2019届高三数学上学期学期初考试试题 理
2019届湖北省部分重点中学高三上学期开学考试数学(理)试题(解析版)
2019届湖北省部分重点中学高三上学期开学考试数学(理)试题★祝考试顺利★注意事项:1、考试范围:高考考查范围。
2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并请认真核准条形码上的准考证号、姓名和科目。
将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
4、主观题的作答:用0.5毫米黑色签字笔直接答在答题卡上对应的答题区域内。
如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带等。
写在试题卷、草稿纸和答题卡上的非主观题答题区域的答案一律无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。
6.保持卡面清洁,不折叠,不破损。
7、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单选题1.已知集合,,则=( )A.B.C.D.【答案】A【解析】分析:求出集合,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题.2.已知复数满足,则()A.B.C.D.【解析】分析:先求出复数z,再求.详解:由题得所以故答案为:B3.设等差数列的前项和为.若,,则()A.B.C.D.【答案】D【解析】又.可得,则故选D.4.已知命题:,,那么命题为()A.,B.,C.,D.,【答案】C【解析】【分析】含有量词的命题的否定形式,量词换为相反,然后否定结论即可。
【详解】根据含有量词的命题的否定形式,则为,所以选C【点睛】本题考查了含有量词的命题的否定,属于基础题。
A.B.C.D.【答案】D【解析】分析:先化简得到,再求的值.详解:由题得所以故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.6.执行程序框图,假如输入两个数是、,那么输出的=( )A.B.C.4 D.【答案】C【解析】分析:模拟执行程序框图可知程序框图的功能是求,的值,用裂项法即可得解.详解:模拟执行程序框图,可得是、,,满足条件,满足条件满足条件不满足条件 ,退出循环,输出 的值为4.故选C .点睛:本题主要考查了循环结构的程序框图,考查了数列的求和,属于基础题. 7.有4位游客来某地旅游,若每人只能从此处甲、乙、丙三个不同景录点中选择一处游览,则每个景点都有人去游览的概率为( )A .B .C .D .【答案】D【解析】分析:由题意,4为游客到甲乙丙三个不同的景点游览的不同的方法,其中每个景点都有人去游览共有中不同的方法,即可求解概率.详解:由题意,4为游客到甲乙丙三个不同的景点游览,共有中不同的方法,其中每个景点都有人去游览共有中不同的方法,所以所求概率为,故选D.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.8.已知函数(,),其图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位后,得到的图象关于轴对称,那么函数的A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称【答案】B【解析】分析:利用函数的图象与性质求出和,写出函数的解析式,再求的对称轴和对称中心,从而可得结果.详解:因为函数的图象相邻两条对称轴之间的距离为,所以函数的周期为,,,将函数的图象向左平移个单位后,得到函数图象,图象关于轴对称,,即,又,,令,解得,,得的图象关于点对称,故选B.点睛:本题主要考查三角函数的图象与性质,属于中档题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标.9.已知满足约束条件,若的最大值为,则的值为( )A.B.C.D.【答案】B【解析】【分析】根据表达式的几何意义,画不等式表示的可行域,在可行域内找到最优解,然后代入点坐标求得参数m的值。
2019届福建省泉州市高三上学期期初考试数学理试卷Word版含解析
2019届福建省泉州市高三上学期期初考试数学理试卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={﹣1,1},N=,则下列结论正确的是()2.i为虚数单位,若(+i)z=(1﹣i),则|z|=()A.1 B.C.D.23.已知命题p:∀x∈(0,+∞),3x>2x,命题q:∃x∈(﹣∞,0),3x>2x,则下列命题为真命题的是()A.p∧q B.p∧(¬q)C.(¬p)∧q D.(¬p)∧(¬q)4.设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c5.已知函数y=logax(a>0,a≠1)的图象经过点(2,),则其反函数的解析式为()A.y=4x B.y=log4x C.y=2x D.y=()x6.定义min{a,b}=,设f(x)=min{x2,},则由函数f(x)的图象与x轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.7.若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为()A.36 B.72 C.108 D.8.设函数f(x)=ln(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而非必要条件C.必要而非充分条件 D.既非充分也非必要条件9.已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}10.已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.11.若函数f(x)是(0,+∞)上的单调函数,且对任意实数x∈(0,+∞),都有f[f(x)﹣log2x﹣1]=2,则f(8)=()A.2 B.3 C.4 D.512.∀x∈R,e x≥ax+b,则实数a,b的乘积a•b的最大值为()A.B.2 C.1 D.二、填空题:本大题共4小题,每小题5分.13.函数f(x)=e x lnx在点(1,f(1))处的切线方程是.14.若函数,若f(a)>f(﹣a),则实数a的取值范围是.15.若f(x)=ln(e2x+1)+ax是偶函数,则a= .16.设函数f(x)=x2﹣2ax+3﹣2a的两个零点x1,x2,且在区间(x1,x2)上恰有两个正整数,则实数a的取值范围为.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(12分)设函数f(x)=|x﹣a|.(Ⅰ)当a=2时,解不等式f(x)≥|x|+1;(Ⅱ)若f(x)≤1在[0,1]上恒成立,求a的取值范围.18.(12分)设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<7,求a的取值范围.19.(12分)在直角坐标系中,曲线C:(θ为参数,a>0)过点P(),以坐标原点1为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=.(Ⅰ)求曲线C1与直线l的直角坐标方程;(Ⅱ)在C1上求一点M,使点M到直线l的距离最小,求出最小距离及点M的坐标.20.(12分)设函数f(x)=(2x2﹣4ax)lnx+x2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.21.(12分)已知函数,对任意的x∈(0,+∞),满足,其中a,b为常数.(1)若f(x)的图象在x=1处切线过点(0,﹣5),求a的值;(2)已知0<a<1,求证:;(3)当f(x)存在三个不同的零点时,求a的取值范围.22.(10分)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=.(1)把曲线C1的参数方程化为极坐标方程;(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|2019届福建省泉州市高三上学期期初考试数学理试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2016•邢台校级模拟)设集合M={﹣1,1},N=,则下列结论正确的是()【考点】集合的包含关系判断及应用.【专题】集合思想;数学模型法;集合;简易逻辑.【分析】由集合M={﹣1,1},N=={x|x<0或x},逐一判断即可得答案.【解答】解:集合M={﹣1,1},N=={x|x<0或x},则M⊆N,故A错误;M⊆N,故B正确;M∩N={﹣1,1},故C错误;M∪N=N,故D错误.故选:B.【点评】本题主要考查了集合的包含关系判断及应用,考查了分式不等式的解法,属于基础题.2.(2016秋•南安市校级月考)i为虚数单位,若(+i)z=(1﹣i),则|z|=()A.1 B.C.D.2【考点】复数代数形式的乘除运算;复数求模.【专题】计算题;转化思想;数学模型法;数系的扩充和复数.【分析】利用复数代数形式的乘除运算化简z,再由复数模的计算公式得答案.【解答】解:由(+i)z=(1﹣i),得,∴|z|=1.故选:A.【点评】本题考查复数代数形式的乘除运算,考查了复数模的求法,是基础题.3.(2016•柳州模拟)已知命题p:∀x∈(0,+∞),3x>2x,命题q:∃x∈(﹣∞,0),3x>2x,则下列命题为真命题的是()A.p∧q B.p∧(¬q)C.(¬p)∧q D.(¬p)∧(¬q)【考点】复合命题的真假.【专题】计算题.【分析】由题意可知p真,q假,由复合命题的真假可得答案.【解答】解:由题意可知命题p:∀x∈(0,+∞),3x>2x,为真命题;而命题q:∃x∈(﹣∞,0),3x>2x,为假命题,即¬q为真命题,由复合命题的真假可知p∧(¬q)为真命题,故选B【点评】本题考查复合命题的真假,涉及全称命题和特称命题真假的判断,属基础题.4.(2013•新课标Ⅱ)设a=log36,b=log510,c=log714,则()A.c>b>a B.b>c>a C.a>c>b D.a>b>c【考点】对数值大小的比较;不等关系与不等式.【专题】计算题.【分析】利用log a(xy)=log a x+log a y(x、y>0),化简a,b,c然后比较log32,log52,log72大小即可.【解答】解:因为a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为y=log2x是增函数,所以log27>log25>log23,∵,,所以log32>log52>log72,所以a>b>c,故选D.【点评】本题主要考查不等式与不等关系,对数函数的单调性的应用,不等式的基本性质的应用,属于基础题.5.(2015•揭阳一模)已知函数y=logx(a>0,a≠1)的图象经过点(2,),则其反函数的解析式为()ax C.y=2x D.y=()xA.y=4x B.y=log4【考点】反函数.【专题】函数的性质及应用.【分析】由对数函数的图象过定点求出a的值,然后化指数式为对数式,再把x,y互换求得原函数的反函数.x(a>0,a≠1)的图象经过点(2,),【解答】解:∵y=loga∴,解得a=4.∴y=log4x,则x=4y,把x,y互换得到函数y=log4x的反函数为y=4x.故选:A.【点评】本题考查了对数函数的运算性质,考查了函数的反函数的求法,是基础题.6.(2016•青岛一模)定义min{a,b}=,设f(x)=min{x2,},则由函数f(x)的图象与x 轴、直线x=2所围成的封闭图形的面积为()A.B.C.D.【考点】定积分在求面积中的应用.【专题】计算题;函数思想;数形结合法;空间位置关系与距离.【分析】根据题目给出的函数定义,写出分段函数f(x)=min{x2,},由图象直观看出所求面积的区域,然后直接运用定积分求解阴影部分的面积.【解答】解:由=x2,得:x=1,又当x<0时,<x2,所以,根据新定义有f(x)=min{x2,}=,图象如图,所以,由函数f(x)的图象与x轴、x=2直线所围成的封闭图形为图中阴影部分,其面积为S=x2dx+dx=|+lnx|=+ln2,故选:C.【点评】本题考查了定积分在求面积中的应用,考查了新定义,训练了学生的作图能力,解答要用数形结合画出所求面积的区域,此题是中档题.7.(2015•郑州二模)若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为()A.36 B.72 C.108 D.【考点】对数的运算性质.【专题】计算题;函数的性质及应用.【分析】设2+log2a=3+log3b=log6(a+b)=x,则a=2x﹣2,b=3x﹣3,a+b=6x,由此能求出+的值.【解答】解:∵正数a,b满足2+log2a=3+log3b=log6(a+b),∴设2+log2a=3+log3b=log6(a+b)=x,则a=2x﹣2,b=3x﹣3,a+b=6x,∴+===108.故选C.【点评】本题考查代数和的值的求法,解题时要认真审题,注意对数性质的合理运用.8.(2016秋•南安市校级月考)设函数f(x)=ln(x+),则对任意实数a,b,a+b≥0是f(a)+f(b)≥0的()A.充分必要条件 B.充分而非必要条件C.必要而非充分条件 D.既非充分也非必要条件【考点】必要条件、充分条件与充要条件的判断.【专题】对应思想;综合法;简易逻辑.【分析】由题设条件知对于任意的实数a和b,a+b≥0⇒f(a)+f(b)≥0;f(a)+f(b)≥0⇒a+b≥0,从而判断出结论即可.【解答】解:显然,函数f(x)在R上是递增函数,而且是奇函数,于是,由a+b≥0,得a≥﹣b,有f(a)≥f(﹣b)=﹣f(b),即f(a)+f(b)≥0.反过来,也成立.故选:A.【点评】本题考查充分条件、必要条件、充要条件的判断,解题时要注意函数单调性的合理运用.9.(2014•湖北)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,则函数g(x)=f(x)﹣x+3的零点的集合为()A.{1,3} B.{﹣3,﹣1,1,3} C.{2﹣,1,3} D.{﹣2﹣,1,3}【考点】函数奇偶性的性质.【专题】函数的性质及应用.【分析】首先根据f(x)是定义在R上的奇函数,求出函数在R上的解析式,再求出g(x)的解析式,根据函数零点就是方程的解,问题得以解决.【解答】解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2﹣3x,令x<0,则﹣x>0,∴f(﹣x)=x2+3x=﹣f(x)∴f(x)=﹣x2﹣3x,∴∵g(x)=f(x)﹣x+3∴g(x)=令g(x)=0,当x≥0时,x2﹣4x+3=0,解得x=1,或x=3,当x<0时,﹣x2﹣4x+3=0,解得x=﹣2﹣,∴函数g(x)=f(x)﹣x+3的零点的集合为{﹣2﹣,1,3}故选:D.【点评】本题考查函数的奇偶性及其应用,考查函数的零点,函数方程思想.10.(2015•宝鸡一模)已知函数f(x)的导函数f′(x)的图象如图所示,那么函数f(x)的图象最有可能的是()A.B.C.D.【考点】利用导数研究函数的单调性.【专题】常规题型;导数的综合应用.【分析】由导函数图象可知,f(x)在(﹣∞,﹣2),(0,+∞)上单调递减,在(﹣2,0)上单调递增;从而得到答案.【解答】解:由导函数图象可知,f(x)在(﹣∞,﹣2),(0,+∞)上单调递减,在(﹣2,0)上单调递增,故选A.【点评】本题考查了导数的综合应用,属于中档题.11.(2016秋•南安市校级月考)若函数f(x)是(0,+∞)上的单调函数,且对任意实数x∈(0,+∞),都有f[f(x)﹣log2x﹣1]=2,则f(8)=()A.2 B.3 C.4 D.5【考点】函数的值.【专题】函数思想;综合法;函数的性质及应用.【分析】根据题意,由单调函数的性质,可得f(x)﹣log2x﹣1为定值,可以设t=f(x)﹣log2x﹣1,则f(x)=log2x+t+1,又由f(t)=2,即log2t+t+1=2,解可得t的值,可得f(x)的解析式,求出f(8)即可.【解答】解:根据题意,对任意的x∈(0,+∞),都有f[f(x)﹣log2x﹣1]=2,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)﹣log2x﹣1为定值,设t=f(x)﹣log2x﹣1,则f(x)=log2x+t+1,又由f(t)=2,即log2t+t+1=2,解可得,t=1;则f(x)=log2x+2,故f(8)=5,故选:D.【点评】本题考查了求函数的解析式问题,考查指数函数的性质,求出f(x)的解析式是解题的关键,是一道中档题.12.(2016秋•南安市校级月考)∀x∈R,e x≥ax+b,则实数a,b的乘积a•b的最大值为()A .B .2C .1D .【考点】全称命题.【专题】函数思想;构造法;简易逻辑.【分析】由题意:令f (x )=e x ,设f (x )上一点坐标为P (x 0,e ),则f'(x )=e x ,所以k=e,所以切线方程为:y ﹣e=e(x ﹣x 0),整理得:y=ex+(1﹣x 0)e,求出a 、b ,f (x )=ab ,令f'(x )=0,求出a •b 的最大值即可【解答】解:由题意:令f (x )=e x ,设f (x )上一点坐标为P (x 0,e ),则f'(x )=e x ,所以k=e ,∴切线方程为:y ﹣e =e(x ﹣x 0), 整理得:y=e x+(1﹣x 0)e,∴a=e,b=(1﹣x 0)e,令f (x )=ab=(1﹣x )e 2x,那么:f'(x )=﹣e 2x +2(1﹣x )e 2x =(1﹣2x )e 2x, 令f'(x )=0,解得:极大值点:x=, ∴f (x )max =.故选A .【点评】本题主要考查了函数的单调性,以及利用导数求闭区间上函数的最值的应用,渗透了分类讨论思想,属于中档题二、填空题:本大题共4小题,每小题5分.13.(2016春•合肥校级期中)函数f (x )=e xlnx 在点(1,f (1))处的切线方程是 y=ex ﹣e . 【考点】利用导数研究曲线上某点切线方程. 【专题】方程思想;分析法;导数的概念及应用.【分析】求出f (x )的导数,可得切线的斜率和切点,运用点斜式方程可得切线的方程. 【解答】解:函数f (x )=e x lnx 的导数为f ′(x )=e x (lnx+),可得f (x )在点(1,f (1))处的切线斜率为e (ln1+1)=e , 切点为(1,0),即有f (x )在点(1,f (1))处的切线方程为y ﹣0=e (x ﹣1), 即为y=ex ﹣e .故答案为:y=ex ﹣e .【点评】本题考查导数的运用:求切线方程,考查导数的几何意义,正确求导和运用直线方程是解题的关键,属于基础题.14.(2016•太原一模)若函数,若f(a)>f(﹣a),则实数a的取值范围是(﹣1,0)∪(1,+∞).【考点】分段函数的解析式求法及其图象的作法;对数函数的单调性与特殊点.【专题】计算题.【分析】根据f(a)>f(﹣a)求a得范围须知道f(a),f(﹣a)的解析式因此根据需对a进行讨论显然a=0不合题意故分a>0,a<0进行讨论再解不等式即可得解.【解答】解:①当a>0时﹣a<0则由f(a)>f(﹣a)可得∴log2a>0∴a>1②当a<0时﹣a>0则由f(a)>f(﹣a)可得∴log2(﹣a)<0∴0<﹣a<1∴﹣1<a<0综上a的取值范围为(﹣1,0)∪(1,+∞)故答案为(﹣1,0)∪(1,+∞)【点评】本体组要考查了利用分段函数的解析式解不等式.解题的关键是要分清楚自变量的取值范围所在的取值区间,而本题中的a的范围不定则需分类讨论同时本题还考查了利用对数函数的单调性解有关的对数不等式!15.(2016秋•南安市校级月考)若f(x)=ln(e2x+1)+ax是偶函数,则a= ﹣1 .【考点】函数奇偶性的性质.【专题】计算题;函数思想;综合法;函数的性质及应用.【分析】根据f(x)为偶函数,便可得到f(﹣1)=f(1),从而得到,这样便可求出a的值.【解答】解:f(x)为偶函数;∴f(﹣1)=f(1);即;解得a=﹣1.故答案为:﹣1.【点评】考查偶函数的定义,以及对数的运算性质.16.(2015秋•如皋市期末)设函数f (x )=x 2﹣2ax+3﹣2a 的两个零点x 1,x 2,且在区间(x 1,x 2)上恰有两个正整数,则实数a 的取值范围为 {a|a <﹣,或a >} . 【考点】一元二次方程的根的分布与系数的关系;函数零点的判定定理. 【专题】转化思想;综合法;函数的性质及应用.【分析】由条件根据△=4(a 2+2a ﹣3)>0,再根据 x 2 ﹣x 1 =2∈(2,3),求得a 的范围.【解答】解:函数f (x )=x 2﹣2ax+3﹣2a 的两个零点x 1,x 2,且在区间(x 1,x 2)上恰有两个正整数,∴△=4(a 2+2a ﹣3)>0,即a <﹣3 或a >1. 再根据 x 2 ﹣x 1 =2∈(2,3),求得a <﹣,或a >,综上可得,a 的范围是:{a|a <﹣,或a >}.【点评】本题主要考查一元二次方程根的分布与系数的关系,二次函数的性质,函数零点的定义,属于基础题.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(12分)(2016春•南安市校级期末)设函数f (x )=|x ﹣a|. (Ⅰ)当a=2时,解不等式f (x )≥|x|+1;(Ⅱ)若f (x )≤1在[0,1]上恒成立,求a 的取值范围. 【考点】绝对值三角不等式;绝对值不等式的解法. 【专题】分类讨论;综合法;不等式的解法及应用. 【分析】(I )当a=2时,分类讨论,去掉绝对值,求得x 的范围,综合可得结论.(II )先求得f (x )≤1的解集,根据f (x )≤1在[0,1]上恒成立,根据解集端点与0、1的关系,求得a 的范围. 【解答】解:(I )当a=2时,不等式为|x ﹣2|≥|x|+1,当x ≤0时,不等式即2﹣x ≥﹣x+1,即2≥1,所以解为x ∈(﹣∞,0]; 当0<x ≤2时,不等式即2﹣x ≥x+1,即,所以解为;当x >2时,不等式即x ﹣2≥x+1,解集为∅; 综上可得,该不等式的解为(﹣∞,].(II )因为f (x )≤1,即|x ﹣a|≤1,解得a ﹣1≤x ≤a+1, 而f (x )≤1在[0,1]上恒成立,所以,解得a ∈[0,1]. 【点评】本题主要考查绝对值不等式的解法,函数的恒成立问题,体现了转化、分类讨论的数学思想,属于基础题.18.(12分)(2016秋•南安市校级月考)设函数f (x )=|x+|+|x ﹣a|(a >0). (Ⅰ)证明:f (x )≥2;(Ⅱ)若f (3)<7,求a 的取值范围.【考点】不等式的证明;绝对值不等式的解法.【专题】分类讨论;综合法;不等式.【分析】(Ⅰ)由由a>0,有f(x)=|x+|+|x﹣a|≥丨(x+)﹣(x﹣a)丨=+a≥2,即可证明:f(x)≥2;(Ⅱ)f(3)<7,当a>3时,f(3)=a+,由f(3)<7,求得3<a<6,0<a≤3时,f(3)=6﹣a+,求得2<a≤3,即可求得a的取值范围.【解答】解:(Ⅰ)证明:由a>0,有f(x)=|x+|+|x﹣a|≥丨(x+)﹣(x﹣a)丨=+a≥2,当且仅当=a,即a=时,取等号,∴f(x)≥2;…(Ⅱ)f(3)=3++|3﹣a|.当a>3时,f(3)=a+,由f(3)<7,得1<a<6,∴3<a<6.…(8分)当0<a≤3时,f(3)=6﹣a+,由f(3)<7,得a>2或a<﹣3,∴2<a≤3,…(11分)综上,a的取值范围是(2,6).…(12分)【点评】本题考查含绝对值不等式的解法,考查基本不等式的应用,一元二次不等式不等式的解法,考查分类讨论思想,属于中档题.:(θ为参数,a>0)过点19.(12分)(2016春•南安市校级期末)在直角坐标系中,曲线C1P(),以坐标原点为极点,x轴的正半轴为极轴,并在两种坐标系中取相同的单位长度,建立极坐标系,直线l的极坐标方程为cosθ+2sinθ=.(Ⅰ)求曲线C1与直线l的直角坐标方程;(Ⅱ)在C1上求一点M,使点M到直线l的距离最小,求出最小距离及点M的坐标.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【专题】方程思想;转化思想;三角函数的求值;坐标系和参数方程.【分析】(I)由曲线(θ为参数),cos2θ+sin2θ=1,可得,把代入方程即可得出.直线l的极坐标方程为,将极坐标方程两边同乘ρ可得:ρcosθ+2ρsinθ=10,利用即可得出直角坐标方程.(II)由椭圆的参数方程为(θ为参数),可设点M(3cosθ,2sinθ),由点到直线的距离公式,点M到直线的距离为.利用三角函数的单调性与值域即可得出.【解答】解:(I)∵曲线(θ为参数),cos2θ+sin2θ=1,∴,上,则代入方程有a2=4,∵在曲线C1∴.∵直线l的极坐标方程为,将极坐标方程两边同乘ρ可得:ρcosθ+2ρsinθ=10,∴直线l的直角坐标方程x+2y﹣10=0.(II)∵椭圆的参数方程为(θ为参数),∴可设点M(3cosθ,2sinθ),由点到直线的距离公式,点M到直线的距离为.=0时,d取最小值为.其中,,由三角函数性质知,当θ﹣θ此时,,即点.【点评】本题考查了直角坐标方程化为极坐标方程的方法、椭圆的参数方程及其应用、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.20.(12分)(2016•赣州一模)设函数f(x)=(2x2﹣4ax)lnx+x2.(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若任意x∈[1,+∞),f(x)>0恒成立,求实数a的取值范围.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【专题】综合题;转化思想;综合法;导数的概念及应用.【分析】(Ⅰ)求导数,分类讨论,利用导数的正负,求函数f(x)的单调区间;(Ⅱ)由(Ⅰ)知,当a≤1时,f(x)在[1,+∞)上单调递增,当a>1时,f(x)在[1,a)上单调递减,在(a,+∞)上单调递增,所以,由此即可求实数a的取值范围.【解答】解:(Ⅰ)f′(x)=(4x﹣4a)lnx+(2x﹣4a)+2x…(1分)=4(x﹣a)(lnx+1)(x>0)…(2分)①当a≤0时,f(x)在上单调递减,上单调递增…(3分)②当时,f(x)在(0,a)、上单调递增,在上单调递减…(4分)③当时,f(x)在(0,+∞)单调递增…④当时,f(x)在,(a,+∞)上单调递增,在上单调递减…(6分)(Ⅱ)由(Ⅰ)知,当a≤1时,f(x)在[1,+∞)上单调递增,所以,对任意x≥1,有f(x)≥f(1)=1>0符合题意…(9分)当a>1时,f(x)在[1,a)上单调递减,在(a,+∞)上单调递增,所以…(10分)由条件知,a2(1﹣2lna)>0,解得…(11分)综上可知,…(12分)【点评】本题考查导数知识的综合运用,考查函数的单调性,考查分类讨论的数学思想,考查恒成立问题,属于中档题.21.(12分)(2016•桂林模拟)已知函数,对任意的x∈(0,+∞),满足,其中a,b为常数.(1)若f(x)的图象在x=1处切线过点(0,﹣5),求a的值;(2)已知0<a<1,求证:;(3)当f(x)存在三个不同的零点时,求a的取值范围.【考点】利用导数研究曲线上某点切线方程;函数的零点与方程根的关系;导数在最大值、最小值问题中的应用.【专题】函数的性质及应用;导数的综合应用.【分析】(1)由求得a=b,代入原函数求得则f′(1),再求出f(1)由直线方程点斜式求得切线方程,代入(0,﹣5)求得a=﹣2;(2)求出=,令g(x)=(0<x<1),利用导数求得g (x)在(0,1)上为减函数,则由g(x)>g(1)>0得答案;(3)求出函数f(x)=lnx﹣ax+的导函数,分析可知当a≤0时,f′(x)>0,f(x)为(0,+∞)上的增函数,不符合题意;当a >0时,由△>0求得a 的范围.进一步求得导函数的两个零点,分别为,则x 1<1,x 2>1,由f (x )在(x 1,1)上递增,得f (x 1)<f(1)=0,再由,可得存在,使得f (x 0)=0,结合,f(1)=0,可得使f (x )存在三个不同的零点时的实数a 的取值范围是(0,). 【解答】(1)解:由,且,得,即,∴a=b .则f (x )=lnx ﹣ax+,∴,则f ′(1)=1﹣2a , 又f (1)=0,∴f (x )的图象在x=1处的切线方程为y ﹣0=(1﹣2a )(x ﹣1),即y=(1﹣2a )x ﹣1+2a . ∵(0,﹣5)在切线上,∴﹣5=﹣1+2a ,即a=﹣2; (2)证明:∵f (x )=lnx ﹣ax+,∴=,令g (x )=(0<x <1),则=<0.∴g (x )在(0,1)上为减函数,∵x ∈(0,1)时,g (x )>g (1)=2ln1﹣+2﹣ln2=.∴0<a <1时,;(3)由f (x )=lnx ﹣ax+,得=.当a=0时,,f (x )为(0,+∞)上的增函数,不符合题意;当a<0时,,f(x)为(0,+∞)上的增函数,不符合题意;当a>0时,由△=1﹣4a2>0,得0.则当x∈(0,),()时,f′(x)<0;当x∈()时,f′(x)>0.设,则x1<1,x2>1,∵f(x)在(x1,1)上递增,∴f(x1)<f(1)=0,又,∴存在,使得f(x)=0,又,f(1)=0,∴f(x)恰有三个不同的零点.综上,使f(x)存在三个不同的零点时的实数a的取值范围是(0,).【点评】本题考查了函数性质的应用,考查了利用导数研究过曲线上某点处的切线方程,训练了函数最值的求法,考查了利用导数判断函数零点的方法,着重考查了数学转化思想的应用,是难度较大的题目.22.(10分)(2016春•尖山区校级期末)在直角坐标系xOy中,曲线C1的参数方程为(θ为参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=sinθ+cosθ,曲线C3的极坐标方程为θ=.(1)把曲线C1的参数方程化为极坐标方程;(2)曲线C3与曲线C1交于O、A,曲线C3与曲线C2交于O、B,求|AB|【考点】参数方程化成普通方程.【专题】计算题;整体思想;定义法;坐标系和参数方程.【分析】(1)先把参数方程转化为普通方程,利用由x=ρcosθ,y=ρsinθ可得极坐标方程,(2)利用|AB|=|ρ1﹣ρ2|即可得出.【解答】解:(1)曲线C1的普通方程为(x﹣1)2+y2=1,即x2+y2﹣2x=0由x=ρcosθ,y=ρsinθ,得ρ2﹣2ρcosθ=0所以曲线C1的极坐标方程为ρ=2cosθ(2)设点A的极坐标为,点B的极坐标为,则,所以【点评】本题考查了圆的极坐标方程、参数方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.。
2019届四川省成都高三上学期入学数学试卷(理科)Word版含解析
2019届四川省成都高三上学期入学数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R ,若集合A={x ∈N||x ﹣2|<3},B={x|y=lg (9﹣x 2)},则A ∩∁R B ( ) A .{x|﹣1<x <3} B .{x|3≤x <5} C .{0,1,2} D .{3,4}2.已知复数z=x+yi (x ,y ∈R ),且有=1+yi ,是z 的共轭复数,则的虚部为( )A .B . iC .D .i3.已知x ,y画散点图分析可知,y 与x 线性相关,且回归直线方程=x+1,则实数m 的值为( )A .1.426B .1.514C .1.675D .1.7324.已知函数f (x )的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f (x )dx 的值约为( )A .B .C .D .5.已知点P (3,3),Q (3,﹣3),O 为坐标原点,动点M (x ,y )满足,则点M 所构成的平面区域的内切圆和外接圆半径之比为( )A .B .C .D .6.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=AD=,若∠A 1AD=∠A 1AB=45°,∠BAD=60°,则点A 1到平面ABCD 的距离为( )A .1B .C .D .7.在△ABC 中,若4(sin 2A+sin 2B ﹣sin 2C )=3sinA •sinB ,则sin 2的值为( )A .B .C .D .8.若直线xcos θ+ysin θ﹣1=0与圆(x ﹣cos θ)2+(y ﹣1)2=相切,且θ为锐角,则这条直线的斜率是( )A .B .C .D .9.定义在R 上的函数f (x )满足f (x ﹣2)=﹣f (x ),且在区间[0,1]上是增函数,又函数f (x ﹣1)的图象关于点(1,0)对称,若方程f (x )=m 在区间[﹣4,4]上有4个不同的根,则这些根之和为( ) A .﹣3 B .±3 C .4 D .±4 10.设双曲线﹣=1(a >0,b >0)的右焦点为F ,过点F 作与x 轴垂直的直线l 交两渐近线于A 、B两点,且与双曲线在第一象限的交点为P ,设O 为坐标原点,若=λ+μ(λ,μ∈R ),λ•μ=,则该双曲线的离心率为( )A .B .C .D .11.已知函数f (x )=,g (x )=,则函数h (x )=g (f (x ))﹣1的零点个数为( )个.A .7B .8C .9D .1012.若对任意的x 1∈[e ﹣1,e],总存在唯一的x 2∈[﹣1,1],使得lnx 1﹣x 1+1+a=x 22e x2成立,则实数a 的取值范围是( )A .[,e+1]B .(e+﹣2,e]C .[e ﹣2,)D .(,2e ﹣2]二、填空题13.已知P 1(x 1,x 2),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若sin()=,则的x1x 2+y 1y 2值为 .14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i (i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x 1,x 2,x 3,x 4分别为1,1.5,1.5,3,则输出的结果S 为 .15.已知a <b ,二次不等式ax 2+bx+c ≥0对任意实数x 恒成立,则M=的最小值为 .16.设x ∈R ,定义[x]表示不超过x 的最大整数,如[]=0,[﹣3.1415926]=﹣4等,则称y=[x]为高斯函数,又称取整函数.现令{x}=x ﹣[x],设函数f (x )=sin 2[x]+sin 2{x}﹣1(0≤x ≤100)的零点个数为m ,函数g (x )=[x]•{x}﹣﹣1(0≤x ≤100)的零点个数为n ,则m+n 的和为 .三、解答题17.设函数f (x )=x 2+mx ﹣,已知不论α,β为何实数时,恒有f (sin α)≤0且f (2+cos β)≥0,对于正项数列{a n },其前n 项和S n =f (a n )(n ∈N *). (Ⅰ)求数列{a n }的通项公式;(Ⅱ)若=,n ∈N +,且数列{b n }的前n 项和为T n ,试比较T n 与的大小并证明之.18.2016年7月23日至24日,本年度第三次二十国集团(G20)财长和央行行长会议在四川省省会成都举行,业内调查机构i Research (艾瑞咨询)在成都市对[25,55]岁的人群中随机抽取n 人进行了一次“消费”生活习惯是否符合理财观念的调查,若消费习惯符合理财观念的称为“经纪人”,否则则称为“非经纪(Ⅰ)补全频率分布直方图并求n ,a ,p 的值;(Ⅱ)根据频率分布直方图估计众数、中位数和平均数(结果保留三位有效数字);(Ⅲ)从年龄在[40,55]的三组“经纪人”中采用分层抽样法抽取7人站成一排照相,相同年龄段的人必须站在一起,则有多少种不同的站法?请用数字作答.19.如图为一简单组合体,其底面ABCD 为正方形,PD ⊥平面ABCD ,EC ∥PD ,且PD=AD=2EC=2. (1)请在方框内画出该几何体的正(主)视图和侧(左)视图; (2)求证:BE ∥平面PDA .(3)求二面角A ﹣PB ﹣E 的余弦值.20.平面直角坐标系xOy 中,已知椭圆C 1:+=1(a >b >0)的离心率为,左、右焦点分别是P和Q ,以P 为圆心,以3为半径的圆与以Q 为圆心,以1为半径的圆相交,交点在椭圆C 1上. (Ⅰ)求椭圆C 1的方程;(Ⅱ)设椭圆C 2:+=1的左、右焦点分别为F 1和F 2,若动直线l :y=kx+m (k ,m ∈R )与椭圆C 2有且仅有一个公共点,且F 1M ⊥l 于M ,F 2N ⊥l 于N ,设S 为四边形F 1MNF 2的面积,请求出S 的最大值,并说明此时直线l 的位置;若S 无最大值,请说明理由.21.设函数f (x )=e x ﹣ax+a (a ∈R ),设函数零点分别为x 1,x 2,且x 1<x 2,设f ′(x )是f (x )的导函数.(Ⅰ)求实数a 的取值范围;(Ⅱ)求证:f ′()<0.[选修4-4:坐标系与参数方程]22.已知曲线C 的参数方程为(t 为参数)(p >0),直线l 经过曲线C 外一点A (﹣2,﹣4)且倾斜角为.(1)求曲线C 的普通方程和直线l 的参数方程;(2)设直线l 与曲线C 分别交于M 1,M 2,若|AM 1|,|M 1M 2|,|AM 2|成等比数列,求p 的值.[选修4-5:不等式选讲]23.若函数f (x )=x 2﹣x+c ,满足|x ﹣a|<1. (Ⅰ)若x ∈(﹣1,1),不等式|x ﹣a|<1恒成立,求实数a 的取值范围构成的集合; (Ⅱ)求证:|f (x )﹣f (a )|<2|a|+2.2019届四川省成都高三上学期入学数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.设全集U=R,若集合A={x∈N||x﹣2|<3},B={x|y=lg(9﹣x2)},则A∩∁RB()A.{x|﹣1<x<3} B.{x|3≤x<5} C.{0,1,2} D.{3,4}【考点】交、并、补集的混合运算.【分析】确定集合A,B,求出∁R B,再根据集合的基本运算即可求A∩∁RB【解答】解:由题意:全集U=R,集合A={x∈N||x﹣2|<3}={0,1,2,3,4},B={x|y=lg(9﹣x2)}={x|﹣3<x<3},则∁RB={x|x≥3或x≤﹣3},那么:A∩∁RB={3,4}故选D2.已知复数z=x+yi(x,y∈R),且有=1+yi,是z的共轭复数,则的虚部为()A.B. i C.D. i【考点】复数代数形式的乘除运算.【分析】先由复数代数形式的乘除运算化简,再由复数相等的条件求出实数x、y的值,得到复数z,求出,再由复数求模公式得到|z|,代入,然后运用复数的除法运算化简即可得答案.【解答】解:∵复数z=x+yi(x、y∈R),且有=1+yi,∴.∴x+xi=2+2yi∴x=2y=2.解得:y=1,x=2.则z=2+i,|z|=|2+i|=,.∴==.则的虚部为:.故选:C.画散点图分析可知,y与x线性相关,且回归直线方程=x+1,则实数m的值为()A.1.426 B.1.514 C.1.675 D.1.732【考点】线性回归方程.【分析】求出样本中心,代入回归方程求出a.【解答】解:∵=3.2, =,回归直线方程=x+1.∴=3.2+1,解得m=1.675.故选:C.4.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计f(x)dx的值约为()A. B.C.D.【考点】定积分在求面积中的应用.【分析】利用阴影部分与矩形的面积比等于落入阴影部分的豆子数与所有豆子数的比,由此求出阴影部分的面积.【解答】解:由题意设阴影部分的面积为S,则,所以S=;故选:A.5.已知点P(3,3),Q(3,﹣3),O为坐标原点,动点M(x,y)满足,则点M所构成的平面区域的内切圆和外接圆半径之比为()A.B.C.D.【考点】简单线性规划的应用.【分析】先根据向量数量积化简约束条件,画出可行域,数形结合得答案.【解答】解:∵P(3,3),Q(3,﹣3),O为坐标原点,∴,又动点M(x,y),即,∴由,得,画出可行域如图,由点到直线的距离公式可得O 到直线x+y ﹣3=0的距离d=.∴点M 所构成的平面区域的内切圆和外接圆半径之比为=.故选:A .6.如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,AA 1=AB=AD=,若∠A 1AD=∠A 1AB=45°,∠BAD=60°,则点A 1到平面ABCD 的距离为( )A .1B .C .D .【考点】点、线、面间的距离计算.【分析】记A 1在面ABCD 内的射影为O ,O 在∠BAD 的平分线上,说明∠BAD 的平分线即菱形ABCD 的对角线AC ,在三角形AA 1O 中,求出A 1O 即为高. 【解答】解:记A 1在面ABCD 内的射影为O , ∵∠A 1AB=∠A 1AD ,∴O 在∠BAD 的平分线上, 又AB=AD ,∴∠BAD 的平分线即菱形ABCD 的 对角线AC ,故O 在AC 上;∵cos ∠A 1AB=cos ∠A 1AO ×cos ∠OAB∴cos ∠A 1AO=,∴sin ∠A 1AO=,在△A 1AO 中,AA 1=∴点A 1到平面ABCD 的距离为A 1O=1. 故选:A .7.在△ABC中,若4(sin2A+sin2B﹣sin2C)=3sinA•sinB,则sin2的值为()A.B.C.D.【考点】余弦定理;正弦定理.【分析】先根据正弦定理找到角与边的关系,即用角的正弦表示出边,然后再用余弦定理可求出角C的余弦值,从而利用二倍角公式化简所求得到答案.【解答】解:在△ABC中,根据正弦定理设ka=sinA,kb=sinB,kc=sinC,∵4(sin2A+sin2B﹣sin2C)=3sinA•sinB.∴4(k2a2+k2b2﹣k2c2)=3ka•kb,即:a2+b2﹣c2=a•b,∴由余弦定理cosC===.∴sin2====.故选:D.8.若直线xcosθ+ysinθ﹣1=0与圆(x﹣cosθ)2+(y﹣1)2=相切,且θ为锐角,则这条直线的斜率是()A.B.C.D.【考点】直线与圆的位置关系.【分析】由条件利用直线和圆相切的性质,点到直线的距离公式求得sinθ=.再结合θ为锐角,可得θ=,从而求得直线xcosθ+ysinθ﹣1=0的斜率﹣的值.【解答】解:由题意可得圆心(cosθ,1)到直线xcosθ+ysinθ﹣1=0的距离等于半径,即=,化简可得|sinθ﹣sin2θ|=,即 sinθ﹣sin2θ=,求得sinθ=.再结合θ为锐角,可得θ=,故直线xcosθ+ysinθ﹣1=0的斜率为﹣=﹣,故选:A.9.定义在R上的函数f(x)满足f(x﹣2)=﹣f(x),且在区间[0,1]上是增函数,又函数f(x﹣1)的图象关于点(1,0)对称,若方程f(x)=m在区间[﹣4,4]上有4个不同的根,则这些根之和为()A.﹣3 B.±3 C.4 D.±4【考点】根的存在性及根的个数判断.【分析】求出f(x)的周期及对称中心,作出f(x)的函数图象草图,利用对称性得出四个根之和.【解答】解:∵f(x﹣2)=﹣f(x),∴f(x)=﹣f(x+2),∴f(x+2)=f(x﹣2),∴f(x)的周期为4.又f(x﹣1)关于(1,0)对称,∴f(x)的图象关于(0,0)对称,∴f(x)是奇函数.作出f(x)的大致函数图象如图所示:设方程f(x)=m在区间[﹣4,4]上有4个不同的根从小到大依次为a,b,c,d,当m>0,a+b=﹣6,c+d=2,∴a+b+c+d=﹣4,当m<0时,a+b=﹣2,c+d=6,∴a+b+c+d=4.故选:D.10.设双曲线﹣=1(a>0,b>0)的右焦点为F,过点F作与x轴垂直的直线l交两渐近线于A、B两点,且与双曲线在第一象限的交点为P,设O为坐标原点,若=λ+μ(λ,μ∈R),λ•μ=,则该双曲线的离心率为()A.B.C.D.【考点】直线与圆锥曲线的关系.【分析】由方程可得渐近线,可得A,B,P的坐标,由已知向量式可得λ+μ=1,λ﹣μ=,解之可得λμ的值,由λ•μ=,可得a,c的关系,由离心率的定义可得.【解答】解:双曲线的渐近线为:y=±x,设焦点F(c,0),则A(c,),B(c,﹣),P(c,),因为=λ+μ所以(c,)=((λ+μ)c,(λ﹣μ)),所以λ+μ=1,λ﹣μ=,解得:λ=,μ=,又由λ•μ=得: =,解得:b2=c2,所以a2=c2,所以,e=.故选:A.11.已知函数f(x)=,g(x)=,则函数h(x)=g(f(x))﹣1的零点个数为()个.A.7 B.8 C.9 D.10【考点】根的存在性及根的个数判断.【分析】令h(x)=0得出g(f(x))=1,设g(t)=1的解,作出f(x)的函数图象,根据图象判断f(x)=t的解得个数.【解答】解:令h(x)=0得g(f(x))=1,令g(x)=1得或,解得x=0或x=e或x=.∴f(x)=0或f(x)=e或f(x)=.作出f(x)的函数图象如图所示:由图象可知f (x )=0有4个解,f (x )=e 有两个解,f (x )=有4个解,∴h (x )共有10个零点.故选:D .12.若对任意的x 1∈[e ﹣1,e],总存在唯一的x 2∈[﹣1,1],使得lnx 1﹣x 1+1+a=x 22e x2成立,则实数a 的取值范围是( )A .[,e+1]B .(e+﹣2,e]C .[e ﹣2,)D .(,2e ﹣2]【考点】函数恒成立问题.【分析】设f (x )=lnx ﹣x+1+a ,g (x )=x 2e x ,求函数的导数,利用导数研究函数的单调性和最值,建立条件关系进行求解即可.【解答】解:设f (x )=lnx ﹣x+1+a ,f ′(x )=,当x ∈[e ﹣1,1)时,f ′(x )>0,当x ∈(1,e]时,f ′(x )<0,∴f (x )在[e ﹣1,1)上是增函数,在x ∈(1,e]上是减函数,∴f (x )max =a ,又f (e ﹣1)=a ﹣,f (e )=2+a ﹣e ,∴f (x )∈[a+2﹣e ,a],设g (x )=x 2e x ,∵对任意的x 1∈[e ﹣1,e],总存在唯一的x 2∈[﹣1,1],使得lnx 1﹣x 1+1+a=x 22e 成立,∴[a+2﹣e ,a]是g (x )的不含极值点的单值区间的子集,∵g ′(x )=x (2+x )e x ,∴x ∈[﹣1,0)时,g ′(x )<0,g (x )=x 2e x 是减函数,当x ∈(0,1],g ′(x )>0,g (x )=x 2e x 是增函数,∵g (﹣1)=<e=g (1),∴[a+2﹣e ,a]⊆(,e],∴,解得.故选:B .二、填空题13.已知P 1(x 1,x 2),P 2(x 2,y 2)是以原点O 为圆心的单位圆上的两点,∠P 1OP 2=θ(θ为钝角).若sin()=,则的x 1x 2+y 1y 2值为 ﹣ . 【考点】简单曲线的极坐标方程.【分析】由条件求得cos ()的值,可得cos θ 的值,再利用两个向量的数量积的定义、两个向量的数量积公式求得 x 1x 2+y 1y 2的值.【解答】解:由题意可得<θ<π,sin ()=>0,∴还是钝角,∴cos ()=﹣,∴,∴cos θ=﹣.∴•=x 1•x 2+y 1•y 2=||•||cos θ=1×1×(﹣)=﹣,故答案为:﹣.14.某城市缺水问题比较突出,为了制定节水管理办法,对全市居民某年的月均用水量进行了抽样调查,其中4位居民的月均用水量分别为x i (i=1,2,3,4)(单位:立方米).根据如图所示的程序框图,若知x 1,x 2,x 3,x 4分别为1,1.5,1.5,3,则输出的结果S 为 .【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环累加S的值并输出,模拟程序的运行,用表格对程序运行过程中各变量的值进行分析,不难得到输出结果.【解答】解:程序运行过程中,各变量值变化情况如下表:第一(i=1)步:s1=s1+xi=0+1=1第二(i=2)步:s1=s1+xi=1+1.5=2.5第三(i=3)步:s1=s1+xi=2.5+1.5=4第四(i=4)步:s1=s1+xi=4+3=7,s=×7=第五(i=5)步:i=5>4,输出s=.故答案为:.15.已知a<b,二次不等式ax2+bx+c≥0对任意实数x恒成立,则M=的最小值为8 .【考点】二次函数的性质.【分析】由题意可得 b>a>0,再由△≤0,得到c≥,把c代入M,将关于a,b的不等式利用基本不等式的性质就能求得最小值.【解答】解:∵a<b,二次函数y=ax2+bx+c≥0对任意实数x恒成立.∴△≤0,解得:c≥,a>0,b﹣a>0,∴M=≥==≥=8.当且仅当2a=b﹣a,取得等号.∴M的最小值是8,故答案为:816.设x∈R,定义[x]表示不超过x的最大整数,如[]=0,[﹣3.1415926]=﹣4等,则称y=[x]为高斯函数,又称取整函数.现令{x}=x﹣[x],设函数f(x)=sin2[x]+sin2{x}﹣1(0≤x≤100)的零点个数为m,函数g(x)=[x]•{x}﹣﹣1(0≤x≤100)的零点个数为n,则m+n的和为127 .【考点】根的存在性及根的个数判断;函数零点的判定定理.【分析】根据定义分别求出f (x )=0和g (x )=0,将函数方程转化为sin 2[x]+sin 2{x}﹣1=0和[x]•{x}=+1,分别利用图象讨论两个函数零点的个数.【解答】解:由f (x )=sin 2[x]+sin 2{x}﹣1=0得sin 2{x}=1﹣sin 2[x]=cos 2[x].则{x}=+2k π+[x]或{x}=﹣+2k π+[x],即{x}﹣[x]=+2k π或{x}﹣[x]=﹣+2k π. 即x=+2k π或x=﹣+2k π. 若x=+2k π,∵0≤x ≤100,∴当k=0时,x=,由x=+2k π≤100,解得k ≤15.68,即k ≤15,此时有15个零点, 若x=﹣+2k π,∵0≤x ≤100,∴当k=0时,x=﹣不成立,由x=﹣+2k π≤100,解得k ≤16.28,此时有15个零点, 综上f (x )=sin 2[x]+sin 2{x}﹣1的零点个数为15+15=30个.∵{x}=,∴[x]•{x}=,由g (x )=0得[x]•{x}=+1,分别作出函数h (x )=[x]{x}和y=+1的图象如图:由图象可知当0≤x <1和1≤x <2时,函数h (x )=[x]{x}和y=+1没有交点,但2≤x <3时,函数h (x )=[x]{x}和y=+1在每一个区间上只有一个交点,∵0≤x <100,∴g (x )=[x]•{x}﹣﹣1的零点个数为100﹣2﹣1=97个.故m=30,n=97.m+n=127.故答案为:127.三、解答题17.设函数f (x )=x 2+mx ﹣,已知不论α,β为何实数时,恒有f (sin α)≤0且f (2+cos β)≥0,对于正项数列{a n },其前n 项和S n =f (a n )(n ∈N *).(Ⅰ)求数列{a n }的通项公式;(Ⅱ)若=,n ∈N +,且数列{b n }的前n 项和为T n ,试比较T n 与的大小并证明之.【考点】数列递推式;数列的求和.【分析】(1)令α=0,β=,根据f (cos α)≤0,f (2﹣sin β)≥0化简后,列出方程求出m ,根据函数解析式和条件表示出S n 和S n+1,根据a n+1=S n+1﹣S n 化简后,由等差数列的定义判断出{a n }是等差数列,求得a 1利用等差数列的通项公式求出a n ;(Ⅱ)把a n 代入中求得b n ,利用裂项法求出T n ,即可证明T n <.【解答】解:(Ⅰ)∵对任意实数α、β,恒有f (cos α)≤0,f (2﹣sin β)≥0,∴f (cos0)=f (1)≤0,且f (2﹣sin)=f (1)≥0,即f (1)=0,则=0,解得m=,∴f (x )=x 2+x ﹣,∴S n =f (a n )=a n 2+a n ﹣(n ∈N +),可得S n+1=a n+12+a n+1﹣,故a n+1=S n+1﹣S n =(a n+12﹣a n 2)+(a n+1﹣a n ),即(a n+1+a n )(a n+1﹣a n ﹣2)=0,∵{a n }是正数数列,∴a n+1+a n >0,∴a n+1﹣a n =2,即数列{a n }是等差数列,又a 1=a 12+a 1﹣,且a 1>0,可得a 1=3,∴a n =3+2(n ﹣1)=2n+1;(Ⅱ)由(Ⅰ)得, =,则bn=<==()∴Tn<,证明如下:T n =b1+b2+…+bn= [()+()+…+()]=()=<.18.2016年7月23日至24日,本年度第三次二十国集团(G20)财长和央行行长会议在四川省省会成都举行,业内调查机构i Research (艾瑞咨询)在成都市对[25,55]岁的人群中随机抽取n人进行了一次“消费”生活习惯是否符合理财观念的调查,若消费习惯符合理财观念的称为“经纪人”,否则则称为“非经纪(Ⅰ)补全频率分布直方图并求n,a,p的值;(Ⅱ)根据频率分布直方图估计众数、中位数和平均数(结果保留三位有效数字);(Ⅲ)从年龄在[40,55]的三组“经纪人”中采用分层抽样法抽取7人站成一排照相,相同年龄段的人必须站在一起,则有多少种不同的站法?请用数字作答.【考点】频率分布直方图;分层抽样方法.【分析】(Ⅰ)根据频率分布表,结合频率分布直方图,即可求出n、p和a的值;再补全频率分布直方图即可;(Ⅱ)根据频率分布直方图,求出众数、中位数和平均数;(Ⅲ)求出年龄在[40,55]的三组“经纪人”的数量以及采用分层抽样法抽取7的人数,利用排列组合法求出不同的站法即可.【解答】解:(Ⅰ)根据频率分布表知,第一组的人数为=200,频率为0.04×5=0.2,所以样本容量为n==1000;由题可知,第二组的频率为1﹣(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以第二组的人数为1000×0.3=300,所以p==0.65;第四组的频率为0.03×5=0.15,所以第四组的人数为1000×0.15=150,所以a=150×0.4=60;补全频率分布直方图如下;(Ⅱ)根据频率分布直方图知,众数为最高小矩形的底边中点坐标,是=32.5;又0.2+0.3=0.5,所以中位数为35;平均数为=27.5×0.2+32.5×0.3+37.5×0.2+42.5×0.15+47.5×0.1+52.5×0.05=36.5;(Ⅲ)年龄在[40,55]的三组“经纪人”的数量是60、30和15,现从中采用分层抽样法抽取7人,则分别抽取的人数为4、2和1;这7人站成一排照相,相同年龄段的人必须站在一起,共有••=288种不同站法.19.如图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请在方框内画出该几何体的正(主)视图和侧(左)视图;(2)求证:BE∥平面PDA.(3)求二面角A﹣PB﹣E的余弦值.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)按照三视图所在的平面两两垂直,看不见的线用虚线,看得见的用实线画出.(2)由EC∥PD,得EC∥平面PDA,同时,有BC∥平面PDA,因为EC⊂平面EBC,BC⊂平面EBC且EC∩BC=C,得到平面BEC∥平面PDA,进而有BE∥平面PDA.(3)以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出二面角A ﹣PB﹣E的余弦值.【解答】解:(1)该组合体的主视图和侧视图如图示:证明:(2)∵EC∥PD,PD⊂平面PDA,EC⊄平面PDA,∴EC∥平面PDA,同理可得BC∥平面PDA,∵EC⊂平面EBC,BC⊂平面EBC,且EC∩BC=C,∴平面BEC∥平面PDA,又∵BE⊂平面EBC,∴BE∥平面PDA.解:(3)∵底面ABCD为正方形,PD⊥平面ABCD,EC∥PC,且PD=AD=2EC=2,∴以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,A(2,0,0),P(0,0,2),B(2,2,0),E(0,2,1),=(2,0,﹣2),=(2,2,﹣2),=(0,2,﹣1),设平面APB的法向量=(x,y,z),则,取x=1,得=(1,0,1),设平面PBE的法向量=(a,b,c),则,取b=1,得=(1,1,2),设二面角A﹣PB﹣E的平面角为θ,则cosθ===.∴二面角A﹣PB﹣E的余弦值为.20.平面直角坐标系xOy 中,已知椭圆C 1: +=1(a >b >0)的离心率为,左、右焦点分别是P 和Q ,以P 为圆心,以3为半径的圆与以Q 为圆心,以1为半径的圆相交,交点在椭圆C 1上. (Ⅰ)求椭圆C 1的方程;(Ⅱ)设椭圆C 2: +=1的左、右焦点分别为F 1和F 2,若动直线l :y=kx+m (k ,m ∈R )与椭圆C 2有且仅有一个公共点,且F 1M ⊥l 于M ,F 2N ⊥l 于N ,设S 为四边形F 1MNF 2的面积,请求出S 的最大值,并说明此时直线l 的位置;若S 无最大值,请说明理由.【考点】直线与椭圆的位置关系.【分析】(Ⅰ)运用椭圆的离心率公式和a ,b ,c 的关系,计算即可得到b ,进而得到椭圆C 的方程; (Ⅱ)将直线l 的方程y=kx+m 代入椭圆C 的方程3x 2+4y 2=12中,得到关于x 的一元二次方程,由直线l 与椭圆C 仅有一个公共点知,△=0,即可得到m ,k 的关系式,利用点到直线的距离公式即可得到d 1=|F 1M|,d 2=|F 2N|.当k ≠0时,设直线l 的倾斜角为θ,则|d 1﹣d 2|=|MN|×|tan θ|,即可得到四边形F 1MNF 2面积S 的表达式,利用基本不等式的性质即可得出S 的最大值【解答】解:(Ⅰ)由题意可知,|PF 1|+|PF 2=|2a=4,可得a=2,又=,a 2﹣c 2=b 2,可得b=1,即有椭圆C 1的方程为+y 2=1; (Ⅱ)椭圆C 2: +=1.将直线l 的方程y=kx+m 代入椭圆C 的方程3x 2+4y 2=12中,得(4k 2+3)x 2+8kmx+4m 2﹣12=0. 由直线l 与椭圆C 仅有一个公共点知,△=64k 2m 2﹣4(4k 2+3)(4m 2﹣12)=0,化简得:m 2=4k 2+3.设d 1=|F 1M|=,d 2=|F 2M|=当k ≠0时,设直线l 的倾斜角为θ,则|d 1﹣d 2|=|MN|×|tan θ|,∴S=••|d 1﹣d 2|•(d 1+d 2)==,∵m 2=4k 2+3,∴当k ≠0时,|m|>,∴|m|+,∴S <2.当k=0时,四边形F 1MNF 2是矩形,S=2.所以四边形F 1MNF 2面积S 的最大值为2.21.设函数f (x )=e x ﹣ax+a (a ∈R ),设函数零点分别为x 1,x 2,且x 1<x 2,设f ′(x )是f (x )的导函数.(Ⅰ)求实数a 的取值范围;(Ⅱ)求证:f ′()<0.【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(1)由f (x )=e x ﹣ax+a ,知f ′(x )=e x ﹣a ,再由a 的符号进行分类讨论,能求出f (x )的单调区间,然后根据交点求出a 的取值范围;(2)由x 1、x 2的关系,求出<0,然后再根据f ′(x )=e x ﹣a 的单调性,利用不等式的性质,问题得以证明.【解答】(1)解:f'(x )=e x ﹣a .若a ≤0,则f'(x )>0,则函数f (x )是单调增函数,这与题设矛盾.∴a >0,令f'(x )=0,则x=lna .当x <lna 时,f'(x )<0,f (x )是单调减函数;x >lna 时,f'(x )>0,f (x )是单调增函数; 于是当x=lna 时,f (x )取得极小值.∵函数f (x )=e x ﹣ax+a (a ∈R )的图象与x 轴交于两点A (x 1,0),B (x 2,0)(x 1<x 2),∴f (lna )=a (2﹣lna )<0,即a >e 2.此时,存在1<lna ,f (1)=e >0;存在3lna >lna ,f (3lna )=a 3﹣3alna+a >a 3﹣3a 2+a >0, 又f (x )在R 上连续,故a >e 2为所求取值范围.(2)证明:∵,两式相减得a=.记=t ,则=﹣= [2t ﹣(e t ﹣e ﹣t )],设g (t )=2t ﹣(e t ﹣e ﹣t ),则g ′(t )=2﹣(e t +e ﹣t )<0,∴g (t )是单调减函数,则有g (t )<g (0)=0,而>0,∴<0.又f'(x )=e x ﹣a 是单调增函数,且>,∴f ′()<0.[选修4-4:坐标系与参数方程]22.已知曲线C 的参数方程为(t 为参数)(p >0),直线l 经过曲线C 外一点A (﹣2,﹣4)且倾斜角为.(1)求曲线C 的普通方程和直线l 的参数方程;(2)设直线l 与曲线C 分别交于M 1,M 2,若|AM 1|,|M 1M 2|,|AM 2|成等比数列,求p 的值.【考点】参数方程化成普通方程.【分析】(1)曲线C 的参数方程为(t 为参数)(p >0),消去t 可得普通方程.利用点斜式可得直线l 的参数方程.(2)把直线l 的参数方程代入抛物线方程可得:t 2﹣+8p+32=0,可得t 1+t 2=p ,t 1t 2=8p+32.0<t 1<t 2.不妨设|AM 1|=t 1,|M 1M 2|=t 2﹣t 1,|AM 2|=t 2,则|M 1M 2|=t 2﹣t 1=.由于|AM 1|,|M 1M 2|,|AM 2|成等比数列,可得=|AM 1|×|AM 2|.【解答】解:(1)曲线C 的参数方程为(t 为参数)(p >0),消去t 可得:y 2=2px .直线l 经过曲线C 外一点A (﹣2,﹣4)且倾斜角为,可得参数方程为:.(2)把直线l 的参数方程代入抛物线方程可得:t 2﹣+8p+32=0,∴t 1+t 2=p ,t 1t 2=8p+32.0<t 1<t 2.不妨设|AM 1|=t 1,|M 1M 2|=t 2﹣t 1,|AM 2|=t 2,则|M 1M 2|=t 2﹣t 1===.∵|AM 1|,|M 1M 2|,|AM 2|成等比数列,∴=|AM 1|×|AM 2|, ∴8p 2+32p=8p+32,化为p 2+3p ﹣4=0,p >0.解得p=1.[选修4-5:不等式选讲]23.若函数f (x )=x 2﹣x+c ,满足|x ﹣a|<1.(Ⅰ)若x ∈(﹣1,1),不等式|x ﹣a|<1恒成立,求实数a 的取值范围构成的集合;(Ⅱ)求证:|f (x )﹣f (a )|<2|a|+2.【考点】函数恒成立问题.【分析】(Ⅰ)先解绝对值不等式,再根据集合之间的关系即可求出a 的范围(Ⅱ)化简|f (x )﹣f (a )|为|x ﹣a||x+a ﹣1|,小于|x+a ﹣1|即|(x ﹣a )+(2a ﹣1)|.再由|(x ﹣a )+(2a ﹣1)|≤|x ﹣a|+|2a ﹣1|<1+2|a|+1,从而证得结论.【解答】解:(Ⅰ)∵|x ﹣a|<1,∴a ﹣1<x <a+1,∵x ∈(﹣1,1),不等式|x ﹣a|<1恒成立,∴,解得a=0,∴实数a 的取值范围构成的集合{0}(Ⅱ)证明:∵函数f (x )=x 2﹣x+c ,实数a 满足|x ﹣a|<1,∴|f (x )﹣f (a )|=|x 2﹣x+c ﹣(a 2﹣a+c )|=|x ﹣a||x+a ﹣1|<|x+a ﹣1|=|(x ﹣a )+(2a ﹣1)|≤|x ﹣a|+|2a ﹣1|<1+2|a|+1=2(|a|+1),即|f (x )﹣f (a )|<2(|a|+1)成立.。
2019届高三数学上学期开学考试试题理
哈师大附中高三上学期第一次月考数学试卷(理)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.若全集U R =,集合{}24M x x =>,301x N xx ⎧-⎫=>⎨⎬+⎩⎭,则()U MC N =()A .{2}x x <-B .{2x x <-或3}x ≥C .{3}x x ≥D .{23}x x -≤< 2.若复数满足(12)5i z +=,为虚数单位,则的虚部为() A.2i - B. C. D. 3.与函数y x =相同的函数是()A .y =B .2xy x=C .2y =D .log (01)x a y a a a =>≠且4.幂函数2231()(69)mm f x m m x -+=-+在(0+)∞,上单调递增,则的值为() A. 2 B. 3 C. 4 D. 2或4 5.函数ln 1()1x f x x-=-的图象大致为()6.下列关于命题的说法错误的是()A. 命题“若2320x x -+=,则2x =”的逆否命题为“若2x ≠,则2320x x -+≠”;B. “2a =”是“函数()log a f x x =在区间()0,+∞上为增函数”的充分不必要条件;C. 若命题:,21000n p n N ∃∈>,则:,21000n p n N ⌝∀∈>;D. 命题“(),0,23xxx ∃∈-∞<”是假命题.7.设0.50.7a -=,0.5log 0.7b =,0.7log 5b =,则( )A. a b c >>B. b a c >>C. c a b >>D. c b a >>8.已知定义在上的奇函数()f x 满足()()2f x f x +=-,当[]0,1x ∈时()21xf x =-,则( )A. ()()11672f f f ⎛⎫<-<⎪⎝⎭ B. ()()11672f f f ⎛⎫<<- ⎪⎝⎭C. ()()11762f f f ⎛⎫-<<⎪⎝⎭D. ()()11762f f f ⎛⎫<-< ⎪⎝⎭9.若函数,1()(4)2,12x a x f x ax x ⎧≥⎪=⎨-+<⎪⎩在其定义域上为增函数,则实数的取值范围是() A. ()48,B. [)48, C. ()1+∞, D. ()18, 10.已知函数3log ,03,()4,3x x f x x x <≤⎧⎪=⎨->⎪⎩,若函数()()2h x f x mx =-+有三个不同的零点,则实数的取值范围是() A. 1,12⎛⎫⎪⎝⎭B. ()1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭C. [)1,1,2⎛⎫-∞⋃+∞ ⎪⎝⎭D. 1,12⎛⎤⎥⎝⎦11.已知函数()()()ln 1ln 1f x x x =+--,给出以下四个命题:①()1,1x ∀∈-,有()()f x f x -=-;②()12,1,1x x ∀∈-且12x x ≠,有()()12120f x f x x x ->-;③()12,0,1x x ∀∈,有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭;④()1,1x ∀∈-,()2f x x ≥. 其中所有真命题的序号是( )A. ①②B. ③④C. ①②③D. ①②③④12.已知函数()l n (2)24(0f x x a x a a =+--+>,若有且只有两个整数12,x x 使得1()0f x >,且2()0f x >,则实数的取值范围为( )A. (ln 3,2)B. (]0,2ln3-C. (0,2ln 3)-D.[)2ln3,2- 二、填空题(本大题共4小题,每小题5分,共计20分)13.设函数23(1)()4(1)xx f x x x <⎧=⎨-≥⎩,则[])2(f f =. 14.若函数()y f x =的定义域是1[,2]2,则函数()2log y f x =的定义域为________.15.已知函数111+,0,22()12,22x x x f x x -⎧≤<⎪⎪=⎨⎪≤<⎪⎩,若存在12,x x ,当1202x x ≤<<时,12()()f x f x =,则122()()x f x f x -的最小值为.16.设R b a ∈,,已知函数)(x f y =是定义域为的偶函数, 当0≥x 时,⎪⎩⎪⎨⎧≥<≤⎪⎭⎫ ⎝⎛=2l o g 20,21)(16x x x x f x.若关于的方程0)()]([2=++b x af x f 有且只有个不同实数根,则ab的取值范围是. 三、解答题(解答应写出文字说明,证明过程或演算步骤) 17.(本题满分10分)设函数()=271f x x -+. (Ⅰ)求不等式()f x x ≤的解集;(Ⅱ)若存在使不等式()21f x x a --≤成立,求实数的取值范围.18.(本题满分12分)已知曲线的参数方程是2cos sin x y θθ=⎧⎨=⎩(为参数),曲线的参数方程是3,423x t t y =-⎧⎪+⎨=⎪⎩(为参数). (Ⅰ)将曲线,的参数方程化为普通方程;(Ⅱ)求曲线上的点到曲线的距离的最大值和最小值.19.(本题满分12分)为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100分)作为样本(样本容量为n )进行统计.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在[50,60),[90,100]的数据).(Ⅰ)求样本容量n 和频率分布直方图中的,x y 的值;(Ⅱ)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取3名学生参加“中国谜语大会”,设随机变量表示所抽取的3名学生中得分在(]80,90内的学生人数,求随机变量的分布列及数学期望.20.(本题满分12分)已知点()0,2A -,椭圆2222:1(0)x y E a b a b +=>>是椭圆的右焦点,直线AF (Ⅰ)求椭圆的方程;(Ⅱ)设过点的动直线与椭圆相交于,P Q 两点.当△OPQ 的面积最大时,求直线的方程.21.(本题满分12分)设函数23()=xx axf x e+(a R ∈). (Ⅰ)若()f x 在0x =处取得极值,求实数的值,并求此时曲线()y f x =在点(1,(1))f 处的切线方程;(Ⅱ)若()f x 在[)3+∞,上为减函数,求实数的取值范围. 22. (本题满分12分)已知函数2()ln f x x mx =-,21()2g x mx x =+,m R ∈,令()()()F x f x g x =+. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若关于的不等式()1F x mx ≤-恒成立,求整数的最小值.哈师大附中高三上学期第一次月考数学试卷(理)答案一、选择题.1.B2.B3.D4.C5.D6.C7.A8.B9.B10.A 11.D 12.B二、填空题13. 0 14.4⎤⎦15.916-16.11,25⎛⎫--⎪⎝⎭三、解答题17.解:(Ⅰ)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;…… 5分(Ⅱ)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4. …… 10分18. 解:(1)曲线C1的参数方程是(θ为参数),则,∵sin2θ+cos2θ=1,,∴曲线C1的普通方程是;…… 3分曲线C2的参数方程是(t为参数),消去参数t,t=3﹣x,代入,即2x+3y﹣10=0∴曲线C2的普通方程是2x+3y﹣10=0.…… 6分(2)设点P(2cosθ,sinθ)为曲线C1上任意一点,则点P到直线2x+3y﹣10=0的距离为d,则(其中43sin,cos55ϕϕ==) (10)分。
2019届高三数学上学期第一次检测考试试题 理(含解析)新人教版新版
2019学年高三第一次检测考试数学试题(理)一、选择题:本大题共12小题,每小题5分,60分。
在每小题给出的四个选项中,只有一项是最符合题目要求的。
1.已知集合,则A. B. C. D.【答案】C【解析】【分析】求出与中不等式的解集确定出,求出的补集,找出补集与的公共部分,能求出结果.【详解】则故选C.【点睛】本题考查补集及其运算,熟练掌握补集的定义是解本题的关键.2.已知命题:“,都有成立”,则命题为()A. ,有成立B. ,有成立C. ,有成立D. ,有成立【答案】D【解析】试题分析:全称量词的否定为存在量词,命题的否定只否定结论,的否定为.考点:逻辑连接词.3.已知定义在上的函数满足条件:①对任意的,都有;②对任意的且,都有;③函数的图象关于轴对称,则下列结论正确的是()A. B.C. D.【答案】C【解析】【分析】根据条件判断函数的周期性和对称性,利用函数对称性,周期性和单调性之间的关系将函数值进行转化比较即可得到结论.【详解】:∵对任意的,都有;∴函数是4为周期的周期函数,∵函数的图象关于轴对称∴函数函数)的关于对称,∵且,都.∴此时函数在上为增函数,则函数在上为减函数,则,,,则,即,故选C.【点睛】本题主要考查与函数有关的命题的真假判断,根据条件判断函数的周期性和对称性,和单调性之间的关系是解决本题的关键.4.对于集合M、N,定义M-N={x|x∈M且x∉N},M⊕N=(M-N)∪(N-M),设A={y|y=3x,x∈R},B={y|y=-(x-1)2+2,x∈R},则A⊕B等于( )A. [0,2)B. (0,2]C. (-∞,0]∪(2,+∞)D. (-∞,0)∪[2,+∞)【答案】C【解析】由题可知,集合A={y|y>0},B={y|y≤2},所以A-B={y|y>2},B-A={y|y≤0},所以A⊕B=(-∞,0]∪(2,+∞).故选C.5.函数的图象大致为A. B.C. D.【答案】B【解析】【分析】确定函数是奇函数,利用,即可得出结论.【详解】由题意,,函数是奇函数,故选:B.【点睛】本题考查函数的奇偶性,考查函数的图象,比较基础.6.设集合,B={b,a+b,-1},若A∩B={2,-1},则A∪B=()A. {2,3}B. {-1,2,5}C. {2,3,5}D. {-1,2,3,5}【答案】D【解析】【分析】根据A∩B={2,-1},得或,求得代入集合B中检验,即可求得结果.【详解】A∩B={2,-1},,或,解得或(1)当时,满足题意,(2)当时,不满足集合元素的特征,舍去综上故选D.【点睛】本题考查集合中元素的特征,根据题意由其中一个集合条件解出未知数,代入另一个集合检验是常用的解题思路,考查了分类讨论思想,属于基础题.7.若函数的定义域为,值域为,则的取值范围是()A. B. C. D.【答案】A【解析】【分析】根据二次函数的性质,得时最小值为,或时,再结合函数图象关于对称,可以求出的取值范围.【详解】函数函数的对称轴,最小值为,在单调递减,在单调递增.时值域为,必在定义域内,即;又有或时综上,故选A.【点睛】本题考查二次函数的图象与性质,考查二次函数的值域问题,其中要特别注意二次函数的对称性及单调性的应用,考查计算能力和数形结合思想,属于基础题.8.若是R上的单调递增函数,则实数的取值范围为()A. (1,+∞)B. [4,8)C. (4,8)D. (1,8)【答案】B【解析】由题意,逐段考查函数的单调性,结合函数处的性质,即可求得结果.【详解】是R上的单调递增函数,结合指数函数和一次函数的单调性,得解得故选B.【点睛】本题考查函数的单调性及其应用,重点考查对基础概念的理解和计算能力.9.已知函数与互为反函数,函数的图象与的图象关于轴对称,若,则实数的值为()A. B. C. D.【答案】D【解析】【分析】根据反函数的定义,求出函数,又根据函数关于轴对称得,即可求出答案.【详解】函数与互为反函数,函数,函数的图象与的图象关于轴对称,函数,即故选D.【点睛】本题考查反函数的求法,考查函数对称关系以及函数求值,是基础计算题.10.已知函数且的最大值为,则的取值范围是()A. B. C. D.【答案】A【分析】对进行分类讨论,当时,和当时,.由最大值为1得到的取值范围.【详解】∵当时,,∵函数且的最大值为∴当时,.,解得故选:A.【点睛】本题考查分段函数的应用,注意分类讨论思想的合力应用.11.已知函数,,若,,使得,则实数的取值范围是()A. B. C. D.【答案】A【解析】【分析】由题可知,,时,,根据函数的图象和性质,求出和,构造关于的不等式,可得的取值范围.【详解】函数为对勾函数,当x时,函数单调递减时,又单调递增时,,,使得,,时,即,解得故选A.【点睛】本题考查指数函数以及对勾函数的图象与性质,考查恒成立和存在解问题,解题的关键是将题干不等式转化为关于的不等式.12.已知定义在上的函数满足,且,则方程在区间上的所有实根之和为()A. B. C. D.【答案】C【解析】【分析】化简的表达式,得到的图象关于点对称,由的周期性,画出,的图象,通过图象观察上的交点的横坐标的特点,求出它们的和.【详解】由题意知即的图象关于点对称,函数的周期为2,则函数,在区间上的图象如图所示:由图形可知函数,在区间上的交点为,易知点的横坐标为-3,若设的横坐标为,则点的横坐标为-,所以方程在区间上的所有实数根之和为.故选C.【点睛】本题考查分段函数的图象和运用,考查函数的周期性、对称性和应用,同时考查数形结合的能力,属于中档题.二、填空题:本大题共4小题,每小题5分,20分。
2019届湖北省部分重点中学高三上学期开学考试数学(理)试题(解析版)(含答案)
2019届湖北省部分重点中学高三上学期开学考试数学(理)试题一、单选题 1.已知集合,,则=( )A .B .C .D .【答案】A【解析】分析:求出集合 ,即可得到.详解:,选A.点睛:本题考查集合的交集运算,属基础题. 2.已知复数满足,则( )A .B .C .D .【答案】B 【解析】分析:先求出复数z,再求.详解:由题得所以故答案为:B3.设等差数列的前项和为.若,,则( )A .B .C .D .【答案】D 【解析】又.可得,则故选D.4.已知命题:,,那么命题为()A.,B.,C.,D.,【答案】C【解析】【分析】含有量词的命题的否定形式,量词换为相反,然后否定结论即可。
【详解】根据含有量词的命题的否定形式,则为,所以选C【点睛】本题考查了含有量词的命题的否定,属于基础题。
5.已知函数,若,则()A.B.C.D.【答案】D【解析】分析:先化简得到,再求的值.详解:由题得所以故答案为:D点睛:(1)本题主要考查函数求值和指数对数运算,意在考查学生对这些基础知识的掌握能力和运算能力.(2)解答本题的关键是整体代入求值.6.执行程序框图,假如输入两个数是、,那么输出的=( )A.B.C.4 D.【答案】C【解析】分析:模拟执行程序框图可知程序框图的功能是求,的值,用裂项法即可得解.详解:模拟执行程序框图,可得是、,,满足条件,满足条件满足条件不满足条件,退出循环,输出的值为4.故选C.点睛:本题主要考查了循环结构的程序框图,考查了数列的求和,属于基础题.7.有4位游客来某地旅游,若每人只能从此处甲、乙、丙三个不同景录点中选择一处游览,则每个景点都有人去游览的概率为( )A.B.C.D.【答案】D【解析】分析:由题意,4为游客到甲乙丙三个不同的景点游览的不同的方法,其中每个景点都有人去游览共有中不同的方法,即可求解概率.详解:由题意,4为游客到甲乙丙三个不同的景点游览,共有中不同的方法,其中每个景点都有人去游览共有中不同的方法,所以所求概率为,故选D.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.在某些特定问题上,也可充分考虑“正难则反”的思维方式.8.已知函数(,),其图象相邻两条对称轴之间的距离为,将函数的图象向左平移个单位后,得到的图象关于轴对称,那么函数的图象()A.关于点对称B.关于点对称C.关于直线对称D.关于直线对称【答案】B【解析】分析:利用函数的图象与性质求出和,写出函数的解析式,再求的对称轴和对称中心,从而可得结果.详解:因为函数的图象相邻两条对称轴之间的距离为,所以函数的周期为,,,将函数的图象向左平移个单位后,得到函数图象,图象关于轴对称,,即,又,,令,解得,,得的图象关于点对称,故选B.点睛:本题主要考查三角函数的图象与性质,属于中档题.由函数可求得函数的周期为;由可得对称轴方程;由可得对称中心横坐标. 9.已知满足约束条件,若的最大值为,则的值为( )A.B.C.D.【答案】B【解析】【分析】根据表达式的几何意义,画不等式表示的可行域,在可行域内找到最优解,然后代入点坐标求得参数m的值。
[精品]2019届高三数学上学期期中试题 理 人教新目标版
2019学年度第一学期期中考试高三理数一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 抛物线24y x =的焦点坐标是A. (0,1)B.(1,0)C.(0,2)D.(0,116) 2. 已知圆221236F x y ++=(:),定点220F (,),A 是圆1F 上的一动点,线段2F A 的垂直平分线交半径1F A 于P 点,则P 点的轨迹C 的方程是A. 22143x y +=B.22195x y +=C.22134x y +=D.22159x y +=3.将函数y=3sin (2x+3π)的图象经过怎样的平移后所得的图象关于点(12π-,0)中心对称 A. 向左平移12π个单位 B.向右平移12π个单位C.向左平移6π个单位D.向右平移6π个单位4.函数21e xy x =-()的图象是5. 已知某几何体的三视图如图所示,则该几何体的体积为A.83π B. 3π C.103π D.6π 6.已知A B P 、、是双曲线22221(0,0)x y a b a b-=>>上不同的三点,且A B 、连线经过坐标原点,若直线PA PB、的斜率乘积3PA PB k k =,则该双曲线的离心率为A. 7.已知抛物线24x y =上有一条长为6的动弦AB ,则AB 的中点到x 轴的最短距离为A.34 B.32C.1D.2 8. 如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面的面积为A. 9.在等腰直角三角形ABC 中,∠C=90°,2CA =,点P 为三角形ABC 所在平面上一动点,且满足BP =1,则()BP CA CB +的取值范围是A. [-B. [0,C. [-2,2]D.[-10.已知12,F F 是椭圆2211612x y+=的左、右焦点,点M (2,3),则∠12F MF 的角平分线的斜率为A. 11.如图,在四棱锥P-ABCD 中,侧面PAD 为正三角形,底面ABCD 为正方形,侧面PAD ⊥底面ABCD ,M 为底面ABCD 内的一个动点,且满足MP=MC ,则点M 在正方形ABCD 内的轨迹为下图中的12.已知球O 与棱长为4的正方体1111ABCD A B C D -的所有棱都相切,点M 是球O 上一点,点N 是△1ACB 的外接圆上的一点,则线段MN 的取值范围是A. B. 2]C.D. 二、填空题:本题共4小题,每小题5分。
【全国百强校】四川省成都石室中学2019届高三上学期入学考试数学(理)试题
2
a b c d a c b d
0.05 3.841 0.025 5.024
n ad bc
2
.
2
k0
0.10 2.706
0.010 6.635
0.005 7.879
0.001 10.828
k0
20.(本小题满分 12 分) 如图 O 为坐标原点, 圆 O : x 2 y 2 4, 点 F1( 3, 以线段 F1 M 为直径的圆 N 0), F2( 3, 0), 内切于圆 O,切点为 P,记点 M 的轨迹为曲线 C. (I)证明: | F1M | | F2 M | 为定值,并求曲线 C 的方程; (II)设 Q 为曲线 C 上的一个动点,且 Q 在 x 轴的上方,过 F2 作直线
1.设 z A. 0
1 i 2i ,则 | z | 1 i
B.
1 2
C. 1
D. 2
2.设集合 A x | y log 2 ( 2 x ) ,若全集 U A , B x | 1 x 2,则 CU B A.
,1
B. ,1
C. 2,
18届涨100分学生达20人 罗老师18215571552
周末班、寒暑假班、全日制、志愿填报、自主招生 中学小班教学、一对一教学,针对性布局
书山有路勤为径 优径皆在为学溪
认为直播答题模式可持续 认为直播答题模式不可持续
360 240
280 120
(I)根据表格中的数据,能否在犯错误不超过 0.5% 的前提下,认为对直播答题模式的态度与性别 有关系? (II)随着答题的发展,某平台推出了复活卡,每期游戏中回答错误后自动使用复活卡复活,即默 认此题回答正确,并可接着回答下一题,但一场仅可使用一次.已知某网友拥有复活卡,在某期的答 题游戏中,前 8 个题都会,第九题到第十二题都不会,他选择从三个选项中随机选择一个选项.求该 网友本场答题个数 X 的分布列,并求该网友当期可平分奖金的概率. 参考公式: K 临界值表:
2019届湖北武汉市高三上学期起点考试数学(理)试卷【含答案及解析】
2019届湖北武汉市高三上学期起点考试数学(理)试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 设集合,为自然数集,则中元素的个数为()A.3 B.4 C.5 D.62. 是虚数单位,则()A. B. C. D.3. 已知 , 是空间两条直线,是空间一平面,,若:;:,则()A.是的充分必要条件B.是的充分条件,但不是的必要条件C.是的必要条件,但不是的充分条件D.既不是的充分条件,也不是的必要条件4. 设等比数列的公比,前项和为,则()A. B. C. D.5. 要得到函数的图象,只需将函数的图象() A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位6. 函数的单调递增区间为()A. B. C. D.7. 若向量,,则与的夹角等于() A. B. C. D.8. 若二次项的展开式中常数项为 280,则实数()A.2 B. C. D.9. 计算可采用如图所示的算法,则图中①处应填的语句是()A. B. C. D.10. 如图,网格之上小正方形的边长为1,粗线画出的是某空间几何体的三视图,若该几何体的体积为20,则该几何体的表面积为()A.72 B.78 C.66 D.6211. 连续地掷一枚质地均匀的骰子4次,正面朝上的点数恰有2次为3的倍数的概率为()A. B. C. D.12. 已知双曲线:()的上焦点为(),是双曲线下支上的一点,线段与圆相切于点,且,则双曲线的渐进线方程为()A. B. C. D.二、填空题13. 若实数、满足约束条件则的最大值是______________ .14. 曲线在点处的切线方程为___________ .15. 已知抛物线:,过点和的直线与抛物线没有公共点,则实数的取值范围是________ .16. 已知有 2个零点,则实数的取值范围是_________ .三、解答题17. 已知是各项均为正数的等差数列,公差为 2.对任意的,是和的等比中项.,.(1)求证:数列是等差数列;(2)若,求数列的通项公式.18. △ 的内角,,对应的三边分别是,,,已知.(1)求角;(2)若点为边上一点,且,⊥ ,求角.19. 如图,四棱锥中,,,△与△ 都是等边三角形.(1)证明:平面;(2)求二面角的平面角的余弦值.20. 某学校甲、乙两个班各派10名同学参加英语口语比赛,并记录他们的成绩,得到如图所示的茎叶图.现拟定在各班中分数超过本班平均分的同学为“口语王”.(1)记甲班“口语王”人数为,乙班“口语王”人数为,比较,的大小.(2)随机从“口语王”中选取2人,记为来自甲班“口语王”的人数,求的分布列和数学期望.21. 如图,已知椭圆:的左、右焦点分别为、,过点、分别作两条平行直线、交椭圆于点、、、.(1)求证:;(2)求四边形面积的最大值.22. 已知函数().(1)当时,讨论的单调性;(2)求在区间上的最小值.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】。
2019届高三数学上学期入学考试试题理(含解析)
2019届高三数学上学期入学考试试题理(含解析)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数为纯虚数(其中是虚数单位),则实数的值为()A. B. C. 1 D. 2【答案】D【解析】【分析】化简复数为,然后由复数的实部等于零且虚部不等于零,求出实数即可.【详解】为纯虚数,,即.故选:D【点睛】本题考查复数的除法运算和复数的基本概念;属于基础题.2.设集合A=,,则的真子集个数为()A. 1B. 3C. 5D. 7【答案】B【解析】【分析】利用分式不等式的解法求出集合,由集合的交运算求出,再由真子集的定义求出集合的真子集即可.【详解】由得,,,或,所以集合,又因为A=,所以,即的真子集为,所以的真子集个数为.故选:B【点睛】本题考查集合的交运算和集合真子集个数的求解;属于基础题、常考题型.3.若平面向量满足,则下列各式恒成立的是()A. B. C. D.【答案】C【解析】【分析】根据向量垂直,推出,解得,配凑,即可求解.【详解】∵,∴,即,∴,即.故选:C.【点睛】本题考查向量垂直关系转化成数量积,运用配凑法构造模长关系,属于基础题.4.已知m,n是两条不同直线,是一个平面,,,则“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据线面平行的性质结合充分条件和必要条件的定义进行判断即可.【详解】若由线面平行的定义知成立,即充分性成立,若,则m与n可能平行可能异面直线,故必要性不成立,即“”是“”的充分不必要条件,故选A.【点睛】本题主要考查充分条件和必要条件的判断,结合线面平行的性质定理是解决本题的关键.5.公元263年左右,我国数学家刘徽发现当圆内接正多边形边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为()(参考数据:)A. 48B. 36C. 24D. 12【答案】C【解析】【分析】由开始,按照框图,依次求出s,进行判断.【详解】,故选C.【点睛】框图问题,依据框图结构,依次准确求出数值,进行判断,是解题关键.6.若,则的最小值是()A. 1B.C. 2D. 4【答案】D【解析】【分析】由,可得,利用对任意恒成立即可求解.【详解】,,因为对任意恒成立,所以,当且仅当时取等号,此时有最小值为4,故选:D【点睛】本题考查利用基本不等式求最值;属于中档题.7.设的内角,,的对边分别为,,,且,则的大小为()A. B. C. D.【答案】C【解析】【分析】利用正弦定理把边化成角,再由和两角和的正弦公式进行展开化简,求出即可.【详解】根据题意,由正弦定理可得:,即,因为,,,,,解得,,.故选:C【点睛】本题考查利用正弦定理边化角和两角和的正弦公式求三角形内角;属于中档题、常考题型.8.若函数的图象关于原点对称,则实数等于()A. B. C. 1 D. 2【答案】A【解析】【分析】由题意知,函数为奇函数,利用,化简整理即可求出实数.【详解】因为函数的图象关于原点对称,所以函数为奇函数,则有,即,化简可得,,解可得.故选:A【点睛】本题考查奇函数的定义和性质;根据题意,挖掘题中隐含的条件:函数为奇函数是求解本题的关键;属于中档题.9.在的展开式中,已知各项系数之和为64,则的系数是()A. 10B. 20C. 30D. 40【答案】B【解析】【分析】令,可得展开式各项系数和为,据此求出,对于利用二项式定理展开即可求解.【详解】在的展开式中,令,则展开式各项系数之和为,,则,则的系数是,故选:B【点睛】本题考查利用二项式定理求展开式中某项的系数; 令,求出各项系数和是求解本题关键;属于基础题、常考题型. 10.如图是函数(其中,的部分图象,则的值为()A. B. C. D.【答案】B【解析】【分析】结合正弦函数的图象知,,据此求出,再根据五点法作图可得,求出即可求解.【详解】由题意知,,因为,所以,再根据五点法作图可得,因为,,函数,则,故选:B【点睛】本题考查结合正弦函数的图象与性质求的解析式;考查数形结合的思想和等价转化的思想;属于中档题、常考题型.11.若双曲线上存在点与右焦点关于其渐近线对称,则该双曲线的离心率()A. B. C. 2 D.【答案】D【解析】【分析】根据题意知,过右焦点且垂直渐近线的直线方程为:,联立渐近线方程与,求出对称中心的点坐标,再利用中点坐标公式求出点的坐标,把点代入双曲线的方程即可求解.【详解】根据题意知,过右焦点且垂直渐近线的直线方程为:,联立渐近线方程与,解之可得,,故对称中心的点坐标为,,设点,由中点坐标公式可得,解得,所以对称点的坐标为,,将点代入双曲线的方程可得,结合,化简可得,故可得.故选:D【点睛】本题主要考查双曲线的几何性质,两直线的位置关系,意在考查学生对数学知识的熟练掌握程度和综合运用能力、运算能力;属于中档题.12.在体育选修课排球模块基本功发球测试中,计分规则如下满分为10分:①每人可发球7次,每成功一次记1分;②若连续两次发球成功加分,连续三次发球成功加1分,连续四次发球成功加分,以此类推,,连续七次发球成功加3分假设某同学每次发球成功的概率为,且各次发球之间相互独立,则该同学在测试中恰好得5分的概率是( )A. B. C. D.【答案】B【解析】【分析】明确恰好得5分所有情况:发球四次得分,有两个连续得分和发球四次得分,有三个连续得分,分别求解可得.【详解】该同学在测试中恰好得5分有两种情况:四次发球成功,有两个连续得分,此时概率;四次发球成功,有三个连续得分,分连续得分在首尾和不在首尾两类,此时概率,所求概率;故选B.【点睛】本题主要考查相互独立事件的概率,题目稍有难度,侧重考查数学建模和数学运算的核心素养.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.如图,是圆的内接正方形,将一颗豆子随机扔到圆内,记事件:“豆子落在正方形内”,事件:“豆子落在扇形(阴影部分)内”,则条件概率__.【答案】【解析】【分析】利用与面积有关的几何概型公式求出,然后代入条件概率公式即可求解.【详解】如图,设正方形边长为,由几何概型的概率公式可得,(A),,由条件概率公式可得,.故答案为:【点睛】本题考查与面积有关的几何概型和条件概率的求解;熟练掌握概率公式是求解本题的关键;属于中档题、常考题型. 14.某几何体的三视图如图所示,则该几何体的体积为__【答案】【解析】【分析】通过分析三视图,得出该几何体是圆柱,挖去一部分,然后结合图中数据,代入圆柱的体积公式求解即可.【详解】根据几何体的三视图,得出该几何体是圆柱,挖去一部分,如图:结合图中数据知,该几何体的体积.故答案为:【点睛】本题考查三视图还原几何体及求几何体的体积;根据三视图正确还原几何体是求解本题的关键;重点考查学生的空间想象能力属于中档题、常考题型.15.化简________.【答案】8【解析】【分析】由二倍角公式得出,再将分子分母同乘以结合商数关系化简得出,逆用两角差的正弦公式,二倍角的正弦公式求解即可.【详解】原式.故答案为:8【点睛】本题主要考查了利用两角差的正弦公式,商数关系以及二倍角公式化简求值,属于中档题.16.有如下结论:若无穷等比数列的公比满足,则它的各项和.已知函数,则的图象与轴围成的所有图形的面积之和为__.【答案】4【解析】【分析】由已知可得,函数与轴围成的所有图形的面积构成一个首项为,公比为的无穷等比数列,代入公式求解即可.【详解】当时,,与轴围成的封闭图形面积为:;当时,,故当时,函数图象与轴围成的封闭图形长扩大2倍,高缩小到,故面积为:;同理,当时,函数图象与轴围成的封闭图形面积为:;依次类推可得,函数的图象与轴围成的所有图形的面积构成一个首项为,公比为的无穷等比数列,根据题中的公式得,函数的图象与轴围成的所有图形的面积之和.故答案为:4【点睛】本题考查利用定积分求函数与轴围成的封闭图形的面积和无穷等比数列的求和公式;通过计算,得出函数的图象与轴围成的所有图形的面积构成一个首项为,公比为的无穷等比数列是求解本题的关键;属于中档题.三、解答题:解答应写出文字说明、证明过程或演算步骤17.已知数列满足,且,其中.(Ⅰ)求的通项公式;(Ⅱ)求证:.【答案】(Ⅰ);(Ⅱ)见详解.【解析】【分析】(Ⅰ)根据题意,,利用累加法求出数列的通项公式即可;(Ⅱ)由(Ⅰ)知,,利用放缩法知,,再由裂项相消法求和即可证明.【详解】(Ⅰ)因为数列满足,且,即,由累加法得,,即,故数列的通项公式为.(Ⅱ)证明:因为,所以,因为,即.【点睛】本题主要考查累加法求通项公式、裂项相消法求和和利用放缩法证明不等式;考查推理论证能力、运算求解能力;累加法和放缩法的应用是求解本题的关键;属于中档题.18.如图,在三棱柱中,,,.(Ⅰ)求证:;(Ⅱ)若平面平面,且直线与平面所成角为,求二面角的余弦值.【答案】(Ⅰ)见解析;(Ⅱ)【解析】【分析】(Ⅰ)取中点,连结,,则,由线面垂直的判定定理可得,平面,由线面垂直的性质即可得证;(Ⅱ)由平面平面及可得,,从而,设,则,易证两两互相垂直,建立空间直角坐标系如图,利用法向量求出二面角的余弦值即可.【详解】(Ⅰ)证明:如图:取中点,连结,,,,,,为正三角形,,,由线面垂直的判定定理知,平面,又平面,.(Ⅱ)因为,所以为等边三角形,所以,因为平面平面,由面面垂直的性质知,平面,所以即为直线与平面所成角,即,即,设,则,,由平面知,两两互相垂直,建立空间直角坐标系如图所示:则,0,,,,0,,所以,,,,0,,设平面的一个法向量为,则,令,则,所以平面的一个法向量为,因为平面的法向量为,0,,所以,二面角的平面角为钝角,二面角的余弦值为.【点睛】本题考查线面垂直的判定与性质、面面垂直的性质以及利用空间向量求二面角;考查学生的空间想象能力、推理论证能力、运算求解能力;属于中档题、常考题型.19.大型中华传统文化电视节目《中国诗词大会》以“赏中华诗词,寻文化基因,品生活之美”为宗旨,深受广大观众喜爱,各基层单位也通过各种形式积极组织、选拔和推荐参赛选手.某单位制定规则如下:(1)凡报名参赛的诗词爱好者必须先后通过笔试和面试,方可获得入围正赛的推荐资格;(2)笔试成绩不低于85分的选手进入面试,面试成绩最高的3人获得推荐资格.在该单位最近组织的一次选拔活动中,随机抽取了一个笔试成绩的样本,据此绘制成频率分布直方图(如图.同时,也绘制了所有面试成绩的茎叶图(如图2,单位:分).(Ⅰ)估计该单位本次报名参赛的诗词爱好者的总人数;(Ⅱ)若从面试成绩高于(不含)中位数的选手中随机选取3人,设其中获得推荐资格的人数为,求随机变量的分布列及数学期望.【答案】(Ⅰ)60人;(Ⅱ)分布列见解析,【解析】【分析】(Ⅰ)由频率分布直方图求出对应的频率,利用茎叶图估计所求的总人数即可;(Ⅱ)根据题意知,可能的取值为,计算对应概率,列出分布列,代入数学期望公式求解即可.【详解】(Ⅰ)由频率分布直方图知,笔试成绩不低于85分的频率为,由茎叶图知,参加面试的人数为15人,所以估计该单位本次报名参赛的诗词爱好者的总人数为(人;(Ⅱ)面试成绩高于(不含)中位数的选手有7人,其中获得推荐资格的有3人,所以从7人中随机选取3人,获得推荐资格的人数,1,2,3,计算,,,,所以随机变量的分布列为:所以数学期望为.【点睛】本题考查频率分布直方图和茎叶图的应用及利用排列组合、二项式定理求随机变量的分布列、数学期望;考查学生的运算能力;属于中档题、常考题型.20.设动圆经过点,且与圆为圆心)相内切.(Ⅰ)求动圆圆心的轨迹的方程;(Ⅱ)设经过的直线与轨迹交于、两点,且满足的点也在轨迹上,求四边形的面积.【答案】(Ⅰ);(Ⅱ)【解析】【分析】(Ⅰ)因为圆的圆心,半径为,由圆与圆相内切,利用椭圆的定义可知,动圆圆心的轨迹是以,为焦点且长轴长为的椭圆即可求解;(Ⅱ)设直线的方程为,一定存在),代入,并整理得,利用韦达定理、向量的坐标运算,结合已知条件即可求解.【详解】(Ⅰ)由已知可得,圆的圆心,半径为,由圆与圆相内切,得,由椭圆定义可知,动圆圆心的轨迹是以,为焦点且长轴长为的椭圆,其方程为.(Ⅱ)设直线的方程为,一定存在),代入,并整理得,所以判别式△恒成立,设,,,,由韦达定理可得,,,设,,则由,得,即,即,又点在轨迹上,故,即,解得,(舍负),因为,所以四边形为平行四边形,所以平行四边形的面积为,即,因为,所以四边形的面积为.【点睛】本题考查椭圆的定义及其几何性质、直线与椭圆的位置关系;重点考查学生的运算求解能力;方程思想和韦达定理的应用与向量的坐标运算相结合是求解本题的关键;属于综合型强、难度大型试题.21.已知函数,其中为常数,为自然对数的底数.(Ⅰ)若在区间,上的最小值为1,求的值;(Ⅱ)若“,使”为假命题,求的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】【分析】(Ⅰ)求得函数导数,利用导数判断函数的单调性,求函数的极值即最值,由题意知, 函数的最小值只能在或处取得,分别解方程求解即可.(Ⅱ)若“,使”为假命题,等价于,为真命题,即,恒成立,通过分离参数法和构造函数法,令,结合导数判断函数的单调性,由零点存在性定理求出函数的最小值,进而求出实数的取值范围即可.【详解】(Ⅰ)由题意知,函数的导数为,所以当时,,单调递增,当时,,单调递减,所以当时有极大值即最大值,即有的最小值只能在或处取得.若(1),解得,此时与函数最小值为1相矛盾,故不符合题意;若(e),解得,此时符合题意;综上可知;(Ⅱ)若“,使”为假命题,即,为真命题,等价于,可得恒成立,化简可得,恒成立,令,则,令,则在上单调递增,因为,,由零点存在性定理知,函数在,存在唯一零点,即有,则,两边同时取以为底的对数可得,,所以当时,,即,单调递减,当时,,即,单调递增,所以当时,函数有极小值即最小值,,所以实数的取值范围为.【点睛】本题考查利用导数判断函数的单调性,求函数的极值、最值;通过构造函数,判断函数的单调性、求最值,解决恒成立问题是求解本题的关键;重点考查学生的运算求解能力、转化与化归能力;属于综合型强、难度大型试题.请考生在第22、23题中任选一题作答,如果多做,则按所做第一题计分22.在平面直角坐标系中,直线的参数方程为(其中为参数,且,在以为极点、轴的非负半轴为极轴的极坐标系(两种坐标系取相同的单位长度)中,曲线的极坐标方程为,设直线经过定点,且与曲线交于、两点.(Ⅰ)求点的直角坐标及曲线的直角坐标方程;(Ⅱ)求证:不论为何值时,为定值.【答案】(Ⅰ)直角坐标为,;(Ⅱ)见解析【解析】【分析】(Ⅰ)根据题意,令直线的参数方程中即可求出点的直角坐标,整理化简曲线的极坐标方程,结合,即可得到曲线的直角坐标方程;(Ⅱ)将直线的参数方程代入曲线的直角坐标方程,根据参数的几何意义,利用韦达定理即可证明为定值.【详解】(Ⅰ)因为直线的参数方程为(其中为参数,且,所以当时,得点,即点的直角坐标为;又曲线的极坐标方程为,,,,,即曲线的直角坐标方程为;(Ⅱ)证明:将直线的参数方程代入,整理得,其中,所以判别式△,由韦达定理可得,,,由参数方程中参数的几何意义可得,,即不论为何值时,都为定值1.【点睛】本题考查极坐标方程与直角坐标方程的互化及参数方程中参数的几何意义;利用参数方程中参数的几何意义是证明为定值的关键;属于中档题、常考题型.23.已知不等式的解集为.(Ⅰ)求;(Ⅱ)设为中的最大元素,正数,满足,求的最大值.【答案】(Ⅰ);(Ⅱ)【解析】【分析】(Ⅰ)利用分段讨论法,分,,三种情况分别去绝对值解不等式,然后再取并集即可;(Ⅱ)由(Ⅰ)知,,先平方,利用均值不等式求出的最大值,然后再开方即可。
2019-2020年高三上学期期初数学试卷含解析
2019-2020年高三上学期期初数学试卷含解析一、填空题:本大题共14小题,每小题5分,共计70分.1.已知=3+i(a,b∈R,i为虚数单位),则a+b=.2.某学校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人,为了研究血型与色弱之间的关系,用分层抽样的方法抽取一个容量为40的样本,则在血型为O型的学生中应抽取人.3.设集合A={x|x≤1},B={x|x≥a},则“A∪B=R”是“a=1”的条件.(从如下四个中选一个正确的填写:充要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件)4.按如图所示的流程图运算,若输入x=8,则输出的k=.5.设l,m是两条不同的直线,α是一个平面,有下列四个命题:(1)若l⊥α,m⊂α,则l⊥m;(2)若l⊥α,l∥m,则m⊥α;(3)若l∥α,m⊂α,则l∥m;(4)若l∥α,m∥α,则l∥m则其中正确的命题是.(填序号)6.将一颗骰子连续抛掷2次,向上的点数分别为m,n,则点P(m,n)在直线y=x下方的概率为.7.若函数f(x)=sinωx(ω>0)在区间[0,]上单调递增,在区间[,]上单调递减,则ω=.8.若变量x,y满足,则x2+y2的最大值是.9.已知等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则的值为.10.在平面直角坐标系xOy中,双曲线=1与抛物线y2=﹣12x有相同的焦点,则双曲线的两条渐近线的方程为.11.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,若AB=2,则实数m的值为.12.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.13.设函数f(x)=﹣x3+x2+2ax,当0<a<2时,有f(x)在x∈[1,4]上的最小值为﹣,则f(x)在该区间上的最大值是.14.在平面内,定点A,B,C,D满足||=||=||,•=•=•=﹣2,动点P,M满足||=1,=,则||2的最大值是.二、解答题:本大题共6小题,共计70分.15.已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,函数f(x)=sin2x•(1+cos2C)﹣cos2x•sin2C+的图象过点(,).(1)求sinC的值;(2)当a=2,2sinA=sinC时,求b、c边的长.16.在直三棱柱ABC﹣A1B1C1中,CA=CB,AA1=AB,D是AB的中点(1)求证:BC1∥平面A1CD;(2)若点P在线段BB1上,且BP=BB1,求证:AP⊥平面A1CD.17.如图,某隧道的截面图由矩形ABCD和抛物线型拱顶DEC组成(E为拱顶DEC的最高点),以AB所在直线为x轴,以AB的中点为坐标原点,建立平面直角坐标系xOy,已知拱顶DEC的方程为y=﹣x2+6(﹣4≤x≤4).(1)求tan∠AEB的值;(2)现欲在拱顶上某点P处安装一个交通信息采集装置,为了获得最佳采集效果,需要点P 对隧道底AB的张角∠APB最大,求此时点P到AB的距离.18.已知在△ABC中,点A、B的坐标分别为(﹣2,0)和(2,0),点C在x轴上方.(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ?请说明理由.19.设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.20.设等比数列{a n}的前n项的和为S n,公比为q(q≠1).(1)若S4,S12,S8成等差数列,求证:a10,a18,a14成等差数列;(2)若S m,S k,S t(m,k,t为互不相等的正整数)成等差数列,试问数列{a n}中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;(3)若q为大于1的正整数.试问{a n}中是否存在一项a k,使得a k恰好可以表示为该数列中连续两项的和?请说明理由.第Ⅱ卷(附加题共40分)[选修4-2:矩阵与变换]21.在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A=对应的变换作用下得到直线x+y﹣b=0(a,b∈R),求a+b的值.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数)以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.若直线l与曲线C交于A,B,求线段AB 的长.23.如图,在四棱锥P﹣ABCD中,等边△PAD所在的平面与正方形ABCD所在的平面互相垂直,O为AD的中点,E为DC的中点,且AD=2.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求二面角P﹣EB﹣A的余弦值;(Ⅲ)在线段AB上是否存在点M,使线段PM与△PAD所在平面成30°角.若存在,求出AM的长,若不存在,请说明理由.24.一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X,求随机变量X的分布列.xx江苏省南京市溧水中学高三(上)期初数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.已知=3+i(a,b∈R,i为虚数单位),则a+b=6.【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则即可得出.【解答】解:∵=3+i,∴a+bi=(2﹣i)(3+i)=7﹣i,∴a=7,b=﹣1.∴a+b=6.故答案为:6.2.某学校高一年级500名学生中,血型为O型的有200人,A型的有125人,B型的有125人,AB型的有50人,为了研究血型与色弱之间的关系,用分层抽样的方法抽取一个容量为40的样本,则在血型为O型的学生中应抽取16人.【考点】分层抽样方法.【分析】由题意知从500名学生中抽取一个容量为40的样本,采用分层抽样,可以知道每个个体被抽到的概率,用O型血型的人数乘以概率得到这种血型所要抽取的人数,得到结果.【解答】解:根据题意知用分层抽样方法抽样.∵=,故O型血抽:200×=16人,故答案为:16.3.设集合A={x|x≤1},B={x|x≥a},则“A∪B=R”是“a=1”的必要不充分条件.(从如下四个中选一个正确的填写:充要条件、充分不必要条件、必要不充分条件、既不充分也不必要条件)【考点】集合关系中的参数取值问题;必要条件、充分条件与充要条件的判断.【分析】做出两个集合的并集是全体实数时,看出a与1之间的关系,得到a的取值范围,比较两个条件对应的范围,看出两个范围的大小,得到前者不能推出后者,后者能推出前者.【解答】解:∵集合A={x|x≤1},B={x|x≥a},当A∪B=R时,a≤1,∵a≤1不一定得到a=1当a=1时一定可以得到a≤1∴“A∪B=R”是“a=1”的必要不充分条件,故答案为:必要不充分条件4.按如图所示的流程图运算,若输入x=8,则输出的k=3.【考点】流程图的概念;选择结构.【分析】这是一道直到型循环结构题,直到满足条件跳出循环体,不满足条件就进入循环体.每次执行完循环体后,把每个变量的值都标清楚,这样就很容易得到结果.【解答】解:当输入x=8时,第一次循环结束后x=88,k=1,不满足x>xx,继续进入循环体;第二次循环结束后x=888,k=2,不满足x>xx,继续进入循环体;第三次循环结束后x=8888,k=3,满足x>xx,跳出循环体;此时输出的k值为3故答案为:35.设l,m是两条不同的直线,α是一个平面,有下列四个命题:(1)若l⊥α,m⊂α,则l⊥m;(2)若l⊥α,l∥m,则m⊥α;(3)若l∥α,m⊂α,则l∥m;(4)若l∥α,m∥α,则l∥m则其中正确的命题是.(填序号)【考点】平面的基本性质及推论.【分析】根据空间空间中线面关系的判定及性质定理逐个分析四个结论,由线面垂直的判定定理,我们可得①不满足定理,故①错误;③中若l∥α,m⊂α,则l与m可能平行也可能垂直,故③错误;④中若l∥α,m∥α,则l与m可能平行也可能垂直也可能异面,故④错误;分析后即可得到结论.【解答】解:∵l⊥α,m⊂a,∴l⊥m,故(1)正确;若l⊥α,l∥m,由线面垂直的第二判定定理,我们可得m⊥α,故(2)正确;若l∥α,m⊂α,则l与m可能平行也可能垂直,故(3)错误;若l∥α,m∥α,则l与m可能平行也可能垂直也可能异面,故(4)错误;故答案为:(1),(2).6.将一颗骰子连续抛掷2次,向上的点数分别为m,n,则点P(m,n)在直线y=x下方的概率为.【考点】列举法计算基本事件数及事件发生的概率.【分析】根据古典概型的概率公式分别求出基本事件以及满足y=x的事件的个数即可得到结论.【解答】解:一颗骰子连续抛掷2次,向上的点数分别为m,n,则共有6×6=36种结果,满足点P(m,n)在直线y=x下方的有:(3,1),(4,1),(5,1),(6,1),(5,2),(6,2)共有6种,则由古典概型的概率公式可得y=x下方的概率为P==,故答案为:7.若函数f(x)=sinωx(ω>0)在区间[0,]上单调递增,在区间[,]上单调递减,则ω=3.【考点】正弦函数的图象.【分析】由正弦函数图象及性质可知=,求得周期T,由ω==即可求得ω的值.【解答】解:由题意可知:x=,为函数f(x)=sinωx的最大值点,∴=,T=,由ω===3,故答案为:3.8.若变量x,y满足,则x2+y2的最大值是10.【考点】简单线性规划.【分析】由约束条件作出可行域,再由x2+y2的几何意义,即可行域内动点与原点距离的平方求得答案.【解答】解:由约束条件作出可行域如图,联立,解得B(3,﹣1),x2+y2的几何意义为可行域内动点与原点距离的平方,其最大值|OB|2=32+(﹣1)2=10,故答案为:10.9.已知等比数列{a n}中,各项都是正数,且a1,a3,2a2成等差数列,则的值为3+2.【考点】等比数列的性质;等差数列的性质.【分析】先根据等差中项的性质可知得2×()=a1+2a2,进而利用通项公式表示出q2=1+2q,求得q,然后把所求的式子利用等比数列的通项公式化简后,将q的值代入即可求得答案.【解答】解:依题意可得2×()=a1+2a2,即,a3=a1+2a2,整理得q2=1+2q,求得q=1±,∵各项都是正数,∴q>0,q=1+,∴==q2=3+2.故答案为:3+210.在平面直角坐标系xOy中,双曲线=1与抛物线y2=﹣12x有相同的焦点,则双曲线的两条渐近线的方程为.【考点】双曲线的简单性质.【分析】求出抛物线的焦点坐标,即双曲线中c=3,根据双曲线中a,b,c的关系求出a的值即可得到结论.【解答】解:抛物线的焦点坐标为(﹣3,0),则c=3,即a2+1=c2=9,即a2=9﹣1=8,则a==2,即双曲线的渐近线为y=±x=x=±x,故答案为:11.已知直线l:mx+y+3m﹣=0与圆x2+y2=12交于A,B两点,若AB=2,则实数m的值为﹣.【考点】直线与圆的位置关系.【分析】利用弦长公式,求出圆心到直线的距离,利用点到直线的距离公式建立方程,即可求出实数m的值.【解答】解:由题意,|AB|=2,∴圆心到直线的距离d=3,∴=3,∴m=﹣.故答案为:﹣.12.已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).【考点】根的存在性及根的个数判断.【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).13.设函数f(x)=﹣x3+x2+2ax,当0<a<2时,有f(x)在x∈[1,4]上的最小值为﹣,则f(x)在该区间上的最大值是.【考点】利用导数求闭区间上函数的最值.【分析】由f′(x)=﹣x2+x+2a=﹣(x﹣)2+2a+,当0<a<2时,f(x)在[1,4]上先增后减,由f(x)在x∈[1,4]上的最小值为,知f(x)在[1,4]上的最小值=min{f(1),f(4)}=min{2a ﹣,8a﹣}=8a﹣=﹣,故a=1.由此能求出f(x)在该区间上的最大值.【解答】解:f′(x)=﹣x2+x+2a=﹣(x﹣)2+2a+,当0<a<2时,f(x)在[1,4]上先增后减∵f(x)在x∈[1,4]上的最小值为,∴f(x)在[1,4]上的最小值=min{f(1),f(4)}=min{2a﹣,8a﹣}=8a﹣=﹣,∴a=1∴f(x)在该区间上的最大值=f(2)=.故答案为:.14.在平面内,定点A,B,C,D满足||=||=||,•=•=•=﹣2,动点P,M满足||=1,=,则||2的最大值是.【考点】平面向量数量积的运算.【分析】由||=||=||,•=•=•=﹣2,可设:D(0,0),A(2,0),B(﹣1,),C(﹣1,﹣).由动点P,M满足||=1,=,可设:P(2+cosθ,sinθ).M.再利用向量坐标运算性质、模的计算公式即可得出.【解答】解:∵||=||=||,•=•=•=﹣2,∴可设:D(0,0),A(2,0),B(﹣1,),C(﹣1,﹣),动点P,M满足||=1,=,可设:P(2+cosθ,sinθ).M.∴=.则||2=+=≤,当且仅当=1时取等号.故答案为:.二、解答题:本大题共6小题,共计70分.15.已知△ABC中,∠A、∠B、∠C所对的边分别为a、b、c,函数f(x)=sin2x•(1+cos2C)﹣cos2x•sin2C+的图象过点(,).(1)求sinC的值;(2)当a=2,2sinA=sinC时,求b、c边的长.【考点】正弦定理;同角三角函数基本关系的运用;余弦定理.【分析】(1)把点代入f(x)的解析式,解方程求得sinC 的值.(2)由,2sinA=sinC,可得c=4,根据sinC的值求得cosC的值,三角形ABC中,由余弦定理可得16=4+b2﹣4bcosC,解方程求出b值.【解答】解:(1)把点代入f(x)的解析式可得,∴sinC=±.再由∠C 是△ABC的一个内角可得sinC=.(2)由,2sinA=sinC,可得,c=2a=4.∵,∴cosC=±.三角形ABC中,由余弦定理可得16=4+b2﹣4bcosC ①,当cosC= 时,代入①解得b=2,或b=﹣2(舍去).当cosC=﹣时,代入①解得b=,或b=﹣2(舍去).综上,c=4,b=2,或b=.16.在直三棱柱ABC﹣A1B1C1中,CA=CB,AA1=AB,D是AB的中点(1)求证:BC1∥平面A1CD;(2)若点P在线段BB1上,且BP=BB1,求证:AP⊥平面A1CD.【考点】直线与平面垂直的判定;直线与平面平行的判定.【分析】(1)连接AC1,设与CA1交于O点,连接OD,由O为AC1的中点,D是AB的中点,可得OD∥BC1,即可证明BC1∥平面A1CD.(2)由题意,取A1B1的中点O,连接OC1,OD,分别以OC1,OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,由题意可得各点坐标,可求=(b,﹣a,2),=(0.﹣a,2),=(0,﹣2a,﹣),由•=0,•=0,即可证明AP⊥平面A1CD.【解答】证明:(1)如图,连接AC1,设与CA1交于O点,连接OD,∴直三棱柱ABC﹣A1B1C1中,O为AC1的中点,∵D是AB的中点,∴△ABC1中,OD∥BC1,又∵OD⊂平面A1CD,∴BC1∥平面A1CD.(2)由题意,取A1B1的中点O,连接OC1,OD,分别以OC1,OA1,OD为x,y,z轴建立空间直角坐标系,设OA1=a,OC1=b,则:由题意可得各点坐标为:A1(0,a,0),C(b,0,2a),D(0,0,2),P(0,﹣a,),A(0,a,2),可得:=(b,﹣a,2),=(0.﹣a,2),=(0,﹣2a,﹣),所以:由•=0,可得:AP⊥A1C,由•=0,可得:AP⊥A1D,又:A1 C∩A1 D=A1,所以:AP⊥平面A1CD.17.如图,某隧道的截面图由矩形ABCD和抛物线型拱顶DEC组成(E为拱顶DEC的最高点),以AB所在直线为x轴,以AB的中点为坐标原点,建立平面直角坐标系xOy,已知拱顶DEC的方程为y=﹣x2+6(﹣4≤x≤4).(1)求tan∠AEB的值;(2)现欲在拱顶上某点P处安装一个交通信息采集装置,为了获得最佳采集效果,需要点P 对隧道底AB的张角∠APB最大,求此时点P到AB的距离.【考点】二次函数的性质.【分析】(1)利用二倍角正切公式求tan∠AEB的值;(2)利用向量的数量积公式,求出cos∠APB,利用面积公式求出sin∠APB,可得tan∠APB,利用基本不等式可得结论.【解答】解:(1)由题意:E(0,6),B(4,0),∴,∴,…(2)设P(x0,y0),2≤y0≤6,∴,∴,∴…∵,∴∴…∵2≤y0≤6,∴当且仅当时tan∠APB最大,即∠APB最大.答:位置P对隧道底AB的张角最大时P到AB的距离为米.…18.已知在△ABC中,点A、B的坐标分别为(﹣2,0)和(2,0),点C在x轴上方.(Ⅰ)若点C的坐标为(2,3),求以A、B为焦点且经过点C的椭圆的方程;(Ⅱ)若∠ACB=45°,求△ABC的外接圆的方程;(Ⅲ)若在给定直线y=x+t上任取一点P,从点P向(Ⅱ)中圆引一条切线,切点为Q.问是否存在一个定点M,恒有PM=PQ?请说明理由.【考点】椭圆的标准方程;圆的标准方程;直线和圆的方程的应用.【分析】(Ⅰ)根据椭圆的定义和AC,BC求得椭圆的长轴,进而根据c求得b,则椭圆的方程可得.(Ⅱ)先用正弦定理可知=2R,进而求得R,设出圆心坐标,根据勾股定理求的s,则外接圆的方程可得.(Ⅲ)假设存在这样的点M(m,n),设点P的坐标,进而根据PM=PQ,求得关于x的方程,进而列出方程组,消去m,得到关于n的一元二次方程,分别讨论当判别式大于0或小于等于0时的情况.【解答】解:(Ⅰ)因为AC=5,BC=3,所以椭圆的长轴长2a=AC+BC=8,又c=2,所以b=2,故所求椭圆的方程为(Ⅱ)因为=2R,所以2R=4,即R=2又圆心在AB的垂直平分线上,故可设圆心为(0,s)(s>0),则由4+S2=8,所以△ABC的外接圆的方程为x2+(y﹣2)2=8(Ⅲ)假设存在这样的点M(m,n),设点P的坐标为(x,x+t),因为恒有PM=PQ,所以(x ﹣m)2+(x+t﹣n)2=x2+(x+t﹣2)2﹣8,即(2m+2n﹣4)x﹣(m2+n2﹣2nt+4t+4)=0,对x∈R,恒成立,从而,消去m,得n2﹣(t+2)n+(2t+4)=0因为方程判别式△=t2﹣4t﹣12,所以①当﹣2<t<6,时,因为方程无实数解,所以不存在这样的点M②当t≥6或t≤﹣2时,因为方程有实数解,且此时直线y=x+t与圆相离或相切,故此时这样的点M存在.19.设函数f(x)=ax2﹣a﹣lnx,g(x)=﹣,其中a∈R,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性;(Ⅱ)证明:当x>1时,g(x)>0;(Ⅲ)确定a的所有可能取值,使得f(x)>g(x)在区间(1,+∞)内恒成立.【考点】利用导数研究函数的单调性;函数奇偶性的判断;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求导数,分类讨论,即可讨论f(x)的单调性;(Ⅱ)要证g(x)>0(x>1),即﹣>0,即证,也就是证;(Ⅲ)由f(x)>g(x),得,设t(x)=,由题意知,t(x)>0在(1,+∞)内恒成立,再构造函数,求导数,即可确定a的取值范围.【解答】(Ⅰ)解:由f(x)=ax2﹣a﹣lnx,得f′(x)=2ax﹣=(x>0),当a≤0时,f′(x)<0在(0,+∞)成立,则f(x)为(0,+∞)上的减函数;当a>0时,由f′(x)=0,得x==,∴当x∈(0,)时,f′(x)<0,当x∈(,+∞)时,f′(x)>0,则f(x)在(0,)上为减函数,在(,+∞)上为增函数;综上,当a≤0时,f(x)为(0,+∞)上的减函数,当a>0时,f(x)在(0,)上为减函数,在(,+∞)上为增函数;(Ⅱ)证明:要证g(x)>0(x>1),即﹣>0,即证,也就是证,令h(x)=,则h′(x)=,∴h(x)在(1,+∞)上单调递增,则h(x)min=h(1)=e,即当x>1时,h(x)>e,∴当x>1时,g(x)>0;(Ⅲ)解:由f (x )>g (x ),得,设t (x )=, 由题意知,t (x )>0在(1,+∞)内恒成立,∵t (1)=0,∴有t ′(x )=2ax=≥0在(1,+∞)内恒成立,令φ(x )=,则φ′(x )=2a=,当x ≥2时,φ′(x )>0,令h (x )=,h ′(x )=,函数在[1,2)上单调递增,∴h (x )min =h (1)=﹣1.又2a ≥1,e 1﹣x >0,∴1<x <2,φ′(x )>0,综上所述,x >1,φ′(x )>0,φ(x )在区间(1,+∞)单调递增,∴t ′(x )>t ′(1)≥0,即t (x )在区间(1,+∞)单调递增,∴a ≥.20.设等比数列{a n }的前n 项的和为S n ,公比为q (q ≠1).(1)若S 4,S 12,S 8成等差数列,求证:a 10,a 18,a 14成等差数列;(2)若S m ,S k ,S t (m ,k ,t 为互不相等的正整数)成等差数列,试问数列{a n }中是否存在不同的三项成等差数列?若存在,写出两组这三项;若不存在,请说明理由;(3)若q 为大于1的正整数.试问{a n }中是否存在一项a k ,使得a k 恰好可以表示为该数列中连续两项的和?请说明理由.【考点】等差数列与等比数列的综合.【分析】(1)根据S 4,S 12,S 8成等差数列,q ≠1,可得2S 12=S 4+S 8,化简可得2q 8=1+q 4,进而可以证明a 10,a 18,a 14成等差数列;(2)根据S m ,S k ,S t (m ,k ,t 为互不相等的正整数)成等差数列,可得2S k =S m +S t ,化简可得,从而可得a m +1,a k +1,a t +1成等差数列,即可得出结论;(3)假设存在一项a k ,使得a k 恰好可以表示为该数列中连续两项的和,设a k =a n +a n +1,可得k >n ,q k ﹣n =1+q,从而可得结论.【解答】解:(1)若S 4,S 12,S 8成等差数列,q ≠1,则2S 12=S 4+S 8,∴=+∴2q 8=1+q 4∴a 10+a 14====2a 18,∴a 10,a 18,a 14成等差数列;(2)若S m ,S k ,S t (m ,k ,t 为互不相等的正整数)成等差数列,则2S k =S m +S t , ∴=+∴2q k =q m +q t∴∴a m +1,a k +1,a t +1成等差数列,∴a m +2,a k +2,a t +2成等差数列;(3)假设存在一项a k ,使得a k 恰好可以表示为该数列中连续两项的和,设a k =a n +a n +1,则∵a1≠0,q>1∴q k﹣1=q n﹣1+q n∴q k=q n+q n+1∵q n+1>1∴q k>q n∴k>n,q k﹣n=1+q当q为偶数时,q k﹣n为偶数,而1+q为奇数,假设不成立;当q为奇数时,q k﹣n为奇数,而1+q为偶数,假设也不成立,综上,{a n}中不存在a k,使得a k恰好可以表示为该数列中连续两项的和.第Ⅱ卷(附加题共40分)[选修4-2:矩阵与变换]21.在平面直角坐标系xOy中,直线x+y﹣2=0在矩阵A=对应的变换作用下得到直线x+y﹣b=0(a,b∈R),求a+b的值.【考点】几种特殊的矩阵变换.【分析】根据矩阵的坐标变换,=,整理得,列方程求得a和b的值,求得a+b的值.【解答】解:设P(x,y)是直线x+﹣2=0上一点,由=,得:x+ay+(x+2y)﹣b=0,即,由条件得,解得:,∴a+b=4.[选修4-4:坐标系与参数方程]22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数)以原点O为极点,x轴正半轴为极轴建立极坐标系,直线l的极坐标方程为.若直线l与曲线C交于A,B,求线段AB 的长.【考点】简单曲线的极坐标方程.【分析】由曲线C的参数方程为(α为参数),利用cos2α+sin2α=1可得曲线C的普通方程.由直线l的极坐标方程为,可得直线l的直角坐标方程.∴圆心到直线的距离为,利用弦长公式即可得出.【解答】解:由曲线C的参数方程为(α为参数),利用cos2α+sin2α=1可得曲线C的普通方程为,表示以为圆心,2为半径的圆.由直线l的极坐标方程为,可得直线l的直角坐标方程为,∴圆心到直线的距离为,∴线段AB的长为.23.如图,在四棱锥P﹣ABCD中,等边△PAD所在的平面与正方形ABCD所在的平面互相垂直,O为AD的中点,E为DC的中点,且AD=2.(Ⅰ)求证:PO⊥平面ABCD;(Ⅱ)求二面角P﹣EB﹣A的余弦值;(Ⅲ)在线段AB上是否存在点M,使线段PM与△PAD所在平面成30°角.若存在,求出AM的长,若不存在,请说明理由.【考点】直线与平面所成的角;直线与平面垂直的判定;二面角的平面角及求法.【分析】(I)根据三线合一得出AO⊥AD,利用面面垂直的性质即可得出AO⊥平面ABCD;(II)以O为原点建立空间直角坐标系,求出平面PBE和平面ABE的法向量,则两法向量夹角的余弦的绝对值为二面角的余弦值;(III)假设存在符合条件的点M(1,x,0),求出平面PAD的法向量,则|cos<,>|=,解方程得出x,根据x的范围判断.【解答】解:(Ⅰ)∵△PAD是等边三角形,O为AD的中点,∴PO⊥AD,∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PO⊂平面PAD,∴PO⊥平面ABCD.(Ⅱ)取BC的中点F,∵底面ABCD是正方形,∴OF⊥AD,∴PO,OF,AD两两垂直.以O为原点,以OA、OF、OP为坐标轴建立空间直角坐标系如图:则O(0,0,0),P(0,0,),B(1,2,0),E(﹣1,1,0),∴=(1,﹣1,),=(2,1,0),=(0,0,).显然平面EBA的法向量为=(0,0,).设平面PBE的法向量为=(x,y,z),则,∴,令x=1,得=(1,﹣2,﹣).∴=﹣3,||=2,||=,∴cos<>=﹣.∵二面角P﹣EB﹣A为锐角,∴二面角P﹣EB﹣A的余弦值为.(Ⅲ)设在线段AB上存在点M(1,x,0)(0<x≤2)使线段PM与平面PAD所在平面成30°角,∵平面PAD的法向量为=(0,2,0),=(1,x,﹣),∴cos<,>==.∴sin30°==,解得,符合题意.∴在线段AB上存在点M,当线段时,PM与平面PAD所在平面成30°角.24.一个口袋中装有大小相同的3个白球和1个红球,从中有放回地摸球,每次摸出一个,若有3次摸到红球即停止.(1)求恰好摸4次停止的概率;(2)记4次之内(含4次)摸到红球的次数为X,求随机变量X的分布列.【考点】离散型随机变量及其分布列;古典概型及其概率计算公式.【分析】(1)设事件“恰好摸4次停止”的概率为P,利用n次独立重复试验中事件A恰好发生k次的概率计算公式能求出恰好摸4次停止的概率.(2)由题意,得X=0,1,2,3,分别求出相应的概率,由此能求出X的分布列.【解答】解:(1)设事件“恰好摸4次停止”的概率为P,则.…(2)由题意,得X=0,1,2,3,,,,,…Xxx10月20日。
精品2019届高三数学上学期第一次教学质量检查考试试题 理(含解析)
蚌埠市2019届高三年级第一次教学质量检查考试数学(理工类)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合,,若,则()A. B. C. D.【答案】A【解析】依题意可知是集合的元素,即,解得,由,解得.2. 设是复数的共轭复数,且,则()A. 3B. 5C.D.【答案】D【解析】,故.3. 若满足约束条件则的最小值为()A. -3B. 0C. -4D. 1【答案】A【解析】画出可行域如下图所示,由图可知目标函数在点处取得最小值为.4. “直线不相交”是“直线为异面直线”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B5. 已知等差数列的前项和为,且满足,,则()A. 4B. 5C. 6D. 7【答案】B【解析】设等差数列的公差为,,联立解得,则,故选B.6. 已知,且,则()A. B. C. D.【答案】A【解析】,由于角为第三象限角,故,.7. 已知,则()A. 18B. 24C. 36D. 56【答案】B【解析】,故,.8. 已知,下列程序框图设计的是求的值,在“”中应填的执行语句是()A. B. C. D.【答案】A【解析】不妨设,要计算,首先,下一个应该加,再接着是加,故应填.9. 如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则它的体积可能为()A. B. C. D.【答案】A【解析】由三视图可知,该几何体由半个圆锥和一个三棱锥组合而成.故体积为.10. 已知为双曲线的左焦点,直线经过点,若点,关于直线对称,则双曲线的离心率为()A. B. C. D.【答案】C【解析】∵点,关于直线对称,,又∵直线经过点,∴直线的方程为,的中点坐标为,∴,化简整理得,即,,解得,(舍去),故选C.11. 已知,顺次连接函数与的任意三个相邻的交点都构成一个等边三角形,则()A. B. C. D.【答案】B【解析】当正弦值等于余弦值时,函数值为,故等边三角形的高为,由此得到边长为,边长即为函数的周期,故.【点睛】本题主要考查三角函数的图像与性质.首先大致画出正弦函数图像和余弦函数图像,通过观察可知可知,三角形左右两个顶点之间为一个周期,故只需求出等边三角形的边长即可.再根据可知等边三角形的高,由此求得边长即函数的周期,再由周期公式求得的值.12. 定义在上的奇函数满足:当时,(其中为的导函数).则在上零点的个数为()A. 4B. 3C. 2D. 1【答案】D【解析】构造函数,,由于当时,,故当时,为增函数.又,所以当时,成立,由于,所以,由于为奇函数,故当时,,即只有一个根就是.【点睛】本题考查了零点的判断,考查了函数的奇偶性,和利用导数来研究函数的单调性.本题的难点在于构造新函数,然后利用导数来判断新函数的最值,进而判断出的取值.如何构造函数,主要靠平时积累,解题时要多尝试.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知,是两个不同的平面向量,满足:,则__________.【答案】【解析】,,解得,当时,两个是相同的向量,故舍去,所以.14. 已知函数图象关于原点对称.则实数的值为__________.【答案】【解析】依题意有,,,故.15. 已知是抛物线的焦点,是上一点,是坐标原点,的延长线交轴于点,若,则点的纵坐标为__________.【答案】【解析】由于三角形为直角三角形,而,即为中点,设,而,故,代入抛物线方程得,即点的纵坐标为.【点睛】本题主要考查直线和抛物线的位置关系,考查直角三角形斜边的中线等于斜边一半这一几何性质.首先根据题目所给的条件画出图像,突破口就在题目所给条件,这就联想到直角三角形斜边中线等于斜边一半这一几何性质,可得是的中点,设出坐标,代入抛物线方程即可得到所求的结果.16. 已知满足,,,则__________.(用表示)【答案】【解析】依题意,与已知条件相加可得.....................三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在中,角的对边分别为,且,(1)求的面积;(2)若,求的周长.【答案】(1) (2)的周长为【解析】【试题分析】(1)根据余弦定理,由得到,,在利用三角形面积公式可求得面积.(2)利用三角形内角和定理,有,展开后结合已知条件可求得.利用正弦定理求得,利用配方法可求得由此求得周长为.【试题解析】(1)∵,∴,即,∴;(2)∵,∴由题意,∴,∵,∴,∴∵,∴.∴的周长为.18. 如图,在四棱锥中,是等边三角形,,.(1)求证:平面平面;(2)若直线与所成角的大小为60°,求二面角的大小.【答案】(1)见解析(2)90°【解析】【试题分析】(1)由于是等边三角形,结合勾股定理,可计算证明三条直线两两垂直,由此证得平面,进而得到平面平面.(2)根据(1)证明三条直线两两垂直,以为空间坐标原点建立空间直角坐标系,利用和所成角为计算出点的坐标,然后通过平面和平面的法向量计算二面角的余弦值并求得大小.【试题解析】(1)∵,且是等边三角形∴,,均为直角三角形,即,,∴平面∵平面∴平面平面(2)以为单位正交基底,建立如图所示的空间直角坐标系.令,,∴,,,.设,则,.∵直线与所成角大小为60°,所以,即,解得或(舍),∴,设平面的一个法向量为.∵,,则即令,则,所以.∵平面的一个法向量为,∵,,则即令,则,,∴.∴,故二面角的大小为90°.19. 为监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取10件零件,度量其内径尺寸(单位:).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的内径尺寸服从正态分布. (1)假设生产状态正常,记表示某一天内抽取的10个零件中其尺寸在之外的零件数,求及的数学期望;(2)某天正常工作的一条生产线数据记录的茎叶图如下图所示:①计算这一天平均值与标准差;②一家公司引进了一条这种生产线,为了检查这条生产线是否正常,用这条生产线试生产了5个零件,度量其内径分别为(单位:):85,95,103,109,119,试问此条生产线是否需要进一步调试,为什么?参考数据:,,,,,,,.【答案】(1) (2)①②生产线异常,需要进一步调试【解析】【试题分析】(1)依题意可知满足二项分布,根据二项分布的公式计算出,然后用减去这个值记得到的值.利用二项分布的期望公式,直接计算出的值.(2)分别计算出均值和标准差,计算的范围,发现不在这个范围内,根据原理可知需要进一步调试.【试题解析】(1)由题意知:或,,∵,∴;(2)①所以②结论:需要进一步调试.理由如下:如果生产线正常工作,则服从正态分布,零件内径在之外的概率只有0.0026,而根据原则,知生产线异常,需要进一步调试.20. 已知椭圆经过点,离心率.(1)求的方程;(2)设直线经过点且与相交于两点(异于点),记直线的斜率为,直线的斜率为,证明:为定值.【答案】(1) (2)见解析【解析】【试题分析】(1)依题意可知,解方程组可求得椭圆的标准方程.(2)当直线斜率斜率不存在时,不符合题意.当斜率存在时,设出直线的方程,联立直线的方程和椭圆的方程,写出韦达定理,计算的值,化简后结果为,由此证明结论成立.【试题解析】(1)因为椭圆,经过点,所以.又,所以,解得.故而可得椭圆的标准方程为:.(2)若直线的斜率不存在,则直线的方程为,此时直线与椭圆相切,不符合题意.设直线的方程为,即,联立,得.设,,则所以为定值,且定值为-1.【点睛】本题主要考查椭圆标准方程的求法,考查直线与圆锥曲线位置关系,考查一元二次方程根与系数关系.椭圆标准方程的参数有两个,要确定这两个参数,需要有两个条件,结合恒等式,列方程组来求的椭圆的标准方程.考查直线和圆锥曲线位置关系,要注意直线斜率不存在的情况.21. 已知函数,(其中为自然对数的底数,).(1)若函数的图象与函数的图象相切于处,求的值;(2)当时,若不等式恒成立,求的最小值.【答案】(1) ,(2)【解析】【试题分析】(1)依题意求得切点为,斜率为,由此列方程组可求得的值.(2)将原不等式等价变形为,构造函数,利用导数求得的最大值为,由此求得的最小值. 【试题解析】(1),.(过程略)(2)令,则,当时,单调递增,而,∴时,不合题意当时,令,则,∵为减函数,∴时,,单调递增,时,,单调递减,∴,即.(△)但,等号成立当且仅当且.故(△)式成立只能即.【点睛】本题主要考查导数与切线有关的知识.考查利用导数解不等式恒成立问题.解决导数与切线有关的问题,关键点在于切点和斜率,联络点在于切点的横坐标,以此建立方程组,求得未知参数的值.不等式恒成立问题往往可以考虑构造函数法,利用函数的最值来求解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程已知曲线的极坐标方程为,的参数方程为(为参数).(1)将曲线与的方程化为直角坐标系下的普通方程;(2)若与相交于两点,求.【答案】(1) (2)【解析】【试题分析】(1)对方程两边乘以,由此求得曲线的普通方程.对的参数方程利用加减消元法可求得的普通方程.(2)将的参数方程代入,利用韦达定理和直线参数的几何意义,来求的弦长的值. 【试题解析】(1)曲线的普通方程为,曲线的普通方程为(2)将的参数方程代入的方程,得,得:解得,∴.23. 选修4-5:不等式选讲已知.(1)当时,求不等式的解集;(2)若函数与的图象恒有公共点,求实数的取值范围.【答案】(1) (2)【解析】【试题分析】(1)利用零点分段法,去绝对值,分别求解每一段的解集.由此计算不等式的解集.(2)先求得函数的最小值,求得函数的最大值,比较这两个数值的大小,即可求得有公共点时,实数的取值范围. 【试题解析】(1)当时,,由得,;(2),该二次函数在处取得最小值,因为函数,在处取得最大值故要使函数与的图象恒有公共点,只需要,即.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省黑河市逊克县第一中学2019届高三数学上学期学期初考试
试题理
一、选择题(每小题5分,共12小题60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
把答案填涂在答题卡上。
)
1)
2(为虚数单位),则的共轭复数为()
3)
4、已知命题:命题,
则实数的取值范围为( )
5则,,的大小关系是( ).
6、下列函数中,( ).
7)
8、已知定义在则
( )
A. B. C.
9
.若该公司在这两地共销售辆车,则能获得的最大
利润为()
10、对任意实数,,则实数的取值范围是( )
11,,则
( )
12、已知定义在上的函数,
使得
则实数的取值范围为( )
二、填空题(每小题5分,共4小题20分。
把答案填写在答题卡相应题号后的横线上。
)
13__________.
14、则实数的值为__________.
15
则的取值范围是__________.
16
在上有三个零点
其中正确结论的序号是__________.(写出所有正确结论的序号)
三、解答题(解答应写出文字说明、证明过程或演算步骤)
17、(本小题满分12.0分)
的内角,,的对边分别为,,,
的大小;
.
18、(本小题满分12.0分)
心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中用分层抽样的方法抽取50名同学(男30,女20),给所选的同学几何题和代数题各一题,让
选题情况如表(单位:人).
.
(2)经过多次测试后,,乙每次解答一道几何题
,现甲乙解同一道几何题,求乙比甲先解答完成的概率.
(3)现从选择做几何题的名女生中任意抽取两人对她们的大题情况进行全程研究,记甲、乙两女生被抽到的人数为,求的分布列及数学期
附表及公式
19、(本小题满分12.0分)
如图所示,
.
(1
(2.
20、(本小题满分12.0分)
的圆心为.
(1且与圆相切的直线的方程;
(2)且斜率为的直线与圆
. 21、(本小题满分12.0分)
(1
间和极小值(其中为自然对数的底数);
(2恒成立,求的取值范围。
请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号。
22、(本小题满分10.0分)
,已知直线(为参数).在以原点
为极点,轴正半轴为极轴的极坐标系中,已知圆
(1)写出直线的普通方程和圆的平面直角坐标方程;
(2)若点圆与直线交于,两点,.
23、(本小题满分10.0分)
(1
(21,求的值
高三开学初理数测试卷答案解析
第1题答案
D
第1题解析
D。
第2题答案
D
第2题解析
第3题答案
A
第3题解析
A.
第4题答案
A
第4题解析
,则、均为假命题,
.,
,解得
综上
第5题答案
D
第5题解析
,所以
而所以.
第6题答案
D
第6题解析
A中
上是单调递增的,
,B错误
,
,故D正确.
第7题答案
A
第7题解析
B,C
D,故选A.
第8题答案
A
第8题解析
,∴
是周期为的周期函数,
选A.
第9题答案
B
第9题解析
最大,但
第10题答案
A
第10题解析
∵对任意实数,,
,
,等号成立,
故所求出实数故选A.
第11题答案
B
第11题解析
,
,,
数,再结合
故选:B.
第12题答案
D
第12题解析
,
时,
,时,则
使得
使得
所以故答案为
第13题答案
第13题解析
第14题答案
第14题解析
解得:
第15题答案
第15题解析
成立,可知函数在上单调递增,所以有
第16题答案
①②③
第16题解析
②正确。
对于④,
只有一个零点。
综上①②③正确。
第17题答案
第17题解析
所以
是
所以
所以
第18题答案
见解析
第18题解析
(1)由表中数据,得:
.
(2),
如图所示:
设事件
(3)由题意知在名女生中任意抽取人,,
,
,, 的可能取值有
的分布列为
第19题答案
见解析
第19题解析
(1)
(2
由(1
以为原点,以的方向为轴正方向建立空间直角坐标系,如图所示,
第20题答案
(1
(2)-1
第20题解析
(1)由题意知,圆心坐标为2,
当切线斜率存在时,设切线方程为:
(2)假设存在满足条件的实数,设
1
第21题答案
(1 2
(2
第21题解析
(1
0,
.故的单调递减区间为,极小值为2
(2)条件等价于对任意恒成立,
在上单调递减,
在上恒成立,
恒成立,
(对仅在时成立),
故的取值范围是
第22题答案
略
第22题解析
(1)得直线
得圆
(2)把直线的参数方程代入圆的平面直角坐标方程,即
故可设,是上述方程的两个实数根.
又直线, ,两点对应的参数分别为, ,
第23题答案
(1
(2
第23题解析
(1
(2a和-1 距离的和的点的集合,函数
的最小值为和之间的距离即。