椭圆经典例题

合集下载

《椭圆》方程典型例题20例(含标准答案解析)

《椭圆》方程典型例题20例(含标准答案解析)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

(完整)椭圆经典例题答案版

(完整)椭圆经典例题答案版

椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.分析:把椭圆的方程化为标准方程,由2=c ,根据关系222c b a +=可求出m 的值.解:方程变形为12622=+m y x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准方程.解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x .当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+b a .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y .例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利用椭圆定义求解.(2)由G 的轨迹方程G 、A 坐标的关系,利用代入法求A 的轨迹方程.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ①由题意有⎪⎪⎩⎪⎪⎨⎧='='33yy x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点). 例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ∆中,21sin 1221==∠PF PF F PF , 可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x . 例5 已知椭圆方程()012222>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.① 由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 例 6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 : ()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x . 此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x . 例10 已知方程13522-=-+-k y k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0.例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程. 分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =. 因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x .说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为),(y x ,设已知轨迹上的点的坐标为),(00y x ,然后根据题目要求,使x ,y 与0x ,0y 建立等式关系, 从而由这些等式关系求出0x 和0y 代入已知的轨迹方程,就可以求出关于x ,y 的方程, 化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos 22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB . (法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A . 说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即a MF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离.例16 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。

《椭圆》方程典型例题20例(含标准答案解析]

《椭圆》方程典型例题20例(含标准答案解析]

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置. 解:(1)当()02,A 为长轴端点时,2=a ,1=b ,椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a ,椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112aa x x x M +=+=,2111a x y M M +=-=,4112===a x y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=. ∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-. 将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b ,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b ,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+ay x ay ,将22222y b a a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b cab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12F PF,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα ∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα, ∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+= ∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=. 同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y . 解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y . (2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=. ∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

例1 椭圆的一个顶点为()02,A 分析:解:(1)当()02,A 椭圆的标准方程为:11422=+y x (2)当()02,A 为短轴端点时,b 椭圆的标准方程为:116422=+y x 说明:横竖的,因而要考虑两种情况.例2 解:31222⨯⨯=c a c ∴23c =∴3331-=e . 说明:和c 的齐次方程,再化含e 例3 已知中心在原点,焦点在x 点,OM 的斜率为0.25解:由题意,设椭圆方程为22+ax )直线与曲线的综合问题,经常要借)22y ,与焦点()04,F 的距离成等差数BT 的斜率k .(2)因为线段AC 221=+-y y y 又∵点T 在x ()212221024x x y y x --=-又∵点()11y x A ,,(2x B ∴ ()212125259x y -=()222225259x y -= ∴ (12221259x y y +-=-将此式代入①,并利用 253640-=-x ∴ 4540590=--=x k BT例5 已知椭圆13422=+yx ,距离MN 是1MF 与2MF 解:假设M 存在,设M 2=a ,3=b ,∴=c ∵左准线l 的方程是=x ① ②.k ,利用条件求k . ⎪⎭⎫ ⎝⎛-=21x k .代入椭圆方程,并整理∵P 是弦中点,∴121=+x x 所以所求直线方程为342-+y x 分析二:设弦两端坐标为(11y x ,率:2121x x y y --.解法二:设过⎪⎭⎫⎝⎛2121,P ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .将③、④代入⑤得212121-=--x x y y 所求直线方程为0342=-+y x 说明:(1迹;过定点的弦中点轨迹.(2(3线问题也适用.例7 (1)长轴长是短轴长的2(2)在x 12222=+b y a x 求出1482=a ,372=b ,1=. .182=a .故所求方程为191822=+y x .MF AM 2+为最小值M 到右准线的距离,从而得最小8=x l :.过A 作l AQ ⊥,垂足为AQ ,即M 为所求点,因此说明:是M 例9 求椭圆32x 分析:值.解:椭圆的参数方程为⎩⎨⎧距离为26sin cos 3=+-=θθd 当13sin -=⎪⎭⎫⎝⎛-θπ时,d 说明:例10的点的最远距离是7分析:要注意讨论b 提高逻辑推理能力.0>>b a 待定.21<b 矛盾.⎪⎭⎫-21,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫ ⎝⎛-=-==a b a b a a c e 2143112=-=-=e a b ,即a 设椭圆上的点()y x ,到点 ⎝⎛0P 22222cos 23=⎪⎭⎫ ⎝⎛-+=θa y x d sin 3sin 34222--=θθb b b 421sin 3222+⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当由题设得()22237⎪⎭⎫⎝⎛+=b 于是当b21sin -=θ时2d 由题设知()34722+=b,∴∴所求椭圆的参数方程是⎩⎨⎧y x 由21sin -=θ,cos θ例11 设x ,R ∈y ,y x 63222=+分析:考虑椭圆及圆的位置关系求得最值.0,0)点和(3,0)点. )1->.0,0)点时,半径最41=+m ,∴15=m .a 、b 如何变化, 120≠∠APB .(2分析:22222y ba a x -=解:(1 ⎩⎨⎧b x 2于是k AP=∵APB ∠∴tan ∠∵22c a >∴tan ∠故tan ∠(2)设∴tan ∠12-=k c .由21=e ,得4=k . k -1.8与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 例14 已知椭圆142222=+by b x 分析:解法一:由142222=+by b x ,得由椭圆定义,a PF PF 221=+b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,∴b ePF d 3211==,即P 到左准线的距离为b 32解法二:∵e d PF =22,2d 为P ∴b ePF d 33222==. 又椭圆两准线的距离为c a 22=⋅∴P 到左准线的距离为b 338说明:圆的第二定义.3π=∠POx ,求P 点坐标.3π, 552, )0>上的一点,P 到左焦点1F 和右焦.ca 20+,∴01ex a PQ e r +==说明:例17 已知椭圆15922=+y x 上一点.(1) 求1PF PA +(2) 求223PF PA +分析:即代数方法.二是数形结合,解:(1)如上图,62=a ,)0,2(2F ,22AF PF PA -≥,∴1+PF PA 22AF PF PA -=时成立,此时P 、由22AF PF PA +≤,∴+PA 22AF PF PA +=时成立,此时P 、==45,02得两交点 ,P 点与2P 重合时,2PF PA +取Q 为垂足,由3=a ,2=c ,PQ PA PF PA +=+223,要使29=x .1,代入椭圆得满足条件的A 向相应准线作垂线段.巧用(2)分析:解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S )sin 2,cos 3(θθ则2sin 12sin 2cos 34=⨯⨯=θθS 故椭圆内接矩形的最大面积为说明:问题,用参数方程形式较简便.例19 已知1F ,2F (1)(2)求证21F PF ∆分析:12222=+b y a x (0>>b a )),(11y x P ,)0,(1c F -,)0,(2c F 方程联立消去21x 得2312212-+cy b y c 出1y 可以求出21F PF ∆思路二:利用焦半径公式1PF =再利用],[1a a x -∈,可以确定离心率a 2求解.),11y ,)0,(1c F -,)0,(2c F ,0>c ,(1)在21F PF ∆︒==60sin 2sin sin cn m βα∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα∴sin sin 60sin βα=+︒==a c e 212cos21≥-=βα.当且仅当βα=(2)在21F PF ∆-+=2)2(222mn n m c mn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即∴60sin 2121mn S F PF ︒=∆即21F PF ∆说明:椭圆上的一点P 21PF PF +的结,若这个椭圆上总存在点P ,使AP OP ⊥,转化为P 点坐的一个不等式,转化为关于e 的不等222ba b -=θ, ,又222c a b -= P 使AP OP ⊥.如何证明?。

椭圆 经典题型练习 (精选题) 含答案

椭圆 经典题型练习 (精选题) 含答案

椭圆经典题型练习一.选择题(共13小题)1.设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆与直线bx+y=b2相切,则该椭圆的离心率为()A.B.C.D.2.已知方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y轴上的椭圆,则实数m的取值范围为()A.(1,2)B.(2,3)C.(﹣∞,1)D.(3,+∞)3.已知椭圆的两个焦点分别为F1,F2,P是椭圆上一点,且∠F1PF2=60°,则△F1PF2的面积等于()A.B.C.6D.34.椭圆=1的左、右焦点分别为F1、F2,弦AB过F1,若△ABF2的内切圆周长为π,A、B两点的坐标分别为(x1,y1)和(x2,y2),则|y2﹣y1|的值是()A.B.C.D.5.已知点M(﹣4,0),椭圆的左焦点为F,过F作直线l(l的斜率存在)交椭圆于A,B两点,若直线MF恰好平分∠AMB,则椭圆的离心率为()A.B.C.D.6.设椭圆(a>b>0)的一个焦点F(2,0)点A(﹣2,1)为椭圆E内一点,若椭圆E上存在一点P,使得|PA|+|PF|=8,则椭圆E的离心率的取值范围是()A.B.C.D.7.已知椭圆的左焦点为F1,离心率为,P是椭圆C上的动点,若点Q(1,1)在椭圆C内部,且|PF1|+|PQ|的最小值为3,则椭圆C的标准方程为()A.B.C.D.8.在平面直角坐标系xOy中,过椭圆C:=1(a>b>0)的右焦点F作x 轴的垂线,交C于点P,若=2,cos∠OPF=,则椭圆C的方程为()A.=1B.=1C.=1D.=1 9.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则|AF|+|BF|的值是()A.2B.C.4D.10.设椭圆的左焦点为F,直线l:y=kx(k≠0)与椭圆C交于A,B两点,则△AFB周长的取值范围是()A.(2,4)B.C.(6,8)D.(8,12)11.已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.椭圆的左右焦点分别为F1,F2,A为椭圆上一动点(异于左右顶点),若△AF1F2的周长为6且面积的最大值为,则椭圆的标准方程为()A.B.C.D.13.已知点A(0,0),B(2,0).若椭圆上存在点C,使得△ABC为等边三角形,则椭圆W的离心率是()A.B.C.D.二.填空题(共7小题)14.已知点P圆C:(x﹣4)2+y2=4上,点Q在椭圆上移动,则|PQ|的最大值为.15.已知点A在椭圆+y2=1上,且O、A、P三点共线(O是坐标原点),=24,则线段OP在x轴上的投影长度的最大值为16.直线y=kx+k与焦点在y轴上的椭圆+=1总有两个公共点,则实数m的取值范围是.17.过直线l:y=x+9上的一点P作一个长轴最短的椭圆,使其焦点为F1(﹣3,0),F2(3,0),则此椭圆的离心率为18.椭圆右焦点为F,存在直线y=t与椭圆C交于A,B 两点,使得△ABF为等腰直角三角形,则椭圆C的离心率e=.19.已知F1,F2是长轴长为4的椭圆的左右焦点,P是椭圆上一点,则△PF1F2面积的最大值为.20.已知点P(x,y)在椭圆上运动,则最小值是三.解答题(共10小题)1.已知F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.(Ⅰ)求△ABF2的周长;(Ⅱ)若AF2⊥BF2,求△ABF2的面积.2.已知p:实数m使得椭圆的离心率.(1)求实数m的取值范围;(2)若q:t≤m≤t+9,p是q的充分不必要条件,求实数t的取值范围.3.已知椭圆C:=1(a>b>0)的离心率为,短轴端点到焦点的距离为2.(1)求椭圆C的方程;(2)设A,B为椭圆C上任意两点,O为坐标原点,且OA⊥OB.求证:原点O 到直线AB的距离为定值,并求出该定值.4.已知椭圆C:+=1(a>b>0)的离心率为,F1,F2分别是其左、右焦点,P为椭圆C上任意一点,且|PF1|+|PF2|=4(1)求椭圆C的标准方程;(2)过F1作直线l与椭圆C交于A、B两点,点Q(m,0)在x轴上,连结QA、QB分别与直线x=﹣2交于点M、N,若MF1⊥NF1,求m的值.5.已知椭圆的离心率为且经过点.(1)求椭圆方程;(2)直线y=kx+m交椭圆于不同两点A,B,若,△OAB(O是坐标原点)的面积等于,求直线AB的方程.6.已知椭圆C:=1(a>b>0)的左、右焦点分别为F1,F2且离心率为,过左焦点F1的直线l与C交于A,B两点,△ABF2的周长为16.(1)求椭圆C的方程;(2)已知过点P(2,1)作弦且弦被P平分,则此弦所在的直线方程.7.设F1,F2分别是椭圆C:的左、右焦点,M是C上一点,且MF2与x轴垂直.直线MF1与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为3,且|MN|=7|F1N|,求a,b.8.已知椭圆C:+=1(a>b>0)的离心率为,且C过点(1,).(1)求椭圆C的方程;(2)若斜率为k(k<0)的直线l与椭圆C交于P,Q两点,且直线OP,l,OQ 的斜率成等比数列,求k值.9.已知椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,设直线x﹣y+2=0交椭圆于A,B两点,求线段AB的中点坐标.10.在平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的右焦点F(1,0),过F且垂直于x轴的弦长为3,直线l与圆(x﹣1)2+y2=1相切,且与椭圆C交于A,B两点,Q为椭圆的右顶点.(1)求椭圆C的方程;(2)用S1,S2分别表示△ABF和△ABQ的面积,求S1•S2的最大值.椭圆练习参考答案与试题解析一.选择题(共13小题)1.【解答】解:椭圆=1(a>b>0)的左、右焦点分别为F1,F2,以F1F2为直径的圆x2+y2=c2,以F1F2为直径的圆与直线bx+y=b2相切,可得:,即a2﹣c2=ac,因为e=∈(0,1),所以e=.故选:C.2.【解答】解:方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m),即,方程(m﹣1)x2+(3﹣m)y2=(m﹣1)(3﹣m)表示焦点在y 轴上的椭圆,可得m﹣1>3﹣m>0,解得2<m<3.故选:B.3.【解答】解:如图所示,椭圆,可得a=5,b=3,c==4.设|PF1|=m,|PF2|=n,则m+n=2a=10,在△F1PF2中,由余弦定理可得:(2c)2=m2+n2﹣2mncos60°,可得(m+n)2﹣3mn=6即102﹣3mn=64,解得mn=12.∴△F1PF2的面积S=mnsin60°==3.故选:B.4.【解答】解:由椭圆=1,可得a=5,b=4,c==3.如图所示,设△ABF2的内切圆的圆心为G.连接AG,BG,GF2.设内切圆的半径为r,则2πr=π,解得r=.则==•|F1F2|,∴4a=|y2﹣y1|×2c,∴|y2﹣y1|==.故选:D.5.【解答】解:设F(﹣c,0),A(x1,y1),B(x2,y2),直线AB的方程为y=k(x+2),代入椭圆方程,可得(b2+4k2)x2+8ck2x+4k2c2﹣4b2=0,即有x1+x2=﹣,x1x2=,由直线MF恰好平分∠AMB,可得k AM+k BM=0,即有+=0,可得k(x1+c)(x2+4)+k(x2+c)(x1+4)=0,化为2x1x2+(c+4)(x1+x2)+8c=0,可得2•+(c+4)•(﹣)+8c=0,化简可得c=1,则椭圆的离心率e==,故选:C.6.【解答】解:椭圆(a>b>0)的一个焦点F(2,0),另一个焦点为F'(﹣2,0),由椭圆的定义可得2a=|PF|+|PF'|,即|PF'|=2a﹣|PF|,可得|PA|﹣|PF'|=8﹣2a,由||PA|﹣|PF'||≤|AF'|=1,可得﹣1≤8﹣2a≤1,解得≤a≤,又c=2,可得e=∈[,],故选:A.7.【解答】解:如图所示,设右焦点为F2.|PF1|+|PQ|=2a﹣(|PF2|﹣|PQ|)≥2a﹣|QF2|=3,∴2a﹣=3,=a2=b2+c2,联立解得a=2,c=1,b2=3.∴椭圆C的标准方程为=1.故选:A.8.【解答】解:∵|OF|=c,PF⊥x轴,cos∠OPF=,∴sin∠OPF=,∴cos∠OPF=,|OP|===c,∵=2,∴|OP|•c•cos∠OPF=|OP|•c•=c•c•=2,解得c2=2,即c=∴|OP|=,∴|PF|=×=1,∴P(,1),∴+=1∵a2﹣b2=c2=2,∴a2=4,b2=2,∴+=1故选:B.9.【解答】解:如图,设F2是椭圆的右焦点,∵O点为AB的中点,丨OF丨=丨OF2丨,则四边形AFBF2是平行四边形,∴AF=BF2.∴|AF|+|BF|=丨BF丨+丨BF2丨=2a=4,故选:C.10.【解答】解:∵椭圆的左焦点为F(﹣,0),右焦点F2(,0),直线l:y=kx(k≠0)与椭圆C交于A,B两点,连结BF2,则AF=BF2,AB=2OB,由一的定义可知:BF+BF2=2a=4,OB∈(1,2)则△AFB周长的取值范围是(6,8).故选:C.11.【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.12.【解答】解:由椭圆的定义可得2(a+c)=6,所以a+c=3①,当A在上(或下)顶点时,△AF1F2的面积取得最大值,即最大值为bc=②,由①②及a2=c2+b2联立求得a=2,b=,c=1,椭圆方程为+=1,故选:A.13.【解答】解:过点C做x轴垂线,垂足为D,根据正三角形性质可知D为A,B的中点,C坐标为(1,),C点的坐标代入椭圆方程得,解得m=6,所以椭圆的离心率为:=.故选:C.二.填空题(共7小题)14.【解答】解:∵点Q在椭圆上移动,∴可设Q(cosθ,2sinθ),由圆C:(x﹣4)2+y2=4,可得圆心C(4,0),半径r=2.∴|CQ|===≤5,当且仅当cosθ=﹣1时取等号.∴|PQ|的最大值=5+r=7.故答案为:7.15.【解答】解:∵O、A、P三点共线(O是坐标原点),=24,∴|OA|•|OP|=24,设OP与x轴夹角为θ,设A(x,y)在第一象限,B为点A 在x轴的投影,则OP在x轴上的投影长度为|OP|cosθ==24×=24×=24×≤24×=8.当且仅当x=时等号成立.则线段OP在x轴上的投影长度的最大值为8.故答案为:8.16.【解答】解:直线y=kx+k恒过(﹣1,0),直线与焦点在y轴上的椭圆+=1总有两个公共点,可得:解得m∈(1,4).故答案为:(1,4).17.【解答】解:设直线l上的占P(t,t+9),取F1(﹣3,0)关于l的对称点Q (﹣9,6),根据椭圆定义,2a=|PF1|+|PF2|=|PQ|+|PF2|≥|QF2|==6 ,当且仅当Q,P,F2共线,即,即=﹣时,上述不等式取等号,∴t=﹣5.∴P(﹣5,4),据c=3,a=3,离心率为:e==.故答案为:.18.【解答】解:要使△ABF为等腰直角三角形,则B(c,2c).,又a2=b2+c2,∴b2=2ac,⇒c2+2ac﹣a2=0,⇒e2+2e﹣1=0,且0<e<1,∴e=﹣1.故答案为:﹣1.19.【解答】解:F1,F2是长轴长为4的椭圆的左右焦点,a=2,b2+c2=4,P是椭圆上一点,△PF1F2面积的最大值时,P在椭圆的短轴的端点,此时三角形的面积最大,S=bc≤=2,当且仅当b=c时,三角形的面积最大.故答案为:2.20.【解答】解:根据题意,点P(x,y)在椭圆上运动,则有,变形可得:+=,变形可得x2+2(y2+1)=5,则=[x2+2(y2+1)]()=×[1+4++]=×[5++]≥(5+2×2)=;即最小值是,故答案为:三.解答题(共10小题)1.【解答】解:(I)∵F1,F2分别为椭圆+y2=1的左、右焦点,过F1的直线l与椭圆交于不同的两点A、B,连接AF2和BF2.∴△ABF2的周长为|AF1|+|AF2|+|BF1|+|BF2|=4a=4.…(3分)(II)设直线l的方程为x=my﹣1,由,得(m2+2)y2﹣2my﹣1=0.设A(x1,y1),B(x2,y2),则y1+y2=,y1y2=﹣,…(5分)∵AF2⊥BF2,∴•=0,∴•=(x1﹣1)(x2﹣1)=(my1﹣2)(my2﹣2)+y1y2=(m2+1)y1y2﹣2m(y1+y2)+4=﹣2m×+4==0∴m2=7.…(10分)∴△ABF2的面积S=×|F1F2|×=.2.【解答】解:(1)当0<m<2时,∵,又,∴,∴,当m>2时,∵,又,∴解得4<m<8.综上所述实数m的取值范围:或4<m<8.(2)∵q:t≤m≤t+9,p是q的充分不必要条件,∴⊆[t,t+9],∴,解得.3.【解答】解:(1)由题意知,e==,a==2,又a2=b2+c2,所以a=2,c=,b=1,所以椭圆C的方程为+y2=1;(2)证明:当直线AB的斜率不存在时,直线AB的方程为x=±;此时,原点O到直线AB的距离为;当直线AB的斜率存在时,设直线AB 的方程为y=kx+m,A(x1,y1),B(x2,y2).代入椭圆方程x2+4y2=4,得(1+4k2)x2+8kmx+4m2﹣4=0,则△=(8km)2﹣4(1+4k2)(4m2﹣4)=16(1+4k2﹣m2)>0,x1+x2=﹣,x1x2=,则y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2=k2•+km(﹣)+m2=,由OA⊥OB得k OA k OB=﹣1,即x1x2+y1y2=0,所以=0,即m2=(1+k2),所以原点O到直线AB的距离为d==,综上,原点O到直线AB的距离为定值.4.【解答】解:(1)由题意可得:=,|PF1|+|PF2|=4=2a,a2=b2+c2.联立解得:a=2,c==b.∴椭圆C的标准方程为:+=1.(2)如图所示,设直线l的方程为:ty=x+,A(x1,y1),B(x2,y2).联立,化为:(t2+2)y2﹣2ty﹣2=0,∴y1+y2=,y1y2=.直线QA的方程为:y=(x﹣m),可得:M.直线QB的方程为:y=(x﹣m),可得N.∵MF1⊥NF1,∴•=0.又F1(﹣,0).∴+•=0,化为:2[x1x2﹣m(x1+x2)+m2]+=0,∵x1+x2=t(y1+y2)﹣2,x1x2=(ty2﹣)=t2y1y2﹣t(y1+y2)+2.∴(2t2+8+4m+m2)y1y2﹣(2+2mt)(y1+y2)+4+4m+2m2=0,∴(2t2+8+4m+m2)•﹣(2+2mt)+4+4m+2m2=0,化为:(m2﹣4)(t2﹣1)=0.∵∀t∈R上式都成立,∴m2﹣4=0,解得m=±2.5.【解答】解:(1)椭圆的离心率为且经过点,可得e==,+=1,a2﹣b2=c2,解得a=,b=1,则椭圆方程为+y2=1;(2)直线y=kx+m与椭圆x2+2y2=2联立,可得(1+2k2)x2+4kmx+2m2﹣2=0,设A(x1,y1),B(x2,y2),则x1+x2=﹣,x1x2=,可得|AB|=•==•=,①由△OAB(O是坐标原点)的面积等于,设O到AB的距离为d,可得|AB|d=,即d=,即有=,即3m2=2+2k2②联立①②解得m=1,k=±;m=﹣1,k=±,则直线AB的方程为y=±x+1或y=±x﹣1.6.【解答】解:(1)如图所示,椭圆C:=1的离心率为,∴=,△ABF2的周长为|AB|+|AF2|+|BF2|=4a=16,∴a=4,∴c=2,∴b2=a2﹣c2=4,∴椭圆C的方程+=1;(2)设过点P(2,1)作直线l,l与椭圆C的交点为D(x1,y1),E(x2,y2),则,两式相减,得(﹣)+4(﹣)=0,∴(x1+x2)(x1﹣x2)+4(y1+y2)(y1﹣y2)=0,∴直线l的斜率为k==﹣=﹣=﹣,∴此弦所在的直线方程为y﹣1=﹣(x﹣2),化为一般方程是x+2y﹣4=0.7.【解答】解:(1)根据及题设知,5b2=24ac将b2=a2﹣c2代入5b2=24ac解得或(舍去),故C的离心率为;………………………………………………(4分)(2)由题意得,原点O为F1F2的中点,MF2∥y轴,所以直线MF1与y轴的交点D(0,3)是线段MF1的中点,故,即b2=6a①………………………………………………(7分)由|MN|=7|F1N|得|DF1|=3|F1N|,设N(x1,y1)则,即代入C的方程,得②……………………………………………(10分)将①及代入②得解得故8.【解答】解:(1)由题意可得,解得,因此,椭圆C的方程为;(2)由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+m(m≠0),由,消去y整理得(1+4k2)x2+8kmx+4(m2﹣1)=0,∵直线l与椭圆交于两点,∴△=64k2m2﹣4(1+4k2)(m2﹣1)=4(4k2﹣m2+1)>0,设点P、Q的坐标分别为(x1,y1)、(x2,y2),则,,∴y1+y2=(kx1+m)(kx2+m)=,∵直线OP、l、OQ的斜率成等比数列,∴,整理得,∴,又m≠0,所以,,结合图象可得,故直线l的斜率为定值.9.【解答】解:椭圆的焦点分别为F1(﹣2,0)、F2(2,0),长轴长为6,焦点在x轴上,设椭圆C的方程为:(a>b>0),a=3,b2=a2﹣c2=9﹣8=1,∴椭圆C的方程为:;由,消y整理得:10x2+36x+27=0,由△=362﹣4×10×27=216>0,∴直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),中点E(x0,y0),则x1+x2=﹣,由中点坐标公式可知:x0==﹣,y0=x0+2=,故线段AB的中点坐标为(﹣,).10.【解答】解:(1)由已知c=1,,又a2=b2+c2,解得.∴椭圆C的方程为:;(2)当l斜率不存在时,AB=,得S1•S2=6.当l斜率存在时,设为直线为y=kx+m,由l与圆(x﹣1)2+y2=1相切,得m2+2km=1…(*)联立,得(3+4k2)x2+8kmx+4m2﹣12=0,设A(x1,y1),B(x2,y2),则.|AB|=.Q到直线的距离,S1•S2==.将(*)式代入得S1•S2=,令t=m2+1∈(1,+∞).∴S1•S2==.综上,S1•S2的最大值为6.。

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

椭圆经典例题

椭圆经典例题

椭圆标准方程典型例题例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程.例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M应在何处?并求出此时的椭圆方程.例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹.例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23 例16 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例17 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.例18 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程.例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.例 3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫ ⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列. (1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .例5 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.例6 已知椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程.例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.例10 设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点. (1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠AQB ,求C 的离心率e 的取值范围.例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=.例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点. (1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关.例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.。

8道椭圆大题

8道椭圆大题

1.已知椭圆G :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,右焦点为(22,0).斜率为1的直线l 与椭圆G 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2). (1)求椭圆G 的方程; (2)求△P AB 的面积.2.设A (x 1,y 1),B (x 2,y 2)是椭圆C :y 2a 2+x 2b 2=1(a >b >0)上两点,已知m =⎝ ⎛⎭⎪⎫x 1b ,y 1a ,n =⎝ ⎛⎭⎪⎫x 2b ,y 2a ,若m·n=0且椭圆的离心率e =32,短轴长为2,O 为坐标原点. (1)求椭圆的方程;(2)△AOB 的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.3.如图,设P 是圆x 2+y 2=25上的动点,点D 是P 在x 轴上的投影,M 为PD 上一点,且|MD |=45|PD |.(1)当P 在圆上运动时,求点M 的轨迹C 的方程; (2)求过点(3,0)且斜率为45的直线被C 所截线段的长度.4.设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 2的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60°,F 1到直线l 的距离为2 3. (1)求椭圆C 的焦距;(2)如果AF 2→=2F 2B →,求椭圆C 的方程.5. 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,以原点为圆心,椭圆C 的短半轴长为半径的圆与直线x -y +2=0相切. (1)求椭圆C 的方程;(2)已知点P (0,1),Q (0,2).设M ,N 是椭圆C 上关于y 轴对称的不同两点,直线PM 与QN 相交于点T .求证:点T 在椭圆C 上.6.如图,设椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为F 1,F 2,线段OF 1,OF 2的中点分别为B 1,B 2,且△AB 1B 2是面积为4的直角三角形. (1)求该椭圆的离心率和标准方程;(2)过B 1作直线l 交椭圆于P ,Q 两点,使PB 2⊥QB 2,求直线l 的方程.7.已知椭圆4422=+y x ,直线l :y =x +m(1)若l 与椭圆有一个公共点,求m 的值;(2)若l 与椭圆相交于P ,Q 两点,且|PQ|等于椭圆的短轴长,求m 的值.8.已知曲线E 上任意一点P 到两个定点()1F ,)2F 的距离之和4.(1)求曲线E 的方程;(2)设过(0,-2)的直线l 与曲线E 交于,C D 两点,且0OC OD ⋅=u u u r u u u r(O 为原点),求直线l 的方程.1解析 (1)由已知得c =22,c a =63.解得a =23, 又b 2=a 2-c 2=4.所以椭圆G 的方程为x 212+y 24=1. (2)设直线l 的方程为y =x +m .由⎩⎪⎨⎪⎧y =x +m ,x 212+y 24=1得4x 2+6mx +3m 2-12=0.①设A 、B 的坐标分别为(x 1,y 1),(x 2,y 2)(x 1<x 2), AB 中点为E (x 0,y 0), 则x 0=x 1+x 22=-3m 4,y 0=x 0+m =m4.因为AB 是等腰△P AB 的底边,所以PE ⊥AB .所以PE 的斜率k =2-m4-3+3m 4=-1.解得m =2. 此时方程①为4x 2+12x =0.解得x 1=-3,x 2=0. 所以y 1=-1,y 2=2.所以|AB |=3 2.此时,点P (-3,2)到直线AB :x -y +2=0的距离d =|-3-2+2|2=322, 所以△P AB 的面积S =12|AB |·d =92.2解析 (1)∵2b =2,∴b =1,∴e =c a =a 2-b 2a =32. ∴a =2,c =3.∴椭圆的方程为y 24+x 2=1.(2)①当直线AB 的斜率不存在,即x 1=x 2时, y 1=-y 2,由m·n =0得x 21-y 214=0,∴y 21=4x 21.又A (x 1,y 1)在椭圆上,∴x 21+4x 214=1,∴|x 1|=22,|y 1|=2,△AOB 的面积S =12|x 1||y 1-y 2|=12|x 1|·2|y 1|=1.②当直线AB 的斜率存在时,设AB 的方程为y =kx +b (其中b ≠0),代入y 24+x 2=1,得 (k 2+4)x 2+2kbx +b 2-4=0.Δ=(2kb )2-4(k 2+4)(b 2-4)=16(k 2-b 2+4), x 1+x 2=-2kb k 2+4,x 1x 2=b 2-4k 2+4,由已知m·n =0得x 1x 2+y 1y 24=0,∴x 1x 2+(kx 1+b )(kx 2+b )4=0,代入整理得2b 2-k 2=4,代入Δ中,满足题意,∴△AOB 的面积S =12·|b |1+k 2|AB |=12|b |·(x 1+x 2)2-4x 1x 2=|b |4k 2-4b 2+16k 2+4=4b 22|b |=1.∴△AOB 的面积为定值13.解 (1)设M 的坐标为(x ,y ),P 的坐标为(x P ,y P ),由已知得⎩⎨⎧x P =x ,y P=54y ,∵P 在圆上,∴x 2+⎝ ⎛⎭⎪⎫54y 2=25,即C 的方程为x 225+y 216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3),设直线与C 的交点为A (x 1,y 1),B (x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+?x -3?225=1,即x 2-3x -8=0.∴x 1=3-412,x 2=3+412.∴线段AB 的长度为|AB |=?x 1-x 2?2+?y 1-y 2?2 =⎝⎛⎭⎪⎫1+1625?x 1-x 2?2=4125×41=415. 4解 (1)设椭圆C 的焦距为2c ,由已知可得F 1到直线l 的距离3c =23,故c =2. 所以椭圆C 的焦距为4.(2)设A (x 1,y 1),B (x 2,y 2),由AF 2→=2F 2B →及l 的倾斜角为60°,知y 1<0,y 2>0, 直线l 的方程为y =3(x -2). 由⎩⎪⎨⎪⎧y =3?x -2?,x 2a 2+y 2b 2=1消去x ,整理得(3a 2+b 2)y 2+43b 2y -3b 4=0.解得y 1=-3b 2?2+2a ?3a 2+b 2,y 2=-3b 2?2-2a ?3a 2+b 2.因为AF 2→=2F 2B →,所以-y 1=2y 2,即3b 2?2+2a ?3a 2+b 2=2·-3b 2?2-2a ?3a 2+b 2,解得a =3.而a 2-b 2=4,所以b 2=5. 故椭圆C 的方程为x 29+y 25=1.5.(1)解 由题意知,b =22= 2. 因为离心率e =c a =32,所以ba =1-⎝ ⎛⎭⎪⎫c a 2=12. 所以a =2 2.所以椭圆C 的方程为x 28+y 22=1.(2)证明 由题意可设M ,N 的坐标分别为(x 0,y 0),(-x 0,y 0), 则直线PM 的方程为y =y 0-1x 0x +1,① 直线QN 的方程为y =y 0-2-x 0x +2.②法一 联立①②解得x =x 02y 0-3,y =3y 0-42y 0-3, 即T ⎝ ⎛⎭⎪⎫x 02y 0-3,3y 0-42y 0-3.由x 208+y 202=1,可得x 20=8-4y 20.因为18⎝ ⎛⎭⎪⎫x 02y 0-32+12⎝ ⎛⎭⎪⎫3y 0-42y 0-32=x 20+4?3y 0-4?28?2y 0-3?2=8-4y 20+4?3y 0-4?28?2y 0-3?2=32y 20-96y 0+728?2y 0-3?2=8?2y 0-3?28?2y 0-3?2=1,所以点T 的坐标满足椭圆C 的方程,即点T 在椭圆C 上. 法二 设T (x ,y ),联立①②解得x 0=x 2y -3,y 0=3y -42y -3.因为x 208+y 22=1,所以18⎝ ⎛⎭⎪⎫x 2y -32+12⎝⎛⎭⎪⎫3y -42y -32=1. 整理得x 28+?3y -4?22=(2y -3)2,所以x 28+9y 22-12y +8=4y 2-12y +9,即x 28+y22=1.所以点T 坐标满足椭圆C 的方程,即点T 在椭圆C 上.6解 (1) 如图,设所求椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F 2(c,0). 因△AB 1B 2是直角三角形, 又|AB 1|=|AB 2|, 故∠B 1AB 2为直角, 因此|OA |=|OB 2|,得b =c2. 结合c 2=a 2-b 2得4b 2=a 2-b 2,故a 2=5b 2,c 2=4b 2,所以离心率e =c a =25 5. 在Rt △AB 1B 2中,OA ⊥B 1B 2,故S △AB 1B 2=12·|B 1B 2|·|OA |=|OB 2|·|OA |=c2·b =b 2.由题设条件S △AB 1B 2=4得b 2=4,从而a 2=5b 2=20.因此所求椭圆的标准方程为:x 220+y 24=1.(2)由(1)知B 1(-2,0),B 2(2,0).由题意知直线l 的倾斜角不为0,故可设直线l 的方程为x =my -2.代入椭圆方程得(m 2+5)y 2-4my -16=0.设P (x 1,y 1),Q (x 2,y 2),则y 1,y 2是上面方程的两根, 因此y 1+y 2=4m m 2+5,y 1·y 2=-16m 2+5,又B 2P →=(x 1-2,y 1),B 2Q →=(x 2-2,y 2), 所以B 2P →·B 2Q →=(x 1-2)(x 2-2)+y 1y 2=(my 1-4)(my 2-4)+y 1y 2=(m 2+1)y 1y 2-4m (y 1+y 2)+16 =-16?m 2+1?m 2+5-16m 2m 2+5+16=-16m 2-64m 2+5,由PB 2⊥QB 2,得B 2P →·B 2Q →=0, 即16m 2-64=0,解得m =±2.所以满足条件的直线有两条,其方程分别为x +2y +2=0和x -2y +2=0.7.(1)5±=m ; (2)430±=m ;【解析】(1)联立直线与椭圆方程⎩⎨⎧+==+mx y y x 4422得:04-48522=++m mx x,5,016-802±===∆m m 所以。

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)

完整版)椭圆经典练习题两套(带答案)A组基础过关1.选择题1.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于多少?A。

2B。

2/3C。

1/2D。

1/3解析:由题意得2a=2b,所以a=b,又a²=b²+c²,所以b=c,所以a=2c,e=c/a=1/2,答案为C。

2.中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是什么?A。

(x²/81)+(y²/72)=1B。

(x²/81)+(y²/9)=1C。

(x²/81)+(y²/45)=1D。

(x²/81)+(y²/36)=1解析:依题意知2a=18,所以a=9,2c=3×2a,所以c=3,所以b=a-c=81-9=72,所以椭圆方程为(x²/81)+(y²/72)=1,答案为A。

3.椭圆x²+4y²=1的离心率是多少?A。

2/3B。

2C。

1/2D。

3解析:先将x²+4y²=1化为标准方程,得(x/1)²+(y/(1/2))²=1,所以a=1,b=1/2,所以c=√(a²-b²)=√(3)/2,所以e=c/a=√(3)/2,答案为A。

2.解答题1.设F₁、F₂分别是椭圆4x²+y²=1的左、右焦点,P是第一象限内该椭圆上的一点,且PF₁⊥PF₂,则点P的横坐标为多少?解析:由题意知,点P即为圆x²+y²=3与椭圆4x²+y²=1在第一象限的交点,解方程组x²+y²=3和4x²+y²=1,得点P的横坐标为√(2/3),答案为√(2/3)。

2.已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为2,且椭圆G上一点到其两个焦点的距离之和为12,则椭圆G的方程是什么?解析:依题意设椭圆G的方程为a²x²+b²y²=1(a>b>0),因为椭圆上一点到其两个焦点的距离之和为12,所以2a=12,所以a=6,又因为椭圆的离心率为2,所以c=a/2=3,所以b=√(a²-c²)=3√5,所以椭圆G的方程为36x²+45y²=1,答案为C。

椭圆标准方程典型例题及练习题

椭圆标准方程典型例题及练习题

椭圆标准方程典型例题例1已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PF Rt ∆中,21sin 1221==∠PF PF F PF ,可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x .例2 已知椭圆方程()012222>>=+b a b y a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知:221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b2tan 2αb =.例3 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x .说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例4 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 : ()2222212221=+++y y x x , ⑦,将③④平方并整理得212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例5 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程.解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x . 根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例6 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x .解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x .例7 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得 ⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x .例8 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求. 解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y .由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例9 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4B .2C .8D .23说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即aMF MF 221=+,利用这个等式可以解决椭圆上的点与焦点的有关距离例10 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.解:设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122y x n x y 消去y 得0481681322=-+-n nx x ①。

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例(含标准答案)

《椭圆》方程典型例题20例典型例题一例1椭圆的一个顶点为02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当02,A 为长轴端点时,2a ,1b ,椭圆的标准方程为:11422yx;(2)当02,A 为短轴端点时,2b ,4a,椭圆的标准方程为:116422yx;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222cac∴223a c,∴3331e.说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三例3 已知中心在原点,焦点在x 轴上的椭圆与直线01y x交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222yax ,由101222yaxy x ,得021222xa x a ,∴222112a a x x x M,2111ax y MM ,4112ax y k MM OM,∴42a,∴1422yx为所求.说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522y x上不同三点11y x A ,,594,B ,22y x C ,与焦点04,F 的距离成等差数列.(1)求证821x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k .证明:(1)由椭圆方程知5a ,3b ,4c .由圆锥曲线的统一定义知:ac x caAF 12,∴ 11545x ex a AF .同理2545x CF .∵ BF CFAF2,且59BF,∴ 51854554521x x ,即821x x .(2)因为线段AC 的中点为2421y y ,,所以它的垂直平分线方程为42212121xy y x x y y y.又∵点T 在x 轴上,设其坐标为00,x ,代入上式,得21222124x x y y x 又∵点11y x A ,,22y x B ,都在椭圆上,∴ 212125259x y 222225259x y ∴ 21212221259x x x x y y.将此式代入①,并利用821x x 的结论得25364x ∴ 454059x k BT.典型例题五例5已知椭圆13422y x,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设11y x M ,,由已知条件得2a,3b,∴1c,21e .∵左准线l 的方程是4x,∴14x MN.又由焦半径公式知:111212x ex a MF ,112212x ex a MF .∵212MF MF MN ,∴11212122124x x x .整理得048325121x x .解之得41x 或5121x .①另一方面221x .②则①与②矛盾,所以满足条件的点M 不存在.说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设sin3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222yx,求过点2121,P且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k .解法一:设所求直线的斜率为k ,则直线方程为2121xk y .代入椭圆方程,并整理得0232122212222kkxk kxk .由韦达定理得22212122kkkx x .∵P 是弦中点,∴121x x .故得21k .所以所求直线方程为0342y x .分析二:设弦两端坐标为11y x ,、22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y .解法二:设过2121,P 的直线与椭圆交于11y x A ,、22y x B ,,则由题意得④1.③1②12①12212122222121y y x x y x yx ,,,①-②得0222212221yyxx.⑤将③、④代入⑤得212121x x y y ,即直线的斜率为21.所求直线方程为0342y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点62,;(2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222by ax 求出1482a ,372b ,在得方程13714822yx 后,不能依此写出另一方程13714822xy .解:(1)设椭圆的标准方程为12222by ax 或12222bx ay .由已知b a2.①又过点62,,因此有1622222ba或1262222ba.②由①、②,得1482a,372b或522a,132b.故所求的方程为13714822yx或1135222xy .(2)设方程为12222by ax .由已知,3c ,3c b ,所以182a.故所求方程为191822yx .说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222by ax 或12222bx ay .典型例题八例8椭圆1121622yx的右焦点为F ,过点31,A ,点M 在椭圆上,当MF AM 2为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM1均可用此法.解:由已知:4a,2c.所以21e,右准线8xl :.过A 作l AQ ,垂足为Q ,交椭圆于M ,故MF MQ 2.显然MF AM 2的最小值为AQ ,即M 为所求点,因此3My ,且M 在椭圆上.故32M x .所以332,M .说明:本题关键在于未知式MF AM 2中的“2”的处理.事实上,如图,21e,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九例9 求椭圆1322yx上的点到直线06yx的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为.sin cos 3yx ,设椭圆上的点的坐标为sincos 3,,则点到直线的距离为263sin226sin cos3d.当13sin时,22最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23e,已知点230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222by ax ,其中0b a 待定.由222222221ab ab a ac e 可得2143112eab ,即b a 2.设椭圆上的点y x ,到点P 的距离是d ,则4931232222222yyby a yxd34213493342222byyyb其中b yb.如果21b,则当b y 时,2d (从而d )有最大值.由题设得22237b,由此得21237b,与21b矛盾.因此必有21b 成立,于是当21y 时,2d (从而d )有最大值.由题设得34722b ,可得1b ,2a.∴所求椭圆方程是11422yx.由21y及求得的椭圆方程可得,椭圆上的点213,,点213,到点230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是sincos b ya x ,其中0b a ,待定,20,为参数.由22222221ab ab aac e可得2143112eab ,即b a 2.设椭圆上的点y x ,到点230,P 的距离为d ,则22222223sin cos23b a yxd49sin3sin34222b b b 3421sin3222bbb 如果121b ,即21b,则当1sin 时,2d (从而d )有最大值.由题设得22237b,由此得21237b ,与21b矛盾,因此必有121b成立.于是当b 21sin 时2d (从而d )有最大值.由题设知34722b,∴1b ,2a.∴所求椭圆的参数方程是sincos 2yx .由21sin,23cos ,可得椭圆上的是213,,213,.典型例题十一例11设x ,R y,x y x 63222,求x yx 222的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222与椭圆方程的结构一致.设m xyx222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222,得123492322y x可见它表示一个椭圆,其中心在023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x 222,则1122m yx 它表示一个圆,其圆心为(-1,0)半径为11mm .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11m ,此时0m ;当圆过(3,0)点时,半径最大,即41m ,∴15m .∴x yx222的最小值为0,最大值为15.典型例题十二例12已知椭圆012222baby axC :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ,求证:不论a 、b 如何变化,120APB .(2)如果椭圆上存在一个点Q ,使120AQB,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB 和AQB 的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x,b y,根据120AQB得到32222ayxay ,将22222y ba ax代入,消去x ,用a 、b 、c 表示y ,以便利用b y列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设0,c F ,0,a A ,0,a B .abc P b a ya xb cx 2222222,于是a c a bk AP 2,aca b k BP2.∵APB 是AP 到BP 的角.∴2222242221tan ca ac a ba c ab ac a bAPB∵22ca∴2tan APB 故3tanAPB∴120APB .(2)设y x Q ,,则ax y k QA ,ax y k QB.由于对称性,不妨设0y,于是AQB 是QA 到QB 的角.∴22222221tan ayxay ax y a x yax yAQB∵120AQB ,∴32222ayxay 整理得023222ay ayx∵22222yba ax∴0213222ay yba ∵0y ,∴2232caby∵b y ,∴bcab 2232232c ab,222234cca a ∴04444224a c a c,044324e e ∴232e或22e (舍),∴136e .典型例题十三例13已知椭圆19822y kx 的离心率21e,求k 的值.分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82ka,92b ,得12k c.由21e,得4k .当椭圆的焦点在y 轴上时,92a ,82kb ,得k c12.由21e,得4191k,即45k .∴满足条件的4k 或45k .说明:本题易出现漏解.排除错误的办法是:因为8k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222by bx上一点P 到右焦点2F 的距离为b )1(b,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222by bx,得b a 2,b c 3,23e.由椭圆定义,b a PF PF 4221,得b b b PF bPF 34421.由椭圆第二定义,e d PF 11,1d 为P 到左准线的距离,∴b ePF d 3211,即P 到左准线的距离为b 32.解法二:∵e d PF 22,2d 为P 到右准线的距离,23ac e,∴b ePF d 33222.又椭圆两准线的距离为b c a 33822.∴P 到左准线的距离为b bb32332338.说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆.sin 32,cos 4yx (为参数)上一点P 与x 轴正向所成角3POx,求P 点坐标.分析:利用参数与POx 之间的关系求解.解:设)sin 32,cos 4(P ,由P 与x 轴正向所成角为3,∴cos4sin 323tan,即2tan .而0sin ,0cos,由此得到55cos,552sin ,∴P 点坐标为)5154,554(.典型例题十六例16设),(00y x P 是离心率为e 的椭圆12222by a x )0(ba 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex ar ,02ex ar .分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线caxl 2:的距离,cax PQ 2,由椭圆第二定义,e PQPF 1,∴01ex a PQe r ,由椭圆第一定义,0122ex ar ar .说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17已知椭圆15922yx内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA 的最大值、最小值及对应的点P 坐标;(2)求223PF PA的最小值及对应的点P 的坐标.分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62a ,)0,2(2F ,22AF ,设P 是椭圆上任一点,由6221aPF PF ,22AF PF PA ,∴26222211AF aAF PF PF PF PA,等号仅当22AF PF PA时成立,此时P 、A 、2F 共线.由22AF PF PA ,∴26222211AF aAF PF PF PF PA,等号仅当22AF PF PA时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02y x,解方程组4595,0222yxy x 得两交点)2141575,2141579(1P 、)2141575,2141579(2P .综上所述,P 点与1P 重合时,1PF PA取最小值26,P 点与2P 重合时,2PF PA取最大值26.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3a,2c ,∴32e.由椭圆第二定义知322ePQPF ,∴223PF PQ,∴PQ PAPF PA223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29x.∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(.说明:求21PF ePA的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18(1)写出椭圆14922yx的参数方程;(2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1)sin2cos 3y x )(R .(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(为矩形在第一象限的顶点,)2(,则122sin 12sin 2cos 34S 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九例19已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF 的面积与椭圆短轴长有关.分析:不失一般性,可以设椭圆方程为12222by ax (0ba ),),(11y x P (01y ).思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212PFPF PFPFK K K K ,设),(11y x P ,)0,(1c F ,)0,(2c F ,化简可得03233212121ccy y x .又1221221by ax ,两方程联立消去21x 得0323412212bcy b y c ,由],0(1b y ,可以确定离心率的取值范围;解出1y 可以求出21F PF 的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF ,12ex a PF ,在21F PF 中运用余弦定理,求1x ,再利用],[1a a x ,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF 的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221求解.解:(法1)设椭圆方程为12222by ax (0ba),),(11y x P ,)0,(1c F ,)0,(2c F ,0c,则11ex a PF ,12ex a PF .在21F PF 中,由余弦定理得))((24)()(2160cos 1122121ex a ex a cex a ex a ,解得2222134eacx.(1)∵],0(221a x ,∴2222340a eac ,即0422ac.∴21a c e.故椭圆离心率的取范围是)1,21[e .(2)将2222134eacx 代入12222by ax 得24213cby ,即cby 321.∴22213332212121b cbcy F F S FPF .即21F PF 的面积只与椭圆的短轴长有关.(法2)设m PF 1,n PF 2,12F PF ,21F PF ,则120.(1)在21F PF 中,由正弦定理得60sin 2sin sinc n m .∴60sin 2sinsinc n m ∵a n m 2,∴60sin 2sinsin2c a ,∴2cos2sin260sin sinsin 60sin a c e212cos 21.当且仅当时等号成立.故椭圆离心率的取值范围是)1,21[e .(2)在21F PF 中,由余弦定理得:60cos 2)2(222mn n m c mnnm22mnn m 3)(2∵a nm 2,∴mn a c 34422,即22234)(34b c a mn.∴23360sin 2121b mn SF PF .即21F PF 的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF 的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20椭圆12222by ax )0(ba与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是sincos b ya x )0(ba,则椭圆上的点)sin ,cos (b a P ,)0,(a A ,∵AP OP,∴1cossin cossin aa b a b ,即0coscos)(22222ba b a,解得1cos或222cosb ab ,∵1cos1∴1cos (舍去),11222bab,又222cab∴2022ca ,∴22e,又10e ,∴122e .说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP.如何证明?。

椭圆经典八道例题

椭圆经典八道例题

椭圆经典例题例题精讲【例题1】设F 1,F 2是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且|P F 1|:|P F 2|=4:3,求∆P F 1F 2的面积.【解题思路】:由椭圆方程可求出2a 与2c ,且由|P F 1|:|P F 2|=4:3知可求出|P F 1|,|P F 2|的长度,从而可求三角形的面积. 【解法与答案】:由于|P F 1|+|P F 2|=7,且|P F 1|:|P F 2|=4:3,得|P F 1|=4,|P F 2|=3,又| F 1F 2|=2c =564492=-,显然|P F 1|2 +|P F 2|2=| F 1F 2|2,所以∆P F 1F 2是以P F 1,P F 2为直角边的直角三角形,从而∆P F 1F 2的面积为S =⨯21|P F 1|⨯|P F 2|=⨯214⨯3=6. 【解析】:本题运用了椭圆的定义来解题.椭圆定义是用椭圆上任意一点P 到两焦点的距离之和来描述的,定义中|P F 1|+|P F 2|=2a >| F 1F 2|.定义能够对一些距离进行相关的转化,简化解题过程.因此在解题过程中,遇到涉及椭圆上的点到焦点的距离问题时,应先考虑是否能够用椭圆的定义来解决.【例题2】已知点P 在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过点P 作长轴的垂线,恰好过椭圆的一个焦点,求椭圆的方程. 【解题思路】:由题设条件设出椭圆的标准方程,求出焦距与长轴长是求解本题的关键.因椭圆的焦点位置未明确在哪个坐标轴上,故应有两种情况.【解法与答案】:设椭圆的两个焦点分别为F 1,F 2,|P F 1|=354,|P F 2|=352 由椭圆的定义知2a =|P F 1|+|P F 2|=52,即5=a ,由|P F 1|>|P F 2|知P F 2垂直于长轴.所以在12F PF Rt ∆中,4c 2=|P F 1|2 -|P F 2|2=960,所以c 2=35,于是222103b ac =-=又由于所求的椭圆的焦点可以在x 轴上,也可以在y 轴上,故所求的椭圆方程为1103522=+y x 或1510322=+y x .【解析】:求椭圆的标准方程,需要一个定位条件和两个定形条件,通常采用待定系数法解决.椭圆中有“六点”(即两个交点与四个顶点)“两线”(即两条对称轴),因此在解题时要注意它们对椭圆方程的影响,如在求椭圆的标准方程时,当遇到焦点位置不确定时,应注意有两种结果.【例题3】【题目】:如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点,则12PF P F +34567PF P F P F P F P F +++++= .【解题思路】:认真研究图形的特征,把椭圆的长轴AB 分成8等份,椭圆具有对称性,因此可利用椭圆的定义及图形的对称性求解.【解法与答案】:设2,F F 分别是椭圆的左、右焦点,由椭圆图形的对称性,得1271272PF P F P F PF P F ++⋅⋅⋅+=+⋅⋅⋅+,根据椭圆第一定义,得:127...PF P F P F +++[]272171 (2)1F P F P F P F P +++++=3572721==⨯⨯=a a . 【解析】:巧妙利用了椭圆的对称性和第一定义,进行整体突破.【例题4】椭圆14922=+y x 的焦点为1F ,2F ,点P 为其上的动点,当21PF F ∠为钝角时,点P 横坐标的取值范围是 .【解题思路】:欲求点P 横坐标0x 的取值范围,需要建立关于0x 的不等式. 【解法与答案】:(与向量知识结合)因为21PF F ∠为钝角,所以120PF PF ⋅<. 设00(,)P x y ,由分析可知,100(5,)PF x y =---,200(5,)PF x y =--, 所以 0000(5,).(5,)x y x y -----052020<-+=y x , ①又00(,)P x y 在椭圆上,所以 2200194x y +=,②①、②两式联立,消去0y ,即得 0353555x -<<.【解析】:本题考查椭圆的定义及向量、不等式等知识综合,因此应注意提高综合解决问题的能力.【例题5】椭圆22221(0)x y a b a b+=>>的半焦距为c ,若直线2y x =与椭圆一个交点P 的横坐标恰好为c ,则椭圆的离心率为( )A222-. B .2212- C .21- D .31-【解题思路】:求离心率关键是根据已知条件得到a 、b 、c 的等量关系.若能充分利用图形的几何特征及曲线的定义,可简化运算过程达到求解的目的. 【解法与答案】:解法1:由题知点(,2)P c c ,因为点P 在椭圆 22221x y a b +=上,所以 222241c c a b+=,化简得 2222224b c a c a b +=,又因为 222b a c =-, 所以 22222222()4()a c c a c a a c -+=-,化简得 422460c a c a -+=,同除以4a 得 42610e e -+=, 解得 22322(21)e =±=±,因为 01e <<,所以 21e =-,故选C .解法2:由题知点P 在椭圆上且横坐标为c ,纵坐标为正数,所以点P 的坐标为2(,)b c a,又因为点P 在直线2y x =上,所以22b c a =,即22b ac =,又因为 222b a c =-, 所以 2220c ac a +-=, 同除以2a 得 2210e e +-=, 解得 12e =-±, 因为 01e <<,所以 21e =-,故选C .解法3:由题意可知点P 坐标为(,2)c c ,即2||2PF c =. 所以12PF F ∆为等腰直角三角形, 所以1||22PF c=. 由椭圆定义 12||||2PF PF a +=, 即 2222c c a +=, 所以12121c e a ===-+,故选C . 【解析】:本题三种解法各有特点,解法2、解法3充分运用曲线的性质及图形的特征,使得解法更简捷,因此在解题时要提高运用曲线的定义及图形的几何特征的意识. 【例题6】【题目】:如图,已知圆O 方程为10022=+y x ,点A 的坐标为),(06-,M 为圆O 上任意一点,线段AM 的垂直平分线交OM 于点P ,则点P 的轨迹方程为( )A .2212516x y +=B .22(3)12516x y ++=C .2212516x y -=D .22(3)12516x y +-=【解法与答案】:由于PO PA +PO PM +=106=>,所以,点P 的轨迹是以O A 、为焦点、以10为长轴长的椭圆.因此选B .【解析】:应用定义求动点轨迹或其方程,其优势在于避免列式、化简等烦琐的代数处理过程,给人以简捷、明快之感.定义法是解析几何中求动点轨迹及其方程的重要方法之一.【例题7】已知椭圆22132x y +=的左右焦点分别为1F 、2F ,过1F 的直线交椭圆于B 、D两点,过2F 的直线交椭圆于A 、C 两点,且AC BD ⊥,垂足为P .(1)设P 点的坐标为00(,)x y ,证明:2200132x y +<;(2)求四边形ABCD 的面积的最小值.【解题思路】:因为AC BD ⊥于点P ,又1F 、2F 是两个定点,所以,点P 在以线段12F F 为直径的圆上,即P 点的坐标为00(,)x y 满足22001x y +=,这样问题就转化为在此代数条件下求代数式220032x y +的取值范围的问题了.方法显然不唯一. 由条件知ABCD 是对角线互相垂直的四边形,那么,这样的四边形的面积怎样计算呢?由平面几何易知,1||||2ABCD S AC BD =⋅⋅.这就将问题转化为求椭圆的弦长问题了,显然||AC ,||BD 的长由它们的斜率决定,这已是常规的解析几何问题了. 【解法与答案】:(1)方法1:椭圆的半焦距321c =-=,由AC BD ⊥知点P 在以线段12F F 为直径的圆上,故22001x y +=,所以,222200001132222x y x y +≤+=<.方法2:由方法1知,22001x y +=,即22001y x =-,所以 222220000011113232262x y x x x -+=+=-≤<.(2)(ⅰ)当BD 的斜率k 存在且0k ≠时,BD 的方程为(1)y k x =+,代入椭圆方程22132x y +=,并化简得 2222(32)6360k x k x k +++-=.显然0∆>.设11()B x y ,,22()D x y ,,则 2122632k x x k +=-+,21223632k x x k -=+.2222212122212243(1)()()(1)[()4]32k BD x x y y k x x x x k +=-+-=+⋅+-=+; 又由于直线AC 与BD 过同一点P ,且相互垂直,同理可得,2222143143(1)12332k k AC k k⎛⎫+ ⎪+⎝⎭==+⨯+. 四边形ABCD 的面积为111||||||||222ABC ADC S S S AC BP AC DP BD AC ∆∆=+=⋅+⋅=⋅⋅ 222224(1)(32)(23)k k k +=++22222(1)9625(32)(23)2k k k 24+≥=⎡⎤+++⎢⎥⎣⎦.当21k =时,上式取等号.(ⅱ)当BD 的斜率0k =或斜率不存在时,四边形ABCD 的面积4S =. 综上,四边形ABCD 的面积的最小值为9625. 【解析】:第一问实际上是证明点P 在椭圆的内部,这只需利用不等式进行放缩即得到结论,或者,由点P 满足的关系,消去变量0y ,得到关于0x 的函数,求其取值范围即可;第二问把要解决的解析几何问题转化为代数中的方程、不等式或函数问题,这是在转化与化归思想指导下“几何问题代数化”的具体体现.【例题8】椭圆22221x y a b+=(0)a b >>的一个焦点是(1,0)F ,O 为坐标原点.(1)已知椭圆短轴的两个三等分点与一个焦点构成正三角形,求椭圆的方程; (2)设过点F 的直线l 交椭圆于A 、B 两点.若直线l 绕点F 任意转动,恒有222OA OB AB +<,求a 的取值范围.【解题思路】:将几何条件“椭圆短轴的两个三等分点与一个焦点构成正三角形”转化为代数等式,解之即得3b =,继而由椭圆参数之间的关系便可求出a ; 对于第(2)问,容易知道,当三点,,A O B 不共线时,222OA OB AB +<⇔cos 0AOB <⇔0OA OB ⋅<⇔12120x x y y +<(设1122(,),(,)A x y B x y ).由此可得关于,a b 的不等式,再由221b a =-消去b ,就得到关于a 的不等式,解之即可.【解法与答案】:(1)设,M N 为短轴的两个三等分点, 因为MNF ∆为正三角形,所以32OF MN =,32123b=⋅,解得3b =. 2214,a b =+=因此,椭圆方程为22143x y +=.(2) 设1122(,),(,)A x y B x y . (ⅰ)当直线AB 与x 重合时,2222222,4(1)OA OB a AB a a +==>,因此,恒有222OA OB AB +<.(ⅱ)当直线AB 不与x 轴重合时,设直线AB 的方程为1()x my m =+∈R ,代入22221x y a b+=,整理得 22222222()20a b m y b my b a b +++-=,所以 2122222b m y y a b m+=-+,22212222b a b y y a b m -=+. 因为恒有 222OA OB AB +<,所以AOB ∠恒为钝角. 即 11221212(,)(,)0OA OB x y x y x x y y ⋅=⋅=+<恒成立.2121212121212(1)(1)(1)()1x x y y my my y y m y y m y y +=+++=++++222222222222(1)()21m b a b b m a b m a b m +-=-+++22222222220m a b b a b a a b m-+-+=<+. 又 2220a b m +>,所以 22222220m a b b a b a -+-+<对m ∈R 恒成立, 即 2222222m a b a b a b >+-对m ∈R 恒成立,当m ∈R 时,222m a b 最小值为0, 所以 22220a b a b +-<, 2224(1)a b a b <-=,因为 0,0a b >>∵,221a b a <=-∴,即210a a -->, 解得152a +>或152a -<(舍去),即152a +>,综合(i )(ii),a 的取值范围为15(,)2++∞. 【解析】:主要考查直线、椭圆和不等式等基本知识,侧重考查椭圆与不等式交汇问题,是对多个知识点的综合考查.本题的亮点在第2问,实质是探究“椭圆中心恒在以焦点弦为直径的圆内”的充分必要条件.当三点,,A O B 不共线时,222OA OB AB +<⇔cos 0AOB <12120x x y y ⇔+<.为了得到1212x x y y +,需要将过点F 的直线l 与椭圆的方程联立,通过消元,得到一个一元二次方程,再利用韦达定理整体变形,得到1212x x y y +用m 表示解析式,应用不等式性质使问题获得解决.如果选择“点斜式”的方法给出直线l 的方程,则需要按直线l 与x 轴是否垂直分类讨论.。

椭圆典型例题

椭圆典型例题

椭圆典型例题一、椭圆焦点的位置,求椭圆的标准方程。

例1:椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。

解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3.所以椭圆的标准方程是y 24+*23=1.2.椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52-1=24.∴椭圆的标准方程为*225+y 224=1.二、未知椭圆焦点的位置,求椭圆的标准方程。

例:1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:〔1〕当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; 〔2〕当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。

例.求过点(-3,2)且与椭圆*29+y 24=1有一样焦点的椭圆的标准方程.解:因为c 2=9-4=5,所以设所求椭圆的标准方程为*2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9a 2+4a 2-5=1,所以a 2=15.所以所求椭圆的标准方程为*215+y 210=1. 四、与直线相结合的问题,求椭圆的标准方程。

例: 中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111ax y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 五、求椭圆的离心率问题。

椭圆》方程典型例题20例(含标准答案)

椭圆》方程典型例题20例(含标准答案)

椭圆》方程典型例题20例(含标准答案)典型例题一已知椭圆的一个顶点为A(2.0),其长轴长是短轴长的2倍,求椭圆的标准方程。

分析:题目没有指出焦点的位置,要考虑两种位置。

解:(1)当A(2.0)为长轴端点时,a=2,b=1,椭圆的标准方程为:x^2/4+y^2/1=1;(2)当A(2.0)为短轴端点时,b=2,a=4,椭圆的标准方程为:x^2/16+y^2/4=1.说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况。

典型例题二一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率。

解:设椭圆长轴长为2a,焦点到准线的距离为c,则2c/3=a,即c=3a/2.由椭圆定义可得c^2=a^2-b^2,代入c=3a/2中得到9a^2/4=a^2-b^2,化简得b^2=3a^2/4.再由离心率的定义e=c/a得到e=√(1-b^2/a^2)=√(1-3/4)=√(1/4)=1/2.说明:求椭圆的离心率问题,通常有两种处理方法,一是求a,求c,再求比。

二是列含a和c的齐次方程,再化含e的方程,解方程即可。

典型例题三已知中心在原点,焦点在x轴上的椭圆与直线x+y-1=0交于A、B两点,M为AB中点,OM的斜率为0.25,椭圆的短轴长为2,求椭圆的方程。

解:由题意,设椭圆方程为x^2/4+y^2/a^2=1,直线方程为y=1-x。

将直线方程代入椭圆方程得到x^2/4+(1-x)^2/a^2=1,化简得到(4+a^2)x^2-8ax+(4-a^2)=0.设AB的中点为M(x1.y1),则M的坐标为[(x1+x2)/2.(y1+y2)/2],其中x2为方程(4+a^2)x^2-8ax+(4-a^2)=0的另一个解。

由OM的斜率为0.25可得到y1=0.25x1.又因为M在直线x+y-1=0上,所以有y1=1-x1.解以上两个方程可得到M的坐标为(4/5.1/5)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆标准方程典型例题例1 已知椭圆的一个焦点为(0,2)求的值.分析:把椭圆的方程化为标准方程,由,根据关系可求出的值.解:方程变形为.因为焦点在轴上,所以,解得.又,所以,适合.故.例2 已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为.由椭圆过点,知.又,代入得,,故椭圆的方程为.当焦点在轴上时,设其方程为.由椭圆过点,知.又,联立解得,,故椭圆的方程为.例3 的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹.分析:(1)由已知可得,再利用椭圆定义求解.(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程.解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,,有,故其方程为.(2)设,,则.①由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点).例4 已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.解:设两焦点为、,且,.从椭圆定义知.即.从知垂直焦点所在的对称轴,所以在xx,,可求出,,从而.∴所求椭圆方程为或.例5 已知椭圆方程,长轴端点为,,焦点为,,是椭圆上一点,,.求:的面积(用、、表示).分析:求面积要结合余弦定理及定义求角的两邻边,从而利用求面积.解:如图,设,由椭圆的对称性,不妨设,由椭圆的对称性,不妨设在第一象限.由余弦定理知:·.①由椭圆定义知:②,则得.故.例6 已知动圆过定点,且在定圆的内部与其相内切,求动圆圆心的轨迹方程.分析:关键是根据题意,列出点P满足的关系式.解:如图所示,设动圆和定圆内切于点.动点到两定点,即定点和定圆圆心距离之和恰好等于定圆半径,即.∴点的轨迹是以,为两焦点,半长轴为4,半短轴长为的椭圆的方程:.说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.例7 已知椭圆,(1)求过点且被平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过引椭圆的割线,求截得的弦的中点的轨迹方程;(4)椭圆上有两点、,为原点,且有直线、斜率满足,求线段中点的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为,,线段的中点,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121 ①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x , 将③④代入得022121=--+x x y y yx .⑤(1)将,代入⑤,得,故所求直线方程为:.⑥将⑥代入椭圆方程得,符合题意,为所求.(2)将代入⑤得所求轨迹方程为:.(椭圆内部分)(3)将代入⑤得所求轨迹方程为:.(椭圆内部分)(4)由①+②得:,⑦,将③④平方并整理得,⑧,,⑨将⑧⑨代入⑦得:,⑩再将代入⑩式得:,即.此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例8 已知椭圆及直线.(1)当为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为,求直线的方程.解:(1)把直线方程代入椭圆方程得,即.,解得.(2)设直线与椭圆的两个交点的横坐标为,,由(1)得,.根据弦长公式得:.解得.方程为.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线xx的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式;解决弦长问题,一般应用弦长公式.用弦长公式,若能合理运用xx定理(即根与系数的关系),可大大简化运算过程.例9 以椭圆的焦点为焦点,过直线上一点作椭圆,要使所作椭圆的长轴最短,点应在何处?并求出此时的椭圆方程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找一点,使该点到直线同侧的两已知点(即两焦点)的距离之和最小,只须利用对称就可解决.解:如图所示,椭圆的焦点为,.点关于直线的对称点的坐标为(-9,6),直线的方程为.解方程组得交点的坐标为(-5,4).此时最小.所求椭圆的长轴:,∴,又,∴.因此,所求椭圆的方程为.例10 已知方程表示椭圆,求的取值范围.解:由得,且.∴满足条件的的取值范围是,且.说明:本题易出现如下错解:由得,故的取值范围是.出错的原因是没有注意椭圆的标准方程中这个条件,当时,并不表示椭圆.例11 已知表示焦点在轴上的椭圆,求的取值范围.分析:依据已知条件确定的三角函数的大小关系.再根据三角函数的单调性,求出的取值范围.解:方程可化为.因为焦点在轴上,所以.因此且从而.说明:(1)由椭圆的标准方程知,,这是容易忽视的地方.(2)由焦点在轴上,知,. (3)求的取值范围时,应注意题目中的条件.例12 求中心在原点,对称轴为坐标轴,且经过和两点的椭圆方程.分析:由题设条件焦点在哪个轴上不明确,椭圆标准方程有两种情形,为了计算简便起见,可设其方程为(,),且不必去考虑焦点在哪个坐标轴上,直接可求出方程.解:设所求椭圆方程为(,).由和两点在椭圆上可得即所以,.故所求的椭圆方程为.例13 知圆,从这个圆上任意一点向轴作垂线段,求线段中点的轨迹.分析:本题是已知一些轨迹,求动点轨迹问题.这种题目一般利用中间变量(相关点)求轨迹方程或轨迹.解:设点的坐标为,点的坐标为,则,.因为在圆上,所以.将,代入方程得.所以点的轨迹是一个椭圆.说明:此题是利用相关点法求轨迹方程的方法,这种方法具体做法如下:首先设动点的坐标为,设已知轨迹上的点的坐标为,然后根据题目要求,使,与,建立等式关系,从而由这些等式关系求出和代入已知的轨迹方程,就可以求出关于,的方程,化简后即我们所求的方程.这种方法是求轨迹方程的最基本的方法,必须掌握.例14 已知长轴为12,短轴长为6,焦点在轴上的椭圆,过它对的左焦点作倾斜解为的直线交椭圆于,两点,求弦的长.分析:可以利用弦长公式求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(xx1)利用直线与椭圆相交的弦长公式求解..因为,,所以.因为焦点在轴上,所以椭圆方程为,左焦点,从而直线方程为.由直线方程与椭圆方程联立得:.设,为方程两根,所以,,,从而.(xx2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为,设,,则,.在xx,,即;所以.同理在xx,用余弦定理得,所以.(xx3)利用焦半径求解.先根据直线与椭圆联立的方程求出方程的两根,,它们分别是,的横坐标.再根据焦半径,,从而求出.例15 椭圆上的点到焦点的距离为2,为的中点,则(为坐标原点)的值为A.4 B.2C.8D.说明:(1)椭圆定义:平面内与两定点的距离之和等于常数(大于)的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这一定义,即,利用这个等式可以解决椭圆上的点与焦点的有关距离.例16 已知椭圆,试确定的取值范围,使得对于直线,椭圆上有不同的两点关于该直线对称.分析:若设椭圆上,两点关于直线对称,则已知条件等价于:(1)直线;(2)弦的中点在上.利用上述条件建立的不等式即可求得的取值范围.解:(xx1)设椭圆上,两点关于直线对称,直线与交于点.∵的斜率,∴设直线的方程为.由方程组消去得①。

∴.于是,,即点的坐标为.∵点在直线上,∴.解得.②将式②代入式①得③∵,是椭圆上的两点,∴.解得.(xx2)同解xx1得出,∴,,即点坐标为.∵,为椭圆上的两点,∴点在椭圆的内部,∴.解得.(xx3)设,是椭圆上关于对称的两点,直线与的交点的坐标为.∵,在椭圆上,∴,.两式相减得,即.∴.又∵直线,∴,∴,即①。

又点在直线上,∴②。

由①,②得点的坐标为.以下同解法2.说明:涉及椭圆上两点,关于直线xx对称,求有关参数的取值范围问题,可以采用列参数满足的不等式:(1)利用直线与椭圆xx有两个交点,通过直线方程与椭圆方程组成的方程组,消元后得到的一元二次方程的判别式,建立参数方程.(2)利用弦的中点在椭圆内部,满足,将,利用参数表示,建立参数不等式.例17 在面积为1的中,,,建立适当的坐标系,求出以、为焦点且过点的椭圆方程.∴所求椭圆方程为例18 已知是直线被椭圆所截得的线段的中点,求直线的方程.分析:本题考查直线与椭圆的位置关系问题.通常将直线方程与椭圆方程联立消去(或),得到关于(或)的一元二次方程,再由根与系数的关系,直接求出,(或,)的值代入计算即得.并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法,在解析几何中是经常采用的.解:方法一:设所求直线方程为.代入椭圆方程,整理得①设直线与椭圆的交点为,,则、是①的两根,∴∵为中点,∴,.∴所求直线方程为.方法二:设直线与椭圆交点,.∵为中点,∴,.又∵,在椭圆上,∴,两式相减得,即.∴.∴直线方程为.方法三:设所求直线与椭圆的一个交点为,另一个交点.∵、在椭圆上,∴①。

②从而,在方程①-②的图形上,而过、的直线只有一条,∴直线方程为.说明:直线与圆锥曲线的位置关系是重点考查的解析几何问题,“设而不求”的方法是处理此类问题的有效方法.若已知焦点是、的椭圆截直线所得弦中点的横坐标是4,则如何求椭圆方程?。

相关文档
最新文档