椭圆的常见题型及解法(一).

合集下载

椭圆题型及方法总结

椭圆题型及方法总结

椭圆题型及方法总结
椭圆题型及方法总结:
1. 求椭圆的标准方程:通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为标准方程:$(x-h)^2/a^2 + (y-k)^2/b^2 = 1$,其中$(h,k)$为椭圆的中心坐标。

2. 求椭圆的焦点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出焦点的坐标。

3. 求椭圆的顶点坐标:已知椭圆的方程,可以通过标准方程得到椭圆的中心坐标$(h,k)$,然后使用椭圆的性质,计算出顶点的坐标。

4. 求椭圆的参数方程:已知椭圆的方程,可以通过给定的信息,如焦点、顶点、直径长度等,使用定义式以及椭圆的性质,将椭圆的方程转化为参数方程:$x = h + a \cos t$,$y = k + b \sin t$,其中$(h,k)$为椭圆的中心坐标,$a$和$b$分别为椭圆的半
长轴和半短轴长度。

5. 求椭圆的离心率:已知椭圆的方程,可以通过标准方程得到椭圆的半长轴长度$a$和半短轴长度$b$,然后使用离心率的定义式计算出椭圆的离心率:$e = \sqrt{1 - \frac{b^2}{a^2}}$。

6. 求椭圆的面积和周长:已知椭圆的方程,可以通过给定的信
息,如半长轴长度$a$和半短轴长度$b$,使用椭圆的性质计算出椭圆的面积和周长。

以上是常见的椭圆题型及解题方法的总结,具体问题具体分析,有时需要结合其他几何知识来解决问题。

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳

椭圆常见题型与典型方法归纳椭圆是平面内与两个定点距离之和等于常数的点的轨迹。

这两个定点被称为椭圆的焦点,椭圆的焦距是两个焦点之间的距离。

另外,椭圆也可以被定义为平面内一个点到一个定直线距离与到一个定点距离之比等于常数的轨迹。

这个定点是椭圆的焦点,定直线是椭圆的准线,这个常数是椭圆的离心率。

需要注意的是,当两个定点之间的距离等于常数时,椭圆的轨迹是线段,而当两个定点之间的距离小于常数时,椭圆的轨迹不存在。

椭圆的标准方程有两种形式,一种是焦点在x轴上的形式,另一种是焦点在y轴上的形式。

这些方程可以用来确定椭圆的形状和位置。

需要注意的是,椭圆的焦点位置可以通过方程中分母的大小来判断。

如果分母中x的系数大于y的系数,那么焦点在y轴上,反之则在x轴上。

如果椭圆过两个定点,但焦点位置不确定,可以设椭圆方程为mx+ny=1,其中m和n都是正数。

在解题时,需要牢记椭圆的几何性质。

例如,如果一个点到椭圆的左焦点的距离是到右焦点距离的两倍,那么这个点的横坐标可以通过解方程得到。

又例如,如果一个点在椭圆上,那么它到两个焦点的距离之和等于椭圆的长轴长度。

1.椭圆的基本性质椭圆方程为x2/a2 + y2/b2 = 1 (a>b>0),其中a和b分别为长轴和短轴长。

椭圆的中心在原点(0,0)处,长轴与x轴平行。

椭圆的顶点分别为(a,0)。

(-a,0)。

(0,b)。

(0,-b),离心率为e=c/a,其中c为焦点到中心的距离,焦距为2c。

椭圆的准线方程为y=±(b/a)x,通径方程为y=kx或x=h,其中k和h为常数。

椭圆关于x轴和y轴对称,且具有中心对称性。

椭圆上任意一点到两焦点的距离之和等于长轴长,即PF1 + PF2 = 2a。

椭圆上任意一点到两焦点的距离之差等于该点到准线的距离,即PF1 - PF2 = 2b。

椭圆上点的横坐标的范围为-x ≤ x ≤ x,纵坐标的范围为-y ≤ y ≤ y。

2.典型练1) 题目描述:给定椭圆方程x2/a2 + y2/b2 = 1,已知长轴位于x轴上,长轴长为8,短轴位于y轴上,短轴长为6,焦点在x轴上,焦点坐标为(5,0)和(-5,0),求离心率e、左顶点坐标、下顶点坐标和椭圆上点的横坐标的范围、纵坐标的范围以及x+y的取值范围。

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)

高考椭圆题型总结(最新整理)椭圆题型总结一、椭圆的定义和方程问题(一)定义:PA+PB=2a>2c1.命题甲:动点到两点的距离之和命题乙: 的轨迹P B A ,);,0(2常数>=+a a PB PA P 是以A 、B 为焦点的椭圆,则命题甲是命题乙的 ()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件2.已知、是两个定点,且,若动点满足则动点的轨迹1F 2F 421=F F P 421=+PF PF P 是()A.椭圆B.圆C.直线D.线段3.已知、是椭圆的两个焦点, 是椭圆上的一个动点,如果延长到,使得1F 2F P P F 1Q ,那么动点的轨迹是( )2PF PQ =Q A.椭圆 B.圆 C.直线 D.点4.已知、是平面内的定点,并且,是内的动点,且1F 2F α)0(221>=c c F F M α,判断动点的轨迹.a MF MF 221=+M 5.椭圆上一点到焦点的距离为2,为的中点,是椭圆的中192522=+y x M 1F N 1MF O 心,则的值是。

ON (二)标准方程求参数范围若方程表示椭圆,求k 的范围.(3,4)U (4,5)13522=-+-k y k x 2.( )轴上的椭圆”的表示焦点在”是“方程“y ny mx n m 1022=+>>A.充分而不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件3.已知方程表示焦点在Y 轴上的椭圆,则实数m 的范围是.112522=-+-m y m x 4.已知方程表示焦点在Y 轴上的椭圆,则实数k 的范围是 .222=+ky x 5.方程所表示的曲线是.231y x -=6.如果方程表示焦点在轴上的椭圆,求实数的取值范围。

222=+ky x y k 7.已知椭圆的一个焦点为,求的值。

06322=-+m y mx )2,0(m 8.已知方程表示焦点在X 轴上的椭圆,则实数k 的范围是.=+ky x (三)待定系数法求椭圆的标准方程1.根据下列条件求椭圆的标准方程:(1)两个焦点的坐标分别为(0,5)和(0,-5),椭圆上一点到两焦点的距离之和为26;P (2)长轴是短轴的2倍,且过点(2,-6);(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点,求)2,3(),1,6(21--P P 椭圆方程.2.以和为焦点的椭圆经过点点,则该椭圆的方程)0,2(1-F )0,2(2F )2,0(A 为。

高中数学椭圆题型归类(全)

高中数学椭圆题型归类(全)

高中数学椭圆题型归类目录曲线与方程题型1:曲线的方程的判断题型2:直接法求曲线的方程题型3:定义法求曲线的方程题型4:相关点法求曲线的方程题型5:参数法求曲线的方程题型6:交轨法求曲线的方程椭圆题型1:求轨迹(椭圆)方程题型1.1:定义法求轨迹(椭圆)方程题型1.2:直接法求轨迹(椭圆)方程题型1.3:相关点法求轨迹(椭圆)方程题型1.4:参数法求轨迹(椭圆)方程题型2:求椭圆标准方程题型2.1:已知椭圆上一点及焦点,定义法求椭圆标准方程题型2.2:已知椭圆上两点,待定系数法求椭圆标准方程题型2.3:已知a,b,c关系,方程组法求椭圆标准方程题型3:椭圆的定义题型4:椭圆的对称性题型5:椭圆的离心率题型5.1:求椭圆的离心率题型5.2:求椭圆的离心率取值范围题型6:椭圆的弦中点题型7:椭圆的焦点三角形题型8:椭圆的弦长题型9:椭圆中的三角形面积题型10:直线与椭圆的位置关系题型10.1:直线与椭圆的位置关系题型10.2:椭圆的切线方程题型11:椭圆的求值问题题型12:椭圆中求取值范围问题题型13:椭圆中最值问题题型14:椭圆的定值问题方法是先猜后证。

猜法:取特殊情况或极端情况,此不赘述。

题型14.1:和差相消为定值题型14.2:乘除相约为定值题型14.3:消参数为定值题型15:椭圆的定点问题方法是先猜后证。

猜法:取两种特殊情况或极端情况的交点,或利用对称性判断定点在某直线上,此不赘述。

题型15.1:直线恒过定点题型15.2:曲线恒过定点题型16:证明、探究问题题型1:曲线的方程的判断1.已知曲线C 1,C 2的方程分别为f 1(x,y)=0,f 2(x,y)=0,则“f 1(x 0,y 0)=f 2(x 0,y 0)”是“点M(x 0,y 0)是曲线C 1与C 2的交点”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 2.方程|y|-1=表示的曲线是()A.两个半圆B.两个圆C.抛物线D.一个圆 3.方程(x+y-1)=0所表示的曲线是()A.B.C.D.题型2:直接法求曲线的方程1.到(0,2)和(4,-2)距离相等的点的轨迹方程___________2.设动点P 到点F(-1,0)的距离是到直线y=1的距离相等,求点P 的轨迹方程,并判定此轨迹是什么图形.3.动点P (x,y )到两定点A (-3,0)和B (3,0)的距离的比等于2(即2||||=PB PA ),求动点P 的轨迹方程?题型3:定义法求曲线的方程1.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0,,60A B APB ∠=,则动点P 的轨迹方程为.2.过点(-2,0)的直线与圆221x y +=相交于A,B,求弦AB 中点M 的轨迹方程。

椭圆的五种基本题型

椭圆的五种基本题型

椭圆专题训练(一)题型1、给出曲线方程,求相应量的值1、求椭圆400251622=+y x 的长轴长为 、短半轴长为 、离心率为 、焦点坐标为 、顶点坐标为 。

2、(练习)求下列各椭圆的长轴和短轴的长,离心率、焦点坐标、顶点坐标、准线方程: ①=+3610022y x 1 ②8222=+y x方法提练:①转化为相应的标准方程;②直接求出a 、b 、c 。

③判断焦点在哪一坐标轴上④将a 、b 、c 的值代入相应量公式(接第2题)③16422=+y x ④81922=+y x3、椭圆)0(022<<=++n m mn ny mx 的焦点为 。

4、曲线=+92522y x 1与=+--ky kx 925221(k<0)有相同的( )A 、长轴长;B 、离心率;C 、准线;D 、焦点题型2、给出相应量的值,求曲线方程1、焦点在x 轴上,焦距等于4,并且经过点P (3,-62)的椭圆方程为: 。

解:依题设椭圆的方程为)0(12222>>=+b a b y a x2、准线方程为x=±4,离心率为1/2的椭圆方程为: 3、两焦点为(±3,0),椭圆上一点P 到两焦点距离的和为10,椭圆方程为:3、两焦点为(±2,0)且过点(2325,-)的椭圆方程为: 方法提练:①判断焦点在哪一坐标轴上;②设出相应的椭圆方程③联立方程组求出a 、b 、c 。

(注意别忘记隐藏的公式)④将a 、b 、c 的值代入相应量公式4、写出适合下列条件的椭圆的标准方程: ①a=4,b=1,焦点在x 轴上。

②a=4,c=15,焦点在y 轴上③a+b=10 c=25.④a=6,c=1/3, 焦点在x 轴上。

⑤过点(-22,0)(0,5)⑥长轴是短轴的3倍,且过点(3,0)⑦离心率e=0.8,焦距为8的椭圆⑧若椭圆的焦点在x 轴上,焦点到短轴顶点的距离为2,到相应准线的距离为3,则椭圆的方程为:椭圆专题训练(二)题型3、给出某曲线方程,表达的是椭圆求所给方程中含的字母的范围。

高三数学椭圆常考题型

高三数学椭圆常考题型

高三数学椭圆常考题型一、椭圆的基本性质椭圆是一种常见的二次曲线,具有以下基本性质:1. 椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

2. 椭圆的焦点距离为:c = sqrt(a^2 - b^2)。

3. 椭圆的离心率e = c/a,离心率的取值范围是[0,1]。

4. 椭圆的准线方程为:x = ±a^2/c。

二、常考题型及解析1. 椭圆的定义与标准方程【例1】已知椭圆C的中心在原点,焦点在x轴上,离心率为1/2,且椭圆C上一点到两焦点的距离之和为4。

(1) 求椭圆C的标准方程;(2) 若AB是过椭圆C中心的弦,M是AB的中点,且|AB| = 4√5,求线段AB 的长。

【解析】(1) 根据题意,设椭圆C的标准方程为:x^2/a^2 + y^2/b^2 = 1 (a > b > 0)。

由离心率的定义,我们有e = c/a = 1/2。

再根据椭圆的定义,到两焦点的距离之和为4,所以2a = 4,即a = 2。

由离心率的定义和已知条件,我们可以得到b = sqrt(a^2 - c^2) = sqrt(4 - 1) = sqrt3。

所以椭圆C的标准方程为:x^2/4 + y^2/3 = 1。

(2) 设AB的方程为y = kx + t。

代入椭圆方程得到二次方程(3 + 4k^2)x^2 +8ktx + 4t^2 - 12 = 0。

设A(x1,y1),B(x2,y2),则有x1 + x2 = -8kt/(3 + 4k^2),x1x2 = (4t^2 - 12)/(3 + 4k^2)。

由弦长公式得|AB| = sqrt((x1 - x2)^2 + (y1 - y2)^2) = sqrt((1 + k^2)(x1 - x2)^2) = sqrt((1 + k^2)[(x1 + x2)^2 - 4x1x2])。

将已知条件代入得到k 和t 的关系,进一步求出线段AB的长为8sqrt(3-k^2)。

椭圆的常见题型及解法(一)

椭圆的常见题型及解法(一)

椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F 的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。

在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。

1.公式的推导设P (,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。

证法1:。

因为,所以∴又因为,所以∴,证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知11PF e d ,又,所以,而。

∴,。

2.公式的应用例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4,0)的距离成等差数列,则12x x + .解:在已知椭圆中,右准线方程为254x =,设A 、B 、C 到右准线的距离为,则、、。

∵,,,而|AF|、|BF|、|CF|成等差数列。

∴,即,。

例 2.12,F F是椭圆2214x y +=的两个焦点,P 是椭圆上的动点,求的最大值和最小值。

解:设,则1020332,2.22PF x PF x =+=-212034.4PF PF x ⋅=-P 在椭圆上,022x ∴-≤≤,12PF PF ⋅的最大值为4,最小值为1.变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。

解:由已知可得,所以直线AB 的方程为,代入椭圆方程得设,则,从而变式练习2. 设Q 是椭圆22221(0)x y a b a b+=>>上任意一点,求证:以2QF (或1QF )为直径的圆C 与以长轴为直径的圆相内切。

证明:设,圆C 的半径为r即也就是说:两圆圆心距等于两圆半径之差。

故两圆相内切 同理可证以为直径的圆与以长轴为直径的圆相内切。

3.椭圆焦半径公式的变式P 是椭圆x a y b a b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。

专题04 椭圆知识点和常见题型(解析版)

专题04 椭圆知识点和常见题型(解析版)

专题四:椭圆知识点和常见题型1、定义:平面内与两个定点,的距离之和等于常数(大于)的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.焦点的位置焦点在轴上焦点在轴上图形标准方程范围且且顶点、、、、轴长短轴的长长轴的长焦点、、焦距对称性关于轴、轴、原点对称离心率e越小,椭圆越圆;e越大,椭圆越扁通径过椭圆的焦点且垂直于对称轴的弦称为通径:2b2/a焦半径公式题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合下列条件的椭圆标准方程:(1)与椭圆2212x y +=有相同的焦点,且经过点3(1,)2(2)经过(2,(2A B 两点 【详解】(1)椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.(2)设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(22A B -两点代入, 得:14213241mnmn⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ⎪⎭⎫ ⎝⎛-2325,∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.已知ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如图所示,因为2c =,则(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:已知在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=, ∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:已知椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C. (1)求椭圆C 的标准方程;(2)已知O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,若存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由已知得2c a =,∴21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.(Ⅱ)若0m =,则()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 若0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-= 得()2224240k x mkx m +++-=,由已知得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:(特别注意)要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆的常见题型及其解法(一)椭圆是圆锥曲线的内容之一,也是高考的热点和重点,椭圆学习的好坏还直接影响后面的双曲线与抛物线的学习,笔者在这里就椭圆常见题型作简要的探讨,希望对学习椭圆的同学有所帮助.一、椭圆的焦半径椭圆上的任意一点到焦点F 的长称为此曲线上该点的焦半径,根据椭圆的定义,很容易推导出椭圆的焦半径公式。

在涉及到焦半径或焦点弦的一些问题时,用焦半径公式解题可以简化运算过程。

1.公式的推导设P (,)是椭圆上的任意一点,分别是椭圆的左、右焦点,椭圆,求证,。

证法1:。

因为,所以∴又因为,所以∴,证法2:设P 到左、右准线的距离分别为,由椭圆的第二定义知11PF e d ,又,所以,而。

∴,。

2.公式的应用例1 椭圆上三个不同的点A ()、B ()、C ()到焦点F (4,0)的距离成等差数列,则12x x + .解:在已知椭圆中,右准线方程为254x =,设A 、B 、C 到右准线的距离为,则、、。

∵,,,而|AF|、|BF|、|CF|成等差数列。

∴,即,。

例 2.12,F F 是椭圆2214x y +=的两个焦点,P 是椭圆上的动点,求的最大值和最小值。

解:设,则1020332,2.22PF x PF x =+=-212034.4PF PF x ⋅=-P 在椭圆上,022x ∴-≤≤,12PF PF ⋅的最大值为4,最小值为1.变式练习1:. 求过椭圆的左焦点,倾斜角为的弦AB 的长度。

解:由已知可得,所以直线AB 的方程为,代入椭圆方程得设,则,从而变式练习2. 设Q 是椭圆22221(0)x y a b a b+=>>上任意一点,求证:以2QF (或1QF )为直径的圆C 与以长轴为直径的圆相内切。

证明:设,圆C 的半径为r即也就是说:两圆圆心距等于两圆半径之差。

故两圆相内切 同理可证以为直径的圆与以长轴为直径的圆相内切。

3.椭圆焦半径公式的变式P 是椭圆x a y b a b 222210+=>>()上一点,E 、F 是左、右焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(1)||cos PE b a c =-2α;(2)||cos PF b a c =+2β。

P 是椭圆y a x b a b 222210+=>>()上一点,E 、F 是上、下焦点,PE 与x 轴所成的角为α,PF 与x 轴所成的角为β,c 是椭圆半焦距,则(3)||sin PE b a c =+2α;(4)||sin PF b a c =-2β。

证明:(1)设P 在x 轴上的射影为Q ,当α不大于90°时,在三角形PEQ 中,有||||||cos PE cx PE EQ P +==α 由椭圆焦半径公式(1)得 ||PE a ex P =+。

消去x P 后,化简即得(1)||cos PE b a c =-2α。

而当α大于90°时,在三角形PEQ 中,有||||||)cos(PE x c PE EQ P--==-απ ⇒=+cos ||αx cPE P , 以下与上述相同。

(2)、(3)、(4)的证明与(1)相仿,从略。

4.变式的应用对于椭圆的一些问题,应用这几个推论便可容易求解。

例1. (2005年全国高考题)P 是椭圆x a y ba b 222210+=>>()上一点,E 、F 是左右焦点,过P 作x 轴的垂线恰好通过焦点F ,若三角形PEF 是等腰直角三角形,则椭圆的离心率是___________。

解:因为PF ⊥EF ,所以由(2)式得 ||cos PF b a c b a=+=2290°。

再由题意得2222220222||||e a ac c ac c a ab c PF EF ⇒=-+⇒=-⇒=⇒=+210e -=。

注意到0121<<=-e e 解得。

例2. P 是椭圆x y 22100641+=上且位于x 轴上方的一点,E ,F 是左右焦点,直线PF 的斜率为-43,求三角形PEF 的面积。

解:设PF 的倾斜角为β,则:tan cos sin βββ=-=-=4317437,,。

因为a =10,b =8,c =6,由变式(2)得||()PF =+-=81061772× 所以三角形PEF 的面积32473462721sin ||||21===××××βEF PF S 变式训练1.经过椭圆x a y ba b 222210+=>>()的左焦点F 1作倾斜角为60°的直线和椭圆相交于A ,B 两点,若||||AF BF 112=,求椭圆的离心率。

解:由题意及变式(2)得b ac b a 2260260180-=-+cos cos()°×°°化简得2123223a c a c c a e c a -=+⇒=⇒==。

变式训练2.设F 是椭圆x y 2221+=的上焦点,PF FQ →→与共线,MF FN →→与共线,且PF MF →→·=0。

求四边形PMQN 面积的最大值和最小值。

解:设PF 倾斜角为α,则由题意知PF ⊥MF ,所以MF 倾斜角为90°+α,而a b c ===211,,,由题意及(3)式得||||||sin sin()sin PQ PF FQ =+=-+-+=-12121802222ααα° 同理得||cos MN =-2222α。

由题意知四边形PMQN 面积S PQ MN =12|||| αααααααα4cos 17322sin 816cos sin 4816cos sin 24cos 222sin 222212222222-=+=+=+=--=·· 当cos41α=时,S max =-=321712;当cos41α=-时,S min ()=--32171=169。

二 椭圆的焦点弦设椭圆方程为22222221(0,)x y a b c a b a b+=>>=-过椭圆右焦点且倾斜角为()2πθθ≠的直线方程为sin ()cos y x c θθ=-,此直线交椭圆于,A B 两点,求焦点弦AB 的长.例1、已知椭圆的长轴长AB 8=,焦距21F F =24,过椭圆的焦点1F 作一直线交椭圆于P 、Q 两点,设X PF 1∠=α)0(πα<<,当α取什么值时,PQ 等于椭圆的短轴长?分析:由题意可知PQ 是椭圆的焦点弦,且4=a ,22=c ,从而22=b ,故由焦点弦长公式θ222221cos 2c a ab F F -=及题设可得:24cos 816)22(4222=-⨯⨯α,解得αcos ±=22-,即α=arc 22cos -或arc -π22cos -。

例2、在直角坐标系中,已知椭圆E 的一个焦点为F (3,1),相应于F 的准线为Y 轴,直线l 通过点F ,且倾斜角为3π,又直线l 被椭圆E 截得的线段的长度为516,求椭圆E 的方程。

分析:由题意可设椭圆E 的方程为1)1()3(2222=-+--b y a c x ,又椭圆E 相应于F 的准线为Y 轴,故有32+=c ca (1), 又由焦点弦长公式有3cos 22222πc a ab -=516(2)又 222c b a += (3)。

解由(1)、(2)、(3)联列的方程组得:42=a ,32=b ,1=c ,从而所求椭圆E 的方程为13)1(4)4(22=-+-y x 。

变式训练1、已知椭圆C :12222=+by a x (0>>b a ),直线1l :1=-b ya x 被椭圆C截得的弦长为22,过椭圆右焦点且斜率为3的直线2l 被椭圆C 截得的弦长是它的长轴长的52,求椭圆C 的方程。

分析:由题意可知直线1l 过椭圆C 的长、短轴的两个端点,故有822=+b a , (1)又由焦点弦长公式得θ2222cos 2c a ab -=54a , (2) 因tan θ=3,得3πθ=,(3) 又 222c b a += (4)。

解由(1)、(2)、(3)、(4)联列的方程组得:62=a ,22=b ,从而所求椭圆E 的方程为12622=+y x 。

例3.已知椭圆22132x y +=的左右焦点分别为12,F F ,过1F 的直线交椭圆于,B D 两点,过2F 的直线交椭圆于,A C 两点,且AC BD ⊥,求四边形ABCD 的面积的最小值.。

相关文档
最新文档