03_信号调制解调电路

合集下载

调制电路

调制电路

调制电路与解调电路一。

调幅电路调幅电路是把调制信号和载波信号同时加在一个非线性元件上(例如晶体二极管或三极管)经非线性变换成新的频率分量,再利用谐振回路选出所需的频率成分。

调幅电路分为二极管调幅电路和晶体管基极调幅。

发射极调幅及集电极调幅电路等。

通常,多采用三极管调幅电路,被调放大器如果使用小功率小信号调谐放大器,称为低电平调幅;反之,如果使用大功率大信号调谐放大器,称为高电平调幅。

在实际中,多采用高电平调幅,对它的要求是:(1)要求调制特性(调制电压与输出幅度的关系特性)的线性良好;(2)集电极效率高;(3)要求低放级电路简单。

1.基极调幅电路图1是晶体管基极调幅电路,载波信号经过高频变压器T1加到BG的基极上,低频调制信号通过一个电感线圈L与高频载波串联,C2为高频旁路电容器,C1为低频旁路电容器,R1与R2为偏置的分压器,由于晶体管的ic=f(ube)关系曲线的非线性作用,集电极电流ic含有各种谐波分量,通过集电极调谐回路把其中调幅波选取出来,基极调幅电路的优点是要求低频调制信号功率小,因而低频放大器比较简单。

其缺点是工作于欠压状态,集电极效率较低,不能充分利用直流电源的能量。

2.发射极调幅电路图2是发射极调幅电路,其原理与基极调幅类似,因为加到基极和发射极之间的电压为1伏左右,而集电极电源电压有十几伏至几十伏,调制电压对集电极电路的影响可忽略不计,因此射极调幅与基极调幅的工作原理和特性相似。

3.集电极调幅电路图3是集电极调幅电路,低频调制信号从集电极引入,由于它工作于过压状态下,故效率较高但调制特性的非线性失真较严重,为了改善调制特性,可在电路中引入非线性补尝措施,使输入端激励电压随集电极电源电压而变化,例如当集电极电源电压降低时,激励电压幅度随之减小,不会进入强压状态;反之,当集电极电源电压提高时,它又随之增加,不会进入欠压区,因此,调幅器始终工作在弱过压或临界状态,既可以改善调制特性,又可以有较高的效率,实现这一措施的电路称为双重集电极调幅电路。

第三章 信号调制解调电路4

第三章  信号调制解调电路4
3.3 调相式测量电路
3.3.1 调相原理与方法 3.3.1.1调相信号的一般表达式
调相就是用调制信号x去控制高频载波信号的相位。 常用的是线性调相,即让调相信号的相位按调制信号x的线 性函数变化。 调相信号us的一般表达式可写为:
us=Umcos(wc t +mx)
调频信号us的一般表达式可写为:
x O U O
x B T
t a) 调制信号 t b) 脉冲调宽信号
19
3.4.1.1 传感器调制
4 5 6 7 8 9 10 11
3
M θ
2
1
用激光扫描的方法测量工件直径
20
3.4.1.2 电路调制
1、参量调宽
两个半周期通过不同的电阻通道向电容充电,输出信号的占 空比随两充电回路的阻值而变化
R 10k R1 10k C RP 5k ∞ R2 uo VS u +Ur +FUr

B
t N,uo t uo t -2 - 0 d) 2
13
2、RS触发器鉴相
Uc S R a) N,uo t t 0 B t uo t c)
14
Q Q
Uc O Us O Uc O Us O Q O b)

t
Us
1 2 π

φ
3.3.2.4脉冲采样式鉴相
Uc 单稳 锯 齿 uj Uc′ 波 发 生 器 采样 保持 Us′ u′ 滤波器 uo
Uc
载波 频率
锯齿波 发生器
uj
+ ux
门限检 测电路
脉冲发 生器
输出调 相脉冲
us
a)
U0
Uc O uj O ux+uj U0 O us O uj=kΨ t c) t b)

计算机网络通信技术第03章 调制解调和多路复用技术

计算机网络通信技术第03章 调制解调和多路复用技术
频带传输系统的组成如图3-17所示,它 主要由调制器、解调器、信道、滤波器 和抽样判决器组成。
调制解调技术
在频带系统中,调制器、解调器是核心,调制解 调技术也是通信学科中的关键技术和重要内容。
在频带系统中还有功率放大器、混频器、馈线系 统、天线等部分,这些部分从原理角度看对信号不会 产生有本质变化,不列在频带系统中。
调制解调技术(2)
数据信号的调制是指利用数据信号来控制一定 形式高频载波的参数,以实现其频率搬移的过程。
高频载波的参数有幅度、频率和相位,因此, 就形成了幅移键控(ASK)、频移键控(FSK) 和相移键控(PSK)三种基本数字调制方式。
幅移键控(ASK)( 1.定义 )

幅移键控(ASK, Amplitude Shift Keying)又称幅度键控,
上,让载波通过;0信号时开关S断开,载波不能通过。这
种通过开关的通断达到载波的有无(实质上是改变载波的
幅度)所形成的信号也叫 OOK(On-off Keying)信号。
3.波形
由定义和实现逻辑都可画出2ASK信 号的波形,如图所示。
第03章 调制解调和多路复用技术
第03章 调制解调和多路复用技术
内容提要:
调制与解调 基带传输 频带传输 PSK、FSK、ASK 多路复用技术
调制和解调
在计算机与打印机之间的近距离数据 传输、在局域网和一些域域网中计算机间 的数据传输等都是基带传输。
基带传输实现简单,但传输距离受限。
④.抽样判决器:带有噪声的数据波形恢复成标准的数据基带信号。
1.理想基带传输系统
理想基带传输系统的传输特性具有理想低通特 性,其传输函数为
理想基带传输系统

频率调制与解调

频率调制与解调
连续波雷达
通过连续发射载波信号并调制频率,实现目标的测距和定位。
雷达测距与定位的优点
高精度、远距离、实时性强。
05 频率调制与解调的优缺点
优点
抗干扰能力强
频率调制技术通过改变信号的频率来传输信息,能够有效抵抗各种 干扰,如噪声和多径干扰,从而提高信号的传输质量和可靠性。
频带利用率高
频率调制技术可以在有限的频带内传输更多的信息,提高了频谱利 用率。
卫星通信
1 2
卫星电视信号传输
通过将视频和音频信号调制到高频载波上,实现 卫星电视信号的传输。
卫星电话通信
利用频率调制技术,实现远距离的语音通信。
3
卫星导航定位
通过频率调制技术,实现高精度的定位和导航服 务。
雷达测距与定位
脉冲雷达
利用频率调制技术,发射脉冲信号并接收反射回来的信号,通过 测量信号往返时间来计算目标距离。
动态频谱管理
利用智能化的动态频谱管 理技术,实现频谱资源的 灵活分配和高效利用。
新技术的应用与展望
人工智能与机器学习
利用人工智能和机器学习技术对调频信号进行智能分析和优化, 提高信号处理效率和可靠性。
物联网与5G通信
结合物联网和5G通信技术,实现大规模、高密度、低延迟的调 频信号传输和处理。
软件定义无线电
01
03
调频信号的解调方法有多种,包括相干解调、非相干 解调等。相干解调需要使用到载波信号的相位信息,
而非相干解调则不需要。
04
频率调制的基本原理是将输入信号控制载波的频率变 化,从而实现信息的传输。解调则是通过检测载波的 频率变化来还原出原始信息。
对实际应用的指导意义
01
02
03

测控电路课后习题答案

测控电路课后习题答案

第一章绪论1-1测控电路在整个测控系统中起着什么样的作用?传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。

在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。

测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。

1-2影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意?影响测控电路精度的主要因素有:(1)噪声与干扰;(2)失调与漂移,主要是温漂;(3)线性度与保真度;(4)输入与输出阻抗的影响。

其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。

1-3为什么说测控电路是测控系统中最灵活的环节,它体现在哪些方面?为了适应在各种情况下测量与控制的需要,要求测控系统具有选取所需的信号、灵活地进行各种变换和对信号进行各种处理与运算的能力,这些工作通常由测控电路完成。

它包括:(1)模数转换与数模转换;(2)直流与交流、电压与电流信号之间的转换。

幅值、相位、频率与脉宽信号等之间的转换;(3)量程的变换;(4)选取所需的信号的能力,信号与噪声的分离,不同频率信号的分离等;(5)对信号进行处理与运算,如求平均值、差值、峰值、绝对值,求导数、积分等、非线性环节的线性化处理、逻辑判断等。

1-4测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。

随着传感器类型的不同,输入信号的类型也随之而异。

主要可分为模拟式信号与数字式信号。

随着输入信号的不同,测量电路的组成也不同。

图X1-1是模拟式测量电路的基本组成。

传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。

根据被测量的不同,可进行相应的量程切换。

信号的运算和处理电路

信号的运算和处理电路

04 模拟-数字转换技术
采样定理与抗混叠滤波器
采样定理
采样定理是模拟信号数字化的基础, 它规定了采样频率应至少是被采样信 号最高频率的两倍,以避免混叠现象 的发生。
抗混叠滤波器
在模拟信号数字化之前,需要使用抗 混叠滤波器来滤除高于采样频率一半 的频率成分,以确保采样后的信号能 够准确地还原原始信号。
续时间信号在任意时刻都有定义,而离散时间信号只在特定时刻有定义。
02
周期信号与非周期信号
周期信号具有重复出现的特性,而非周期信号则不具有这种特性。周期
信号的频率和周期是描述其特性的重要参数。
03
能量信号与功率信号
根据信号的能量和功率特性,信号可分为能量信号和功率信号。能量信
号在有限时间内具有有限的能量,而功率信号在无限时间内具有有限的
平均功率。
线性时不变系统
线性系统
线性时不变系统的性质
线性系统满足叠加原理,即系统对输 入信号的响应是各输入信号单独作用 时响应的线性组合。
线性时不变系统具有稳定性、因果性、 可逆性、可预测性等重要性质。
时不变系统
时不变系统的特性不随时间变化,即 系统对输入信号的响应与输入信号的 时间起点无关。
卷积与相关运算
Z变换与DFT的关系
Z变换可以看作是DFT的推广,通过引入复变量z,可以将离散时间信号转换为复平面上的函数,从 而方便地进行频域分析和设计。
数字滤波器设计
01
数字滤波器的类型和特性
数字滤波器可分为低通、高通、带通、带阻等类型,具有 不同的频率响应特性。
02 03
IIR滤波器和FIR滤波器的设计
IIR滤波器具有无限冲激响应,设计时需要考虑稳定性和相 位特性;FIR滤波器具有有限冲激响应,设计时主要考虑 频率响应和滤波器长度。

各种信号调制类别和原理

各种信号调制类别和原理

各种信号调制类别和原理
信号调制是指将信号转换成适合传输的形式的过程,主要有以下几种类型和原理:
1. 调频(FM):使载波频率按照调制信号改变的调制方式,已调波频率变
化的大小由调制信号的大小决定,变化的周期由调制信号的频率决定。

已调波的振幅保持不变。

2. 频移键控(FSK):利用两个不同频率的振荡源来代表信号1和0,用数字信号的1和0去控制两个独立的振荡源交替输出。

3. 相移键控(PSK):一种用载波相位表示输入信号信息的调制技术,分为绝对移相和相对移相两种。

以未调载波的相位作为基准的相位调制叫作绝对移相。

4. 调幅(AM):使高频载波信号的振幅随调制信号的瞬时变化而变化。

通过用调制信号来改变高频信号的幅度大小,使得调制信号的信息包含入高频信号之中,通过天线把高频信号发射出去,然后就把调制信号也传播出去了。

以上是各种信号调制类别和原理的相关信息,供您参考。

如需获取更多信息,建议查阅相关文献或咨询专业人士。

振幅调制和解调电路

振幅调制和解调电路
在移动通信中,为了提高频谱利用率 和抗干扰能力,通常采用复杂的调制 和解调技术,如QAM(Quadrature Amplitude Modulation)等。
02
振幅调制原理
振幅调制定义
01
振幅调制是指将低频信号调制到 高频载波上,改变载波的幅度大 小的过程。
02
振幅调制是一种线性调制方式, 其原理是将输入信号的幅度变化 ,通过改变高频载波的幅度来实 现信号的传输。
01
03
同时,随着物联网、云计算、大数据等新兴技术的发 展,振幅调制和解调电路的应用领域也将不断拓展,
为人们的生活和工作带来更多的便利和价值。
04
未来发展方向包括采用新型的调制方式、提高调制效 率、降低解调误差率、增强抗干扰能力等。
THANKS
感谢观看
振幅调制优点与缺点
振幅调制的优点包括实现简单、抗干扰能力强、信道利用率 高等。
振幅调制的缺点包括对非线性失真敏感、对信道特性变化敏 感等。
03
振幅调制电路
模拟振幅调制电路
01
模拟振幅调制电路主要 由调制信号、载波信号 和调制器组成。
02
03
04
调制信号通常是音频信 号或低频信号,载波信 号是高频信号。
移动通信
在移动通信系统中,振幅调制用于传 输语音和数据信号。解调电路在接收 端将调制的信号还原为原始信号,以 便用户接收。
有线通信系统中的应用
有线电视
在有线电视系统中,振幅调制用于传 输多路电视信号。解调电路用于将各 个电视频道还原为原始信号,以便用 户选择观看。
DSL宽带接入
在DSL宽带接入中,振幅调制用于传 输高速数据信号。解调电路在接收端 将调制信号还原为原始数据信号,提 供互联网接入服务。

解调电路

解调电路

振幅调制有三种信号形式:
普通调幅信号(AM)、双边带信号(DSB)和单边带信 号(SSB)。
①不论哪种振幅调制信号,对于同步检波电路而言,都可实
现解调。 ②对于普通调幅信号来说,由于载波分量的存在,可以直接 采用非线性器件(二极管、三极管)实现相乘作用,得 到所需的解调电压,不必另加同步信号,这种检波电路
称为包络检波。
二极管包络检波电路有两种电路形式:二极管串联型和二 极管并联型。
二极管包络检波电路有两种电路形式:二 极管串联型和二极管并联型,如图5.31所示。下面主要 讨论二极管串联型包络检波电路。 图二极管串联型包络检波电路,是二极管VD 和低 通滤波器RLC相串接而构成的二极管包络检波电路。
(5―30)
VD RL1 C RL2 C2 R ′L Cc + u -
+ us -
减小交、直流负载电阻值差别的检波电路
2 同步检波电路
1.叠加型同步检波电路 2.MC1596模拟乘法器构成的同步检波
VD us ur (a) + 包络检波器 u us - + ur - - (b)
叠加型同步检波电路模型
鉴频 特性
三、相位鉴频器
模拟鉴相器 乘积型 叠加型
鉴相器
数字鉴相器 1、乘积型相位鉴频器
2、叠加型相位鉴频器
乘积型相位鉴频器
1. 乘积型鉴相器 模拟相乘器用来检出两个输入信号之间的相位差,并将相位 差变换为电压信号。 低通滤波器用于取出低频信号、滤除高频信号,从而得解调 输出电压uo (t)。
设输入信号为
0 π ( ) arctan(2Qe ) 由于 2 0 0 π ) 时 当失谐量很小,使 arctan(2Qe 0 6 π 2Qe ( ) ( 0 ) 2 0

测控电路信号调制解调电路

测控电路信号调制解调电路

PART 03
解调基本原理
解调定义及类型
解调定义
解调是从已调信号中恢复出调制 信号的过程。
解调类型
模拟解调和数字解调,根据调制 方式可分为调频解调、调相解调 和调幅解调。
解调过程
频率解调
01
通过改变电路参数,使回授信号的频率与调制信号一致,从而
恢复出调制信号。
相位解调
02
通过比较输入信号与回授信号的相位差,恢复出调制信号的相
多模式多频段支持
随着通信标准和频段的不同,调制解调电路需要支持多种标准和频 段,需要采用更灵活的软件可配置技术。
低功耗设计
在便携式和嵌入式应用中,低功耗设计是调制解调技术的关键挑战之 一,需要采用更有效的电源管理技术和低功耗设计方法。
技术前景展望
01
5G通信技术
随着5G通信技术的推广和应用,调制解调技术将发挥更加重要的作用,
PART 02
调制基本原理
调制定义
调制定义:调制是一种将低频信号(如声音、图像等)加载 到高频载波信号(如无线电波、光波等)上的过程,以便于 传输和接收。
调制定义调制是将低频信号转换为高频载波信号的过程,通 过改变载波信号的某些参数(如振幅、频率或相位),将低 频信号的信息加载到载波信号上,实现信息的传输和接收。
调制类型(如:
通过改变载波信号的振幅来加载 低频信号,接收端通过检测载波 信号的振幅变化来还原低频信号。
FM(调频)
通过改变载波信号的频率来加载低 频信号,接收端通过检测载波信号 的频率变化来还原低频信号。
PM(调相)
通过改变载波信号的相位来加载低 频信号,接收端通过检测载波信号 的相位变化来还原低频信号。
测控电路中的调制技术

psk调制解调电路的新原理和过程

psk调制解调电路的新原理和过程

Psk调制解调电路的新原理和过程目录: 1. 引言 2. Psk调制原理 3. Psk解调原理 4. Psk调制解调电路的实现5. 新原理和过程6. 总结1. 引言Psk(相位偏移键控)调制和解调技术是无线通信中常用的调制解调方式之一。

它通过改变载波信号的相位,来传输数字信号。

本文将介绍Psk调制解调电路的基本原理和传统实现方式,同时探讨一些新的原理和过程,以拓宽对这一主题的理解。

2. Psk调制原理Psk调制的基本原理是根据数字信号的码元来调整载波信号的相位。

具体来说,假设二进制数字信号的两种状态为0和1,将0映射到一个特定的相位,如0°,将1映射到另一个相位,如180°。

这样,在传输过程中,根据数字信号的变化,载波信号的相位会相应地改变,从而传输数字信息。

这种方式使得信号在频谱中具有良好的集中性,能够有效地传输数据。

3. Psk解调原理Psk解调的过程是将调制后的Psk信号转换为可供数字系统处理的基带信号。

解调电路需要对Psk信号的相位进行检测,判断每个码元所对应的相位,并将其转化为数字信号。

常见的解调方式有包络检波、相干解调等。

包络检波方法通过检测Psk信号的幅度变化来确定相位,而相干解调则是通过将Psk信号与本地参考信号相乘,再通过低通滤波得到基带信号。

4. Psk调制解调电路的实现传统上,Psk调制解调电路的实现主要基于模拟电路。

调制电路通常由载波产生器和相位调制电路组成,而解调电路则需要相位解调器和解调滤波器。

这些电路在实现上较为复杂,不仅需要精确的设计,而且在制造过程中也容易受到各种噪声和失真的影响。

模拟电路的性能通常会受到工艺、温度等因素的影响,可能无法满足高精度和高速传输的需求。

5. 新原理和过程随着数字电路和信号处理技术的发展,Psk调制解调电路的实现方式也在不断创新。

一种新的原理是将Psk调制解调电路实现在数字领域中,利用现代的低功耗、高速度的数字集成电路,以及数字信号处理器(DSP)的算法。

信号调理电路

信号调理电路

第四章 信号调理主要内容:电桥、滤波器、调制解调电路和模数转换电路的工作原理及用途。

本章要求:了解各种转换电路的基本概念、工作原理、用途和特点;掌握各种转换电路的一般应用。

第一节 电 桥按激励电压分:供桥电源电压是直流电压时,称直流电桥;供桥电源电压为交流电压时,称交流电桥。

按工作方式分: 电桥的工作方式有偏差工作方式和调零工作方式。

一、直流电桥1.平衡电桥输出电压为: U 0=U BA -U DA =I 1R 1-I 2R 4 =S S U R R R U R R R 434211+-+=S U R R R R R R R R ))((43214231++-由上式可见:若R 1R 3=R 2R 4,则输出电压必为零,此时电桥处于平衡状态,称为平衡电桥。

平衡电桥的平衡条件为:R 1R 3=R 2R 42.非平衡电桥(1)单臂工作电桥这里以桥臂电阻R 1作为工作臂,如图4-1。

设R 2=R 3=R 4=R 0,R 1=R 0+ΔR ,其中R 0为一常数,则输出电压为S O U R R R R R R R R U ))((43214231++-=若电桥用于微电阻变化测量,有ΔR 远小于R 0,则(2)双臂工作电桥两个邻边桥臂有相同的微电阻变化,如电阻R 1有变化R 0+ΔR ,R 2有变化R 0-ΔR 0,可导出公式(3)四臂工作电桥四个桥臂均有相同的微电阻变化,且电阻变化以差动方式增大或减小,满足以下关系: R 1=R 2=R 3=R 4=R 0ΔR 1=ΔR 2=ΔR 3=ΔR 4=ΔRSO U R R U 04∆≈SO U RR U 02∆=图4-1直流电桥SU RR R ∆+∆=240其输出电压为3.讨论(1)电桥的灵敏度 在电桥电路中灵敏度定义为它将ΔR/R 0作为输入,而不是仅把ΔR 当作输入。

由此可以求得上述各种电桥的灵敏度分别为S 1=1/4U O ;S 2=1/2U O ;S 4=U O 。

信号的调制与解调(完整版)

信号的调制与解调(完整版)

信号与系统课程设计设计题目:信号的调制与解调院系:机械电子工程系专业班级:09应用电子技术学生姓名:谢焱松吴杰谭雨恒刘庆学号:09353017 09353018 09353019 09353020专业班级:文如泉起止时间:2010.12.13-2010.12.25设计任务:信号的调制与解调•目的:理解Fourier变换在通信系统中的应用:掌握调制与解调的基本原理。

•要求:实现信号的调制与解调。

•内容:调制信号为一取样信号(自己选,一般取常见的信号),利用MATLAB分析幅度调制(AM)产生的信号频谱,比较信号调制前后的频谱并解调已调信号。

设载波信号的频率为100HZ。

•方法:应用MATLAB平台。

•参考资料:MATLAB相关书籍。

教师点评:一、课程设计目的利用MATLAB 集成环境下的Simulink 仿真平台,设计一个2ASK/2DPSK 调制与解调系统。

用示波器观察调制前后的信号波形;用频谱分析模块观察调制前后信号频谱的变化;加上各种噪声源,用误码测试模块测量误码率;最后根据运行结果和波形来分析该系统性能。

二、课程设计要求(1)熟悉MATLAB 环境下的Simulink 仿真平台,熟悉2ASK/2DPSK 系统的调制解调原理,构建调制解调电路图。

(2)用示波器观察调制前后的信号波形,用频谱分析模块观察调制前后信号的频谱的变化。

并观察解调前后频谱有何变化以加深对该信号调制解调原理的理解。

(3)在调制与解调电路间加上各种噪声源,用误码测试模块测量误码率,并给出仿真波形,改变信噪比并比较解调后波形,分析噪声对系统造成的影响。

(4)在老师的指导下,要求独立完成课程设计的全部内容,并按要求编写课程设计学年论文,能正确阐述和分析设计和实验结果。

三、基本原理1 ASK 调制与解调ASK 即幅移键控(振幅键控),是一种相对简单的调制方式。

对于振幅键控这样的线性调制来说,在二进制里,2ASK 是利用基带矩形脉冲去键控一个连续的载波,使载波时断时续的输出,有载波输出时表示发送“1”,反之表示发送“0”。

信号调理电路

信号调理电路

分析
32
全波整流电路
33
放大电路
• 放大电路的核心部件为运算放大器 • 运算放大器的主要参数:
输入失调电压 增益带宽积GWB 转换速率 开环增益 输入输出阻抗 共模抑制比 等等
34
输入失调电压
一个理想的运放,当两输入端加上相同的直流电压和 两输入端短路时,其输出端的直流电压应等于零。但 由于电路参数的不对称性,输出电压并不为零,这就 叫运放的零点偏移或失调。
Fc1处增益为多少
• 主要特征参数:上下截止频率、带宽、纹波幅度、倍频 程选择性等。
22
滤波器的特征参数
• 截止频率:幅频特性值为A0/√2(-3dB)所 对应的频率点,即半功率点。 • 带宽:上下截止频率之间的频率范围, 又称 -3dB带宽。 • 纹波幅度:通带中幅频特性值的变化值,δ越 小越好。 • 倍频程选择性:表示从阻带到通带的过渡带曲 线的倾斜度,等于上截止频率fc2与2fc2之间幅 频特性的衰减值。
11
直流电桥的特点
采用直流电源作激励电源,电源稳定性高。 输出eo为直流量,可直接用于直流仪表,精度高。 电桥与后接仪表的连接导线不会形成分布参数,对 导线连接的方式要求低。 另外,电桥的平衡电路简单,仅需调节电阻阻值。 缺点:输出为直流量,直流放大电路易受温漂和接 地电位的影响。因此仅适合于静态量的测量。 静态测量和动态测量可互相转换。例如:钢板测厚
27
无源滤波器和有源滤波器
直接由R、C、L等构成的滤波器为无源滤波器,其所有 输出能量均来自输入。 优点:结构简单,噪声低,动态范围宽,无需电源。 缺点:倍频程选择性差,级间负载效应严重。
有源滤波器是基于运算放大器的R、C、L调谐网络,需 要电源供电。 优点:参数易于调节,频率范围宽,输入阻抗高输出 阻抗低,利于多级串联。

调幅与解调实验报告

调幅与解调实验报告

调幅与解调实验报告一、引言调幅(Amplitude Modulation,简称AM)是一种将信息信号调制到载波信号上的调制方式,而解调则是将调制信号中的信息信号分离出来的过程。

调幅与解调是通信领域中基础而重要的技术,本实验旨在通过搭建调幅与解调电路,实现调幅与解调的过程,并验证调幅电路和解调电路的正常工作。

二、实验设备与原理2.1 实验设备本实验所用设备如下:- 信号发生器- 三角波生成器- 振荡器- 信号变换电路- 甄别电路- 示波器- 电阻、电容等元件2.2 实验原理2.2.1 调幅原理调幅原理是将一个较低频率的信息信号通过乘法运算调制到一个高频的载波信号上。

设载波信号为c(t) = A_c\cdot \cos(2\pi f_c t),调制信号为m(t) =A_m\cdot \cos(2\pi f_m t),调幅信号为s(t) = (A_c + A_m\cdot m(t))\cdot \cos(2\pi f_c t)。

2.2.2 解调原理解调过程即提取调制信号中携带的信息信号,常用的解调方法是相干解调。

相干解调的基本原理是将收到的调幅信号再与一个同频率同相位的载波进行乘法运算,然后通过低通滤波器滤除高频成分,得到信息信号。

三、实验步骤3.1 调幅实验1. 搭建调幅电路,将信号发生器输出的正弦波作为调制信号,通过信号变换电路将其调制到振荡器产生的载波信号上。

2. 将调幅信号连接至示波器,调整信号发生器的频率和振荡器的幅度,观察调幅信号的波形特点。

3.2 解调实验1. 将调幅信号连接至甄别电路,通过相干解调原理进行解调。

2. 将甄别电路的输出信号通过低通滤波器滤除高频成分,并连接至示波器。

3. 调整振荡器的幅度和频率,观察解调后波形的恢复情况。

四、实验结果与分析4.1 调幅实验结果通过调幅电路实验,观察示波器上的调幅信号波形特点。

可以发现调幅信号的幅度在载波频率下发生变化,且幅度变化的幅度与调制信号的幅度成正比关系。

调制与解调信号课程设计

调制与解调信号课程设计

调制与解调信号课程设计一、课程目标知识目标:1. 学生能够理解调制与解调信号的基本概念,掌握不同类型的调制方法及其原理;2. 学生能够描述调制与解调信号在通信系统中的作用和重要性;3. 学生能够运用数学表达式和图形来表示调制与解调过程。

技能目标:1. 学生能够运用所学知识,设计简单的调制与解调电路,并进行仿真实验;2. 学生能够分析调制与解调信号的特点,解释其在实际通信系统中的应用;3. 学生能够运用相关工具和软件进行调制与解调信号的观察、分析和调试。

情感态度价值观目标:1. 学生能够认识到调制与解调技术在现代通信领域的重要地位,增强对通信科学的兴趣和好奇心;2. 学生通过合作学习和实践操作,培养团队协作意识,提高问题解决能力和创新思维;3. 学生能够关注通信技术对社会发展的积极影响,树立正确的科学价值观。

课程性质:本课程属于电子信息类学科,以理论教学和实践操作相结合的方式进行。

学生特点:学生具备一定的电子基础和数学知识,对通信原理有一定的了解,但实践经验不足。

教学要求:注重理论与实践相结合,提高学生的动手能力和实际问题解决能力,培养学生对通信技术的兴趣和热情。

通过具体的学习成果分解,使学生在课程结束后能够达到上述目标。

二、教学内容本章节教学内容主要包括以下几部分:1. 调制与解调信号基本概念:- 调制信号的分类(模拟调制、数字调制)- 解调信号的分类(同步解调、异步解调)2. 常见调制方法及其原理:- 幅度调制(AM)、频率调制(FM)、相位调制(PM)- 二进制数字调制(ASK、FSK、PSK、QAM)3. 调制与解调信号在通信系统中的应用:- 调制解调器工作原理- 调制技术在无线电广播、电视、卫星通信等领域的应用4. 调制与解调电路设计及仿真:- 搭建调制与解调电路- 使用Multisim、MATLAB等软件进行仿真实验5. 教学内容的安排与进度:- 第一周:调制与解调信号基本概念,调制信号分类- 第二周:常见调制方法及其原理,教材第二章- 第三周:调制与解调信号在通信系统中的应用,教材第三章- 第四周:调制与解调电路设计及仿真,教材第四章教学内容根据课程目标进行科学性和系统性地组织,注重理论与实践相结合,使学生能够逐步掌握调制与解调信号相关知识,提高实际操作能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.1 调幅式测量电路
3.1.2 包络检波电路 什么是包络检波? 什么是包络检波? 从已调信号中检出调制信号的过程称为解 解 检波。幅值调制就是让已调信号的幅值随 调或检波 检波 调制信号的值变化,因此调幅信号的包络线形 状与调制信号一致。只要能检出调幅信号的包 络线即能实现解调。这种方法称为包络检波 包络检波。 包络检波
测控电路
2011-6-24
3
3. 信号调制解调电路
调制解调的功用与类型 (3) 在测控系统中为什么要采用信号调制? 在测控系统中为什么要采用信号调制? 在测控系统中,进入测控电路的除了传感器输出 的测量信号外,还往往有各种噪声。而传感器的 输出信号一般又很微弱,将测量信号从含有噪声 的信号中分离出来是测控电路的一项重要任务。 为了便于区别信号与噪声,往往给测量信号赋予 一定特征,这就是调制的主要功用。 调制还有利于减小漂移的影响,是提高测控系统 精度的重要手段。
测控电路
2011-6-24
5
3. 信号调制解调电路
3.1 调幅式测量电路
3.1.1 调幅原理与方法
一、 调幅信号的一般表达式
(1) 什么是调幅?写出调幅信号的数学表达式,画 什么是调幅?写出调幅信号的数学表达式, 出其波形。 出其波形。 调幅就是用调制信号x去控制高频载波信号的幅值。 调幅 常用的是线性调幅,即让调幅信号的幅值按调制 信号x的线性函数变化。 调幅信号的一般表达式 一般表达式可写为: 一般表达式 Us=(Um+mx)cosωct
3.1.2 包络检波电路
线性全波检波电路之三 高输入阻抗线性全波整流电路
uo
b)正输入等效电路
∞ + + N2 uo=us 测控电路
N1跟随器 N2的同相输入端与反相输 入端输入相同信号,得到 uo=us
2011-6-24
26
3. 信号调制解调电路
3.1 调幅式测量电路
a) 电路图 R1 us R2 VD1 ∞ + + N1 R3 VD2 uA R4 ∞ + + N2 uo
(3) 信号相加调制
调 制 信 号 T1 + ux VD1 + uc T2 VD2 i2 i1
3.1.1 调幅原理与方法
T3 RL i3 + uo _
_
RP + ux
_
相加只是形式,实际上由 控制,工作在开关模式。 相加只是形式,实际上由uc控制,工作在开关模式。
测控电路
2011-6-24
18
3. 信号调制解调电路
2011-6-24
7
3. 信号调制解调电路
3.1 调幅式测量电路
3.1.1 调幅原理与方法
(2) 何谓双边带调幅?写出其数学表达式,画出波形 何谓双边带调幅?写出其数学表达式, 假设调制信号x是角频率为Ω的余弦信号x=Xmcos t, 由式us=(Um+mx)cosωct调幅信号可写为:
us=Umcosωct+ [mXmcos(ωc+ )t + mXmcos(ωc- )t]/2
∞ + uo
t
+ + N1 u′ + u – A – 半波整流器
+ N2 低通滤波器
uA O uo O t
2011-6-24
24
t
us R4 u o = − (u A + ) R3 2
测控电路
3. 信号调制解调电路
3.1 调幅式测量电路
VD1 R 4 us R1 R2 ∞ + u1 R5 uo VD2
3. 信号调制解调电路
测控电路
2011-6-24
3. 信号调制解调电路
调制解调的功用与类型 调幅式测量电路 调频式测量电路 调相式测量电路 脉冲调制式测量电路
测控电路
2011-6-24
2
3. 信号调制解调电路
调制解调的功用与类型 (1) 什么是信号调制? 什么是信号调制? 调制(Modulation)就是用一个信号(称为调制信号, modulating signal )去控制另一个做为载体的信号 (称为载波信号carrying signal ),让后者的某一特 征参数按前者变化。 (2) 什么是解调? 什么是解调? 从已经调制的信号(称为已调信号,modulated signal) 中提取反映被测量值的测量信号,称为解调 解调 (Demodulation) 。
3.1.2 包络检波电路
us O u1 O u2 O uo O 测控电路
2011-6-24
25
t
+ N1 VD3 -
t
∞ + u2
R3
VD4
+ N2
t
线性全波检波电路之二
t
3. 信号调制解调电路
3.1 调幅式测量电路
a) 电路图 VD1 R1 us ∞ + + N1 R3 VD2 R2 R4 R1 us>0 ∞ + + N1 us R3 uA R2 R4 ∞ + + N2
测控电路
b) 实用电路
2011-6-24
16
3. 信号调制解调电路
3.1 调幅式测量电路
(2)开关电路调制 开关电路调制
V1 V2 ux uo=us
3.1.1 调幅原理与方法
ux O Uc O uo O t t uo=us t
Uc
Uc
测控电路
2011-6-24
17
3. 信号调制解调电路
3.1 调幅式测量电路
测控电路
2011-6-24
6
3. 信号调制解调电路
3.1 调幅式测量电路
x O uc O us O t us O t 测控电路 t t
3.1.1 调幅原理与方法
a)调制信号 调制信号 b)载波信号 载波信号
c) 调幅信号
u s = (U m + mx) cos ω c t
d)双边带调幅信号 双边带调幅信号
3. 信号调制解调电路
3.1 调幅式测量电路
3.1.1 调幅原理与方法
二、传感器调制 (1) 为什么在测控系统中常常在传感器中进行 信号调制? 信号调制? 为了提高测量信号抗干扰能力,常要求从 信号一形成就已经是已调信号,因此常常在传 感器中进行调制。
测控电路
2011-6-24
12
3. 信号调制解调电路
+
+ + u – u′ A –
测控电路
2011-6-24
23
3. 信号调制解调电路
3.1 调幅式测量电路
(2) 全波精密检波电路
R2
3.1.2 包络检波电路
us
′ R3 = 2 R3
R4 C
O us/2 O
t
′ R2
R1 + us – i1 + us′ – ∞ +
i VD1 VD2
R3′
A + uA – R3 -
测控电路
2011-6-24
19
3. 信号调制解调电路
3.1 调幅式测量电路
us
' uo
3.1.2 包络检波电路 包络检波的基本工作原理是什么? 包络检波的基本工作原理是什么?
O a)
t
O b)
t
由图可见,只要从图a所示的调幅信号中,截去它的下半部, 即可获得图b所示半波检波后的信号 (经全波检波或截去它 的上半部也可),再经低通滤波,滤除高频信号,即可获得 所需调制信号,实现解调。包络检波就是建立在整流的原 理基础上的。
测控电路
2011-6-24
9
3. 信号调制解调电路
3.1 调幅式测量电路
1 A 2 B 2 1
a) 检出最大值 π n
b) 误差最大情况
3. 信号调制解调电路
3.1 调幅式测量电路
3.1.1 调幅原理与方法
(3) 在测控系统中被测信号的变化频率为 在测控系统中被测信号的变化频率为0~100Hz, , 应怎样选取载波信号的频率? 应怎样选取载波信号的频率?应怎样选取调幅信号 放大器的通频带?信号解调后, 放大器的通频带?信号解调后,怎样选取滤波器的 通频带? 通频带? 信号解调后,滤波器的通频带应>100 Hz,即让 0~100Hz的信号顺利通过,而将900 Hz以上的信号抑 制,可选通频带为200 Hz。
ux uc Kxy x y
1k
3.1.1 调幅原理与方法
+12V 1k 0.1µF 1k 51 0.1µF 3.3k 3.3k us 0.1µF
us
uc ux 20µF 750 750 1k 47k
1k
82 3 6 10 12 1MC1496 4 14 5 20µF 680k
a)原理图
-8V
us = U xm cosΩt cos ωct
测控电路
2011-6-24
22
3. 信号调制解调电路
3.1 调幅式测量电路
(1)半波精密检波电路 半波精密检波电路
R2
3.1.2 包络检波电路
R4 i VD1 VD2 A + uA – R3 + + N2 低通滤波器 uo C ∞
′ R2
R1 i1 us – + us′ – ∞ + + N1 半波整流器
R1 R1 R3 F R4 U
R2 Uo R3
R2 R4
应变式传感器输出信号的调制
测控电路
2011-6-24
14
3. 信号调制解调电路
3.1 调幅式测量电路
3.1.1 调幅原理与方法
(3) 用机械或光学的方法实现调制
相关文档
最新文档