椭圆经典例题分类汇总

合集下载

椭圆典型题型归纳(学生版)

椭圆典型题型归纳(学生版)

椭圆典型题型归纳(学生版)椭圆典型题型归纳题型一. 定义及其应用 例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;例2. 方程2x =++所表示的曲线是练习: 1.方程6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆 3.方程10=成立的充要条件是( )A. 2212516x y += B.221259x y += C.2211625x y +=D.221925x y +=4.1m =+表示椭圆,则m的取值范围是5.过椭圆22941xy +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ的连线交于点M,则点M 的轨迹方程为 ;题型二. 椭圆的方程 (一)由方程研究曲线 例 1.方程2211625x y +=的曲线是到定点 和的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程例 2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程例 3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;注:一般地,与椭圆22221x y a b+=共焦点的椭圆可设其方程为222221()x y k b a k b k+=>-++;(四)定义法求轨迹方程;例 5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且sinB ,sinA ,sinC 成等差数列时顶点A 的轨迹; 练习:1.三角形ABC 中,B (-2,0),C (2,0),AB 、AC 边上的中线长之和为30,求三角形ABC 的重心的轨迹方程。

第15讲 椭圆中6大最值问题题型总结(解析版)

第15讲 椭圆中6大最值问题题型总结(解析版)

第15讲 椭圆中6大最值问题题型总结【题型目录】题型一:利用均值不等式求最值题型二:利用焦半径范围求最值题型三:椭圆上一点到定点距离最值问题题型四:椭圆上一点到直线距离最值问题题型五:椭圆有关向量积最值问题题型六:声东击西,利用椭圆定义求最值【典型例题】题型一:利用均值不等式求最值【例1】已知,是椭圆的两个焦点,点M 在C 上,则1F 2F 22:12516x y C +=12MF MF ⋅的最大值为( ).A .13B .12C .25D .16【答案】C 【解析】【分析】根据椭圆定义可得,利用基本不等式可得结果.1210MF MF +=【详解】由椭圆方程知:;根据椭圆定义知:,5a =12210MF MF a +==(当且仅当时取等号),21212252MF MF MF MF ⎛+⎫∴⋅≤= ⎪⎝⎭12MF MF =的最大值为.12MF MF ∴⋅25故选:C.【例2】(2022·安徽·高二阶段练习)已知椭圆C :221169x y +=的左、右焦点分别为1F ,2F ,点P 是椭圆C 上的动点,1m PF =,2n PF =,则14m n +的最小值为( )A .98B .54C D 【答案】A 【解析】【分析】由椭圆的定义可得8m n +=;利用基本不等式,若0a b >, ,则a b +≥,当且仅当a b =时取等号.【详解】根据椭圆的定义可知,1228a PF PF +==,即8m n +=,因为40m ≥>,40n ≥>,所以()141141419558888n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥⨯+= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当83m =,163n =时等号成立.故选:A【题型专练】1.(2022·河南·辉县市第一高级中学高二期末(文))设P 是椭圆22194x y +=上一点,1F 、2F 是椭圆的两个焦点,则12cos F PF ∠的最小值是( )A .19-B .1-C .19D .12【答案】A 【解析】【分析】利用椭圆的定义以及基本不等式可求得12cos F PF ∠的最小值.【详解】在椭圆22194x y +=中,3a =,2b =,c ==,由椭圆定义可得1226PF PF a +==,122F F c ==,由余弦定理可得()2222212121212121212122cos 22PF PF F F PF PF PF PF F F F PF PF PF PF PF +--⋅+-∠==⋅⋅22121262016161111218922PF PF PF PF -=-≥-=-=-⋅⎛+⎫⨯ ⎪⎝⎭,当且仅当123PF PF ==时,等号成立,因此,12cos F PF ∠的最小值为19-.故选:A.2.(2022·全国·高二课时练习)已知 P ( m , n ) 是椭圆上的一个动点,则22+=112x y 22m n+的取值范围是( )A .B .C .D .(]0,1[]1,2(]0,2[)2,+∞3.(2022·全国·高三专题练习)已知点P 在椭圆上,22221(0)y x a b a b +=>>12F F 、为椭圆的两个焦点,求的取值范围.12||||F P P F ⋅【答案】.22,b a ⎡⎤⎣⎦题型二:利用焦半径范围求最值【例1】(2022·全国·高二课时练习)已知椭圆C :()的右焦点,点22221x y a b +=0a b >>(),0F c (),P x y 是椭圆C 上的一个动点.求证:.a c PF a c-≤≤+【例2】(2021·山西吕梁·一模(理))已知为椭圆的左焦点,P 为椭圆上一点,则F 22143x y +=PF 的取值范围为_________.【答案】[1,3]【分析】设出点P 的坐标,由两点间的距离公式求出||PF ,进而根据点在椭圆上将式子化简,最后求出范围.【例3】(2022·河南·新蔡县第一高级中学高二开学考试(文))已知椭圆,点,22142x y +=()0,1A P为椭圆上一动点,则的最大值为____.PA【例4】(2023·全国·高三专题练习)已知点是椭圆+=1上的动点(点不在坐标轴上),P 24x 2y P 为椭圆的左,右焦点,为坐标原点;若是的角平分线上的一点,且丄12F F 、O M 12F PF ∠1F M MP,则丨丨的取值范围为( )OMA .(0B .(0,2)C .(l ,2)D 2)【题型专练】1.平面内有一长度为4的线段,动点P 满足,则的取值范围是( )AB ||||6PA PB +=||PA A .B .C .D .[1,5][1,6][2,5][2,6]【答案】A【解析】由题可得动点在以为焦点,长轴长为6的椭圆上,P ,A B ,3,2a c ∴==则可得的最小值为,最大值为,||PA 1a c -=5a c +=的取值范围是.∴||PA [1,5]故选:A.2.已知动点在椭圆上,若点的坐标为,点满足,且,则P 2214940x y +=A (30),M ||1AM = 0PM AM ⋅= 的最小值是 .||PM【答案】15【解析】由题意知 ,所以,解得,所以40,4922==b a 92=c 3=c ()0,3A 为椭圆的右焦点,由题意知点是以为圆心,为半径上的圆上一动点,且所以M A 1AM PM ⊥1222-=-=PA AMPA PM ,因的最小值为,所以PA437=-=-c a 15142min=-=PM3.已知是椭圆上的动点,且与的四个顶点不重合,,p 22:198x y C +=C 1F 2F 分别是椭圆的左、右焦点,若点在的平分线上,且,则M 12F PF ∠10MF MP ⋅=OM的取值范围是( )A .B .C .D .()0,2(0,(0,3-()0,1【答案】D 【解析】【分析】作出辅助线,得到,求出的取值范围,从而求出的取值范围.212OM F N =2F N OM 【详解】如图,直线与直线相交于点N ,1F M 2PF 由于PM 是的平分线,且,即PM ⊥,12F PF ∠10MF MP ⋅=1F N 所以三角形是等腰三角形,1F PN 所以,点M 为中点,1PF PN =1F N 因为O 为的中点,12F F 所以OM 是三角形的中位线,12F F N所以,212OM F N =其中,212112226F N PF PF PF a PF =-=-=-因为P 与的四个顶点不重合,设,则,C (),P m n ()0,3m ∈22198m n +=,193m ==+所以,又,()12,4PF ∈20F N >所以,()20,2F N ∈()210,12OM F N =∈∴的取值范围是.||OM ()0,1故选:D.题型三:椭圆上一点到定点距离最值问题【例1】(2022·全国·高三专题练习)已知椭圆的长轴长为,短轴长为,则椭圆上任意一点108P 到椭圆中心的距离的取值范围是( )O A .B .C .D .[]4,5[]6,8[]6,10[]8,10【例2】(2022·全国·高三专题练习)已知点是椭圆上的任意一点,过点作圆:P 221129x y +=P C 的切线,设其中一个切点为,则的取值范围为( )()2211x y +-=M PMA .B .C .D .4⎤⎦4⎤⎦【例3】(2022·重庆市实验中学高二阶段练习)已知点P 在椭圆22193x y +=上运动,点Q 在圆225(1)8x y -+=上运动,则PQ 的最小值为___________.【解析】【分析】将求PQ最小值的问题,转化为求点P 到圆心()1,0M 距离最小值的问题,结合点P满足椭圆方程,转化为二次函数求最值即可.【详解】不妨设点P 为()00,x y ,[]03,3x ∈-,则2200193x y +=,则220033x y =-设圆225(1)8x y -+=的圆心为M ,则M 坐标为()1,0则PQ的最小值,即为MP的最小值与圆225(1)8x y -+=.又MP ===当[]03,3x ∈-时,MP ≥,当且仅当032x =时取得等号;故PQ ≥=.故答案为.【题型专练】1.(2021·陕西·长安一中高二期中(文))设B 是椭圆的上顶点,点P 在C 上,则22:14x C y +=PB 的最大值为________.2.已知椭圆的焦点,过点引两条互相垂直的两直线、,若222:1(1)x T y a a+=>(20)F -,(01)M ,1l 2l P 为椭圆上任一点,记点到、的距离分别为、,则的最大值为( )P 1l 2l 1d 2d 2212d d +A .2B .C .D .134134254【答案】D【解析】由题意知 ,所以,解得,所以椭圆的方程为,设4,122==c b 52=a 5=a 1522=+y x ,因为,且,所以又因,所以()00,y x P 21l l ⊥()1,0M (),1202022221-+==+y x PM d d 152020=+y x ,202055y x -=所以因为,所以当时,6241255020020202221+--=+-+-=+y y y y y d d 110≤≤-y 410-=y 的最大值为2221d d +4253.(多选题)已知点是椭圆:上的动点,是圆:P C 2213x y +=Q D ()22114x y ++=上的动点,则( )A .椭圆的短轴长为1B .椭圆C C C .圆在椭圆的内部D .的最小D C PQ 【答案】BC 【解析】【分析】AB.利用椭圆的方程求解判断;C.由椭圆方程和圆的方程联立,利用判别式法判断;D.利用圆心到点的距离判断.【详解】解:因为椭圆方程为:,2213x y +=所以,故A 错误,B 正确;222223,1,2,c a b c a b e a ===-===由,得,()222213114x y x y ⎧+=⎪⎪⎨⎪++=⎪⎩2824210x x ++=因为,2244821960∆=-⨯⨯=-<所以椭圆与圆无公共点,又圆心在椭圆内部,()1,0-所以圆在椭圆内部,故C 正确;设,()(,P x y x ≤≤,==当时,取得最小则的最小,故D 错误,32x =-PD PQ 12故选:BC4.(全国·高二课前预习)点、分别在圆和椭圆上,则、P Q (222x y+=2214x y +=P Q两点间的最大距离是( )A .B .C .D .5.(2022·全国·高三专题练习)设椭圆的的焦点为2222:1(0)x y C a b a b +=>>12,,F F P是C 上的动点,直线的一个焦点,的周长为y x =12PF F △4+(1)求椭圆的标准方程;(2)求的最小值和最大值.12PF PF +题型四:椭圆上一点到直线距离最值问题两种思路:法一:设椭圆参数方程,即设椭圆上一点为()θθsin ,cos b a P ,用点到直线的距离公式法二:利用直线与椭圆相切,联立方程,利用判别式0=∆,求出切线,再求两直线间距离【例1】(2022·黑龙江·齐齐哈尔市恒昌中学校高二期中)椭圆22143x y +=上的点P 到直线l :30x y ++=的距离的最小值为( )ABCD【答案】C 【解析】【分析】根据椭圆的形式,运用三角代换法,结合点到直线距离公式、辅助角公式进行求解即可.【详解】由222cos 143x x y y θθ=⎧⎪+=⇒⎨⎪⎩,设(2cos )P θθ,设点P 到直线l :30x y ++=的距离d ,所以有d ,其中tan (0,))2πϕϕ=∈,所以当2()2k k Z πθϕπ+=-∈时,d 有最小=,故选:C【例2】(2022·全国·高二专题练习)椭圆上的点到直线22143x y +=290l x =:-的距离的最大值为______.【例3】(2021·浙江·慈溪市浒山中学高二阶段练习)设点在椭圆上,点()11,P x y 22182x y +=在直线上,则的最小值为___________.()22,Q x y 280x y +-=212136x x y y -+-【题型专练】1.(2022·甘肃·兰州一中高二期中(文))已知实数x ,y 满足方程,则22220x y +-=x y +的最大值为________.2.(2022·全国·高二专题练习)椭圆:上的点到直线C 22194x y +=P 43180l x y ++=:的距离的最小值为_____.3.(2022·四川遂宁·高二期末(理))如图,设P 是圆229x y +=上的动点,点D 是P 在x 轴上的射影,M 为PD 上的一点,且.23MD PD =(1)当P 在圆上运动时,求点M 的轨迹C 方程;(2)求点M 到直线距离的最大值.:290l x y +-=4.(2020·海南·高考真题)已知椭圆C :22221(0)x y a b a b +=>>过点M (2,3),点A 为其左顶点,且AM 的斜率为 ,12(1)求C 的方程;(2)点N 为椭圆上任意一点,求△AMN 的面积的最大值.联立直线方程与椭圆方程,2x y m -=2211612x y +=可得:,()2232448m y y ++=化简可得:,2216123480y my m ++-=题型五:椭圆有关向量积最值问题【例1】(2022·黑龙江·佳木斯一中高二期中)已知P 为椭圆2212524x y +=上任意一点,EF 为圆22:(1)4N x y -+=任意一条直径,则PE PF ⋅的取值范围为( )A .[8,12]B .[12,20]C .[12,32]D .[32,40]【答案】C 【解析】【分析】由题意可得圆心(1,0)N 恰好是椭圆的右焦点,将PE PF ⋅ 化简得24NP-+ ,由椭圆的性质可知[,]NP a c a c ∈-+,从而可求出PE PF ⋅ 的取值范围【详解】由2212524x y +=,得2225,24a b ==,则5,1a b c ===,圆22:(1)4N x y -+=的圆心(1,0)N 恰好是椭圆的右焦点,圆的半径为2,因为()()PE PF NE NP NF NP⋅=-⋅- ()2NE NF NP NE NF NP=⋅-⋅++ 2cos 0NE NF NPπ=⋅-+ 24NP=-+ ,因为P 为椭圆2212524x y +=上任意一点,N 为椭圆的右焦点,所以[,]NP a c a c ∈-+ ,即[4,6]NP ∈ ,所以2[16,36]NP ∈ ,所以24[12,32]NP -+∈ ,所以PE PF ⋅的取值范围为[12,32],故选:C【例2】(2022·全国·高三专题练习)已知是椭圆12,F F 22:142x y E +=的两个焦点,P 是椭圆E 上任一点,则的取值范围是____________12⋅ F P F P【例3】(2022·全国·高三专题练习)已知点满(),P x y =,点A ,B 关于点对称且,则的最大值为( )()0,2D -2AB =PA PB ⋅A .10B .9C .8D .2【题型专练】1.(2022·山东·高三开学考试)在椭圆上有两个动点,为定点,,则2214x y +=,P Q ()1,0E EP EQ ⊥的最小值为( )EP QP →→⋅131223故选:C .2.(2022·全国·高三专题练习多选题)已知椭圆的左、右焦点为、,点22:132x y C +=1F 2F M为椭圆上的点不在轴上),则下列选项中正确的是( )(M xA .椭圆的长轴长为CB .椭圆的离心率C 13e =C .△的周长为12MF F 2+D .的取值范围为12MF MF ⋅[1,2)3.(2022·全国·高三专题练习)已知是椭圆的两个焦点,12,F F 22163x y +=,A B分别是该椭圆的左顶点和上顶点,点在线段上,则的最小值为__________.P AB 12PF PF ⋅4.(2015·山西大同市·高二期末(理))设、分别是椭圆的左、右焦点,若Q 是该椭圆上的一个动点,则的最大值和最小值分别为A .与B .与C .与D .与12-22-11-21-【答案】A【详解】试题分析:设,由题得,所以(,)Q x y 12(F F ,12(,),,)QF x y QF x y =-=--,因为在椭圆上,所以所以2212·3QF QF x y =-+(22)x -≤≤(,)Q x y ,所以当有最小值;或222123·31244x x QF QF x =-+-=- (22)x -≤≤0x =2-2x =2-时,有最大值1题型六:声东击西,利用椭圆定义求最值此种类型题目,一般要利用椭圆定义,转化为三点共线问题,利用三角形两边之和大于第三边,或者两边之差小于第三边解决【例1】(2022·辽宁·高二期中)动点M 分别与两定点(5,0)A -,(5,0)B 连线的斜率的乘积为1625-,设点M 的轨迹为曲线C ,已知N ,(3,0)F -,则||||MF MN +的最小值为( )A .4B .8C .D .12【答案】B 【解析】【分析】求出轨迹方程2212516x y +=,根据椭圆的定义,可得210MF MF +=,当2MF 经过点N 时,MF MN+最短.【详解】设动点M 的坐标为()M x y , ,则165525y y x x ⋅=-+- 整理后得:2212516x y += ,动点M的轨迹为椭圆,左焦点为()30F -,,右焦点为()230F , ,210MF MF += ,如下图所示,当2MF 经过点N 时,MF MN+最短,此时210108MF MN MF MN +=-+==故选:B【例2】已知是椭圆的左焦点,为椭圆上任意一点,点坐标为,则F 22:11615x y C +=P C Q (4,4)的最大值为( )||||PQ PF +A B .13C .3D .5【答案】B 【解析】【分析】利用椭圆的定义求解.【详解】如图所示:,||||||2||2||813PQ PF PQ a PF a QF ''+=+-≤+==故选:B【例3】(2022·全国·高二课时练习)已知椭圆C:2212516x y +=内有一点()2,3M ,1F ,2F 分别为椭圆的左、右焦点,P 为椭圆C 上的一点,求:(1)1PM PF -的最大值与最小值;(2)1PM PF +的最大值与最小值.【答案】(1)最大,最小值为(2)最大值为10,最小值为10【解析】【分析】(1)由题意可知:根据三角形的性质,即可求得11||||||||PM PF MF -…然后得到1||||PM PF -的最大值与最小值;(2)利用椭圆的定义表示出1||||PM PF +,根据椭圆的定义及三角形三边的关系,即可求得答案.(1)由椭圆22:12516x y C +=可知5a =,4b =,3c =,则1(3,0)F -,2(3,0)F ,则11||||||||PM PF MF -…,当且仅当P 、M 、1F 三点共线时成立,所以1||||PM PF -…,所以1||||PM PF -和;(2)210a =,2(3,0)F ,2||MF =,设P 是椭圆上任一点,由12||||210PF PF a +==,22||||||PM PF MF -…,12212210PM PF PF MF PF a MF ∴+-+=-=…,等号仅当22||||||PM PF MF =-时成立,此时P 、M 、2F 共线,由22||||||PM PF MF +…,12212210PM PF PF MF PF a MF ∴+++=+=+…,等号仅当22||||||PM PF MF =+时成立,此时P 、M 、2F 共线,故1||||PM PF +的最大值10与最小值为10.【题型专练】1.(2022·全国·高二专题练习)已知点(4,0)A 和(2,2)B ,M 是椭圆221259x y +=上的动点,则||||MA MB +最大值是( )A .10+B .10-C .8+D .8【答案】A 【解析】【分析】设左焦点为(4,0)F -,A 为椭圆右焦点,利用椭圆定义转化||||10||||MA MB MB MF +=+-,然后利用平面几何的性质得最大值.【详解】解:椭圆221259x y +=,所以A 为椭圆右焦点,设左焦点为(4,0)F -,则由椭圆定义||||210MA MF a +==,于是||||10||||MA MB MB MF +=+-.当M 不在直线BF 与椭圆交点上时,M 、F 、B 三点构成三角形,于是||||||MB MF BF -<,而当M 在直线BF 与椭圆交点上时,在第一象限交点时,有||||||MB MF BF -=-,在第三象限交点时有||||||MB MF BF -=.显然当M 在直线BF 与椭圆第三象限交点时||||MA MB +有最大值,其最大值为||||10||||10||1010MA MB MB MF BF +=+-=+==+.故选:A.2.(2022·全国·高二专题练习)已知F 为椭圆221259x y +=的左焦点,(2,2)B 是其内一点,M为椭圆上的动点,则MF MB+的最大值为__,最小值为__.【答案】 10+10-【解析】【分析】设A 为椭圆右焦点,设左焦点为(4,0)F -,B 在椭圆内,由椭圆定义210MA MF a +==,结合当M 在直线AB 与椭圆交点上时和当M 在直线BA与椭圆交点,分别求得其最大值与最小值,即可求解.【详解】设A 为椭圆右焦点,设左焦点为(4,0)F -,B 在椭圆内,则由椭圆定义210MA MF a +==,当M 在直线AB 与椭圆交点上时,M 在x 轴的上方时,10MF MB AB+=-,取得最小值,最小值为:1010-=-;当M 在直线BA 与椭圆交点,在x 轴的下方时,MF MB+有最大值,其最大值为1010MF MB MF MA AB AB +≤++=+=+.故答案为:10+10-3.(2022·四川·成都七中高二期末(文))已知点()4,0A ,()2,2B 是椭圆221259x y +=内的两个点,M 是椭圆上的动点,则MA MB+的最大值为______.【答案】10+##10+【解析】【分析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为221259x y +=,所以5,3,4a b c ===,所以()4,0A 是椭圆的右焦点,设左焦点为()4,0C -,根据椭圆的定义可知210MA MB a MC MB MB MC+=-+=+-,=,所以MA MB+的最大值为10+故答案为:10+4.(多选题)已知椭圆的左、右焦点分别为、,点在椭圆内部,点22:12521x y C +=1F 2F ()2,3P Q在椭圆上,则可以是( )2QF QP+A .B .C .D .5101520【答案】ABC 【解析】【分析】作出图形,设直线交椭圆于点、,利用椭圆定义可得1PF C M N 2110QF QP QP QF +=+-,利用点分别与点、重合时取得最小值和最大值可求得Q M N 2QF QP+的取值范围,即可得出合适的选项.【详解】在椭圆中,,,,则、,如下图所示:C 5a =b =2c =()12,0F -()22,0F设直线交椭圆于点、,1PF C M N 5=由椭圆定义可得,则,故,1210QF QF +=2110QF QF =-2110QF QP QP QF +=+-当点与点重合时,此时取得最小值,即,Q M 2QF QP +()21min 105QF QP PF +=-=当点与点重合时,此时取得最大值,即.Q N 2QF QP+()21max 1015QF QP PF +=+=因此,的取值范围是.2QF QP+[]5,15故选:ABC.。

椭圆典型题型归纳总结

椭圆典型题型归纳总结

椭圆典型题型归纳题型一. 定义及其应用例1:已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;练习:1.6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是( )A.2212516x y += B.221259x y += C. 2211625x y += D. 221925x y +=4.1m =+表示椭圆,则m 的取值范围是5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;题型二. 椭圆的方程 (一)由方程研究曲线例1.方程2211625x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹 (二)分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程;(三)用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;(四)定义法求轨迹方程;例5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且,,b a c 成等差数列时顶点A 的轨迹;练习:1、动圆P 与圆221:(4)81C x y ++=内切与圆222:(4)1C x y -+=外切,求动圆圆心的P 的轨迹方程。

2、已知动圆C 过点A (2,0)-,且与圆222:(2)64C x y -+=相内切,则动圆圆心的轨迹方程为 ;(五)相关点法求轨迹方程;例6.已知x 轴上一定点(1,0)A ,Q 为椭圆2214x y +=上任一点,求AQ 的中点M 的轨迹方程;(六)直接法求轨迹方程;例7.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于,A B 两点,点P 是直线l 上满足1PA PB ∙=的点,求点P 的轨迹方程;(七)列方程组求方程例8.中心在原点,一焦点为F 的椭圆被直线32y x =-截得的弦的中点的横坐标为12,求此椭圆的方程;题型三.焦点三角形问题椭圆中的焦点三角形:通常结合定义、正弦定理、余弦定理、勾股定理来解决;椭圆22221(0)x y a b a b+=>>上一点00(,)P x y 和焦点1(,0)c F -,2(,0)c F 为顶点的12PFF ∆中,12FPF α=∠,则当P 为短轴端点时α最大,且 ①122PF PF a +=; ②22212122cos 4c PF PF PF PF α=+-;③12121sin 2PF F S PF PF α∆==2tan 2b α⋅。

椭圆典型题型归纳(学生版)

椭圆典型题型归纳(学生版)

椭圆典型题型归纳题型一. 定义及其应用例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;例2. 方程2x =+所表示的曲线是练习:1.6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是( )A.2212516x y += B.221259x y += C. 2211625x y += D. 221925x y +=4.1m =+表示椭圆,则m 的取值范围是5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;题型二. 椭圆的方程 (一)由方程研究曲线例1.方程2211625x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹;(二)分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程;(三)用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;注:一般地,与椭圆22221x y a b+=共焦点的椭圆可设其方程为222221()x y k b a k b k +=>-++; (四)定义法求轨迹方程;例5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C-,求满足b a c>>且sinB ,sinA ,sinC 成等差数列时顶点A 的轨迹;练习:1.三角形ABC 中,B (-2,0),C (2,0),AB 、AC 边上的中线长之和为30,求三角形ABC的重心的轨迹方程。

(完整版)椭圆大题题型汇总例题+练习

(完整版)椭圆大题题型汇总例题+练习

椭圆大题题型解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等运用的知识:x?xy?y1212A(x,y),B(x,y)?,y x?yx,的中点坐,其中1、中点坐标公式:是点221122标。

)(),Bx,yxA(,y0)k??b(y?kx在直线上,2、弦长公式:若点2112b?kx??y?kxb,y则,这是同点纵横坐标变换,是两大坐标变换技巧之一,2121222222)?kx)(kx?kx)x?))?(y?y(1?(x?x)??(?AB(x?x212121122122?4x)x?k])[(x?x?(1211211122222)yy??(1?)((x?x)??(yAB?y)(x?xy?(y?))?或者22211212112kkk12)[(y?y)?4?(1?yy]。

12122kl:y?kx?b,l:y?kx?bkk??1、两条直线垂直:则321121122rrg v0v?两条直线垂直,则直线所在的向量1220)0(a??axbx?c?x,x则:,同的根不次元若一二方程有两个理达、4韦定21bcx?x??,xx?。

2211aa常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,。

用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)2xy?l轴上是否存在一点两点,在x交于A、例题1、过点T(-1,0)作直线与曲线N :B xx ABE?,使得是等边三角形,若存在,求出;若不存在,请说明理由。

E(,0)002x21?y?OF已知椭圆例题2的左焦点为,、为坐标原点。

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例(含实用标准问题详解)

《椭圆》方程典型例题20例典型例题一例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程.分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.典型例题二例2 一个椭圆的焦点将其准线间的距离三等分,求椭圆的离心率.解:31222⨯⨯=c a c ∴223a c =, ∴3331-=e . 说明:求椭圆的离心率问题,通常有两种处理方法,一是求a ,求c ,再求比.二是列含a 和c 的齐次方程,再化含e 的方程,解方程即可.典型例题三 例3 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.典型例题四例4椭圆192522=+y x 上不同三点()11y x A ,,⎪⎭⎫⎝⎛594,B ,()22y x C ,与焦点()04,F 的距离成等差数列.(1)求证821=+x x ;(2)若线段AC 的垂直平分线与x 轴的交点为T ,求直线BT 的斜率k . 证明:(1)由椭圆方程知5=a ,3=b ,4=c . 由圆锥曲线的统一定义知:ac x ca AF =-12, ∴ 11545x ex a AF -=-=.同理 2545x CF -=.∵ BF CF AF 2=+,且59=BF , ∴ 51854554521=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-x x ,即 821=+x x .(2)因为线段AC 的中点为⎪⎭⎫⎝⎛+2421y y ,,所以它的垂直平分线方程为()42212121---=+-x y y x x y y y . 又∵点T 在x 轴上,设其坐标为()00,x ,代入上式,得 ()212221024x x y y x --=-又∵点()11y x A ,,()22y x B ,都在椭圆上,∴ ()212125259x y -=()222225259x y -= ∴ ()()21212221259x x x x y y -+-=-.将此式代入①,并利用821=+x x 的结论得 253640-=-x ∴ 4540590=--=x k BT.典型例题五例5 已知椭圆13422=+yx ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=, 112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x .整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在. 说明:(1)利用焦半径公式解常可简化解题过程.(2)本例是存在性问题,解决存在性问题,一般用分析法,即假设存在,根据已知条件进行推理和运算.进而根据推理得到的结果,再作判断.(3)本例也可设()θθsin 3cos 2,M 存在,推出矛盾结论(读者自己完成).典型例题六例6 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率.(3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.典型例题七例7 求适合条件的椭圆的标准方程.(1)长轴长是短轴长的2倍,且过点()62-,; (2)在x 轴上的一个焦点与短轴两端点的联机互相垂直,且焦距为6.分析:当方程有两种形式时,应分别求解,如(1)题中由12222=+b y a x 求出1482=a ,372=b ,在得方程13714822=+y x 后,不能依此写出另一方程13714822=+x y .解:(1)设椭圆的标准方程为12222=+b y a x 或12222=+bx a y .由已知b a 2=. ①又过点()62-,,因此有 ()1622222=-+b a 或()1262222=+-ba . ② 由①、②,得1482=a ,372=b 或522=a ,132=b .故所求的方程为13714822=+y x 或1135222=+x y .(2)设方程为12222=+b y a x .由已知,3=c ,3==c b ,所以182=a .故所求方程为191822=+y x . 说明:根据条件求椭圆的标准方程的思路是“选标准,定参数”.关键在于焦点的位置是否确定,若不能确定,应设方程12222=+b y a x 或12222=+bx a y .典型例题八例8 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.典型例题九 例9 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值.分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.典型例题十 例10设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫ ⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆的方程,并求椭圆上的点P 的距离等于7的点的坐标.分析:本题考查椭圆的性质、距离公式、最大值以及分析问题的能力,在求d 的最大值时,要注意讨论b 的取值范围.此题可以用椭圆的标准方程,也可用椭圆的参数方程,要善于应用不等式、平面几何、三角等知识解决一些综合性问题,从而加强等价转换、形数结合的思想,提高逻辑推理能力.解法一:设所求椭圆的直角坐标方程是12222=+b y a x ,其中0>>b a 待定.由222222221ab a b a ac e -=-==可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点P 的距离是d ,则4931232222222+-+⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+=y y b y a y x d 34213493342222++⎪⎭⎫ ⎝⎛+-=+--=b y y y b其中b y b ≤≤-. 如果21<b ,则当b y -=时,2d (从而d )有最大值. 由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d (从而d )有最大值. 由题设得()34722+=b,可得1=b ,2=a .∴所求椭圆方程是11422=+y x . 由21-=y 及求得的椭圆方程可得,椭圆上的点⎪⎭⎫ ⎝⎛--213,,点⎪⎭⎫ ⎝⎛-213,到点⎪⎭⎫⎝⎛230,P 的距离是7.解法二:根据题设条件,可取椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,待定,πθ20≤≤,θ为参数.由22222221⎪⎭⎫⎝⎛-=-==a b a b a a c e 可得 2143112=-=-=e a b ,即b a 2=. 设椭圆上的点()y x ,到点⎪⎭⎫⎝⎛230,P 的距离为d ,则22222223sin cos 23⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+=θθb a y x d49sin 3sin 34222+--=θθb b b 3421sin 3222++⎪⎭⎫ ⎝⎛+-=b b b θ如果121>b ,即21<b ,则当1sin -=θ时,2d (从而d )有最大值.由题设得()22237⎪⎭⎫ ⎝⎛+=b ,由此得21237>-=b ,与21<b 矛盾,因此必有121≤b成立. 于是当b21sin -=θ时2d (从而d )有最大值. 由题设知()34722+=b,∴1=b ,2=a .∴所求椭圆的参数方程是⎩⎨⎧==θθsin cos 2y x .由21sin -=θ,23cos ±=θ,可得椭圆上的是⎪⎭⎫ ⎝⎛--213,,⎪⎭⎫ ⎝⎛-213,.典型例题十一例11 设x ,R ∈y ,x y x 63222=+,求x y x 222++的最大值和最小值.分析:本题的关键是利用形数结合,观察方程x y x 63222=+与椭圆方程的结构一致.设m x y x =++222,显然它表示一个圆,由此可以画出图形,考虑椭圆及圆的位置关系求得最值.解:由x y x 63222=+,得123492322=+⎪⎪⎪⎪⎭⎫ ⎝⎛-y x 可见它表示一个椭圆,其中心在⎪⎭⎫⎝⎛023,点,焦点在x 轴上,且过(0,0)点和(3,0)点.设m x y x =++222,则 ()1122+=++m y x它表示一个圆,其圆心为(-1,0)半径为()11->+m m .在同一坐标系中作出椭圆及圆,如图所示.观察图形可知,当圆过(0,0)点时,半径最小,即11=+m ,此时0=m ;当圆过(3,0)点时,半径最大,即41=+m ,∴15=m .∴x y x 222++的最小值为0,最大值为15.典型例题十二例12 已知椭圆()012222>>=+b a by a x C :,A 、B 是其长轴的两个端点.(1)过一个焦点F 作垂直于长轴的弦P P ',求证:不论a 、b 如何变化,120≠∠APB .(2)如果椭圆上存在一个点Q ,使 120=∠A Q B ,求C 的离心率e 的取值范围.分析:本题从已知条件出发,两问都应从APB ∠和AQB ∠的正切值出发做出估计,因此要从点的坐标、斜率入手.本题的第(2)问中,其关键是根据什么去列出离心率e 满足的不等式,只能是椭圆的固有性质:a x ≤,b y ≤,根据120=∠AQB 得到32222-=-+a y x ay ,将22222y ba a x -=代入,消去x ,用a 、b 、c 表示y ,以便利用b y ≤列出不等式.这里要求思路清楚,计算准确,一气呵成.解:(1)设()0,c F ,()0,a A -,()0,a B . ⎪⎪⎭⎫⎝⎛⇒⎩⎨⎧=+=a b c P b a y a x b c x 2222222, 于是()a c a b k AP+=2,()a c ab k BP -=2.∵APB ∠是AP 到BP 的角.∴()()()2222242221tan ca a c ab ac a b a c a b APB -=-++--=∠ ∵22c a > ∴2tan -<∠APB故3tan -≠∠APB ∴ 120≠∠APB . (2)设()y x Q ,,则a x y k QA +=,ax y k QB -=. 由于对称性,不妨设0>y ,于是AQB ∠是QA 到QB 的角.∴22222221tan a y x ay a x y a x ya x y AQB -+=-++--=∠∵ 120=∠AQB , ∴32222-=-+ay x ay整理得()023222=+-+ay a y x∵22222y ba a x -=∴0213222=+⎪⎪⎭⎫ ⎝⎛-ay y b a∵0≠y , ∴2232c ab y = ∵b y ≤, ∴b c ab ≤2232 232c ab ≤,()222234c c a a ≤-∴04444224≥-+a c a c ,044324≥-+e e ∴232≥e 或22-≤e (舍),∴136<≤e .典型例题十三例13 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.典型例题十四例14 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=. 由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.典型例题十五例15 设椭圆⎩⎨⎧==.sin 32,cos 4ααy x (α为参数)上一点P 与x 轴正向所成角3π=∠POx ,求P 点坐标.分析:利用参数α与POx ∠之间的关系求解.解:设)sin 32,cos 4(ααP ,由P 与x 轴正向所成角为3π, ∴ααπcos 4sin 323tan=,即2tan =α.而0sin >α,0cos >α,由此得到55cos =α,552sin =α, ∴P 点坐标为)5154,554(.典型例题十六例16 设),(00y x P 是离心率为e 的椭圆12222=+by a x )0(>>b a 上的一点,P 到左焦点1F 和右焦点2F 的距离分别为1r 和2r ,求证:01ex a r +=,02ex a r -=. 分析:本题考查椭圆的两个定义,利用椭圆第二定义,可将椭圆上点到焦点的距离转化为点到相应准线距离.解:P 点到椭圆的左准线c a x l 2-=:的距离,ca x PQ 20+=,由椭圆第二定义,e PQPF =1,∴01ex a PQ e r +==,由椭圆第一定义,0122ex a r a r -=-=.说明:本题求证的是椭圆的焦半径公式,在解决与椭圆的焦半径(或焦点弦)的有关问题时,有着广泛的应用.请写出椭圆焦点在y 轴上的焦半径公式.典型例题十七例17 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.典型例题十八例18 (1)写出椭圆14922=+y x 的参数方程; (2)求椭圆内接矩形的最大面积.分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.典型例题十九 例19 已知1F ,2F 是椭圆的两个焦点,P 是椭圆上一点,且︒=∠6021PF F .(1)求椭圆离心率的取值范围;(2)求证21F PF ∆的面积与椭圆短轴长有关. 分析:不失一般性,可以设椭圆方程为12222=+b y a x (0>>b a ),),(11y x P (01>y ). 思路一:根据题设容易想到两条直线的夹角公式,即3160tan 1212=+-=︒PF PF PF PF K K K K ,设),(11y x P ,)0,(1c F -,)0,(2c F ,化简可得03233212121=--+c cy y x .又1221221=+by a x ,两方程联立消去21x 得0323412212=-+b cy b y c ,由],0(1b y ∈,可以确定离心率的取值范围;解出1y 可以求出21F PF ∆的面积,但这一过程很繁.思路二:利用焦半径公式11ex a PF +=,12ex a PF -=,在21F PF ∆中运用余弦定理,求1x ,再利用],[1a a x -∈,可以确定离心率e 的取值范围,将1x 代入椭圆方程中求1y ,便可求出21F PF ∆的面积.思路三:利用正弦定理、余弦定理,结合a PF PF 221=+求解.解:(法1)设椭圆方程为12222=+by a x (0>>b a ),),(11y x P ,)0,(1c F -,)0,(2c F ,0>c ,则11ex a PF +=,12ex a PF -=. 在21F PF ∆中,由余弦定理得))((24)()(2160cos 1122121ex a ex a c ex a ex a -+--++==︒, 解得2222134ea c x -=. (1)∵],0(221a x ∈,∴2222340a ea c <-≤,即0422≥-a c . ∴21≥=a c e . 故椭圆离心率的取范围是)1,21[∈e .(2)将2222134ea c x -=代入12222=+b y a x 得 24213c b y =,即cb y 321=.∴22213332212121b cb c y F F S F PF =⋅⋅=⋅=∆. 即21F PF ∆的面积只与椭圆的短轴长有关.(法2)设m PF =1,n PF =2,α=∠12FPF ,β=∠21F PF , 则︒=+120βα.(1)在21F PF ∆中,由正弦定理得︒==60sin 2sin sin cn m βα. ∴︒=++60sin 2sin sin cn m βα∵a n m 2=+, ∴︒=+60sin 2sin sin 2ca βα,∴2cos 2sin 260sin sin sin 60sin βαβαβα-+︒=+︒==a c e 212cos21≥-=βα.当且仅当βα=时等号成立.故椭圆离心率的取值范围是)1,21[∈e .(2)在21F PF ∆中,由余弦定理得:︒-+=60cos 2)2(222mn n m cmn n m -+=22 mn n m 3)(2-+=∵a n m 2=+,∴mn a c 34422-=,即22234)(34b c a mn =-=.∴23360sin 2121b mn S F PF =︒=∆. 即21F PF ∆的面积与椭圆短轴长有关.说明:椭圆上的一点P 与两个焦点1F ,2F 构成的三角形为椭圆的焦点三角形,涉及有关焦点三角形问题,通常运用三角形的边角关系定理.解题中通过变形,使之出现21PF PF +的结构,这样就可以应用椭圆的定义,从而可得到有关a ,c 的关系式,使问题找到解决思路.典型例题二十例20 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?。

高中数学人教A版选修2-1椭圆经典例题分类汇总.docx

高中数学人教A版选修2-1椭圆经典例题分类汇总.docx

椭圆经典例题分类汇总1.椭圆第一定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例4 已知1c o s s i n22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈.说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=. ∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x . 解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ② 则①与②矛盾,所以满足条件的点M 不存在.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标; (2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点)2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值. 解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫ ⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)s in 2,c os 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos ba b -=θ, ∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-ba b ,又222c a b -=∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明?5.相交情况下--弦长公式的应用例1 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3co s22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=6.相交情况下—点差法的应用例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得 ()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122kkk x x +-=+. ∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围. 解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x①。

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题椭圆的基本知识1.椭圆的定义:把平⾯内与两个定点21,F F 的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准⽅程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0)焦点在坐标轴上的椭圆标准⽅程有两种情形,为了计算简便,可设⽅程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出⽅程3.求轨迹⽅程的⽅法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意⼀点半径为标原点已知⼀个圆的圆⼼为坐如图例M P P P P x P ''解: (相关点法)设点M (x , y ), 点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是⼀个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b .椭圆位于直线x =±a 和y =±b 围成的矩形⾥.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中⼼.椭圆的对称中⼼叫做椭圆的中⼼.6.顶点只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.. a A 1yO F 1F2x B 2B 1A 2c b y O F 1F 2x Mc cxF 2F 1O y M c cy xPO P 'M)的离⼼率为(轴分成三等份,则椭圆若椭圆的连个焦点把长 .1⽆法确定 D. 32 C. 31 B. 61 A..7),0()0,()0,()0(1 .2112222=-->>=+e bAB F b B a A c F b a by a x ,则椭圆的离⼼率的距离为到直线如果是两个顶点,、,的左焦点为椭圆.1612)2,1( .322的标准⽅程有相同的离⼼率的椭圆,且与椭圆求经过点=+y x M越⼩,因此椭圆越扁;,从⽽越接近时,越接近当221)1(c a b a c e -=因此椭圆越接近于圆;,越接近,从⽽越接近时,越接近当a b c e 00)2(. 0)3(222a y x c b a =+==为圆,⽅程成为,两焦点重合,图形变时,当且仅当..21点坐标求求,为左右焦点,,上的点,为椭圆已知P S PF PF F F y x P F PF ?⊥=+yO x椭圆典型例题例1 已知椭圆06322=-+m y mx 的⼀个焦点为(0,2)求m 的值.分析:把椭圆的⽅程化为标准⽅程,由2=c ,根据关系222c b a +=可求出m 的值.解:⽅程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m .⼜2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中⼼在原点,且经过点()03,P ,b a 3=,求椭圆的标准⽅程.分析:因椭圆的中⼼在原点,故其标准⽅程有两种情况.根据题设条件,运⽤待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准⽅程.解:当焦点在x 轴上时,设其⽅程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+ba .⼜b a 3=,代⼊得12=b ,92=a ,故椭圆的⽅程为1922=+y x .当焦点在y 轴上时,设其⽅程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知2=+ba .⼜b a 3=,联⽴解得812=a ,92=b ,故椭圆的⽅程为198122=+x y .例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三⾓形重⼼G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利⽤椭圆定义求解.(2)由G 的轨迹⽅程G 、A 坐标的关系,利⽤代⼊法求A 的轨迹⽅程.解:(1)以BC 所在的直线为x 轴,BC 中点为原点建⽴直⾓坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其⽅程为()013610022≠=+y y x .(2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x .①由题意有='='33y y x x ,代⼊①,得A 的轨迹⽅程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的⼀个焦点,求椭圆⽅程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ?中,21sin 12∠PF PF F PF ,可求出621π=∠F PF ,3526cos21==πPF c ,从⽽310222=-=c a b .∴所求椭圆⽅程为1103522=+y x 或1510322=+y x .例5 已知椭圆⽅程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上⼀点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的⾯积(⽤a 、b 、α表⽰).分析:求⾯积要结合余弦定理及定义求⾓α的两邻边,从⽽利⽤C ab S sin 21=求⾯积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第⼀象限.由余弦定理知: 2 21F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得α.故αsin 212121PF PF S PF F ?=? ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆⼼P 的轨迹⽅程.分析:关键是根据题意,列出点P 满⾜的关系式.解:如图所⽰,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆⼼()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的⽅程:171622=+y x .说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准⽅程,求轨迹的⽅程.这是求轨迹⽅程的⼀种重要思想⽅法.例7 已知椭圆1222=+y x (1)求过点??2121,P 且被P 平分的弦所在直线的⽅程;(2)求斜率为2的平⾏弦的中点轨迹⽅程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹⽅程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满⾜21-=?OQ OP k k ,求线段PQ 中点M 的轨迹⽅程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的⽅法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x ,将③④代⼊得022121=--+x x y y y x .⑤(1)将21=x ,21=y 代⼊⑤,得212121-=--x x y y ,故所求直线⽅程为: 0342=-+y x .⑥将⑥代⼊椭圆⽅程2222=+y x 得041662 =--y y ,0416436>??-=?符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代⼊⑤得所求轨迹⽅程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代⼊⑤得所求轨迹⽅程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x ,⑦,将③④平⽅并整理得 212222124x x x x x -=+,⑧, 2122将⑧⑨代⼊⑦得:()224424212212=-+-y y y x x x ,⑩再将212121x x y y -=代⼊⑩式得: 221242212212=??--+-x x y x x x ,即 12122=+y x .此即为所求轨迹⽅程.当然,此题除了设弦端坐标的⽅法,还可⽤其它⽅法解决.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的⽅程.解:(1)把直线⽅程m x y +=代⼊椭圆⽅程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-??-=?m m m ,解得2525≤m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得:51025145211222=-?-??? ??-?+m m .解得0=m .⽅程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采⽤的⽅法与处理直线和圆的有所区别.这⾥解决直线与椭圆的交点问题,⼀般考虑判别式?;解决弦长问题,⼀般应⽤弦长公式.⽤弦长公式,若能合理运⽤韦达定理(即根与系数的关系),可⼤⼤简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上⼀点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆⽅程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找⼀点,使该点到直线同侧的两已知点(即两焦点)的距离之和最⼩,只须利⽤对称就可解决.解:如图所⽰,椭圆131222=+y x 的焦点为()031,-F ,()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的⽅程为032=-+y x .解⽅程组?=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最⼩.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,⼜3=c ,∴()363532222=-=-=c a b .因此,所求椭圆的⽅程为1364522=+y x .例10 已知⽅程13522-=-+-k y k x 表⽰椭圆,求k 的取值范围.解:由??-≠-<-<-,35,03,05k k k k 得53<∴满⾜条件的k 的取值范围是53<说明:本题易出现如下错解:由?<-<-,03,05k k 得53<出错的原因是没有注意椭圆的标准⽅程中0>>b a 这个条件,当b a =时,并不表⽰椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表⽰焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三⾓函数的⼤⼩关系.再根据三⾓函数的单调性,求出α的取值范围.解:⽅程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα.因此0sin >α且1tan -<α从⽽)43,2(ππα∈.说明:(1)由椭圆的标准⽅程知0sin 1>α,0cos 1>-α,这是容易忽视的地⽅. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题⽬中的条件πα<≤0.例12 求中⼼在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆⽅程分析:由题设条件焦点在哪个轴上不明确,椭圆标准⽅程有两种情形,为了计算简便起见,可设其⽅程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,解:设所求椭圆⽅程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得=?+-?=-?+?,11)32(,1)2()3(2222n m n m 即=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆⽅程为151522=+y x .例13 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利⽤弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利⽤椭圆定义及余弦定理,还可以利⽤焦点半径来求.解:(法1)利⽤直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆⽅程为193622=+y x ,左焦点)0,33(-F ,从⽽直线⽅程为93+=x y .由直线⽅程与椭圆⽅程联⽴得:0836372132=?++x x .设1x ,2x 为⽅程两根,所以1337221-=+x x ,1383621?=x x ,3=k ,从⽽1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利⽤椭圆的定义及余弦定理求解.2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ?中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22-?+=-m m m ;所以346-=m .同理在21F BF ?中,⽤余弦定理得346+=n ,所以1348=+=n m AB .(法3)利⽤焦半径求解.先根据直线与椭圆联⽴的⽅程0836372132=?++x x 求出⽅程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从⽽求出11BF AF AB +=.例14 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所⽰,设椭圆的另⼀个焦点为2F ,由椭圆第⼀定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,⼜因为ON 为21F MF ?的中位线,所以2==MF ON ,故答案为A .说明:(1)椭圆定义:平⾯内与两定点的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这⼀定义,即a MF MF 221=+,利⽤这个等式可以解决椭圆上的点与焦点的有关距离.例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利⽤上述条件建⽴m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的⽅程为n x y +-=41.由⽅程组=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①。

椭圆各类题型分类汇总

椭圆各类题型分类汇总

椭圆各类题型分类汇总文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]椭圆经典例题分类汇总 1. 椭圆第一定义的应用 例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.2.焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项若存在,则求出点M 的坐标;若不存在,请说明理由.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).3.第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.例2 已知椭圆142222=+b y b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 例3 椭圆12222=+b y a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.5.相交情况下--弦长公式的应用例1 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点(2)若直线被椭圆截得的弦长为5102,求直线的方程. 例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 6.相交情况下—点差法的应用例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为,椭圆的短轴长为2,求椭圆的方程.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在的直线方程. 例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.例5 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 椭圆经典例题分类汇总1.椭圆第一定义的应用例1 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ;说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2 已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k .当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12. 由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k . 说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例5 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k . 出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例6 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0 例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1 已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得 2=a ,3=b ,∴1=c ,21=e .∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知: 111212x ex a MF -=-=,112212x ex a MF +=+=. ∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x .解之得41-=x 或5121-=x . ① 另一方面221≤≤-x . ②则①与②矛盾,所以满足条件的点M 不存在.例2 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积. 解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.① 由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1 椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标. 分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2 已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e . 由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离, ∴b e PF d 3211==,即P 到左准线的距离为b 32.解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b e PF d 33222==.又椭圆两准线的距离为b c a 33822=⋅. ∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解. 椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3 已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x . ∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1 求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值.解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫ ⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d .说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1) ⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS 故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3 椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O 为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明5.相交情况下--弦长公式的应用例1 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点 (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式.用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程.例2 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长. 分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB += 6.相交情况下—点差法的应用例1 已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2 已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程.分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k .所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --. 解法二:设过⎪⎭⎫⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得①-②得0222212221=-+-y y x x . ⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-. 所求直线方程为0342=-+y x . 说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;(2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k ,求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法. 解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y y x .⑤ (1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为:0342=-+y x . ⑥将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分) (3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 : ()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得0481681322=-+-n nx x ①。

椭圆典型题型归纳22222222222

椭圆典型题型归纳22222222222

椭圆典型题型归纳题型一. 定义及其应用例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;例2. 方程2x =+所表示的曲线是练习:1.6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是( )A. 2212516x y +=B.221259x y +=C. 2211625x y +=D. 221925x y +=5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;1.注意定义中“陷阱”问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为点拨:一要注意是否满足122||a F F <,二要注意是一支还是两支12||||610PF PF -=< ,P 的轨迹是双曲线的右支.其方程为)0(116922>=-x y x 2.注意焦点的位置问题2:双曲线的渐近线为x y 23±=,则离心率为 点拨:当焦点在x 轴上时,23=a b ,213=e ;当焦点在y 轴上时,23=b a ,313=e为12,求此椭圆的方程;[例4]若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.2【解题思路】通过渐近线、离心率等几何元素,沟通c b a ,,的关系[解析] 焦点到渐近线的距离等于实轴长,故a b 2=,5122222=+==ab ac e ,所以5=e10.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x[解析]从焦点位置和具有相同的渐近线的双曲线系两方面考虑,选B3.已知12F F 、为椭圆的两个焦点,A 为它的短轴的一个端点,若该椭圆的长轴长为4,则△12AF F 面积的最大值为 . 4.过点(-6,3)且和双曲线x 2-2y 2=2有相同的渐近线的双曲线方程为 。

(完整版)椭圆大题题型汇总例题+练习

(完整版)椭圆大题题型汇总例题+练习

椭圆大题题型解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,中点,垂直,角度,向量,面积,范围等等运用的知识:x?xy?y1212A(x,y),B(x,y)?,y x?yx,的中点坐,其中1、中点坐标公式:是点221122标。

)(),Bx,yxA(,y0)k??b(y?kx在直线上,2、弦长公式:若点2112b?kx??y?kxb,y则,这是同点纵横坐标变换,是两大坐标变换技巧之一,2121222222)?kx)(kx?kx)x?))?(y?y(1?(x?x)??(?AB(x?x212121122122?4x)x?k])[(x?x?(1211211122222)yy??(1?)((x?x)??(yAB?y)(x?xy?(y?))?或者22211212112kkk12)[(y?y)?4?(1?yy]。

12122kl:y?kx?b,l:y?kx?bkk??1、两条直线垂直:则321121122rrg v0v?两条直线垂直,则直线所在的向量1220)0(a??axbx?c?x,x则:,同的根不次元若一二方程有两个理达、4韦定21bcx?x??,xx?。

2211aa常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,。

用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)2xy?l轴上是否存在一点两点,在x交于A、例题1、过点T(-1,0)作直线与曲线N :B xx ABE?,使得是等边三角形,若存在,求出;若不存在,请说明理由。

E(,0)002x21?y?OF已知椭圆例题2的左焦点为,、为坐标原点。

椭圆高考典型题型整理

椭圆高考典型题型整理

椭圆高考典型题型归纳题型一. 定义及其应用例1.已知一个动圆与圆22:(4)100C x y ++=相内切,且过点(4,0)A ,求这个动圆圆心M 的轨迹方程;例2. 方程2x =+所表示的曲线是 练习:1.6=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆2.10=对应的图形是( )A.直线B. 线段C. 椭圆D. 圆3.10=成立的充要条件是( )A.2212516x y += B.221259x y += C. 2211625x y += D. 221925x y +=4.1m =+表示椭圆,则m 的取值范围是5.过椭圆22941x y +=的一个焦点1F 的直线与椭圆相交于,A B 两点,则,A B 两点与椭圆的另一个焦点2F 构成的2ABF ∆的周长等于 ;6.设圆22(1)25x y ++=的圆心为C ,(1,0)A 是圆内一定点,Q 为圆周上任意一点,线段AQ 的垂直平分线与CQ 的连线交于点M ,则点M 的轨迹方程为 ;题型二. 椭圆的方程 (一)由方程研究曲线例1.方程2211625x y +=的曲线是到定点 和 的距离之和等于 的点的轨迹; (二)分情况求椭圆的方程例2.已知椭圆以坐标轴为对称轴,且长轴是短轴的3倍,并且过点(3,0)P ,求椭圆的方程; (三)用待定系数法求方程例3.已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点1P 、2(P ,求椭圆的方程;例4.求经过点(2,3)-且与椭圆229436x y +=有共同焦点的椭圆方程;注:一般地,与椭圆22221x y a b+=共焦点的椭圆可设其方程为222221()x y k b a k b k +=>-++; (四)定义法求轨迹方程;例5.在ABC ∆中,,,A B C 所对的三边分别为,,a b c ,且(1,0),(1,0)B C -,求满足b a c >>且,,b a c 成等差数列时顶点A 的轨迹;(五)相关点法求轨迹方程;例6.已知x 轴上一定点(1,0)A ,Q 为椭圆2214x y +=上任一点,求AQ 的中点M 的轨迹方程;(六)直接法求轨迹方程;例7.设动直线l 垂直于x 轴,且与椭圆2224x y +=交于,A B 两点,点P 是直线l 上满足1PA PB =的点,求点P 的轨迹方程;(七)列方程组求方程例8.中心在原点,一焦点为F 的椭圆被直线32y x =-截得的弦的中点的横坐标为12,求此椭圆的方程;题型三.焦点三角形问题例1. 已知椭圆2211625x y +=上一点P 的纵坐标为53,椭圆的上下两个焦点分别为2F 、1F ,求1PF 、2PF 及12cos F PF ∠;例2.题型四.椭圆的几何性质例 1.已知P 是椭圆22221x y a b +=上的点,的纵坐标为53,1F 、2F 分别为椭圆的两个焦点,椭圆的半焦距为c ,则12PF PF 的最大值与最小值之差为例 2.椭圆22221x y a b+=(0)a b >>的四个顶点为,,,A B C D ,若四边形ABCD 的内切圆恰好过焦点,则椭圆的离心率为 ;例3.若椭圆22114x y k +=+的离心率为12,则k = ; 例 4.若P 为椭圆22221(0)x y a b a b+=>>上一点,1F 、2F 为其两个焦点,且01215PF F ∠=,02175PF F ∠=,则椭圆的离心率为题型五.求范围例1.方程22221(1)x y m m +=-表示准线平行于x 轴的椭圆,求实数m 的取值范围;题型六.椭圆的第二定义的应用例1. 方程2x y =++所表示的曲线是 例2.求经过点(1,2)M ,以y 轴为准线,离心率为12的椭圆的左顶点的轨迹方程; 例3.椭圆221259x y +=上有一点P ,它到左准线的距离等于52,那么P 到右焦点的距离为例4.已知椭圆13422=+y x ,能否在此椭圆位于y 轴左侧的部分上找到一点M ,使它到左准线的距离为它到两焦点12,F F 距离的等比中项,若能找到,求出该点的坐标,若不能找到,请说明理由。

椭圆典型例题

椭圆典型例题

椭圆典型例题一、椭圆焦点的位置,求椭圆的标准方程。

例1:椭圆的焦点是F 1(0,-1)、F 2(0,1),P 是椭圆上一点,并且PF 1+PF 2=2F 1F 2,求椭圆的标准方程。

解:由PF 1+PF 2=2F 1F 2=2×2=4,得2a =4.又c =1,所以b 2=3.所以椭圆的标准方程是y 24+*23=1.2.椭圆的两个焦点为F 1(-1,0),F 2(1,0),且2a =10,求椭圆的标准方程. 解:由椭圆定义知c =1,∴b =52-1=24.∴椭圆的标准方程为*225+y 224=1.二、未知椭圆焦点的位置,求椭圆的标准方程。

例:1. 椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:〔1〕当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; 〔2〕当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 三、椭圆的焦点位置由其它方程间接给出,求椭圆的标准方程。

例.求过点(-3,2)且与椭圆*29+y 24=1有一样焦点的椭圆的标准方程.解:因为c 2=9-4=5,所以设所求椭圆的标准方程为*2a 2+y 2a 2-5=1.由点(-3,2)在椭圆上知9a 2+4a 2-5=1,所以a 2=15.所以所求椭圆的标准方程为*215+y 210=1. 四、与直线相结合的问题,求椭圆的标准方程。

例: 中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111ax y M M +=-=,4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 五、求椭圆的离心率问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆经典例题分类汇总1.椭圆第一定义的应用例1椭圆的一个顶点为()02,A ,其长轴长是短轴长的2倍,求椭圆的标准方程. 分析:题目没有指出焦点的位置,要考虑两种位置.解:(1)当()02,A 为长轴端点时,2=a ,1=b , 椭圆的标准方程为:11422=+y x ; (2)当()02,A 为短轴端点时,2=b ,4=a , 椭圆的标准方程为:116422=+y x ; 说明:椭圆的标准方程有两个,给出一个顶点的坐标和对称轴的位置,是不能确定椭圆的横竖的,因而要考虑两种情况.例2已知椭圆19822=++y k x 的离心率21=e ,求k 的值. 分析:分两种情况进行讨论.解:当椭圆的焦点在x 轴上时,82+=k a ,92=b ,得12-=k c .由21=e ,得4=k . 当椭圆的焦点在y 轴上时,92=a ,82+=k b ,得k c -=12.由21=e ,得4191=-k ,即45-=k . ∴满足条件的4=k 或45-=k .说明:本题易出现漏解.排除错误的办法是:因为8+k 与9的大小关系不定,所以椭圆的焦点可能在x 轴上,也可能在y 轴上.故必须进行讨论.例3 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k . 说明:本题易出现如下错解:由⎩⎨⎧<-<-,03,05k k 得53<<k ,故k 的取值范围是53<<k .出错的原因是没有注意椭圆的标准方程中0>>b a 这个条件,当b a =时,并不表示椭圆.例4 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围. 分析:依据已知条件确定α的三角函数的大小关系.再根据三角函数的单调性,求出α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 说明:(1)由椭圆的标准方程知0sin 1>α,0cos 1>-α,这是容易忽视的地方.(2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题目中的条件πα<≤0例5 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P的轨迹方程.分析:关键是根据题意,列出点P 满足的关系式.解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准方程,求轨迹的方程.这是求轨迹方程的一种重要思想方法.2.焦半径及焦三角的应用例1已知椭圆13422=+y x ,1F 、2F 为两焦点,问能否在椭圆上找一点M ,使M 到左准线l 的距离MN 是1MF 与2MF 的等比中项?若存在,则求出点M 的坐标;若不存在,请说明理由.解:假设M 存在,设()11y x M ,,由已知条件得2=a ,3=b ,∴1=c ,21=e . ∵左准线l 的方程是4-=x , ∴14x MN +=. 又由焦半径公式知:111212x ex a MF -=-=,112212x ex a MF +=+=.∵212MF MF MN ⋅=,∴()⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛-=+11212122124x x x . 整理得048325121=++x x . 解之得41-=x 或5121-=x .① 另一方面221≤≤-x .②则①与②矛盾,所以满足条件的点M 不存在.例2已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示). 分析:求面积要结合余弦定理及定义求角α的两邻边,从而利用C ab S sin 21=∆求面积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ααsin cos 12212+=b 2tan 2αb =. 3.第二定义应用例1椭圆1121622=+y x 的右焦点为F ,过点()31,A ,点M 在椭圆上,当MF AM 2+为最小值时,求点M 的坐标.分析:本题的关键是求出离心率21=e ,把MF 2转化为M 到右准线的距离,从而得最小值.一般地,求MF eAM 1+均可用此法. 解:由已知:4=a ,2=c .所以21=e ,右准线8=x l :.过A 作l AQ ⊥,垂足为Q ,交椭圆于M ,故MF MQ 2=.显然MF AM 2+的最小值为AQ ,即M 为所求点,因此3=M y ,且M 在椭圆上.故32=M x .所以()332,M .说明:本题关键在于未知式MF AM 2+中的“2”的处理.事实上,如图,21=e ,即MF 是M 到右准线的距离的一半,即图中的MQ ,问题转化为求椭圆上一点M ,使M 到A 的距离与到右准线距离之和取最小值.例2已知椭圆142222=+by b x 上一点P 到右焦点2F 的距离为b )1(>b ,求P 到左准线的距离.分析:利用椭圆的两个定义,或利用第二定义和椭圆两准线的距离求解.解法一:由142222=+by b x ,得b a 2=,b c 3=,23=e .由椭圆定义,b a PF PF 4221==+,得b b b PF b PF 34421=-=-=.由椭圆第二定义,e d PF =11,1d 为P 到左准线的距离,∴b ePF d 3211==,即P 到左准线的距离为b 32. 解法二:∵e d PF =22,2d 为P 到右准线的距离,23==a c e , ∴b ePF d 33222==.又椭圆两准线的距离为b c a 33822=⋅.∴P 到左准线的距离为b b b 32332338=-. 说明:运用椭圆的第二定义时,要注意焦点和准线的同侧性.否则就会产生误解.椭圆有两个定义,是从不同的角度反映椭圆的特征,解题时要灵活选择,运用自如.一般地,如遇到动点到两个定点的问题,用椭圆第一定义;如果遇到动点到定直线的距离问题,则用椭圆的第二定义.例3已知椭圆15922=+y x 内有一点)1,1(A ,1F 、2F 分别是椭圆的左、右焦点,点P 是椭圆上一点.(1) 求1PF PA +的最大值、最小值及对应的点P 坐标;(2) 求223PF PA +的最小值及对应的点P 的坐标. 分析:本题考查椭圆中的最值问题,通常探求变量的最值有两种方法:一是目标函数当,即代数方法.二是数形结合,即几何方法.本题若按先建立目标函数,再求最值,则不易解决;若抓住椭圆的定义,转化目标,运用数形结合,就能简捷求解.解:(1)如上图,62=a ,)0,2(2F ,22=AF ,设P 是椭圆上任一点,由6221==+a PF PF ,22AF PF PA -≥,∴26222211-=-=-+≥+AF a AF PF PF PF PA ,等号仅当22AF PF PA -=时成立,此时P 、A 、2F 共线.由22AF PF PA +≤,∴26222211+=+=++≤+AF a AF PF PF PF PA ,等号仅当22AF PF PA +=时成立,此时P 、A 、2F 共线.建立A 、2F 的直线方程02=-+y x ,解方程组⎩⎨⎧=+=-+4595,0222y x y x 得两交点 )2141575,2141579(1+-P 、)2141575,2141579(2-+P . 综上所述,P 点与1P 重合时,1PF PA +取最小值26-,P 点与2P 重合时,2PF PA +取最大值26+.(2)如下图,设P 是椭圆上任一点,作PQ 垂直椭圆右准线,Q 为垂足,由3=a ,2=c ,∴32=e .由椭圆第二定义知322==e PQ PF ,∴223PF PQ =,∴PQ PA PF PA +=+223,要使其和最小需有A 、P 、Q 共线,即求A 到右准线距离.右准线方程为29=x .∴A 到右准线距离为27.此时P 点纵坐标与A 点纵坐标相同为1,代入椭圆得满足条件的点P 坐标)1,556(. 说明:求21PF ePA +的最小值,就是用第二定义转化后,过A 向相应准线作垂线段.巧用焦点半径2PF 与点准距PQ 互化是解决有关问题的重要手段.4.参数方程应用例1求椭圆1322=+y x 上的点到直线06=+-y x 的距离的最小值. 分析:先写出椭圆的参数方程,由点到直线的距离建立三角函数关系式,求出距离的最小值. 解:椭圆的参数方程为⎩⎨⎧==.sin cos 3θθy x ,设椭圆上的点的坐标为()θθsin cos 3,,则点到直线的距离为263sin 226sin cos 3+⎪⎭⎫⎝⎛-=+-=θπθθd . 当13sin -=⎪⎭⎫⎝⎛-θπ时,22=最小值d . 说明:当直接设点的坐标不易解决问题时,可建立曲线的参数方程.例2 (1)写出椭圆14922=+y x 的参数方程;(2)求椭圆内接矩形的最大面积. 分析:本题考查椭圆的参数方程及其应用.为简化运算和减少未知数的个数,常用椭圆的参数方程表示曲线上一点坐标,所求问题便化归为三角问题.解:(1)⎩⎨⎧==θθsin 2cos 3y x )(R ∈θ.(2)设椭圆内接矩形面积为S ,由对称性知,矩形的邻边分别平行于x 轴和y 轴,设)sin 2,cos 3(θθ为矩形在第一象限的顶点,)20(π<θ<,则122sin 12sin 2cos 34≤=⨯⨯=θθθS故椭圆内接矩形的最大面积为12.说明:通过椭圆参数方程,转化为三角函数的最值问题,一般地,与圆锥曲线有关的最值问题,用参数方程形式较简便.例3椭圆12222=+by a x )0(>>b a 与x 轴正向交于点A ,若这个椭圆上总存在点P ,使AP OP ⊥(O为坐标原点),求其离心率e 的取值范围.分析:∵O 、A 为定点,P 为动点,可以P 点坐标作为参数,把AP OP ⊥,转化为P 点坐标的一个等量关系,再利用坐标的范围建立关于a 、b 、c 的一个不等式,转化为关于e 的不等式.为减少参数,易考虑运用椭圆参数方程.解:设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x )0(>>b a ,则椭圆上的点)sin ,cos (θθb a P ,)0,(a A , ∵AP OP ⊥,∴1cos sin cos sin -=-⋅aa b a b θθθθ,即0cos cos )(22222=+--b a b a θθ,解得1cos =θ或222cos b a b -=θ,∵1cos 1<<-θ∴1cos =θ(舍去),11222<-<-b a b ,又222c a b -= ∴2022<<ca ,∴22>e ,又10<<e ,∴122<<e . 说明:若已知椭圆离心率范围)1,22(,求证在椭圆上总存在点P 使AP OP ⊥.如何证明? 5.相交情况下--弦长公式的应用例1已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫ ⎝⎛-⋅+m m .解得0=m .方程为x y =. 说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采用的方法与处理直线和圆的有所区别.这里解决直线与椭圆的交点问题,一般考虑判别式∆;解决弦长问题,一般应用弦长公式. 用弦长公式,若能合理运用韦达定理(即根与系数的关系),可大大简化运算过程. 例2已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得, 也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ;所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=6.相交情况下—点差法的应用例1已知中心在原点,焦点在x 轴上的椭圆与直线01=-+y x 交于A 、B 两点,M 为AB 中点,OM 的斜率为0.25,椭圆的短轴长为2,求椭圆的方程.解:由题意,设椭圆方程为1222=+y ax ,由⎪⎩⎪⎨⎧=+=-+101222y ax y x ,得()021222=-+x a x a , ∴222112a a x x x M +=+=,2111a x y M M +=-=, 4112===ax y k M M OM ,∴42=a , ∴1422=+y x 为所求. 说明:(1)此题求椭圆方程采用的是待定系数法;(2)直线与曲线的综合问题,经常要借用根与系数的关系,来解决弦长、弦中点、弦斜率问题.例2已知椭圆1222=+y x ,求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在的直线方程. 分析一:已知一点求直线,关键是求斜率,故设斜率为k ,利用条件求k . 解法一:设所求直线的斜率为k ,则直线方程为⎪⎭⎫ ⎝⎛-=-2121x k y .代入椭圆方程,并整理得 ()()0232122212222=+-+--+k k x k kx k .由韦达定理得22212122k kk x x +-=+.∵P 是弦中点,∴121=+x x .故得21-=k . 所以所求直线方程为0342=-+y x .分析二:设弦两端坐标为()11y x ,、()22y x ,,列关于1x 、2x 、1y 、2y 的方程组,从而求斜率:2121x x y y --.解法二:设过⎪⎭⎫ ⎝⎛2121,P 的直线与椭圆交于()11y x A ,、()22y x B ,,则由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+=+④1.③1②12①12212122222121y y x x y x y x ,,, ①-②得0222212221=-+-y y x x .⑤ 将③、④代入⑤得212121-=--x x y y ,即直线的斜率为21-.所求直线方程为0342=-+y x .说明:(1)有关弦中点的问题,主要有三种类型:过定点且被定点平分的弦;平行弦的中点轨迹;过定点的弦中点轨迹.(2)解法二是“点差法”,解决有关弦中点问题的题较方便,要点是巧代斜率. (3)有关弦及弦中点问题常用的方法是:“韦达定理应用”及“点差法”.有关二次曲线问题也适用.例3已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的方法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫⎝⎛--+-x x y x x x , 即 12122=+y x .此即为所求轨迹方程.当然,此题除了设弦端坐标的方法,还可用其它方法解决.例4已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利用上述条件建立m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点. ∵l 的斜率4=l k ,∴设直线AB 的方程为n x y +-=41.由方程组⎪⎪⎩⎪⎪⎨⎧=++-=,134,4122yx n x y 消去y 得 0481681322=-+-n nx x ①。

相关文档
最新文档