此外,它还可以用于昆虫育种,鉴定昆虫的遗传性状,通过蓝白斑筛选来辅助并说明昆虫的遗传性状的变化。
蓝白斑筛选是一种非常高效的基因分类技术,可以更准确地检测和诊断基因病,为进一步的基因治疗提供重要参考。
蓝白斑筛选lacZ
加50μl II液,充分混匀
加100μl 酚-氯仿-异戊醇,涡旋振荡,使溶液呈现乳白色
12000rpm, 10min 取10μl 上清液,电泳检测。
实验药品 1. 溶液Ⅱ 0.4mol/L NaOH 2%SDS 临用前1:1混合贮存液即为II液. 2. 分离液 酚/氯仿/异戊醇=25:24:1 3. 1%琼脂糖凝胶
四、实验步骤
分别挑取多个白色菌斑和一个蓝色对照菌斑到1.5ml含有 80μg/ml Kan抗生素的LB 液体培养基 37℃摇培过夜(10~12h) 6000rpm, 3min 弃去上清液,倒立于滤纸之上,尽量去净上清。 短暂离心,收集剩余上清,弹匀至没有明显菌块
大肠杆菌的β-半乳糖苷酶基因lacZ系统
i P O lacZ
β-半乳糖苷酶
调控蛋体M15
a-互补显色反应(蓝白斑筛选)
i P O
lacZ
-
β-半乳糖苷酶
-
调控蛋白P
诱导剂IPTG α-肽段 分解乳糖
分解X-gal
产物呈现蓝色
三、实验材料、器具及药品
实验材料 LB固体培养基上生长的蓝白菌斑 实验器具 1.5ml Ep管,离心管架,微量取液器,台式高速 离心机,恒温振荡摇床,电泳仪,紫外透射检测仪。
阳性克隆的快速检测
一、实验目的 学习蓝白斑筛选试验中阳性克隆的快速 检测方法 掌握蓝白斑筛选的原理和方法
二、蓝白斑筛选的原理
重组质粒转化细菌后,蓝白斑筛选往往是基于抗 生素筛选基础上的第二次筛选。 一般培养转化细菌的培养基中都要加入一定浓度 的适宜抗生素,只有含有质粒载体的细菌才可以生长 形成菌落,即抗生素完成对细菌是否含有质粒载体进 行了初步筛选。 质粒载体上存在的LacZ基因片段当被外源DNA 片段插入时,会产生白色的克隆,不含插入片段的质 粒进入宿主细胞生成蓝色菌落。这就是蓝白斑筛选, 即a-互补显色反应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
蓝白斑筛选的原理及方法
载体pGEMZ在俟半乳糖苷酶(lacZ )的a肽编码区内具有多克隆区域。
在重组质粒中插入片段使a-肽失活,可在指示平板上通过颜色筛选鉴别。
不带有插入片段的载体,表达有功能的禺半乳糖苷酶,所用的宿主菌在染色体或附加体上缺失掉lacZM15基因,导致内源a-肽失活。
载体pGEMZ或其它含lacZ基因的a-肽互补细菌,具有俟半乳糖苷酶的3片段,所得功能俟半乳糖苷酶(a- 肽加3片段)将底物X-Gal转化为有颜色的产物,得到蓝色菌落。
在载体pGEMZ 的多克隆区域,克隆上插入片段导致a-肽编码区的破坏,使俟半乳糖苷酶失活,得到白色菌落。
a-肽编码区读码框内小的插入片段产生浅兰色菌落,因俟半乳糖苷酶只是部分失活。
重组质粒转化到合适的菌株中(JM109 ,DH5a ),然后涂布到含0.5mMIPTG, 40ug/mlX-Gal 指示平板上。
可将50ul 的X-Gal 和100 ulIPTG 贮液直接加入到平板中,扩散到整个平板中,在37oC 保温30 分钟使液体扩散。
IPTG 溶于水中,贮液浓度为100mM ,X- Gal溶于DMF,贮液浓度为50mg/ml 。
IPTG 和X- Gal 需分装后保存在-20 oC ,可保存2-4 个月。
IPTG 即Isopropyl B -D-1-thiogalactopyra no side ,也称Isopropyl B
-D-thiogalactoside ,中文名为异丙基-B -D-硫代半乳糖苷。
分子式为
C9H18O5S 分子量为238.30, CASNumber367-93-1,Ultra Pure, dioxane free,纯度>99.6%。
我公司提供Merck 公司该产品。
.本产品为接近白色的粉末常用分子生物学试剂,常用于蓝白斑筛选及IPTG 诱导的细菌内的蛋白表达等。
IPTG是B -半乳糖苷酶的活性诱导物质。
基于这个特性,当pUC系列的载体DNA或其他带有lacZ基因载体DNA以lacZ缺失细胞为宿主进行转化时、或用M13噬菌体的载体DNA1行转染时,如果在平板培养基中加入X- Gal和IPTG,由于B -半乳糖苷酶的a -互补性,可以根据是否呈现白色菌落(或噬菌斑)而方便地挑选出基因重组体。
此外,它还可以作为具有lac 或tac 等启动子的表达载体的表达诱导物使用.
使用方法:
首先把IPTG配制成24 mg/ml (100 mM)的水溶液,并进行过滤除菌后
保存。
然后在100 ml的琼脂培养基中,加入100卩l的上述溶液、200卩l
的
X-Gal (20 mg/ml 的二甲基甲酰胺(DMF 溶液)和100 卩l 的Amp( 100
mg/ml), 制作成IPTG X-Gal、Amp平板培养基。
当DNA片段插入至pUC系列载体(或其他带有lacZ、Amp基因载体),然后转化至lacZ缺失细胞中后,涂布上述的IPTG、
X-gal、Amp平板培养基,可根据长出菌体的蓝白色,而方便地挑选出基因重组体(白色为具有DNA插入片段的基因重组体)。
保存条件:粉末在-20C稳定保存至少三年,具体请参考各个厂家提供的保存条件
注意事项:
♦培养噬菌体时,Top agar中的添加量为:25卩1/3 ml (24 mg/ml)
♦含有IPTG的培养基4 C避光保存,须在1~2周内使用。
[创。