高中数学第二章概率2.3.1离散型随机变量的数学期望学案新人教B版选修2_3
2.3.1离散型随机变量的数学期望
3 0.73
(2)因为,X~B(3,0.7),所以,X的数学期望为
E ( X ) 3 0.7 2.1
射手 甲
8环 0.3
9环 0.1
10环 0.6
乙 Bqr6401@
0.2
0.5
0.3
四、应用举例
普 通 高 中 课 程 标 准
Liangxiangzhongxue
例3.一次单元测验由20个选择题构成,每个选择题 有4个选项,其中有且仅有一个选项是正确答案, 每题选择正确答案得5分,不作出选择或选错不得 分,满分100分。学生甲选对任一题的概率为0.9, 学生乙则在测验中对每题都从4个选择中随机地选 择一个,求学生甲和乙在这次英语单元测验中的成 绩的期望。
引例1: 某人射击10次,所得环数分别是:1,1,1,1,2, 2,2,3,3,4;则所得的平均环数是多少? 1111 2 2 2 3 3 4 X 2 10 换个角度看问题,把环数看成随机变量的概率分布 列: 权数
X P
X 1 4 10
1
4 10
2
3 10
3
2 10
p1 p1 p 2 p i p n 1 n
n 这说明数学期望与平均值具有相同的含义。
Bqr6401@
E ( X ) ( x1 x 2 x i x n )
1
三、概念形成
普 通 高 中 课 程 标 准
Liangxiangzhongxue
Bqr6401@
五、课堂练习
普 通 高 中 课 程 标 准
Liangxiangzhongxue
课本第64页,习题2-3A,1,2,3,4,5,6,7
xn
高中数学2.3.1离散型随机变量的数学期望教案理新人教B版选修2_3
2.3.1 离散型随机变量的数学期望【教学目标】①理解取有限值的离散型随机变量的均值或数学期望的概念,会求离散型随机变量的数学期望;②掌握二项分布、超几何分布的均值的求法.【教学重点】会根据离散型随机变量的分布列求出数学期望【教学难点】理解离散型随机变量的数学期望的概念一、 课前预习1.离散型随机变量的均值或数学期望:设一个离散型随机变量X 所有可能取的值是1x ,2x ,⋅⋅⋅,n x ,这些值对应的概率是1p ,2p ,⋅⋅⋅,n p ,则_________________________)(=X E 叫做这个离散型随机变量X 的均值或数学期望(简称_______).2.若随机变量X 服从参数为p 的二点分布,则___________)(=X E3.若随机变量X 服从参数为n ,p 的二项分布,___________)(=X E 4.若随机变量X 服从参数为N ,M ,n 的超几何分布,二、 课上学习例1、根据历次比赛或训练记录,甲、乙两射手在同样的条件下进行射击,成绩的分布列如(1)求);(X E (2)设,52+=X Y求).(Y E 例3、若随机变量),6.0,(~n B X 且3)(=X E ,求)1(=X P .例4、一个袋子里装有大小相同的10个白球和6个黑球,从中任取4个,求其中所含白球个数的期望.例5、袋中装有4只红球,3只黑球,现从袋中随机取出4只球,设取到一只红球得2分,取到一只黑球得1分,试求得分X 的数学期望.例6、根据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01.设工地上有一台大型设备,为保护设备有以下三种方案:方案一:运走设备,此时需花费3800元.方案二:建一保护围墙,需花费2000元.但围墙无法防止大洪水,当大洪水来临,设备受损,损失费为60000元.方案三:不采取措施,希望不发生洪水.此时大洪水来临损失60000元,小洪水来临损失10000元.试比较哪一种方案好.三、 课后练习则x =_____,.________)(____,)31(==<≤X E x P2.班上有45名同学,其中30名男生,15名女生,老师随机地抽查了5名同学的作业,用X 表示抽查到的女生的人数,求).(X E3.某彩票中心发行彩票10万张,每张1元.设一等奖1个,奖金1万元;二等奖2个,奖金各5千元;三等奖10个,奖金各1千元;四等奖100个,奖金各1百元;五等奖1000个,奖金各10元.试求每张彩票的期望获利金额是多少?4.设篮球队A 与B 进行比赛,每场比赛均有一队胜,若有一队胜4场,则比赛宣告结束,假定A 、B 在每场比赛中获胜的概率都是21,试求需要比赛场数的期望.5.某商场要根据天气预报来决定促销活动节目是在商场内还是在商场外开展.统计资料表明,每年国庆节,商场内的促销活动可获得经济效益2万元;商场外的促销活动如果不遇到有雨天气可获得经济效益10万元,如果促销活动中遇到有雨天气则带来经济损失4万元,9月30日气象台预报国庆节当地有雨的概率是40%,商场应采取哪种促销方式?精美句子1、善思则能“从无字句处读书”。
高中数学教材人教B版目录(详细版).doc
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式。
人教版2020高中数学 第2章 概率章末小结与测评教学案 苏教版选修2-3
第2章 概率一、事件概率的求法 1.条件概率的求法(1)利用定义,分别求出P (B )和P (AB ),解得P (A |B )=P (AB )P (B ).(2)借助古典概型公式,先求事件B 包含的基本事件数n ,再在事件B 发生的条件下求事件A 包含的基本事件数m ,得P (A |B )=m n.2.相互独立事件的概率若事件A ,B 相互独立,则P (AB )=P (A )·P (B ). 3.n 次独立重复试验在n 次独立重复试验中,事件A 发生k 次的概率为P n (k )=C k n p k q n -k,k =0,1,2,…,n ,q =1-p .二、随机变量的概率分布1.求离散型随机变量的概率分布的步骤 (1)明确随机变量X 取哪些值;(2)计算随机变量X 取每一个值时的概率;(3)将结果用二维表格形式给出.计算概率时注意结合排列与组合知识. 2.两种常见的概率分布 (1)超几何分布若一个随机变量X 的分布列为P (X =r )=C r M C n -rN -MC n N,其中r =0,1,2,3,…,l ,l =min(n ,M ),则称X 服从超几何分布.(2)二项分布若随机变量X 的分布列为P (X =k )=C k n p k q n -k,其中0<p <1,p +q =1,k =0,1,2,…,n ,则称X 服从参数为n ,p 的二项分布,记作X ~B (n ,p ).三、离散型随机变量的均值与方差1.若离散型随机变量X Xx 1 x 2 … x n Pp 1 p 2 … p n则E (X )=x 1p 1+x 2p 2+…+n n ,V (X )=(x 1-μ)2p 1+(x 2-μ)2p 2+…+(x n -μ)2p n . 2.当X ~H (n ,M ,N )时,E (X )=nM N ,V (X )=nM (N -M )(N -n )N 2(N -1).3.当X ~B (n ,p )时,E (X )=np ,V (X )=np (1-p ).(考试时间:120分钟 试卷总分:160分)一、填空题(本大题共14小题,每小题5分,共70分) 1.已知离散型随机变量X 的概率分布如下:X 1 2 3 Pk2k3k则E (X )=________.解析:∵k +2k +3k =1,∴k =16,∴E (X )=1×16+2×26+3×36=1+4+96=73.答案:732.已知P (B |A )=13,P (A )=35,则P (AB )=________.解析:P (AB )=P (B |A )·P (A )=13×35=15.答案:153.某同学通过计算机测试的概率为23,则他连续测试3次,其中恰有1次通过的概率为________.解析:连续测试3次,其中恰有1次通过的概率为P =C 13⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫1-232=3×23×19=29.94.已知随机变量X 分布列为P (X =k )=a ·⎝ ⎛⎭⎪⎫23k(k =1,2,3),则a =________. 解析:依题意得a ⎣⎢⎡⎦⎥⎤23+⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫233=1,解得a =2738.答案:27385.已知甲投球命中的概率是12,乙投球命中的概率是35.假设他们投球命中与否相互之间没有影响.如果甲、乙各投球1次,则恰有1人投球命中的概率为________.解析:记“甲投球1次命中”为事件A ,“乙投球1次命中”为事件B .根据互斥事件的概率公式和相互独立事件的概率公式,所求的概率为P (AB )+P (AB )=P (A )P (B )+P (A )P (B )=12×⎝ ⎛⎭⎪⎫1-35+⎝ ⎛⎭⎪⎫1-12×35=12.答案:126.在某项测量中,测量结果X 服从正态分布N (1,σ2),若X 在区间(0,1)内取值的概率为0.4,则X 在区间(0,2)内取值的概率是________.解析:∵X ~N (1,σ2),∴P (0<X <1)=P (1<X <2),∴P (0<X <2)=2P (0<X <1)=2×0.4=0.8.答案:0.87.将两枚质地均匀的骰子各掷一次,设事件A ={两个点数都不相同},B ={出现一个3点},则P (B |A )=________.解析:若两个点都不相同,则有(1,2),(1,3),…,(1,6),(2,1),(2,3),…,(2,6),…,(6,1),…,(6,5).共计6×5=30种结果.“出现一个3点”含有10种.∴P (B |A )=1030=13. 答案:138.袋中有3个黑球,1个红球.从中任取2个,取到一个黑球得0分,取到一个红球得2分,则所得分数X 的数学期望E (X )=________.解析:由题得X 所取得的值为0或2,其中X =0表示取得的球为两个黑球,X =2表示取得的球为一黑一红,所以P (X =0)=C 23C 24=12,P (X =2)=C 13C 24=12,故E (X )=0×12+2×12=1.答案:19.某人参加驾照考试,共考6个科目,假设他通过各科考试的事件是相互独立的,并且概率都是p ,若此人未能通过的科目数X 的均值是2,则p =________.解析:因为通过各科考试的概率为p ,所以不能通过考试的概率为1-p ,易知X ~B (6,1-p ),所以E (X )=6(1-p )=2.解得p =23.310.若X ~B (n ,p ),且E (X )=2.4,V (X )=1.44,则n =________,p =________. 解析:∵E (X )=2.4,V (X )=1.44, ∴⎩⎪⎨⎪⎧np =2.4,np (1-p )=1.44,∴⎩⎪⎨⎪⎧n =6,p =0.4.答案:6 0.411.甲、乙两人投篮,投中的概率各为0.6,0.7,两人各投2次,两人投中次数相等的概率为________.解析:所求概率为4×0.6×0.4×0.7×0.3+0.62×0.72+0.42×0.32=0.392 4. 答案:0.392 412.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是25,则甲回家途中遇红灯次数的均值为________.解析:设甲在回家途中遇红灯次数为X ,则X ~B ⎝ ⎛⎭⎪⎫3,25,所以E (X )=3×25=65. 答案:6513. 荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一叶跳到另一叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示,假设现在青蛙在A 叶上,则跳三次之后停在A 叶上的概率是________.解析:青蛙跳三次要回到A 只有两条途径:第一条:按A →B →C →A ,P 1=23×23×23=827;第二条,按A →C →B →A ,P 2=13×13×13=127.所以跳三次之后停在A 叶上的概率为P =P 1+P 2=827+127=13.答案:1314.已知抛物线y =ax 2+bx +c (a ≠0)的对称轴在y 轴左侧,其中a ,b ,c ∈{-3,-2,-1,0,1,2,3},在抛物线中,记随机变量X =“|a -b |的取值”,则X 的均值E (X )=________.解析:对称轴在y 轴左侧(ab >0)的抛物线有2C 13C 13C 17=126条,X 可能取值为0,1,2,P (X =0)=6×7126=13;P (X =1)=8×7126=49,P (X =2)=4×7126=29,E (X )=0×13+1×49+2×29=89. 答案:89二、解答题(本大题共6小题,共90分,解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分14分)在5道题中有3道理科题和2道文科题,如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设第1次抽到理科题为事件A ,第2次抽到理科题为事件B ,则第1次和第2次都抽到理科题为事件A ∩B .(1)P (A )=A 13A 14A 25=1220=35.(2)P (A ∩B )=A 23A 25=620=310.(3)P (B |A )=P (A ∩B )P (A )=31035=12.16.(本小题满分14分)袋中装有5个乒乓球,其中2个旧球,现在无放回地每次取一球检验.(1)若直到取到新球为止,求抽取次数X 的概率分布列及其均值;(2)若将题设中的“无放回”改为“有放回”,求检验5次取到新球个数X 的均值.解:(1)X 的可能取值为1,2,3,P (X =1)=35,P (X =2)=2×35×4=310,P (X =3)=2×1×35×4×3=110, 故抽取次数X 的概率分布为E (X )=1×35+2×310+3×110=32.(2)每次检验取到新球的概率均为35,故X ~B ⎝ ⎛⎭⎪⎫5,35,所以E (X )=5×35=3. 17.(本小题满分14分)甲、乙、丙三人商量周末去玩,甲提议去市中心逛街,乙提议去城郊觅秋,丙表示随意.最终,商定以抛硬币的方式决定结果.规则是:由丙抛掷硬币若干次,若正面朝上则甲得一分,乙得零分,反面朝上则乙得一分甲得零分,先得4分者获胜,三人均执行胜者的提议.记所需抛币次数为X .(1)求X =6的概率;(2)求X 的概率分布和均值.解:(1)P (X =6)=2×C 35×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫122×12=516.(2)由题意知,X 可能取值为4,5,6,7,P (X =4)=2×C 44×⎝ ⎛⎭⎪⎫124=18,P (X =5)=2×C 34×⎝ ⎛⎭⎪⎫123×12×12=14,P (X =6)=516,P (X =7)=2×C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫123×12=516,故X 的概率分布为所以E (X )=4×18+5×14+6×516+7×516=9316.18.(本小题满分16分)袋中有20个大小相同的球,其中记上0号的有10个,记上n号的有n 个(n =1,2,3,4).现从袋中任取一球,X 表示所取球的标号.求X 的概率分布、均值和方差.解:由题意,得X 的所有可能取值为0,1,2,3,4,所以P (X =0)=1020=12,P (X =1)=120,P (X =2)=220=110,P (X =3)=320,P (X =4)=420=15. 故X 的概率分布为:所以E (X )=0×12+1×120+2×110+3×320+4×15=1.5.V (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.19.(本小题满分16分)某大学志愿者协会有6名男同学,4名女同学.在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院.现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同).(1)求选出的3名同学是来自互不相同学院的概率;(2)设X 为选出的3名同学中女同学的人数,求随机变量X 的概率分布和均值.解:(1)设“选出的3名同学是来自互不相同的学院”为事件A ,则P (A )=C 13·C 27+C 03·C 37C 310=4960. 所以选出的3名同学是来自互不相同学院的概率为4960.(2)随机变量X 的所有可能值为0,1,2,3.P (X =r )=C r4·C 3-r6C 310(r =0,1,2,3). 所以,随机变量X随机变量X 的均值E (X )=0×16+1×12+2×310+3×130=65.20.(本小题满分16分)(北京高考)李明在10场篮球比赛中的投篮情况统计如下(假设各场比赛相互独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过0.6的概率; (2)从上述比赛中随机选择一个主场和一个客场,求李明的投篮命中率一场超过0.6,一场不超过0.6的概率;(3)记x 为表中10个命中次数的平均数.从上述比赛中随机选择一场,记X 为李明在这场比赛中的命中次数.比较E (X )与x 的大小.(只需写出结论)解:(1)根据投篮统计数据,在10场比赛中,李明投篮命中率超过0.6的场次有5场,分别是主场2,主场3,主场5,客场2,客场4.所以在随机选择的一场比赛中,李明的投篮命中率超过0.6的概率是0.5.(2)设事件A 为“在随机选择的一场主场比赛中李明的投篮命中率超过0.6”, 事件B 为“在随机选择的一场客观比赛中李明的投篮命中率超过0.6”,事件C 为“在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6”.则C =AB ∪AB ,A ,B 独立.根据投篮统计数据,P (A )=35,P (B )=25.P (C )=(AB )+P (AB )=35×35+25×25=1325.所以在随机选择的一个主场和一个客场中,李明的投篮命中率一场超过0.6,一场不超过0.6的概率为1325.(3)E (X )=x .。
数学:2.3.1《离散型随机变量的数学期望》教案(新人教B版选修2-3)
2.3.1离散型随机变量的期望教学目标: 知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“E (a ξ+b )=aE ξ+b ”,以及“若ξB (n,p ),则E ξ=np ”.能熟练地应用它们求相应的离散型随机变量的均值或期望。
情感、态度与价值观:承前启后,感悟数学与生活的和谐之美 ,体现数学的文化功能与人文价值。
教学重点:离散型随机变量的均值或期望的概念教学难点:根据离散型随机变量的分布列求出均值或期望 授课类型:新授课课时安排: 2课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系: 离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若ξ是随机变量,b a b a ,,+=ξη是常数,则η也是随机变量并且不改变其属性(离散型、连续型)5. 分布列:设离散型随机变量ξ可能取得值为x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表为随机变量ξ的概率分布,简称ξ的分布列6. 分布列的两个性质: ⑴P i ≥0,i =1,2,...; ⑵P 1+P 2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是k n k kn n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1).于是得到随机变量ξ的概率分布如下:ξ 0 1 …k … nPn n q p C 00 111-n n q p C … kn k k n q p C - 0q p C n n n称这样的随机变量ξ服从二项分布,记作ξ~B (n ,p ),其中n ,p 为参数,并记kn k k n q p C -=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“k ξ=”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,P(k A )=p ,P(k A )=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q p ξ---====(k =0,1,2,…, p q -=1).于是得到随机变量ξ的概率分布如下:ξ123…k … Pp pq2q p … 1k q p -…称这样的随机变量ξ服从几何分布记作g (k ,p )= 1k qp -,其中k =0,1,2,…, p q -=1.二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布列如下ξ4 5 6 7 8 9 10 P 0.02 0.04 0.06 0.09 0.28 0.29 0.22在n 次射击之前,可以根据这个分布列估计n 次射击的平均环数.这就是我们今天要学习的离散型随机变量的均值或期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有n n P 02.0)4(=⨯=ξ 次得4环;n n P 04.0)5(=⨯=ξ 次得5环;…………n n P 22.0)10(=⨯=ξ 次得10环.故在n 次射击的总环数大约为+⨯⨯n 02.04++⨯⨯ n 04.05n ⨯⨯22.010+⨯=02.04(++⨯ 04.05n ⨯⨯)22.010,从而,预计n 次射击的平均环数约为+⨯02.04++⨯ 04.0532.822.010=⨯.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个)(i P =ξ(i =0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:+=⨯)0(0ξP +=⨯)1(1ξP …)10(10=⨯+ξP .1. 均值则称 =ξE +11p x +22p x …++n n p x … 为ξ的均值或数学期望,简称期望.2. 均值或数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令=1p =2p …n p =,则有=1p =2p …n p n 1==,=ξE +1(x +2x …nx n 1)⨯+,所以ξ的数学期望又称为平均数、均值4. 均值或期望的一个性质:若b a +=ξη(a 、b 是常数),ξ是随机变量,则η也是随机于是=ηE ++11)(p b ax ++22)(p b ax …+++n n p b ax )(…=+11(p x a +22p x …++n n p x …)++1(p b +2p …++n p …) =b aE +ξ,由此,我们得到了期望的一个性质:b aE b a E +=+ξξ)( 5.若ξB (n,p ),则E ξ=np证明如下:∵ kn k k n k n k k n q p C p p C k P --=-==)1()(ξ, ∴ =ξE 0×n n q p C 00+1×111-n n q p C +2×222-n n q p C +…+k ×kn k k n q p C -+…+n ×0q p C n n n .又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n kn nC k n k n n k n k n k kC ,∴ =ξE (np 0011n n C p q --+2111--n n q p C +…+)1()1(111------k n k k n q p C +…+)0111q pC n n n ---np q p np n =+=-1)(. 故 若ξ~B (n ,p ),则=ξE np .三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望解:因为3.0)0(,7.0)1(====ξξP P , 所以7.03.007.01=⨯+⨯=ξE例2. 一次单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是ηξ,,则ξ~ B (20,0.9),)25.0,20(~B η,525.020,189.020=⨯==⨯=∴ηξE E由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5ξ和5η所以,他们在测验中的成绩的期望分别是:2555)(5)5(,90185)(5)5(=⨯===⨯==ηηξξE E E E例3. 根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0. 01.该地区某工地上有一台大型设备,遇到大洪水时要损失60 000元,遇到小洪水时要损失10000元.为保护设备,有以下3 种方案:方案1:运走设备,搬运费为3 800 元.方案2:建保护围墙,建设费为2 000 元.但围墙只能防小洪水. 方案3:不采取措施,希望不发生洪水. 试比较哪一种方案好.解:用X 1 、X 2和X 3分别表示三种方案的损失.采用第1种方案,无论有无洪水,都损失3 800 元,即 X 1 = 3 800 .采用第2 种方案,遇到大洪水时,损失2 000 + 60 000=62 000 元;没有大洪水时,损失2 000 元,即⎧⎨⎩262000,有大洪水;X =2000,无大洪水.同样,采用第 3 种方案,有⎧⎪⎨⎪⎩360000,有大洪水;X =10000,有小洪水;0,无洪水.于是,EX 1=3 800 ,EX 2=62 000×P (X 2 = 62 000 ) + 2 00000×P (X 2 = 2 000 ) = 62000×0. 01 + 2000×(1-0.01) = 2 600 ,EX 3 = 60000×P (X 3 = 60000) + 10 000×P(X 3 =10 000 ) + 0×P (X 3 =0) = 60 000×0.01 + 10000×0.25=3100 .采取方案2的平均损失最小,所以可以选择方案2 .值得注意的是,上述结论是通过比较“平均损失”而得出的.一般地,我们可以这样来理解“平均损失”:假设问题中的气象情况多次发生,那么采用方案 2 将会使损失减到最小.由于洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案 2 也不一定是最好的.例4.随机抛掷一枚骰子,求所得骰子点数ξ的期望 解:∵6,,2,1,6/1)(⋅⋅⋅===i i P ξ,6/166/126/11⨯+⋅⋅⋅+⨯+⨯=∴ξE =3.5例5.有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数ξ的期望(结果保留三个有效数字)解:抽查次数ξ取1ξ≤≤10的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前1-k 次取出正品而第k 次(k =1,2,…,10)取出次品的概率:15.085.0)(1⨯==-k k P ξ(k =1,2, (10)需要抽查10次即前9次取出的都是正品的概率:985.0)10(==ξP 由此可得ξ的概率分布如下:ξ 1 2 3 4 5 6 7 8 9 10P0.150.1275 0.1084 0.092 0.0783 0.0666 0.0566 0.0481 0.0409 0.2316根据以上的概率分布,可得ξ的期望35.52316.0101275.0215.01=⨯+⋅⋅⋅+⨯+⨯=ξE例6.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为ξ 123456P61 61 61 61 61 61 所以=ξE 1×61+2×61+3×61+4×61+5×61+6×61=(1+2+3+4+5+6)×61=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值.例7.某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2;(Ⅱ)=ξE 4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ =ηE 2E ξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5⨯(18-15)=15 所以出租车在途中因故停车累计最多15分钟 四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则E ξ=( )A .4;B .5;C .4.5;D .4.75 答案:C2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望; ⑶他罚球3次的得分ξ的数学期望.解:⑴因为7.0)1(==ξP ,3.0)0(==ξP ,所以=ξE 1×)1(=ξP +0×7.0)0(==ξP⑵η的概率分布为η12P23.0 3.07.012⨯⨯C 27.0所以 =ξE 0×09.0+1×42.0+2×98.0=1.4. ⑶ξ所以 =ξE 0×027.0+1×189.0+2×98.0=2.1.3.设有m 升水,其中含有大肠杆菌n 个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是m1,事件“ξ=k ”发生,即n 个大肠杆菌中恰有k 个在此升水中,由n 次独立重复实验中事件A (在此升水中含一个大肠杆菌)恰好发生k 次的概率计算方法可求出P (ξ=k ),进而可求E ξ. 解:记事件A :“在所取的1升水中含一个大肠杆菌”,则P(A)=m1. ∴ P (ξ=k )=P n (k )=C knm 1)k (1-m1)n -k(k =0,1,2,….,n ). ∴ ξ~B (n ,m 1),故 E ξ =n ×m 1=mn五、小结 :(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np 六、课后作业:P64-65练习1,2,3,4 P69 A 组1,2,31.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是 (用数字作答) 解:令取取黄球个数ξ (=0、1、2)则ξ的要布列为于是 E (ξ)=0×103+1×53+2×101=0.8 故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用ξ表示得分数 ①求ξ的概率分布列 ②求ξ的数学期望解:①依题意ξ的取值为0、1、2、3、4ξ=0时,取2黑 p(ξ=0)=612924=C Cξ=1时,取1黑1白 p(ξ=1)=31291314=⋅C C C ξ=2时,取2白或1红1黑p(ξ=2)= 2923C C +3611291412=⋅C C C ξ=3时,取1白1红,概率p(ξ=3)= 61291213=⋅C C C ξ=4时,取2红,概率p(ξ=4)= 3612922=C C∴ξ分布列为(2)期望E ξ=0×61+1×31+2×3611+3×61+4×361=914 3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p 1、p 2、p 3,求试验中三台投影仪产生故障的数学期望 解:设ξ表示产生故障的仪器数,A i 表示第i 台仪器出现故障(i=1、2、3)i A 表示第i 台仪器不出现故障,则:p(ξ=1)=p(A 1·2A ·3A )+ p(1A ·A 2·3A )+ p(1A ·2A ·A 3) =p 1(1-p 2) (1-p 3)+ p 2(1-p 1) (1-p 3)+ p 3(1-p 1) (1-p 2) = p 1+ p 2+p 3-2p 1p 2-2p 2p 3-2p 3p 1+3p 1p 2p 3p(ξ=2)=p(A 1· A 2·A )+ p(A 1·2A ·3A )+ p(1A ·A 2·A 3) = p 1p 2 (1-p 3)+ p 1p 3(1-p 2)+ p 2p 3(1-p 1) = p 1p 2+ p 1p 3+ p 2p 3-3p 1p 2p 3 p(ξ=3)=p(A 1· A 2·A 3)= p 1p 2p 3∴ξE =1×p(ξ=1)+2×p(ξ=2)+3×p(ξ=3)= p 1+p 2+p 3注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.22.13.026.011.00=⨯+⨯+⨯=∴ξE5. A 、B 两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是321,,A A A ,B 队队员是321,,B B B ,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A 队,B 队最后所得分分别为ξ,η(1)求ξ,η的概率分布; (2)求ξE ,ηE 解:(Ⅰ)ξ,η的可能取值分别为3,2,1,0()()()()2535353310,525253315352315353321,75285253325252315352322,2785252323=⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯==ξξξξP P P P 根据题意知3=+ηξ,所以 ()()()()()()()()25303,5212,752821,75830================ξηξηξηξηP P P P P P P P (Ⅱ)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为3=+ηξ,所以15233=-=ξηE E七、板书设计(略) 八、教学反思:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤: ①理解ξ的意义,写出ξ可能取的全部值; ②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ 公式E (a ξ+b )= aE ξ+b ,以及服从二项分布的随机变量的期望E ξ=np 。
高中数学第二章概率2.3.1离散型随机变量的数学期望课件新人教B版选修23
2.概率模型的三个解答步骤 (1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的 公式有哪些. (2)确定随机变量的分布列,计算随机变量的期望. (3)对照实际意义,回答概率,均值等所表示的结论.
第三十二页,共46页。
[再练一题] 3.甲、乙两射击运动员进行射击比赛,射击相同的次数,已知两运动员击 中的环数X稳定在7,8,9,10环.将它们的比赛成绩画成频率分布直方图如图2-3-1甲 和图乙所示.
→
求出数学 期望EX
→
利用期望 回答问题
【自主解答】 (1)X的所有可能取值有6,2,1,-2. P(X=6)=122060=0.63, P(X=2)=25000=0.25,P(X=1)=22000=0.1, P(X=-2)=2400=0.02.
第二十九页,共46页。
故X的分布列为:
X6
2
1 -2
E(X)等于( )
X0 1
P m 2m
1
2
A.9
B.9
1
2
C.3
D.3
第十七页,共46页。
【解析】 (1)由题意可知,补种的种子数记为X,X服从二项分布,即X~ B(1 000,0.1),所以不发芽种子的数学期望为1 000×0.1=100.所以补种的种子数 的数学期望为2×100=200.
(2)由题意可知m+2m=1,所以m=13,所以E(X)=0×13+1×23=23. 【答案】 (1)B (2)D
第七页,共46页。
教材整理2 常见几种分布的数学期望
阅读教材P60例1以上部分,完成下列问题. 名称 二点分布 二项分布
超几何分布
公式
E(X)=_p__
E(X)=_n_p__
高中数学第二章随机变量及其分布2.3.2离散型随机变量的方差学案新人教版选修2_32
2.3.2 离散型随机变量的方差[学习目标]1.理解取有限个值的离散型随机变量的方差及标准差的概念. 2.能计算简单离散型随机变量的方差,并能解决一些实际问题.3.掌握方差的性质,以及两点分布、二项分布的方差的求法,会利用公式求它们的方差. [知识链接]1.某省运会即将举行,在最后一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下:甲运动员:7,8,6,8,6,5,8,10,7,5; 乙运动员:9,5,7,8,7,6,8,6,7,7.观察上述数据,两个人射击的平均成绩是一样的.那么,是否两个人就没有水平差距呢?如果你是教练,选哪位选手去参加正式比赛?答 x -甲=x -乙=7,利用样本的方差公式s 2=1n[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],求得: s 2甲=2.2,s 2乙=1.2.s 2甲>s 2乙,∴乙成绩较稳定,选乙参加比赛.2.随机变量的方差与样本的方差有何不同?答 样本的方差是随着样本的不同而变化的,因此它是一个随机变量,而随机变量的方差是通过大量试验得出的,刻画了随机变量X 与其均值E (X )的平均偏离程度,因此它是一个常量而非变量. [预习导引]1.离散型随机变量的方差、标准差 设离散型随机变量X 的分布列为则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.我们称D (X )为随机变量X 的方差,并称其算术平方根D (X )为随机变量X 的标准差. 2.离散型随机变量方差的性质(1)设a ,b 为常数,则D (aX +b )=a 2D (X ); (2)D (c )=0(其中c 为常数).3.服从两点分布与二项分布的随机变量的方差(1)若X 服从两点分布,则D (X )=p (1-p )(其中p 为成功概率); (2)若X ~B (n ,p ),则D (X )=np (1-p ).要点一 求离散型随机变量的方差例1 甲、乙两人进行定点投篮游戏,投篮者若投中,则继续投篮,否则由对方投篮,第一次由甲投篮;已知每次投篮甲、乙命中的概率分别为13,34.(1)求第三次由乙投篮的概率;(2)在前3次投篮中,乙投篮的次数为ξ,求ξ的分布列、期望及标准差. 解 (1)P =13×23+23×34=1318.(2)P (ξ=0)=13×13=19;P (ξ=1)=13×23+23×14=718. P (ξ=2)=23×34=12.故ξ的分布列为E (ξ)=0×19+1×718+2×12=2518,D (ξ)=(0-2518)2×19+(1-2518)2×718+(2-2518)2×12=149324,∴D (ξ)=14918. 规律方法 1.求离散型随机变量X 的方差的基本步骤:理解X 的意义,写出X 可能取的全部值 ↓写出X 取每个值的概率 ↓写出X 的分布列 ↓由均值的定义求出E (X ) ↓利用公式D (X )=∑ni =1(x i -E (X ))2p i 求值 2.对于变量间存在关系的方差,在求解过程中应注意方差性质的应用,如D (a ξ+b )=a 2D (ξ),这样处理既避免了求随机变量η=a ξ+b 的分布列,又避免了繁杂的计算,简化了计算过程.跟踪演练1 已知X 的分布列为求:(1)E (X ),D (X );(2)设Y =2X +3,求E (Y ),D (Y ).解 (1)E (X )=-1×12+0×13+1×16=-13,D (X )=(-1+13)2×12+(0+13)2×13+(1+13)2×16=59.(2)E (Y )=2E (X )+3=73,D (Y )=4D (X )=209.要点二 两点分布与二项分布的方差例2 为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳.各株沙柳的成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)为3,标准差D (ξ)为62. (1)求n 和p 的值,并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种.求需要补种沙柳的概率.解 由题意知,ξ服从二项分布B (n ,p ),P (ξ=k )=C k n p k (1-p )n -k,k =0,1,…,n . (1)由E (ξ)=np =3,D (ξ)=np (1-p )=32,得1-p =12,从而n =6,p =12.ξ的分布列为(2)记“需要补种沙柳”为事件A ,则P (A )=P (ξ≤3),得P (A )=1+6+15+2064=2132,或P (A )=1-P (ξ>3)=1-15+6+164=2132.所以需要补种沙柳的概率为2132.规律方法 方差的性质:D (a ξ+b )=a 2D (ξ).若ξ服从两点分布,则D (ξ)=p (1-p ).若ξ~B (n ,p ),则D (ξ)=np (1-p ).跟踪演练2 设一次试验的成功率为p ,进行100次独立重复试验,求当p 为何值时,成功次数的标准差的值最大?并求其最大值. 解 设成功次数为随机变量X ,由题意可知X ~B (100,p ),则D (X )=100p (1-p ). 因为D (X )=100p (1-p )=100p -100p 2, 把上式看作一个以p 为自变量的二次函数, 易知当p =12时,D (X )有最大值为25.所以D (X )的最大值为5.即当p =12时,成功次数的标准差的值最大,最大值为5.要点三 均值与方差的综合应用例3 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球.ξ表示所取球的标号. (1)求ξ的分布列、期望和方差;(2)若η=a ξ+b ,E (η)=1,D (η)=11,试求a ,b 的值. 解 (1)ξ的分布列为则E (ξ)=0×12+1×120+2×110+3×320+4×15=1.5.D (ξ)=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (η)=a 2D (ξ),得a 2×2.75=11,得a =±2. 又E (η)=aE (ξ)+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4.所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4即为所求.规律方法 解均值与方差的综合问题时的注意事项(1)离散型随机变量的分布列、均值和方差是三个紧密联系的有机统一体,一般在试题中综合在一起考查,其解题的关键是求出分布列;(2)在求分布列时,要注意利用等可能事件、互斥事件、相互独立事件的概率公式计算概率,并注意结合分布列的性质,简化概率计算;(3)在计算均值与方差时要注意运用均值和方差的性质以避免一些复杂的计算.若随机变量X 服从两点分布、二项分布可直接利用对应公式求解.跟踪演练3 从4名男生和2名女生中任选3人参加演讲比赛,设随机变量X 表示所选3人中女生的人数. (1)求X 的分布列; (2)求X 的均值与方差;(3)求“所选3人中女生人数X ≤1”的概率. 解 (1)X 可能的取值为0,1,2. P (X =k )=C k2·C 3-k4C 36,k =0,1,2. X 的分布列(2)由(1),X 的均值与方差为E (X )=0×15+1×35+2×15=1.D (X )=(0-1)2×15+(1-1)2×35+(1-2)2×15=25.(3)由(1),“所选3人中女生人数X ≤1”的概率为P (X ≤1)=P (X =0)+P (X =1)=45.1.设随机变量X 的方差D (X )=1,则D (2X +1)的值为( ) A .2 B .3 C .4 D .5 答案 C解析 D (2X +1)=4D (X )=4×1=4.2.同时抛掷两枚均匀的硬币10次,设两枚硬币同时出现反面的次数为ξ,则D (ξ)等于( )A.158B.154C.52 D .5 答案 A解析 ξ~B (10,14),∴D (ξ)=10×14×(1-14)=158.3.已知离散型随机变量X 的可能取值为x 1=-1,x 2=0,x 3=1,且E (X )=0.1,D (X )=0.89,则对应x 1,x 2,x 3的概率p 1,p 2,p 3分别为________,________,________. 答案 0.4 0.1 0.5解析 由题意知,-p 1+p 3=0.1, 1.21p 1+0.01p 2+0.81p 3=0.89.又p 1+p 2+p 3=1,解得p 1=0.4,p 2=0.1,p 3=0.5. 4.有甲乙两个单位都愿意聘用你,而你能获得如下信息:根据工资待遇的差异情况,你愿意选择哪家单位?解根据月工资的分布列,利用计算器可算得E(X1)=1 200×0.4+1 400×0.3+1 600×0.2+1 800×0.1=1 400,D(X1)=(1 200-1 400)2×0.4+(1 400-1 400)2×0.3+(1 600-1 400)2×0.2+(1 800-1 400)2×0.1=40 000;E(X2)=1 000×0.4+1 400×0.3+1 800×0.2+2 200×0.1=1 400,D(X2)=(1 000-1 400)2×0.4+(1 400-1 400)2×0.3+(1 800-1 400)2×0.2+2 200-1 400)2×0.1=160 000.因为E(X1)=E(X2),D(X1)<D(X2),所以两家单位的工资均值相等,但甲单位不同职位的工资相对集中,乙单位不同职位的工资相对分散.这样,如果你希望不同职位的工资差距小一些,就选择甲单位;如果你希望不同职位的工资差距大一些,就选择乙单位.1.随机变量的方差和标准差都反映了随机变量取值的稳定与波动、集中与离散的程度,以及随机变量取值偏离于均值的平均程度.方差D(X)或标准差越小,则随机变量X偏离均值的平均程度越小;方差越大,表明平均偏离的程度越大,说明X的取值越分散.2.求离散型随机变量X的均值、方差的步骤(1)理解X的意义,写出X的所有可能的取值;(2)求X取每一个值的概率;(3)写出随机变量X的分布列;(4)由均值、方差的定义求E(X),D(X).特别地,若随机变量服从两点分布或二项分布,可根据公式直接计算E(X)和D(X).一、基础达标1.下列说法中,正确的是( )A.离散型随机变量的均值E(X)反映了X取值的概率平均值B .离散型随机变量的方差D (X )反映了X 取值的平均水平C .离散型随机变量的均值E (X )反映了X 取值的平均水平D .离散型随机变量的方差D (X )反映了X 取值的概率平均值 答案 C2.设一随机试验的结果只有A 和A -,且P (A )=m ,令随机变量ξ=⎩⎪⎨⎪⎧1,A 发生,0,A 不发生,则ξ的方差D (ξ)等于( ) A .m B .2m (1-m ) C .m (m -1) D .m (1-m ) 答案 D解析 随机变量ξ的分布列为∴E (ξ)=0×(1-m )+1×m =m .∴D (ξ)=(0-m )2×(1-m )+(1-m )2×m =m (1-m ). ∴故选D.3.已知随机变量X 的分布列为P (X =k )=13,k =1,2,3,则D (3X +5)等于( )A .6B .9C .3D .4 答案 A解析 E (X )=1×13+2×13+3×13=2,∴D (X )=13×[(1-2)2+(2-2)2+(3-2)2]=23,∴D (3X +5)=9D (X )=9×23=6.4.已知X ~B (n ,p ),E (X )=8,D (X )=1.6,则n 与p 的值分别是( ) A .100和0.08 B .20和0.4 C .10和0.2 D .10和0.8 答案 D解析 因随机变量X ~B (n ,p ), 则E (X )=np =8,D (X )=np ·(1-p )=1.6,所以n =10,p =0.8.5.若D (ξ)=1,则D (ξ-D (ξ))=________. 答案 1解析 D (ξ-D (ξ))=D (ξ-1)=D (ξ)=1. 6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.答案 59解析 由题意得2b =a +c ①,a +b +c =1②,c -a =13③,以上三式联立解得a =16,b =13,c =12,故D (ξ)=59.7.抛掷一枚质地均匀的骰子,用X 表示掷出偶数点的次数. (1)若抛掷一次,求E (X )和D (X ); (2)若抛掷10次,求E (X )和D (X ). 解 (1)X 服从两点分布∴E (X )=p =12,D (X )=p (1-p )=12×(1-12)=14.(2)由题意知,X ~B (10,12).∴E (X )=np =10×12=5,D (X )=np (1-p )=10×12×(1-12)=52.二、能力提升8.已知随机变量ξ的分布列如下表,则ξ的标准差为( )A.3.56B. 3.2 C .3.2 D. 3.56 答案 D解析 依题意:0.4+0.1+x =1, ∴x =0.5,∴E (ξ)=1×0.4+3×0.1+5×0.5=3.2,∴D (ξ)=(1-3.2)2×0.4+(3-3.2)2×0.1+(5-3.2)2×0.5=3.56, ∴D (ξ)= 3.56.9.设随机变量ξ的分布列为P (ξ=k )=C k n (23)k (13)n -k,k =0,1,2,…,n ,且E (ξ)=24,则D (ξ)的值为( ) A .8 B .12 C.29 D .16答案 A解析 由题意可知ξ~B (n ,23),∴E (ξ)=23n =24.∴n =36.∴D (ξ)=36×23×(1-23)=8.10.若随机事件A 在1次试验中发生的概率为p (0<p <1),用随机变量X 表示A 在1次试验中发生的次数,则方差D (X )的最大值为________. 答案 14解析 随机变量X 的所有可能取值为0,1,由题意,得X 的分布列为从而E (X )=0×(1-p )+1×p =p ,D (X )=(0-p )2×(1-p )+(1-p )2×p =p -p 2.D (X )=p -p 2=-(p 2-p +14)+14=-(p -12)2+14,因为0<p <1,所以当p =12时,D (X )取得最大值,最大值为14.11.有10张卡片,其中8张标有数字2,2张标有数字5,从中随机地抽取3张卡片,设3张卡片数字之和为ξ,求E (ξ)和D (ξ).解 这3张卡片上的数字之和为ξ,这一变量的可能取值为6,9,12.ξ=6表示取出的3张卡片上均标有2, 则P (ξ=6)=C 38C 310=715.ξ=9表示取出的3张卡片上两张标有2,一张标有5, 则P (ξ=9)=C 28C 12C 310=715.ξ=12表示取出的3张卡片上一张标有2,两张标有5, 则P (ξ=12)=C 18C 22C 310=115.∴ξ的分布列为∴E (ξ)=6×715+9×715+12×115=7.8.D (ξ)=(6-7.8)2×715+(9-7.8)2×715+(12-7.8)2×115=3.36.12.有甲、乙两名学生,经统计,他们在解答同一份数学试卷时,各自的成绩在80分、90分、100分的概率分布大致如下表所示: 甲:乙:试分析两名学生的成绩水平.解 ∵E (X )=80×0.2+90×0.6+100×0.2=90,D (X )=(80-90)2×0.2+(90-90)2×0.6+(100-90)2×0.2=40,E (Y )=80×0.4+90×0.2+100×0.4=90,D (Y )=(80-90)2×0.4+(90-90)2×0.2+(100-90)2×0.4=80,∴E (X )=E (Y ),D (X )<D (Y ),∴甲生与乙生的成绩均值一样,甲的方差较小,因此甲生的学习成绩较稳定.三、探究与创新13.(2013·北京理)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解设A i表示事件“此人于3月i日到达该市”(i=1,2,…,13).根据题意,P(A i)=113,且A i∩A j=∅(i≠j).(1)设B为事件“此人到达当日空气重度污染”,则B=A5∪A8,所以P(B)=P(A5∪A8)=P(A5)+P(A8)=213.(2)由题意可知,X的所有可能取值为0,1,2,且P(X=1)=P(A3∪A6∪A7∪A11)=P(A3)+P(A6)+P(A7)+P(A11)=413,P(X=2)=P(A1∪A2∪A12∪A13)=P(A1)+P(A2)+P(A12)+P(A13)=413,P(X=0)=1-P(X=1)-P(X=2)=5 13,所以X的分布列为故X的期望E(X)=0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大.。
高中数学选修2-3(人教B版)第二章随机变量及其分布2.2知识点总结含..
描述:例题:高中数学选修2-3(人教B版)知识点总结含同步练习题及答案第二章 随机变量及其分布 2.2 条件概率与事件的独立性一、学习任务1. 了解条件概率的定义及计算公式,并会利用条件概率解决一些简单的实际问题.2. 能通过实例理解相互独立事件的定义及概率乘法公式,并能综合利用互斥事件的概率加法公式及独立事件的概率乘法公式.3. 理解独立重复试验的概率及意义,理解事件在 次独立重复试验中恰好发生 次的概率公式,并能利用 次独立重复试验的模型模拟 次独立重复试验.二、知识清单事件的独立性与条件概率独立重复试验与二项分布三、知识讲解1.事件的独立性与条件概率条件概率的概念一般地,设 ,为两个事件,且 ,称为在事件 发生的条件下,事件 发生的条件概率(conditional probability).读作 发生的条件下 发生的概率.条件概率的性质①条件概率具有概率的性质,任何事件的条件概率都在 和 之间,即.②如果 和 是两个互斥事件,则相互独立事件的概念设 ,为两个事件,若 ,则称事件 与事件 相互独立(mutually independent).相互独立事件同时发生的概率:如果事件 ,,, 相互独立,那么这 个事件同时发生的概率等于每个事件发生概率的积,即n k n n A B P (A )>0P (B |A )=P (AB )P (A )A B P (B |A )A B 0 1 0≤P (B|A)≤1 B CP (B ∪C |A )=P (B |A )+P (C |A ).A B P (AB )=P (A )P (B )A B A 1A 2⋯A n n P (⋯)=P ()P ()⋯P ().A 1A 2A n A 1A 2A n 甲、乙两地都位于长江下游,根据一百多年气象记录,知道甲、乙两地一年中雨天占的比例分别20%18%12%为 和 ,两地同时下雨的比例为 ,问:(1)乙地为雨天时甲地也为雨天的概率是多少?(2)甲地为雨天时乙地也为雨天的概率是多少?解:设“甲地为雨天”, “ 乙地为雨天”,则根据题意有(1)乙地为雨天时甲地也为雨天的概率(2)甲地为雨天时乙地也为雨天的概率是20%18%12%A =B =P (A )=0.20,P (B )=0.18,P (AB )=0.12.P (A |B )==≈0.67.P (AB )P (B )0.120.18P (B |A )===0.60.P (AB )P (A )0.120.20如图,四边形 是以 为圆心,半径 的圆内接正方形,将一颗豆子随机地扔到该圆内,用 表示事件“豆子落在正方形 内”, 表示事件“豆子落在扇形 (阴影部分)内”,则(1)______;(2)______.解:;圆 的面积是,正方形 的面积是 ,扇形 的面积是 ,由几何概型概率公式得 ,由条件概率公式得EFGH O 1A EFGH B OHE P (A )=P (B |A )=2π14O πEF GH 2OHE π4P (A )=2πP (B |A)===.P (AB )P (A)12π2π14掷一枚正方体骰子一次,设事件 :“出现偶数点”,事件 :“出现 点或 点”,则事件 , 的关系是( )A.互斥但不相互独立 B.相互独立但不互斥 C.互斥且相互独立 D.既不相互独立也不互斥解:B事件 ,事件 ,事件 ,基本事件空间 .所以,,,即 ,因此,事件 与 相互独立.当“出现 点”,事件 , 同时发生,所以 , 不是互斥事件.A B 36A B A ={2,4,6}B ={3,6}AB ={6}Ω={1,2,3,4,5,6}P (A )==3612P (B )==2613P (AB )==×161213P (AB )=P (A )P (B )A B 6A B A B 甲、乙两人在罚球线投球命中的概率分别为与 .(1)甲、乙两人在罚球线各投球一次,求恰好命中一次的概率;(2)甲、乙两人在罚球线各投球二次,求这四次投球均不命中的概率.解:记“甲投一次命中”为事件 ,“乙投一次命中”为事件 ,则 ,1225A B P (A )=12213,,.(1)恰好命中一次的概率为(2)设事件“甲、乙两人在罚球线各投球二次均不命中”的概率为 ,则2P (B )=25P ()=A ¯¯¯12P ()=B ¯¯¯35P =P (A ⋅)+P (⋅B )B ¯¯¯A ¯¯¯=P (A )⋅P ()+P ()⋅P (B )B ¯¯¯A ¯¯¯=×+×12351225=.12P 1P 1=P (∩∩∩)A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=P ()⋅P ()⋅P ()⋅P ()A ¯¯¯A ¯¯¯B ¯¯¯B ¯¯¯=(1−(1−12)225)2=9100在一个选拔项目中,每个选手都需要进行 轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则被淘汰.已知某选手能正确回答第一、二、三、四轮问题的概率分别为,,,,且各轮问题能否正确回答互不影响.(1)求该选手进入第三轮才被淘汰的概率;(2)求该选手至多进入第三轮考核的概率;解:设事件 ( ,,, )表示“该选手能正确回答第 轮问题”,由已知得,,,.(1)设事件 表示“该选手进入第三轮才被淘汰”,则(2)设事件 表示“该选手至多进入第三轮考核”,则456453413A i i =1234i P ()=A 156P ()=A 245P ()=A 334P ()=A 413B P (B )=P ()A 1A 2A ¯¯¯3=P ()P ()P ()A 1A 2A ¯¯¯3=××(1−)564534=.16C P (C )=P (++)A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=P ()+P ()+P ()A ¯¯¯1A 1A ¯¯¯2A 1A 2A ¯¯¯3=+×+××(1−)165615564534=.12描述:例题:2.独立重复试验与二项分布独立重复试验一般地,在相同条件下重复做的 次试验,称为次独立重复试验(independent andrepeated trials).二项分布一般地,在 次独立重复试验中,用表示事件发生的次数,设每次试验中事件发生的概率为,则此时称随机变量服从二项分布(binnomial distribution),记作 ),并称为成功概率.n n n X A A p P (X =k )=(1−p ,k=0,1,2,⋯,n .C kn pk )n −k X X ∼B (n ,p ) p 下列随机变量 的分布列不属于二项分布的是( )A.投掷一枚均匀的骰子 次, 表示点数 出现的次数B.某射手射中目标的概率为 ,设每次射击是相互独立的, 为从开始射击到击中目标所需要的射击次数C.实力相等的甲、乙两选手举行了 局乒乓球比赛, 表示甲获胜的次数D.某星期内,每次下载某网站数据后被病毒感染的概率为 , 表示下载 次数据后电脑被病毒感染的次数解:B选项 A,试验出现的结果只有两个:点数为 和点数不为 ,且点数为 的概率在每一次试验都为 ,每一次试验都是独立的,故随机变量 服从二项分布;选项 B,,故随机变量 不服从二项分布;选项 C,甲、乙的获胜率都相等,举行 次比赛,相当于进行了 次独立重复试验,故 服从二项分布;选项 D,由二项分布的定义可知,被感染次数 .X 5X 6p X 5X 0.3X n 66616X P (X =1)=p ,P (X =2)=(1−p )p ,P (X =k )=(1−p p )(k −1)X 55X X ∼B (n ,0.3)口袋中有 个白色乒乓球, 个黄色乒乓球,从中选取 次,每次取 个后又放回,则 次中恰有 次取到白球的概率是( )A. B. C. D . 解:D任意取球 次,取得白球 次的概率是5551531235C 35C 510⋅C 350.5553P (X =3)=(1−0.5=⋅C 350.53)5−3C 350.55甲、乙两名同学进行三分球投篮比赛,甲每次投中的概率为 ,乙每次投中的概率为 ,每人分别进行三次投篮.(1)设甲投中的次数为 ,求 的分布列;(2)求乙至多投中 次的概率;(3)求乙恰好比甲多投中 次的概率.1312ξξ221四、课后作业 (查看更多本章节同步练习题,请到快乐学)解:(1), 的可能取值为 ,,,. 的分布列为:(2)设“乙至多投中 次”为事件 ,则(3)设“乙比甲多投中 次”为事件 ,“乙恰投中 次且甲恰投中 次”为事件,“乙恰投中 次且甲恰投中 次”为事件 ,则 ,, 为互斥事件,则所以乙恰好比甲多投中 次的概率为.ξ∼B (3,)13ξ0123P(ξ=0)=(=,C 0323)3827P (ξ=1)=()(=,C 131323)249P (ξ=2)=(()=,C 2313)22329P (ξ=3)=(=.C 3313)3127ξξP082714922931272A P (A )=1−(=.C 3312)3782A 120B 131B 2=∪A 1B 1B 2B 1B 2P (A )=P ()+P ()=×+×=.B 1B 282738491816216答案:解析:1. 某一批花生种子,如果每 粒发芽的概率为 ,那么播下 粒种子恰有 粒发芽的概率是 A .B .C .D .B 概率为 .14542()1662596625192625256625=C 24()452(1−)45296625答案:2. 某地区空气质量监测资料表明,一天的空气质量为优良的概率是 ,连续两天为优良的概率是,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 A .B .C .D .A0.750.6()0.80.750.60.453. 某厂生产电子元件,其产品的次品率为 ,现从一批产品中任意地连续取出 件,其中次品数 的5%2ξ高考不提分,赔付1万元,关注快乐学了解详情。
高中数学教材人教B版目录(详细版)
数学①必修第一章集合1.1 集合与集合的表示方法1.1.1 集合的概念1.1.2 集合的表示方法1.2 集合之间的关系与运算1.2.1 集合之间的关系1.2.2 集合的运算第二章函数2.1 函数2.1.1 函数2.1.2 函数的表示方法2.1.3 函数的单调性2.1.4 函数的奇偶性2.1.5 用计算机作函数的图像(选学)2.2 一次函数和二次函数2.2.1 一次函数的性质和图像2.2.2 二次函数的性质和图像2.2.3 待定系数法2.3 函数的应用(I)2.4 函数与方程2.4.1 函数的零点2.4.2 求函数零点近似解的一种近似方法——二分法第三章基本初等函数(I)3.1 指数与指数函数3.1.1 有理指数幂及其运算3.1.2 指数函数3.2 对数与对数函数3.2.1 对数及其运算3.2.2 对数函数3.2.3 指数函数与对数函数的关系3.3 幂函数3.2 函数的应用(II)数学②必修第一章立体几何初步1.1 空间几何体1.1.1 构成空间几何体的基本元素1.1.2 棱柱、棱锥和棱台的结构特征1.1.3 圆柱、圆锥、圆台和球1.1.4 投影与直观图1.1.5 三视图1.1.6 棱柱、棱锥、棱台和球的表面积1.1.7 柱、锥、台和球的体积1.2 点、线、面之间的位置关系1.2.1 平面的基本性质与推论1.2.2 空间中的平行关系1.2.3 空间中的垂直关系第二章平面解析几何初步2.1 平面直角坐标系中的基本公式2.1.1 数轴上的基本公式2.1.2 平面直角坐标系中的基本公式2.2 直线的方程2.2.1 直线方程的概念与直线的斜率2.2.2 直线方程的集中形式2.2.3 两条直线的位置关系2.2.4 点到直线的距离2.3 圆的方程2.3.1 圆的标准方程2.3.2 圆的一般方程2.3.3 直线与圆的位置关系2.3.4 圆与圆的位置关系2.4 空间直角坐标系2.4.1 空间直角坐标系2.4.2 空间两点的距离公式数学③必修第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.2.2 概率的一般加法公式(选学)3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用数学④必修第一章基本初等函数(II)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图像与性质1.3.1 正弦函数的图像与性质1.3.2 余弦函数、正切函数的图像与性质1.3.3 已知三角函数值求角第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4 向量的数乘2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.2 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积数学⑤必修第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和第三章不等式3.1 不等关系与不等式3.1.1 不等关系与不等式3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)所表示的平面区域3.5.2 简单线性规划数学选修1-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 椭圆2.1.1 椭圆及其标准方程2.1.2 椭圆的几何性质2.2 双曲线2.2.1 双曲线及其标准方程2.2.2 双曲线的几何性质2.3 抛物线2.3.1 抛物线及其标准方程2.3.2 抛物线的几何性质第三章导数及其应用3.1 导数3.1.1 函数的平均变化率3.1.2 瞬时速度与导数3.1.3 导数的几何意义3.2 导数的运算3.2.1 常数与幂函数的导数3.2.2 导数公式表3.2.3 导数的四则运算法则3.3 导数的应用3.3.1 利用导数判断函数的单调性3.3.2 利用导数研究函数的极值3.3.3 导数的实际应用数学选修1-2第一章统计案例1.1 独立性检验1.2 回归分析第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法第三章数系的扩充与复数的引入3.1 数系的扩充与复数的引入3.1.1 实数系3.1.2 复数的引入3.2 复数的运算3.2.1 复数的加法和减法3.2.2 复数的乘法和除法第四章框图4.1 流程图4.2 结构图数学选修2-1第一章常用逻辑用语1.1 命题与量词1.1.1 命题1.1.2 量词1.2 基本逻辑关联词1.2.1 “且”与“或”1.2.2 “非”(否定)1.3 充分条件、必要条件与命题的四种形式1.3.1 推出与充分条件、必要条件1.3.2 命题的四种形式第二章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性质2.2 椭圆2.2.1 椭圆的标准方程2.2.2 椭圆的几何性质2.3 双曲线2.3.1 双曲线的标准方程2.3.2 双曲线的几何性质2.4 抛物线2.4.1 抛物线的标准方程2.4.2 抛物线的几何性质2.5 直线与圆锥曲线第三章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3 空间向量的数量积3.1.4 空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2 平面的法向量与平面的向量表示3.2.3 直线与平面的夹角3.2.4 二面角及其度量3.2.5 距离(选学)数学选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法 2.3.1 数学归纳法2.3.2 数学归纳法应用举例第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法数学选修2-3第一章计数原理1.1 基本计数原理1.2 排列与组合1.2.1 排列1.2.2 组合1.3 二项式定理1.3.1 二项式定理1.3.2 杨辉三角第二章概率2.1 离散型随机变量及其分布列2.1.1 离散型随机变量2.1.2 离散型随机变量的分布列2.1.3 超几何分布2.2 条件概率与事件的独立性2.2.1 条件概率2.2.2 事件的独立性2.2.3 独立重复试验与二项分布2.3 随机变量的数字特征2.3.1 离散型随机变量的数学期望2.3.2 离散型随机变量的方差2.4 正态分布第三章统计案例3.1 独立性检验3.2 回归分析数学选修4-5不等式选讲第一章不等式的基本性质和证明的基本方法1.1 不等式的基本性质和一元二次不等式的解法1.1.1 不等式的基本性质1.1.2 一元一次不等式和一元二次不等式的解法1.2 基本不等式1.3 绝对值不等式的解法1.3.1 |ax+b|≤c、|ax+b|≥c型不等式的解法1.3.2 |x-a|+|x-b|≥c、|x-a|+|x-b|≤c型不等式的解法1.4 绝对值的三角不等式1.5 不等式证明的基本方法1.5.1 比较法1.5.2 综合法和分析法1.5.3 反证法和放缩法第二章柯西不等式与排序不等式及其应用2.1 柯西不等式2.1.1 平面上的柯西不等式的代数和向量形式2.1.2 柯西不等式的一般形式及其参数配置方法的证明2.2 排序不等式2.3 平均值不等式(选学)2.4 最大值与最小值问题,优化的数学模型第三章数学归纳法与贝努利不等式3.1 数学归纳法原理3.1.1 数学归纳法原理3.1.2 数学归纳法应用举例3.2 用数学归纳法证明不等式,贝努利不等式3.2.1 用数学归纳法证明不等式3.2.2 用数学归纳法证明贝努利不等式欢迎您的下载,资料仅供参考!致力为企业和个人提供合同协议,策划案计划书,学习资料等等打造全网一站式需求。
2.3.1离散型随机变量均值和方差(3课时)(选修2-3)习题全
方案 1:运走设备,需花费 3800 元; 方案 2:建一座保护围墙,需花费 2000 元;但围墙不能 防御大洪水,如遇大洪水,损失费为 60000 元; 方案 3:不采取任何措施,希望不发生洪水.如遇大洪水, 损失费为 60000 元; 如遇小洪水,损失费为 10000 元;
分析:⑴如下月没有洪水,那么方案 3 最好
(2)两点分布的均值 若X~B(1,p), 则E(X)= p (3)二项分布的均值 若X~B(n,p), 则E(X)= np
练习一
1、随机变量ξ的分布列是
ξ
1
3
5
P 0.5 0.3 0.2
(1)则Eξ= 2.4
.
(2)若η=2ξ+1,则Eη=
5.8 .
2、随机变量ξ的分布列是
ξ 4 7 9 10 P 0.3 a b 0.2
新疆 王新敞
奎屯
23
解:设X1表示甲选对的题数、X2表示乙选对的题数 它们都满足二项分布:
X1~B(20,0.9)
X2~B(20,0.25)
所以:EX1= n p =20×0.9=18
EX2= n p =20×0.25=5
甲所得分数的均值为:18×5=90
乙所得分数的均值为: 5×5=25
X
x1
(第一课时)
1
一.随机变量的分布列.
设离散型随机变量 可能取的值为 x1 , x2 ,L , xi ,L ,
取每一个值 xi (i 1, 2,L ) 的概率 P( xi ) pi则称表
L L L L P
px11
x2
p2
xi
pi
为随机变量 的概率分布列,简称为 的分布列.
对于离散型随机变量,确定了它的分布列, 就掌握了随机变量取值的统计规律.
高中数学新人教版B版精品教案《人教版B高中数学选修2-3 2.3.1 离散型随机变量的数学期望》
2.3.1离散型随机变量的期望教学目标:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望。
知识与技能:了解离散型随机变量的均值或期望的意义,会根据离散型随机变量的分布列求出均值或期望.过程与方法:理解公式“若ξB (n,A3.1100=3.12.032.023.013.00100=⨯+⨯+⨯+⨯=3161升水,其中含有大肠杆菌n 个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=”发生,即n 个大肠杆菌中恰有个在此升水中,由n 次独立重复实验中事件A (在此升水中含一个大肠杆菌)恰好发生次的概率计算方法可求出P ξ=,进而可求E ξ解:记事件A :“在所取的1升水中含一个大肠杆菌”,则PA=.∴ P ξ==P n =C 1-n -(=0,1,2,…,n ).∴ ξ~Bn ,,故 E ξ =n ×=五、小结 :1离散型随机变量的期望,反映了随机变量取值的平均水平;2求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ服从二项分布的随机变量的期望Eξ=n六、课后作业:P64-65练习1,2,3,4 P69 A组1,2,31一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)解:令取取黄球个数 =0、1、2则的要布列为于是 E()=0×1×2×=故知红球个数的数学期望为2袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数①求的概率分布列②求的数学期望解:①依题意的取值为0、1、2、3、4=0时,取2黑 =0==1时,取1黑1白 =1==2时,取2白或1红1黑=2==3时,取1白1红,概率=3==4时,取2红,概率=4=∴分布列为(2)期望E=0×1×2×3×4×=3学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为1、2、3,求试验中三台投影仪产生故障的数学期望解:设表示产生故障的仪器数,A i表示第i台仪器出现故障(i=1、2、3)表示第i台仪器不出现故障,则:=1=A1···A2···A3=11-2 1-321-1 1-331-1 1-2= 123-212-223-2313123=2=A1· A2· A1···A2·A3= 12 1-3131-2231-1= 121323-3123=3=A1· A2·A3= 123∴=1×=12×=23×=3= 123注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是解:从5个球中同时取出2个球,出现红球的分布列为5 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,(1)求,的概率分布;(2)求,解:(Ⅰ),的可能取值分别为3,2,1,0根据题意知,所以(Ⅱ);因为,所以七、板书设计(略)八、教学反思:1离散型随机变量的期望,反映了随机变量取值的平均水平;2求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ服从二项分布的随机变量的期望Eξ=n 。
高中数学 第二章 概率 2.3 随机变量的数字特征 2.3.1
2.3.1 离散型随机变量的数学期望课堂导学三点剖析一、离散型随机变量的数学期望【例1】根据历次比赛或训练记录,甲、乙两射手在同样的条件下进行射击,成绩的分布列试比较甲、乙两射手射击水平的高低.解析:设甲、乙两射手射击一次所得的环数分别为X 1,X 2,则 E (X 1)=8×0.3+9×0.1+10×0.6=9.3, E(X 2)=8×0.2+9×0.5+10×0.3=9.1,这就是说射手甲射击所得环数的数学期望比射手乙射击所得环数的数学期望高,从而说明甲的平均射击水平比乙的稍高一点.如果两人进行比赛,甲赢的可能性较大. 温馨提示离散型随机变量的分布列具有的性质p i ≥0,i=1,2,…,n 和∑=ni ip1=1.二、利用概率知识求随机变量的分布列【例2】(2006山东高考,理20)袋中装着标有数字1,2,3,4,5的小球各2个.从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ξ表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率; (2)随机变量ξ的概率分布和数学期望; (3)计分介于20分到40分之间的概率.解:(1)方法一:“一次取出的3个小球上的数字互不相同”的事件记为A,则P(A)=31012121235C C C C C =32. 方法二:“一次取出的3个小球上的数字互不相同”的事件记为A,“一次取出的3个小球上有两个数字相同”的事件记为B ,则事件A 和事件B 是互斥事件,因为P(B)=310182215C C C C =31. 所以P(A)=1-P(B)=131-=32. (2)由题意,ξ所有可能的取值为2,3,4,5.P(ξ=2)=30131022121222=+C C C C C ;P(ξ=3)=15231022141224=+C C C C C ; P(ξ=4)= 10331022161226=+C C C C C ; P(ξ=5)=15831022181228=+C C C C C .因此ξ的数学期望为 Eξ=2×301+3×152+4×103+5×158=313.(3)“一次取球所得计分介于20分到40分之间”的事件记为C ,则 P (C )=P (ξ=3或ξ=4)=P(ξ=3)+P (ξ=4)=3013103152=+. 温馨提示求随机变量的分布列,首先弄清随机变量所有可能的取值,进而利用所学概率知识,求取每个值的概率,并列出表格即得分布列.三、找到随机变量的所有可能值并求每种取值的概率【例3】 设一汽车在前进途中要经过4个路口,汽车在每个路口遇到绿灯(允许通行)的概率为43,遇到红灯(禁止通行)的概率为41.假定汽车只在遇到红灯或到达目的地时才停止前进,ξ表示停车时已经通过的路口数,求:(1)ξ的概率分布列及期望Eξ;(2)停车时最多已通过3个路口的概率. 解析:(1)ξ可能取的值是0,1,2,3,4,P (ξ=0)=41, P(ξ=1)=43·41=163,P(ξ=2)=(43)2·41=649,P(ξ=3)=(43)3·41=25627,P(ξ=4)=(43)4=25681,Eξ=0+1×163+2×649+3×25627+4×25681=256525. (2)P(ξ≤3)=1-P(ξ=4)=125681-=256175.温馨提示本题的关键是正确求出各随机变量的概率值.各个击破类题演练 1一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,求其中所含白球个数的期望.解析:根据题目知所含白球数X 服从参数N=10,M=5,n=4的超几何分布,则 E (X )=1054⨯=N nM =2,所以从中任取4个球平均来说会含有2个白球. 变式提示 1根据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01.设工地上有一台大型设备,为保护设备有以下二种方案. 方案1:运走设备,此时需花费3 800元.方案2:建一保护围墙,需花费2 000元.但围墙无法防止大洪水,当大洪水来临,设备受损,损失费为60 000元. 试比较哪一种方案好.解析:对于方案1,花费为3 800元,损失为0元,花费与期望损失之和为3 800元;期望损失为60 000×0.1+0×0.99=600(元),所以花费与期望损失之和为2 000+600=2 600(元);比较二种方案,方案2的花费与期望损失之和较小,故方案2好. 类题演练 2一接待中心有A 、B 、C 、D 四部热线电话.已知某一时刻电话A 、B 占线的概率均为0.5,电话C 、D 占线的概率均为0.4,各部电话是否占线相互之间没有影响.假设该时刻有ξ部电话占线,试求随机变量ξ的概率分布和它的期望.ξ可能取的值是0,1,2,3,4. 解析:ξ可能取的值是0,1,2,3,4,P (ξ=0)=0.52×0.62=0.09.P (ξ=1)=12C ×0.52×0.62+12C ×0.52×0.4×0.6=0.3.P (ξ=2)=22C ×0.52×0.62+12C 12C ×0.52×0.4×0.6+22C ×0.52×0.42=0.37.P (ξ=3)=22C 12C ×0.52×0.4×0.6+12C 22C ×0.52×0.42=0.2.P(ξ=4)=0.52×0.42=0.04.所以Eξ=0×0.09+1×0.3+2×0.37+3×0.2+4×0.04=1.8.变式提示 2设Y=2X+3,则EY 的值为( )A.37B.4C.-1D.1 解析:EX=21-+61=31-,EY=E(2X+3)=2EX+3=32-+3=37.答案:A类题演练 3已知随机变量X 满足P (X=1)=0.3,P (X=2)=0.7,则EX 的值为( )A.0.6B.0.7C.0.3D.1.7 解析:EX=1×0.3+2×0.7=1.7. 答案:D变式提升 3袋中有1个白球和4个黑球,每次从中任取1个球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数ξ的概率分布.解析:ξ的所有可能取值为1,2,3,4,5,并且有P (ξ=1)=51=0.2, P(ξ=2)=54×41=0.2, P(ξ=3)=54×43×31=0.2,P (ξ=4)=54×43×32×21=0.2,P (ξ=5)=54×43×32×21×11=0.2,。
高中数学 2.3.1离散型随机变量的数学期望教案 新人教B版选修2-3
2.3.1离散型随机变量的数学期望一、教学目标:根据离散型随机变量的分布列求出均值或期望二、课前预习:1 一般地,设一个离散型随机变量X 所有可能取的值是,,......,,21n x x x 这些值对应的概率是,,........,,21n p p p 则_________________________________,叫做这个___________________或__________________(简称__________)。
2 离散型随机变量的数学期望刻画了这个离散型随机变量的________________________。
3 _______________________________)(=X E4 _______________________________)(=X E三、例题分析例1 根据历次比赛或训练记录,甲、乙两射手在同样的条件下进例2 一个袋子里装有大小相同的5个白球和5个黑球,从中任取4个,求其中所含白球个数的期望。
例3 根据气象预报,某地区下个月有小洪水的概率为0.25,有大洪水的概率为0.01.设工地上有一台大型设备,为保护设备有以下三种方案。
方案1:运走设备,此时需花费3800元。
方案2:建一保护围墙,需花费2000.但围墙无法防止大洪水,当大洪水来临,设备受损,损失费为60000元。
方案3:不采取措施,希望不发生洪水。
此时大洪水来临损失60000元,小洪水来临损失10000元。
试比较哪一种方案好。
四、课堂小练求E(X).张设一个奖,奖金为10 000元。
某人购买一张彩票,问这个人能期望得到多少奖金?3. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分ξ的期望4. 随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望.5. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以ξ表示取出球的最大号码,则Eξ=()A.4;B.5;C.4.5;D.6.篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望;⑵他罚球2次的得分η的数学期望;⑶他罚球3次的得分ξ的数学期望.五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ以及服从二项分布的随机变量的期望Eξ=np。
高中数学 第二章 概率 2.1 离散型随机变量教案 新人教B版选修2-3-新人教B版高二选修2-3数
2.1 离散型随机变量一、教学目标:1、知识目标:⑴理解随机变量的意义;⑵学会区分离散型与非离散型随机变量,并能举出离散性随机变量的例子;⑶理解随机变量所表示试验结果的含义,并恰当地定义随机变量。
2、能力目标:发展抽象、概括能力,提高实际解决问题的能力。
3、情感目标:学会合作探讨,体验成功,提高学习数学的兴趣.二、教学重点:随机变量、离散型随机变量、连续型随机变量的意义教学难点:随机变量、离散型随机变量、连续型随机变量的意义三、教学方法:讨论交流,探析归纳四、教学过程〔一〕、复习知识:1.随机事件及其概率:在每次试验的结果中,如果某事件一定发生,那么称为必然事件,记为U;相反,如果某事件一定不发生,那么称为不可能事件,记为φ.随机试验:为了研究随机现象的统计规律性,我们把各种科学实验和对事物的观测统称为试验.如果试验具有下述特点:〔1〕试验可以在相同条件下重复进行;〔2〕每次试验的所有可能结果都是明确可知的,并且不止一个;〔3〕每次试验之前不能预知将会出现哪一个结果,那么称这种试验为随机试验简称试验。
2.样本空间:样本点:在相同的条件下重复地进行试验,虽然每次试验的结果中所有可能发生的事件是可以明确知道的,并且其中必有且仅有一个事件发生,但是在试验之前却无法预知究意哪一个事件将在试验的结果中发生.试验的结果中每一个可能发生的事件叫做试验的样本点,通常用字母ω表示.样本空间:试验的所有样本点ω1,ω2,ω3,…构成的集合叫做样本空间,通常用字母Ω表示,于是,我们有Ω={ω1,ω2,ω3,… }3.古典概型的特征:古典概型的随机试验具有下面两个特征:〔1〕有限性.只有有限多个不同的基本事件;〔2〕等可能性.每个基本事件出现的可能性相等.概率的古典定义在古典概型中,如果基本事件的总数为n,事件A所包含的基本事件个数为r〔〕,那么定义事件A的概率为.即(二)、探析新课:1、随机变量的概念:随机变量是概率论的重要概念,把随机试验的结果数量化可使我们对随机试验有更清晰的了解,还可借助更多的数学知识对其进行深入研究.有的试验结果本身已具数值意义,如产品抽样检查时的废品数,而有些虽本无数值意义但可用某种方式与数值联系,如抛硬币时规定出现徽花时用1表示,出现字时用0表示.这些数值因试验结果的不确定而带有随机性,因此也就称为随机变量.2、随机变量的定义:如果对于试验的样本空间中的每一个样本点,变量都有一个确定的实数值与之对应,那么变量是样本点的实函数,记作.我们称这样的变量为随机变量.3、假设随机变量只能取有限个数值或可列无穷多个数值那么称为离散随机变量,在高中阶段我们只研究随机变量取有限个数值的情形〔三〕、例题探析例1、在10件产品中有2件不合格品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3.1 离散型随机变量的数学期望1.理解离散型随机变量的数学期望的意义和性质,会根据离散型随机变量的分布列求出数学期望.(重点)2.掌握二点分布、二项分布的数学期望.(重点)3.会利用离散型随机变量的数学期望解决一些相关问题.(难点)[基础·初探]教材整理1 离散型随机变量的数学期望阅读教材P59~P60,完成下列问题.1.定义一般地,设一个离散型随机变量X所有可能取的值是x1,x2,…,x n,这些值对应的概率是p1,p2,…,p n,则E(X)=x1p1+x2p2+…+x n p n叫做这个离散型随机变量X的均值或数学期望(简称期望).2.意义刻画了离散型随机变量的平均取值水平.1.下列说法正确的有________(填序号).①随机变量X的数学期望E(X)是个变量,其随X的变化而变化;②随机变量的均值反映样本的平均水平;③若随机变量X的数学期望E(X)=2,则E(2X)=4;④随机变量X的均值E(X)=x1+x2+…+x nn.【解析】①错误,随机变量的数学期望E(X)是个常量,是随机变量X本身固有的一个数字特征.②错误,随机变量的均值反映随机变量取值的平均水平.③正确,由均值的性质可知.④错误,因为E(X)=x1p1+x2p2+…+x n p n.【答案】③2.已知离散型随机变量X的分布列为:则X 的数学期望E (X )=【解析】 E (X )=1×35+2×310+3×110=32.【答案】 323.设E (X )=10,则E (3X +5)=________.【导学号:62980052】【解析】 E (3X +5)=3E (X )+5=3×10+5=35. 【答案】 35教材整理2 常见几种分布的数学期望 阅读教材P 60例1以上部分,完成下列问题.1.若随机变量X 服从二项分布B ⎝ ⎛⎭⎪⎫4,13,则E (X )的值为________. 【解析】 E (X )=np =4×13=43.【答案】 432.篮球运动员在比赛中每次罚球命中得1分,不命中得0分.已知他命中的概率为0.8,则罚球一次得分X 的期望是________.【解析】 因为P (X =1)=0.8,P (X =0)=0.2,所以E (X )=1×0.8+0×0.2=0.8.【答案】 0.8[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:[小组合作型]二点分布与二项分布的数学期望某运动员投篮命中率为p=0.6.(1)求投篮1次时命中次数X的数学期望;(2)求重复5次投篮时,命中次数Y的数学期望.【精彩点拨】(1)利用二点分布求解.(2)利用二项分布的数学期望公式求解.【自主解答】(1)投篮1次,命中次数X的分布列如下表:则E(X)=0.6.(2)由题意,重复5次投篮,命中的次数Y服从二项分布,即Y~B(5,0.6),则E(Y)=np=5×0.6=3.1.常见的两种分布的均值设p为一次试验中成功的概率,则(1)二点分布E(X)=p;(2)二项分布E(X)=np.熟练应用上述公式可大大减少运算量,提高解题速度.2.二点分布与二项分布辨析(1)相同点:一次试验中要么发生要么不发生.(2)不同点:①随机变量的取值不同,二点分布随机变量的取值为0,1,二项分布中随机变量的取值x=0,1,2,…,n.②试验次数不同,二点分布一般只有一次试验;二项分布则进行n次试验.[再练一题]1.(1)某种种子每粒发芽的概率为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,每个坑至多补种一次,补种的种子数记为X,则X的数学期望为( )A.100B.200C.300D.400(2)已知某离散型随机变量X服从的分布列如下,则随机变量X的数学期望E(X)等于( )A.19B.9C.13D.23【解析】 (1)由题意可知,补种的种子数记为X ,X 服从二项分布,即X ~B (1 000,0.1),所以不发芽种子的数学期望为1 000×0.1=100.所以补种的种子数的数学期望为2×100=200.(2)由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23.【答案】 (1)B (2)D求离散型随机变量的数学期望在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,…,6),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率; (2)甲、乙两单位之间的演出单位个数ξ的分布列与均值.【精彩点拨】 (1)可先求“甲乙两单位的演出序号至少有一个为奇数”的对立事件的概率;(2)先求出ξ的取值及每个取值的概率,然后求其分布列和均值.【自主解答】 只考虑甲、乙两单位的相对位置,故可用组合计算基本事件数. (1)设A 表示“甲、乙的演出序号至少有一个为奇数”,则A 表示“甲、乙的演出序号均为偶数”,由等可能性事件的概率计算公式得P (A )=1-P (A )=1-C 23C 26=1-15=45.(2)ξ的所有可能取值为0,1,2,3,4,且P (ξ=0)=5C 26=13,P (ξ=1)=4C 26=415,P (ξ=2)=3C 26=15,P (ξ=3)=2C 26=215,P (ξ=4)=1C 26=115. 从而知ξ的分布列为所以E (ξ)=0×13+1×15+2×5+3×15+4×15=3.求离散型随机变量ξ的数学期望的步骤1.根据ξ的实际意义,写出ξ的全部取值.2.求出ξ的每个值的概率.3.写出ξ的分布列.4.利用定义求出数学期望.其中第(1)、(2)两条是解答此类题目的关键,在求解过程中应注重分析概率的相关知识.[再练一题]2.盒中装有5节同牌号的五号电池,其中混有两节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X 的分布列及数学期望.【解】 X 可取的值为1,2,3, 则P (X =1)=35,P (X =2)=25×34=310,P (X =3)=25×14×1=110.抽取次数X 的分布列为E (X )=1×35+2×310+3×110=2.[探究共研型]离散型随机变量的均值实际应用探究1 某篮球明星罚球命中率为0.7,罚球命中得1分,不中得0分,则他罚球一次的得分X 可以取哪些值?X 取每个值时的概率是多少?【提示】 随机变量X 可能取值为0,1.X 取每个值的概率分别为P (X =0)=0.3,P (X =1)=0.7.探究2 在探究1中,若该球星在一场比赛中共罚球10次,命中8次,那么他平均每次罚球得分是多少?【提示】 每次平均得分为810=0.8. 探究3 在探究1中,你能求出在他参加的各场比赛中,罚球一次得分大约是多少吗?为什么?【提示】 在球星的各场比赛中,罚球一次的得分大约为0×0.3+1×0.7=0.7(分).因为在该球星参加各场比赛中平均罚球一次的得分只能用随机变量X 的数学期望来描述他总体得分的平均水平.具体到每一场比赛罚球一次的平均得分应该是非常接近X 的均值的一个分数.随机抽取某厂的某种产品200件,经质检,其中一等品126件,二等品50件,三等品20件,次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元,设1件产品的利润(单位:元)为X .(1)求X 的分布列;(2)求1件产品的平均利润(即X 的数学期望);(3)经技术革新后,仍有四个等级的产品,但次品率降为1%,一等品率提高为70%,如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?【精彩点拨】 根据利润的意义写出ξ的取值→写出ξ的分布列→求出数学期望EX →利用期望回答问题【自主解答】 (1)X 的所有可能取值有6,2,1,-2.P (X =6)=126200=0.63, P (X =2)=50200=0.25,P (X =1)=20200=0.1, P (X =-2)=4200=0.02. 故X 的分布列为:(2)E (X )(3)设技术革新后的三等品率为x ,则此时1件产品的平均利润为E (X )=6×0.7+2×(1-0.7-0.01-x )+1×x +(-2)×0.01=4.76-x (0≤x ≤0.29).依题意,E (X )≥4.73,即4.76-x ≥4.73, 解得x ≤0.03,所以三等品率最多为3%.1.实际问题中的期望问题均值在实际生活中有着广泛的应用,如对体育比赛的成绩预测,消费预测,工程方案的预测,产品合格率的预测,投资收益的预测等方面,都可以通过随机变量的期望来进行估计.2.概率模型的三个解答步骤(1)审题,确定实际问题是哪一种概率模型,可能用到的事件类型,所用的公式有哪些.(2)确定随机变量的分布列,计算随机变量的期望.(3)对照实际意义,回答概率,均值等所表示的结论.[再练一题]3.甲、乙两射击运动员进行射击比赛,射击相同的次数,已知两运动员击中的环数X 稳定在7,8,9,10环.将它们的比赛成绩画成频率分布直方图如图231甲和图乙所示.图231(1)根据这次比赛的成绩频率分布直方图推断乙击中8环的概率P(X乙=8),以及甲击中9环以上(包括9环)的概率;(2)根据这次比赛的成绩估计甲、乙谁的水平更高(即平均每次射击的环数谁大).【解】(1)由图乙可知P(X乙=7)=0.2,P(X乙=9)=0.2,P(X乙=10)=0.35.所以P(X乙=8)=1-0.2-0.2-0.35=0.25.同理P(X甲=7)=0.2,P(X甲=8)=0.15,P(X甲=9)=0.3,所以P(X甲=10)=1-0.2-0.15-0.3=0.35.P(X甲≥9)=0.3+0.35=0.65.(2)因为E(X甲)=7×0.2+8×0.15+9×0.3+10×0.35=8.8,E(X乙)=7×0.2+8×0.25+9×0.2+10×0.35=8.7,则有E(X甲)>E(X乙),所以估计甲的水平更高.[构建·体系]1.一名射手每次射击中靶的概率为0.8,则独立射击3次中靶的次数X的数学期望是( )A.0.83B.0.8C.2.4D.3【解析】 E (X )=3×0.8=2.4. 【答案】 C2.口袋中有编号分别为1,2,3的三个大小和形状相同的小球,从中任取2个,则取出的球的最大编号X 的均值为( )A.13B.23 C.2D.83【解析】 X 的取值为2,3.因为P (X =2)=1C 23=13,P =(X =3)=C 12C 23=23.所以E (X )=2×13+3×23=83.【答案】 D3.某射手射击所得环数ξ的分布列如下:已知ξ的均值E (ξ)=【解析】 依题意得{ x +0.1+0.3+y =1,7x +0.8+2.7+10y =8.9,即{ x +y =0.6,7x +10y =5.4,解得y =0.4.【答案】 0.44.设离散型随机变量X 可能的取值为1,2,3,P (X =k )=ak +b (k =1,2,3).又X 的均值E (X )=3,则a +b =________.【导学号:62980053】【解析】 ∵P (X =1)=a +b ,P (X =2)=2a +b , P (X =3)=3a +b ,∴E (X )=1×(a +b )+2×(2a +b )+3×(3a +b )=3, ∴14a +6b =3.①又∵(a +b )+(2a +b )+(3a +b )=1, ∴6a +3b =1.②∴由①②可知a =12,b =-23,∴a +b =-16.【答案】 -165.袋中有4个黑球,3个白球,2个红球,从中任取2个球,每取到1个黑球记0分,每取到1个白球记1分,每取到1个红球记2分,用X 表示取得的分数.求:(1)X 的分布列; (2)X 的均值.【解】 (1)由题意知,X 可能取值为0,1,2,3,4. P (X =0)=C 24C 29=16,P (X =1)=C 13C 14C 29=13,P (X =2)=C 14C 12+C 23C 29=1136, P (X =3)=C 12C 13C 29=16,P (X =4)=C 22C 29=136.故X 的分布列为(2)E (X )=0×16+1×13+2×36+3×6+4×36=9.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。