高考文科数学全国1卷.pdf

合集下载

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)
当 时, , 单调递减;
所以 ;
【小问2详解】
,则 ,
当 时, ,所以当 时, , 单调递增;
当 时, , 单调递减;
所以 ,此时函数无零点,不合题意;
当 时, ,在 上, , 单调递增;
在 上, , 单调递减;
又 ,当x趋近正无穷大时, 趋近于正无穷大,
所以 仅在 有唯一零点,符合题意;
当 时, ,所以 单调递增,又 ,
【分析】根据古典概型计算即可
【详解】从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为 ,所以甲、乙都入选的概率
故答案为:
15.过四点 中的三点的一个圆的方程为____________.
【答案】 或 或 或 ;
【解析】
【分析】设圆的方程为 ,根据所选点的坐标,得到方程组,解得即可;
【详解】解:依题意设圆的方程为 ,
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数 .
【答案】(1) ;
(2)
在区间 上 ,即 单调递减,
又 , , ,
所以 在区间 上的最小值为 ,最大值为 .
故选:D
12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()
A. B. C. D.
【答案】C
【解析】
【分析】先证明当四棱锥 顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.

2020年高考文科数学全国卷1附答案解析版

2020年高考文科数学全国卷1附答案解析版

1| 2
PF1 ||
PF2 | 中计算即可.
由已知,不妨设 F1 2,0,F2 2,0,
则a
1,c
2 ,因为| OP | 1
1| 2
F
1F2
|,
所以点 P 在以 F1F2为直径的圆上, 即 △F1F2P 是以 P 为直角顶点的直角三角形,
【解析】根据已知条件求得q 的值,再由a 6 a 7 a 8 q a5 1a 2 a3 可求得结果. 设等比数列an的公比为q ,则 a 1 a2 a3 a1 1 q q 2 1 , a2 a3 a4 a1q a1q 2 a1q3 a1q 1 q q 2 q 2 , 因此, a6 a7 a8 a1 q5 a1 q6 a1 q7 a1 q5 1 q q 2 q5 32 .
数学试卷 第 6 页(共 6 页)
2020年普通高等学校招生全国统一考试·全国I卷
文科数学答案解析
一、选择题 1.【答案】D 【解析】首先解一元二次不等式求得集合 A,之后利用交集中元素的特征求得 A 由 x2 3x 4<0 解得1<x<4,
所以 A x | 1<x<4, 又因为 B 4,1,3,5,所以 A B 1,3,
xi,yi i 1,2,,20得到下面的散点图:
由此散点图,在10℃ 至 40℃之间,下面四个回归方程类型中最适宜作为发芽率 y 和
温度 x 的回归方程类型的是
()
A. y a bx
B. y a bx2
C. y a bex
D. y a b ln x
6.已知圆 x2 y2 6x 0 ,过点1,2的直线被该圆所截得的弦的长度的最小值为
数学试卷 第 4 页(共 6 页)
毕业学校
姓名
考生号

2019年高考全国1卷文科数学及答案

2019年高考全国1卷文科数学及答案

绝密★启用前2019年普通高等学校招生全国统一考试文科数学本试卷共23题,共150分,共4页。

考试结束后,将本试卷和答题卡一并交回。

注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设3i12i z -=+,则||z =A .2B .3C .2D .12.已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A = A .{1,6} B .{1,7} C .{6,7} D .{16,7},3.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<之比是512-4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A .165 cm B .175 cm C .185 cm D .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生 7.tan255°=A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A + B .A =12A +C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)

12B-SX-0000022_ _ _ _ _ _ _ _ :----绝密★启用前2019年普通高等学校招生全国统一考试文科数学全国I 卷本试卷共23 小题,满分150 分,考试用时120 分钟比是 5 1( 5 1≈0.618 ),称为黄金分割比例,著名22的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉号学_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ :名姓-----线封密-----(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中,只有一项是符合题目要求的。

3 i1.设z ,则z =1 2i的长度与咽喉至肚脐的长度之比也是 512上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cmsin x x函数f(x)= 2cos x x.若某人满足在[—π,π的]图像大致为班_ _ _ _ _ _ _ 年_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ :校学----线封密---------A.2 B. 3 C. 2 D.12.已知集合U 1,2,3,4,5,6,7 ,A 2,3,4,5 ,B 2,3,6,7 ,则B e AUA.1,6 B.1,7 C.6,7 D.1,6,73.已知0.2 0.3a log 0.2,b 2 ,c0.2 ,则2A.a b c B.a c bC.c a b D.b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之A. B.C. D.6.某学校为了解1 000 名新生的身体素质,将这些学生编号为1,2,⋯,1 000,从这些新生中用系统抽样方法等距抽取100 名学生进行体质测验.若46 号学生被抽到,则下面4名学生中被抽到的是A .8 号学生B.200 号学生C.616 号学生D.815 号学生7.tan255 =°A .-2- 3 B.-2+ 3 C.2- 3 D.2+ 3- 1 - - 2 -12B-SX-00000228.已知非零向量 a ,b 满足 a =2 b ,且(a –b )b ,则 a 与 b 的夹角为A . π 6B . π 3C .2 π3 D .5 π 619. 如图是求2 2 1 12的程序框图,图中空白框中应填入222x y 3222x y 5 4x21yB .1D .A .C .2112 2x y4 3二、填空题:本题共4小题,每小题5分,共20分。

2023年全国乙卷文科高考数学试题+答案解析

2023年全国乙卷文科高考数学试题+答案解析

绝密★启用前2023年普通高等学校招生全国统一考试(全国乙卷∙文科)数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.2+i 2+2i 3 =()A.1B.2C.5D.5【答案】C【解析】∵2+i 2+2i 3=2-2i -1=1-2i ,∴|2+i 2+2i 3|=1-2i =12+(-2)2=5,选C 。

2.设全集U ={0,1,2,4,6,8},集合M ={0,4,6},N ={0,1,6},则M ⋃C U N =()A.{0,2,4,6,8} B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解析】∵N ={2,4,8},∴M ⋃C U N ={0,2,4,6,8},选A.3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A.24B.26C.28D.30【答案】D【解析】如图所示,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2, AA 1=3,点H ,I ,J ,K 为所在棱上靠近点B 1,C 1,D 1,A 1的三等分点,O ,L ,M ,N 为所在棱的中点,则三视图所对应的几何体为长方体ABCD -A 1B 1C 1D 1去掉长方体ONIC 1-LMHB 1之后所得的几何体,该几何体表面积为:2×(2×2)+4×(2×3)-2×(1×1)=30,选D 。

4.在△BC 中,内角A,B,C 的对边分别是a,b,c,若acosB -bcosA =c,且C =π5,则∠B =()A.π10B.π5C.3π10D.2π5【答案】C【解析】∵sinAcosB -sinBcosA =sinC,即sinAcosB -sinBcosA =sin (A +B )=sinAcosBsinBcosA,∴sinBcosA =0,∵B ∈(0,π),∴sinB >0,∴cosA =0,A =π2,∴B =π-A -C =3π10,选C 。

2019高考新课标全国1卷文科数学试题及答案

2019高考新课标全国1卷文科数学试题及答案

2019高考新课标全国1卷文科数学试题及答案2019年普通高等学校招生全国统一考试真题文科数学本试卷共5页,满分150分。

考生注意:1.答卷前,务必将准考证号、姓名填写在答题卡上,并核对条形码上的信息是否正确。

2.选择题用铅笔将答案标号涂黑,非选择题需写在答题卡上。

3.考试结束后,将试题卷和答题卡交回。

一、选择题(共12小题,每小题5分,共60分)1.已知集合A={x|x0},则B={x|x<3/2},故选C。

2.要评估农作物亩产量的稳定程度,应该考虑其数据的离散程度,即标准差,故选B。

3.i(1+i)2=i(1+2i-i2)=i(1+2i+1)=2i,为纯虚数,故选A。

4.由于黑色部分和白色部分关于正方形中心对称,且黑色部分占整个圆的面积为1/2,故选A。

5.双曲线的对称轴为x=1,故焦点左侧的点P不在双曲线上,面积为0,故选A。

6.由于正方体A、B的对角线垂直于MNQ平面,故不与该平面平行,故选D。

7.根据约束条件,可得x≥y+1,即z=x+y≥y+2,故最大值为2,故选C。

8.函数y=sin2x的图像为一条上下振荡的曲线,故选B。

frac{16}{3}$,求AB的长度。

19.(12分)已知函数$f(x)=\frac{1}{2}\sin2x-\sin x+1$,$g(x)=\frac{1}{2}\cos2x+\cos x$。

1)证明$f(x)$在$(0,\pi)$内单调递减;2)若$f(x)=g(x)$,求$x$的取值。

20.(12分)已知函数$f(x)=\frac{1}{x^2-2x+2}$,$g(x)=\frac{x^2}{x^2+1}$。

1)求$f(x)$和$g(x)$的定义域;2)证明:对于任意$x\in(0,1]$,都有$f(x)\geq g(x)$。

21.(12分)如图,在$\triangle ABC$中,$AB=AC$,$D$为$BC$中点,$E$为$AD$的中点,$F$为$\triangle ADE$的重心。

2022年全国乙卷数学(文科)高考真题文档版(含答案)

2022年全国乙卷数学(文科)高考真题文档版(含答案)

2022年普通高等学校招生全国统一考试(全国乙卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号框涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号框。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.集合{2,4,6,8,10},{16}M N x x ==-<<,则M N = ()A .{2,4}B .{2,4,6}C .{2,4,6,8}D .{2,4,6,8,10}2.设(12i)2i a b ++=,其中,a b 为实数,则()A .1,1a b ==-B .1,1a b ==C .1,1a b =-=D .1,1a b =-=-3.已知向量(2,1)(2,4)==-,a b ,则||-=a b ()A .2B .3C .4D .54.分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A .甲同学周课外体育运动时长的样本中位数为7.4B .乙同学周课外体育运动时长的样本平均数大于8C .甲同学周课外体育运动时长大于8的概率的估计值大于0.4D .乙同学周课外体育运动时长大于8的概率的估计值大于0.65.若x ,y 满足约束条件则2z x y =-的最大值是()A .2-B .4C .8D .126.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若||||AF BF =,则||AB =()A .2B .C .3D .7.执行右边的程序框图,输出的n =()A .3B .4C .5D .68.右图是下列四个函数中的某个函数在区间[3,3]-的大致图像,则该函数是()A .3231x x y x -+=+B .321x x y x -=+C .22cos 1x x y x =+D .22sin 1xy x =+9.在正方体1111ABCD A B C D -中,,E F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1B EF ∥平面1A ACD .平面1B EF ∥平面11A C D10.已知等比数列{}n a 的前3项和为168,5242a a -=,则6a =()A .14B .12C .6D .311.函数()()cos 1sin 1f x x x x =+++在区间[]0,2π的最小值、最大值分别为()A .ππ22-,B .3ππ22-,C .ππ222-+,D .3ππ222-+,12.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A .13B .12C .3D .2二、填空题:本题共4小题,每小题5分,共20分。

2019年全国统一高考数学试卷(文科)(全国一卷)

2019年全国统一高考数学试卷(文科)(全国一卷)

2019年全国统一高考数学试卷(文科)(全国一卷)2019年全国统一高考数学试卷(文科)选择题部分共12小题,每小题5分,共60分。

1.设 $z=\frac{2}{3-i}$,则 $z=$(A)1+2i(B)3(C)2(D)1.2.已知集合 $U=\{1,2,3,4,5,6,7\}$,$A=\{2,3,4,5\}$,$B=\{2,3,6,7\}$,则$B\cap \overline{A}=$(A)$\{1,6\}$(B)$\{1,7\}$(C)$\{6,7\}$(D)$\{1,6,7\}$。

3.已知 $a=\log_2 0.2$,$b=2$,$c=0.2$,则(A)$a<b<c$(B)$a<c<b$(C)$c<a<b$(D)$b<c<a$。

4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是$\frac{5-\sqrt{5}}{2}\approx 0.618$,称为黄金分割比例。

若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至咽喉的长度与咽喉至肚脐的长度之比也是$\frac{5-\sqrt{5}}{2}$,且头顶至脖子下端的长度为26cm,则其身高可能是(A)165cm(B)175cm(C)185cm(D)190cm。

5.函数 $f(x)=\frac{\sin x+x}{\cos x+x^2}$ 在 $[-\pi,\pi]$ 的图像大致为(A)(图略)(B)(图略)(C)(图略)(D)(图略)。

6.某学校为了解1000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验。

若46号学生被抽到,则下面4名学生中被抽到的是(A)8号学生(B)200号学生(C)616号学生(D)815号学生。

7.$\tan 255^\circ =$(A)$-2-\sqrt{3}$(B)$-2+\sqrt{3}$(C)$2-\sqrt{3}$(D)$2+\sqrt{3}$。

2019年高考数学全国卷1(文理科试题及答案)

2019年高考数学全国卷1(文理科试题及答案)

2019 年普通高等学校招生全国统一考试(全国卷1)理科数学2019年聊通高筲学枝IW 上全国统与试理科数学1. 善巻啊.蛊生务愛耨自已的蚪化、齐生号霁垃q 在善變节*1弑嘗搭电他*上.2. 阿巻就卄虺uh 迤出禅小町善丽,用樹笔把仔国鬥tlSJ ■貝曲唇塞标号找事,如蒂改圍”用 檢皮崔「浄后・再选涂其它袴索标号"凤祎非选择期时.特嘗案耳在答理卡匕耳左血试卷匕无牡・3-苇试姑柬斤,将事试卷和書岂卡一弁宦回°、业獎砸:本翹弍垃小SL 爼水粗占分.共⑷分.在毎小題箱出的四个选亚中.人有--助超胡倉饉 目贾康的"】.己如能會M ■徉4< JT 莖工}, N = |x -r-6<o|» HA/nJV =(A. [.r|-4 < x <3. (r-4 < x < -2^C.[ .v -1 < J <D. (JL |2 < A <d 试耳烈:満足:一F| = l*匚料珏罪血内时咻的戌対(斗y)・确r 】A.(x-i) +3': =1B (J -1 + >2 - IC t' +( i -l)J =i D.r +(.V + 1)3 = 1弘已刘iM = 】Qg ;0£ b 二 0 • e-o^1' ・剧 i JA,.ti<h<ce. < f < bCvai^bu.Zt <c<a朽一]4,古希雅时朗.人怕认为星类人井的齊哺至肚睛的绘度勺肚1ft 帘足底的氏度之比是七一吕首的-瞬嘗聲抽飓・便艮则此Jtt>K 摊羌人体的久3证1%1/5噸的快度与咽麻奇tt 席酋长嵐之比也呈坐二.拧卓人厲址h.ifffif 黄童井制比桝.105cm.AJMSIF f F 韻的叹度为Mcrm 则K 甘岳町施址(1A,]lKcm B.l 75cm 匚185cm5,i 炯柱小}壬二町・屁訂的側粉打)ccs r +□ 190cm*: 0.611!.轧爲竝;:寸乩比隣.*"tty氐我岡古代典攜(周SP用H卄”推述打物的堂比邯一“直5K山从卜之1齐列的EG弦爼获.Jt分为團爻■■一 -•- ■■右圈就是M・也所有重計中融机取£幷’则谍啃料惜盯于个们爻的栅率¥(〕5 II 2\IIA.—&.—C,— D.—16 竝竝169.记旺为:字衣吐列仏}的前』」1杷L1畑二=0・山二5.驅CA.叫= 2rt 5B. = 3n 10CS =2n:D.S =-ft-2nh °2ltt已如«•■<;的世点为^(-W) . FW 过珂的fL^'j C丸于礼H阳点雷|娠卜2|两国,\AH=2|占F,則亡的力糧为(>①丿足腾咕救②/|町任邂的|彳,用)单闊理增③f (x I住区间[一亿訂f:F个-匸?.i ④/V)的赧(伯X-j 22/5 三三A,—Uu b)-i・则:与石的夹甬沟<fiSMEB・图中空白框*■ I丄rL缶航朗是求二己知羊零向鐵:* &WM 22/711.艾干诵豹f ix)= sin J* |>in A'| f」下述四个馆论t匚①④埠巴如三检推F —川封匸的四牛I 加的用商上,PA^PB^PC, AX5CMlt£^2 rn 止-M t £尸介別兄加「祐的中九 ZCEF = 90 ’则球O 的休机为( t34vf )zr二 填空嵐:本鹽找4「|咂.毎小駆S 井”其加分达曲凹7 = 3(屮7片在点((}期社儿•:叫川沟 ________________ .地记屯为等比栽手|{叫}的前萌项和,若納二y tr? = a..则员= _____________________ .Je.屮.乙洒賦诜恬槪球比賽.光用七场西胜制.幄捲訓期比赛成细,屮认的主客甬安排粮抚旳"主主客 峯L 客广.设甲阻主场即胜的柢率为06辉场駅胖的觀率肯血窑(1各场比赛靖黑梱互1M 則甲駅以4: 1塡腔的槪率 ________________ .J甲W 已知或曲険C:肴-舊 “BI" 0)的底右儒点分別为耳迅.迁片的血线二匸的两最潮瓦钱甘 ^TA y B^F [A = AB. FR 化 S 則卍的离也那肯 ________________________________ .三' 解善題:M7C^・聲笞应写出文字说明、证明过程亚演算步骑L 第E1锂为必考麵.毎『试饉 老生都必顼作啤 闕瞬” 口罚为选老題・老主喂西英求作?£• (一)叱老證匸別分"17. <12山I&C 的内ftX.JJ,C 的柑边分别是ng 设(sin£ —sinQ 『 =sin 2/I-sm ffsiuC,ti )求右;2)?7 ^2a + 6 = 2c .求*nJ “IS. (12 *、 斗呃直网檢哇卫处Q-月風CD 的虑曲是菱器*.11, = 41 AB = 2 ・ £BAD =■ 6O P . E,M r N^\^BC.RH 、 J Q ;勺中止”丸①②④-Ci5 / 36i)旺明i .,WA P//2)求_i加傩卫一址气一用的止強值.19”〔12 分}己却删为尸,期卓为斗的直教却C的蛉伪小总,S轴的仝山为"Xi11務|/<尸| + 0F卜£ 求*的力軒;2*越乔二[两.求\AU .30.(12^)dfti^Si/(r)=(mx-hi(l + T). f(x)^i/(r)的#敷就削:⑴『匕)杞皿’—】.亍存杞唯…的极人值点;⑵血工”相农有2卒毒丸21- C12 分〉为冷疗革种臥両”研制了甲、乙两种折科,需型知洞那种軒药更TT故・为此进打动梅实越真验收fill心毎轮逸取詡卿自臥对貞1效进荷对比试鑿.对F闊!!勺就・RI机选•射只施氐乙罚. M MB HINNIA ffiBI卜--轮试戦.当齐中--忡童称直的白嵐出另咐> i门二h、;.: a」一- 就碎止试驰丼从曲治倉只數命的荊史有玆・为了方便描述问臥的定*对于厘Flit魅・若itu甲药的白艮治載且16玖兀药的白損耒谢蠢惰甲蘇禅I分,二药斜-】血若施以乙药时口瞬泊JftlL施以屮葯的白亂走冶愈刚乙罚堺lih甲冊-】4h若欄治竈诚暮水治壷嘲两种眦均鮒0分耳、£两种拘闱治愈率廿别记如和". 熾试猫申甲的的咼灯记沖Y.1)哦JV的少舟列t⑵ 若甲药、乙t?孫试验幵始时都瞋"井.期"=0J,2…問老示存甲苟的當计得分知仇最终儿为屮知比乙热屯白%”的槻典刖地=0,仇=1+冏=即严如+甲⑴(:=】2 <7},儿中芒=尸(,丫=0), f) -P(.¥ -0), < = P( A J/7-0>.:i)hi小—瓦}"二12…⑺为鼻比故処;门门求齐.井規揣円的您駢痒试种试誥方當的合證性.4/5(二)粧电瓯:it 10^.请弋生在察2叭為赣中作讐.如睾第妣・则按所憎的策一晅计分.22.[选悔V 坐标集与題數晒(10井】"为需歎)息堂标底成O为駆点.石轴在帆角坐标纂呦冲*曲爼C的辩数方押为f -1 ~止半稱为槻轴建立璇坐标系.的概生桩方租为2“顷旧 + JJpsin日+丨1・0,11)*匚与』的直箱坐栋方程I:空痕匚上财点到F跑寄的最小值.21[4iU-5t不芳氏注讲]10 5Z)已抑臥he为壬敕・且胃足nhc- I.证弗(1)丄4■丄+丄羞应『卜胪+『和a b c!2)(a + ^)J + (A+r)- +(c+<J)' >245/58 / 362019年査通爲零学校招化全国统一考试文科数学注卷車顶:1.售卷前・考牛•务感将口己的姓洛号空号黑填垢在割S卡铀试卷指建位胃匕.孔河答址择期i・h旌出毎小童答案冶*期铅里把菩匙轻对应題目鸚I■如需盘4h用也皮攥「-净后.再选洙其它答慕标h昇回霜4延择题时.瘙椁家写隹粹朗卡上.写芒本试卷L:无效"3.考试轴束已将体试程和剳冒卡一件交同―、选擇慙;本駆共12小怂"程小融弓分*共60分在毎小融绐出的四个进念中* 口右一砺星轩合豔目要求的=2B.V3 c. 41ai1L1知#0U =①狛从氐7}・A ={234・5;,Z?二h・3百・7}・A=(】A ;L6(B-{1J| C. {6.7} D. {1,6,7} 乱已知a = lo^r DN・h = 2a2, c = 0.2in. IM t )A.ii <h<f R.ti<c<hC.c<ti<hD.^ <4 一古乖聊时训”人心认为於兀人侏的义顶至肚M的山A乌丄情孚足呸的li哽之比兄"匚‘^5-1*0.618.林为黄金分割比榊人着呂的•斷惮醴抽斯”良足JU此,此外.扯k扎障的久顶至啥2喉的fei44i咽喉至It脐的怪度立比也昱{口+若臬人涌匸丨述两个扯金分削比悯*巨腿圧为KScm’2张顼奎聆『卜-端的悅度为265・耻其身禹町能足(>^lGSem B.175cm CJBScm D.190em 去汝嚼数/{巧二竺斗■理[饥厅]的轻|他为(-COS J + X立科軸学10 / 36氐某学栈为r 解1 Q00宕新生怕刖悻當际将这些学牛編弓为眞2+ -+ 1000.^^^<k 屮用系统抽枠 的加i 等距抽9U00名手空进行测试.若輻号学牛被抽轧 则下面4名宁主中被抽取的址()A.B :^^T. B 200 号学中- C 616 ^4^1:D 81S 号即上&己划 忤向施.匸祸斗:=平.11币一和丄乳则门示的夹旳,1LAXSC 的内脚扎鼠匸的时处务刑是鸟氏c LliuasiiM- bsia&-4ca\nC . e«j» J = - T M* =4 cA.6B.5C.d a.3区L 2掠瞬闘匚的囁点为林一 1、创・rtkOl ・过巧的起缕耳匚交:■-」/ 九忆苦I”; =2|/';^・I 姐=2)昭|・则(7的方程为<)11 T 丁*■* 1 x'2 .犷 y .工” y .匕 A ' v .A . — + r = I玫一 + J 匸】匚一+ — = I& - -+ — = I232435 4->才空题;本题共4小題,霽小題5井,共20分.= ^x~ +扌片件点(0X )牡的切纯方出为 ________________ .皿记比为等比數时就}的斛丹顷和.若坷丄・衬=毎.则乂二 _______________________ .17. un 255 =【Rg 号学生 B 200号学生 C616号供主0415 v^tB. - ? ■ v'?i€-2"D 2 + V3■右— 的程序帼用.圈屮空口框屮应塡入]■応础戟(?:二—吴三财>0上M )的一柚f 近线的幢料角为口0 .则匕的离心莘为< abA. 2 sin 4(}B. 2 cos 40sin 50D. ---------cos 502 + 4CA =1*2#甲2/515 医靈/(P v)=siml v 4-—)-Jcnsx 的瑕小恆为_______________________值已如ZJCB二90’・P为芈迪A&C外规FC = 2 ■点尸到^ACB两边"G AB的距离均A I J5.廉么P到辛祈冲占“的护离为 ______________________ .三i離答孤共7C^解答內写出文字说馭证明讨幻走洁草梅第1严21孤为必老黑.岛个试耶不生都必须件答“第2氛刀就为选青!L电生觸据聲求作答.C-)必书迩;60分*17.(1Z 时)臬南场为提1W务櫛孟驰机调查了和粕男贼客神疔「窑立顒罂毎忖蹊客村谨商场恂审务给出満总戍平满意的泮比眸到下列列联祐D分別估计职女岡客对谐商场服务满强的槪執C2)能否有95%的把握认為?b女陵第对谁斷炀服务的评价有館异? 附宀——凹」竺——(tj + h)(c^-ii )(/T-*-L')(/J +18 <12 ^f)记&为零龙:数列®」的前舟驷h曲0罠=—令*1> 阻%軒帆}他通项公戌*(2)若>?0・頼購£ 土斗術I刀取苟小范鬧.立理數学13 / 3619. (12如& 豐四變柱ABCD -叫垃3的旳如辛菱厢-AA,= 4 (AH-2. r£4匚*分别晁/?「.11歇..4、D的中点.[D 证I则v.w/TmcDFi[?>求点<到平[tic,n£的距离,竹、Ml 朗数 f (x) - 2 sin v - .vcos x~x , f f(x)为f(x)的冷 ft.[|>证罔:_f{-r)托IK间®.JT)存序吋-话点t⑵占上£[0卫]时,/(.r)>ax T求“的収價小也囤20, <12 分)已姐山彳.F艾尸叶函:口。

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)
1 1 2A 1
10 .双曲线
2
C: x
2
2
y
的一条渐近线的倾斜角为
2 1( 0, 0)
ab
专业资料
14.记 Sn 为等比数列 { an} 的前 n 项和 .若 a 1 1, S3
3 ,则 S4=___________ .
4

f (x) sin(2 x
) 3cos x 的最小值为 ___________ .

长度之比也是
5

1



2

上述两个黄金分割比 例,且腿长为 105cm ,头顶至脖子下
端的长度为 26 cm , 则其身高可能是
A. 165 cm B. 175 cm
C. 185 cm D. 190cm
在 [ — π, π的] 图像大致为
sin x x
函数 f(x)=
2
cos x x
专业资料
班-
12B-SX-0000022
_-
_______ :
-
绝密 ★ 启用前
2019 年普通高等学校招生全国统一考试
文科数学 全国 I 卷
本试卷共 23 小题,满分 150 分,考试用时 120 分钟
号学
(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福 建
)
_ - 注意事项:
___________________ :
12B-SX-0000022
附: 2
K (a
2
P( K ≥k)
2
n( ad bc)

b)(c d )(a c)(b d)
0.050
0.010

2019年高考文科数学全国1卷(附答案)

2019年高考文科数学全国1卷(附答案)

学校:____________________ _______年_______班 姓名:____________________ 学号:________- - - - - - - - - 密封线 - - - - - - - - - 密封线 - - - - - - - - -绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建) 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、 选择题:本题共12小题,每小题5分,共60分。

在每个小题给出的四个选项中, 只有一项是符合题目要求的。

1.设3i12iz -=+,则z = A .2 BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名 的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下 端的长度为26 cm ,则其身高可能是 A. 165 cm B. 175 cm C. 185 cm D. 190cm5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生 C .616号学生 D .815号学生7.tan255°= a b c <<a c b <<c a b <<b c a <<8.已知非零向量a ,b 满足a=2b,且(a –b )⊥b ,则a 与b 的夹角为 A .π6 B .π3 C .2π3D .5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A =12A +B. A =12A +C. A =112A+D. A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则bc=A .6B .5C .4D .3 12.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。

2020年普通高等学校招生全国统一考试文科数学试题及答案(全国新课标卷1)

2020年普通高等学校招生全国统一考试文科数学试题及答案(全国新课标卷1)

2020年普通高等学校招生全国统一考试文科数学(全国新课标1)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知合集{}2340A x x x =--<,{}4,1,3,5B =-,则A B = A.{}4,1- B. {}1,5 C. {}3,5D. {}1,32.若312z i i =++,则z = A.0 B.1 C.2 D. 23. 埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为 A.514- B. 512-C.514+ D. 512+4. 设O 为正方形ABCD 的中心,在O, A ,B, C, D 中任取3点,则取到的3点共线的概率为 A.15 B. 25 C. 12 D. 455. 某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:C )的关系,在20个不同的温度条件下进行种子的发芽实验,由实验数据,)(i i y i =(x 1,2,…,20)得到下面的散点图:由此散点图,在10C 至40C 之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是A. y a bx =+B. 2y a bx =+C. x y a be =+D. ln y a b x =+6. 已知圆2260x y x +-=,过点(1,2)的直线被该圆所截得的弦的长度的最小值为 A. 1 B. 2 C. 3 D. 47. 设函数()cos()6f x x πω=+在[]-ππ,的图像大致如下图,则()f x 的最小正周期为A.109πB.76π C.43π D.32π 8. 设3a log 42=,则-a 4 A.116 B. 19 C. 18 D. 169.执行右面的程序框图,则输出的n = A. 17 B. 19 C. 21D. 2310.设{}n a 是等比数列,且123+1a a a +=,2342a a a ++=,则678+a a a += A. 12 B. 24 C. 30 D. 3211. 设1F ,2F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且|OP | =2,则∆12PF F 的面积为A.72 B. 3 C. 52D. 2 12. 已知A ,B ,C 为球O的球面上的三个点,1O 为△ABC 的外接圆. 若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π二、填空题:本题共4小题,每小题5分,共20分。

2020年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2020年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2020年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-3x -4≤0},B ={-4,1,3,5},且A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3} 2.若z =1+2i +i 3,则|z |=( )A .0B .1C 2D .2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积 等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( )A .514B .512C .514D .5124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下 进行种子发芽实验,由实验数据 (x i . y i )(i =1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之 间,下面四个回归方程类型中最 适宜作为发芽率y 和温度x 的回 归方程类型的是( ) A .y=a+bx B .y=a+bx 2 C .y=a+be xD .y=a+b ln x6.已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .47.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图,则f (x )的最小正周期为( )A .109πB .76πC .43πD .32π8.设a log 34=2,则4-a =( )A .116B .19C .18D .169.执行下面的程序框图,则输出的n =( )A .17B .19C .21D .2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( ) A.12 B.24 C.30 D.3211.设F1, F2是双曲线C:2213yx-=的两个焦点,O为坐标原点,点P在C上且|OP|=2,则∆PF1F2的面积为( )A.72B.3 C.52D.212.已知A,B,C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )AA.64πB.48πC.36πD.32π二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.若x,y满足约束条件220,10,10,x yx yy+-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y的最大值为.14.设为(1,1)(1,24),a b m m a b-=+-⊥=,若,则m= .15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为.16.数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1= .三、解答题:解答应写出文字说明,证明过程或演算步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
19.(XXXX 课标全国Ⅰ,文 19)(本小题满分 12 分)如图,三棱柱 ABC-A1B1C1 中,CA=CB, AB=AA1,∠BAA1=60°. (1)证明:AB⊥A1C; (2)若 AB=CB=2,A1C= 6 ,求三棱柱 ABC-A1B1C1 的体积.
学海无涯 20.(XXXX 课标全国Ⅰ,文 20)(本小题满分 12 分)已知函数 f(x)=ex(ax+b)-x2-4x,曲 线 y=f(x)在点(0,f(0))处的切线方程为 y=4x+4. (1)求 a,b 的值; (2)讨论 f(x)的单调性,并求 f(x)的极大值.
10.(XXXX 课标全国Ⅰ,文 10)已知锐角△ABC 的内角 A,B,C 的对边分别为 a,b,c,23cos2A
+cos 2A=0,a=7,c=6,则 b=( ).
A.10
B.9
C.8
D.5
学海无涯
11.(XXXX 课标全国Ⅰ,文 11)某几何体的三视图如图所示,则该几何体的体积为( ).
A.16+8π
16.(XXXX 课标全国Ⅰ,文 16)设当 x=θ 时,函数 f(x)=sin x-2cos x 取得最大值,则
cos θ=______.
三、解答题:解答应写出文字说明,证明过程或演算步骤. 17.(XXXX 课标全国Ⅰ,文 17)(本小题满分 12 分)已知等差数列{an}的前 n 项和 Sn 满足
S3=0,S5=-5. (1)求{an}的通项公式;
(2)求数列
1 a a 2n−1 2n+1
的前
n
项和.
学海无涯
18.(XXXX 课标全国Ⅰ,文 18)(本小题满分 12 分)为了比较两种治疗失眠症的药(分别称为 A 药,B 药)的疗效,随机地选取 20 位患者服用 A 药,20 位患者服用 B 药,这 40 位患者在 服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下: 服用 A 药的 20 位患者日平均增加的睡眠时间: 0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.5 2.5 2.6 1.2 2.7 1.5 2.9 3.0 3.1 2.3 2.4 服用 B 药的 20 位患者日平均增加的睡眠时间: 3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5 (1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好? (2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?
下列命题中为真命题的是( ).
A.p∧q
B. p∧q
C.p∧ q
D. p∧ q
6.(XXXX 课标全国Ⅰ,文 6)设首项为 1,公比为 2 的等比数列{an}的前 n 项和为 3
Sn,则( ).
A.Sn=2an-1
B.Sn=3an-2
C.Sn=4-3an
D.Sn=3-
2an
7.(XXXX 课标全国Ⅰ,文 7)执行下面的程序框图,如果输入的 t∈[-1,3],则
值为 2 的概率是( ).
1
1
1
1
A. 2
B. 3
C. 4
D. 6
4.(XXXX
课标全国Ⅰ,文
4)已知双曲线
C:
x2 a2

y2 b2
=1(a>0,b>0)的离心率为
5 ,则 2
C 的渐近线方程为( ).
1x A.y= 4
1x B.y= 3
1x C.y= 2
D.y=±x
5.(XXXX 课标全国Ⅰ,文 5)已知命题 p:∀x∈R,2x<3x;命题 q:∃x∈R,x3=1-x2,则
A.{1,4}
B.{2,3}
C.{9,16}
D.{1,2}
2.(XXXX 课标全国Ⅰ,文 2) 1+ 2i =( ). (1− i)2
−1− 1 i A. 2
−1+ 1 i B. 2
1+ 1 i C. 2
1− 1 i D. 2
3.(XXXX 课标全国Ⅰ,文 3)从 1,2,3,4 中任取 2 个不同的数,则取出的 2 个数之差的绝对
学海无涯
XXXX 年普通高等学校夏季招生全国统一考试数学文史类
(全国卷 I 新课标)
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符
合题目要求的.
1.(XXXX 课标全国Ⅰ,文 1)已知集合 A={1,2,3,4},B={x|x=n2,n∈A},则 A∩B=( ).
14.(XXXX
课标全国Ⅰ,文
14)设
x,y
满足约束条件
1 −1
x
3, x− y
0,

z=2x-y
的最大值
为______.

15.(XXXX 课标全国Ⅰ,文 15)已知 H 是球 O 的直径 AB 上一点,AH∶HB=1∶2,AB⊥平面
α,H 为垂足,α 截球 O 所得截面的面积为 π,则球 O 的表面积为______.
输出的 s 属于( ).
A.[-3,4]
B.[-5,2]
C.[-4,3]
D.[-2,5]
8.(XXXX 课标全国Ⅰ,文 8)O 为坐标原点,F 为抛物线 C:y2= 4 2x 的焦点,P
为 C 上一点,若|PF|= 4 2 ,则△POF 的面积为( ).
A.2
B. 2 2
C. 2 3
D.4
9.(XXXX 课标全国Ⅰ,文 9)函数 f(x)=(1-cos x)sin x 在[-π,π]的图像大致为( ).
B.8+8π C.16+16π D.8+16π
12.(XXXX
课标全国Ⅰ,文
12)已知函数
f(x)=

x2
+
2
x,
x
0,

ln(x +1), x 0.
|f(x)|≥ax,则 a 的取值范围是( ).
A.(-∞,0]
B.(-∞,1]
C.[-2,1]
D.[-2,0]
第Ⅱ卷
二、填空题:本大题共 4 小题,每小题 5 分. 13.(XXXX 课标全国Ⅰ,文 13)已知两个单位向量 a,b 的夹角为 60°,c=ta+(1-t)b.若 b·c=0,则 t=______.
21.(XXXX 课标全国Ⅰ,文 21)(本小题满分 12 分)已知圆 M:(x+1)2+y2=1,圆 N:(x-1)2 +y2=9,动圆 P 与圆 M 外切并且与圆 N 内切,圆心 P 的轨迹为曲线 C. (1)求 C 的方程; (2)l 是与圆 P,圆 M 都相切的一条直线,l 与曲线 C 交于 A,B 两点,当圆 P 的半径最长时, 求|AB|.
相关文档
最新文档