2018年高三最新 高考文科数学全国卷1 精品
2018年高考文科数学全国卷1(含详细答案)
数学试题 第1页(共22页)数学试题 第2页(共22页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上. 2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}02A =,,{}21012B =--,,,,,则A B =( )A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设121iz i i-=++,则z =( ) A .0 B .12C .1 D3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为()2,0,则C 的离心率( ) A .13B .12CD5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( ) A.B .12πC.D .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为( ) A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =( )A .3144AB AC - B .1344AB AC -C .3144AB AC +D .1344AB AC +8.已知函数()222cos sin 2f x x x =-+,则( ) A .()f x 的最小正周期为π,最大值为3B .()f x 的最小正周期为π,最大值为4C .()f x 的最小正周期为2π,最大值为3D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( ) A.B.C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B.C.D.11.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1,A a ,()2,B b ,且2cos 23α=,则a b -=( )A .15BCD .1-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试题 第3页(共22页)数学试题 第4页(共22页)12.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB = ________. 16.ABC △的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC △的面积为________.三、解答题(共70分。
2018年全国卷1文科数学高考卷word版(含答案)
2018年全国卷1文科数学高考卷(含答案)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0≤x≤2},集合B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {1}C. {2}D. 空集2. 已知复数z满足|z|=1,则|z1|的最小值为()A. 0B. 1C. √2D. 23. 在等差数列{an}中,若a1=1,a3+a7=22,则数列的公差为()A. 3B. 4C. 5D. 64. 下列函数中,既是奇函数又是减函数的是()A. y=x³B. y=3xC. y=x²D. y=3x5. 若函数f(x)=x²2ax+a²+2在区间(∞,1)上单调递减,则实数a的取值范围是()A. a≤1B. a≥1C. a≤0D. a≥06. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,C=120°,则sinB的值为()A. √3/2B. 1/2C. √11/4D. √7/47. 设函数f(x)=lnxx,则f(x)在区间(0,+∞)上的最大值为()A. 1eB. 1C. 0D. 18. 若直线y=kx+1与圆(x2)²+(y1)²=4相切,则实数k的值为()A. 1/2B. 1/2C. 1D. 19. 在正方体ABCDA1B1C1D1中,棱长为1,则异面直线A1D与BC1所成角的余弦值为()A. 1/3B. 1/2C. √2/3D. √3/310. 设数列{an}满足a1=1,an+1=2an+1,则数列的前n项和为()A. 2n1B. 2nC. 2n+1D. 2n211. 若椭圆C:x²/4+y²/3=1的离心率为e,则双曲线x²/4y²/3=1的离心率为()A. eB. 2eC. 2eD. 2/e12. 已知函数f(x)=|x1|+|x+2|,则不等式f(x)≥6的解集为()A. (∞,3]∪[5,+∞)B. [3,3]C. [3,5]D. (∞,3)∪(5,+∞)二、填空题(本大题共4小题,每小题5分,共20分)13. 已知函数f(x)=x²+2x+1,则f(x)的单调递减区间为__________。
2018年高考试题——文科数学(全国卷Ⅰ)版含答案(最新整理)
4.记 Sn 为等差数列 an 的前 n 项和.若 3S3 S2 S4 , a1 2 ,则 a3 ( )
A. 12
B. 10
C.10
D.12
-1-
5.设函数 f x x3 a 1 x2 ax .若 f x 为奇函数,则曲线 y f x 在点 0 ,0 处的切线
方程为( )
A. y 2x
以这组数据所在区间中点的值作代表.)
-5-
20.(12 分)
设摆好物线 C:y2 2x ,点 A2 ,0 , B 2 ,0 ,过点 A 的直线 l 与 C 交于 M , N 两点.
⑴当 l 与 x 轴垂直时,求直线 BM 的方程; ⑵证明:∠ABM ∠ABN .
21.(12 分)
已知函数 f x aex ln x 1 . ⑴油麦菜 x 2 是 f x 的极值点.求 a ,并求 f x 的单调区间; ⑵证明:当 a ≥ 1 , f x≥ 0 .
一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一 项是符合题目要求的.)
1.已知集合 A 0 ,2 , B 2 ,1,0 ,1,2 ,则 A B ( )
A.0 ,2
B. 1,2
C. 0
D.2 ,1,0 ,1,2
2.设 z 1 i 2i ,则 z ( ) 1 i
A.0
B. 1 2
C.1
D. 2
3.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该 地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比 例.得到如下饼图:
则下面结论中不正确的是( ) A.新农村建设后,种植收入减少 B.新农村建设后,其他收入增加了一倍以上 C.新农村建设后,养殖收入增加了一倍 D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
(完整版)2018年高考全国卷1文科数学试题及含答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己の姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目の答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出の四个选项中,只有一项是符合题目要求の。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年の新农村建设,农村の经济收入增加了一倍.实现翻番.为更好地了解该地区农村の经济收入变化情况,统计了该地区新农村建设前后农村の经济收入构成比例.得到如下饼图:则下面结论中不正确の是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入の总和超过了经济收入の一半4.已知椭圆C :22214x y a +=の一个焦点为(20),,则C の离心率为A .13B .12C .22D .2235.已知圆柱の上、下底面の中心分别为1O ,2O ,过直线12O O の平面截该圆柱所得の截面是面积为8の正方形,则该圆柱の表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处の切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上の中线,E 为AD の中点,则EB =u u u rA .3144AB AC -u u ur u u u r B .1344AB AC -u u ur u u u r C .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x の最小正周期为π,最大值为3 B .()f x の最小正周期为π,最大值为4 C .()f x の最小正周期为2π,最大值为3 D .()f x の最小正周期为2π,最大值为49.某圆柱の高为2,底面周长为16,其三视图如右图.圆柱表面上の点M 在正视图上の对应点为A ,圆柱表面上の点N 在左视图上の对应点为B ,则在此圆柱侧面上,从M 到N の路径中,最短路径の长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成の角为30︒,则该长方体の体积为 A .8B .62C .82D .8311.已知角αの顶点为坐标原点,始边与x 轴の非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<のx の取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+の最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC の内角A B C ,,の对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC の面积为________.三、解答题:共70分。
2018年度高考文科数学全国卷1试题及其详细解析(精美版)
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =I A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为 A .13B .12C .2 D .225.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且2cos 23α=,则a b -= A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分。
(完整版)2018全国高考1卷文科数学试题及答案(官方)word版(可编辑修改word版)
y 22018 年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合 A = {0 ,2} , B = {-2 ,- 1,0 ,1,2} ,则A B = ( )A . {0 ,2}B . {1,2}C . {0}D . {-2 ,- 1,0 ,1,2}2.设 z = 1 - i+ 2i ,则 z = ()1 + iA .0B . 12C .1D .3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少 B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4. 已知椭圆C :x a 2 + = 1的一个焦点为(2, 0) ,则C 的离心率( )4A.13B. 12C.2D. 22 322EB A . - AB C . + AB 5. 已知圆柱的上、下底面的中心分别为O 1 , O 2 ,过直线O 1O 2 的平面截该圆柱所得的截面是面积为 8的正方形,则该圆柱的表面积为()A .12 2B .12C . 8 2D .106. 设函数 f (x ) = x 3 + (a - 1) x 2 + ax .若 f ( x ) 为奇函数,则曲线 y = f ( x ) 在点(0 ,0) 处的切线方程为()A. y = -2xB. y = -xC. y = 2xD. y = x7. 在△ ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则= ()3 1AB ACB . 1 - 3AC4 4 4 4 3 1 AB ACD . 1 + 3 AC4 4 4 48. 已知函数 f( x ) = 2 cos 2 x - sin 2 x + 2 ,则()A. f (x ) 的最小正周期为,最大值为 3 B. f (x ) 的最小正周期为,最大值为 4 C. f (x ) 的最小正周期为2,最大值为 3 D. f (x ) 的最小正周期为2,最大值为 49. 某圆柱的高为 2,底面周长为 16,其三视图如图所示,圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为( )A. 2B. 2C. 3D .210.在长方体 ABCD - A 1B 1C 1D 1 中, AB = BC = 2 , AC 1 与平面 BB 1C 1C 所成的角为30︒ ,则该长方体的体积为()A . 8B . 6C . 8D . 8 175 223( ) 2 ⎨ ⎩11. 已知角的顶点为坐标原点,始边与 x 轴的非负半轴重合,终边上有两点 A (1, a ) , B (2, b ) ,且cos 2= 2,则 a - b = ()3A. 1 5B.5C. 25 5D .1⎧2-x ,x ≤ 012. 设函数 f x = ⎨,则满足 f ( x + 1) < f (2x ) 的 x 的取值范围是()⎩1 A . (-∞ ,1],x > 0B . (0 ,+ ∞)C . (-1,0)D . (-∞ ,0)二、填空题(本题共 4 小题,每小题 5 分,共 20 分)13.已知函数 f ( x ) = log (x 2 + a ),若f (3) = 1 ,则 a = .⎧x - 2 y - 2 ≤0 14. 若 x ,y 满足约束条件⎪x - y + 1≥ 0 ⎪ y ≤ 0,则 z = 3x + 2 y 的最大值为.15. 直线 y = x + 1 与圆 x 2 + y 2 + 2 y - 3 = 0 交于 A ,B 两点,则 AB =.16. △ ABC 的 内 角 A ,B ,C 的 对 边 分 别 为 a ,b ,c , 已 知 b sin C + c sin B = 4a sin B sin C ,b 2 +c 2 - a 2 = 8 ,则△ ABC 的面积为.三、解答题(共 70 分。
(完整word版)2018年高考全国1卷文科数学试卷及答案(清晰word版),推荐文档
文科数学试题第1页(共9页)2018年普通高等学校招生全国统一考试文科数学注意事项:1 •答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2 •回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂 黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在 答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共 12小题,每小题5分,共60分。
在每小题给出的四个选项中,只 有一项是符合题目要求的。
1 •已知集合 A= {0,2} , B= {- 2,- 1,0,1,2},则 AI B3•某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况, 统计了该地区新农村建设前后农村的经济收A •新农村建设后,种植收入减少B •新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半绝密★启用前A • {0,2}B • {1,2}C • {0}2•设 z 1 i2i ,则 |z|1 iA • 0B •1 C • 12D • { 2, 1,0,1,2}D • .2入构成比例,得到如下饼图: 则下面结论中不正确的是迂迪后轻济收入陶战忆例4.已知椭圆1的一个焦点为(2,0),则C的离心率为A .-35.已知圆柱的上、下底面的中心分别为截面是面积为。
1 , O2,过直线8的正方形,则该圆柱的表面积为D .辽3QO2的平面截该圆柱所得的A. 12 2n 6•设函数f(x)切线方程为B . 12n2(a 1)xC . 8 2n D. 10nax .若f(x)为奇函数,则曲线y f (x)在点(0,0)处的在厶ABC中,AD为BC边上的中线,E为AD的中点,则3 uuu 1 iur 1uuu3 uurA—-AC B . -AB—44443 uuu 1 uur 1uuu3uuirC-AB AC D . -AB A 4444已知函数 f (x) 2cos x sin x 2,则A . f (x)的最小正周期为n,最大值为3B . f (x)的最小正周期为n,最大值为4C . f (x)的最小正周期为2 n,最大值为3D . f (x)的最小正周期为2 n,最大值为4C. y 2xx7. &B . yA . y 2x9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为D . y x uuuEBA . 2 17 C. 310 .在长方体ABCD ABGU中,AB则该长方体的体积为A . 8B . 6211.已知角的顶点为坐标原点,始边与BC 2 ,AC i与平面BBQ i C所成的角为30 ,C .x轴的非负半轴重合,D . 8 3终边上有两点A(1,a),2B(2,b),且cos2 —,则|a b|3B .-5 C .空5文科数学试题第2页(共9页)2 x w 012 .设函数f(x) ' '贝U满足f(x 1) f(2x)的x的取值范围是1, x 0,A. ( , 1]B. (0,)C. ( 1,0)D. ( ,0)二、填空题:本题共4小题,每小题5分,共20分。
2018年高考全国卷1文科数学试题及含答案
2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}02A =,,{}21012B =--,,,,,则A B =A .{}02,B .{}12,C .{}0D .{}21012--,,,, 2.设1i2i 1iz -=++,则z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆C :22214x y a +=的一个焦点为(20),,则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数()()321f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点()00,处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =7.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数()222cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点()1A a ,,()2B b ,,且 2cos 23α=,则a b -=A .15BCD .112.设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围是A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,二、填空题(本题共4小题,每小题5分,共20分)13.已知函数()()22log f x x a =+,若()31f =,则a =________.14.若x y ,满足约束条件220100x y x y y --⎧⎪-+⎨⎪⎩≤≥≤,则32z x y =+的最大值为________.15.直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.16.△ABC 的内角A B C ,,的对边分别为a b c ,,,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则△ABC 的面积为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答。
(完整版)2018年高考文科数学(全国I卷)试题及答案,推荐文档
绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =I A .{0,2} B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z =A .0B .12C .1D 3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .2D .35.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为A .B .12πC .D .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u ru u u r u u u r u u ur u u u rC .3144AB AC +u u ur u u u r D .1344AB AC +u u ur u u u r 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为49.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -=A .15B .5 C .25D .112.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
2018年高考新课标1卷_文科数学_ - 详细解析(精美版)
.已知函数
A
2 − x , x ≤ 0 f ( x) = 1, x > 0
,则满足 f ( x + 1) < f (2 x) 的 x 的取值范围是( )
C
. (− ∞,−1] B. (0,+∞ ) 12.【解析】方法 1:函数 y = f ( x ) 的图像如图所示,
2x < 0 则 f ( x + 1) < f (2 x) 即 ,解得 x < 0 .故选 D. 2x < x + 1
A
E 1 则 EB = 3 AB − AC ,故选 A. 4 4 C B D ) 8.已知函数 f ( x ) = 2 cos x − sin x + 2 ,则( A. f ( x ) 的最小正周期为 π ,最大值为 3 B. f ( x ) 的最小正周期为 π ,最大值为 4 C. f ( x ) 的最小正周期为 2π ,最大值为 3 D. f ( x ) 的最小正周期为 2π ,最大值为 4 3 cos 2 x + 5 8.【解析】 f ( x ) = 2 cos x − (1 − cos x ) + 2 = 3 cos x + 1 = ,最小正周期为 π ,最大值为 4, 2 故选 B. 9.某圆柱的高为 2,底面周长为 16,其三视图如右图. A 圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱表面 B 上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上, 从 M 到 N 的路径中,最短路径的长度为( ) A. 2 17 B. 2 5 C. 3 D. 2 9. 【解析】将三视图还原成直观图,并沿点 A 所在的母线把圆柱侧面展开成如图所示的矩形,从点 M 到点 N 的运动轨迹在矩形中为直线段时路径最短,长度为 2 5 ,故选 B.
(完整word版)2018年高考全国1卷文科数学试卷及答案(清晰word版),推荐文档
文科数学试题 第1页(共9页)绝密★启用前2018年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{0,2}A ,{2,1,0,1,2}B ,则A B =A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}--2.设1i2i 1iz -=++,则||z = A .0B .12C .1D .23.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番. 为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半文科数学试题 第2页(共9页)4.已知椭圆22214x y C a +=:的一个焦点为(2,0),则C 的离心率为A .13B .12C .22D .2235.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .122πB .12πC .82πD .10π6.设函数32()(1)f x x a x ax =+-+. 若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =7.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB = A .3144AB AC - B .1344AB AC - C .3144AB AC +D .1344AB AC + 8.已知函数22()2cos sin 2f x x x =-+,则 A .()f x 的最小正周期为π,最大值为3 B .()f x 的最小正周期为π,最大值为4 C .()f x 的最小正周期为2π,最大值为3 D .()f x 的最小正周期为2π,最大值为4 9.某圆柱的高为2,底面周长为16,其三视图如右图. 圆柱表面上的点M 在正视图上的对应点为A ,圆柱表 面上的点N 在左视图上的对应点为B ,则在此圆柱侧 面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25C .3D .210.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为 A .8B .62C .82D .8311.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边上有两点(1,)A a ,(2,)B b ,且2cos23α=,则||a b -= A .15B .55C .255D .1文科数学试题 第3页(共9页)12.设函数2,0,()1,0,x x f x x -⎧=⎨>⎩≤ 则满足(1)(2)f x f x +<的x 的取值范围是A .(,1]-∞-B .(0,)+∞C .(1,0)-D .(,0)-∞二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试
文科数学(全国卷Ⅰ)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
参考公式:
如果事件A 、B 互斥,那么 球是表面积公式
)()()(B P A P B A P +=+ 24R S π=
如果事件A 、B 相互独立,那么 其中R 表示球的半径
)()()(B P A P B A P ⋅=⋅ 球的体积公式
如果事件A 在一次试验中发生的概率是P ,那么
33
4R V π=
n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径
k n k
k n n P P C k P --=)1()(
一.选择题
(1)已知向量a 、b 满足|a |=1,|b |=4,且ab =2,则a 与b 的夹角为
(A )
6
π (B )
4π (C )3
π (D )
2
π
(2)设集合M={x|x 2-x<0},N={x||x|<2},则
(A )M φ=N (B )M M N =
(C )M N M =
(D )R N M =
(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称,则
(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)
(C )f(2x)=2e 2x (x )R ∈
(D )f(2x)= lnx+ln2(x>0)
(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=
(A )-
4
1 (B )-4 (C)4 (D )
4
1 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=
(A )8 (B )7 (C )6
(D )5
(6)函数f(x)=tan(x+
4π
)的单调递增区间为 (A )(k π-2π, k π+2π
),k Z ∈ (B )(k π, (k+1)π),k Z ∈
(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4
π, k π+43π
),k Z ∈
(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为
(A )
2
1
(B )
5
3
(C )
2
3 (D )0
(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若a 、b 、c ,且c=2a ,则cosB=
(A )
4
1 (B )
43 (C )42 (D )3
2 (9)已知各顶点都在一个球面上的正四棱锥高为4,体积为16,则这个球的表面积是
(A )16 π (B )20π (C )24π (D )32π (10)在(x-
x
21)10
的展开式中,x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是
(A )
3
4 (B )
5
7 (C )58
(D )3
(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许
折断),能够得到期的三角形面积的最大值为
(A )85cm 2
(B )610cm 2 (C )355cm 2
(D )20cm 2
第Ⅱ卷
注意事项:
1.用钢笔或圆珠笔直接答在试题卷上。
2.答卷前将密封线内的项目填写清楚。
二.本大题共4小题,每小题4分,共16分,把答案填在题中横线上。
(13)已知函数f(x)=a-
1
21
+x ,若f(x)为奇函数,则a = 。
(14)已知正四棱锥的体积为12,底面对角线的长为26,则侧面与底面所成的二面角等于 。
(15)设z=2y-x,式中x 、y 满足下列条件
⎪⎩
⎪
⎨⎧≥≤+≥-1232312y y x y x 则z 的最大值为__________
(16)安排7位工作人员在5月1日至5月7日值班,每人值班一天,其中甲乙二人都不安排5月1日和5月2日.不同的安排方法共有__________种(用数字作答)
三.解答题:本大题共6小题,共74分。
解答应写出文字说明,证明过程或演算步骤。
(17)
(本大题满分12分) 已知{a n }为等差数列,a 3=2,a 2+a 4=
3
20
,求{a n }的通项公式.
(18)(本大题满分12分)
∆ABC 的三个内角为A 、B 、C,求当A 为何值时,cosA+cos
2
C
B +取得最大值,并求出这个最大值
(19)(本大题满分12分) A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个
试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效.若在一组试验中,服用A 有郊的小白鼠只数比服用B 有郊的多,就称该组试验为甲类组.设每只小白鼠服用A
有郊的概率为
32,服用B 有郊的概率为2
1. (Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,求这3个试验组中至少有一个甲类组的概率. (20)
(本大题满分12分) 如图,l 1、l 2是互相垂直的两条异面直线,MN 是它们的公垂线段,点A 、B 在l 1上,C 在l 2上,AM=MB=MN
(I )证明AC ⊥NB (II )若︒
=∠60ACB ,求NB 与平面ABC 所成角的余弦值
A
B
C
M
N
l 1
l 2
(21)(本大题满分12分)
设P 为椭圆12
22=+y a
x (a>1)短轴上的一个端点,Q 为椭圆上的一个动
点,求|PQ|的最大值
(22)(本大题满分14分)
设a 为实数,函数f(x)=x 3-ax 2+(a 2-1)x 在(-∞,0)和(1, ∞)都是增函数,求a 的最值范围。