正弦定理
正余弦定理公式大全
正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。
下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。
1. 正弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。
其中,R为三角形外接圆半径。
正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。
通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。
2. 余弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。
b² = a² + c² 2accosB。
c² = a² + b² 2abcosC。
余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。
与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。
3. 正余弦定理的综合应用。
正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。
通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。
在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。
总结。
正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。
正弦定理的四种证明方法
正弦定理的四种证明方法1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abAB =,同理可得sin sin cbCB=,故有sin sin abAB=sin cC =.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin abAB=sin cC =.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b解:过C 作CD ⊥AB 交AB 于D ,则cos AD c A =sin sin cos sin tan sin cos BD c A c A CDC C C C C ===sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c Bb AC AD DCc A C C C+==+=+==ab DABCAB CDba推论:sin sin b cB C= 同理可证:sin sin sin a b cA B C==2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D.则Rt △ADB中,ABAD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=•.同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到AB j CB AC j •=+•)( 由分配律可得AB j CB j AC •=•+.B∴|j |ACCo s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j∴asinC=csinA.∴CcA a sin sin =. A另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 的夹角为90°+B ,可得Bb Cc sin sin =.(此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与AC 的夹角为90°-C ,j 与AB 的夹角为90°-B )∴CcB b A a sin sin sin ==.DC BA C(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与AC 垂直的单位向量j ,则j与AB 的夹角为A -90°,j 与CB 的夹角为90°-C .由AB CB AC=+,得j ·AC+j ·CB =j ·AB , j 即a·Cos(90°-C)=c·Cos(A-90°),∴asinC=csinA.∴CcA a sin sin =另外,过点C 作与CB 垂直的单位向量j ,则j 与AC 的夹角为90°+C ,j 与AB 夹角为90°+B .同理,可得CcB b sin sin =.∴CcB b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=.∴R Cc2sin =.同理,可得R B b R A a 2sin ,2sin ==.∴R CcB b A a 2sin sin sin ===.这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin ==.ACBA。
正弦定理
sin A sin C
c sin A 10 × sin 45 a= = = 10 2 sin C sin 30
B = 180 ( A + C ) = 105
b s in B
=
c s in C
c sin B 10×sin105 6+ 2 b= = = 20sin75 = 20× = 5 6 +5 2 sin C sin30 4
sin B
②已知三角形的任意两边与其中一边的对角可以 求其他角的正弦值,如
a sin A = sin B b
一般地,已知三角形的某些边和角, 一般地,已知三角形的某些边和角,求其他的边和 角的过程叫作解三角形. 角的过程叫作解三角形
二.例题分析 例题分析 题型一 正弦定理的简单运用
例1 已知在 ABC中,c = 10, A = 45 , C = 30 , 求a, b和B
⑶对于正弦定理: A sin
a
=
b
sin B
=
c
sinC =2R
其中R为ABC的外接圆半径,要注意它的几个 变式的应用:
① ② ③
a
sinA sinB
=
b
c b = sinC sinB
=
a
sin A
=Hale Waihona Puke csin Ca = k sin A
b = k sin B
c = k sin C
a : b : c = sin A : sin B : sin C
说明:正弦定理可以用于解决已知两角和一边求另两边 和一角的问题.
题型二 正弦定理的综合运用
例2
在ABC 中, = 2 2,a > b, C = , 且有tan A tan B = 6 c 4
正弦定理
正弦定理三角学中的一个定理,它指出了三角形三边、三个内角以及外接圆半径之间的关系。
∙中文名称:正弦定理∙外文名称:sine theorem∙应用学科:数学∙适用领域范围:几何内容:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。
则有即,在一个三角形中,各边和它所对角的正弦之比相等,该比值等于该三角形外接圆的直径长度。
证明:在锐角△ABC中,设BC=a, AC=b, AB=c。
作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB同理,在△ABC中,b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R类似可证其余两个等式。
应用领域在解三角形中,有以下的应用领域:(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。
由正弦定理在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。
一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。
已知三角形的几个元素求其他元素的过程叫做解三角形。
扩展一.三角形面积公式:1.海伦公式:设P=1/2(a+b+c)S△=根号下P(P-a)(P-b)(P-c)解释:假设有一个三角形,边长分别为a、b、c,三角形的面积S可由以下公式求得:S=√[p(p-a)(p-b)(p-c)]而公式里的p为半周长:p=(a+b+c)/22.S△ABC=ab·sinC/2=bc·sinA/2=ac·sinB/2=abc/(4R)[R为外接圆半径]3.S△ABC=ah/2二. 正弦定理的变形公式(1) a=2RsinA, b=2RsinB, c=2RsinC;(2) sinA : sinB : sinC = a : b : c;(条件同上)在一个三角形中,各边与其所对角的正弦的比相等,且该比值都等于该三角形外接圆的直径已知三角形是确定的,利用正弦定理解三角形时,其解似的唯一的;已知三角形的两边和其中一边的对角,由于该三角形具有不稳定性,所以其解不确定,可结合平面几何作图的方法及“大边对大角,大角对大边”定理和三角形内角和定理去考虑解决问题(3)相关结论:a/sinA=b/sinB=c/sinC=a+b/sinA+sinB=a+b+c/sinA+sinB+sinC。
正弦定理的概念与余弦定理的概念
正弦定理的概念与余弦定理的概念正弦定理和余弦定理是在三角形中用于计算边长和角度的重要定理。
1. 正弦定理(Sine Rule):正弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,正弦定理可以表述为:
a/sinA = b/sinB = c/sinC
其中a、b、c分别表示三角形的边长,A、B、C分别表示对应边的角度。
2. 余弦定理(Cosine Rule):余弦定理是用来计算三角形中的边长和角度的关系。
对于一个三角形ABC,余弦定理可以表述为:
c^2 = a^2 + b^2 - 2abcosC
其中a、b、c分别表示三角形的边长,C表示对应边的角度。
正弦定理和余弦定理都可以在解决三角形问题时使用,它们提供了计算边长和角度的方法,可以帮助我们求解各种三角形相关的问题。
正弦定理
发展简史
历史上,正弦定理的几何推导方法丰富多彩。根据其思路特征,主要可以分为两种。
第一种方法可以称为 “同径法 ”,最早为13世纪阿拉伯数学家、天文学家纳绥尔丁和15世纪德国数学家雷 格蒙塔努斯所采用。“同径法 ”是将三角形两个内角的正弦看作半径相同的圆中的正弦线(16世纪以前,三角 函数被视为线段而非比值),利用相似三角形性质得出两者之比等于角的对边之比。纳绥尔丁同时延长两个内角 的对边,构造半径同时大于两边的圆。雷格蒙塔努斯将纳绥尔丁的方法进行简化,只延长两边中的较短边,构造 半径等于较长边的圆。17~18世纪,中国数学家、天文学家梅文鼎和英国数学家辛普森各自独立地简化了“同径 法”。
正弦定理
三角学中的基本定理
01 发展简史
03 验证推导 05 定理推广
目录
02 定理定义 04 定理意义
正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它 所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为 直径)。
在解三角形中,有以下的应用领域:
物理学中,有的物理量可以构成矢量三角形。因此,在求解矢量三角形边角关系的物理问题时,应用正弦定理, 常可使一些本来复杂的运算,获得简捷的解答。
定理推广
推论 △ABC中,若角A,B,C所对的边为a,b,c,三角形外接圆半径为R,直径为D,正弦定理进行变形有 1. 2.,, 3. 4. (等比,不变) 5. (三角形面积公式) 三面角正弦定理 若三面角的三个面角分别为α、β、γ,它们所对的二面角分别为A、B、C,则 多边形的正弦关系
18世纪初,“同径法”又演化为“直角三角形法”,这种方法不需要选择并作出圆的半径,只需要作出三角 形的高线,利用直角三角形的边角关系,即可得出正弦定理。19世纪,英国数学家伍德豪斯开始统一取R=1,相 当于用比值来表示三角函数,得到今天普遍采用的 “作高法”。
正弦定理内容及证明
正弦定理内容及证明正弦定理是指在一个任意三角形ABC中,三个边的长度a、b、c与对应的角A、B、C之间存在以下关系:a/sin(A) = b/sin(B) = c/sin(C)证明正弦定理一般有两种方法:几何证明和代数证明。
几何证明:1. 过点B作AC的垂线BD,使得BD与AC交于点D。
则三角形ABD与BCD为直角三角形。
2. 由于三角形ABD、BCD为直角三角形,可得:sin(A) = BD / AB,sin(C) = BD / CD。
3. 对于三角形ABD和BCD,因为角B为共对角,所以可得:BD / AB = CD / BC。
4. 根据上面三个等式可以得到:sin(A) = BD / AB = CD / BC = sin(C)。
5. 再利用BD / AB = CD / BC,可以得到BD / CD = AB / BC = sin(B)。
6. 整理可得出正弦定理:a / sin(A) = b / sin(B) = c / sin(C)。
代数证明:1. 通过三角形ABC的两边b和c之间的夹角A,可构造一个高为h的直角三角形ADE(D在BC上)。
2. 根据正弦的定义可得:sin(A) = h / c,sin(90°-A) = h / b。
3. 注意到sin(90°-A) = sin(B)(余角公式),那么可以得到:sin(A) = h / c = sin(B) * b。
4. 类似地,可以通过三角形ABC的两边a和c之间的夹角B,构造一个高为h的直角三角形BEF(E在AC上)。
5. 根据正弦的定义可得:sin(B) = h / a,sin(90°-B) = h / c。
6. 注意到sin(90°-B) = sin(A)(余角公式),那么可以得到:sin(B) = h / a = sin(A) * c。
7. 把第3步的公式和第6步的公式相比较,可以得到:h / a =h / c,即a = c * sin(A)。
正弦定理和余弦定理
返回
[研一题] [例 2] B、b. π 在△ABC 中,c= 6,C=3,a=2,求 A、
返回
[自主解答] π 3 ∴A=4或4π.
a c asin C 2 ∵sin A=sin C,∴sin A= c = 2 .
π 又∵c>a,∴C>A.∴A=4. 5π 6· sin 1n C = π = 3+1. sin 3
第四章
三角函数
四
正弦定理和余弦定理
• 1、正、余弦定理
定理 正弦定理
a b c = = sin A sin B sin C =2R
余弦定理 a2= a2+c2-2accos B b2=a2+b2-2abcosC c2 =
b2+c2-2bccos A
内
; ; .
容
定理
变 形 形 式
正弦定理 余弦定理 ①a= 2Rsin A , b= 2Rsin B , c= 2Rsin C ; b2+c2-a2 cosB= a b 2bc ②sin A=2R,sin B=2R, 2 a +c2-b2 c 2ac sin C=2R; cos B= ; 2 2 2 a + b - c (其中 R 是△ABC 外接圆半径) cos C= 2ab . ③a∶b∶c=sinA∶sin B∶sin C ④asin B=bsin A,bsin C=csin B, asin C=csin A.
(2)由正弦定理知sin A∶sin B∶sin C=a∶b∶c正确,即
(2)正确.
返回
2.在△ABC中,若A>B,是否有sin A>sin B?反之,是 否成立?
提示:∵A>B,∴a>b. a b 又∵sin A=sin B,∴sin A>sin B. 反之,若 sin A>sin B, 则 a>b,即 A>B. 故 A>B⇔sin A>sin B.
正弦定理定理公式
正弦定理定理公式正弦定理(Sine Law)是三角形中常用的一个定理,它揭示了三角形的边与角之间的关系。
正弦定理可以用来求解未知边长或角度的问题,在实际生活中有着广泛的应用。
正弦定理的表述如下:在任意三角形ABC中,设三边分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC通过正弦定理我们可以得出以下三个推论:推论1:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sinA/a = sinB/b = sinC/c推论2:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:a/sinA = b/sinB = c/sinC = 2R(其中R为三角形ABC外接圆的半径)推论3:设三角形ABC的边长分别为a、b、c,对应的角为A、B、C,则有以下等式成立:sin(A-B) = sinC正弦定理的应用非常广泛,下面我们来看几个实际问题的例子。
例题1:已知三角形ABC中,角A=60°,角B=45°,边AC=8cm,求边BC的长度。
解:根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin45° = 8cm/sin60°BC/(√2/2) = 8cm/(√3/2)BC = 8cm * (√2/2) * 2/√3BC = 8√2/√3 cm所以边BC的长度约为9.24cm。
例题2:已知三角形ABC中,角A=30°,角B=60°,边AC=10cm,求边BC的长度。
解:同样根据正弦定理,我们可以得到以下等式:BC/sinB = AC/sinABC/sin60° = 10cm/sin30°BC/(√3/2) = 10cm/(1/2)BC = 10cm * (√3/2) * 2BC = 10√3 cm所以边BC的长度约为17.32cm。
正弦定理和余弦定理
第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。
正弦定理余弦定理
03
正弦定理与余弦定理的关 联
正弦定理与余弦定理的相似之处
01
两者都是关于三角形边角关系的定理,是三角学中 的基本定理之一。
02
它们都可以用来解决与三角形相关的问题,如求角 度、边长等。
03
正弦定理和余弦定理在形式上具有一定的对称性, 反映了三角形的内在规律。
正弦定理与余弦定理的不同之处
01
02
03
正弦定理主要应用于求解三角形 的角度,特别是当已知两边及其 夹角时;而余弦定理则更常用于 求解三角形的边长,特别是当已 知两角及一边时。
正弦定理中的角度是通过正弦函 数来表达的,而余弦定理中的角 度则是通过余弦函数来表达的。
正弦定理和余弦定理在应用上有 一定的互补性,可以根据具体问 题选择使用。
总结词
余弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角余弦值之间的关系。
详细描述
余弦定理是三角学的基本定理之一,它指出在任意三角形ABC中,任意一边的平方等于其他两边的平 方和减去两倍的另一边的长度与相邻两边的乘积。数学公式表示为:a^2 = b^2 + c^2 - 2bc cos(A) 。
交流电
交流电的电压和电流是时间的正 弦函数,这使得正弦定理在电力 系统中有着广泛的应用。
声学
声音的传播和反射可以用正弦和 余弦函数来描述,这使得余弦定 理在声学中有重要应用。
三角函数在工程中的应用
1 2
结构设计
在建筑和机械设计中,正弦和余弦定理常被用来 计算角度、长度等参数,以确保结构的稳定性和 安全性。
余弦定理的应用
总结词
余弦定理在解决三角形问题中具有广泛 的应用,包括求解角度、判断三角形的 形状以及解决实际问题等。
sin正弦定理公式
sin正弦定理公式中文称为“三角函数定理”,英文名称叫做“Pythagorean Theorem”,也叫做“Pythagoras Theorem”,是古希腊数学家“”发现的一个重要数学定理,在日常生活中也被经常使用。
该定理是圆周率π和三角函数的基础,从学前班到高等数学,都有它的痕迹。
正弦定理是一个三角形换算公式,又称定边换算公式,它非常有用,最主要的就是用来计算三角形角的大小,以及计算三角形的边长。
定理的公式为:在任意一个三角形中,每个直角的两边的平方和,等于那个直角的斜边的平方,即a^2+b^2=c^2(a,b,c分别代表三边的边长)。
数学表达式就是:a×a+b×b=c×c。
其中,a代表三角形的一条直角边,b表示另一条直角边,C指的是斜边,因此准确的表述可以是:直角三角形的两条直角边的平方和等于斜边的平方。
这里需要特别指出的是,正弦定理仅仅适用于直角三角形,对于其他类型的三角形就不能够使用这个定理了。
此外,在许多算法中,正弦定理也可以用来解决一些图形问题。
另外,它还可以用来求解四边形的面积:如果四边形的边长分别为a、b、c、d,那么它的面积就等于边a的平方+边b的平方+边c的平方+边d的平方”。
在日常生活中,正弦定理也可以用来计算某个物体的体积。
在施工、安装、维修等行业,正弦定理还可以帮助我们计算出物体的宽度、高度和长度,从而精确地计算它的体积。
正弦定理不仅仅是一个数学定理,它在我们日常生活中也有着非常重要的作用。
它能够帮助我们在几何中更加准确地计算各种复杂的图形,还可以帮助我们精确地计算出物体的体积。
它也是数学研究中最重要的基础,它是圆周率π和三角函数的基础,从学前班到高等数学,都有它的痕迹。
正弦定理的公式是什么
正弦定理的公式是什么正弦定理的公式是什么sin^2(α/2)=(1-cosα)/2。
在直角三角形中,∠A(非直角)的对边与斜边的比叫做∠A的正弦,故记作sinA,即sinA=∠A的对边/∠A的斜边古代说法,正弦是股与弦的比例。
古代说的“勾三股,四弦五”中的“弦”,就是直角三角形中的斜边。
股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。
正弦是∠α(非直角)的对边与斜边的比值,余弦是∠A(非直角)的邻边与斜边的比值。
勾股弦放到圆里。
弦是圆周上两点连线。
最大的弦是直径。
把直角三角形的弦放在直径上,股就是长的弦,即正弦,而勾就是短的弦,即余弦。
按现代说法,正弦是直角三角形某个角(非直角)的对边与斜边之比,即:对边/斜边。
余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。
余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
高中数学正弦定理公式数学正弦定理公式:a/sinA=b/sinB=c/sinC=2R;余弦定理公式:cosA=(b?+c?-a?)/2bc。
正余弦定理指正弦定理和余弦定理,是揭示三角形边角关系的重要定理,直接运用它可解决三角形的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
一、正弦定理推论公式1、a=2RsinA;b=2RsinB;c=2RsinC。
2、a:b=sinA:sinB;a:c=sinA:sinC;b:c=sinB:sinC;a:b:c=sinA:sinB:sinC。
二、余弦定理推论公式1、cosA=(b^2+c^2-a^2)/2bc;2、cosB=(a^2+c^2-b^2)/2ac;3、cosC=(a^2+b^2-c^2)/2ab。
正弦定理和余弦定理公式
正弦定理和余弦定理公式设任意三角形△ABC,角A、B、C的对边分别记作a、b、c,则可得到正弦定理、余弦定理的公式及其推论如下。
正弦定理:在一个三角形中,各边和它所对的角的正弦的比相等。
一、正弦定理公式a/sinA=b/sinB=c/sinC=2R。
【注1】其中“R”为三角形△ABC外接圆半径。
下同。
【注2】正弦定理适用于所有三角形。
初中数学中,三角形内角的正弦值等于“对比斜”仅适用于直角三角形。
二、正弦定理推论公式1、(1)a=2RsinA;(2)b=2RsinB;(3)c=2RsinC。
2、(1)a:b=sinA:sinB;(2)a:c=sinA:sinC;(3)b:c=sinB:sinC;(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
三角板的边角关系也满足正、余弦定理3、由“a/sinA=b/sinB=c/sinC=2R”可得:(1)(a+b)/(sinA+sinB)=2R;(2)(a+c)/(sinA+sinC)=2R;(3)(b+c)/(sinB+sinC)=2R;(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。
其中“R”为三角形△ABC的外接圆半径。
部分三角函数公式余弦定理公式及其推论余弦定理:三角形中任何一边的平方,等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
一、余弦定理公式(1)a^2=b^2+c^2-2bccosA;(2)b^2=a^2+c^2-2accosB;(3)c^2=a^2+b^2-2abcosC。
正弦定理
正弦定理正弦定理(The Law of Sines)是三角学中的一个基本定理,它指出“在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径”,即a/sinA = b/sinB =c/sinC = 2r=D(r为外接圆半径,D为直径)。
定理定义在任意△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R,直径为D。
则有:一个三角形中,各边和所对角的正弦之比相等,且该比值等于该三角形外接圆的直径(半径的2倍)长度。
[3]验证推导证明一做一个边长为a,b,c的三角形,对应角分别是A,B,C。
从角C向c边做垂线,得到一个长度为h的垂线和两个直角三角形。
很明显:和因此:和同理:证明二:外接圆①锐角三角形中如图,作△ABC的外接圆,O为圆心。
连结BO并延长交圆于D,设BD=2R。
根据直径所对圆周角是直角及同弧所对圆周角相等,可得:∠DAB=90°,∠C=∠D。
∴,∴。
同理可证, 。
∴。
②直角三角形中因为BC =a= 2R,可以得到所以可以证明③钝角三角形中线段BD是圆的直径根据圆内接四边形对角互补的性质所以因为BD为外接圆的直径BD = 2R。
根据正弦定义变形可得根据以上的证明方法可以证明得到得到三角形的一条边与其对角的正弦值的比等于外接圆的直径,即证明三:向量若△ABC为锐角三角形,过点A作单位向量j⊥,则j与的夹角为90°-∠A,j与的夹角为90°-∠C.由向量的加法原则可得为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j的数量积运算,得到∴|j| ||Cos90°+|j| || Cos(90°-C)=|j| ||Cos(90°-A).∴asinC=csinA即同理,过点C作与垂直的单位向量j, 则j与的夹角为90°+∠C, j与的夹角为90°+∠B,可得若△ABC为钝角三角形,不妨设A>90°,过点A作与AB垂直的单位向量j, 则j与AC的夹角为∠A-90°,j与CB的夹角为90°+∠B. 同理a·Cos(90°-B)=b·Cos(A-90°),∴asinB=bsinA 即过点C作与垂直的单位向量j, 则j与的夹角为90°+∠C,j 与的夹角为90°+∠B,可得综上,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1.1 正弦定理
学习目标
1.掌握正弦定理.
2.能够应用正弦定理,利用三角形的一些知识和方法解决一些简单的实际问题.
知识清单
1.解三角形的概念
由斜三角形六个元素(三条边和三个角)中的三个元素(至少有一个是边),求其余三个未知元素(可能有两解、一解或无解)的过程,叫做解三角形. 2.正弦定理
在
ABC ∆中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为ABC ∆外接圆半径.即
2sin sin sin a b c R A B C
===. 3.在ABC ∆中,已知,a b 和A 时,解的个数见下表:
A 为钝角
A 为直角
A 为锐角
a b > 一解 一解 一解 a b =
无解
无解
一解
a b <
无解 无解
sin a b A >
两解 sin a b A = 一解 sin a b A <
无解
考点1:利用正弦定理解三角形
【例1】在ABC ∆中,已知
2,45,c B ==︒30C =︒,求b 。
变式
(1)在ABC ∆中,已知2c =,B=45︒, A=105︒求b 。
(2)在ABC ∆中,已知
24522AB B AC =∠==,,o ,求C ∠。
【例2】已知16,163,30a b A ===o ,求B 。
巩固提高
1.在ABC ∆中,3
3a =3b =,3
A π
=
,则B 为( )
A .6π
B .4π
C .2
π
D .23π
2.(2017年百色模拟)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,已知1a =,3b =
30A =o ,
B 为锐角,那么角::A B
C 的比值为( )
A .1:1:3
B .1:2:3
C .1:3:2
D .1:4:1 3.在ABC ∆中,3
3a =3b =,3
A π
=
则C 为( )
A .
6
π
B .
4
π C .
2
π D .
23
π 4.在ABC ∆中,已知2a =,6b =
,45A =o ,则满足条件的三角形有( )
A .1个
B .2个
C .0个
D .无法确定
1.(2017年黄石港区校级模拟)在
ABC ∆中,内角,,A B C 所对的边分别是,,a b c ,若30B =o ,
23c =2b =,则C =( )
A .
3
π
B .
3
π或
23π C..4π D .4
π或54π
2.(2017年河东区一模)在ABC ∆中,,,a b c 为角,,A B C 的对边,若6A π=,3
cos 5
B =,8b =则a =
利用正弦定理可以解决的两类问题: (1)已知两角和任一边,求其他两边和一角. (2)已知两边和其中一边的对角,求另一边的对角,从而进一步求出其他的边和角.由于三角形的形状不能唯一确定,会出现两解、一解和无解三种情况. ※规律总结※
( )
A .
403 B .10 C .203
D .5 3.(2017年朝阳区模拟)在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,若1
sin()3
A B +=
,3a =,4c =,则sin A =( )
A .23
B .14
C .34
D .16。