单组元材料热力学5-2
材料热力学(4-8-)

第五章:溶液(溶体)理论—二组元相
3.溶体的性质 微观分布:a. b. c.
I AB 0 时,无序分布 I AB 0 时,短程有序 I AB 0 时,偏聚状态
4.偏摩尔量与化学位 化学势:偏摩尔吉布斯自由能
G i ni T , P ^
化学位反映了某一组元从某一相中逸出的能力,某一 组元在某一相中的化学位越高,它从这一相迁移到另一相 中的倾向越大。 利用 G m X 截距法可求得偏摩尔量(化学位) 多相平衡中,各个组分在各相中的化学位相等。
b.条件:每个组元在各个相中的化学位相等
3.两个重要定律 a.相律:F =c-p+2 推导:对于c个组元,p个相的某体系,可以独立变化的总 数为p(c-1)+2;平衡条件的限制条件数c(p-1) 所以,F= p(c-1)+2-c(p-1)=c-p+2 b.溶质分配定律:
第六章:二元体系相平衡及其热力学
G , , G 为整个任意量溶液的 ni T , P ^ 容量性质
物理意义:某一组元浓度的改变对溶液性质的影响。 ① 只有广度性质才有偏摩尔量,但偏摩尔量是强度性质。 ② 纯物质的偏摩尔量就是它的摩尔量 ③ 任何偏摩尔量都是T、P和组元的函数 ④ 集合式:
G, G1n1 G2n2
对于理想溶液,恒温恒压下,溶质溶解平衡时:
i0 ( ) i0 ( )
RT
Xi k e Xi
对于正规溶体:
XB k e XB
0 ( 0GB GB ) ( I AB I AB ) RT
致谢
I AB 0
第六章:二元体系相平衡及其热力学
1.混合物的自由能 a.在 Gm X 曲线中:
材料热力学复习提纲

(2)金属晶体在某一温度下的平衡空位浓度 推导及计算
a)掌握公式推导; b)计算(注意单位转换)、及温度影响分析。
(3) Richard规则,trouton规则。
单组元相平衡规律描述(P, T)-Clausius-Clapeyron方程
二组元相
(1)理想溶体近似和正规溶体近似的定义及特点; (2)理想溶体近似和正规溶体近似摩尔自由能的描 述及由来; (3)溶体的微观不均匀性分为哪几种? (4)混合物自由能公式的推导 (5)化学势的定义及物理意义 (6)化学式与摩尔自由能的关系 (7) 利用正规溶体近似,求出溶体化学势的具体表 达式 (8) 活度的定义 (9)稀溶液两个定律
材料热力学
江苏大学 材料科学与工程学院
材料热力学复习提纲
单组元材料热力学
(1)纯金属固态相变的体积效应热力学解释;
(2)晶体中热空位浓度推导及计算; (3) Richard规则,trouton规则;
(4)两相平衡
(1)纯金属固态相变的体积效应热力学解释;
热力学解释:
G H TS
在低温时,TS项的贡献很小,G主要决定于H项。 H疏排 > H密排,→G疏排 > G密排。低温下密排相是稳定相。 在高温下,TS项的贡献很大,G主要决定于TS项。 S疏排 > S密排,→ G密排 G疏排 。高温下疏排相是稳定相。
二组元材料热力学
1 两相平衡的判据及热力学条件 2 公切线法则 3 第二相为纯组元、化合物的溶解度公式的推导 4 溶质元素的分配比
相变热力学
(1)相变概述及分类; (2)马氏体相变平衡; (3)描述晶间偏析。
材料科学基础(讲稿5章)

Cu-Ni合金的铸态组织 ×50 树枝状
39
3)特点 (ⅰ) 冷却速度较快. (ⅱ) 开始结晶温度低于液相线. (ⅲ) 结晶中,剩余液相特别是晶粒内部成分不 均匀,先结晶的部分含高熔点组元较多,后 结晶的部分含低熔点组元较多;固相平均成 分偏离固相线,液相平均成分是否偏离液相 线随冷却速度而异. (ⅳ) 结晶终了温度低于固相线. (ⅴ) 通常不能应用杠杆定律. (ⅵ) 室温铸态有晶内偏析,形成树枝状组织.
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中的最大固溶度(摩尔分数) 分别为38%、20%、12%、7%
6
Zn 2+、Ga 3+、Ge 4+、As 5+在Cu+中达最大 固溶度时所对应的e/a≈1.4→极限电子浓度
超过极限电子浓度,固溶体就不稳定,会 形成新相。 计算电子浓度时,元素的原子价指的是: 原子平均贡献出的共有电子数,与该元素 在化学反应时的价数不完全一致。
不平衡共晶形成原因分析
56
3)离异共晶——合金中 先共晶相的量很多,共晶 体的量很少时,共晶体中 与先共晶相相同的相依附 于先共晶相生长,将共晶 体中的另一相孤立在先共 晶相的晶界处.这种共晶 体两相分离的组织称为离 异共晶.
57ቤተ መጻሕፍቲ ባይዱ
Pb-Sb共晶离异组织(铸态)×400 α 相依附初生晶α 析出,形成离异的 白色网状β
58
3、包晶相图及其结晶
(1)相图分析 液相线 单相区 两相区 固相线 三相区 固溶度曲线 (2)包晶反应 在一定温度下,由一固定成分的液相与一个固定成 分的固相作用,生成另一个成分固定的固相的反应, 称为包晶反应。
07310160+材料热力学

材料热力学Thermodynamics of Materials课程编号:07310160学分:2学时:30 (其中:讲课学时:30 实验学时:0 ; 上机学时:0 )先修课程:物理化学、材料科学与工程适用专业:材料物理与化学,无机非金属材料,金属材料,高分子材料与工程,复合材料与工程教材:《材料热力学》,郝士明主编,化学工业出版社,2004年1月第1版开课学院:材料科学与工程学院一、课程的性质与任务:《材料热力学》课程是材料类相关专业教学计划中重要的专业课,以热力学和统计热力学的原理和方法研究材料问题,它与动力学、晶体学以及固体物理和固体化学组成材料科学的基础。
材料科学与工程已成为一个整体。
热力学对发展材料的品种、提高材料的质量、日益显示其积极的作用,应用材料热力学原理可以阐明和预测相图,相变以及材料的其他物理现象。
要求学生在完成学习《物理化学》、《材料科学与工程》等课程,以及进行了认识实习,有一定的生产实际知识的基础上再安排学习本课程。
学好本课程对进一步学好材料专业的专业课具有奠定基础的重要作用。
材料热力学课程的任务是:1、掌握热力学的基本知识,理解相图的构成规则和诠释相图,深入理解材料热力学的基本理论和研究方法;2、能应用材料热力学的原理和方法来分析和解决实际的材料问题。
二、课程的基本内容及要求第一章绪论1、教学内容(1)热力学发展史及分类;(2)热力学定律回顾。
2、基本要求了解材料热力学发展史及分类,掌握材料热力学的基本概念,熟悉各种热力学关系式的推导、适用条件和在材料中的应用。
3、重难点(1)重点是热力学关系式的推导、适用条件和在材料中的应用;(2)难点是热力学关系式的推导。
第二章单组元材料的热力学1、教学内容(1)金属相变的体积效应的热力学解释;(2)纯金属中的平衡空位浓度;(3)晶体的热容及由热容计算自由能;(4)单组元材料两相平衡。
2、基本要求掌握单组元材料的相变体积效应、热容的概念;掌握热容计算自由能的计算;掌握单组元材料的两相平衡的计算;了解Gibbs-Helmholtz方程的推导和应用。
材料热力学 第三章 单组元材料热力学

Cp
H T
p
Cv
U T
v
H CpdT H (0K) U CvdT U(0K)
H(0K)和U(0K)是绝对零度的焓和内能, 目前其绝对值尚无法得知。
dS Q CdT
TT
S p
T 0
Cp T
dT
S(0K)
Sv
T 0
Cv T
dT
S (0K )
S(0K)为绝对零度下的熵,根据热力学第三定律(Third Law),认为单组元在绝对零度下的熵为0。
第三章 单组元材料热力学
3.2 晶体中的热空位
理想晶体中不存在空位,但实际金属晶体中存在空位。 随着温度升高,晶体中的空位浓度增加,大多数常用金 属(Cu、Al、Pb、W、Ag…)在接近熔点时,其空位 平衡浓度约为10-4,即晶格内每10000个结点中有一 个空位。
把高温时金属中存在的平衡空位通过淬火固定下来,形 成过饱和空位,这种过饱和空位状态对金属中的许多物 理过程(例如扩散、时效、回复、位错攀移等)产生重 要影响。
G
T
C pdT
0
T
T
0
Cp T
dT
H (0K)
F
T 0
Cv dT
T
T
0
Cv T
dT
U (0K)
能量均分定理在解释热容问题所遇到的巨大困 难迫使人们至新审查能量均分定理。能量均分 定理是由经典统计力学导出的,在经典物理包 括经典统计力学中有一个根本的假设就是能量 是连续改变的,能量均分定理在解释热容以及 热辐射问题上所遇到的不可克服的困难使得普 朗克提出量子论假设。
例题:
由实验求得Cp值: C p a bT cT 2 状态改变时:
第1章单组元材料的热力学资料.

第1章 单组元材料的热力学
1.2 Gibbs自由能
试样A吸收热量 QA –A之后,体积(V)的变化为dVA,对环境做功(Work)为PdVA,按热 力学第一定律(First law of thermodynamic),试样A的内能UA(Internal energy) 变化为:
这样,炉子A 的熵变可以用试样的状态函数来表示,即:
式(1.1)表明,在一个孤立系统中一个自发的不可逆过程总是熵增加的过程;熵减小的过程是 不可能发生的;而达到平衡态时熵达到最大值。
第1章 单组元材料的热力学
1.2 Gibbs自由能
设想一个材料样品A处于炉子A中,即使忽略炉子A与周围环境之间的热交换,也只能把A+A看 成一个孤立系统,判断样品A状态的变化或是否处于平衡态,都必须把炉子A的熵考虑在内,这当然是 很不方便的。
《材料热力学》(第二版)
目录
1
单单组击元此材处料添的加热文力字学内容
2
煤单二击组此元处相添加文字内容
3
二单组击元此材处料添的加热文力字学内容
4
两单个击重此要处的添溶加体文模字型内容
5
相单变击热此力处学添加文字内容
6 多单组击元此相处添加文字内容
7
多单元击材此料处热添力加学文字内容
单组元材料热力学

单组元材料相图: 材料的状态与 温度和压力的关系。
两相平衡线 三相点
T 单组元相平衡规律描述(P, T)-Clausius-Clapeyron方程
7
单元材料的两相平衡包括:固—液相之间、固—气相之间、液— 气相之间以及同素异构固相之间的平衡。
T
S
nu
kT
N
ln
N N
n
n
ln
N
n
n
自由能的变化是一个有极小 值的曲线。当有一定数量的 空位存在时,比没有空位时 自由能更低些。
在等温等压下,Gibbs自由 能最小的状态就是平衡态
使Gibbs自由能为最小的空 位数n可按下式求得:
dG 0 dn
XV
exp
材料热力学与动力学
北京航空航天大学 材料科学与工程学院
1
3. 单组元材料热力学
纯金属固态相变(同素异构转变)的体积效应 纯固体金属的理查德规则和楚顿规则 晶体中平衡状态下的热空位 晶体的热容 单元材料的两相平衡(Clausius-Clapeyron方程) 近平衡温度时相变自由能差的计算 同素异构转变的尺寸效应-研究进展 磁性转变的自由能
k
Debye将Einstein的晶体振动热容理论加以补充和修正。当温度极低时,固体 (晶体金属)定容热容与绝对温度的三次方成正比,这一结论称为德拜定律。
CV
9
R
T D
3
D T
0
x4 exp(x) [exp(x) 1]2 dx
材料热力学知识点

第一章单组元材料热力学名词解释:1 可逆过程2 Gibbs自由能最小判据3 空位激活能4 自发磁化:5 熵:6 热力学第一定律热力学第二定律7 Richard定律填空题1 热力学第二定律指出:一个孤立系统总是由熵低的状态向熵高的状态变化,平衡状态则是具有最大熵的状态。
2 按Boltzmann方程,熵S与微观状态数W的关系式为S=klnW3 热容的定义是系统升高1K时所吸收的热量,它的条件是物质被加热时不发生相变和化学反应4 α-Fe的定压热容包括:振动热容、电子热容和磁性热容。
5 纯Fe的A3的加热相变会导致体积缩小6 Gibbs-Helmholtz方程表达式是7 铁磁性物质的原子磁矩因交换作用而排列成平行状态以降低能量的行为被称为自发磁化论述题1 根据材料热力学原理解释为什么大多数纯金属加热产生固态相变时会产生体积膨胀的效应?2 试根据单元材料的两相平衡原理推导克拉伯龙(Clapeyron)方程。
3 试用G-T图的图解法说明纯铁中的A3点相变是异常相变。
4 试画出磁有序度、磁性转变热容及磁性转变(指铁磁-顺磁转变)自由能与温度的关系曲线。
计算题1已知纯钛α/β的平衡相变温度为882O C,相变焓为4142J•mol-1,试求将β-Ti过冷到800O C时,β→α的相变驱动力2若某金属形成空位的激活能为58.2KJ•mol-1,试求在700O C下,该金属的空位浓度。
3纯Bi在0.1MPa压力下的熔点为544K。
增加压力时,其熔点以3.55/10000K•MPa-1的速率下降。
另外已知融化潜热为52.7J•g-1,试求熔点下液、固两相的摩尔体积差。
(Bi的原子量为209g•mol-1.第二章二组元相名词解释:溶体:以原子或分子作为基本单元的粒子混合系统所形成的结构相同,性质均匀的相理想溶体:在宏观上,如果组元原子(分子)混合在一起后,既没有热效应也没有体积效应时所形成的溶体。
混合物:由结构不同的相或结构相同而成分不同的相构成的体系 化合物:两种或两种以上原子组成的具有特定结构的新相 溶解度:溶体相在与第二相平衡时的溶体成分(浓度),固溶体在与第二相平衡时的溶解度也成为固溶度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Gα =Gβ
一个纯元素,通常以几种状态存在,如固态、液态和气态。 比较固态与液态的Gibbs自由能差:
假定每一相都含有1mol原子,在1 atm下:
f代表熔化,两相平衡(在熔点下):
Richard根据大量的实验事实,总结出一个近似规则:
对纯金属,在熔点Tf 时熵变近似为常数, 摩尔熔化焓变与熔点之间有如下近似的 定量关系(Richard’s Rule) :
H S ( ) S ( ) dT V ( ) V ( ) T V
这就是Clapeyron(克拉贝龙)方程。
H
为相变时焓的变化值 为相变时相应的体积变化值 就是单组分相图上两相平衡线的斜率。
适用于任何单组元材料的两相平衡
V dp dT
凝聚态之间的相平衡(L↔S),压力改变不大时,ΔS和ΔV 的改变很小,可以认为: dP/dT=C;P∝T直线关系
S m S m ( ) S m ( ) , V m V m ( ) V m ( )
Vm dT dp Sm
Vm dT dp Sm
在一定温度、压力下,任何纯物质达两相平衡时, 蒸气压随温度变化率为: dp
在分析室温下提高压力使石墨向金刚石的转变时,可分解成以下几个步骤:
石墨 P 25°C
ΔG
金刚石),p 25°C ΔG3 金刚石 1atm 25°C
G = G1 + G2 + G3
ΔG1
石墨 , 1atm 25°C ΔG2
如果在压力为P时石墨可转变成 金刚石,则应有:
1J=10atm.cm3
液态砷的蒸气压随温度的关系式为: 2460 lg( p / Pa ) 8.8136 T /K
6947 12.9236 。 而固态砷为: lg( p / Pa ) T /K
试求砷三相点的温度与压力。
解:同时满足二方程的T,p即为三相点的温度与压力。
2460 6947 8.8136 12.9236 T /K T /K 4487 T K 1092K 819C 4.11 2460 lg( p / Pa) 8.8136 6.5606 1092
电子热容系数
原子磁距排列的有序度
得到单组元材料的G-H与温度的关系
铁磁态αf 顺磁态αp的状态
纯Fe的A3 点(910℃) 加热相变: 疏排α-Fe(bcc) 密排γ-Fe(fcc)的相变. ������ α-Fe自然磁性状态(从0K到居里 温度是铁磁态αf,在更高的温度下为 顺磁态αp的状态)的Gibbs自由能曲线. ������ α-Fe没有磁性转变αp(从绝对零度 到高温一直是顺磁态)的自由能曲线。 ������ γ-Fe的自由能曲线γp。
沸化热与沸点之间的关系
单元材料的两相平衡包括:固—液相之间、固—气相之间、液—气相之间,以 及同素异构固相之间的平衡。
单组元材料相图: 材料 的状态与温度和压力 的关系。
������ ������
两相平衡线 三相点
如何解释几条两相平衡线?
������
P∝T直线关系:L↔S
① dP/dT>0 ② dP/dT<0
p 3.636MPa
有一相为气相的两相平衡
蒸发平衡、升华平衡的共同特点是其中有一相为气相,压力改变时, ΔV改变很很大, VapVm Vm ( g )
得
Vap H dp dT T VapV
Vap H m dp dT RT 2 / p
Clausius-Clapeyron方程对于凝聚态 Nhomakorabea体积不变时:
各种固体金属的熔化熵大致相等, 可通过熔化热估算物质的熔点。 熔化热与熔点之间的关系 直线关系
Trouton根据大量的实验事实,总结出一个近似规则:
对于一些纯金属,在沸点Tb 时蒸发,熵变近似为常数, 摩尔蒸发焓变ΔHV与沸点之 间有如下近似的定量关系 (Trouton’sRule):
各种固体金属的沸化熵 大致相等,可通过沸化热 估算物质的沸点。
A3点以下:磁性转变
Gα-Fe < Gγ-Fe
������ 如果没有磁性转变,顺磁态的α-Fe只有在A4点以上其自由能才 低于γ-Fe,那么,纯Fe的加热相变也就不再是唯一的例外,而是与 其它金属一样:加热时的固态相变是由密排结构γ(fcc) 变成疏排结 构α(bcc)。
两相平衡
单元材料的两相平衡:两 种不同结构相之间的平衡 问题。 两相平衡的条件: 等温等压下,由一相 变成另一相时,Gibbs 自由能的变化为零。 或者: 两相共存时Gibbs自由 能相等。
材料热力学
第四章
单组元材料热力学
由热容计算自由能
可以在已知热容的前提下,定量地计算单组元材料的 各种相从0K起的自由能数值。
单组元材料的Gibbs自由能G可以利用定压热容Cp积分求得:
在单组元材料中热容Cp最复杂的是α-Fe 下面以α-Fe为例求G-H(0K).
α-Fe的定压热容包括三部分: ������ 振动热容: 晶格上离子振动 ������ 电子热容 :自由电子吸收能量 ������ 磁性热容:原子磁矩从有序排列变为无序排列
Vm dT dp Sm
如何解释几条两相平衡线正负问题: dp S ( ) S ( ) H dT V ( ) V ( ) T V ?
������
P∝T直线关系:L↔S
① dP/dT>0 ② dP/dT<0
凝聚态之间的相平衡(L↔S)时, dP/dT的正负问题: ������ 对于绝大多数单组元材料,在熔 化时,S→L的转变是吸热相变,而且 体积膨胀, ΔH与ΔV同号的,→ dP/dT>0 ,相平衡温度随压力的提高 而增高。 ������ 对于少数物质,如H2O、Bi、Si、 Ga、Ge等,在熔化时S→L转变是吸 热相变,但却发生体积的收缩, ΔH 与ΔV异号→ dP/dT<0, 相平衡温度 随压力的提高而降低。
������ P∝T指数关系: G↔S,G↔L
单组元体系两相(α和β)平衡条件: ΔG=Gβ −Gα
热力学基本方程: dG = VdP -SdT d Gm(α )= - S m(α ) d T+Vm(α ) d p d Gm(β )= - S m(β ) d T+Vm(β ) d p
- S m(α ) d T+Vm(α ) d p=- S m(β ) d T+Vm(β ) d p