2014年秋初三数学期末模拟试卷2015.1.28
2014--2015年初三数学期末试题及答案

A B DEABCD2014-2015学年第一学期初三年级期末质量抽测数 学 试 卷 120分钟, 120分 2015.1一、选择题(本题共32分,每小题4分)在下列各题的四个备选答案中,只有一个是正确的. 1.已知∠A 为锐角,且sin A =12,那么∠A 等于A .15°B .30°C .45°D .60°2.下列图形中,既是轴对称图形又是中心对称图形的是 A .等边三角形B .等腰直角三角形C .正方形D .正五边形3.如图,等边三角形ABC 内接于⊙O ,那么∠BOC 的度数是 A .150° B .120° C .90° D .60°4.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E . 若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比等于A .12 B .14 C .18D .19 5.如图,在△ABC 中,D 为AC 边上一点,若∠DBC =∠A ,BCAC =3,则CD 的长为A .1B .32C .2D .526.如图,点P 是第二象限内的一点,且在反比例函数ky x=的图象上,PA ⊥x 轴于点A , △PAO 的面积为3,则k 的值为A .3B .- 3C . 6D .-67.如图,AB 为⊙O 的弦,半径OD ⊥AB 于点C .若AB =8,CD =2,则⊙O 的半径长为A B .3 C .4 D .58.如图,菱形ABCD 中,AB =2,∠B =60°,M 为AB 的中点.动点P 在菱形的边上从点B 出发,沿B →C →D 的方向运动,到达点D 时停止.连接MP ,设点P 运动的路程为x , MP 2=y ,则表示y 与x的函数关系的图象大致为二、填空题(本题共16分,每小题4分) 9. 抛物线2(2)1y x =-+的顶点坐标是 .10.已知关于x 的一元二次方程220x x m --= 有两个不相等的实数根,则m 的取值范围是 .11. 如图,点P 是⊙O 的直径BA 的延长线上一点,PC 切⊙O 于 点C ,若30P ∠=,PB =6,则PC 等于 .12.如图,在平面直角坐标系中,已知点A (3,0),B (0,4),记Rt △OAB 为三角形①,按图中所示的方法旋转三角形,依次得到三角形②,③,④,……,则三角形⑤的直角顶点的坐标为 ;三角形⑩的直角顶点的坐标为 ;第2015个三角形的直角顶点的坐标为 .①A三、解答题(本题共30分,每小题5分)13. 计算2sin 453tan 45cos60︒-︒-︒+︒. 14. 解方程:01322=+-x x .15.已知△ABC 如图所示地摆放在边长为1的小正方形组成的网格内,将△ABC 绕点C 顺时针旋转90°,得到△11A B C . (1)在网格中画出△11A B C ;(2)直接写出点B 运动到点1B 所经过的路径的长.16. 如图,在平面直角坐标系xOy 中,一次函数y ax b =+的图象与反比例函数k y x=的图象交于A (-1,4),B (2,m )两点. (1)求一次函数和反比例函数的解析式; (2)直接写出不等式ax b +<kx的解集.17.如图,在△ABC 和△CDE 中,∠B =∠D =90°,C 为线段BD 上一点,且AC ⊥CE .AB =3,DE =2,BC =6.求CD 的长.18.如图,在Rt △ABC 中,∠C =90°,AD 平分∠BAC ,交BC 于点D ,AC=3.(1)求∠B 的度数;(2)求AB 及BC 的长. 四、解答题(本题共20分,每小题5分) 19.已知抛物线22(21)y x m x m m =--+-. (1)求证:此抛物线与x 轴必有两个不同的交点;(2)若此抛物线与直线33y x m =-+的一个交点在y 轴上,求m 的值.EADBCBA20.如图,在修建某条地铁时,科技人员利用探测仪在地面A 、B 两个探测点探测到地下C 处有金属回声.已知A 、B 两点相距8米,探测线AC ,BC 与地面的夹角分别是30°和45°,试确定有金属回声的点C 的深度是多少米?21.已知: 如图,在Rt △ABC 中,∠ C =90°,BD 平分∠ABC ,交AC 于点D ,经过B 、D 两点的⊙O 交AB 于点E ,交BC 于点F , EB 为⊙O 的直径.(1)求证:AC 是⊙O 的切线; (2)当BC =2,cos ∠ABC 13时,求⊙O 的半径.22.已知,正方形ABCD 的边长为6,点E 为BC 的中点,点F 在AB 边上,且∠EDF =45°.(1)利用画图工具,在右图中画出满足条件的图形; (2)猜想tan ∠ADF 的值,并写出求解过程.AB CD五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知:如图,一次函数2+=x y 的图象与反比例函数ky x=的图象交于A 、B 两点,且点A 的坐标为(1,m ). (1)求反比例函数ky x=的表达式; (2)点C (n ,1)在反比例函数ky x=的图象上,求△AOC 的面积; (3)在x 轴上找出点P ,使△ABP 是以AB 为斜边的直角三角形,请直接写出所有符合条件的点P 的坐标.24.如图,已知△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE = 90°,AB =AC ,AD =AE .连接 BD 交AE 于M ,连接CE 交AB 于N ,BD 与CE 交点为F ,连接AF . (1)如图1,求证:BD ⊥CE ;(2)如图1,求证:FA 是∠CFD 的平分线; (3)如图2,当A C =2,∠BCE =15°时,求CF 的长.FEDCBA图1NM图2ABCDE F MN备用图25.如图,二次函数y=-x2+bx+c的图象与x轴交于点A(﹣1,0),B(2,0),与y轴相交于点C.(1)求二次函数的解析式;(2)若点E是第一象限的抛物线上的一个动点,当四边形ABEC的面积最大时,求点E的坐标,并求出四边形ABEC的最大面积;(3)若点M在抛物线上,且在y轴的右侧.⊙ M与y轴相切,切点为D.以C,D,M为顶点的三角形与△AOC相似,求点M的坐标.备用图2014-2015学年第一学期初三年级期末质量抽测(样题)数学试卷参考答案及评分标准 2015.1一、选择题(本题共32分,每小题4分)三、解答题(本题共30分,每小题5分)13.解:原式211322332+⨯-⎪⎪⎭⎫ ⎝⎛-⨯= …………………………4分 213213+--= 0=. ……………………………………5分14.解法一:∵ 2a =,3b =-,1c =,∴ .1124)3(2=⨯⨯--=∆ ……………………………………2分 ∴ 413±=x . ……………………………………3分 ∴ 原方程的根为:1211.2x x ==, ……………………………………5分 解法二: 21232-=-x x . 16921169232+-=+-x x . ………………………………………1分161432=⎪⎭⎫ ⎝⎛-x . ………………………………………2分4143±=-x . ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分 解法三:()()0112=--x x ………………………………………2分 210x -=,或10x -=. ………………………………………3分 ∴ 11x =,212x =. ………………………………………5分15.解:(1)如图所示,△A 1B 1C 即为所求作的图形. ……………3分 (2)1BBπ. ……………………………5分16.解:(1)∵ 反比例函数ky x=经过A (-1,4),B (2,m )两点, ∴ 可求得k =-4,m =-2.∴ 反比例函数的解析式为 4y x=-.B (2,-2). ……………………………………2分 ∵ 一次函数y ax b =+也经过A 、B 两点,∴ 422.a b a b =-+⎧⎨-=+⎩,解得 22.a b =-⎧⎨=⎩,∴ 一次函数的解析式为 22y x =-+. ……………………………………3分 (2)如图,-1<x <0,或x >2. ……………………………………5分17.解:∵ 在△ABC 中,∠B =90º, ∴ ∠A +∠ACB = 90º.E ADB∵ AC ⊥CE , ∴ ∠ACB +∠ECD =90º.∴ ∠A =∠ECD . ……………………………………2分 ∵ 在△ABC 和△CDE 中,∠A =∠ECD ,∠B =∠D =90º,∴ △ABC ∽△CDE . ……………………………………3分∴ DEBC CDAB =. ……………………………………4分∵ AB = 3,DE =2,BC =6,∴ CD =1. ……………………………………5分 18.解:(1)∵ 在△ACD 中,90C ∠=︒,CD =3,AC =3, ∴tan 3CD DAC AC∠==∴ ∠DAC =30º. ……………………………………1分 ∵ AD 平分∠BAC ,∴ ∠BAC =2∠DAC =60º. ……………………………2分 ∴ ∠B =30º. …………………………………………3分(2) ∵ 在Rt △ABC 中,∠C =90°,∠B =30º,AC =3,∴ AB =2AC =6. ……………………………………4分DCBAtan3ACBCB=== (5)分四、解答题(本题共20分,每小题5分)19(1)证明:∵△=[]22(21)4()m m m----…………………………………… 1分=2244144m m m m-+-+=1>0,∴此抛物线与x轴必有两个不同的交点.…………………………… 2分(2)解:∵此抛物线与直线33y x m=-+的一个交点在y轴上,∴233m m m-=-+. (3)分∴2230m m+-=.∴13m=-,21m=. (5)分∴m的值为3-或1.20.解:如图,作CD⊥AB于点D.∴∠ADC=90°.∵探测线与地面的夹角分别是30°和45°,∴∠DBC=45°,∠DAC=30°.∵在Rt△DBC中,∠DCB=45°,∴DB=DC. ............................ 2分∵在Rt△DAC中,∠DAC=30°,∴ AC=2CD . ........................... 3分 ∵ 在Rt △DAC 中,∠ADC =90°,AB =8, ∴ 由勾股定理,得 222AD CD AC +=.∴ 222(8)(2)CD CD CD ++=. ……………………………………… 4分 ∴4CD =±∵4CD =- ∴4CD =+∴ 有金属回声的点C 的深度是(4+)米. ……………………………… 5分 21(1)证明:如图,连结OD .∴ OD OB =. ∴ 12∠=∠. ∵ BD 平分ABC ∠, ∴ 13∠=∠.∴ 23∠=∠. …………………………..1分 ∴ OD BC ∥. ∴ 90ADO C ∠=∠=°. ∴ OD AC ⊥. ∵ OD 是⊙O 的半径,∴ AC 是⊙O 的切线. (2)分(2)解:在Rt △ACB 中,90C ∠=,BC =2 , cos ∠ABC 13=, ∴ 6cos BCAB ABC==∠. …………………………………………………… 3分设O ⊙的半径为r ,则6AO r =-. ∵ OD BC ∥, ∴ AOD ABC △∽△. ∴OD AOBC AB =. ∴626r r -=. 解得 32r =. ∴ O ⊙的半径为32. ………………………………………………………… 5分22. 解:(1)如图1. ………………………… 1分(2)猜想tan ∠ADF 的值为13.……………………2分 求解过程如下: 如图2.在BA 的延长线上截取AG=CE ,连接DG . ∵ 四边形ABCD 是正方形,∴ AD=CD=BC=AB=6,∠DAF=∠ABC=∠ADC=∠BCD = 90°. ∴ ∠GAD = 90°.∴ △AGD ≌ △CED . ………………………………3分FEDCBA 图1∴ ∠GDA=∠EDC ,GD=ED ,AG=CE . ∵ ∠FDE =45°,∴ ∠ADF +∠EDC=45°. ∴ ∠ADF +∠GDA =45°. ∴ ∠GDF=∠EDF . ∵ DF = DF ,∴ ∠GDF ≌∠EDF . ……………………………… 4分 ∴ GF =EF . 设AF =x , 则FB=6-x ,∵ 点E 为BC 的中点, ∴ BE=EC=3.∴ AG=3. ∴ FG=EF=3+x .在Rt △BEF 中,∠B =90°, 由勾股定理,得 222BF BE EF +=, ∴ 2223(6)(3)x x +-=+ . ∴ x=2.∴ AF=2. ……………………………………………………………… 5分∴ 在Rt △ADF 中,tan ∠ADF =AF AD =13. 五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)GABCDEF图223.解:(1)∵点A (1,m )在一次函数2+=x y 的图象上,∴ m=3.∴ 点A 的坐标为(1,3). (1)分∵点A (1,3)在反比例函数ky x=的图象上, ∴ k =3. ∴反比例函数ky x=的表达式为3y x =.…………………………………………2分 (2)∵点C (n ,1)在反比例函数3y x=的图象上, ∴ n=3. ∴ C (3,1). ∵ A (1,3),∴ S △AOC =4. …………………………………………………………5分(3)所有符合条件的点P 的坐标:P 1(1,0),P 21,0). ……………………………………………7分 24.(1)证明:如图1.∵ ∠BAC =∠DAE =90°,∠BAE =∠BAE ,∴ ∠CAE =∠BAD .NMF ED CBA在△CAE 和△BAD 中,AC AB CAE BAD AE AD =⎧⎪∠=∠⎨⎪=⎩,,, ∴ △CAE ≌△BAD . (1)分∴ ∠ACF=∠ABD . ∵ ∠ANC=∠BNF , ∴ ∠BFN =∠NAC =90°.∴ BD ⊥CE . ……………………………………2分(2)证明:如图1’.作AG ⊥CE 于G ,AK ⊥BD 于K . 由(1)知 △CAE ≌△BAD ,∴ CE = BD ,S △CAE =S △BAD . ………………… 3分 ∴ AG = AK .∴ 点A 在∠CFD 的平分线上. ………… 4分即 FA 是∠CFD 的平分线.(3)如图2.∵ ∠BAC = 90°,AB =AC ,∴ ∠ACB =∠ABC =45°.∵ ∠BCE =15°,MN图1'ABCDEFKG图2ABCDE F MN∴ ∠ACN =∠ACB-∠BCE= 30°=∠FBN . 在Rt △ACN 中∵ ∠NAC = 90°,AC =2,∠ACN = 30°,∴ ,33CN AN ==. …………………………………… 5分∵ AB=AC =2,∴ BN= 2-3. …………………………………… 6分在Rt △ACN 中∵ ∠BFN = 90°,∠FBN = 30°,∴ 1323NF BN -==.∴1CF CN NF =+=+ …………………………………… 7分25.解:(1)∵ 二次函数y=-x 2+bx +c 的图象与x 轴相交于点A (﹣1,0),B (2,0),∴ 01,042.b c b c =--+⎧⎨=-++⎩解得 1,2.b c =⎧⎨=⎩∴ 二次函数的解析式为y = -x 2+x+2. ………………………………………2分(2)如图1.∵二次函数的解析式为y =-x 2+x +2与y 轴相交于点C , ∴ C (0,2).设 E (a ,b ),且a >0,b >0. ∵ A (-1,0),B (2,0), ∴ OA =1,OB =2,OC =2. 则S 四边形ABEC = 11112(2)(2)222b a a b ⨯⨯++⋅+-⋅= 1a b ++ ∵ 点 E (a ,b )是第一象限的抛物线上的一个动点, ∴ b = -a 2 +a +2, ∴ S 四边形ABEC = - a 2+2a +3 = -(a -1)2+4∴ 当四边形ABEC 的面积最大时,点E 的坐标为(1,2),且四边形ABEC的最大面积为4.………………………………………………5分(3)如图2.设M (m ,n ),且m >0. ∵ 点M 在二次函数的图象上, ∴ n =-m 2 +m +2.∵ ⊙M 与y 轴相切,切点为D , ∴ ∠MDC =90°.∵ 以C ,D ,M 为顶点的三角形与△AOC 相似,∴12CD OA DM OC ==,或2CD OCDM OA==. …………………………………6分 ①当n >2时,22-122m m m mm m+-+==,或 . 解得 m 1=0(舍去),m 2=12, 或m 3=0(舍去),m 4=-1(舍去). ②同理可得,当n <2时,m 1=0(舍去) ,m 2=32,或m 3=0(舍去),m 4=3. 综上,满足条件的点M 的坐标为(12,94),(32, 54),(3,-4). ……………8分。
2014-2015学年九年级上数学期末试卷及答案解析

2014-2015九年级第一学期数学期末测试卷一.选择题(共10小题)1.已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则的值是( )23.已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m ﹣1)(n ﹣1)4.如图①是3×3正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,约定绕正方形ABCD 的中心旋转能重合的图案都视为同一种图案,例如图②中的四幅图就视为同一种图案,则得到的不同图案共有( )D . 7种5.如图,在△ABC 中,AC=BC ,点D 、E 分别是边AB 、AC 的中点,将△ADE 绕点E 旋转180°得△CFE ,则四边形ADCF 一定是( )4个黑球和若干个白球,它们除颜色外没有任何(m 为常数)的图象与x 轴的一个交点为(1,0),8.如图,二次函数y=ax 2+bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣9.如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( )D.810.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()二.填空题(共8小题)11.如果(2x+2y+1)(2x+2y﹣1)=63,那么x+y的值是_________.12.若,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是_________.13.如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为_________.14.一副扑克牌52张(不含鬼牌),分为黑桃、红心、方块、及梅花4种花色,每种花色各有13张,分别标有字母A、K、Q、J和数字10、9、8、7、6、5、4、3、2.从这副牌中任意抽取一张,则这张牌是标有字母的概率是_________.15.二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第16.如图,以扇形OAB的顶点O为原点,半径OB所在的直线为x轴,建立平面直角坐标系,点B的坐标为(2,0),若抛物线y=x2+k与扇形OAB的边界总有两个公共点,则实数k的取值范围是_________.17.如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的值是_________.18.如图,AB是⊙O的直径,弦CD⊥AB于点G,点F是CD上一点,且满足=,连接AF并延长交⊙O于点E,连接AD、DE,若CF=2,AF=3.给出下列结论:①△ADF∽△AED;②FG=2;③tan∠E=;④S△DEF =4.其中正确的是_________(写出所有正确结论的序号).三.解答题(共10小题)19.随着铁路客运量的不断增长,重庆火车北站越来越拥挤,为了满足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)20如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;(3)小长方形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角a的值;若不能说明理由.21.如图,△ABC内接与⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC交AC于AC点E,交PC于点F,连接AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若⊙O的半径为4,AF=3,求AC的长.22.如图,AD是⊙O的切线,切点为A,AB是⊙O的弦.过点B作BC∥AD,交⊙O 于点C,连接AC,过点C作CD∥AB,交AD于点D.连接AO并延长交BC于点M,交过点C的直线于点P,且∠BCP=∠ACD.(1)判断直线PC与⊙O的位置关系,并说明理由;(2)若AB=9,BC=6.求PC的长.23.如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B 两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.24.)为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B 两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.25.如图①,若二次函数y=x2+bx+c的图象与x轴交于A(﹣2,0),B(3,0)两点,点A关于正比例函数y=x的图象的对称点为C.(1)求b、c的值;(2)证明:点C在所求的二次函数的图象上;(3)如图②,过点B作DB⊥x轴交正比例函数y=x的图象于点D,连结AC,交正比例函数y=x的图象于点E,连结AD、CD.如果动点P从点A沿线段AD方向以每秒2个单位的速度向点D运动,同时动点Q从点D沿线段DC方向以每秒1个单位的速度向点C运动.当其中一个点到达终点时,另一个点随之停止运动,连结PQ、QE、PE.设运动时间为t秒,是否存在某一时刻,使PE平分∠APQ,同时QE平分∠PQC?若存在,求出t的值;若不存在,请说明理由.26.在△ABC中,∠CAB=90°,AD⊥BC于点D,点E为AB的中点,EC与AD交于点G,点F在BC上.(1)如图1,AC:AB=1:2,EF⊥CB,求证:EF=CD.(2)如图2,AC:AB=1:,EF⊥CE,求EF:EG的值.27.如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x 轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(﹣1,﹣1﹣m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC 的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.28.如图,直线x=﹣4与x轴交于点E,一开口向上的抛物线过原点交线段OE于点A,交直线x=﹣4于点B,过B且平行于x轴的直线与抛物线交于点C,直线OC交直线AB于D,且AD:BD=1:3.(1)求点A的坐标;(2)若△OBC是等腰三角形,求此抛物线的函数关系式.2014-2015学年九年级[上]数学期末测试卷参考答案与试题解析一.选择题(共10小题)1.(2013•烟台)已知实数a ,b 分别满足a 2﹣6a+4=0,b 2﹣6b+4=0,且a ≠b ,则=此题考查了一元二次方程根与系数的关系,熟练掌握根与系数的关系是解本题的关键. 2.(2013•咸宁)关于x 的一元二次方程(a ﹣1)x 2﹣2x+3=0有实数根,则整数a D . ﹣1 ,3.(2013•鄂州)已知m ,n 是关于x 的一元二次方程x 2﹣3x+a=0的两个解,若(m的关键.6.(2013•资阳)在一个不透明的盒子里,装有色外没有任何其他区别,÷8.(2013•济南)如图,二次函数y=ax +bx+c 的图象经过点(0,﹣2),与x 轴交点的横坐标分别为x 1,x 2,且﹣1<x 1<0,1<x 2<2,下列结论正确的是( )﹣<最小值:<﹣9.(2013•自贡)如图,在平行四边形ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于E ,交DC 的延长线于F ,BG ⊥AE 于G ,BG=,则△EFC 的周长为( ),AG=10.(2013•日照)如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点,连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( ) ∴===二.填空题(共8小题) 11.如果(2x+2y+1)(2x+2y ﹣1)=63,那么x+y 的值是 4或﹣4 .兰州)若,且一元二次方程解:∵,13.(2013•威海)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(﹣1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2013的坐标为(0,﹣2).∵=335从这副牌中任意抽取一张,则这张牌是标有字母的概率是=.故答案为:..15.(2013•营口)二次函数y=﹣x2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第四象限.x <联立消掉k=时,抛物线与的坐标为(,))时,×y=.17.(2011•湖州)如图,已知抛物线y=x2+bx+c经过点(0,﹣3),请你确定一个b的值,使该抛物线与x轴的一个交点在(1,0)和(3,0)之间.你确定的b的轴的交点的坐标特点是解此题的关=,连接E=.,根据垂径定理可得:,由,E=∴=,∵=,AG=== E=AD=,××=3∴(∴,,;足铁路交通的快速发展,该火车站去年开始启动了扩建工程,其中某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程,个月,则乙队施工个月,则乙队施工y≤20.(2013•潍坊)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的长方形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD 绕点C顺时针旋转至CE′F′D′,旋转角为a.(1)当点D′恰好落在EF边上时,求旋转角a的值;(2)如图2,G为BC中点,且0°<a<90°,求证:GD′=E′D;,=135﹣垂直于OC ,OB=OC ,利用为公共边,利用SAS ,即可得证;OA=OC 的长,即可确定出AE=CE=AF=AE=AC=2AE=.BC=3,根据等AM=6;r=6r=,则CE=2r=OM=6﹣BE=2OM=然后判断Rt △PCM BM=CM=BC=3=6,r=6﹣r=CE=2r=OM=6=BE=2OM=∠MCP ,∴=,=PC=.求出二次函数的解析式为的方程,解方程),则D 点坐标为(x ,长度的最大值.两点,∴∴××,解得),时,有最大值,且的值,函数关系式即可求>=11,y=xxy=y=CEQ ,根据y=∴﹣x ,FOB=,∴C 作CK y=x ×,×,﹣y=﹣,当AC===.y=xCD=AD=2,∠AC=∴,即:﹣t=或t=,故舍去)t=本题是二次函数压轴题,考查了二次函数的图象与性质、正比例函数的图象与性质、待定系数法、对称、解直角三角形、相似三角形的判定与性质、解一元二次方程等知识点.试题的难点在于第(3)问,图形中:EQ=BE AE 在△ACD 与△BEF 中,,:B==EQ=AEH==,EH=BE::DM=OM=x 点坐标,运用待定系数法得到直,解得,m N=N=m ON==m m x ﹣×解得≤,,)﹣当时,m=)=,到达最高位置时的坐标为(,)考点:二次函数综合题.分析:(1)过点D作DF⊥x轴于点根据相似三角形对应边成比例得出=,即AF=1,进而得到点A(2)先由抛物线过原点((﹣2,0),求出对称轴为直线可知当△OBC是等腰三角形时,可分两种情况讨论:①求出y1的值,将A,设C(2,y2),列出方程,解方程求出抛物线的解析式.∴====362)代入,解得x=36(负值舍去))代入,解得xx x y=x。
2014 ~2015学年第一学期期末模拟试卷(九年级数学)

①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
②当点肘运动到何处时,四边形CBNA的面积最大?求 出此时点M的坐标及四边形CBNA面积的最大值.
②求出y与x之间的函数关系式,当x取何值时,商场获利润最大?并求最大利润值.
28.(本题满分14分)如图,抛物线y= x2- x-12与x轴交于A、C两点,与y轴交于B点.
(1)△AOB的外接圆的面积;
(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运 动;同时点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动,问当t为何值时,以A、P、Q为顶点的三角形与△OAB相似?
18.若 、 、 为二次函数 的图象上的三点,则 、 、 的大小关系是.
19.如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过面积为 的正方形ABOC的三个顶点A、B、C,则a的值为.
20.直线y=- x+3与x轴、y轴分别交于A、B两点,已知点C(0,-1)、D(0,k),以点D为圆心、DC为半径作⊙D,当⊙D与直线AB相切时,k的值为.
2014~2015学年第一学期期末模拟试卷
九年级数学
本试卷共3大题,28小题,满分120分,考试用时90分钟.
一、选择题:本大题共10小题;每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填涂在答题卷相应的位置上.
1.若 是同学恰好抽到“立定跳远”、“耐久跑”两项的概率是多少?
(2)据统计,九(2)班共12名男生参加了“立定跳远”的测试,他们的成绩如下:
2014中考数学模拟试题含答案(精选5套)

2014年中考数学模拟试卷(一)数 学(全卷满分120分,考试时间120分钟)注意事项:1. 本试卷分选择题和非选择题两部分. 在本试题卷上作答无效..........;2. 答题前,请认真阅读答题.......卷.上的注意事项......;3. 考试结束后,将本试卷和答题.......卷一并交回..... 一、选择题(本大题满分36分,每小题3分. 在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑) 1. 2 sin 60°的值等于 A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有A. 5个B. 4个C. 3个D. 2个3. 据2013年1月24日《桂林日报》报道,临桂县2012年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是 A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结 合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有 A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为 A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)9. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC = A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4, ∠BED = 120°,则图中阴影部分的面积之和为 A. 3 B. 23 C.23 D. 112. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿 CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时 到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,请将答案填在答题卷上,在试卷上答题无效) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 . 17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单位称为1次变换. 如图,已知等边三角形 ABC 的顶点B ,C 的坐标分别是(-1,-1),(-3,-1),把 △ABC 经过连续9次这样的变换得到△A ′B ′C ′,则点A 的对 应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的 斜边AD 为直角边,画第三个等腰Rt △ADE ……依此类推直 到第五个等腰Rt △AFG ,则由这五个等腰直角三角形所构成 的图形的面积为 . 三、解答题(本大题8题,共66分,解答需写出必要的步骤和过程. 请将答案写在答题卷上,在试卷上答题无效)(第11题图)(第12题图) (第17题图)(第18题图)19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动. 23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角 为30°. 小宁在山脚的平地F 处测量这棵树的高,点 C 到测角仪EF 的水平距离CF = 1米,从E 处测得树 顶部A 的仰角为45°,树底部B 的仰角为20°,求树 AB 的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP ,MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第21题图)(第23题图)(第24题图)°25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元. (1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3. (1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出 所有点P 的坐标;若不存在,请说明理由.2013年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S△ABC,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C.二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x2400-x %)201(2400 = 8;(第26题图)17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分 ∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a为整数,∴a = 78,79,80∴共有3种方案. ………………6分设购买课桌凳总费用为y元,则y = 180a + 220(200 - a)=-40a + 44000. …………… 7分∵-40<0,y随a的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分即总费用最低的方案是:购买A型80套,购买B型120套. ………………10分2014年中考数学模拟试题(二)一、选择题1、数2-中最大的数是()A 、1- BC 、0D 、2 2、9的立方根是()A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=()A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是() A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是()A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=() A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是() A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有()A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>则一定成立的是()A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2014-2015九年级数学试题答案及评分标准

2014-2015学年度第二学期九年级摸底考试数学试题答案及评分标准二、填空题:17、33 18、5 19、70和120 20. -2014 三、解答题:21、(1)△=)1(4)}1(2{422--+-=-m m m ac b …………1分∵该方程有两个实数根 ∴△》0 (3)1-≥m 3分 解得:m ≥131≠-m 且…………4分(2)当m=2时,上述方程有实数根…………5分当m=2时,原方程可化为0262=+-x x ………6分 配方得:7)3(2=-x ………8分731+=x ………9分 732-=x ………10分22、(l )144: ……………………………………………………………………………2分 (2)300×40%=120 120-27-33-20=40人………………………4分(“篮球”选项的频数为40.正确补全条形统计图):………………………5分 (3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为 1200×40300=160(人):………………………………………………………8分 (4)这种说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人。
………10分(注:只要解释合理即可) 23、(1)证明:在△ABC 和△ADC 中∴△ABC ≌△ADC (SSS ),………………2分∴∠1=∠2,………………3分 在△ABF 和△ADF 中∴△ABF ≌△ADF (SAS )………………5分(2)证明:∵AB ∥CD ,∴∠1=∠3,………………6分又∵∠1=∠2,∴∠2=∠3,∴AD=CD ,………………7分∵AB=AD ,CB=CD ,∴AB=CB=CD=AD ,………………8分 ∴四边形ABCD 是菱形;………………9分(3)由(2)可得:BE ⊥CD 或∠BEC=∠BED=90°或△BEC ∽△DEF 或∠EFD=∠BAD ,写出其中一个.………………11分 24、(1)∵ 函数2y x bx c =++(x ≥0)满足当x =1时,1y =-, 且当x = 0与x =4时的函数值相等,∴ 11,2.2b c b ++=-⎧⎪⎨-=⎪⎩。
2014-2015学年九年级上下学期数学期末测试题(含答案)

人教版2014-2015学年九年级上下学期测试数学试卷注:(1)全卷共三个大题,23个小题,共4页;满分:100分;考试时间:120分钟。
(2)答题内容一定要做在答卷..上,且不能超过密封线答题,否则视为无效。
一、选择:(每小题3分,共24分)1. 在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D . 2.如图是某个几何体的三视图,该几何体是( )A. 正方体B. 圆柱C. 圆锥D. 球3.某药品经过两次降价,每瓶零售价由168元降为128元.已知两次降价的百分率相同,每4.已知扇形的圆心角为45°,半径长为12,则该扇形的弧长为( ) A .B . 2πC . 3πD . 12π5.若ab >0,则一次函数y=ax+b 与反比例函数y=在同一坐标系数中的大致图象是( )A .B .C .D .6.如图,在Rt △ABC 中,∠C=90°,BC=3,AC=4, 那么cosA 的值等于( ) 3A.4 4B.3 3C.5 4.5D 7.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示, 则下列结论中正确的是( )A .a >0B .3是方程ax 2+bx+c=0的一个根C .a+b+c=0D .当x <1时,y 随x 的增大而减小 8.如图,CD 是⊙O 的直径,弦AB ⊥CD 于E ,连接 = 二、填空:(每小题3分,共18分)9.方程22x x =的根为 .10.抛物线213y x =(﹣)﹣的对称轴是 .11.已知3,a b ab b+==则 . 12.如图,在△ABC 中,D 是AB 的中点, DE ∥BC.则:ADE ABC S S ∆∆= . 13.直径为10cm 的⊙O 中,弦AB=5cm ,则弦AB 所对的圆周角是 .14.为了求1+2+22+23+…+2100的值,可令S=1+2+22+23+…+2100,则2S=2+22+23+24+…+2101,因此2S ﹣S=2101﹣1,所以S=2101﹣1,即1+2+22+23+…+2100=2101﹣1,仿照以上推理计算1+3+32+33+…+32014的值是 三、解答:(共58分)15.(5分)计算:0201511(21)(1)()2sin 303-+-+-.16.(5分)化简求值:•(),其中x =.17.(8分)已知:如图,AB 是⊙O 的直径,AB =6,延长AB 到点C ,使BC =AB ,D 是⊙O 上一点,DC =26. 求证:(1)△CDB ∽△CAD ;(2)CD 是⊙O 的切线. 18.(4分)在平面直角坐标系中,△ABC 的三个顶点坐标分别为A(﹣2,1),B (﹣4,5), C (﹣5,2).(1)画出△ABC 关于y 轴对称的△A 1B 1C 1;(2)画出△ABC 关于原点O 成中心对称的△A 2B 2C 2. 19.(6分)如图,△ABC是一块锐角三角形余料,边BC=120mm ,高AD=80mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM在BC上,其余两个项点P,N 分别在AB,AC 上.求这个长方形零件PQMN 面积S 的最大值。
2014~2015学年度第一学期期末考试九年级数学试卷答案

2014——2015学年度第一学期期末测试九 年 级 数 学参考答案一、选择题:本大题共 小题,每小题 分,共 分.在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的代号填入题后括号内.. . .C . . . . . . . 二、填空题:本大题共 小题,每小题 分,共 分.请把最后结果填在题中横线上.. . . .52 .277.( , ) .- < < .②④三、解答题:本大题共 小题,共 分.解答时应写出文字说明、证明过程或演算步骤..(本小题满分 分)每图 分 .(本小题满分 分)解:由表可以看出,随机地摸取一个小球然后放回,再随机地摸出一个小球,可能出现的结果有 个,它们出现的可.能性相等.………… 分( )满足两次取的小球的标号相同的结果有 个,所以 ( ) 164 41.…… 分( )满足两次取的小球的标号的和等于 的结果有 个,所以 ( ) 163.… 分.(本小题满分 分)( ) π ( 分) ( )( 分)( )③( 分) .(本小题满分 分)证明:连接 .……………………………………………… 分 , .……………………… 分 切 于点 , .…………………… 分,,即 + , ∥ ,…………………………………………… 分 ,…………………………… 分 平分∠ .…………………………………… 分.(本小题满分 分)解:设所围成圆锥的底面半径和高分别为 和 .∵扇形半径为 ㎝,圆心角为 °, 12032180r ππ⋅⋅=,…………………………………………………………………… 分BCDO.(第,…………………………………………………………………………………… 分h ==.………………………………………………………………… 分.(本小题满分 分)解:( )令 ,得2230x x --=,……………………………………………………… 分解得 , - ,……………………………………………………………… 分 ∴抛物线与 轴交点坐标为( , )和(- , ).…………………………… 分 ( )令 ,得 - ,∴抛物线与 轴交点坐标为( ,- ),………………………………………… 分 ∴将此抛物线向上平移 个单位后可以经过原点.…………………………… 分 平移后抛物线解析式为22y x x =-.……………………………………… 分.(本小题满分 分)( )证明: , , , ,…………… 分 .……………………………………………………………… 分( )解: ,AD DEEF FC=.………………………… 分 , , , 52.…………………………………… 分, , 四边形 是平行四边形, ,…… 分 52 152.……………………………………………………… 分.(本小题满分 分)( )证明: 四边形 是正方形, , .…分, , ,…………………………… 分 ,…………………………………………………………………… 分 .…………………………………………………………………… 分 ( )解: 正方形的边长为 , x , -x . , DA AEEB BF=,…………………………………………… 分 44x x y =-, 2(4)144x x y x x -==-+,………………………………… 分.(本小题满分 分) 解:( )由题意得1060xy -=.………………………………………………………… 分( )由题意得1200040101)200)(1060()200(2++-=+-=+=x x x x x y z . 分 ( )由题意得)1060(201200040101202xx x y z w --++-=-=10800421012++-=x x .………………………………………… 分当每个房间的定价2102=-=abx (元)时, 有最大值,最大值是 .………分.(本小题满分 分)解:( )∵点 坐标为( , ),∴ .∵矩形 面积为 ,∴ ,…… 分∴抛物线的对称轴为直线 .………………………………………………… 分 ( ) , , ,MOMD MD AM =, MO AM MD ⋅=2.设 ,则 - . )3(4-=x x , 41=x ,12-=x , , 点坐标为( , ).… 分设抛物线的解析式为4)2(2+-=x a y . 将点 ( , )代入得443+=a , 41-=a , 抛物线的解析式为4)2(412+--=x y .…………………………… 分 ( )∵⊙ 在 轴上截得线段长为 , , 点纵坐标为 或 .…… 分在4)2(412+--=x y 中,令 或 得 4)2(4122+--=x 或4)2(4142+--=x ,……………………………… 分解得2221+=x ,2222-=x ,23=x ,点坐标为(222+, )、(222-, )或( , ).……………… 分。
2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学期末模拟试卷(2)编写:薛志岭 班级: 姓名:日期: 一、选择题.(本大题共8小题,每小题3分,共24分) 1.下列等式是一元二次方程的是( )A .2112=+x B .032=-x C .xx 213=- D . 0332=+-x x2.如图,在ABC Rt ∆中,90=∠C ,下列式子不正确...的是( ) A .AB BC B =cos B .AB BC B =sin C AC BC A =tan D .ABBCA =sin 3. 双语阅读大赛上,初三年级一班到十班获得一等奖的人数分别是6,4,5,2,6,5,7,6,7,2,这组数据的平均数是( )A .6B . 5.5C .5D .34. 若关于x 的一元二次方程052=+-a x x 的一个根为6,则另一个根是( ) A .-1 B .1 C .2 D .35. 在矩形ABCD 中,cm AB 8=,6AD cm =,以点A 为圆心,cm r 4=作圆,则直线BD与⊙A 的位置关系是( )A .相交B .相切C .相离D .无法判断6. 抛物线1282++=x x y 的顶点坐标为( )A .()4,4--B .()4,4-C .()4,4-D .()4,4 7.半径为8 cm 的圆的内接正三角形的边长为( ) A .38cm B ..8cm D .4cm8.若关于x 的一元二次方程02=++b ax x 有两个不同的实数根n m ,)(n m <,方程12=++b ax x 有两个不同的实数根q p ,)(q p <,则q p n m ,,,的大小关系为( )A .n q p m <<<B .q n m p <<<C .q n p m <<<D .n q m p <<< 二、填空题.(本题共10小题,每小题3分,共30分) 9.实数14的算术平方根是是 . 10.方程0)3(=+x x 的两个根为1=x ,2=x .第2题图11.如图,ABC ∆中,6=BC ,4=AB ,若ABC ∆的面积为9,则=B sin . 12.用半径为4的半圆围成一个圆锥的侧面,则该圆锥的底面积为 .13.如图, AB 是⊙O 的直径,点C 在⊙O 上,40=∠AOC ,D 是BC 弧的中点,则=∠ACD .14.从2,3,-1这三个数中任取两个不同的数分别作为点C 的横坐标和纵坐标,则点C 在第二象限的概率是 .15.如果关于x 的二次函数222a x ax y +-=的图象经过点()2,1-,则a 的值为 .16.如图,AB 是半径为10的⊙O 的一条弦,延长AB 至C ,使10==BC AB ,过C 作⊙O 的切线CD ,D 为切点,则=CD .17.对于实数b a ,定义运算“*”:⎪⎩⎪⎨⎧<-≥-=*)()(22b a b ab b a ab a b a 例如4*2,因为4>2,所以4*224428=-⨯=.若32=*x ,则x 的值为 . 18.已知关于x 的二次函数c bx ax y ++=2的图象如图所示,则a c c b b a +++++可化简为 . 三、解答题. (本大题共10小题,计96分)19.(本题满分8分)计算:20)31(21242130tan 60sin --⎪⎭⎫⎝⎛+⋅+⋅20.(本题满分8分)用两种方法解方程:02522=+-x x第11题图第16题图第18题图第13题图21.(本题满分8分)在我市开展的“‘新华杯’中学双语课外阅读”活动中,某中学为了解八年级400名学生读书情况,随机调查了八年级50名学生读书的册数.统计数据如下表所示:(1) 求这50(2) 根据样本数据,估计该校八年级400名学生在本次活动中读书多于2册的人数。
22.(本题满分8分)一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球. (1)求摸出两个红球的概率;(2)求摸出一个红球一个黄球的概率. 23.(本题满分10分)星期天,小华到小明家邀请小明到新华书店看书,当小华到达CD (点D 是小华的眼睛)处时,发现小明在七楼A 处,此时测得仰角为 45,然后他向前走了m10到达D C ''处,发现小明在六楼B 处,此时测得仰角为60,已知楼层高m AB 7.2=,求D C ''处到楼脚O 点的距离.(参考数据:41.12,73.13≈≈)24.(本题满分10分)如图,利用135的墙角修建一个梯形ABCD 的储料场,,并使∠90 C ,如果新建墙BCD 的长为12m ,怎样修建才能使储料场的面积最大?25.(本题满分10分)如图,某海关缉私艇在C 处发现在北偏东30方向km 40的A 处有一艘可疑船只,测得它正以h km 60的速度向正东方向航行,缉私艇随即以h km 360的速度在B 处拦截.求:(1)缉私艇从C 处到B 处需航行多长时间?(2)缉私艇的航行方向是北偏东多少度?26.(本题满分10分)如图,点O 为正方形ABCD 的中心,12=AB ,点E 在BC 边上,以AE 为边作等边三角形AEF .(1)若点F 在CD 边上,求BE 的长;(2)若点O 也是等边三角形AEF 的中心,求BE 的长.27.(本题满分12分)如图,在直角坐标系xOy 中,⊙C 的圆心为()2,0,半径为2,点A 在⊙C 上,点B 在x 轴的负半轴上,OAB ∆为等边三角形. (1) 求点A 的坐标;(2) 求证:BA 是⊙C 的切线;(3) 若将⊙C 沿水平方向平移至⊙C '且直线OA 是⊙C '的切线,求C '的坐标.28.(本题满分12分)若抛物线:c bx x y ++=2与x 轴只有一个公共点,且向右平移2个单位后得抛物线:2x y =,直线l 过点)0)(0,(<a a A . 求:(1)求c b ,的值;(2)设抛物线:c bx x y ++=2与y 轴的交点为B ,若抛物线:c bx x y ++=2上存在点C 能和B A ,构成以点C 为直角顶点的等腰直角三角形,求a 的值; (3)如图,直线l 与抛物线:2x y =交于N M ,两点,与y 轴交于D 两点,若ON OM ⊥,求证:OD 的长与a 无关.东台市2013-2014学年度第一学期期末调研测试九年级数学参考答案一. 选择题:DBCA ,ABCB 二.填空题:21;30-和;43;π4;125;31;-1;210;3;b 2-.三.解答题:19.解答:2322332318cos4530tan 60sin ⋅+⋅=+⋅…………………7分 27=…………………8分 (每一个三角函数值写对2分,18写对得1分,结果得1分) 20.解答:(每个解法4分)结果:22121==x x 或 21.解答:(1)众数为17;中位数为15.(每个2分)(2)估计该校八年级400名学生在本次活动中读书少于2册的人数约为96人(4分)22./解答:把5个球标注成红1,红2,红3,黄1,黄2;同时摸出2个球共10种情况:①红1红2②红1红3③红1黄1④红1黄2⑤红2红3⑥红2黄1⑦红2黄2⑧红3黄1⑨红3黄2⑩黄1黄2;(不管是列表,还是树状图,还是列举,只要得出10种情况,得4分)(1)摸出两个红球的概率为103;(2)摸出一个红球一个黄球的概率53. (每小题2分;如果答案正确但没有过程的,每小题给3分) 23.解答:AE DE =…………………………3分BE E D ='3…………………………6分7.210+='+BE E D解得m E D 10=' …………………9分 答:D C ''处到楼脚O 点的距离为m 10……10分24.解答:设储料场的面积为2Sm ……………1分设x CD =,则,12x CB -= ……………2分 x AD 212-= ……………4分 则)21212(21x x x S -+-⋅⋅=x x 12232+-=……………6分所以当4=x 时S 最大,最大值为242m ……………9分答:m AD 4=时,储料场的面积最大,最大值为242m ……………10分25.解答:(1)设缉私艇从C 处到B 处需航行x 小时,则x BC x AB 360,60==,320,20==CD AD由题意列方程/:222)320()2060()360(++=x x ……………4分解得:32=x 或31-=x (舍去) ……………6分(2) 由(1)得:340=BC21340320cos ==∠BCD ……………8分60=∠BCD ……………9分答:(1)缉私艇从C 处到B 处需航行40分钟.(2)缉私艇的航行方向是北偏东60度. ……………10分 26.解答:(1)由90,,=∠=∠==B D AE AF AD AB 得ADF ABE ∆≅∆所以DF BE = ……………2分设x BE =,则x CF CE ==列方程:22144)]12(2[x x +=- ……………4分 解得:31224±=x所以312-24=BE ……………5分 (2)如图,因为G 是中点,所以EF AG ⊥所以DAG CGE ∆∆∽……………2分3===CEDGGE AG CG AD ……………3分 得34312==CG ,所以3412-=DG ,得:434334123-=-==DG CE所以341643412-=+-=BE ……………5分27.解答:(1)易得: 60,30=∠=∠=∠=∠BOA BAO COA CAO所以90=∠CAB 即AB CA ⊥所以BA 是⊙C 的切线 ……………3分(2)易得:32=OA ……………5分 所以点A 的坐标是()3,3- ……………7分 (3)点C '在AOx ∠或AOB ∠的平分线上。
……………8分 AOx ∠或AOB ∠的平分线分别是:x y x y 333-==和 因为点C '的纵坐标为2 所以点C '的横坐标分别为32332-和 所以点C '的坐标为()2,32,2,332-⎪⎪⎭⎫⎝⎛……………12分 (第三问中,知道在角平分线上给1分,两种情况各2分,只要得出结果都得分)28.解答:(1)对称轴2-=x ,方程02=++c bx x 只有一解所以04,222=--=-c b b………2分 解得:4==c b ……………4分(2)由(1)可知:)4,0(B 得)2,2(a F 由FEA CDF ∆≅∆知:DF AE EF CD ==, 所以点C 的坐标为)22,22(a a -- 点C '的坐标为)22,22(aa ++ ……………6分把点C 的坐标和点C '的坐标代入442++=x x y 得:422422222+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-a a a 和422422222+⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+a a a解得:4-=a 或2=a (舍去)所以4-=a ……………8分(3)设n OR m OH =-=,则22,n NR m MH ==由ON OM ⊥得NOR OMH ∆∆∽所以NR OH OR MH =得22n mn m -=化简得:01=+mn由DNQ DMP ∆∆∽得:MPNQDP QD = 即:mnm OD OD n -=--22变形得:mn OD -= 所以1=OD 与a 无关.(第二小题和第三小题若用其它解法,只要正确给全分)。