数学建模8-动态规划和目标规划

合集下载

数学建模题型

数学建模题型

数学建模题型在数学建模中,我们常常会遇到各种不同的问题和挑战。

以下是一些常见的数学建模题型,每种题型都对应着特定的数学理论和概念:1.线性规划线性规划是一种常见的数学优化问题,它涉及到在一组线性约束条件下最大化或最小化一个线性目标函数。

求解线性规划问题通常可以使用单纯形法、内点法等算法。

在现实生活中,线性规划广泛应用于生产计划、货物运输、金融投资等领域。

2.非线性规划非线性规划是优化问题的一种,目标函数或者约束条件是非线性的。

这类问题比较复杂,求解难度较大。

常见的非线性规划问题包括二次规划、多项式规划等。

在实际应用中,非线性规划常用于金融衍生品定价、风险管理、信号处理等领域。

3.动态规划动态规划是一种求解最优化问题的算法,它通过将问题分解为子问题,并保存子问题的解,从而避免重复计算,提高效率。

动态规划广泛应用于求解最短路径、最长公共子序列、背包问题等优化问题。

4.整数规划整数规划是一种特殊的数学优化问题,其中变量被限制为整数。

整数规划问题通常比连续优化问题更难求解。

常见的整数规划问题包括0-1背包问题、旅行商问题等。

在实际应用中,整数规划广泛应用于生产计划、调度、库存管理等领域。

5.多目标规划多目标规划是一种涉及多个目标的优化问题。

在多目标规划中,需要同时优化多个目标函数,这些目标函数之间通常存在冲突和竞争。

多目标规划广泛应用于生态系统管理、城市规划、经济政策制定等领域。

6.优化问题优化问题是一类数学问题,它涉及到在一组给定的约束条件下寻找最优解。

优化问题可以是线性的、非线性的、整数规划的、多目标的等等。

在实际应用中,优化问题广泛应用于各种领域,如运输、金融、制造等。

数学建模竞赛用到优化的赛题

数学建模竞赛用到优化的赛题

数学建模竞赛用到优化的赛题摘要:I.引言- 数学建模竞赛的简介- 数学建模竞赛中优化的赛题的重要性II.优化问题的类型- 线性规划- 非线性规划- 动态规划- 随机规划III.优化问题的应用- 供应链管理- 金融投资- 交通运输- 能源管理IV.优化问题的求解方法- 解析法- 数值法- 模拟法V.我国在数学建模竞赛中优化的赛题的表现- 我国队伍在数学建模竞赛中的获奖情况- 我国在优化的赛题方面的优势和劣势VI.结论- 数学建模竞赛中优化的赛题对我国科技发展的意义- 对未来我国在数学建模竞赛中优化的赛题的展望正文:数学建模竞赛是一个全球性的比赛,旨在通过对现实世界的问题进行建模和求解,培养学生的创新能力和团队合作精神。

在这些竞赛中,优化问题的赛题一直受到广泛关注。

本文将探讨数学建模竞赛中优化的赛题的类型、应用以及求解方法,并分析我国在这方面的表现。

优化问题可以分为线性规划、非线性规划、动态规划、随机规划等类型。

线性规划是最早被人们认识和应用的优化问题,主要研究在一定约束条件下线性目标函数的最优解。

非线性规划则涉及更复杂的函数形式,求解难度相对较大。

动态规划是一种分阶段决策的方法,适用于具有重复子问题的优化问题。

随机规划则是在不确定性因素下进行的优化决策。

优化问题在现实生活中有广泛的应用,如供应链管理、金融投资、交通运输、能源管理等。

在供应链管理中,优化问题可以帮助企业降低成本、提高效率。

在金融投资中,优化问题可以帮助投资者在风险和收益之间找到最佳平衡点。

在交通运输中,优化问题可以帮助管理者优化路线、提高运力。

在能源管理中,优化问题可以帮助实现能源的合理分配和利用。

针对优化问题的求解,有解析法、数值法、模拟法等方法。

解析法是通过分析问题结构,找到最优解的解析表达式。

数值法是通过迭代计算,逐步逼近最优解。

模拟法是借助计算机模拟,对问题进行求解。

这些方法各有优缺点,需要根据具体问题选择合适的求解方法。

我国在数学建模竞赛中优化的赛题方面取得了一定的成绩。

常见数学建模模型

常见数学建模模型

常见数学建模模型一、线性规划模型线性规划是一种常用的数学建模方法,它通过建立线性函数和约束条件,寻找最优解。

线性规划可以应用于各种实际问题,如生产调度、资源分配、运输问题等。

通过确定决策变量、目标函数和约束条件,可以建立数学模型,并利用线性规划算法求解最优解。

二、整数规划模型整数规划是线性规划的一种扩展形式,它要求决策变量为整数。

整数规划模型常用于一些离散决策问题,如旅行商问题、装箱问题等。

通过引入整数变量和相应的约束条件,可以将问题转化为整数规划模型,并利用整数规划算法求解最优解。

三、非线性规划模型非线性规划是一类目标函数或约束条件中存在非线性项的优化问题。

非线性规划模型常见于工程设计、经济优化等领域。

通过建立非线性函数和约束条件,可以将问题转化为非线性规划模型,并利用非线性规划算法求解最优解。

四、动态规划模型动态规划是一种通过将问题分解为子问题并以递归方式求解的数学建模方法。

动态规划常用于求解具有最优子结构性质的问题,如背包问题、最短路径问题等。

通过定义状态变量、状态转移方程和边界条件,可以建立动态规划模型,并利用动态规划算法求解最优解。

五、排队论模型排队论是一种研究队列系统的数学理论,可以用于描述和优化各种排队系统,如交通流、生产线、客户服务等。

排队论模型通常包括到达过程、服务过程、队列长度等要素,并通过概率和统计方法分析系统性能,如平均等待时间、系统利用率等。

六、图论模型图论是一种研究图结构和图算法的数学理论,可以用于描述和优化各种实际问题,如网络优化、路径规划、社交网络等。

图论模型通过定义节点、边和权重,以及相应的约束条件,可以建立图论模型,并利用图算法求解最优解。

七、随机模型随机模型是一种考虑不确定性因素的数学建模方法,常用于风险评估、金融建模等领域。

随机模型通过引入随机变量和概率分布,描述不确定性因素,并利用概率和统计方法分析系统行为和性能。

八、模糊模型模糊模型是一种用于处理模糊信息的数学建模方法,常用于模糊推理、模糊控制等领域。

数学建模研究生国赛选题

数学建模研究生国赛选题

数学建模研究生国赛选题
在数学建模研究生国赛中,选题是非常重要的一环。

以下是一些可能适合作为选题的主题:
1. 优化问题:优化问题一直是数学建模的重要主题之一,包括线性规划、非线性规划、整数规划等。

这些问题涉及到如何在给定约束条件下最大化或最小化某个目标函数。

2. 机器学习与数据挖掘:机器学习和数据挖掘是当前非常热门的研究领域,涉及到分类、聚类、预测等任务。

这些问题需要使用各种算法来处理大量数据,并从中提取有用的信息和模式。

3. 图像处理和计算机视觉:图像处理和计算机视觉是当前研究的热点之一,涉及到图像识别、目标检测、图像分割等任务。

这些问题需要使用图像处理、计算机视觉和机器学习的相关算法和技术。

4. 动态规划:动态规划是研究具有重叠子问题和最优子结构特性的优化问题的算法。

这些问题通常涉及到时间序列数据或状态转移问题。

5. 组合优化与图论:组合优化和图论是数学建模中的经典问题,涉及到排列、组合、图论等领域。

这些问题通常涉及到图论中的算法和组合优化中的启发式算法。

当然,以上只是一些可能适合作为选题的主题,具体选择还需根据个人的兴趣和专业知识来决定。

在选择主题时,需要充分了解问题的背景和意义,明确建模的目标和意义,并选择适合的数学方法和工具来解决问题。

数学建模之动态规划

数学建模之动态规划

第四章动态规划§1 引言1.1 动态规划的发展及研究内容动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。

20世纪50年代初R. E. Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优性原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,逐个求解,创立了解决这类过程优化问题的新方法—动态规划。

1957年出版了他的名著《Dynamic Programming》,这是该领域的第一本著作。

动态规划问世以来,在经济管理、生产调度、工程技术和最优控制等方面得到了广泛的应用。

例如最短路线、库存管理、资源分配、设备更新、排序、装载等问题,用动态规划方法比用其它方法求解更为方便。

虽然动态规划主要用于求解以时间划分阶段的动态过程的优化问题,但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

应指出,动态规划是求解某类问题的一种方法,是考察问题的一种途径,而不是一种特殊算法(如线性规划是一种算法)。

因而,它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,而必须对具体问题进行具体分析处理。

因此,在学习时,除了要对基本概念和方法正确理解外,应以丰富的想象力去建立模型,用创造性的技巧去求解。

例1 最短路线问题下面是一个线路网,连线上的数字表示两点之间的距离(或费用)。

试寻求一条由A 到G距离最短(或费用最省)的路线。

例2 生产计划问题工厂生产某种产品,每单位(千件)的成本为1(千元),每次开工的固定成本为3(千元),工厂每季度的最大生产能力为6(千件)。

经调查,市场对该产品的需求量第一、二、三、四季度分别为2,3,2,4(千件)。

数学建模工作规划

数学建模工作规划

一、背景与目的随着我国经济社会的快速发展,数学建模作为一种重要的研究方法,在各行各业中得到广泛应用。

为了提高数学建模能力,培养创新型人才,特制定本工作规划。

二、工作目标1. 提高数学建模理论水平,掌握常用数学建模方法。

2. 培养团队协作精神,提高数学建模实践能力。

3. 发表高质量数学建模论文,提升团队在国内外的影响力。

三、工作内容1. 学习与培训(1)深入学习数学建模理论,包括线性规划、非线性规划、整数规划、动态规划、图论等。

(2)参加国内外数学建模竞赛,了解竞赛规则和评分标准。

(3)邀请专家学者进行讲座,拓宽知识面,提高研究能力。

2. 实践与项目(1)结合实际需求,开展数学建模项目研究,如城市规划、环境保护、交通运输等。

(2)针对具体问题,运用数学建模方法进行求解,提高解决实际问题的能力。

(3)总结经验,撰写数学建模论文,争取在国内外期刊发表。

3. 团队建设(1)选拔和培养团队成员,提高团队整体实力。

(2)加强团队内部沟通与协作,形成良好的团队氛围。

(3)定期组织团队活动,增进成员间的感情。

四、实施步骤1. 制定详细的学习计划,明确学习目标和进度。

2. 每月至少开展一次数学建模实践活动,提高团队实战能力。

3. 每季度组织一次团队交流活动,分享经验,共同进步。

4. 每年至少参加一次国内外数学建模竞赛,提升团队知名度。

5. 定期总结工作,对工作规划进行调整和优化。

五、保障措施1. 加强组织领导,明确责任分工。

2. 提供必要的经费和资源支持,为数学建模工作提供保障。

3. 定期对团队成员进行考核,激发团队活力。

4. 建立激励机制,鼓励团队成员积极参与数学建模工作。

通过本工作规划的制定与实施,我们相信能够提高团队的整体数学建模能力,为我国经济社会发展贡献一份力量。

数学建模-数学规划模型

数学建模-数学规划模型
建立数学模型
将决策变量、目标函数和约束条件用数学方程表示出来,形成线性规划模型。
线性规划的求解方法
单纯形法
单纯形法是线性规划最常用的求解方法,它通过不断迭代和调整决策 变量的值,逐步逼近最优解。
对偶法
对偶法是利用线性规划的对偶性质,通过求解对偶问题来得到原问题 的最优解。
分解法
分解法是将一个复杂的线性规划问题分解为若干个子问题,分别求解 子问题,最终得到原问题的最优解。
混合法
将优先级法和权重法结合起来,既考虑目标的优先级又考虑目标的 权重,以获得更全面的优化解。
多目标规划的求解方法
约束法
通过引入约束条件,将多目标问题转化为单目标问题求解。常用的约束法包括线性约束 、非线性约束等。
分解法
将多目标问题分解为若干个单目标问题,分别求解各个单目标问题,然后综合各个单目 标问题的解得到多目标问题的最优解。
特点
多目标规划问题通常具有多个冲突的目标, 需要权衡和折衷不同目标之间的矛盾,因此 求解难度较大。多目标规划广泛应用于经济 、管理、工程等领域。
多目标规划的建模方法
优先级法
根据各个目标的重要程度,给定不同的优先级,然后结合优先级 对目标进行优化。
权重法
给定各个目标的权重,将多目标问题转化为加权单目标问题,通过 求解加权单目标问题得到多目标问题的最优解。
数学建模-数学规划 模型
目录
• 数学规划模型概述 • 线性规划模型 • 非线性规划模型 • 整数规划模型 • 多目标规划模型
01
CATALOGUE
数学规划模型概述
定义与分类
定义
数学规划是数学建模的一种方法,通 过建立数学模型描述和解决优化问题 。
分类

数学建模课程规划方案

数学建模课程规划方案

数学建模课程规划方案一、课程目标数学建模课程旨在通过学习数学模型的构建、求解和分析,培养学生的综合能力,为将来从事研究、开发、管理等领域打下坚实的数学基础。

二、适用对象数学建模课程适用于各级各类高校理工类专业的学生,不限于数学、物理、计算机科学等专业背景。

同时,该课程也适用于热爱数学、对实际问题感兴趣的学生。

三、教学内容1. 线性规划模型线性规划模型是数学建模的基础。

我们将介绍线性规划的概念、求解方法、对偶模型等内容,并通过实际问题进行演示。

2. 非线性规划模型非线性规划模型是线性规划的推广。

我们将介绍非线性规划的概念、求解方法、全局优化等内容,并通过实际问题进行演示。

3. 整数规划模型整数规划模型是非线性规划的推广。

我们将介绍整数规划的概念、求解方法、混合整数规划等内容,并通过实际问题进行演示。

4. 动态规划模型动态规划模型是求解最优化问题的一种方法。

我们将介绍动态规划的概念、基本原理、应用领域等内容,并通过实际问题进行演示。

5. 概率统计模型概率统计模型是数学建模的重要工具。

我们将介绍概率统计的概念、常用分布、假设检验等内容,并通过实际问题进行演示。

6. 数据挖掘模型数据挖掘模型是现代数学建模的热门领域。

我们将介绍数据挖掘的概念、分类、聚类等内容,并通过实际问题进行演示。

四、课程评估为了检测学生对数学建模的掌握程度,我们将采取以下方式进行评估:1. 课堂测验每个章节结束后,将进行一次小测验,测试学生对该章节内容的理解。

2. 独立思考项目每个学生都需要完成一个独立思考项目,并且需要在课堂上进行展示。

3. 小组实践项目每个小组需要完成一个实践项目,并且需要在课堂上进行展示。

4. 期末考试期末考试将占课程成绩的半数以上。

五、课程教材数学建模课程推荐以下教材:1.Bertsimas D.和Freund R.《线性优化》2.Bazaraa M.S.,Shetty C.M.和Shapiro S.《非线性规划:理论和算法》3.Nemhauser G.L.和Wolsey L.A.《整数和混合整数优化》4.Bellman R.《动态规划》5.Walpole R.E.和Myers R.H.《概率与统计》6.Han J.和Kamber M.,《数据挖掘:概念和技术》六、课程要求1.学生要掌握每一章节的基本概念,并能够熟练运用相关技术解决实际问题。

数学建模比赛学习计划

数学建模比赛学习计划

数学建模比赛学习计划一、前言数学建模比赛是一个能够锻炼学生综合能力的重要平台。

通过参与数学建模比赛,学生不仅能够提升数学建模、计算机编程等技能,还能够培养团队合作、问题解决能力等。

因此,作为一名学生,我们应该认真对待数学建模比赛,制定合理的学习计划,全力以赴取得好成绩。

二、学习目标1. 提高数学建模能力,熟练掌握建模方法和技巧;2. 加强计算机编程技能,能够运用计算机辅助进行建模和分析;3. 培养团队合作能力,提高沟通和协商能力;4. 培养问题解决能力,能够独立思考,并有条理地解决问题;5. 增加对实际问题的分析和解决能力。

三、学习计划1. 提高数学建模能力(1)学习建模方法和技巧,包括但不限于数学建模基础知识、优化建模、动态规划等。

每周安排2-3小时时间进行系统性学习,通过读书、参加讲座等途径进行学习。

(2)参加数学建模相关的竞赛、活动,如数学建模夏令营、建模比赛培训班等。

通过实践,不断提高自己的建模能力。

并在学习过程中记录总结常见的建模方法和技巧,加强对数学建模的掌握。

2. 加强计算机编程技能(1)系统学习计算机编程相关知识。

包括但不限于Python、Matlab等编程语言的学习。

每周至少安排2-3小时时间进行学习,并通过编程实践提高自己的编程能力。

(2)参与一些与数学建模相关的编程项目,如使用Python进行数据分析、模型拟合等。

通过实践,不断提高自己的计算机编程能力。

3. 培养团队合作能力(1)组建数学建模学习小组,每周安排固定的时间进行团队学习。

通过与他人的学习交流,加深对数学建模的理解,同时培养团队合作能力。

(2)参加团队合作训练,如小组合作完成数学建模练习题等。

通过实践,不断提高自己的团队合作能力。

4. 培养问题解决能力(1)参加数学建模比赛的模拟测试,模拟真实的比赛环境。

通过不断练习,提高解决实际问题的能力。

(2)阅读一些数学建模经典案例,如国际数学建模大赛获奖作品等。

通过学习他人的经验,拓宽自己的问题解决思路。

数学建模常用方法介绍

数学建模常用方法介绍

数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。

它是数学与实际问题相结合的一种科学研究方法。

在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。

下面将介绍这些常用的数学建模方法。

1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。

线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。

线性规划常用的算法有单纯形法、内点法等。

2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。

与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。

非线性规划的求解方法包括梯度下降法、牛顿法等。

3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。

动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。

动态规划常用于求解最短路径问题、背包问题等。

4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。

数值模拟在现代科学和工程中得到广泛应用。

数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。

5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。

统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。

统计分析方法包括假设检验、方差分析、回归分析等。

除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。

不同的问题需要选用不同的数学建模方法。

为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。

数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。

在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。

2023年数学建模c题讲解

2023年数学建模c题讲解

2023年数学建模c题讲解
2023年数学建模C题涉及数学建模的多个领域,包括线性规划、整数规划、动态规划、多目标规划、预测问题和评价问题等。

1. 线性规划:如果目标函数和约束条件都是线性函数,则该问题属于线性规划。

线性规划是数学规划的一个重要分支,用于解决资源分配和优化问题。

2. 整数规划:在数学规划中,如果规划中的变量(全部或部分)限制为整数,则称为整数规划。

整数规划问题在现实生活中有着广泛的应用,如生产计划、物流调度等。

3. 动态规划:动态规划是一种解决优化问题的数学方法,适用于处理具有重叠子问题和最优子结构的问题。

动态规划可以解决背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题等。

4. 多目标规划:多目标规划是数学规划的一个分支,用于解决具有多个目标函数的优化问题。

在多目标规划中,需要权衡多个目标之间的矛盾和冲突,寻求最优解。

5. 预测问题:预测问题是数学建模中的一个重要问题,用于根据历史数据和相关因素预测未来的趋势和结果。

常用的预测方法包括回归分析、时间序列分析等。

6. 评价问题:评价问题是数学建模中的另一个重要问题,用于对方案、系统或项目进行评估和比较。

常用的评价方法包括层次分析法、优劣解距离法等。

针对2023年数学建模C题的具体要求和数据,需要结合以上数学建模领域的知识和方法进行分析和建模。

具体解题思路和步骤需要根据题目要求和数据特点进行详细规划和实施。

数学建模常用模型及代码

数学建模常用模型及代码

数学建模常用模型及代码
一.规划模型
1.线性规划
线性规划与非线性规划问题一般都是求最大值和最小值,都是利用最小的有限资源来求最大利益等,一般都利用lingo工具进行求解。

点击进入传送门
2.整数规划
求解方式类似于线性规划,但是其决策变量x1,x2等限定都是整数的最优化问题。

传送门
3. 0-1规划
决策变量只能为0或者为1的一类特殊的整数规划。

n个人指派n项工作的问题。

传送门
4.非线性规划
目标函数或者存在约束条件函数是决策变量的非线性函数的最优化问题。

传送门
5.多目标规划
研究多于一个的目标函数在给定区域上的最优化。

把求一个单目标,在此单目标最优的情况下将其作为约束条件再求另外一个目标。

传送门
6.动态规划
运筹学的一个分支。

求解决策过程最优化的过程。

传送门
二. 层次分析法
是一种将定性和定量相结合的,系统化的,层次化的分析方法,主要有机理分析法和统计分析法。

传送门
三.主成分分析
指标之间的相关性比较高,不利于建立指标遵循的独立性原则,指标之间应该互相独立,彼此之间不存在联系。

传送门。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模四大模型归纳

数学建模四大模型归纳

四类基本模型1优化模型1.1数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2微分方程组模型阻滞增长模型、SARS传播模型。

1.3图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。

1.5组合优化经典问题多维背包问题(MKP)背包问题:n个物品,对物品i,体积为W i,背包容量为W。

如何将尽可能多的物品装入背包。

多维背包问题:n个物品,对物品i,价值为P i,体积为W i,背包容量为W。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP难问题。

二维指派问题(QAP)工作指派问题:n个工作可以由n个工人分别完成。

工人i完成工作j的时间为d j。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n台机器要布置在n个地方,机器i 与k之间的物流量为f ik,位置j与l之间的距离为d jl,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

旅行商问题(TSP)旅行商问题:有n个城市,城市i与j之间的距离为d ij,找一条经过n个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP问题是VRP问题的特例。

车间作业调度问题(JSP)车间调度问题:存在j个工作和m台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法数学建模竞赛是一项旨在培养学生数学建模能力的竞赛活动。

在竞赛中,参赛者需要利用数学知识和技巧,解决实际问题,并提出相应的数学模型。

然而,数学模型的求解方法却是一个非常关键的环节。

本文将介绍一些常见的数学模型求解方法,帮助参赛者在竞赛中取得好成绩。

一、线性规划线性规划是数学建模中常见的一种模型求解方法。

它的基本思想是将问题转化为一个线性函数的最优化问题。

在线性规划中,参赛者需要确定决策变量、目标函数和约束条件,并利用线性规划模型求解最优解。

常见的线性规划求解方法有单纯形法、内点法等。

这些方法基于数学原理,通过迭代计算,逐步接近最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量取整数值。

整数规划在实际问题中具有广泛的应用,例如货物运输、资源分配等。

在整数规划中,参赛者需要将问题转化为一个整数规划模型,并利用整数规划求解方法求解最优解。

常见的整数规划求解方法有分支定界法、割平面法等。

这些方法通过分解问题、添加约束条件等方式,逐步缩小搜索空间,找到最优解。

三、非线性规划非线性规划是一类目标函数或约束条件中包含非线性项的最优化问题。

在实际问题中,很多情况下目标函数和约束条件都是非线性的。

在非线性规划中,参赛者需要选择适当的数学模型,并利用非线性规划求解方法求解最优解。

常见的非线性规划求解方法有牛顿法、拟牛顿法等。

这些方法通过迭代计算,逐步逼近最优解。

四、动态规划动态规划是一种解决多阶段决策问题的数学方法。

在动态规划中,参赛者需要确定状态、决策和状态转移方程,并利用动态规划求解方法求解最优解。

常见的动态规划求解方法有最优子结构、重叠子问题等。

这些方法通过存储中间结果、利用递推关系等方式,逐步求解最优解。

五、模拟与优化模拟与优化是一种常见的数学模型求解方法。

在模拟与优化中,参赛者需要建立数学模型,并利用计算机模拟和优化算法求解最优解。

常见的模拟与优化方法有蒙特卡洛模拟、遗传算法等。

数学建模常用算法模型

数学建模常用算法模型

数学建模常用算法模型在数学建模中,常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

下面将对这些算法模型进行详细介绍。

1.线性规划:线性规划是一种用于求解最优化问题的数学模型和解法。

它的目标是找到一组线性约束条件下使目标函数取得最大(小)值的变量取值。

线性规划的常用求解方法有单纯形法、内点法和对偶理论等。

2.整数规划:整数规划是一种求解含有整数变量的优化问题的方法。

在实际问题中,有时变量只能取整数值,例如物流路径问题中的仓库位置、设备配置问题中的设备数量等。

整数规划常用的求解方法有分支界定法和割平面法等。

3.非线性规划:非线性规划是一种求解非线性函数优化问题的方法,它在实际问题中非常常见。

与线性规划不同,非线性规划的目标函数和约束函数可以是非线性的。

非线性规划的求解方法包括牛顿法、拟牛顿法和全局优化方法等。

4.动态规划:动态规划是一种用于解决决策过程的优化方法。

它的特点是将问题划分为一系列阶段,然后依次求解每个阶段的最优决策。

动态规划常用于具有重叠子问题和最优子结构性质的问题,例如背包问题和旅行商问题等。

5.图论算法:图论算法是一类用于解决图相关问题的算法。

图论算法包括最短路径算法、最小生成树算法、网络流算法等。

最短路径算法主要用于求解两点之间的最短路径,常用的算法有Dijkstra算法和Floyd-Warshall算法。

最小生成树算法用于求解一张图中连接所有节点的最小代价树,常用的算法有Prim算法和Kruskal算法。

网络流算法主要用于流量分配和问题匹配,例如最大流算法和最小费用最大流算法。

6.遗传算法:遗传算法是一种借鉴生物进化原理的优化算法。

它通过模拟生物的遗传、变异和选择过程,不断优化问题的解空间。

遗传算法适用于对问题解空间有一定了解但难以确定最优解的情况,常用于求解复杂的组合优化问题。

总结起来,数学建模中常用的算法模型包括线性规划、整数规划、非线性规划、动态规划、图论算法以及遗传算法等。

数学建模的方法

数学建模的方法

数学建模的方法1983年,数学建模作为一门独立的课程进入我国高等学校,在清华大学首次开设。

1987年高等教育出版社出版了国内第一本《数学模型》教材。

20多年来,数学建模工作发展的非常快,许多高校相继开设了数学建模课程,我国从1989年起参加美国数学建模竞赛,1992年国家教委高教司提出在全国普通高等学校开展数学建模竞赛,旨在“培养学生解决实际问题的能力和创新精神,全面提高学生的综合素质”。

近年来,数学模型和数学建模这两个术语使用的频率越来越高,而数学模型和数学建模也被广泛地应用于其他学科和社会的各个领域。

本文主要介绍了数学建模中常用的方法。

数学建模的方法 1原型就是人们在社会实践中所关心和研究的现实世界中的事物或对象。

模型是指为了某个特定目的将原型所具有的本质属性的某一部分信息经过简化、提炼而构造的原型替代物。

一个原型,为了不同的目的可以有多种不同的模型。

数学模型是指对于现实世界的某一特定对象,为了某个特定目的,进行一些必要的抽象、简化和假设,借助数学语言,运用数学工具建立起来的一个数学结构。

数学建模是指对特定的客观对象建立数学模型的过程,是现实的现象通过心智活动构造出能抓住其重要且有用的特征的表示,常常是形象化的或符号的表示,是构造刻画客观事物原型的数学模型并用以分析、研究和解决实际问题的一种科学方法。

二、教学模型的分类数学模型从不同的角度可以分成不同的类型,从数学的角度,按建立模型的数学方法主要分为以下几种模型:几何模型、代数模型、规划模型、优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型等。

数学建模的方法 31.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思考者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该“类似”问题的数学方法,最终建立起解决问题的模型。

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析

高中数学中常见的数学建模题分析一、引言数学建模题在高中数学学习中起到了非常重要的作用,它既锻炼了学生的数学思维能力,又培养了学生的实际问题解决能力。

本文将重点分析高中数学中常见的数学建模题,并探讨解决这些问题的方法和步骤。

二、数学建模题的分类1. 线性规划问题线性规划是数学建模中最基本的问题之一。

该问题通常涉及到在一定的约束条件下,求解一个线性方程组的最优解。

例如,某工厂在一定的资源限制下,如何安排生产,以使成本最小化或产量最大化。

2. 最优化问题最优化问题包括最大化问题和最小化问题。

这类问题的解决方法通常是通过求导数进行优化,找到使目标函数取得极值的点。

例如,在扔老师纳什扬尼的蛋问题中,要确定扔鸡蛋的起始楼层,以便在最坏情况下扔的次数最少。

3. 动态规划问题动态规划问题是将一个复杂的问题分解为多个重叠子问题,通过求解子问题的最优解来获取原问题的最优解。

例如,在路径规划问题中,我们可以使用动态规划来确定从起点到终点的最短路径。

4. 概率模型问题概率模型问题涉及到在给定的概率条件下,预测某个事件发生的概率。

例如,在赌博游戏中,我们可以使用概率模型来计算某个玩家获胜的概率。

5. 统计问题统计问题主要是研究如何通过样本数据来推断总体的某些特性。

通常通过收集样本数据,计算样本均值、标准差等统计量,然后通过统计推断方法来估计总体的参数。

三、数学建模题的解决方法和步骤1. 理解问题首先要对问题进行深入的理解,包括确定问题的背景、目标、约束条件等。

通过仔细阅读问题描述,了解问题所涉及的数学概念和模型。

2. 建立模型在理解问题的基础上,根据问题的特点建立适当的数学模型。

模型的建立应符合实际情况,并能够准确描述问题的要求。

3. 分析模型对建立的数学模型进行分析,包括模型的性质、特点和解的存在性及唯一性等。

通过分析模型的特点,可以更好地理解问题的本质,并为后续的解决方法提供指导。

4. 求解模型根据建立的数学模型,选择合适的求解方法进行求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模8-动态规划和目标规划
一、动态规划
1.动态规划是求解决策过程最优化的数学方法,主要用于求解以时间划分阶段的动态过程的
优化问题。

但是一些与时间无关的静态规划(如线性规划、非线性规划),只要人为地引进时间因素,把它视为多阶段决策过程,也可以用动态规划方法方便地求解。

2.基本概念、基本方程:
(1)阶段
(2)状态
(3)决策
(4)策略
(5)状态转移方程:
(6)指标函数和最优值函数:
(7)最优策略和最优轨线
(8)递归方程:
3.计算方法和逆序解法(此处较为抽象,理解较为困难,建议结合例子去看)
4.动态规划与静态规划的关系:一些静态规划只需要引入阶段变量、状态、决策等就可以用动态规划方法求解(详见书中例4)
5.若干典型问题的动态规划模型:
(1)最短路线问题:
(2)生产计划问题:状态定义为每阶段开始时的储存量x k,决策为每个阶段的产量,记每个阶段的需求量(已知量)为d k,则状态转移方程为
(3)资源分配问题:详见例5
状态转移方程:
最优值函数:
自有终端条件:
(4)具体应用实例:详见例6、例7。

二、目标规划
1.实际问题中,衡量方案优劣要考虑多个目标,有主要的,有主要的,也有次要的;有最大值的,也有最小值的;有定量的,也有定性的;有相互补充的,也有相互对立的,这时可用目标规划解决。

其求解思路有加权系数法、优先等级法、有效解法等。

2.基本概念:
(1)正负偏差变量:
(2)绝对(刚性)约束和目标约束
,次位赋(3)优先因子(优先等级)与权系数:凡要求第一位达到的目标赋予优先因子P
1……以此类推。

予P
2
(4)目标规划的目标函数:
(5)一般数学模型:
3.求解目标规划的解法:
(1)序贯式算法(用LINGO软件求解,有编程模板可以使用,下面以书中例3说明,具体还可以参考书中例6-例8):
model:
sets:
level/1..3/:p,z,goal;
variable/1..2/:x;
h_con_num/1..1/:b;
s_con_num/1..4/:g,dplus,dminus;
h_con(h_con_num,variable):a;
s_con(s_con_num,variable):c;
obj(level,s_con_num)/1 1,2 2,3 3,3 4/:wplus,wminus;
endsets
data:
ctr=?;
goal=? ? 0;
b=12;
g=1500 0 16 15;
a=2 2;
c=200 300 2 -1 4 0 0 5;
wplus=0 1 3 1;
wminus=1 1 3 0;
enddata
min=@sum(level:p*z);
p(ctr)=1;
@for(level(i)|i#ne#ctr:p(i)=0);
@for(level(i):z(i)=@sum(obj(i,j):wplus(i,j)*dplus(j)+wminus(i,j)*
dminus(j)));
@for(h_con_num(i):@sum(variable(j):a(i,j)*x(j))<b(i));
@for(s_con_num(i):@sum(variable(j):c(i,j)*x(j))+dminus(i)-dplus(i
)=g(i));
@for(level(i)|i #lt# @size(level):@bnd(0,z(i),goal(i)));
end
(2)多目标规划的MATLAB解法:
以书中例5详细说明如下:
a=[-1 -1 0 0
0 0 -1 -1
3 0 2 0
0 3 0 2];
b=[-30 -30 120 48]';
c1=[-100 -90 -80 -70];
c2=[0 3 0 2];
[x1,g1]=linprog(c1,a,b,[],[],zeros(4,1)) %求第一个目标函数的目标值
[x2,g2]=linprog(c2,a,b,[],[],zeros(4,1)) %求第二个目标函数的目标值
g3=[g1;g2]; %目标goal的值
[x,fval]=fgoalattain('Fun',rand(4,1),g3,abs(g3),a,b,[],[],zeros(4,1))。

相关文档
最新文档