高中及考研复习三角函数万能公式大全

合集下载

高中三角函数公式(复习必备)

高中三角函数公式(复习必备)
三角函数公式
两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = tan(A-B) = cot(A+B) = cot(A-B) = 倍角公式 tan2A = Sin2A=2SinA•CosA Cos2A = Cos2A-Sin2A=2Cos2A-1=1-2sin2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana·tan(+a)·tan(-a) 半角公式 sin()= cos()= tan()= cot()= tan()== 和差化积 sina+sinb=2sincos sina-sinb=2cossin cosa+cosb = 2coscos cosa-cosb = -2sinsin tana+tanb= 积化和差 sinasinb = -[cos(a+b)-cos(a-b)]
tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: ±α及±α与α的三角函数值之间的关系: sin(+α)= cosα cos(+α)= -sinα tan(+α)= -cotαБайду номын сангаасcot(+α)= -tanα sin(-α)= cosα cos(-α)= sinα tan(-α)= cotα cot(-α)= tanα sin(+α)= -cosα cos(+α)= sinα tan(+α)= -cotα cot(+α)= -tanα sin(-α)= -cosα cos(-α)= -sinα tan(-α)= cotα cot(-α)= tanα (以上k∈Z) 这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =×sin 三角函数公式证明 公式表达式 乘法与因式分解 a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b) (a2+ab+b2) 三角不等式 |a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解 -b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a 根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4a=0 注:方程有相等的两实根 b2-4ac>0 注:方程有一个实根 b2-4ac<0 注:方程有共轭复数根 三角函数公式

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

三角函数公式

1.正弦定理:

A a sin =

B b sin =C

c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos

bc

a c

b A 2cos 2

22-+=

3.S ⊿=

21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R

abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C

B A c sin 2sin sin 2=pr=))()((c p b p a p p ---

(其中)(2

1

c b a p ++=, r 为三角形内切圆半径)

4.诱导公试

注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加

上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限

注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限

5.和差角公式

①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β

αβ

αβαtg tg tg tg tg ⋅±=

± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±

6.二倍角公式:(含万能公式)

①θ

θ

θθθ212cos sin 22sin tg tg +=

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

三角函数公式

1.正弦定理:

A a sin =

B b sin =C

c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2

=b

2

+c

2

-2bc A cos b

2

=a

2

+c

2

-2ac B cos

c 2

=a 2

+b 2

-2ab C cos bc

a c

b A 2cos 2

22-+=

3.S ⊿=

21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =R

abc 4=2R 2A sin B sin C sin =A

C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p ---

(其中)(21

c b a p ++=, r 为三角形内切圆半径)

4.诱导公试

注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,

原三角函数值的符号;即:函数名不变,符号看象限

注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限

5.和差角公式

①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β

αβ

αβαtg tg tg tg tg ⋅±=

± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±

6.二倍角公式:(含万能公式)

①θ

θ

θθθ212cos sin 22sin tg tg +=

高中数学三角函数万能公式

高中数学三角函数万能公式

高中数学三角函数万能公式

三角函数是高中数学学习的一个重点,那幺,数学三角函数有哪些万能公式呢?下面小编整理了一些相关信息,供大家参考!

1 三角函数有哪些万能公式一、(1)(sinα) +(cosα) =1

(2)1+(tanα) =(secα)

(3)1+(cotα) =(cscα)

证明下面两式,只需将一式,左右同除(sinα) ,第二个除(cosα) 即可

(4)对于任意非直角三角形,总有

tanA+tanB+tanC=tanAtanBtanC

二、设tan(A/2)=t

sinA=2t/(1+t ) (A≠2kπ+π,k∈Z)

tanA=2t/(1-t ) (A≠2kπ+π,k∈Z)

cosA=(1-t )/(1+t ) (A≠2kπ+π k∈Z)

就是说sinA.tanA.cosA 都可以用tan(A/2)来表示,当要求一串函数式最值的

时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。三、sinα=[2tan(α/2)]/{1+[tan(α/2)] }

cosα=[1-tan(α/2) ]/{1+[tan(α/2)] }

tanα=[2tan(α/2)]/{1-[tan(α/2)] }

将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.

1 三角函数相关公式有哪些1.半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

(完整版)高中数学-三角函数公式大全

(完整版)高中数学-三角函数公式大全

三角公式汇总

一、任意角的三角函数

在角α的终边上任取..一点),(y x P ,记:22y x r +=,

正弦:r y =αsin 余弦:r x

=αcos 正切:x y =αtan 余切:y x =αcot 正割:x

r =

αsec 余割:y

r =

αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..

线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线. 二、同角三角函数的基本关系式

倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。 商数关系:αααcos sin tan =

α

αsin cos cot =. 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+. 三、诱导公式

⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..

锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵

απ

+2

απ

-2

απ+23、απ

-2

3的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式

βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-

三角函数公式大全(诱导、和差及万能)(可编辑修改word版)

三角函数公式大全(诱导、和差及万能)(可编辑修改word版)

三角函数诱导公式

目录:

诱导公式的本质

常用的诱导公式

其他三角函数知识

公式推导过程

诱导公式的本质

常用的诱导公式

其他三角函数知识

公式推导过程

诱导公式的本质

所谓三角函数诱导公式,就是将角n·(π/2)±α 的三角函数转化为角α 的三角函数。

常用的诱导公式

公式一:设α 为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαk∈z

cos(2kπ+α)=cosαk∈z

tan(2kπ+α)=tanαk∈z

cot(2kπ+α)=cotαk∈z

sec(2kπ+α)=secαk∈z

csc(2kπ+α)=cscαk∈z

公式二:设α 为任意角,π+α 的三角函数值与α 的三角函数值之间的关系:sin(π+α)=-sinα

cos(π+α)=-cosα

tan(π+α)=tanα cot

(π+α)=cotα

sec(π+α)=-secα

csc(π+α)=-cscα

公式三:任意角α 与-α 的三角函数值之间的关系:

sin(-α)=-sinα

cos(-α)=cosα tan

(-α)=-tanα

cot(-α)=-cotα

sec(-α)=secα

csc(-α)=-cscα

公式四:利用公式二和公式三可以得到π-α 与α 的三角函数值之间的关系:sin(π-α)=sinα cos

(π-α)=-cosα tan

(π-α)=-tanα cot

(π-α)=-cotα

sec(π-α)=-secα

csc(π-α)=cscα

公式五:利用公式一和公式三可以得到2π-α 与α 的三角函数值之间的关系:sin(2π-α)=-sinα

高中三角函数公式大全(考试利器学霸必备)

高中三角函数公式大全(考试利器学霸必备)

考试利器学霸必备

高中三角函数公式大全

2009年07月12日 星期日 19:27

三角函数公式

两角和公式

sin(A+B) = sinAcosB+cosAsinB

sin(A-B) = sinAcosB-cosAsinB

cos(A+B) = cosAcosB-sinAsinB

cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB

-1tanB tanA + tan(A-B) =tanAtanB

1tanB tanA +- cot(A+B) =cotA

cotB 1-cotAcotB + cot(A-B) =cotA

cotB 1cotAcotB -+ 倍角公式 tan2A =A

tan 12tanA 2- Sin2A=2SinA•CosA

Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

三倍角公式

sin3A = 3sinA-4(sinA)3

cos3A = 4(cosA)3-3cosA

tan3a = tana ·tan(3π+a)·tan(3

π-a) 半角公式 sin(2A )=2

cos 1A - cos(2A )=2

cos 1A + tan(2A )=A

A cos 1cos 1+- cot(

2A )=A A cos 1cos 1-+ tan(2

A )=A A sin cos 1-=A A cos 1sin + 和差化积

sina+sinb=2sin

2b a +cos 2

b a - sina-sinb=2cos 2b a +sin 2

高中三角函数公式大全必背知识点

高中三角函数公式大全必背知识点

高中三角函数公式大全必背知识

点(总5页)

--本页仅作为文档封面,使用时请直接删除即可--

--内页可以根据需求调整合适字体及大小--

三角函数公式

两角和公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB

tan(A+B) =tanAtanB -1tanB

tanA +

tan(A-B) =tanAtanB 1tanB

tanA +-

cot(A+B) =cotA cotB 1

-cotAcotB +

cot(A-B) =cotA

cotB 1

cotAcotB -+

倍角公式

tan2A =A

tan 12tanA

2

- Sin2A=2SinA •CosA

Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A

三倍角公式

sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA

tan3a = tana ·tan(3π+a)·tan(3

π

-a)

半角公式 sin(

2A )=2cos 1A - cos(

2A )=2cos 1A + tan(

2A )=A A cos 1cos 1+- cot(2A )=A

A cos 1cos 1-+ tan(

2

A )=A A sin cos 1-=A A cos 1sin +

和差化积

sina+sinb=2sin

2b a +cos 2b

a - sina-sinb=2cos 2

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)

高中三角函数公式(一): 高中数学必修4三角函数公式大全

诱导公式

sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec

(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的

sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)

=tanα

sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα

sin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanα

sin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα

两角和与差的三角函数:

cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-

β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-

tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

(高考。考研)三角函数公式大全

(高考。考研)三角函数公式大全

²两角和与差的三角函数

cos(α+β)=cosα²cosβ-sinα²sinβ

cos(α-β)=cosα²cosβ+sinα²sinβ

sin(α±β)=sinα²cosβ±cosα²sinβ

tan(α+β)=(tanα+tanβ)/(1-tanα²tanβ)

tan(α-β)=(tanα-tanβ)/(1+tanα²tanβ)

²和差化积公式:

sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

²积化和差公式:

sinα²cosβ=(1/2)[sin(α+β)+sin(α-β)]

cosα²sinβ=(1/2)[sin(α+β)-sin(α-β)]

cosα²cosβ=(1/2)[cos(α+β)+cos(α-β)]

sinα²sinβ=-(1/2)[cos(α+β)-cos(α-β)]

²倍角公式:

sin(2α)=2sinα²cosα=2/(tanα+cotα)

cos(2α)=(cosα)^2-(sinα)^2=2(cosα)^2-1=1-2(sinα)^2

tan(2α)=2tanα/(1-tan^2α)

cot(2α)=(cot^2α-1)/(2cotα)

sec(2α)=sec^2α/(1-tan^2α)

csc(2α)=1/2*secα²cscα

²三倍角公式:

sin(3α) = 3sinα-4sin^3α= 4sinα²sin(60°+α)sin(60°-α)

高考数学常用三角函数公式总结_高考数学复习指导整理

高考数学常用三角函数公式总结_高考数学复习指导整理

高考数学常用三角函数公式总结_高考数学复习指导

整理

数学学问点许多,只有进行(总结),才能发觉重点难点,下面就是我给大家带来的,盼望大家喜爱!

高考数学公式总结

高考数学三角函数公式

sinα=∠α的对边/斜边

cosα=∠α的邻边/斜边

tanα=∠α的对边/∠α的邻边

cotα=∠α的邻边/∠α的对边

倍角公式

Sin2A=2SinA?CosA

Cos2A=CosA2-SinA2=1-2SinA2=2CosA2-1

tan2A=(2tanA)/(1-tanA2)

(注:SinA2是sinA的平方sin2(A))

三倍角公式

第1页/共11页

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a=tana·tan(π/3+a)·tan(π/3-a)

三倍角公式推导

sin3a=sin(2a+a)=sin2acosa+cos2asina

三角函数帮助角公式

Asinα+Bcosα=(A2+B2)’(1/2)sin(α+t),其中sint=B/(A2+B2)’(1/2)

cost=A/(A2+B2)’(1/2)

tant=B/A

Asinα+Bcosα=(A2+B2)’(1/2)cos(α-t),tant=A/B 降幂公式

sin2(α)=(1-cos(2α))/2=versin(2α)/2

cos2(α)=(1+cos(2α))/2=covers(2α)/2

tan2(α)=(1-cos(2α))/(1+cos(2α))

三角函数推导公式

第2页/共11页

高中三角函数公式大全(超全)

高中三角函数公式大全(超全)

高中3角函数公式大全

两角和公式

sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB

cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

tan(A+B)=tanAtanB -1tanB tanA +tan(A-B)=tanAtanB

1tanB tanA +-倍角公式tan2A =A

tan 12tanA 2-Sin2A=2SinA•CosA Cos2A =Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 3倍角公式

sin3A =3sinA-4(sinA)3cos3A =4(cosA)3-3cosA

半角公式

sin(2A )=2

cos 1A -cos(2A )=2cos 1A +tan(2A )=A A cos 1cos 1+-cot(2A )=A A cos 1cos 1-+tan(2A )=A A sin cos 1-=A

A cos 1sin +和差化积

sina+sinb=2sin

2b a +cos 2b a -sina-sinb=2cos 2b a +sin 2

b a -cosa+cosb =2cos 2b a +cos 2b a -cosa-cosb =-2sin 2b a +sin 2

b a -tana+tanb=b

a b a cos cos )sin(+积化和差

sinasinb =-21[cos(a+b)-cos(a-b)]cosacosb =2

1[cos(a+b)+cos(a-b)]sinacosb =21[sin(a+b)+sin(a-b)]cosasinb =2

高考数学复习三角函数公式大全

高考数学复习三角函数公式大全

三角公式汇总

一、任意角的三角函数

在角α的终边上任取..

一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r

x =αcos 正切:x y =αtan 余切:y x =

αcot 正割:x r =αsec 余割:y

r =

αcsc 二、同角三角函数的基本关系式 倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。 商数关系:αααcos sin tan =,α

ααsin cos cot =。 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式

⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..

锐角时原函数值的符号。(口诀:函数名不变,符号看象限) ⑵απ+2、απ-2、απ+23、απ-2

3的三角函数值,等于α的异名函数值,前面加上一个把α看成..

锐角时原函数值的符号。(口诀:函数名改变,符号看象限)

四、和角公式和差角公式

βαβαβαsin cos cos sin )sin(⋅+⋅=+

βαβαβαsin cos cos sin )sin(⋅-⋅=-

βαβαβαsin sin cos cos )cos(⋅-⋅=+

βαβαβαsin sin cos cos )cos(⋅+⋅=-

βαβαβαtan tan 1tan tan )tan(⋅-+=

+ β

αβαβαtan tan 1tan tan )tan(⋅+-=- 五、二倍角公式

高中三角函数万能公式

高中三角函数万能公式

高中三角函数万能公式sin α=∠α的对边 / 斜边

cos α=∠α的邻边 / 斜边

tan α=∠α的对边/ ∠α的邻边

cot α=∠α的邻边/ ∠α的.对边

倍角公式

sin2a=2sina?cosa

tan2a=(2tana)/(1-tana^2)

(注:sina^2 是sina的平方 sin2(a) )

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin3a

=sin(2a+a)

=sin2acosa+cos2asina

辅助角公式

asinα+bcosα=(a^2+b^2)^(1/2)sin(α+t),其中

sint=b/(a^2+b^2)^(1/2)

cost=a/(a^2+b^2)^(1/2)

tant=b/a

asinα+bcosα=(a^2+b^2)^(1/2)cos(α-t),tant=a/b 降幂公式

sin^2(α)=(1-cos(2α))/2=versin(2α)/2

cos^2(α)=(1+cos(2α))/2=covers(2α)/2

tan^2(α)=(1-cos(2α))/(1+cos(2α))

推导公式

tanα+cotα=2/sin2α

tanα-cotα=-2cot2α

1+cos2α=2cos^2α

1-cos2α=2sin^2α

1+sinα=(sinα/2+cosα/2)^2

=3sina-4sina

cos3a

=cos(2a+a)

考研三角函数公式大全

考研三角函数公式大全

三角函数相关公式大全

一、任意角的三角函数

在角α的终边上任取..

一点),(y x P ,记:22y x r +=,

正弦:r y =

αsin 余弦:r x

=αcos 正切:x y =αtan 余切:y x

=αcot

正割:x r =αsec 余割:y

r

=αcsc

注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有

关的有向..

线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。 二、同角三角函数的基本关系式

倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。

商数关系:αααcos sin tan =

,αα

αsin cos cot =。 平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα2

2csc cot 1=+。

三、诱导公式

⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名不变,符号看象限)

απ

+2

απ

-2

απ+23、απ

-2

3的三角函数值,等于α的异名函数值,前面加上一个把α看成..

锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式

βαβαβαsin cos cos sin )sin(⋅+⋅=+

βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-

考研三角函数公式大全

考研三角函数公式大全

三角函数相关公式大全

一、任意角的三角函数

在角α的终边上任取..一点),(y x P ,记:22y x r +=,

正弦:r y =

αsin 余弦:r x

=αcos 正切:x

y

=

αtan 余切:y x =αcot

正割:x

r

=

αsec 余割:y

r =

αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..

线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。 二、同角三角函数的基本关系式

倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。 商数关系:αααcos sin tan =,α

α

αsin cos cot =。 平方关系:1cos sin

22

=+αα,αα22sec tan 1=+,αα22csc cot 1=+。

三、诱导公式

⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。(口诀:函数名不变,符号看象限)

απ

+2

απ

-2

απ+23、απ

-2

3的三角函数值,等于α的异名函数值,前面加上一个把α看成..

锐角时原函数值的符号。(口诀:函数名改变,符号看象限) 四、和角公式和差角公式

βαβαβαsin cos cos sin )sin(⋅+⋅=+

βαβαβαsin cos cos sin )sin(⋅-⋅=-

βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

倒数关系:

tanα ·cotα=1

sinα ·cscα=1

cosα ·secα=1

商的关系:

sinα/cosα=tanα=secα/cscα

cosα/sinα=cotα=cscα/secα

平方关系:

sin^2(α)+cos^2(α)=1

1+tan^2(α)=sec^2(α)

1+cot^2(α)=csc^2(α)

平常针对不同条件的常用的两个公式

sin^2(α)+cos^2(α)=1

tan α *cot α=1

一个特殊公式

(s ina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)

证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)

坡度公式

我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比),用字母i表示,即i=h / l, 坡度的一般形式写成l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作a(叫做坡角),那么i=h/l=tan a.

锐角三角函数公式

正弦:sin α=∠α的对边/∠α 的斜边

余弦:cos α=∠α的邻边/∠α的斜边

正切:tan α=∠α的对边/∠α的邻边

余切:cot α=∠α的邻边/∠α的对边

二倍角公式

正弦

sin2A=2sinA·cosA

余弦

1.Cos2a=Cos^2(a)-Sin^2(a)

2.Cos2a=1-2Sin^2(a)

3.Cos2a=2Cos^2(a)-1

即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)

正切

tan2A=(2tanA)/(1-tan^2(A))

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin(3a)

=sin(a+2a)

=sin2acosa+cos2asina

=2sina(1-sin²a)+(1-2sin²a)sina

=3sina-4sin^3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos²a-1)cosa-2(1-cos^a)cosa

=4cos^3a-3cosa

sin3a=3sina-4sin^3a

=4sina(3/4-sin²a)

=4sina[(√3/2)²-sin²a]

=4sina(sin²60°-sin²a)

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos^3a-3cosa

=4cosa(cos²a-3/4)

=4cosa[cos²a-(√3/2)^2]

=4cosa(cos²a-cos²30°)

=4cosa(cosa+cos30°)(cosa-cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α))

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中

三倍角公式

sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α)

tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)

半角公式

s in^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα)

tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα

万能公式

sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]

tanα=2tan(α/2)/[1-tan^2(α/2)]

其他

sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0

cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及

sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0 四倍角公式

sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角公式

sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

六倍角公式

sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))

tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)

七倍角公式

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

八倍角公式

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tan A^8)

九倍角公式

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84 *tanA^6+9*tanA^8)

十倍角公式

相关文档
最新文档