列管式换热器设计3

合集下载

列管式换热器的设计与计算

列管式换热器的设计与计算

列管式换热器的设计与计算设计步骤如下:第一步:确定换热器的需求首先需要明确换热器的设计参数,包括流体的性质、流量、进出口温度、压力等。

这些参数将在后续的计算中使用。

第二步:选择合适的换热器型号根据设计参数和换热需求,选择合适的列管式换热器型号。

常见的型号包括固定管板式、弹性管板式、钢套铜管式等。

第三步:计算表面积根据流体的热传导计算表面积。

换热器的表面积是根据热传导定律计算得到的,公式为:Q=U×A×ΔT,其中Q为换热量,U为传热系数,A为表面积,ΔT为温差。

根据这个公式,可以计算出所需的表面积。

第四步:确定管子数量和尺寸根据所需的表面积和型号,确定换热器中管子的数量和尺寸。

根据流体的流速和换热需求,计算出每根管子的长度和直径。

第五步:确定管板和管夹的尺寸根据管子的尺寸,确定管板和管夹的尺寸。

管板和管夹是固定管子的重要部分,负责把管子固定在换热器中,保证流体的正常流动。

第六步:确定换热器的材质和厚度根据流体的性质和工作条件,确定换热器的材质和厚度。

常见的材质有不锈钢、碳钢、铜等。

通过计算流体的温度、压力和腐蚀性等参数,选择合适的材质和厚度。

第七步:校核换热器的强度对换热器的强度进行校核。

根据国家相关标准和规范,对换热器的强度进行计算和验证,确保其能够承受工作条件下的压力和温度。

第八步:制定施工方案和图纸根据设计结果,制定换热器的施工方案和详细图纸。

包括换热器的总体布置,管子的连接方式,焊接和安装步骤等。

上述是列管式换热器的设计步骤,下面将介绍列管式换热器的计算方法。

首先,需要计算流体的传热系数。

传热系数的计算包括对流传热系数和管内传热系数两部分。

对于对流传热系数,可以使用已有的经验公式或经验图表进行估算。

对于管内传热系数,可以使用流体的性质和流速等参数进行计算。

其次,根据传热系数和管子的尺寸,计算管子的传热面积。

管子的传热面积可以根据管子的长度和直径进行计算。

然后,根据热传导定律,计算换热器的传热量。

列管式换热器设计方案

列管式换热器设计方案

列管式换热器设计方案第一节推荐的设计程序一、工艺设计1、作出流程简图。

2、按生产任务计算换热器的换热量Q。

3、选定载热体,求出载热体的流量。

4、确定冷、热流体的流动途径。

5、计算定性温度,确定流体的物性数据(密度、比热、导热系数等)。

6、初算平均传热温度差。

7、按经验或现场数据选取或估算K值,初算出所需传热面积。

8、根据初算的换热面积进行换热器的尺寸初步设计。

包括管径、管长、管子数、管程数、管子排列方式、壳体内径(需进行圆整)等。

9、核算K。

10、校核平均温度差 m T。

11、校核传热量,要求有15-25%的裕度。

12、管程和壳程压力降的计算。

二、机械设计1、壳体直径的决定和壳体壁厚的计算。

2、换热器封头选择。

3、换热器法兰选择。

4、管板尺寸确定。

5、管子拉脱力计算。

6、折流板的选择与计算。

7、温差应力的计算。

8、接管、接管法兰选择及开孔补强等。

9、绘制主要零部件图。

三、编制计算结果汇总表四、绘制换热器装配图五、提出技术要求 六、编写设计说明书第二节 列管式换热器的工艺设计一、换热终温的确定换热终温对换热器的传热效率和传热强度有很大的影响。

在逆流换热时,当流体出口终温与热流体入口初温接近时,热利用率高,但传热强度最小,需要的传热面积最大。

为合理确定介质温度和换热终温,可参考以下数据:1、热端温差(大温差)不小于20℃。

2、冷端温差(小温差)不小于5℃。

3、在冷却器或冷凝器中,冷却剂的初温应高于被冷却流体的凝固点;对于含有不凝气体的冷凝,冷却剂的终温要求低于被冷凝气体的露点以下5℃。

二、平均温差的计算设计时初算平均温差∆t m,均将换热过程先看做逆流过程计算。

1、对于逆流或并流换热过程,其平均温差可按式(2-1)进行计算:2121ln t t t t t m ∆∆∆-∆=∆ (2—1) 式中,1t ∆、2t ∆分别为大端温差与小端温差。

当221t t ∆∆时,可用算术平均值()221t t t m ∆+∆=∆。

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器是一种常见的换热设备,广泛应用于化工、石油、制药等行业中。

本文将从列管式换热器的设计原理、设计步骤和设计考虑因素三个方面进行详细介绍。

一、设计原理列管式换热器是通过管内的换热流体和管外的换热流体之间的换热传递来实现热量的传递。

它的基本原理是利用换热流体在管内和管外的对流,通过管壁的传导传热作用,使热量从高温流体传递给低温流体。

二、设计步骤1.确定换热器的使用条件:包括换热流体的性质、入口温度、出口温度等。

2.确定换热器的换热面积:根据换热流体的热负荷和传热系数来计算所需的换热面积。

3.选择管子的尺寸和材料:根据换热流体的性质和流量来选择合适的管子尺寸和材料。

4.确定管子的数量和布置方式:根据换热面积和换热流体的流量来确定管子的数量和布置方式,一般采用多行多列的方式。

5.设计管束的尺寸:根据换热面积和管子的数量来确定管束的尺寸,包括管束的直径、长度和布置方式等。

6.计算换热器的传热系数:根据换热面积、流体的性质和传热方式来计算换热器的传热系数。

7.计算换热器的压降:根据流体的流量、管束的阻力和流体的性质来计算换热器的压降。

8.进行换热器的热力学计算:包括换热器的热力学效率、有效传热面积和温差效益等。

三、设计考虑因素1.热负荷:根据换热流体的热负荷来确定换热器的换热面积和管子的数量。

2.材料选择:根据换热流体的性质和工艺要求来选择合适的材料,包括管子的材料和管壳的材料。

3.温度差:根据换热流体的温度差来确定管束的数量和换热器的传热系数。

4.流体压降:根据流体的流量和管束的阻力来计算换热器的压降,并确定合适的管束布置方式和管束的尺寸。

5.清洗和维护:考虑到换热器的清洗和维护,要选择易于清洗和维护的结构设计。

综上所述,列管式换热器的设计是一个复杂的工程,需要考虑多个因素。

设计者需要根据具体的使用条件和要求来确定换热器的换热面积、管子的尺寸和材料、管束的数量和布置方式等。

同时,还需要计算换热器的传热系数、压降和热力学参数等。

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计

化工原理课程设计---列管式换热器的设计列管式换热器是一种常用的换热器类型,其结构简单、传热效率高、维修方便等优点使其在工业生产中得到广泛应用。

该换热器由多个平行排列的管子组成,热流体和冷流体分别流过管内外,通过管壁传递热量,实现热量交换。

根据不同的流体流动方式,列管式换热器又可分为纵向流式和横向流式两种形式。

其中,横向流式换热器传热效率更高,但结构较为复杂,维修难度较大,因此在实际应用中需要根据具体情况进行选择。

浮头式换热器的特点是管板和壳体之间没有固定连接,只有一个浮头,管束和浮头相连。

浮头可以在壳体内自由移动,以适应管子和壳体的热膨胀。

这种结构适用于温差较大或壳程压力较高的情况。

但是,由于管束和浮头的连接是松散的,因此需要注意防止泄漏。

U型管式换热器:U型管式换热器的管子呈U形,两端分别焊接在管板上,形成一个U型管束。

壳体内的流体从一端进入,从另一端流出,管内的流体也是如此。

这种结构适用于流体腐蚀性较强的情况,因为管子可以很容易地更换。

多管程换热器:多管程换热器是将管束分成多个组,每组管子单独连接到管板上,形成多个管程。

这种结构可以提高传热效率,但也会增加流体阻力。

因此,需要根据具体情况来选择多管程的数量。

总之,列管式换热器是一种广泛应用于化工及酒精生产的换热器。

不同的结构适用于不同的工艺条件,需要根据具体情况来选择合适的换热器。

在使用过程中,需要注意保养和维护,及时清洗和更换损坏的部件,以保证换热器的正常运行。

换热器的一块管板与外壳用法兰连接,另一块管板不与外壳连接,这种结构称为浮头式换热器。

浮头式换热器的优点是管束可以拉出以便清洗,管束的膨胀不受壳体约束,因此在两种介质温差大的情况下,不会因管束与壳体的热膨胀量不同而产生温差应力。

但其缺点是结构复杂,造价高。

填料式换热器的管束一端可以自由膨胀,结构比浮头式简单,造价也较低。

但壳程内介质有外漏的可能,因此不应处理易挥发、易燃、易爆和有毒的介质。

列管式换热器设计(水蒸气加热水)

列管式换热器设计(水蒸气加热水)

食品工程原理课程设计设计书设计题目:列管式换热器的设计:学院班级:食品学院食科142班学号::设计时间:2016.05.30~06.04目录一、换热器设计任务书 ............................................ 错误!未定义书签。

二、摘要 .................................................................... 错误!未定义书签。

三、初步选定换热器 ................................................ 错误!未定义书签。

四、设计计算 ............................................................ 错误!未定义书签。

五、收获 .................................................................... 错误!未定义书签。

六、参考文献 ............................................................ 错误!未定义书签。

附件一换热器主要结构尺寸和计算结果........ 错误!未定义书签。

附件二主要符号说明 ............................................................... - 15 -一、换热器设计任务书1、设计题目设计一台用饱和水蒸气加热水的列管式固定管板换热器2.设计任务及操作条件(1)处理能力130 t/h(2)设备型式列管式固定管板换热器(3)操作条件①水蒸气:入口温度147.7℃,出口温度147.7℃②冷却介质:自来水,入口温度10℃,出口温度80℃③允许压强降:管程10^4-10^5,壳程10^3-10^4(4)设计项目①设计方案简介:对确定的工艺流程及换热器型式进行简要论述。

化工原理课程设计——列管式换热器设计

化工原理课程设计——列管式换热器设计

课 程 设 计列管式换热器的设计高分子材料与工程09-1班 何兵2012年6月29日设计题目 学 号 专业班级 学生姓名指导教师课程设计任务设计题目:列管式换热器设计设计时间: 指导老师:何兵设计任务:年处理41050 吨40%乙醇水溶液的精馏塔预热器1.设备型式 卧式列管式换热器。

2.操作条件(1)原料温度20℃,进料热状况参数q=;(2)加热蒸汽采用绝压的饱和蒸汽;(3)允许压强降:不大于510Pa;(4)每年按330天计算,每天24小时连续运行;(5)设备最大承受压力:P=;设计报告:1.设计说明书一份2.主体设备总装图(1#图纸)一张,带控制点工艺流程图(3#图纸)目录1 前言 ................................... 错误!未定义书签。

乙醇简介 ......................................................错误!未定义书签。

换热器概述 ....................................................错误!未定义书签。

换热器的应用 .............................................错误!未定义书签。

换热器的主要分类 .........................................错误!未定义书签。

管壳式换热器特殊结构 .....................................错误!未定义书签。

换热管简介 ...............................................错误!未定义书签。

2.工艺流程设计的基本原则 ................. 错误!未定义书签。

3. 设计方案及设计计算 .................... 错误!未定义书签。

初选型号 ......................................................错误!未定义书签。

列管式换热器的设计

列管式换热器的设计

列管式换热器的设计列管式换热器的应用已有很悠久的历史。

现在,它被当作一种传统的标准换热设备在很多工业部门中大量使用,尤其在化工、石油、能源设备等部门所使用的换热设备中,列管式换热器仍处于主导地位。

同时板式换热器也已成为高效、紧凑的换热设备,大量地应用于工业中。

为此本章对这两类换热器的工艺设计进行介绍。

列管式换热器的设计资料较完善,已有系列化标准。

目前我国列管式换热器的设计、制造、检验、验收按“钢制管壳式(即列管式)换热器”(GB151)标准执行。

列管式换热器的设计和分析包括热力设计、流动设计、结构设计以及强度设计。

其中以热力设计最为重要。

不仅在设计一台新的换热器时需要进行热力设计,而且对于已生产出来的,甚至已投人使用的换热器在检验它是否满足使用要求对,均需进行这方面的工作。

热力设计指的是根据使用单位提出的基本要求,合理地选择运行参数,并根据传热学的知识进行传热计算。

流动设计主要是计算压降,其目的就是为换热器的辅助设备——例如泵的选择做准备。

当然,热力设计和流动设计两者是密切关联的,特别是进行热力计算时常需从流动设计中获取某些参数。

结构设计指的是根据传热面积的大小计算其主要零部件的尺寸,例如管子的直径、长度、根数、壳体的直径、折流板的长度和数目、隔板的数目及布置以及连接管的尺寸,等等。

在某些情况下还需对换热器的主要零部件——特别是受压部件做应力计算,并校核其强度。

对于在高温高压下工作的换热器,更不能忽视这方面的工作。

这是保证安全生产的前提。

在做强度计算时,应尽量采用国产的标准材料和部件,根据我国压力容器安全技术规定进行计算或校核(该部分内容属设备计算,此处从略)。

列管式换热器的工艺设计主要包括以下内容:①根据换热任务和有关要求确定设计方案;②初步确定换热器的结构和尺寸;③核算换热器的传热面积和流体阻力;④确定换热器的工艺结构。

1.1设计方案的确定1.1.1换热器类型的选择(1)固定管板式换热器这类换热器如图2-1(a)所示。

列管式换热器结构设计

列管式换热器结构设计
如何确定管板的设计压力讨论: (1)若能保证管、壳程压力在操作过程中,任何情 况下都同时作用或管程和壳程之一为负压时;则管 板的设计压力Pd由如下公式确定:
到焊接的可能性; (b)纵向隔板插入导向槽中; (c)、(d)分别是单双向条形密封,防止间隙短
路,对于需要将管束经常抽出清洗者,采用此结构。
管板与隔板的连接形式 如图 (a)为隔板与管板焊接, (b)是隔板用螺栓联接在焊于管板的角铁上的可
拆结构.
3、分割流板
在壳体上有对称的两个进口及一个出口时,如图中 J型壳体
三、管箱
一、传热管与管板的连接
造成连接处破坏的原因主要有: (1)高温下应力松弛而失效 (2)间隙腐蚀破坏 (3)疲劳破坏 (4)由于热补偿不好引起的破坏
管子与管板的连接形式:强度胀接、强度焊接与 胀焊接混合结构。
应满足以下两个条件: 连接处保证介质无泄漏的充分气密性;承受
介质压力的充分结合力。
②多程管箱,最小流通面积应大于或等于其中一程的管 内流通面积的1/3倍。 ③管箱上各相邻焊缝间距必须大于或等于4s,且应大于 或等于50mm,其中s为管箱壁。
(2)管箱最小长度计算
管箱最小长度计算涉及几何尺寸见图。
A型管箱见图4-35(a),
按流通面积计算
L' g m in
πd
2 i
N
cp
4E
(mm )
(3) Ώ形膨胀节
(4)夹壳膨胀节
2.膨胀节设置必要性判断 通过计算由温差产生轴向力和压力产生轴向力共同作 用,得到: 换热管最大应力、 壳体最大应力及管子拉脱力 当σs>2φ[σ]ts或σt>2[σ]tt时应设置膨胀节 。
3、强度计算 包括: (1)温差引起的轴向力计算 (2)补偿量的计算 (3)膨胀节疲劳寿命计算

列管式换热器设计

列管式换热器设计

列管式换热器设计列管式换热器设计⼀、概述1.概述与设计⽅案简介1.1换热器在不同温度的流体间传递热能的装置称为热交换器,简称为换热器。

在换热器中⾄少要有两种温度不同的流体,⼀种流体温度较⾼,放出热量;另⼀种流体则温度较低,吸收热量。

在⼯程实践中有时也会存在两种以上流体参加换热的换热器,但它的基本原理与上述情形并⽆本质上的差别。

换热器是化学⼯业、⽯油⼯业及其它⼀些⾏业中⼴泛使⽤的热量交换设备,它不仅可以单独作为加热器、冷却器等使⽤,⽽且是⼀些化⼯单元操作的重要附属设备,因此在化⼯⽣产中占有重要地位。

由于⽣产中的换热⽬的不同,换热器的类型很多,不同类型的换热器各有优缺点,性能各异。

特别是随着化⼯⼯艺的不断发展,新型换热器不断出现。

在换热器设计中,⾸先应根据⼯艺要求选择适⽤的类型然后计算换热所需传热⾯积,并确定换热器的结构尺⼨。

虽然列管式换热器在传热效率、紧凑性和⾦属耗量等⽅⾯不及某些新型换热器,但它具有结构简单、坚固耐⽤、适应性强、制造材料⼴泛等独特的优点,因⽽在换热设备中仍占有重要的地位。

特别是在⾼温、⾼压和⼤型换热设备中仍占绝对优势。

1.2列管式换热器的选择列管式换热器的应⽤已有很悠久的历史,在化⼯⽣产中主要作为加热(冷却)器,冷凝器、蒸发器和再沸器使⽤。

现在,它被当作⼀种传统的标准换热设备在很多⼯业部门中⼤量使⽤,尤其在⽯油、化⼯、能源设备等部门所使⽤的换热设备中,列管式换热器仍处于主导地位。

按材质分为碳钢列管换热器,不锈钢列管换热器和碳钢与不锈钢混合列管换热器三种。

按结构分为单管程、双管程和多管程,传热⾯积1~500m2。

列管式换热器按结构特点,主要分为以下四种:①固定管板式换热器;②浮头式换热器;③U形管式换热器;④填料函式换热器。

列管换热器主要特点:1.耐腐蚀性:聚丙烯具有优良的耐化学品性,对于⽆机化合物,不论酸,碱、盐溶液,除强氧化性物料外,⼏乎直到100℃都对其⽆破坏作⽤,对⼏乎所有溶剂在室温下均不溶解,⼀般烷、径、醇、酚、醛、酮类等介质上均可使⽤。

列管式换热器

列管式换热器

列管式换热器列管式换热器是一种常见的换热设备,通常用于多种工业领域,如化工、石油、电力、制药等。

它的工作原理是通过将一个或多个管道(称为管子)插入一个外壳中,并使热交换流体通过管子和壳体之间流动,以实现热量的传递。

设计举例:化工厂中的列管式换热器。

工艺要求:1.热源介质为低温烟气(300℃,2000Nm³/h)。

2.冷却介质为水(20℃,1000L/h)。

3.需要达到的换热效果:烟气温度降低到200℃以下。

设计步骤:1.确定换热面积:根据热负荷计算,烟气的热负荷(Q)为:Q = mcΔT其中,m为烟气质量流量,c为烟气比热容,ΔT为烟气温度差。

在本例中,m为2000Nm³/h,c取1000J/(kg·℃),ΔT为300℃。

另外,换热器的换热系数(U)可以根据实际情况选择一个合适的数值。

假设U为1000W/(m²·℃)。

根据换热方程,换热面积(A)可由以下公式计算:Q = UAΔTlm其中,ΔTlm为对数平均温差,可根据进出口温度计算得到。

综上所述,可以计算得到所需的换热面积。

2.确定管子数量和布局:根据换热面积和设计要求,可以确定所需管子的数量和布局。

通常情况下,管子的数量选择为偶数,并且可以采用等间距布置。

3.材料选择:根据介质的性质和工艺要求,选择合适的材料用于制作管子和壳体。

常用的材料有不锈钢、镍合金、铜等。

4.热力设计:根据所需传热量、管子数量和进出口温度等参数,计算出每根管子的传热量。

同时,根据流体的流动参数,确定管子的直径和管道内流速。

一般情况下,可以保持流速在1-3m/s之间。

5.结构设计:根据换热器的实际需求和工艺要求,设计并确定壳体内部的分隔板、支撑杆等结构。

这些结构可以增强换热效果和传热效率,并帮助流体均匀分布。

6.安全设计:在列管式换热器的设计中,需要考虑各种安全因素,如压力、温度和泄漏等。

可以通过安全阀、温度控制器和泄漏检测器等装置来保障设备的安全运行。

列管式换热器课程设计(含有CAD格式流程图和换热器图)

列管式换热器课程设计(含有CAD格式流程图和换热器图)

X X X X 大学《材料工程原理B》课程设计设计题目: 5.5×104t/y热水冷却换热器设计专业: -—----———-——---—————-—-—---—-班级:—--——-——-—-—-学号: —--——-----—姓名: -—--日期:——-—-—-———-——--指导教师: —---—-----设计成绩: 日期:换热器设计任务书1.设计方案简介2.工艺流程简介3.工艺计算和主体设备设计4.设计结果概要5.附图6.参考文献1。

设计方案简介1.1列管式换热器的类型根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

(1)固定管板式换热器这类换热器如图1—1所示。

固定管板式换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

(2)U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力.U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右.(3)浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

列管式换热器-课程设计

列管式换热器-课程设计

列管式换热器-课程设计一、概述列管式换热器是一种将多个平行管道嵌入到圆柱形壳体中、同时将流体分别流过内、外两侧实现热量传递的设备。

本次课程设计将要探讨的是该设备的设计过程。

二、设计过程1. 确定设计参数设计前需要先确定所需的设计参数,如换热器的设计热负荷、流量、压力等,这些参数将决定换热器的尺寸和布局,为后续设计提供基础。

2. 换热器类型选择根据设计参数、使用场景、材料成本等因素选择适合的换热器类型,如单相流、双相流、冷凝器、蒸发器等。

3. 确定材料和尺寸选择适合的材料和尺寸以满足设计参数,同时考虑生产和运输的成本和实际情况。

4. 确定管束参数确定管束长度、管束密度、管道直径和布局等参数,保证管束的压力和流速符合设计要求,并达到最佳热传导效果。

5. 热传导计算进行热传导计算,以确定管束长度和直径,根据流动状态和温度场计算出换热系数、平均温差和热效率等参数。

6. 设计壳体结构设计壳体的结构和尺寸,确定支撑方式和绝热方式,同时考虑安全和易于维护的因素。

7. 流体力学分析进行流体力学分析,确定流体在管道中的流动状态,以保证衬里的材料和厚度设计得足够坚固,以避免漏泄和磨损。

8. 设计精度分析进行精度分析和优化,以确定设备的运行效率和稳定性,并满足设计和生产的要求。

9. 制造和安装根据设计图纸制造和安装换热器,并进行预试运行和调试,最终达到设计要求。

三、总结以上是列管式换热器的设计过程,该过程需要深入掌握流体力学、热传导学、结构力学等知识,同时也需要掌握计算机辅助设计软件的使用,以提高效率和质量。

设计合理的列管式换热器能够提高生产效率,降低能耗,并为工业生产的可持续发展提供支持。

列管式换热器的设计

列管式换热器的设计

列管式换热器的设计首先,列管式换热器的设计需要考虑所要处理的流体特性。

这包括流体的物性参数(如密度,粘度,热容量等)以及流体的腐蚀性和腐蚀程度。

根据流体的特性,设计人员可以选择合适的材料来制造换热器,以确保其能够承受流体的作用。

其次,设计人员需要考虑换热器的换热面积。

换热面积是决定换热器传热效率的重要因素。

对于需要大量传热的应用,设计人员可以采用多个并联的换热管束来增加换热面积。

此外,通过增加流体的流速,也可以增加换热面积。

第三,设计人员需要考虑流体的流动方式。

列管式换热器有两种基本的流动方式:并流和逆流。

在并流方式下,热量从一个流体传递到另一个流体,两种流体在整个换热过程中保持相同的流动方向。

而在逆流方式下,两种流体在换热器中相向而流。

逆流方式通常具有更高的换热效率,但并流方式在一些情况下也可以获得更好的效果。

另外,设计人员还需要考虑换热器的结构设计。

列管式换热器通常由一个或多个垂直安装的管束和一个水平放置的壳体组成。

设计人员需要确定管束和壳体的尺寸和布局,以确保流体可以在换热器中流动,并且能够实现足够的传热。

此外,列管式换热器的设计还需要考虑管束的支撑和固定,以及防止管道堵塞和泄漏的措施。

设计人员还需要考虑换热器的安全性,包括防止爆炸和压力过高的措施。

最后,设计人员还需要考虑列管式换热器的清洁和维护。

由于换热器内部易积聚污垢,因此需要定期清洗和维护以确保其正常运行。

设计人员可以考虑在换热器内部设置清洗装置,以便进行清洗和维护。

综上所述,列管式换热器的设计需要综合考虑多个因素,包括流体特性、换热面积、流动方式、结构设计、安全性等。

只有在考虑到这些因素的前提下,设计人员才能设计出高效、可靠且安全的列管式换热器。

列管式换热器课程设计

列管式换热器课程设计

列管式换热器 课程设计一、课程目标知识目标:1. 让学生掌握列管式换热器的基本结构和工作原理,理解换热过程中的热量传递机制。

2. 使学生了解列管式换热器的类型、特点及应用场景,能够区分不同类型的换热器。

3. 引导学生掌握换热器设计的基本原则和步骤,学会运用相关公式计算换热器的传热系数和换热面积。

技能目标:1. 培养学生运用所学知识分析实际换热问题,具备解决换热器设计问题的能力。

2. 提高学生运用计算工具(如Excel、计算器等)进行换热器相关计算的速度和准确性。

3. 培养学生团队合作意识,提高沟通与协作能力,通过小组讨论、汇报等形式,共同完成换热器设计任务。

情感态度价值观目标:1. 培养学生对换热器设计及工程应用的兴趣,激发创新意识和探索精神。

2. 引导学生关注换热器在能源、环保等领域的重要性,培养节能环保意识和社会责任感。

3. 培养学生严谨、踏实的科学态度,养成认真负责的工作作风。

本课程针对高年级学生,结合学科特点和教学要求,将目标分解为具体的学习成果。

课程注重理论与实践相结合,以实际工程案例为载体,引导学生通过自主学习、小组合作等方式,掌握换热器设计的基本知识和技能。

在教学过程中,关注学生的个体差异,鼓励提问和讨论,以提高学生的思维能力和解决问题的能力。

通过本课程的学习,使学生能够具备独立设计换热器的能力,为未来从事相关工作打下坚实基础。

二、教学内容1. 列管式换热器的基本概念:介绍换热器的作用、分类及其在工业中的应用。

教材章节:第二章 换热器的基本概念与分类2. 列管式换热器的工作原理:讲解列管式换热器中的热量传递过程,包括对流传热和导热。

教材章节:第三章 列管式换热器的工作原理与热量传递3. 列管式换热器的设计原则与步骤:阐述换热器设计的基本原则,介绍设计步骤及注意事项。

教材章节:第四章 列管式换热器的设计原则与步骤4. 列管式换热器传热系数的计算:分析影响换热器传热系数的因素,介绍相关计算公式。

列管式换热器的设计任务书(三)

列管式换热器的设计任务书(三)

环境工程原理课程设计任务书(三)一、课程设计的题目列管式换热器的设计二、设计任务及条件某生产过程的流程如下图所示。

反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶组分。

已知混合气体的流量为223000kg/h, 压力为6.5MPa,循环冷却水的压力为0.4 MPa,循环冷却水入口温度29℃,出口温度38℃,试设计一台列管式换热器,完成该生产任务。

混合气体在85℃下的有关物性数据如下(来自生产中的实测值):密度ρ=90kg/m3定压比热容 C p=3.297KJ/kg·℃热导率λ=0.0279W/m·℃粘度μ=1.5×10-5Pa·S三、设计内容1.根据生产任务的要求确定设计方案(1)换热器类型的选择(2)换热器内流体流入空间的选择2.化工计算(1)传热面积的计算(2)管数、管程数及管子排列,管间距的确定(3)壳体直径及壳体厚度的确定3.换热器尺寸的确定及有关构件的选择4.换热器流体阻力的计算5.绘制换热器的装配图:图纸规格均为2号图;图面布置均匀;符合制图规范要求。

6.编写设计说明书:设计说明书按设计程序编写,报告格式见附录A。

设计说明书要求文字简明、通顺、内容正确完整,书写工整、装订成册。

四、设计要求1.在确定设计方案时既要考虑到工艺,操作的要求又要兼顾经济和安全上的要求;2.在化工计算时要求掌握传热的基本理论,有关公式,要知道查哪些资料,怎样使用算图以及怎样选择经验公式,并进行优化设计;3.要求根据国家有关标准来选择换热器的构件;4.要求必须掌握固定管板式或浮头式列管换热器的设计。

五、主要参考书目1.化工原理(上、下册),夏青,陈常贵主编,天津大学出版社,2005;2.化工原理课程设计,贾绍义,柴诚敬主编,天津大学出版社,2002;3.化工原理(上、下册),谭天恩,麦本熙,丁惠华编著,化工出版社,1998;4.物性数据的计算与图表(化工原理课程设计参考资料),王莲琴编,化工出版社,1992;5.化工工艺设计手册,上、下册,国家医药管理局上海医药设计院编,化工出版社,1986;6.化工过程及设备设计,华南理工大学,化学工业出版社,1986;7.化学工程手册,化学工业出版社,1982。

化工原理课程设计--列管式换热器设计说明书(完整版)

化工原理课程设计--列管式换热器设计说明书(完整版)

东莞理工学院《化工原理》课程设计说明书题目:列管式换热器的设计学院:班级:学号:姓名:指导教师:时间:目录一.化工原理课程设计任务书 (4)1.1 设计题目:列管式换热器的设计 (4)1.2 前言 (4)1.3 合成氨工业概述 (5)1.3.1 合成氨工业重要性 (5)1.3.2 合成氨的原料及原则流程 (5)1.4 世界合成氨生产技术及进展 (6)1.4.1 国外合成氨技术现状及发展 (6)1.4.2 我国合成氨技术的基本状况 (6)1.5 概述 (7)1.5.1 换热器概述 (7)1.5.2 固定管板式 (8)1.5.3 列管换热器主要部件 (8)1.5.4 设计背景及设计要求 (10)二.热量设计 (11)2.1 设计条件: (11)2.2 初选换热器的类型 (11)2.3 管程安排(流动空间的选择)及流速确定 (12)2.4 初算换热器的传热面积SO (12)三.机械结构设计 (14)3.1 管径和管内流速 (14)3.2 管程数和传热管数 (14)3.3 换热器筒体尺寸与接管尺寸确定 (16)3.4换热器封头选择 (17)3.4.1 封头选型及尺寸确定 (17)3.4.2 封头厚度选取 (18)3.5 管板的确定 (19)3.5.1 管板尺寸 (19)3.5.2 管板与壳体的连接 (19)3.5.3 管板厚度 (20)3.6换热器支座及法兰选定 (20)3.7 换热器核算 (21)3.7.1管、壳程压强降计及校验 (21)3.7.2 总传热系数计算及校验 (23)四.设计结果表汇 (25)五.参考文献 (26)附:化工原理课程设计之心得体会 (26)一.化工原理课程设计任务书1.1 设计题目:列管式换热器的设计系(院)、专业、年级:学生姓名:学号:指导老师姓名:任务起止日期:1.2 前言换热器是实现化工生产过程中热量交换和传递不可缺少的设备。

热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.设计任务书--32.概述与设计方案简介-43.工艺及设备设计计算- 94.辅助设备的计算及-115.设计结果汇总表-156.设计评述-157.参考资料--168.主要符号说明-169.致谢-161.换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

一种流体在关内流动,其行程称为管程;另一种流体在管外流动,其行程称为壳程。

管束的壁面即为传热面.其主要优点是单位体积所具有的传热面积大,传热效果好,结构坚固,可选用的结构材料范围宽广,操作弹性大,因此在高温、高压和大型装置上多采用列管式换热器。

为提高壳程流体流速,往往在壳体内安装一定数目与管束相互垂直的折流挡板。

折流挡板不仅可防止流体短路、增加流体流速,还迫使流体按规定路径多次错流通过管束,使湍流程度大为增加。

列管式换热器中,由于两流体的温度不同,使管束和壳体的温度也不相同,因此它们的热膨胀程度也有差别。

若两流体温差较大(50℃以上)时,就可能由于热应力而引起设备的变形,甚至弯曲或破裂,因此必须考虑这种热膨胀的影响。

2.1换热器换热器是化工、石油、食品及其他许多工业部门的通用设备,在生产中占有重要地位。

由于生产规模、物料的性质、传热的要求等各不相同,故换热器的类型也是多种多样。

按用途它可分为加热器、冷却器、冷凝器、蒸发器和再沸器等。

根据冷、热流体热量交换的原理和方式可分为三大类:混合式、蓄热式、间壁式。

间壁式换热器又称表面式换热器或间接式换热器。

在这类换热器中,冷、热流体被固体壁面隔开,互不接触,热量从热流体穿过壁面传给冷流体。

该类换热器适用于冷、热流体不允许直接接触的场合。

间壁式换热器的应用广泛,形式繁多。

将在后面做重点介绍。

直接接触式换热器又称混合式换热器。

在此类换热器中,冷、热流体相互接触,相互混合传递热量。

该类换热器结构简单,传热效率高,适用于冷、热流体允许直接接触和混合的场合。

常见的设备有凉水塔、洗涤塔、文氏管及喷射冷凝器等。

蓄热式换热器又称回流式换热器或蓄热器。

此类换热器是借助于热容量较大的固体蓄热体,将热量由热流体传给冷流体。

当蓄热体与热流体接触时,从热流体处接受热量,蓄热体温度升高后,再与冷流体接触,将热量传给冷流体,蓄热体温度下降,从而达到换热的目的。

此类换热器结构简单,可耐高温,常用于高温气体热量的回收或冷却。

其缺点是设备的体积庞大,且不能完全避免两种流体的混合。

工业上最常见的换热器是间壁式换热器。

根据结构特点,间壁式换热器可以分为管壳式换热器和紧凑式换热器。

紧凑式换热器主要包括螺旋板式换热器、板式换热器等。

管壳式换热器包括了广泛使用的列管式换热器以及夹套式、套管式、蛇管式等类型的换热器。

其中,列管式换热器被作为一种传统的标准换热设备,在许多工业部门被大量采用。

列管式换热器的特点是结构牢固,能承受高温高压,换热表面清洗方便,制造工艺成熟,选材范围广泛,适应性强及处理能力大等。

这使得它在各种换热设备的竞相发展中得以继续存在下来。

使用最为广泛的列管式换热器把管子按一定方式固定在管板上,而管板则安装在壳体内。

因此,这种换热器也称为管壳式换热器。

常见的列管换热器主要有固定管板式、带膨胀节的固定管板式、浮头式和U形管式等几种类型。

2.2设计方案简介 2.2.1换热器类型的选择根据列管式换热器的结构特点,主要分为以下四种。

以下根据本次的设计要求,介绍几种常见的列管式换热器。

1.固定管板式换热器这类换热器如图1-1所示。

固定管办事换热器的两端和壳体连为一体,管子则固定于管板上,它的结余构简单;在相同的壳体直径内,排管最多,比较紧凑;由于这种结构式壳测清洗困难,所以壳程宜用于不易结垢和清洁的流体。

当管束和壳体之间的温差太大而产生不同的热膨胀时,用使用管子于管板的接口脱开,从而发生介质的泄漏。

2.U型管换热器U型管换热器结构特点是只有一块管板,换热管为U型,管子的两端固定在同一块管板上,其管程至少为两程。

管束可以自由伸缩,当壳体与U型环热管由温差时,不会产生温差应力。

U型管式换热器的优点是结构简单,只有一块管板,密封面少,运行可靠;管束可以抽出,管间清洗方便。

其缺点是管内清洗困难;哟由于管子需要一定的弯曲半径,故管板的利用率较低;管束最内程管间距大,壳程易短路;内程管子坏了不能更换,因而报废率较高。

此外,其造价比管定管板式高10%左右。

3. 浮头式换热器浮头式换热器的结构如下图1-3所示。

其结构特点是两端管板之一不与外科固定连接,可在壳体内沿轴向自由伸缩,该端称为浮头。

浮头式换热器的优点是党环热管与壳体间有温差存在,壳体或环热管膨胀时,互不约束,不会产生温差应力;管束可以从壳体内抽搐,便与管内管间的清洗。

其缺点是结构较复杂,用材量大,造价高;浮头盖与浮动管板间若密封不严,易发生泄漏,造成两种介质的混合。

4.填料函式换热器填料函式换热器的结构如图1-4所示。

其特点是管板只有一端与壳体固定连接,另一端采用填料函密封。

管束可以自由伸缩,不会产生因壳壁与管壁温差而引起的温差应力。

填料函式换热器的优点是结构较浮头式换热器简单,制造方便,耗材少,造价也比浮头式的低;管束可以从壳体内抽出,管内管间均能进行清洗,维修方便。

其缺点是填料函乃严不高,壳程介质可能通过填料函外楼,对于易燃、易爆、有度和贵重的介质不适用2.3.1换热器类型的选择所设计换热器用于冷却果浆,果浆粘度较大,易结垢,易腐蚀管道,所以选用浮头式换热器,浮头便于拆卸、清洗,且果浆走壳程也方便散热,与冷却介质温差较大,也避免产生温差应力产生管道变形。

综上所述,换热器选择浮头式,果浆走壳程。

2.3.2流径的选择在具体设计时考虑到尽量提高两侧传热系数较小的一个,使传热面两侧传热系数接近;在运行温度较高的换热器中,应尽量减少热量损失,而对于一些制冷装置,应尽量减少其冷量损失;管、壳程的决定应做到便于清洗除垢和修理,以保证运行的可靠性。

参考标准:(1)不洁净和易结垢的流体宜走便于清洗管子,浮头式换热器壳程便于清洗。

2.腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。

3.压强高的流体宜走管内,以免壳体受压,其中冷却介质循环水操作压力高,宜走管程。

4.饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。

5.被冷却的流体宜走壳程,便于散热,增强冷却效果。

6.需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。

7.粘度大的液体或流量较小的流体,宜走壳程,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

8.若两流体的温度差较大,传热膜系数较大的流体宜走壳程,因为壁温接近传热膜系数较大的流体温度,以减小管壁和壳壁的温度差。

综合考虑以上标准,确定果浆应走壳程,水走管程。

一、方案简介本设计任务是利用冷流体(水)给硝基苯降温。

利用热传递过程中对流传热原则,制成换热器,以供生产需要。

下图(图1)是工业生产中用到的列管式换热器.选择换热器时,要遵循经济,传热效果优,方便清洗,复合实际需要等原则。

换热器分为几大类:夹套式换热器,沉浸式蛇管换热器,喷淋式换热器,套管式换热器,螺旋板式换热器,板翅式换热器,热管式换热器,列管式换热器等。

不同的换热器适用于不同的场合。

而列管式换热器在生产中被广泛利用。

它的结构简单、坚固、制造较容易、处理能力大、适应性大、操作弹性较大。

尤其在高压、高温和大型装置中使用更为普遍。

所以首选列管式换热器作为设计基础。

三、设计结果一览表换热器形式:固定管板式换热面积(m2):22.2工艺参数名称管程壳程物料名称冷却水硝基苯操作压力,Pa 未知未知操作温度,℃27/37 93/50流量,kg/h 21945.3 13889流体密度,kg/m3994.3 1154流速,m/s 0.414 0.191传热量,kW 258.5总传热系数,W/m2·K347.5传热系数,W/(m2·℃)2402.3 866.6污垢系数,m2·K/W0.000344 0.000172阻力降,Pa 2185.5 1800.8程数 2 1推荐使用材料碳钢碳钢管子规格ф25×2.5 管数98 管长mm:3000管间距,mm 32 排列方式正三角形折流板型式上下间距,mm 200 切口高度25%壳体内径,mm 400 保温层厚度,mm 未知表格1四、对设计的评述初次接触化工原理课程设计,还荒谬地以为是像其他课程一样是实验类的,听课的时候也一头雾水,根本不知道该做什么,该怎么做,无从下手,只是觉得好难。

有一段时间都在观望。

所以自己设计的时候只能是根据老师提供的模板,用新的数据代替旧的数据,其他的公式完全照抄,花了一天时间,终于把计算部分完成了。

裕度15%,在合理范围内,但是,一看压力降,彻底崩溃了,12多千帕,天啊,完全不合理。

再细看模板和自己的设计的时候,发现了很多问题,我的设计根本是行不同,果真用这设计的话,也是谋财害命。

所以我决定重新来过。

这时离交作业还有三天,做出来的裕度居然一直都在50%以上,重新分析计算的过程中也出现了几次错误,由于急于求成,算出来后的结果偏离太多,检查才发现部分数据出现了错误,而且老师给的模板里面也有一些错误,这样照搬下去的一些公式就除了问题了,只好静下来认真地理解和消化原有的一些公式,这样又一次重新算过。

因此,有花了一天的时间在计算上。

那么接下来就是画图了,由于学过机械制图,以为画图比较简单,5个小时左右可以完成,谁知道,画图更难,这主要是因为在设计的时候,没有兼顾考虑到画图,因此设计出来的管数很难安排,冥思苦想了好久,换了好多方案,查了好多资料,换了多种排列方法,还是行不通。

最终,只好把管数安排成易于排列的数目,才解决了这个问题。

其实,在整个过程中,虽然遇到了很多问题,也犯了不少错误,但是自己真的学到了很多东西,比如word文档公式的运用,比如如何使自己的设计更加合理,这就要求自己在设计前要详细的考虑各种可能出现的问题和解决办法,才能达到事半功倍的效果。

我觉得,如何查找数据也很重要,假如自己查不到数据,接下来的工作完全没办法做,假如查的数据是错误的,那设计出来的东西也是错误的,而且很可能导致严重的后果。

六、参考文献《化工原理》,王志魁 编,化学工业出版社,2006.《化工设备设计》,潘国吕,郭庆丰 编著,清华大学出版社,1996. 《化工物性算图手册》,刘光启等 编著,化学工业出版社,2002. 《生物工程专业课程设计》,尹亮,黄儒强 编. 《石油化工基础数据手册 》《化学化工工具书》等. 七、主要符号说明 硝基苯的定性温度 T 冷却水定性温度 t 硝基苯密度 ρo 冷却水密度 ρi 硝基苯定压比热容 c po 冷却水定压比热容 c pi 硝基苯导热系数 λo 冷却水导热系数 λi 硝基苯粘度 μo 冷却水粘度 μi热流量 W o 冷却水流量 i W热负荷 Q o平均传热温差 m 't ∆ 总传热系数 K管程雷诺数 e R温差校正系数 t ∆φ管程、壳程传热系数 i α o α初算初始传热面积 ''S传热管数 s N初算实际传热面积 S 管程数 p N 壳体内径 D 横过中心线管数 C N折流板间距 B 管心距 t折流板数N B接管内径 1d 2d管程压力降 ∑∆iP当量直径 e d壳程压力降 ∑∆o P面积裕度H表格 2。

相关文档
最新文档