数学建模-动态规划
整数规划和动态规划-数学建模
(1.13), (1.14)
max z = ∑ (0.487xi1 + 0.520 xi2 + 0.613 xi3 + 0.720 xi 4 + 0.487 xi 5 + 0.520 xi 6 + 0.640 xi 7 )
i =1
2
于是成为一个有 13 个不等式约束 14 个自然条件的整数线性规划模型,目标是函数 的最大化. (3)问题求解 1) 此模型可用分枝定界法,割平面法求最优解,但用部分枚举法比较便当. 部分枚举法————隐枚举法(Implicit Enumeration) 2) 用 Lingo 软件求解 max=0.487*x11+0.520*x12+0.613*x13+0.720*x14+0.487*x15+0.520*x16+0.640*x17+ 0.487*x21+0.520*x22+0.613*x23+0.720*x24+0.487*x25+0.520*x26+0.640*x27; x11+x21<=8; x12+x22<=7; x13+x23<=9; x14+x24<=6; x15+x25<=6; x16+x26<=4; x17+x27<=8; 2*x11+3*x12+x13+0.5*x14+4*x15+2*x16+x17<=40;
西安理工大学理学院
王秋萍
x13 + x23 ≤ 9 x14 + x24 ≤ 6 x15 + x25 ≤ 6 x16 + x26 ≤ 4 x17 + x27 ≤ 8
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划是一种常用的优化方法,可以用来求解线性规划问题。
线性规划是一种数学建模方法,用于在给定的一组约束条件下,寻找使目标函数最大(或最小)的变量值。
本文将介绍动态规划方法在解决线性规划问题中的应用。
一、线性规划问题的定义和形式线性规划问题可以用下列形式来描述:目标函数:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ为目标函数的系数,x₁、x₂、...、xₙ为变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的常数。
目标是找到使目标函数最大(或最小)的变量值。
二、动态规划方法求解线性规划问题的基本思想动态规划方法可以将线性规划问题转化为一个多阶段决策问题,并通过递推的方式求解最优解。
具体步骤如下:1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
3. 初始化:确定初始状态和初始条件。
4. 递推求解:根据状态转移方程,逐步计算得到最优解。
5. 回溯得到最优解:根据递推过程中记录的状态,回溯得到最优解。
三、动态规划方法求解线性规划问题的具体步骤1. 将线性规划问题转化为标准形式:将不等式约束转化为等式约束,并引入松弛变量。
例如,将约束条件 a₁₁x₁ + a₁₂x₂ ≤ b₁转化为 a₁₁x₁ + a₁₂x₂ + x₃ = b₁,其中 x₃为松弛变量。
2. 构建动态规划模型:定义状态和状态转移方程。
定义状态:设 f(i,j) 表示前 i 个约束条件中,使得目标函数最大(或最小)的变量值。
状态转移方程:f(i,j) = max/min { f(i-1,j), f(i-1,j-aᵢ₋₁₁x₁ - aᵢ₋₁₂x₂) +cᵢ₋₁x₁ + cᵢ₋₁x₂ }其中,f(i-1,j) 表示不使用第 i 个约束条件时的最优解,f(i-1,j-aᵢ₋₁₁x₁ -aᵢ₋₁₂x₂) + cᵢ₋₁x₁ + cᵢ₋₁x₂表示使用第 i 个约束条件时的最优解。
动态规划算法的实现及其应用
动态规划算法的实现及其应用动态规划,英文缩写为 DP,是一种算法设计技术,通常用于求解最优化问题。
动态规划是解决一类特殊问题的有效方法。
它通过将原问题转化为若干个子问题的方式,逐个求解这些子问题,最终得到原问题的解。
这种方式具有很强的适用性,能够解决很多实际问题。
动态规划的实现动态规划算法的实现基本上可以分为以下两个步骤:1. 确定状态:将原问题转化为若干个子问题,定义合适的状态量来表示子问题。
状态的定义应该满足无后效性,即状态一旦确定,之后的状态转移不会再受之前的状态影响。
2. 确定状态转移方程:定义状态转移方程,通过状态之间的转移来逐步求解原问题。
状态转移方程可以通过一些简单的规律得到,也可以通过数学方法进行求解。
动态规划的应用动态规划算法有很多应用,下面列举一些常见的应用场景。
1. 最长公共子序列问题:给定两个字符串,求出它们的最长公共子序列,即在两个字符串中都出现的、长度最长的子序列。
这个问题可以用动态规划算法求解,状态可以定义为在两个字符串的某段位置上的最长公共子序列的长度,状态转移方程比较简单。
2. 背包问题:有一个容量为 V 的背包和 n 种物品,每种物品的重量为 wi,价值为 vi,现在要用这些物品装满背包,使得背包中所装物品的总价值最大。
这个问题可以用动态规划算法求解,状态可以定义为在前 i 件物品中,体积为 j 的情况下能获得的最大价值,状态转移方程也比较简单。
3. 最短路问题:给定一个带权图,求出其中从起点到终点的最短路径。
这个问题可以用动态规划算法求解,状态可以定义为从起点到某个点的最短路径,状态转移方程可以通过分阶段来进行求解。
4. 求解最大子段和问题:给定一个序列,求出其中连续子段的和的最大值。
这个问题也可以用动态规划算法求解,状态可以定义为以某个位置为结尾的最大子段和,状态转移方程与之前的问题类似。
动态规划算法虽然能够解决很多问题,但是它也存在一些限制。
动态规划算法的计算复杂度较高,需要占用大量的内存空间。
数学建模10种常用算法
数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。
参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。
数学建模在资源分配优化中的应用
数学建模在资源分配优化中的应用数学建模是一种将数学理论、方法应用于实际问题解决的过程,它可以帮助人们更好地理解和处理现实生活中的各种问题。
资源分配优化是指在有限的资源条件下,通过合理规划和分配,使资源得到最大化、最有效地利用。
在资源分配中,数学建模起着重要的作用,本文将探讨数学建模在资源分配优化中的应用。
一、线性规划模型线性规划是一种通过线性函数建立关系,并在约束条件下求解最优解的数学建模方法。
在资源分配优化中,线性规划模型可以用来解决一些线性约束条件下的最优分配问题。
例如,在某个工程项目中,存在多个子项目,每个子项目需要分配一定的资源。
我们可以通过线性规划模型确定每个子项目所需资源的数量,从而实现资源的最优分配。
二、整数规划模型整数规划是线性规划的一种扩展形式,其变量取值限制为整数。
在资源分配中,有些问题并不适合仅仅用线性规划来解决,因为资源的分配单位可能是整数,而整数规划则可以很好地满足这种需求。
例如,在某个仓库中,存在不同规格的货物,需要拣货员进行合理的货物分配。
我们可以通过整数规划模型确定每个拣货员应拣取的货物数量,从而实现货物的合理分配。
三、网络流模型网络流模型是一种通过建立网络关系,并模拟物质、信息在网络中流动的数学建模方法。
在资源分配优化中,网络流模型可以用来解决一些资源在不同节点之间流动的问题。
例如,在某个城市中,存在多个医疗资源点,每个点都有一定的医疗资源供应。
为了实现公平合理的资源分配,我们可以通过网络流模型确定每个资源点之间所需的资源流动量,从而达到资源的最优分配。
四、动态规划模型动态规划是一种通过状态转移方程建立模型,并在给定初始状态下,自底向上递推求解最优解的数学建模方法。
在资源分配中,动态规划模型可以用来解决一些资源随时间变化的问题。
例如,在某个生产线中,存在多个工序,每个工序耗时不同,需要合理安排资源的分配顺序。
我们可以通过动态规划模型确定每个工序所需资源的分配顺序,从而实现资源的最优利用。
数学建模竞赛用到优化的赛题
数学建模竞赛用到优化的赛题摘要:I.引言- 数学建模竞赛的简介- 数学建模竞赛中优化的赛题的重要性II.优化问题的类型- 线性规划- 非线性规划- 动态规划- 随机规划III.优化问题的应用- 供应链管理- 金融投资- 交通运输- 能源管理IV.优化问题的求解方法- 解析法- 数值法- 模拟法V.我国在数学建模竞赛中优化的赛题的表现- 我国队伍在数学建模竞赛中的获奖情况- 我国在优化的赛题方面的优势和劣势VI.结论- 数学建模竞赛中优化的赛题对我国科技发展的意义- 对未来我国在数学建模竞赛中优化的赛题的展望正文:数学建模竞赛是一个全球性的比赛,旨在通过对现实世界的问题进行建模和求解,培养学生的创新能力和团队合作精神。
在这些竞赛中,优化问题的赛题一直受到广泛关注。
本文将探讨数学建模竞赛中优化的赛题的类型、应用以及求解方法,并分析我国在这方面的表现。
优化问题可以分为线性规划、非线性规划、动态规划、随机规划等类型。
线性规划是最早被人们认识和应用的优化问题,主要研究在一定约束条件下线性目标函数的最优解。
非线性规划则涉及更复杂的函数形式,求解难度相对较大。
动态规划是一种分阶段决策的方法,适用于具有重复子问题的优化问题。
随机规划则是在不确定性因素下进行的优化决策。
优化问题在现实生活中有广泛的应用,如供应链管理、金融投资、交通运输、能源管理等。
在供应链管理中,优化问题可以帮助企业降低成本、提高效率。
在金融投资中,优化问题可以帮助投资者在风险和收益之间找到最佳平衡点。
在交通运输中,优化问题可以帮助管理者优化路线、提高运力。
在能源管理中,优化问题可以帮助实现能源的合理分配和利用。
针对优化问题的求解,有解析法、数值法、模拟法等方法。
解析法是通过分析问题结构,找到最优解的解析表达式。
数值法是通过迭代计算,逐步逼近最优解。
模拟法是借助计算机模拟,对问题进行求解。
这些方法各有优缺点,需要根据具体问题选择合适的求解方法。
我国在数学建模竞赛中优化的赛题方面取得了一定的成绩。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题引言概述:动态规划是一种常用的优化方法,可以用于求解各种复杂的问题。
在线性规划问题中,动态规划方法也可以发挥重要作用。
本文将介绍动态规划方法在求解线性规划问题中的应用,并分为四个部份进行详细阐述。
一、线性规划问题的定义和特点1.1 线性规划问题的定义线性规划是一种数学建模方法,用于求解一类特殊的优化问题。
它的目标函数和约束条件都是线性的。
1.2 线性规划问题的特点线性规划问题具有可行解的存在性、有界性和最优性。
同时,线性规划问题的解空间是一个凸多面体。
二、动态规划方法的基本思想2.1 动态规划的基本原理动态规划是一种将问题分解为子问题并保存子问题解的方法。
通过递归地求解子问题,最终得到原问题的解。
2.2 动态规划方法的三个基本步骤动态规划方法包括问题的划分、状态的定义和状态转移方程的建立。
通过这三个步骤,可以得到问题的最优解。
2.3 动态规划方法的优点动态规划方法具有时间和空间复杂度低的优点,可以有效地求解大规模的优化问题。
三、动态规划方法在线性规划问题中的应用3.1 线性规划问题的动态规划模型将线性规划问题转化为动态规划模型,可以通过动态规划方法求解。
其中,状态的定义和状态转移方程的建立是关键。
3.2 动态规划方法求解线性规划问题的步骤通过将线性规划问题转化为动态规划模型,可以按照动态规划方法的三个基本步骤求解线性规划问题。
3.3 动态规划方法求解线性规划问题的实例通过一个具体的实例,详细介绍动态规划方法在求解线性规划问题中的具体应用步骤和求解过程。
四、动态规划方法在线性规划问题中的局限性和改进方法4.1 动态规划方法的局限性动态规划方法在求解线性规划问题时,可能会面临状态空间过大、计算复杂度高等问题。
4.2 动态规划方法的改进方法为了解决动态规划方法的局限性,可以采用剪枝策略、状态压缩等方法来提高求解效率。
结论:动态规划方法在求解线性规划问题中具有重要的应用价值。
数学建模常用的30个常用算法(python代码)
数学建模常用的30个常用算法(python代码) 数学建模中使用的算法涉及多个领域,包括优化、统计、机器学习等。
以下是一些在数学建模中常用的30个算法的简要说明和Python代码示例。
请注意,这只是一小部分,具体应用场景和需求可能需要使用其他算法。
1.线性规划(Linear Programming):from scipy.optimize import linprog2.整数规划(Integer Programming):from scipy.optimize import linprog3.非线性规划(Nonlinear Programming):from scipy.optimize import minimize4.蒙特卡洛模拟(Monte Carlo Simulation):import numpy as np5.差分方程(Difference Equations):import numpy as np6.梯度下降法(Gradient Descent):import numpy as np7.贪心算法(Greedy Algorithm):def greedy_algorithm(values, weights, capacity):n = len(values)ratio = [(values[i] / weights[i], i) for i in range(n)]ratio.sort(reverse=True)result = [0] * ntotal_value = 0current_weight = 0for _, i in ratio:if weights[i] + current_weight <= capacity: result[i] = 1current_weight += weights[i]total_value += values[i]return result, total_value8.动态规划(Dynamic Programming):def dynamic_programming(weights, values, capacity): n = len(values)dp = [[0] * (capacity + 1) for _ in range(n + 1)]for i in range(1, n + 1):for w in range(capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], values[i - 1] + dp[i - 1][w - weights[i - 1]])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]9.遗传算法(Genetic Algorithm):import numpy as np10.模拟退火算法(Simulated Annealing):import numpy as np11.马尔可夫链(Markov Chains):import numpy as np12.蒙特卡洛树搜索(Monte Carlo Tree Search):import numpy as np13.K均值聚类(K-means Clustering):from sklearn.cluster import KMeans14.主成分分析(Principal Component Analysis):from sklearn.decomposition import PCA15.支持向量机(Support Vector Machine):from sklearn.svm import SVC16.朴素贝叶斯分类器(Naive Bayes Classifier):from sklearn.naive_bayes import GaussianNB17.决策树(Decision Tree):from sklearn.tree import DecisionTreeClassifier18.随机森林(Random Forest):from sklearn.ensemble import RandomForestClassifier19.K最近邻算法(K-Nearest Neighbors):from sklearn.neighbors import KNeighborsClassifier20.多层感知器(Multilayer Perceptron):from sklearn.neural_network import MLPClassifier21.梯度提升机(Gradient Boosting):from sklearn.ensemble import GradientBoostingClassifier22.高斯混合模型(Gaussian Mixture Model):from sklearn.mixture import GaussianMixture23.时间序列分析(Time Series Analysis):import statsmodels.api as sm24.马尔科夫链蒙特卡洛(Markov Chain Monte Carlo):import pymc3 as pm25.局部最小二乘回归(Local Polynomial Regression):from statsmodels.nonparametric.kernel_regression import KernelReg26.逻辑回归(Logistic Regression):from sklearn.linear_model import LogisticRegression27.拉格朗日插值法(Lagrange Interpolation):from scipy.interpolate import lagrange28.最小二乘法(Least Squares Method):import numpy as np29.牛顿法(Newton's Method):def newton_method(f, df, x0, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - f(x) / df(x)if abs(f(x)) < tol:breakreturn x30.梯度下降法(Gradient Descent):def gradient_descent(f, df, x0, learning_rate=0.01, tol=1e-6, max_iter=100):x = x0for i in range(max_iter):x = x - learning_rate * df(x)if abs(df(x)) < tol:breakreturn x以上代码只是简单示例,实际应用中可能需要根据具体问题进行调整和扩展。
数学建模动态规划
u5*(E2)F.
4
6
D2 2
F
3
1
D3
3
E2 u4 *(D 1)E1.
f4(D2)5 u4 *(D 2)E2.
f 3 ( C 2 ) m d 3 ( C 2 , D 1 i ) f 4 n ( D 1 ) d 3 ( { C , 2 , D 2 ) f 4 ( D 2 )}
m 4 i7 ,5 n 5 } { 1 . 0
一、基本概念
阶段:是指问题需要做出决策的步数。阶段总数常记为n,相 应的是n个阶段的决策问题。阶段的序号常记为k,称为阶段 变量,k=1,2, …,n. k即可以是顺序编号也可以是逆序编号, 常用顺序编号。 状态:各阶段开始时的客观条件,第k阶段的状态常用状态
变量 s k 表示,状态变量取值的集合成为状态集合,用 S k
4
A
5
2
B1 3
6
8 7
B2
7
C1
5
8
4
C2 5
3
C3 4
8
C4 4
D1
3
5 6
D2 2
1
D3
3
u5*(E1)F,
E1
4
3
E2
u5*(E2)F.
F
f 4 ( D 1 ) m d 4 ( D 1 , E 1 i ) f n 5 ( E 1 ) d 4 ( { D , 1 , E 2 ) f 5 ( E 2 )}
到过程终止时的最佳效益。记为
其中 opt 可根据具体情况取max 或min。 基本方程:此为逐段递推求和的依据,一般为:
式中opt 可根据题意取 max 或 min. 例如,案例1的基本方程为:
数学建模十类常用算法
十类常用算法数学建模竞赛中应当掌握的十类算法:1. 蒙特卡罗算法。
该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。
2. 数据拟合、参数估计、插值等数据处理算法。
比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。
3. 线性规划、整数规划、多元规划、二次规划等规划类算法。
建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo 、Lingo 软件求解。
4. 图论算法。
这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。
5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。
这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。
6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。
这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。
7. 网格算法和穷举法。
两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。
8. 一些连续数据离散化方法。
很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。
9. 数值分析算法。
如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。
10. 图象处理算法。
赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。
以下将结合历年的竞赛题,对这十类算法进行详细地说明。
数学建模之动态规划
第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A 到G距离最短(或费用最省)的路线。
例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
数学建模课程规划方案
数学建模课程规划方案一、课程目标数学建模课程旨在通过学习数学模型的构建、求解和分析,培养学生的综合能力,为将来从事研究、开发、管理等领域打下坚实的数学基础。
二、适用对象数学建模课程适用于各级各类高校理工类专业的学生,不限于数学、物理、计算机科学等专业背景。
同时,该课程也适用于热爱数学、对实际问题感兴趣的学生。
三、教学内容1. 线性规划模型线性规划模型是数学建模的基础。
我们将介绍线性规划的概念、求解方法、对偶模型等内容,并通过实际问题进行演示。
2. 非线性规划模型非线性规划模型是线性规划的推广。
我们将介绍非线性规划的概念、求解方法、全局优化等内容,并通过实际问题进行演示。
3. 整数规划模型整数规划模型是非线性规划的推广。
我们将介绍整数规划的概念、求解方法、混合整数规划等内容,并通过实际问题进行演示。
4. 动态规划模型动态规划模型是求解最优化问题的一种方法。
我们将介绍动态规划的概念、基本原理、应用领域等内容,并通过实际问题进行演示。
5. 概率统计模型概率统计模型是数学建模的重要工具。
我们将介绍概率统计的概念、常用分布、假设检验等内容,并通过实际问题进行演示。
6. 数据挖掘模型数据挖掘模型是现代数学建模的热门领域。
我们将介绍数据挖掘的概念、分类、聚类等内容,并通过实际问题进行演示。
四、课程评估为了检测学生对数学建模的掌握程度,我们将采取以下方式进行评估:1. 课堂测验每个章节结束后,将进行一次小测验,测试学生对该章节内容的理解。
2. 独立思考项目每个学生都需要完成一个独立思考项目,并且需要在课堂上进行展示。
3. 小组实践项目每个小组需要完成一个实践项目,并且需要在课堂上进行展示。
4. 期末考试期末考试将占课程成绩的半数以上。
五、课程教材数学建模课程推荐以下教材:1.Bertsimas D.和Freund R.《线性优化》2.Bazaraa M.S.,Shetty C.M.和Shapiro S.《非线性规划:理论和算法》3.Nemhauser G.L.和Wolsey L.A.《整数和混合整数优化》4.Bellman R.《动态规划》5.Walpole R.E.和Myers R.H.《概率与统计》6.Han J.和Kamber M.,《数据挖掘:概念和技术》六、课程要求1.学生要掌握每一章节的基本概念,并能够熟练运用相关技术解决实际问题。
数学建模比赛学习计划
数学建模比赛学习计划一、前言数学建模比赛是一个能够锻炼学生综合能力的重要平台。
通过参与数学建模比赛,学生不仅能够提升数学建模、计算机编程等技能,还能够培养团队合作、问题解决能力等。
因此,作为一名学生,我们应该认真对待数学建模比赛,制定合理的学习计划,全力以赴取得好成绩。
二、学习目标1. 提高数学建模能力,熟练掌握建模方法和技巧;2. 加强计算机编程技能,能够运用计算机辅助进行建模和分析;3. 培养团队合作能力,提高沟通和协商能力;4. 培养问题解决能力,能够独立思考,并有条理地解决问题;5. 增加对实际问题的分析和解决能力。
三、学习计划1. 提高数学建模能力(1)学习建模方法和技巧,包括但不限于数学建模基础知识、优化建模、动态规划等。
每周安排2-3小时时间进行系统性学习,通过读书、参加讲座等途径进行学习。
(2)参加数学建模相关的竞赛、活动,如数学建模夏令营、建模比赛培训班等。
通过实践,不断提高自己的建模能力。
并在学习过程中记录总结常见的建模方法和技巧,加强对数学建模的掌握。
2. 加强计算机编程技能(1)系统学习计算机编程相关知识。
包括但不限于Python、Matlab等编程语言的学习。
每周至少安排2-3小时时间进行学习,并通过编程实践提高自己的编程能力。
(2)参与一些与数学建模相关的编程项目,如使用Python进行数据分析、模型拟合等。
通过实践,不断提高自己的计算机编程能力。
3. 培养团队合作能力(1)组建数学建模学习小组,每周安排固定的时间进行团队学习。
通过与他人的学习交流,加深对数学建模的理解,同时培养团队合作能力。
(2)参加团队合作训练,如小组合作完成数学建模练习题等。
通过实践,不断提高自己的团队合作能力。
4. 培养问题解决能力(1)参加数学建模比赛的模拟测试,模拟真实的比赛环境。
通过不断练习,提高解决实际问题的能力。
(2)阅读一些数学建模经典案例,如国际数学建模大赛获奖作品等。
通过学习他人的经验,拓宽自己的问题解决思路。
数学建模作业_动态规划求解指派问题
3 问题的伪代码实现
1 设 k 的初始值为 1; 2 写出 X k ,即第 k 阶段决策变量可能的取值,特别地, X 1 ={1,2, 。 。 。 ,n}。 3 对每一个 sk ,计算 sk g1 (sk 1 , xk 1 ) sk 1 {xk 1. j} ,及 d ( sk , xk ) ; 4 计算 f k ( sk ) ; 5 若 X k 为空,转到第 6 步,否则,k++,转回执行第 2 步。 6 最优指派决策为 f k ( sk ) ,根据 f k ( sk ) 写出最优指派方案{ xkj }。 7 程序算法复杂度:是 O(V*E*E)
其中“ - ”表示集合的差运算。 (4)指派问题指标递归方程:
f k (sk ) min{ f k (sk , xk ) | xk X k } , f k (sk , xk ) d k (sk , d k ) f k 1 ( g1 (sk 1 , xk 1 )) , f 0 (s0 ) 0, k 1,2,..., n.
float costforout[101][101]; int matrixsize; int personnumber; int jobnumber; }matrix; matrix sb; int result[501][2]; void twozero(matrix &sb); void judge(matrix &sb,int result[501][2]); void refresh(matrix &sb); void circlezero(matrix &sb); matrix input(); void output(int result[501][2],matrix sb); void zeroout(matrix &sb); matrix input() { matrix sb; int m; int pnumber,jnumber; int i,j; float k; char w; printf("指派问题的动态规划解法:\n\n"); printf("按最大价值分配请输入 1;最小价值分配请输入 0:\n"); scanf("%d",&m); while (m!=1&&m!=0) { printf("请输入 1 或 0:\n"); scanf("%d",&m); } printf("请输入可分配总人数(介于 1 和 100 之间):\n"); scanf("%d",&pnumber); while(pnumber<1 || pnumber>100) { printf("请输入合法数据:\n"); scanf("%d",&pnumber); } printf("请输入工作数(介于 1 和 100 之间):\n"); scanf("%d",&jnumber); while(jnumber<1 || jnumber>100) { printf("请输入合法数据:\n");
动态规划部分知识点总结
动态规划部分知识点总结动态规划的基本思想动态规划的基本思想可以用“递推”来描述。
在解决一个问题时,通常需要先确定一个递推关系,然后利用递推关系逐步求解问题的最优解。
以求解最长递增子序列(Longest Increasing Subsequence,LIS)问题为例,最长递增子序列是指在一个无序的序列中找到一个最长的子序列,要求子序列中的元素是递增的。
假设原序列为A,最长递增子序列的长度为LIS(i),则可以通过递推关系来解决这个问题:LIS(i) = max(LIS(j)+1),其中j<i 且A[j]<A[i]通过这个递推关系,我们可以逐步求解出从A[1]到A[n]的最长递增子序列的长度,最终得到整个序列的最长递增子序列。
动态规划的特点动态规划有一些特点,可以帮助我们更好地理解和应用这种方法。
1. 重叠子问题:动态规划的关键特点之一是重叠子问题,即原问题可以分解为若干个子问题,不同的子问题可能有重叠的部分。
通过记录和利用子问题的解,可以避免重复计算,提高计算效率。
2. 最优子结构:动态规划适用于具有最优子结构性质的问题。
最优子结构指的是原问题的最优解可以通过子问题的最优解来求解。
换句话说,原问题的最优解可以由子问题的最优解推导出来。
3. 状态转移方程:动态规划问题通常可以通过状态转移方程来描述。
状态转移方程是指原问题与子问题之间的关系,它可以用数学公式或递推关系来表示。
通过状态转移方程,可以确定问题的递推规律,从而求解问题的最优解。
动态规划的应用动态规划广泛应用于各种领域,比如算法设计、优化问题、数据挖掘等。
它可以解决许多经典问题,比如最短路径、背包问题、编辑距离、最长公共子序列等。
1. 最短路径:最短路径问题是指在一个加权有向图或加权无向图中,找到一条从起点到终点的路径,使得路径上的边权重之和最小。
动态规划可以用于求解最短路径问题,比如利用Floyd-Warshall算法或Dijkstra算法,通过记录并利用子问题的解来求解最短路径。
应用性问题中常见的数学建模
应用性问题中常见的数学建模【摘要】数统计、格式要求等。
谢谢!在解决实际应用性问题时,数学建模是一个重要的工具。
本文将介绍常见的数学建模方法,包括线性规划模型、整数规划模型、图论模型、动态规划模型和概率模型。
通过这些建模方法,我们可以有效地分析和解决各种实际问题。
结合实际情况进行灵活应用是数学建模的关键,不同类型的数学建模适用于不同类型的应用性问题。
数学建模在解决实际问题中起着重要作用,并且为决策提供了有力的支持。
通过数学建模,我们可以更好地理解问题的本质、优化决策方案,并提高解决问题的效率和准确性。
掌握不同类型的数学建模方法对于解决实际问题具有重要意义。
【关键词】数学建模、应用性问题、线性规划、整数规划、图论、动态规划、概率、实际问题、重要作用、灵活应用1. 引言1.1 应用性问题中常见的数学建模应用性问题中常见的数学建模指的是将实际生活中的问题抽象化为数学形式,并通过数学方法进行求解和分析的过程。
数学建模可以帮助人们更好地理解和解决各种实际问题,包括工程、经济、环境等领域的相关问题。
在现实生活中,人们遇到的问题往往是复杂多样的,而数学建模能够帮助我们系统地分析和解决这些问题。
数学建模的过程通常包括问题的定义、建立数学模型、模型求解和结果的分析等步骤。
通过数学建模,我们可以利用数学工具和方法对问题进行深入分析,并找到最优解或者最优策略。
在实际应用中,数学建模多种多样,包括线性规划模型、整数规划模型、图论模型、动态规划模型、概率模型等。
通过数学建模,我们可以更好地理解实际问题的本质,为决策提供科学依据。
数学建模在解决实际问题中起着重要作用,不同类型的数学建模适用于不同类型的应用性问题,同时数学建模需要结合实际情况进行灵活应用。
数学建模的发展将为人类社会的进步和发展提供更多可能性和机会。
2. 正文2.1 线性规划模型线性规划模型是一种常见的数学建模方法,它在解决各种应用性问题中都具有重要作用。
在线性规划模型中,我们需要定义一个目标函数以及一组约束条件,通过最大化或最小化目标函数来找到最优解。
动态规划算法及其应用
动态规划算法及其应用动态规划是一种重要的求解优化问题的算法,在计算机科学和应用数学领域都有广泛的应用。
它的基本思想是将大问题分解成小问题,通过记录中间结果来降低计算复杂度,从而达到在合理运行时间内求解问题的目的。
本文将介绍动态规划算法的基本概念和面向实际场景的应用。
1. 动态规划算法基本概念动态规划算法简而言之,就是由小问题推导出大问题的解。
通常情况下,我们将一个大问题拆分成若干个小问题,然后对每个小问题进行求解,并进行状态记录,最后将小问题的结果组合起来,得到大问题的最优解。
动态规划算法的核心是状态转移方程。
这个方程的形式通常为:dp[i] = max(dp[i-1], nums[i])其中,dp[i]表示到第i个位置的最优解,nums[i]是输入序列的第i个元素。
对于其他问题,这个状态转移方程可能会有所不同。
2. 动态规划算法的应用2.1 背包问题背包问题是动态规划算法的经典应用之一。
假设有n个物品和一个最大容量为W的背包,每个物品有一个重量wi和一个价值vi。
我们需要选择一些物品放入背包中,使得在满足背包的最大容量限制下,能够得到最大的总价值。
这个问题可以用动态规划来解决。
假设我们用dp[i][j]表示前i 个物品能够放入容量为j的背包中的最大价值。
对于每个物品i,可以考虑两种情况:放入背包和不放入背包。
如果把第i个物品放入背包中,则dp[i][j] = dp[i-1][j-wi] + vi;如果不把第i个物品放入背包中,则dp[i][j] = dp[i-1][j]。
状态转移方程为:dp[i][j] = max(dp[i-1][j-wi] + vi, dp[i-1][j])最终的最优解为dp[n][W]。
2.2 编辑距离问题编辑距离应用广泛,它可以度量字符串之间的差异性,用于拼写检查、语音识别、人工智能等领域。
编辑距离问题的目标是,给定两个字符串s和t,通过增加、删除、替换操作,将s转换成t,使得转换的代价最小。
高中数学线性规划与动态规划
高中数学线性规划与动态规划数学是一门抽象而深奥的学科,其中涵盖了大量的分支和理论。
在高中阶段,线性规划与动态规划是数学中的两个重要概念,对于解决实际问题和优化决策具有重要意义。
本文将介绍高中数学中线性规划与动态规划的概念、原理以及实际应用。
一、线性规划线性规划是数学规划问题中的一种常见方法。
它的目标是在满足多个线性约束条件的前提下,寻找线性目标函数的最优解。
线性规划问题可以用图像来表示,其中目标函数和约束条件都是线性方程或线性不等式。
线性规划的标准形式可以表示为:Maximize (或Minimize) Z = c₁x₁ + c₂x₂ + … + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + … + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + … + a₂ₙxₙ ≤ b₂…aₙ₁x₁ + aₙ₂x₂ + … + aₙₙxₙ ≤ bₙx₁, x₂, …, xₙ ≥ 0其中,Z表示线性目标函数的值,c₁, c₂, …, cₙ为目标函数中的系数,aᵢₙ为约束条件中的系数,b₁, b₂, …, bₙ为约束条件的右边常数,x₁, x₂, …, xₙ为决策变量。
线性规划问题可以使用单纯形法等算法求解,得到最优解及最优解对应的目标函数值。
二、动态规划动态规划是一种通过将原问题拆分成子问题并保存子问题解,然后利用这些子问题的解来求解原问题的方法。
它适用于那些具有重叠子问题和最优子结构性质的问题。
动态规划通常包含以下几个步骤:1. 定义子问题:将原问题拆分成一系列子问题,这些子问题和原问题具有相同的性质,并且可以通过子问题的解来推导出原问题的解。
2. 确定状态:将子问题的解表示成状态,通常使用状态转移方程来描述状态之间的关系。
3. 构建状态转移方程:根据子问题的性质和状态之间的关系,建立状态转移方程,以表达问题的最优解与子问题最优解之间的关系。
4. 确定初始条件:确定问题的起始状态下的初始值,通常需要定义初始值。
动态规划方法求解线性规划问题
动态规划方法求解线性规划问题动态规划(Dynamic Programming)是一种通过将问题分解为子问题并存储子问题的解来解决复杂问题的方法。
在线性规划问题中,我们希望找到一组变量的最优值,使得满足一组线性约束条件的目标函数达到最大或最小值。
线性规划问题可以用以下标准格式表示:目标函数:max/min Z = c₁x₁ + c₂x₂ + ... + cₙxₙ约束条件:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ非负约束条件:x₁, x₂, ..., xₙ ≥ 0其中,Z是目标函数的值,c₁, c₂, ..., cₙ是目标函数中变量的系数,a₁₁,a₁₂, ..., aₙₙ是约束条件中变量的系数,b₁, b₂, ..., bₙ是约束条件的右侧常数,x₁, x₂, ..., xₙ是变量。
动态规划方法可以用来求解线性规划问题的最优解。
下面我们将介绍动态规划方法的步骤:1. 确定子问题:将线性规划问题分解为子问题,每个子问题都是一个小规模的线性规划问题。
2. 定义状态:定义状态变量,表示子问题的解。
3. 确定状态转移方程:根据子问题之间的关系,确定状态转移方程,用于计算子问题的解。
4. 初始化边界条件:初始化边界条件,即最小规模的子问题的解。
5. 递推计算:根据状态转移方程,递推计算子问题的解。
6. 求解原问题:根据子问题的解,求解原问题的解。
下面我们通过一个具体的例子来演示动态规划方法求解线性规划问题。
假设我们有一个线性规划问题如下:目标函数:max Z = 2x₁ + 3x₂ + 4x₃约束条件:x₁ + x₂ + x₃ ≤ 52x₁ + x₂ + 3x₃ ≤ 10x₁, x₂, x₃ ≥ 0我们将该问题转化为动态规划问题的步骤如下:1. 确定子问题:将线性规划问题分解为子问题,每个子问题都是一个小规模的线性规划问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-56-第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。
20 世纪50 年代初R. E. Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。
1957 年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。
动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。
例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。
虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。
应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。
因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。
因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。
例1 最短路线问题图1 是一个线路网,连线上的数字表示两点之间的距离(或费用)。
试寻求一条由A到G 距离最短(或费用最省)的路线。
图1 最短路线问题例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。
经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。
如果工厂在第一、二季度将全年的需求都生产出来,自然可以降低成本(少付固定成本费),但是对于第三、四季度才能上市的产品需付存储费,每季每千件的存储费为0.5(千元)。
还规定年初和年末这种产品均无库存。
试制定一个生产计划,即安排每个季度的产量,使一年的总费用(生产成本和存储费)最少。
1.2 决策过程的分类根据过程的时间变量是离散的还是连续的,分为离散时间决策过程(discrete-time-57-decision process)和连续时间决策过程(continuous-time decision process);根据过程的演变是确定的还是随机的,分为确定性决策过程(deterministic decision process)和随机性决策过程(stochastic decision process),其中应用最广的是确定性多阶段决策过程。
§2 基本概念、基本方程和计算方法2.1 动态规划的基本概念和基本方程一个多阶段决策过程最优化问题的动态规划模型通常包含以下要素。
2.1.1 阶段阶段(step)是对整个过程的自然划分。
通常根据时间顺序或空间顺序特征来划分阶段,以便按阶段的次序解优化问题。
阶段变量一般用k = 1,2,L,n表示。
在例1 中由A出发为k = 1,由B (i = 1,2) i 出发为k = 2,依此下去从F (i =1,2) i出发为k = 6,共n = 6个阶段。
在例2 中按照第一、二、三、四季度分为k = 1,2,3,4,共四个阶段。
2.1.2 状态状态(state)表示每个阶段开始时过程所处的自然状况。
它应能描述过程的特征并且无后效性,即当某阶段的状态变量给定时,这个阶段以后过程的演变与该阶段以前各阶段的状态无关。
通常还要求状态是直接或间接可以观测的。
描述状态的变量称状态变量(state variable)。
变量允许取值的范围称允许状态集合(set of admissible states)。
用k x 表示第k 阶段的状态变量,它可以是一个数或一个向量。
用k X 表示第k 阶段的允许状态集合。
在例1 中2 x 可取1 2 B ,B ,或将i B 定义为i(i = 1,2),则1 2 x = 或2,而{1,2} 2 X = 。
n 个阶段的决策过程有n +1个状态变量,n+1 x 表示n x 演变的结果。
在例1 中7 x 取G ,或定义为1,即1 7 x = 。
根据过程演变的具体情况,状态变量可以是离散的或连续的。
为了计算的方便有时将连续变量离散化;为了分析的方便有时又将离散变量视为连续的。
状态变量简称为状态。
2.1.3 决策当一个阶段的状态确定后,可以作出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)。
描述决策的变量称决策变量(decision variable),变量允许取值的范围称允许决策集合(set of admissible decisions)。
用( ) k k u x 表示第k 阶段处于状态k x 时的决策变量,它是k x 的函数,用( ) k k U x 表示k x 的允许决策集合。
在例1中( ) 2 1 u B 可取1 2 C ,C 或3 C ,可记作(1) 1,2,3 2 u = ,而(1) {1,2,3} 2 U = 。
决策变量简称决策。
2.1.4 策略决策组成的序列称为策略(policy)。
由初始状态1 x 开始的全过程的策略记作( ) 1 1 p x n ,即( ) { ( ), ( ), , ( )} 1n 1 1 1 2 2 n n p x = u x u x L u x .由第k 阶段的状态k x 开始到终止状态的后部子过程的策略记作( ) kn k p x ,即( ) { ( ), , ( )} kn k k k n n p x = u x L u x ,k = 1,2,L, n −1.类似地,由第k 到第j 阶段的子过程的策略记作-58-( ) { ( ), , ( )} kj k k k j j p x = u x L u x .可供选择的策略有一定的范围,称为允许策略集合(set of admissible policies),用( ), ( ), ( ) 1n 1 kn k kj k P x P x P x 表示。
2.1.5. 状态转移方程在确定性过程中,一旦某阶段的状态和决策为已知,下阶段的状态便完全确定。
用状态转移方程(equation of state transition)表示这种演变规律,写作( , ), 1,2, , . 1 x T x u k n k = k k k = L + (1)在例1 中状态转移方程为( ) k 1 k k x = u x + 。
2.1.6. 指标函数和最优值函数指标函数(objective function)是衡量过程优劣的数量指标,它是定义在全过程和所有后部子过程上的数量函数,用( , , , , ) k ,n k k k +1 n+1 V x u x L x 表示,k = 1,2,L,n。
指标函数应具有可分离性,即k n V , 可表为k k k n x u V 1, , , + 的函数,记为( , , , , ) ( , , ( , , , )) , +1 +1 +1, +1 +1 +1 = k n k k k n k k k k n k k n V x u x L x ϕx u V x u L x并且函数kϕ对于变量k n V +1, 是严格单调的。
过程在第j 阶段的阶段指标取决于状态j x 和决策j u ,用( , ) j j j v x u 表示。
指标函数由v ( j 1,2, ,n) j = L 组成,常见的形式有:阶段指标之和,即Σ=+ + =nj kk n k k k n j j j V (x ,u , x , , x ) v (x ,u ) , 1 L 1 ,阶段指标之积,即Π=+ + =nj kk n k k k n j j j V (x ,u , x , , x ) v (x ,u ) , 1 L 1 ,阶段指标之极大(或极小),即( , , , , ) max(min) ( , ) k ,n k k k 1 n 1 k j n j j j V x u x x v x u+ + ≤≤L = .这些形式下第k 到第j阶段子过程的指标函数为( , , , ) k , j k k j+1 V x u L x 。
根据状态转移方程指标函数k n V , 还可以表示为状态k x 和策略kn p 的函数,即( , ) k ,n k kn V x p 。
在k x 给定时指标函数k n V , 对kn p 的最优值称为最优值函数(optimal valuefunction),记为( ) k k f x ,即( ) opt ( , ) ,( )k n k knp P xk k f x V x pkn∈kn k= ,其中opt 可根据具体情况取max 或min 。
2.1.7 最优策略和最优轨线使指标函数k n V , 达到最优值的策略是从k 开始的后部子过程的最优策略,记作* { * , , *}kn k n p = u L u 。
*1n p 是全过程的最优策略,简称最优策略(optimal policy)。
从初始状态( * )1 1 x = x 出发,过程按照*1n p 和状态转移方程演变所经历的状态序列{ , , , * }1*2*1 n+ x x L x 称最优轨线(optimal trajectory)。
-59-2.1.8 递归方程如下方程称为递归方程⎪⎩⎪⎨⎧= ⊗ ==+ +∈+ +( ) opt { ( , ) ( )}, , ,1( ) 0 11 1( )1 1f x v x u f x k n Lf xk k k k ku U xk kn nk k k或(2)在上述方程中,当⊗为加法时取( ) 0 1 1 = n+ n+ f x ;当⊗为乘法时,取( ) 1 1 1 = n+ n+ f x 。
动态规划递归方程是动态规划的最优性原理的基础,即:最优策略的子策略,构成最优子策略。
用状态转移方程(1)和递归方程(2)求解动态规划的过程,是由k = n +1逆推至k = 1,故这种解法称为逆序解法。
当然,对某些动态规划问题,也可采用顺序解法。
这时,状态转移方程和递归方程分别为:x T x u k n k krk k ( , ), 1, , = 1 = L + ,⎪⎩⎪⎨⎧= ⊗ ==+ −∈++ +f x v x u f x k nf xk k k k ku U xk kkrk k( ) opt { ( , ) ( )}, 1, ,( 0 11 1( )10 11 1L)或例3 用lingo 求解例1 最短路线问题。