遥感影像图像处理流程
遥感影像镶嵌的基本流程
遥感影像镶嵌的基本流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!遥感影像镶嵌基本流程:1. 影像预处理。
影像获取和选择。
几何纠正。
遥感数据处理的基本步骤与技巧
遥感数据处理的基本步骤与技巧遥感技术作为一种获取地球表面信息的重要手段,被广泛应用于农林牧渔、城市规划、环境监测等领域。
而遥感数据的处理和分析则是有效利用遥感信息的关键环节。
本文将介绍遥感数据处理的基本步骤与技巧,以帮助读者更好地应用遥感数据。
一、数据获取遥感数据的获取是遥感数据处理的第一步。
常用的遥感数据包括航空影像、卫星影像和激光雷达数据。
在选择遥感数据时,需根据具体的研究目标和需求,选择适合的数据类型和分辨率。
而对于不同类型的遥感数据,其获取的方法也有所不同。
例如,航空影像可以通过航拍或无人机获取,卫星影像可以通过遥感卫星获取。
二、数据预处理数据预处理是遥感数据处理的重要环节。
通过对遥感数据进行校正和增强,可以提高数据的质量和可用性。
常见的数据预处理步骤包括辐射校正、大气校正、几何纠正和镶嵌拼接。
辐射校正是将原始遥感数据转化为能量辐射亮度值,大气校正是去除大气散射和吸收的影响,几何纠正是将图像投影到地面坐标系,镶嵌拼接是将多个遥感图像拼接成一个完整的图像。
三、特征提取特征提取是遥感数据处理的关键环节之一。
通过对遥感图像中的特征进行提取和分类,可以获取地表覆盖类型、土地利用状况等信息。
常用的特征提取方法包括阈值分割、数学形态学、边缘检测和纹理分析等。
例如,通过采用基于阈值分割和数学形态学的方法,可以将遥感图像中的建筑物和道路等目标进行提取和分类。
四、数据分析数据分析是利用遥感数据进行研究和应用的重要环节。
通过对遥感数据的统计分析、模型建立和空间分析,可以揭示地表变化、环境演变等规律。
常用的数据分析方法包括主成分分析、分类与回归树、遥感时序分析和地形分析等。
例如,通过主成分分析方法,可以从遥感图像中提取出主要的波段特征,进而分析地表覆盖类型的空间分布和变化趋势。
五、结果验证结果验证是遥感数据处理的最后一步,也是决定数据处理结果可靠性的关键环节。
通过与实地调查和已有数据的对比,可以评估遥感数据处理的准确性和可信度。
遥感卫星影像数据处理步骤
北京揽宇方圆信息技术有限公司遥感卫星影像处理是遥感应用的第一步,也是非常重要的一步。
目前的技术也非常成熟,大多数的商业化软件都具备这方面的功能。
预处理的流程在各个行业、不同数据中有点差异,而且注重点也各有不同。
(一)几何精校正与影像配准引起影像几何变形一般分为两大类:系统性和非系统性。
系统性一般有传感器本身引起的,有规律可循和可预测性,可以用传感器模型来校正;非系统性几何变形是不规律的,它可以是传感器平台本身的高度、姿态等不稳定,也可以是地球曲率及空气折射的变化以及地形的变化等。
(二)影像融合将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的影像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。
(三)影像镶嵌与裁剪(1)镶嵌当研究区超出单幅遥感影像所覆盖的范围时,通常需要将两幅或多幅影像拼接起来形成一幅或一系列覆盖全区的较大的影像。
在进行影像的镶嵌时,需要确定一幅参考影像,参考影像将作为输出镶嵌影像的基准,决定镶嵌影像的对比度匹配、以及输出影像的像元大小和数据类型等。
镶嵌得两幅或多幅影像选择相同或相近的成像时间,使得影像的色调保持一致。
但接边色调相差太大时,可以利用直方图均衡、色彩平滑等使得接边尽量一致,但用于变化信息提取时,相邻影像的色调不允许平滑,避免信息变异。
(2)裁剪影像裁剪的目的是将研究之外的区域去除,常用的是按照行政区划边界或自然区划边界进行影像的分幅裁剪。
(四)大气校正遥感影像在获取过程中,受到如大气吸收与散射、传感器定标、地形等因素的影响,且它们会随时间的不同而有所差异。
因此,在多时相遥感影像中,除了地物的变化会引起影像中辐射值的变化外,不变的地物在不同时相影像中的辐射值也会有差异。
利用多时相遥感影像的光谱信息来检测地物变化状况的动态监测,其重要前提是要消除不变地物的辐射值差异。
辐射校正是消除非地物变化所造成的影像辐射值改变的有效方法,按照校正后的结果可以分为2种,绝对辐射校正方法和相对辐射校正方法。
遥感图像处理
遥感图像处理1. 简介遥感图像处理是指利用遥感技术获取的卫星或无人机等遥感图像数据进行处理和分析的过程。
遥感图像处理可以应用于多个领域,包括地理信息系统(GIS)、环境监测、农业、城市规划等。
本文将介绍遥感图像处理的基本概念、常用方法和应用案例。
2. 遥感图像处理的基本概念遥感图像处理涉及多个概念和技术,以下是一些常用的基本概念:2.1 遥感图像遥感图像是通过遥感设备获取的图像数据,可以是卫星图像、航空摄影图像或无人机图像等。
遥感图像通常包含多个波段,每个波段代表不同的光谱信息。
2.2 遥感图像预处理遥感图像预处理是指对原始遥感图像数据进行校正、矫正和增强的过程。
预处理的目的是提高图像质量、减少噪声和伪影,并使得图像更适合进行后续处理和分析。
2.3 遥感图像分类遥感图像分类是指将遥感图像根据像素的特征或属性进行划分和分类的过程。
常见的遥感图像分类方法包括基于统计学的分类、基于机器学习的分类和基于深度学习的分类。
2.4 遥感图像变化检测遥感图像变化检测是指对多个时间点的遥感图像进行比较,以检测地物、景观或环境发生的变化。
遥感图像变化检测可以用于监测自然灾害、环境变化等。
2.5 遥感图像分析遥感图像分析是指对遥感图像进行解译和分析,提取图像中的有用信息和特征。
遥感图像分析可以用于土地利用/覆盖分类、植被指数计算等应用。
3. 遥感图像处理的常用方法遥感图像处理常用的方法包括图像增强、图像配准、图像融合和目标检测等。
3.1 图像增强图像增强是指通过对图像进行滤波、对比度拉伸、直方图均衡化等处理,以增强图像的可视化效果和信息提取能力。
常用的图像增强方法包括直方图均衡化、滤波(如中值滤波、高斯滤波)和锐化等。
3.2 图像配准图像配准是指将两幅或多幅遥感图像在坐标系、旋转、尺度和形变等方面进行校正和匹配的过程。
常用的图像配准方法包括特征点匹配、地物匹配和基于控制点的配准方法。
3.3 图像融合图像融合是指将多幅具有不同光谱或分辨率的遥感图像融合成一幅多光谱和高分辨率的遥感图像。
遥感图像处理的基本流程与技巧
遥感图像处理的基本流程与技巧近年来,随着遥感技术的快速发展,遥感图像处理在各个领域的应用越来越广泛。
遥感图像处理的基本流程和技巧对于正确解读和使用遥感图像至关重要。
本文将探讨遥感图像处理的基本流程与技巧,帮助读者更好地理解和应用这一工具。
一、遥感图像处理的基本流程1. 图像获取与预处理遥感图像处理的第一步是获取图像数据。
常见的获取方式包括卫星、飞机、无人机等。
在获取到图像数据后,还需要进行预处理,包括辐射校正、大气校正、几何校正等,以保证图像的质量和精度。
2. 影像增强影像增强是提高图像质量,使图像更能被人眼感知和解读的过程。
常见的影像增强技术包括直方图均衡化、滤波、图像融合等。
通过适当的增强技术,可以突出图像中的特定目标或信息,提高图像的可读性和解读性。
3. 特征提取与分类特征提取是从图像中提取有意义的信息或特征的过程。
常见的特征包括颜色、纹理、形状等。
在特征提取的基础上,可以进行图像分类,将图像中的不同对象或地物进行分类和识别。
常用的分类方法包括支持向量机、人工神经网络等。
4. 图像分割与目标提取图像分割是将图像划分成若干个具有独立特征的区域的过程。
图像分割既可以基于像素级的颜色和灰度信息,也可以基于纹理和形状等更高级的特征。
通过图像分割,可以提取出感兴趣的目标或地物。
5. 变化检测与监测变化检测是利用多期遥感图像对地物、景观进行比较和分析,以检测和监测地表非凡的变化信息。
变化检测可以应用于城市规划、环境监测等方面。
常见的变化检测方法包括面向对象的变化检测、像素级变化检测等。
二、遥感图像处理的技巧1. 选择合适的图像处理软件选择一款功能强大且适合自己需要的图像处理软件至关重要。
常见的遥感图像处理软件有ENVI、ERDAS、ArcGIS等。
不同的软件具有不同的工具和功能,选择合适的软件可以提高工作效率和图像处理效果。
2. 多源数据融合多源数据融合是将多个遥感图像融合成一幅图像的过程。
通过融合不同传感器或不同时间的图像,可以提高图像质量和信息量。
遥感影像处理步骤
一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
(2)除坏线和条带去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
遥感图像处理ppt课件
02
人工智能在遥感图像处理中可以应用 于地物分类、目标检测、变化检测等 方面。通过训练人工智能算法,使其 能够自动识别和分类地物,提高遥感 数据的利用价值和精度。同时,人工 智能算法还可以对遥感数据进行自动 化分析和处理,提高数据处理效率。
03
人工智能在遥感图像处理中需要解决 的关键问题包括数据标注、模型训练 和优化等。同时,还需要考虑人工智 能算法的可解释性和可靠性,以确保 其在实际应用中的效果和安全性。随 着技术的不断发展,人工智能在遥感 图像处理中的应用将进一步提高遥感 数据的利用价值和精度。
详细描述
遥感图像存储与处理是遥感技术应用的核心环节之一。 在这个过程中,原始数据会经过一系列的预处理、增强 和分类等操作,以提高图像质量和提取更多有用的信息 。例如,辐射定标、大气校正、几何校正等预处理操作 可以提高图像的精度和可靠性;图像增强技术如对比度 拉伸、滤波等可以提高图像的可视化效果和特征提取能 力;分类和目标检测等技术则可以对图像进行语义化表 达和信息提取,以满足不同应用的需求。
遥感图像处理涉及的技术包括辐 射校正、几何校正、图像增强、 信息提取等。
遥感图像处理的重要性
遥感图像处理是遥感技术应用的关键 环节,能够提高遥感数据的精度和可 靠性,为各领域提供更准确、更全面 的信息。
通过遥感图像处理,可以提取出更多 有用的信息,为决策提供科学依据, 促进各行业的智能化发展。
遥感图像处理的应用领域
图像预处理技术
01
02
03
04
去噪
消除图像中的噪声,提高图像 的清晰度。
校正
纠正图像的几何畸变和辐射畸 变,使图像更接近真实场景。
配准
将不同来源的图像进行坐标对 齐,以便于后续的图像分析和
61-实验三遥感图像预处理(波段合成、裁剪与拼接)
实验三遥感图像预处理(波段合成、裁剪与拼接)一、 实验目的通过实验了解整个图像的预处理过程,从而加深对遥感图像计算机处理的内容及概念的理解。
二、 实验内容1.自定义坐标系2.波段合成(图像融合)3.图像镶嵌(图像拼接)4.图像裁剪三、 实验数据1. TM-30m.img2. bldr_sp.img3. Mosaic1.img4. Mosaic2.img5. bhtmsat.img6. can_tmr.img7. qb_boulder_msi.img8. qb_boulder_pan.img四、 实验操作原理及步骤遥感图像预处理主要包括图像几何校正、图像融合、图像镶嵌、图像裁剪等过程,其处理顺序一般如下图所示。
图 1一般图像预处理流程1.自定义坐标系一般国外商业软件坐标系都分为标准坐标系和自定义坐标系两种。
我国情况较为特殊,往往需要自定义坐标系。
所以,在ENVI第一次使用时,需要对系统自定义北京54坐标系西安80坐标系。
1.1添加参考椭球体找到ENVI系统自定义坐标文件夹—C:\Program Files\ITT\IDL708\products\envi46\map_proj。
根据每台电脑安装的路径以及版本不同而略有不同。
以记事本形式打开ellipse.txt,将“Krasovsky,6378245.0,6356863.0”和“IAG-75,6378140.0,6356755.3”加入文本末端。
(这里主要是为了修改克拉索夫斯基因音译而产生的错误,以便让其他软件识别;另外中间的逗号必须是英文半角。
)1.2添加基准面以记事本格式打开datum.txt,将“Beijing-54, Krasovsky, -12, -113, -41”和“Xi'an-80,IAG-75,0,0,0”加入文本末端。
1.3定义坐标定义完椭球参数和基准面后就可以在ENVI中以我们定义的投影参数新建一个投影信息(Customize Map Projections),在编辑栏里分别定义投影类型、投影基准面、中央子午线、缩放系数等,最后添加为新的投影信息并保存。
遥感数据处理流程
遥感图像处理流程转(2013-08-2010:27:24)转载▼一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
图1消除噪声前图2消除噪声后(2)除坏线和条带去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
图3去条纹前图4去条纹后图5去条带前图6去条带后2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
图7图像配准前图8图像配准后(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
遥感影像处理中图像融合与分类方法与算法
遥感影像处理中图像融合与分类方法与算法遥感影像处理是指利用遥感技术获取的各种遥感影像数据进行处理、分析和应用的过程。
在遥感影像处理中,图像融合和分类是非常重要的步骤。
本文将介绍图像融合与分类的方法与算法。
一、图像融合图像融合是将多幅具有不同空间或光谱分辨率的遥感影像进行数据融合,形成一幅具有更高分辨率和更全面信息的新影像。
图像融合常用的方法有主成分分析法(PCA)、小波变换法(Wavelet)、伪彩色合成法(False Color)等。
其中,主成分分析法是最常用的一种方法。
主成分分析法基于数据的变异程度,将原始影像的多个波段特征通过线性组合来生成新的信息特征。
该方法通过对遥感图像进行PCA处理,得到的前几个主成分代表数据中包含的最重要信息。
然后,将这些主成分按照一定的权重进行加权平均,得到融合后的影像。
主成分分析法能够有效提取遥感图像中的有用信息,提高图像的分辨率和信息量。
小波变换法是一种时频分析方法,通过不同尺度和不同频率的小波基函数将遥感图像进行变换。
这种方法能够在多个尺度上提取图像的纹理和细节信息,进而实现图像融合。
小波变换法的优点是能够克服主成分分析法在处理一些细节信息时的不足,提高融合图像的视觉质量。
伪彩色合成法是将多幅遥感影像按照一定的比例进行合成,形成一幅彩色图像。
这种方法常用于可见光和红外图像的融合,通过颜色的变化来表示不同波段的信息。
伪彩色合成法可以直观地观察到不同波段之间的关系,方便后续的图像分析和解译。
二、图像分类图像分类是将遥感影像中的像元按照其不同的类别进行划分和分类的过程。
图像分类的方法有监督分类和非监督分类两种。
监督分类是基于训练样本进行分类的一种方法。
在监督分类中,先从遥感影像中选择一些样本点,手动标注其所属类别,然后通过计算这些样本点与其他像元之间的相似度,来判断其他像元所属的类别。
常用的监督分类算法有最大似然法、支持向量机(SVM)等。
这些算法能够在样本点的训练下,准确地对遥感影像进行分类。
测绘技术使用教程之遥感影像处理与解译方法
测绘技术使用教程之遥感影像处理与解译方法遥感影像是一种通过遥感技术获取的地球表面信息的图像数据,其广泛应用于测绘、地理信息系统、环境监测等领域。
在测绘技术使用教程中,遥感影像的处理与解译方法是一个重要的内容。
首先,遥感影像的处理包括预处理和后处理两个方面。
预处理主要包括影像的几何校正和辐射校正两个步骤。
几何校正是将遥感影像与地面坐标系对应起来,使得影像上的每个像素点都能与地表上的一个实际位置相对应。
辐射校正是对影像进行辐射定标,将数字值转化为实际的辐射亮度值,以便后续的解译分析。
接下来是遥感影像的解译方法。
遥感影像的解译可以分为目视解译和机器解译两种方法。
目视解译是根据影像上的各种特征,如颜色、形状、纹理等,进行人工的目视判断。
机器解译则是利用计算机技术对遥感影像进行自动解译,通过像元分类的方法将影像中的不同地物类型进行识别。
目视解译适用于复杂地物类型和精细地物边界的识别,而机器解译适用于大范围的地物分类和统计分析。
在目视解译中,根据影像的不同波段和特征,可以采用不同的解译方法。
常用的解译方法包括目视解译、图象比对、化色解译、特征解译等。
目视解译是根据影像的直观特征,如颜色、亮度等进行人工判断的方法,可以快速识别出地物的大致分布状况。
图象比对是将不同波段的影像进行对比,通过对比分析来判断地物类型的方法。
化色解译则是将不同波段的影像按照一定的比例叠加在一起,形成彩色影像,利用颜色差异进行地物类型的识别。
特征解译是根据地物的形状、纹理等特征进行判断的方法,适用于复杂地物类型的解译。
机器解译主要依靠计算机技术进行,包括图像分类、目标检测和变化检测等方法。
图像分类是根据影像的统计特征和分类模型,将影像中的不同地物类型进行自动识别和分类的方法。
目标检测是在图像中寻找特定目标的方法,如建筑物、车辆等。
变化检测是通过对比两个或多个时间点的遥感影像,分析影像变化的方法,适用于环境监测、城市规划等领域。
总之,遥感影像处理与解译方法是测绘技术中重要的内容。
遥感图像处理流程
遥感图像处理流程一.预处理1.降噪处理由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
图1 消除噪声前图2 消除噪声后(2)除坏线和条带去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
图3 去条纹前图4 去条纹后图5 去条带前图6 去条带后2.薄云处理由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
图7 图像配准前图8 图像配准后(2)影像对矢量图形的配准将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.3.几何精纠正为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
遥感卫星影像预处理的方法步骤
1技术路线DOM 技术流程图数据查询数据获取数据预处理质量检查整理提交 原始数据正射校正平面控制高程数据辐射校正辐射定标大气校正配准融合整体镶嵌范围裁切高景一号MUX 影像大气校正植被指数多样性选择NDVI/EVI/NDWI/...光谱特征影像集随机森林分类研究区作物分类结果精度评价训练样本验证样本影像预处理辐射定标影像融合纹理特征多样性选择Mean/Entropy/ASM/...GLCM 计算高景一号Pan 影像灰度级量化...纹理特征影像集影像集验证样本集训练样本集实地调查高分解译样本筛选样本数据影像数据分类土地利用分类技术流程遥感图像水体粗提取先验阈值区间ROI 区域图像分割阈值水陆二值图边界膨胀直方图统计图像分割最小连通区去除水体掩膜图像水体分布提取技术流程模块开发数据处理数据获取水面实测光谱数据光学遥感数据实测水质参数数据水体固有光学量数据光谱特征分析固有光学特性分析基于水面实测光谱的水质参数反演算法基于光学遥感数据的水质参数反演策略最优反演算法精度评价水质参数反演软件模块开发反演算法水体光学分类大气校正水体提取水质参数反演技术路线图建筑物提取提取技术路线图2影像正射校正方案2.1正射校正原理遥感影像获取的过程中会受到各种不定因素的影响,如:传感器的成像方式、地形起伏、地球曲率、大气折射等,导致图像本身的几何位置、形状、尺寸等与其对应的地物不一致,发生变形。
通过一定的数学模型来改正和消除遥感影像产生的变形的过程称为几何校正。
通常情况下,对影像进行粗略几何校正时,需要利用卫星等提供的一些轨道、姿态参数以及与地面系统相关的处理参数来进行校正。
当精度要求较高时需对影像进行几何精校正,即利用地面控制点及畸变模型对原始影像进行校正。
经过粗校正之后接收到的全色影像数据中的大部分地物已经实现了重叠,只有个别仍存在偏差。
此时,需要利用DEM 数据对全色影像做正射校正,生成全色影像的正射影像图。
正射校正是将中心投影的影像进行纠正形成正射投影影像的过程,先把影像化分为许多小区域,之后根据相关参数按照对应的中心投影构像方程或者特定的数学模型用控制点进行解算,得到解算模型后利用数字高程模型对原始遥感影像进行校正,最终获得数字正射影像。
无人机遥感影像处理
无人机遥感影像处理引言:随着科技的不断发展,无人机遥感影像处理技术越来越受到关注和应用。
无人机作为一种高效、灵活的数据采集工具,搭载遥感仪器可以获取高精度的影像数据。
本文将探讨无人机遥感影像处理的技术原理、应用领域以及未来的发展趋势。
一、技术原理:无人机遥感影像处理依赖于无人机载荷携带的遥感仪器采集准确的空间数据。
无人机遥感仪器通常包括光学相机、红外传感器、激光雷达等设备。
遥感影像处理技术主要包括数据获取、影像处理和数据分析三个主要步骤。
1. 数据获取:通过无人机搭载的光学相机等设备,可以实现高分辨率、多光谱、多角度的影像数据获取。
无人机的高灵活性和低成本使得数据采集变得更加便捷和经济。
同时,无人机可以通过遥控或自主飞行实现对目标区域的全面遥感监测。
2. 影像处理:遥感影像处理旨在提取图像信息、增强图像质量并进行地物分类等分析任务。
其中,包括图像拼接、几何矫正、辐射校正以及配准等处理步骤。
这些处理工作能够使得采集到的遥感影像更加准确和可靠。
3. 数据分析:通过对遥感影像进行处理和分析,可以获得地表覆盖、环境变化、资源调查等重要信息。
遥感影像处理技术结合地学、物理学等学科的方法和理论,提供了对地球表面的全球、多尺度、多时段的观测数据,并应用于环境监测、农业、城市规划等领域。
二、应用领域:无人机遥感影像处理技术在多个领域得到了广泛应用,对社会的发展和进步产生了积极的影响。
以下是无人机遥感影像处理技术主要应用领域的介绍。
1. 环境监测:无人机遥感影像处理可以提供大范围、高分辨率的地表覆盖信息。
通过遥感影像处理,可以监测森林覆盖变化、湖泊水质、城市绿地覆盖率等环境指标,为环境保护决策提供科学依据。
2. 农业领域:农业遥感可以通过无人机遥感影像处理提供农作物生长情况、农田病虫害发展规律等重要数据。
依靠遥感影像处理的精确分析,农业管理者可以做出科学的决策,优化农作物种植结构和管理策略。
3. 城市规划:无人机遥感影像处理技术可以借助多光谱影像、高分辨率影像等数据,为城市规划提供精准的地物分类、土地使用变化和人口密度等信息。
《遥感图像预处理》课件
通过线性或非线性变换来调整像素强度范围,增强图像的对比度。
对比度拉伸
通过增强高频分量来增强图像的边缘和细节信息。
锐化滤波
通过将图像的低频和高频分量分离并分别处理,增强图像的对比度和细节信息。
同态滤波
02
01
03
04
05
遥感图像的融合处理
06
图像融合是将多源信道所采集到的关于同一目标的图像,通过一定的图像处理和信息融合技术,提取各自信道的信息并最终复合在一起,形成高质量、全面、准确的图像。
THANKS
几何校正的方法
遥感图像的噪声去除
04
VS
噪声去除是遥感图像预处理中的重要步骤,旨在减少或消除图像中的噪声,提高图像质量。
意义
噪声是影响遥感图像质量的主要因素之一,去除噪声有助于提高图像的视觉效果、降低后续分析的误差,为遥感应用提供更准确、可靠的数据基础。
定义
基于图像的统计特性,通过滤波、变换等技术手段,将噪声与图像信号分离,从而达到去除噪声的目的。
意义
原理
基于图像的数学模型和物理模型,通过一定的算法和技术,对图像的像素值进行变换和处理,以达到增强图像的目的。
方法
直方图均衡化、对比度拉伸、锐化滤波、同态滤波、傅里叶变换等。
通过拉伸像素强度分布范围来增强图像的对比度。
直方图均衡化
将图像从空间域变换到频率域,通过增强高频分量或抑制低频分量来增强图像的3
几何校正的定义
几何校正是指将原始的遥感图像经过一系列的变换,使其与标准地图或参考地图在几何位置上对齐的过程。
几何校正的意义
几何校正是遥感图像预处理的重要步骤,它能够纠正图像中由于传感器、地球曲率、地球自转等因素导致的几何畸变,提高遥感图像的精度和可靠性,为后续的图像分析和应用提供准确的基础数据。
如何进行遥感影像增强与处理
如何进行遥感影像增强与处理遥感影像是通过航空或卫星等方式获取的地球表面的图像数据。
由于拍摄条件、设备性能以及环境因素的限制,遥感影像常常存在一些问题,如图像模糊、噪声干扰等。
为了提高遥感影像的质量和准确性,需要进行增强和处理。
本文将介绍如何进行遥感影像增强与处理的方法和技巧。
一、图像增强的目的和方法图像增强是指通过一系列的处理方法,改善图像的视觉效果和质量。
其目的是提高图像的对比度,减少噪声,增强图像细节,以便更好地进行分析和解译。
1、直方图均衡化直方图均衡化是一种常用的图像增强方法。
它通过调整图像像素值的分布,使得图像的亮度和对比度得到均衡。
具体步骤是:首先计算图像的灰度直方图,然后根据直方图进行像素值的调整。
直方图均衡化能够有效地增强图像的细节和对比度,使得图像更易于解译。
2、滤波器增强滤波器增强方法主要是通过应用不同类型的滤波器来抑制图像中的噪声和其他干扰。
常用的滤波器有均值滤波器、中值滤波器和锐化滤波器等。
均值滤波器可以平滑图像,中值滤波器可以有效地去除椒盐噪声,而锐化滤波器可以增强图像的边缘。
3、多尺度分析多尺度分析是一种结合不同尺度的信息来进行图像增强的方法。
通过分析图像在不同尺度上的特征,可以更好地理解图像的内容。
常用的多尺度分析方法有小波变换和特征金字塔等。
小波变换能够将图像分解为不同频率的子图像,从而提取出图像的细节信息。
特征金字塔则是一种层次化的图像表示方法,可以在不同尺度上检测出图像的边缘和纹理等特征。
二、图像分割和分类的方法图像分割是指将图像分成若干个具有相同特征的区域的过程。
图像分类是指将图像分配到不同的类别或标签中的过程。
图像分割和分类是遥感影像处理中重要的一步,它可以用于自动提取和识别图像中的目标或区域。
1、基于颜色和亮度的分割方法基于颜色和亮度的分割方法是最常用的一种图像分割方法。
它通过分析图像中像素的颜色和亮度信息,将图像分成不同的区域。
常用的方法有阈值分割、区域生长和分水岭算法等。
遥感图像拼接步骤期末总结
遥感图像拼接步骤期末总结一、遥感图像拼接的步骤1. 遥感影像的获取与预处理在进行遥感图像拼接之前,首先需要获取原始遥感影像数据。
遥感影像可以是航空摄影图像、卫星遥感影像等,需要通过遥感平台或者数据提供商购买或下载相应的影像数据。
然后对原始影像进行预处理,包括校正、配准、辐射定标等。
校正可以提高影像的几何精度,配准则是将不同影像的坐标系统一化,辐射定标则是将影像的光谱信息校正为物理量。
2. 影像拼接区域的选择在进行影像拼接之前,需要确定拼接的区域。
可以根据实际应用需求来选择,比如选择特定的地理区域,或者选择两幅影像的重叠区域等。
选择合适的拼接区域可以提高拼接的精度和效果。
3. 影像拼接的几何校正影像拼接的几何校正是指将不同影像的几何特征进行统一化,保证影像之间的几何一致性。
常见的几何校正方法包括刚性变换、仿射变换和投影变换等。
几何校正可以通过地面控制点、SIFT特征匹配等手段进行。
其中,地面控制点是利用地面上已知的点(如地物边界)与影像中的对应点进行匹配,从而估算出影像之间的几何变换参数。
4. 影像拼接的光谱校正影像拼接的光谱校正是指将不同影像的光谱信息进行统一化,保证影像之间的光谱一致性。
光谱校正可以通过直方图匹配、灰度拉伸等方法进行。
直方图匹配是将一幅影像的像素值分布调整为另一幅影像的像素值分布,从而实现光谱校正。
5. 影像拼接的融合算法影像拼接的融合算法是指将不同影像的像素进行融合,生成拼接后的影像。
常见的融合算法包括简单平均法、加权平均法、多尺度变换等。
简单平均法是将不同影像的像素值进行简单平均,加权平均法则是根据不同影像的重要性进行加权平均。
多尺度变换则是通过将影像进行分解和重建来实现融合。
二、关键技术和常见问题1. 影像的配准影像的配准是影像拼接中的关键技术之一。
影像配准的准确度直接影响到拼接效果的质量。
常见的影像配准技术包括特征点匹配、区域匹配等。
特征点匹配是通过提取影像中的特征点(如SIFT特征点)来进行匹配,区域匹配则是利用影像中的区域来进行匹配。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感影像图像处理(processing of remote sensing image data)是对遥感图像进行辐射校正和几何纠正、图像整饰、投影变换、镶嵌、特征提取、分类以及各种专题处理等一系列操作,以求达到预期目的的技术。
一.预处理
1.降噪处理
由于传感器的因素,一些获取的遥感图像中,会出现周期性的噪声,我们必须对其进行消除或减弱方可使用。
(1)除周期性噪声和尖锐性噪声
周期性噪声一般重叠在原图像上,成为周期性的干涉图形,具有不同的幅度、频率、和相位。
它形成一系列的尖峰或者亮斑,代表在某些空间频率位置最为突出。
一般可以用带通或者槽形滤波的方法来消除。
消除尖峰噪声,特别是与扫描方向不平行的,一般用傅立叶变换进行滤波处理的方法比较方便。
(2)除坏线和条带
去除遥感图像中的坏线。
遥感图像中通常会出现与扫描方向平行的条带,还有一些与辐射信号无关的条带噪声,一般称为坏线。
一般采用傅里叶变换和低通滤波进行消除或减弱。
2.薄云处理
由于天气原因,对于有些遥感图形中出现的薄云可以进行减弱处理。
3.阴影处理
由于太阳高度角的原因,有些图像会出现山体阴影,可以采用比值法对其进行消除。
二.几何纠正
通常我们获取的遥感影像一般都是Level2级产品,为使其定位准确,我们在使用遥感图像前,必须对其进行几何精纠正,在地形起伏较大地区,还必须对其进行正射纠正。
特殊情况下还须对遥感图像进行大气纠正,此处不做阐述。
1.图像配准
为同一地区的两种数据源能在同一个地理坐标系中进行叠加显示和数学运算,必须先将其中一种数据源的地理坐标配准到另一种数据源的地理坐标上,这个过程叫做配准。
(1)影像对栅格图像的配准
将一幅遥感影像配准到相同地区另一幅影像或栅格地图中,使其在空间位置能重合叠加显示。
(2)影像对矢量图形的配准
将一幅遥感影像配准到相同地区一幅矢量图形中,使其在空间位置上能进行重合叠加显示。
2.几何粗纠正
这种校正是针对引起几何畸变的原因进行的,地面接收站在提供给用户资料前,已按常规处理方案与图像同时接收到的有关运行姿态、传感器性能指标、大气状态、太阳高度角对该幅图像几何畸变进行了校正.
3.几何精纠正
为准确对遥感数据进行地理定位,需要将遥感数据准确定位到特定的地理坐标系的,这个过程称为几何精纠正。
(1)图像对图像的纠正
利用已有准确地理坐标和投影信息的遥感影像,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
(2)图像对地图(栅格或矢量)
利用已有准确地理坐标和投影信息的扫描地形图或矢量地形图,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
(3)图像对已知坐标点(地面控制点)
利用已有准确地理坐标和投影信息的已知坐标点或地面控制点,对原始遥感影像进行纠正,使其具有准确的地理坐标和投影信息。
4.正射纠正
利用已有地理参考数据(影像、地形图和控制点等)和数字高程模型数据(DEM、GDEM),对原始遥感影像进行纠正,可消除或减弱地形起伏带来的影像变形,使得遥感影像具有准确的地面坐标和投影信息。
三.图像增强
为使遥感图像所包含的地物信息可读性更强,感兴趣目标更突出,需要对遥感图像进行增强处理。
1.彩色合成
为了充分利用色彩在遥感图像判读和信息提取中的优势,常常利用彩色合成的方法对多光谱图像进行处理,以得到彩色图像。
彩色图像可以分为真彩色图像和假彩色图像。
2.直方图变换
统计每幅图像的各亮度的像元数而得到的随机分布图,即为该幅图像的直方图。
一般来说,包含大量像元的图像,像元的亮度随机分布应是正态分布。
直方图为非正态分布,说明图像的亮度分布偏亮、偏暗或亮度过于集中,图像的对比度小,需要调整该直方图到正态分布,以改善图像的质量。
3.密度分割
将灰度图像按照像元的灰度值进行分级,再分级赋以不同的颜色,使原有灰度图像变成伪彩色图像,达到图像增强的目的。
4.灰度颠倒
灰度颠倒是将图像的灰度范围先拉伸到显示设备的动态范围(如0~255)到饱和状态,然后再进行颠倒,使正像和负像互换。
5.图像间运算
两幅或多幅单波段图像,空间配准后可进行算术运算,实现图像的增强。
常见的有加法运算、减法运算、比值运算和综合运算。
例如:
减法运算:可突现出两波段差值大的地物,如红外-红,可突现植被信息。
算:常用于计算植被指数、消除地形阴影等。
植被指数:NDVI=(IR-R)/(IR+R)
6.邻域增强
又叫滤波处理,是在被处理像元周围的像元参与下进行的运算处理,邻域的范围取决于滤波器的大小,如3×3或5×5等。
邻区法处理用于去噪声、图像平滑、锐化和相关运算。
7.主成分分析
也叫PCA变换,可以用来消除特征向量中各特征之间的相关性,并进行特征选择。
主成分分析算法还可以用来进行高光谱图像数据的压缩和信息融合。
例如:对LandsatTM 的6个波段的多光谱图像(热红外波段除外)进行主成分分析,然后把得到的第1,2,3主分量图像进行彩色合成,可以获得信息量非常丰富的彩色图像。
8.K-T变换
即Kauth-Thomas变换,又称为“缨帽变换”。
这种变换着眼点在于农作物生长过程而区别于其他植被覆盖,力争抓住地面景物在多光谱空间中的特征。
目前对这个变换的研究主要集中在MSS与TM两种遥感数据的应用分析方面。
9.图像融合
遥感图像信息融合是将多源遥感数据在统一的地理坐标系中,采用一定的算法生成一组新的信息或合成图像的过程。
不同的遥感数据具有不同的空间分辨率、波谱分辨率和时相分辨率,如果能将它们各自的优势综合起来,可以弥息的不足,这样不仅扩大了各自信息的应用范围,而且大大提高了遥感影像分析的精度。
四.图像裁剪
在日常遥感应用中,常常只对遥感影像中的一个特定的范围内的信息感兴趣,这就需要将遥感影像裁减成研究范围的大小。
1.按ROI裁剪
根据ROI(感兴趣区域)范围大小对被裁减影像进行裁剪。
2.按文件裁剪
按照指定影像文件的范围大小对被裁减影像进行裁剪。
3.按地图裁剪根据地图的地理坐标或经纬度的范围对被裁减影像进行裁剪。
五
1.图像镶嵌
也叫图像拼接,是将两幅或多幅数字影像(它们有可能是在不同的摄影条件下获取的)拼在一起,构成一幅整体图像的技术过程。
通常是先对每幅图像进行几何校正,将它们规划到统一的坐标系中,然后对它们进行裁剪,去掉重叠的部分,再将裁剪后的多幅影像装配起来形成一幅大幅面的影像。
2.影像匀色
在实际应用中,我们用来进行图像镶嵌的遥感影像,经常来源于不同传感器、不同时相的遥感数据,在做图象镶嵌时经常会出现色调不一致,这时就需要结合实际情况和整体协调性对参与镶嵌的影像进行匀色。
六.遥感信息提取
遥感图像中目标地物的特征是地物电磁波的辐射差异在遥感影像上的反映。
依据遥感图像上的地物特征,识别地物类型、性质、空间位置、形状、大小等属性的过程即为遥感信息提取。
目前信息提取的方法有:目视判读法和计算机分类法。
其中目视判读是最常用的方法。
1.目视判读
也叫人工解译,即用人工的方法判读遥感影像,对遥感影像上目标地物的范围进行手工勾绘,达到信息提取的目的。
2.图像分类
是依据是地物的光谱特征,确定判别函数和相应的判别准则,将图像所有的像元按性质分为若干类别的过程。
(1)监督分类
在研究区域选有代表性的训练场地作为样本,通过选择特征参数(如亮度的均值、方差等),建立判别函数,对样本进行分类,依据样本的分类特征来识别样本像元的归属类别的方法。
(2)非监督分类
没有先验的样本类别,根据像元间的相似度大小进行归类,将相似度大的归为一类的方法。
(3)其他分类方
包括神经网络分类、分形分类、模糊分类等分类方法,以及他数据挖掘方法如模式识别、人工智能等,在这里不做进一步阐述。