2020高考数学专题复习-解析几何专题

合集下载

2020版高考数学新增分大一轮浙江专用版讲义:第九章 平面解析几何高考专题突破六 第3课时 含解析

2020版高考数学新增分大一轮浙江专用版讲义:第九章 平面解析几何高考专题突破六 第3课时 含解析

第3课时 证明与探索性问题题型一 证明问题例1 设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP →= 2 NM →.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP →·PQ →=1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . (1)解 设P (x ,y ),M (x 0,y 0),则N (x 0,0), NP →=(x -x 0,y ),NM →=(0,y 0). 由NP →= 2 NM →,得x 0=x ,y 0=22y .因为M (x 0,y 0)在C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2. (2)证明 由题意知F (-1,0). 设Q (-3,t ),P (m ,n ),则OQ →=(-3,t ),PF →=(-1-m ,-n ), OQ →·PF →=3+3m -tn ,OP →=(m ,n ),PQ →=(-3-m ,t -n ). 由OP →·PQ →=1,得-3m -m 2+tn -n 2=1. 又由(1)知m 2+n 2=2, 故3+3m -tn =0.所以OQ →·PF →=0,即OQ →⊥PF →. 又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .思维升华 圆锥曲线中的证明问题多涉及证明定值、点在定直线上等,有时也涉及一些否定性命题,证明方法一般是采用直接法或反证法.跟踪训练1 已知椭圆T :x 2a 2+y 2b 2=1(a >b >0)的一个顶点A (0,1),离心率e =63,圆C :x 2+y 2=4,从圆C 上任意一点P 向椭圆T 引两条切线PM ,PN . (1)求椭圆T 的方程; (2)求证:PM ⊥PN .(1)解 由题意可知b =1,c a =63,即2a 2=3c 2,又a 2=b 2+c 2,联立解得a 2=3,b 2=1. ∴椭圆T 的方程为x 23+y 2=1.(2)证明 方法一 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN . ②当P 点横坐标不为±3时,设P (x 0,y 0),则x 20+y 20=4,设k PM =k ,PM 的方程为y -y 0=k (x -x 0),联立方程组⎩⎪⎨⎪⎧y -y 0=k (x -x 0),x 23+y 2=1, 消去y 得(1+3k 2)x 2+6k (y 0-kx 0)x +3k 2x 20-6kx 0y 0+3y 20-3=0, 依题意Δ=36k 2(y 0-kx 0)2-4(1+3k 2)(3k 2x 20-6kx 0y 0+3y 20-3)=0, 化简得(3-x 20)k 2+2x 0y 0k +1-y 20=0,又k PM ,k PN 为方程的两根,所以k PM ·k PN =1-y 203-x 20=1-(4-x 20)3-x 20=x 20-33-x 20=-1.所以PM ⊥PN . 综上知PM ⊥PN .方法二 ①当P 点横坐标为±3时,纵坐标为±1,PM 斜率不存在,PN 斜率为0,PM ⊥PN . ②当P 点横坐标不为±3时,设P (2cos θ,2sin θ), 切线方程为y -2sin θ=k (x -2cos θ), ⎩⎪⎨⎪⎧y -2sin θ=k (x -2cos θ),x 23+y 2=1, 联立得(1+3k 2)x 2+12k (sin θ-k cos θ)x +12(sin θ-k cos θ)2-3=0, 令Δ=0,即Δ=144k 2(sin θ-k cos θ)2-4(1+3k 2)[12(sin θ-k cos θ)2-3]=0, 化简得(3-4cos 2θ)k 2+4sin 2θ·k +1-4sin 2θ=0, k PM ·k PN =1-4sin 2θ3-4cos 2θ=(4-4sin 2θ)-33-4cos 2θ=-1.所以PM ⊥PN . 综上知PM ⊥PN . 题型二 探索性问题例2 (2018·浙江重点中学考前热身联考)在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的动点S 到椭圆E的右焦点F (1,0)的距离的最小值为2-1. (1)求椭圆E 的方程;(2)若过点F 作与x 轴不垂直的直线l 交椭圆于P ,Q 两点,在线段OF 上是否存在点M (m ,0),使得以MP ,MQ 为邻边的平行四边形是菱形?若存在,求出m 的取值范围;若不存在,请说明理由.解 (1)因为椭圆E :x 2a 2+y 2b2=1(a >b >0)上的动点S 到椭圆E 的右焦点F (1,0)的距离的最小值为2-1,所以⎩⎪⎨⎪⎧c =1,a -c =2-1,b 2=a 2-c 2,得⎩⎪⎨⎪⎧b 2=1,a 2=2. 所以椭圆E 的方程为x 22+y 2=1.(2)在线段OF 上存在点M (m ,0),使得以MP ,MQ 为邻边的平行四边形是菱形.因为直线l 与x 轴不垂直,则可设直线l 的方程为y =k (x -1)(k ≠0),P (x 1,y 1),Q (x 2,y 2),x 1≠x 2, 由⎩⎪⎨⎪⎧y =k (x -1),x 22+y 2=1,得(1+2k 2)x 2-4k 2x +2k 2-2=0, 由题意知,Δ>0,所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,因为以MP ,MQ 为邻边的平行四边形是菱形, 所以|MP |=|MQ |,所以(x 1-m )2+y 21=(x 2-m )2+y 22,即(x 1-m )2+1-x 212=(x 2-m )2+1-x 222,所以(x 1-x 2)⎝⎛⎭⎫x 1+x 22-2m =0,因为x 1≠x 2, 则m =x 1+x 24,因为x 1+x 2=4k 22k 2+1,所以m =k 22k 2+1=k 2+12-122k 2+1=12-12(2k 2+1)(k ≠0),所以0<m <12.所以在线段OF 上存在点M (m ,0),使得以MP ,MQ 为邻边的平行四边形是菱形,且m 的取值范围为⎝⎛⎭⎫0,12. 思维升华 解决探索性问题的注意事项探索性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在. (1)当条件和结论不唯一时要分类讨论;(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件;(3)当条件和结论都不知,按常规方法解题很难时,要开放思维,采取另外合适的方法.跟踪训练2 在平面直角坐标系xOy 中,曲线C :y =x 24与直线l :y =kx +a (a >0)交于M ,N 两点,(1)当k =0时,分别求C 在点M 和N 处的切线方程;(2)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?请说明理由. 解 (1)由题设可得M (2a ,a ),N (-2a ,a ), 或M (-2a ,a ),N (2a ,a ).又y ′=x 2,故y =x 24在x =2a 处的导数值为a ,C 在点(2a ,a )处的切线方程为y -a =a (x -2a ), 即ax -y -a =0.y =x 24在x =-2a 处的导数值为-a ,C 在点(-2a ,a )处的切线方程为y -a =-a (x +2a ), 即ax +y +a =0.故所求切线方程为ax -y -a =0和ax +y +a =0. (2)存在符合题意的点,证明如下:设P (0,b )为符合题意的点,M (x 1,y 1),N (x 2,y 2), 直线PM ,PN 的斜率分别为k 1,k 2.将y =kx +a 代入C 的方程得x 2-4kx -4a =0. 故x 1+x 2=4k ,x 1x 2=-4a . 从而k 1+k 2=y 1-b x 1+y 2-bx 2=2kx 1x 2+(a -b )(x 1+x 2)x 1x 2=k (a +b )a. 当b =-a 时,有k 1+k 2=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM =∠OPN ,所以点P (0,-a )符合题意.1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,点⎝⎛⎭⎫3,12在C 上. (1)求椭圆C 的方程;(2)过点A (-2,0)作直线AQ 交椭圆C 于另外一点Q ,交y 轴于点R ,P 为椭圆C 上一点,且AQ ∥OP ,求证:|AQ |·|AR ||OP |2为定值.(1)解 由题意可得e =c a =32,3a 2+14b 2=1,所以a =2,c =3,b =1,所以椭圆C 的方程为x24+y 2=1.(2)证明 显然直线AQ 斜率存在,设直线AQ :y =k (x +2),R (0,2k ),P (x P ,y P ), 由⎩⎪⎨⎪⎧y =k (x +2),x 24+y 2=1,得(1+4k 2)x 2+16k 2x +16k 2-4=0, 由根与系数的关系可得⎩⎪⎨⎪⎧x 1+x 2=-16k 21+4k 2,x 1·x 2=16k 2-41+4k2,x 1=x A =-2,x 2=x Q =2-8k 21+4k 2,则|AQ |=1+k 2|x Q -x A |=1+k 2⎪⎪⎪⎪⎪⎪2-8k 21+4k 2+2=1+k 2·41+4k 2,|AR |=21+k 2, |OP |=1+k 2|x P |,令直线OP 为y =kx 且令x P >0.由⎩⎪⎨⎪⎧y =kx ,x 24+y 2=1,得(1+4k 2)x 2-4=0,x P =41+4k 2, 所以|OP |=21+k 21+4k 2,|AQ |·|AR ||OP |2=41+4k2·241+4k 2=2,所以定值为2.2.已知椭圆C 的中心为坐标原点,焦点在x 轴上,离心率e =32,以椭圆C 的长轴和短轴为对角线的四边形的周长为4 5.(1)求椭圆C 的标准方程;(2)若经过点P (1,0)的直线l 交椭圆C 于A ,B 两点,是否存在直线l 0:x =x 0(x 0>2),使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立,若存在,求出x 0的值;若不存在,请说明理由.解 (1)设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵c a =32,∴c =32a ,又∵4a 2+b 2=45, ∴a 2+b 2=5,由b 2=a 2-c 2=14a 2,解得a =2,b =1,c = 3. ∴椭圆C 的标准方程为x 24+y 2=1.(2)若直线l 的斜率不存在,则直线l 0为任意直线都满足要求; 当直线l 的斜率存在时,设其方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2)(不妨令x 1>1>x 2), 则d A =x 0-x 1,d B =x 0-x 2,|P A |=1+k 2(x 1-1),|PB |=1+k 2(1-x 2), ∵d A d B =|P A ||PB |, ∴x 0-x 1x 0-x 2=1+k 2(x 1-1)1+k 2(1-x 2)=x 1-11-x 2, 解得x 0=2x 1x 2-(x 1+x 2)(x 1+x 2)-2.由⎩⎪⎨⎪⎧x 24+y 2=1,y =k (x -1),得(1+4k 2)x 2-8k 2x +4k 2-4=0, 由题意知,Δ>0显然成立, x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2,x 0=8k 2-81+4k 2-8k 21+4k 28k 21+4k 2-2=4.综上可知,存在直线l 0:x =4,使得A ,B 到直线l 0的距离d A ,d B 满足d A d B =|P A ||PB |恒成立.3.已知顶点是坐标原点的抛物线Γ的焦点F 在y 轴正半轴上,圆心在直线y =12x 上的圆E 与x 轴相切,且E ,F 关于点M (-1,0)对称. (1)求E 和Γ的标准方程;(2)过点M 的直线l 与E 交于A ,B ,与Γ交于C ,D ,求证:|CD |>2|AB |. (1)解 设Γ的标准方程为x 2=2py (p >0),则F ⎝⎛⎭⎫0,p 2. 已知E 在直线y =12x 上,故可设E (2a ,a ).因为E ,F 关于M (-1,0)对称,所以⎩⎪⎨⎪⎧2a +02=-1,p2+a 2=0,解得⎩⎪⎨⎪⎧a =-1,p =2.所以Γ的标准方程为x 2=4y .因为E 与x 轴相切,故半径r =|a |=1, 所以E 的标准方程为(x +2)2+(y +1)2=1.(2)证明 由题意知,直线l 的斜率存在, 设l 的斜率为k ,那么其方程为y =k (x +1)(k ≠0), 则E (-2,-1)到l 的距离d =|k -1|k 2+1, 因为l 与E 交于A ,B 两点, 所以d 2<r 2,即(k -1)2k 2+1<1,解得k >0,所以|AB |=21-d 2=22kk 2+1. 由⎩⎪⎨⎪⎧x 2=4y ,y =k (x +1)消去y 并整理得x 2-4kx -4k =0. Δ=16k 2+16k >0恒成立,设C (x 1,y 1),D (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4k , 那么|CD |=k 2+1|x 1-x 2| =k 2+1·(x 1+x 2)2-4x 1x 2 =4k 2+1·k 2+k .所以|CD |2|AB |2=16(k 2+1)(k 2+k )8kk 2+1=2(k 2+1)2(k 2+k )k =2k (k 2+1)2(k +1)k >2k k =2.所以|CD |2>2|AB |2,即|CD |>2|AB |.4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的长轴与短轴之和为6,椭圆上任一点到两焦点F 1,F 2的距离之和为4.(1)求椭圆的标准方程;(2)若直线AB :y =x +m 与椭圆交于A ,B 两点,C ,D 在椭圆上,且C ,D 两点关于直线AB 对称,问:是否存在实数m ,使|AB |=2|CD |,若存在,求出m 的值;若不存在,请说明理由. 解 (1)由题意,2a =4,2a +2b =6,∴a =2,b =1. ∴椭圆的标准方程为x 24+y 2=1.(2)∵C ,D 关于直线AB 对称,设直线CD 的方程为y =-x +t ,联立⎩⎪⎨⎪⎧y =-x +t ,x 24+y 2=1,消去y ,得5x 2-8tx +4t 2-4=0, Δ=64t 2-4×5×(4t 2-4)>0,解得t 2<5, 设C ,D 两点的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=8t5,x 1x 2=4t 2-45,设CD 的中点为M (x 0,y 0),∴⎩⎨⎧x 0=x 1+x 22=4t 5,y 0=-x 0+t =t5,∴M ⎝⎛⎭⎫4t 5,t 5,又点M 也在直线y =x +m 上, 则t 5=4t 5+m ,∴t =-5m3, ∵t 2<5,∴m 2<95.则|CD |=1+1|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=2·45-t 25.同理|AB |=2·45-m 25.∵|AB |=2|CD |,∴|AB |2=2|CD |2, ∴2t 2-m 2=5,∴m 2=4541<95,∴存在实数m ,使|AB |=2|CD |,此时m 的值为±320541.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,过右焦点F 且斜率为1的直线交椭圆C 于A ,B 两点,N 为弦AB的中点,O 为坐标原点. (1)求直线ON 的斜率k ON ;(2)求证:对于椭圆C 上的任意一点M ,都存在θ∈[0,2π),使得OM →=cos θOA →+sin θOB →成立. (1)解 设椭圆的焦距为2c ,因为c a =63,所以a 2-b 2a 2=23,故有a 2=3b 2.从而椭圆C 的方程可化为x 2+3y 2=3b 2.① 由题意知右焦点F 的坐标为(2b ,0), 据题意有AB 所在的直线方程为y =x -2b .②由①②得4x 2-62bx +3b 2=0.③设A (x 1,y 1),B (x 2,y 2),弦AB 的中点N (x 0,y 0), 由③及根与系数的关系得x 0=x 1+x 22=32b 4,y 0=x 0-2b =-24b . 所以k ON =y 0x 0=-13,即为所求.(2)证明 显然OA →与OB →可作为平面向量的一组基底,由平面向量基本定理可知,对于这一平面内的向量OM →,有且只有一对实数λ,μ,使得等式OM →=λOA →+μOB →成立.设M (x ,y ),由(1)中各点的坐标有(x ,y )=λ(x 1,y 1)+μ(x 2,y 2),故x =λx 1+μx 2,y =λy 1+μy 2. 又因为点M 在椭圆C 上,所以有(λx 1+μx 2)2+3(λy 1+μy 2)2=3b 2,整理可得λ2(x 21+3y 21)+μ2(x 22+3y 22)+2λμ(x 1x 2+3y 1y 2)=3b 2.④由③有x 1+x 2=32b 2,x 1·x 2=3b 24.所以x 1x 2+3y 1y 2=x 1x 2+3(x 1-2b )(x 2-2b ) =4x 1x 2-32b (x 1+x 2)+6b 2 =3b 2-9b 2+6b 2=0.⑤ 又点A ,B 在椭圆C 上,故有x 21+3y 21=3b 2, x 22+3y 22=3b 2.⑥将⑤,⑥代入④可得λ2+μ2=1.所以,对于椭圆上的每一个点M ,总存在一对实数,使等式OM →=λOA →+μOB →成立,且λ2+μ2=1. 所以存在θ∈[0,2π),使得λ=cos θ,μ=sin θ.也就是:对于椭圆C 上任意一点M ,总存在θ∈[0,2π),使得等式OM →=cos θOA →+sin θOB →成立.6.(2018·浙江五校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-2,0),F 2(2,0),点M ⎝⎛⎭⎫2,33在椭圆C 上.(1)求椭圆C 的标准方程;(2)已知椭圆的上顶点为N ,是否存在直线l 与椭圆C 相交于A ,B 两点,使得NA →·NB →=0,|AB |=322?若存在,求出直线l 的条数;若不存在,请说明理由. 解 (1)方法一 由题意及椭圆的定义, 可得(2+2)2+13+(2-2)2+13=533+33=23=2a ,得a =3,b =(3)2-(2)2=1,故椭圆C 的标准方程为x23+y 2=1.方法二 依题意可得⎩⎪⎨⎪⎧2a 2+13b 2=1,a 2-b 2=2,即3b 4-b 2-2=0,解得b 2=1或b 2=-23(舍去),可得a 2=3,故椭圆C 的标准方程为x 23+y 2=1.(2)由(1)可得N (0,1).显然当直线l 的斜率不存在时,不满足题意, 则直线l 的斜率存在,设直线l 的方程为y =kx +m , 由⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消去y ,整理得(1+3k 2)x 2+6kmx +3(m 2-1)=0, Δ=36k 2m 2-12(1+3k 2)(m 2-1)=12(1+3k 2-m 2)>0, 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-6km 1+3k 2,x 1x 2=3(m 2-1)1+3k 2,y 1+y 2=k (x 1+x 2)+2m=-6k 2m 1+3k 2+2m +6k 2m 1+3k 2=2m 1+3k 2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2 =3k 2(m 2-1)1+3k 2-6k 2m 21+3k 2+m 2+3k 2m 21+3k 2=m 2-3k 21+3k 2.所以|x 1-x 2|=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=231+3k 23k 2-m 2+1,由|AB |=1+k 2|x 1-x 2|=1+k 2·231+3k 23k 2-m 2+1=322,可得1+k 21+3k21-m 2+3k 2=64.① 由NA →·NB →=0,可得(x 1,y 1-1)·(x 2,y 2-1)=0, 所以x 1x 2+y 1y 2-(y 1+y 2)+1=0, 即3(m 2-1)1+3k 2+m 2-3k 21+3k 2-2m 1+3k 2+1=0, 得2m 2-m -1=0,解得m =1或m =-12.当m =1时,代入①得1+k 21+3k23k 2=64,化简得k 4-2k 2+1=0,解得k 2=1,k =±1,此时Δ>0,符合题意.当m =-12时,代入①得1+k 21+3k 2 3k 2+34=64, 化简得k 4-4k 2-1=0,所以k 2=2+5,k =±2+5, 此时Δ>0,符合题意. 综上所述,存在满足题意的直线l ,且直线l 的条数为4.。

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

专题8.5 椭圆及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇平面解析几何专题8.05椭圆及其几何性质【考试要求】1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用;2.掌握椭圆的定义、几何图形、标准方程及简单几何性质.【知识梳理】1.椭圆的定义在平面内与两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.其数学表达式:集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若a>c,则集合P为椭圆;(2)若a=c,则集合P为线段;(3)若a<c,则集合P为空集.2.椭圆的标准方程和几何性质【微点提醒】点P (x 0,y 0)和椭圆的位置关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆的离心率e 越大,椭圆就越圆.( )(3)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( ) (4)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同.( )【教材衍化】2.(选修2-1P49T1改编)若F 1(3,0),F 2(-3,0),点P 到F 1,F 2的距离之和为10,则P 点的轨迹方程是________.3.(选修2-1P49A6改编)已知点P 是椭圆x 25+y 24=1上y 轴右侧的一点,且以点P 及焦点F 1,F 2为顶点的三角形的面积等于1,则点P 的坐标为________.【真题体验】4.(2018·张家口调研)椭圆x 216+y 225=1的焦点坐标为( )A.(±3,0)B.(0,±3)C.(±9,0)D.(0,±9)5.(2018·全国Ⅰ卷)已知椭圆C :x 2a 2+y 24=1的一个焦点为(2,0),则C 的离心率为( )A.13B.12C.22D.2236.(2018·武汉模拟)曲线x 225+y 29=1与曲线x 225-k +y 29-k =1(k <9)的( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等【考点聚焦】考点一 椭圆的定义及其应用【例1】 (1)如图,圆O 的半径为定长r ,A 是圆O 内一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和半径OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( )A.椭圆B.双曲线C.抛物线D.圆(2)(2018·德阳模拟)设P 为椭圆C :x 249+y 224=1上一点,F 1,F 2分别是椭圆C 的左、右焦点,且△PF 1F 2的重心为点G ,若|PF 1|∶|PF 2|=3∶4,那么△GPF 1的面积为( ) A.24 B.12C.8D.6【规律方法】 (1)椭圆定义的应用主要有:判断平面内动点的轨迹是否为椭圆,求焦点三角形的周长、面积及弦长、最值和离心率等.(2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题.【训练1】 (1)(2018·福建四校联考)已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( ) A.2 3B.6C.4 3D.2(2)(2018·衡水中学调研)设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为________.考点二 椭圆的标准方程【例2】 (1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( ) A.x 264-y 248=1 B.x 248+y 264=1 C.x 248-y 264=1D.x 264+y 248=1 (2)(一题多解)若椭圆经过两点(2,0)和(0,1),则椭圆的标准方程为________________.【规律方法】 根据条件求椭圆方程的主要方法有:(1)定义法:根据题目所给条件确定动点的轨迹满足椭圆的定义.(2)待定系数法:根据题目所给的条件确定椭圆中的a ,b .当不知焦点在哪一个坐标轴上时,一般可设所求椭圆的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ),不必考虑焦点位置,用待定系数法求出m ,n 的值即可. 【训练2】 (1)(2018·济南模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),若长轴长为6,且两焦点恰好将长轴三等分,则此椭圆的标准方程为( ) A.x 236+y 232=1 B.x 29+y 28=1 C.x 29+y 25=1D.x 216+y 212=1 (2)(2018·榆林模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的焦点,过F 2且垂直于x 轴的直线交椭圆C 于A ,B 两点,且|AB |=3,则C 的方程为( ) A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1D.x 25+y 24=1考点三 椭圆的几何性质多维探究角度1 椭圆的长轴、短轴、焦距【例3-1】 (2018·泉州质检)已知椭圆x 2m -2+y 210-m =1的长轴在x 轴上,焦距为4,则m 等于( )A.8B.7C.6D.5角度2 椭圆的离心率【例3-2】 (2018·全国Ⅱ卷)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,A 是C 的左顶点,点P 在过A 且斜率为36的直线上,△PF 1F 2为等腰三角形,∠F 1F 2P =120°,则C 的离心率为( ) A.23 B.12C.13D.14角度3 与椭圆性质有关的最值或范围问题【例3-3】 (2017·全国Ⅰ卷)设A ,B 是椭圆C :x 23+y 2m =1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A.(0,1]∪[9,+∞)B.(0,3]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)【规律方法】1.求椭圆离心率的方法(1)直接求出a,c的值,利用离心率公式直接求解.(2)列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e的方程(或不等式)求解.2.在求与椭圆有关的一些量的范围,或者最值时,经常用到椭圆标准方程中x,y的范围、离心率的范围等不等关系.【训练3】(1)以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()A.1B. 2C.2D.2 2(2)(2019·豫南九校联考)已知两定点A(-1,0)和B(1,0),动点P(x,y)在直线l:y=x+3上移动,椭圆C 以A,B为焦点且经过点P,则椭圆C的离心率的最大值为()A.55 B.105 C.255 D.2105【反思与感悟】1.椭圆的定义揭示了椭圆的本质属性,正确理解、掌握定义是关键,应注意定义中的常数大于|F 1F 2|,避免了动点轨迹是线段或不存在的情况.2.求椭圆的标准方程,常采用“先定位,后定量”的方法(待定系数法).先“定位”,就是先确定椭圆和坐标系的相对位置,以椭圆的中心为原点的前提下,看焦点在哪条坐标轴上,确定标准方程的形式;再“定量”,就是根据已知条件,通过解方程(组)等手段,确定a 2,b 2的值,代入所设的方程,即可求出椭圆的标准方程.若不能确定焦点的位置,这时的标准方程常可设为mx 2+ny 2=1(m >0,n >0且m ≠n )【易错防范】1.判断两种标准方程的方法为比较标准形式中x 2与y 2的分母大小.2.在解关于离心率e 的二次方程时,要注意利用椭圆的离心率e ∈(0,1)进行根的取舍,否则将产生增根.3.椭圆的范围或最值问题常常涉及一些不等式.例如,-a ≤x ≤a ,-b ≤y ≤b ,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等关系. 【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.椭圆x 2m +y 24=1的焦距为2,则m 的值等于( )A.5B.3C.5或3D.82.(2019·聊城模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为23,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( ) A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1D.x 29+y 25=1 3.已知圆(x -1)2+(y -1)2=2经过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点F 和上顶点B ,则椭圆C 的离心率为( ) A.12 B. 2 C.2 D.224.(2019·湖北重点中学联考)已知椭圆x 24+y 23=1的左、右焦点分别为F 1,F 2,过F 2且垂直于长轴的直线交椭圆于A ,B 两点,则△ABF 1内切圆的半径为( ) A.43 B.1C.45D.345.已知椭圆x 24+y 22=1的两个焦点是F 1,F 2,点P 在该椭圆上,若|PF 1|-|PF 2|=2,则△PF 1F 2的面积是( ) A. 2 B.2 C.2 2 D. 3二、填空题6.已知椭圆的中心在原点,一个焦点为(0,-23)且a =2b ,则椭圆的标准方程为________.7.设F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,经过F 1的直线交椭圆C 于A ,B 两点,若△F 2AB的面积为43的等边三角形,则椭圆C 的方程为______________.8.(2019·昆明诊断)椭圆x 29+y 225=1上的一点P 到两焦点的距离的乘积为m ,当m 取最大值时,点P 的坐标是________.三、解答题9.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程.10.已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B .(1)若∠F 1AB =90°,求椭圆的离心率;(2)若AF 2→=2F 2B →,AF 1→·AB →=32,求椭圆的方程.【能力提升题组】(建议用时:20分钟)11.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左顶点为M ,上顶点为N ,右焦点为F ,若NM →·NF →=0,则椭圆的离心率为( ) A.32 B.2-12 C.3-12 D.5-1212.(2019·湖南湘东五校联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,△PF 1F 2是以F 2P 为底边的等腰三角形,且60°<∠PF 1F 2<120°,则该椭圆的离心率的取值范围是( )A.(3-12,1)B.(3-12,12)C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 13.(2018·浙江卷)已知点P (0,1),椭圆x 24+y 2=m (m >1)上两点A ,B 满足AP →=2PB →,则当m =________时,点B 横坐标的绝对值最大.14.(2019·石家庄月考)已知点M (6,2)在椭圆C :x 2a 2+y 2b 2=1(a >b >0)上,且椭圆的离心率为63. (1)求椭圆C 的方程;(2)若斜率为1的直线l 与椭圆C 交于A ,B 两点,以AB 为底边作等腰三角形,顶点为P (-3,2),求△PAB 的面积.【新高考创新预测】15.(多填题)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),其关于直线y =bx 的对称点Q 在椭圆上,则离心率e =________,S △FOQ =________.。

【人教版】2020高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系分层演练文

【人教版】2020高考数学一轮复习第9章平面解析几何第2讲两直线的位置关系分层演练文

第2讲 两直线的位置关系一、选择题1.已知直线l 1:mx +y -1=0与直线l 2:(m -2)x +my -2=0,则“m =1”是“l 1⊥l 2”的( ) A .充分不必要条件 B .充要条件C .必要不充分条件D .既不充分也不必要条件解析:选A .由l 1⊥l 2,得m (m -2)+m =0,解得m =0或m =1,所以“m =1”是“l 1⊥l 2”的充分不必要条件,故选A .2.当0<k <12时,直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B .由⎩⎪⎨⎪⎧kx -y =k -1,ky -x =2k ,得⎩⎪⎨⎪⎧x =k k -1,y =2k -1k -1.又因为0<k <12,所以x =kk -1<0,y =2k -1k -1>0, 故直线l 1:kx -y =k -1与直线l 2:ky -x =2k 的交点在第二象限.3.若直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,则直线l 2恒过定点( ) A .(0,4) B .(0,2) C .(-2,4)D .(4,-2)解析:选B .由于直线l 1:y =k (x -4)恒过定点(4,0),其关于点(2,1)对称的点为(0,2),又由于直线l 1:y =k (x -4)与直线l 2关于点(2,1)对称,所以直线l 2恒过定点(0,2).4.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y =0平行,则l 1与l 2之间的距离为( ) A . 2 B .2 2 C .3 2D .4 2解析:选C .因为l 1∥l 2, 所以1a -2=a 3, 解得a =-1,所以l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y =0,所以l 1与l 2的距离d =||6-02=32.选C .5.光线沿着直线y =-3x +b 射到直线x +y =0上,经反射后沿着直线y =ax +2射出,则有( ) A .a =13,b =6B .a =-13,b =-6C .a =3,b =-16D .a =-3,b =16解析:选B .在直线y =-3x +b 上任意取一点A (1,b -3),则点A 关于直线x +y =0的对称点B (-b +3,-1)在直线y =ax +2上,故有-1=a (-b +3)+2,即-1=-ab +3a +2,所以ab =3a +3,结合所给的选项,只有B 项符合,故选B .6.在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|MQ |2的值为( )A .102B .10C .5D .10解析:选D .由题意知P (0,1),Q (-3,0),因为过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直,所以M 位于以PQ 为直径的圆上, 因为|PQ |=9+1=10,所以|MP |2+|MQ |2=|PQ |2=10,故选D . 二、填空题7.直线x -2y +1=0关于直线x =1对称的直线方程是________. 解析:由题意得直线x -2y +1=0与直线x =1的交点坐标为(1,1). 又直线x -2y +1=0上的点(-1,0)关于直线x =1的对称点为(3,0),所以由直线方程的两点式,得y -01-0=x -31-3,即x +2y -3=0.答案:x +2y -3=08.以点A (4,1),B (1,5),C (-3,2),D (0,-2)为顶点的四边形ABCD 的面积为________. 解析:因为k AB =5-11-4=-43,k DC =2-(-2)-3-0=-43.k AD =-2-10-4=34,k BC =2-5-3-1=34. 则k AB =k DC ,k AD =k BC ,所以四边形ABCD 为平行四边形. 又k AD ·k AB =-1,即AD ⊥AB , 故四边形ABCD 为矩形.故S =|AB |·|AD |=(1-4)2+(5-1)2×(0-4)2+(-2-1)2=25. 答案:259.已知l 1,l 2是分别经过A (1,1),B (0,-1)两点的两条平行直线,当l 1,l 2间的距离最大时,则直线l 1的方程是________.解析:当直线AB 与l 1,l 2垂直时,l 1,l 2间的距离最大.因为A (1,1),B (0,-1),所以k AB =-1-10-1=2,所以两平行直线的斜率为k =-12,所以直线l 1的方程是y -1=-12(x -1),即x +2y -3=0.答案:x +2y -3=010.在平面直角坐标系内,到点A (1,2),B (1,5),C (3,6),D (7,-1)的距离之和最小的点的坐标是________. 解析:设平面上任一点M ,因为|MA |+|MC |≥|AC |,当且仅当A ,M ,C 共线时取等号,同理|MB |+|MD |≥|BD |,当且仅当B ,M ,D 共线时取等号,连接AC ,BD 交于一点M ,若|MA |+|MC |+|MB |+|MD |最小,则点M 为所求.因为k AC =6-23-1=2,所以直线AC 的方程为y -2=2(x -1), 即2x -y =0.①又因为k BD =5-(-1)1-7=-1,所以直线BD 的方程为y -5=-(x -1), 即x +y -6=0.②联立①②⎩⎪⎨⎪⎧2x -y =0,x +y -6=0,解得⎩⎪⎨⎪⎧x =2,y =4,所以M (2,4).答案:(2,4) 三、解答题11.已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线l 的方程;(2)求过点P 且与原点的距离最大的直线l 的方程,最大距离是多少?(3)是否存在过点P 且与原点的距离为6的直线?若存在,求出方程;若不存在,请说明理由.解:(1)过点P 的直线l 与原点的距离为2,而点P 的坐标为(2,-1),显然,过P (2,-1)且垂直于x 轴的直线满足条件,此时l 的斜率不存在,其方程为x =2. 若斜率存在,设l 的方程为y +1=k (x -2), 即kx -y -2k -1=0.由已知得|-2k -1|k 2+1=2,解得k =34.此时l 的方程为3x -4y -10=0.综上,可得直线l 的方程为x =2或3x -4y -10=0.(2)作图可得过点P 与原点O 的距离最大的直线是过点P 且与PO 垂直的直线,如图. 由l ⊥OP ,得k l k OP =-1, 所以k l =-1k OP=2.由直线方程的点斜式得y +1=2(x -2),即2x -y -5=0. 所以直线2x -y -5=0是过点P 且与原点O 的距离最大的直线, 最大距离为|-5|5=5.(3)由(2)可知,过点P 不存在到原点的距离超过5的直线,因此不存在过点P 且到原点的距离为6的直线. 12.正方形的中心为点C (-1,0),一条边所在的直线方程是x +3y -5=0,求其他三边所在直线的方程. 解:点C 到直线x +3y -5=0的距离d =|-1-5|1+9=3105.设与x +3y -5=0平行的一边所在直线的方程是x +3y +m =0(m ≠-5), 则点C 到直线x +3y +m =0的距离d =|-1+m |1+9=3105,解得m =-5(舍去)或m =7,所以与x +3y -5=0平行的边所在直线的方程是x +3y +7=0. 设与x +3y -5=0垂直的边所在直线的方程是3x -y +n =0, 则点C 到直线3x -y +n =0的距离d =|-3+n |1+9=3105,解得n =-3或n =9,所以与x +3y -5=0垂直的两边所在直线的方程分别是3x -y -3=0和3x -y +9=0.1.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), 所以l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎪⎫x 0+52,y 0+12,代入2x -y -5=0,得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),所以k BC =65,所以直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.2.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由. 解:(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+(-1)2=7510, 所以⎪⎪⎪⎪⎪⎪a +125=7510,即⎪⎪⎪⎪⎪⎪a +12=72, 又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若点P 满足条件②,则点P 在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12×⎪⎪⎪⎪⎪⎪c +125,即c =132或116,所以直线l ′的方程为2x 0-y 0+132=0或2x 0-y 0+116=0;若点P 满足条件③,由点到直线的距离公式, 有|2x 0-y 0+3|5=25×|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=-3,y 0=12(舍去); 联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,解得⎩⎪⎨⎪⎧x 0=19,y 0=3718.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。

(精品人教)2020届高考数学一轮复习 第8单元 解析几何作业 理

(精品人教)2020届高考数学一轮复习 第8单元 解析几何作业 理

第八单元解析几何课时作业(四十六)第46讲直线的倾斜角与斜率、直线的方程基础热身1.已知直线l过点(0,0)和(3,1),则直线l的斜率为()A.3B.C.-D.-32.如果A·B<0,B·C>0,那么直线Ax-By-C=0不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.[2017·绵阳二诊]直线x-y-3=0的倾斜角α是.4.[2017·郑州一中调研]点(,4)在直线l:ax-y+1=0上,则直线l的倾斜角为.5.已知等边三角形ABC的两个顶点为A(0,0),B(4,0),且第三个顶点在第四象限,则BC边所在的直线方程是.能力提升6.[2017·通化二模]已知角α是第二象限角,直线2x+y tan α+1=0的斜率为,则cos α等于()A. B.-C. D.-7.过点(-10,10)且在x轴上的截距是在y轴上的截距的4倍的直线的方程为()A.x-y=0B.x+4y-30=0C.x+y=0 或x+4y-30=0D.x+y=0或x-4y-30=08.若<α<2π,则直线+=1必不经过()A.第一象限B.第二象限C.第三象限D.第四象限9.直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线的方程是()A.x-y-1=0B.2x-y-3=0C.x+y-3=0D.x+2y-4=010.已知点A(1,-2)和B,0在直线l:ax-y-1=0(a≠0)的两侧,则直线l的倾斜角的取值范围是()A.B.C.D.∪11.[2017·黄冈质检]已知在△ABC中,∠ACB=90°,BC=3,AC=4,P是线段AB上的点,则P到AC,BC的距离的乘积的最大值为()A.3B.2C.2D.912.不论k为何实数,直线(2k-1)x-(k+3)y-(k-11)=0恒过一个定点,则这个定点的坐标是.13.一条直线经过点A(-2,2),并且与两坐标轴围成的三角形的面积为1,则此直线的方程为.14.[2017·绵阳南山中学一诊]在平面直角坐标系xOy中,点A(0,1),B(0,4),若直线2x-y+m=0上存在点P,使得|PA|=|PB|,则实数m的取值范围是.难点突破15.(5分)已知直线l:x-my+m=0上存在点M满足与A(-1,0),B(1,0)两点连线的斜率k MA与k MB之积为3,则实数m 的取值范围是()A.[-,]B.∪C.∪D.16.(5分)[2017·河南安阳调研]直线y=m(m>0)与y=|log a x|(a>0且a≠1)的图像交于A,B两点,分别过点A,B作垂直于x轴的直线交y=(k>0)的图像于C,D两点,则直线CD的斜率()A.与m有关B.与a有关C.与k有关D.等于-1课时作业(四十七)第47讲两直线的位置关系、距离公式基础热身1.[2017·永州一模]已知直线l1:x+y+1=0,l2:x+y-1=0,则l1与l2之间的距离为()A.1B.C.D.22.[2017·南昌一模]两直线3x+2y-2a=0与2x-3y+3b=0的位置关系是()A.垂直B.平行C.重合D.以上都不对3.[2017·河北武邑中学月考]过点P(1,2),且到原点的距离最大的直线的方程是()A.x+2y-5=0B.2x+y-4=0C.x+3y-7=0D.3x+y-5=04.[2017·大庆实验中学一模]与直线x+y+2=0垂直的直线的倾斜角为.5.[2017·重庆一中期中]点(-1,-2)关于直线x+y=1对称的点的坐标是.能力提升6.已知直线l1:(m-4)x-(2m+4)y+2m-4=0与l2:(m-1)x+(m+2)y+1=0,则“m=-2”是“l1∥l2”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分又不必要条件7.[2018·南昌二中月考]已知直线l1:mx-y+3=0与l2关于直线y=x对称, l2与l3:y=-x+垂直,则m=()A.-B.C.-2D.28.已知b>0,直线(b2+1)x+ay+2=0与直线x-b2y-1=0互相垂直,则ab的最小值为()A.1B.2C.2D.29.点P在直线3x+y-5=0上,且点P到直线x-y-1=0的距离为,则点P的坐标为()A.(1,2)B.C.或D.或10.[2017·台州中学月考]设△ABC的一个顶点是A(3,-1),∠B,∠C的平分线的方程分别是x=0,y=x,则直线BC的方程是()A.y=3x+5B.y=2x+3C.y=2x+5D.y=-+11.[2017·莱芜期末]已知直线l:Ax+By+C=0(A,B不全为0),两点P1(x1,y1),P2(x2,y2),若(Ax1+By1+C)(Ax2+By2+C)>0,且|Ax1+By1+C|>|Ax2+By2+C|,则()A.直线l与直线P1P2不相交B.直线l与线段P2P1的延长线相交C.直线l与线段P1P2的延长线相交D.直线l与线段P1P2相交12.已知直线3x+4y-3=0,6x+my+14=0平行,则它们之间的距离是.13.[2017·蚌埠质检]在平面直角坐标系中,已知点P(-2,2),对于任意不全为零的实数a,b,直线l:a(x-1)+b(y+2)=0,若点P到直线l的距离为d,则d的取值范围是.14.[2017·六安一中月考]已知曲线y=在点P(1,4)处的切线与直线l平行且两直线之间的距离为,则直线l 的方程为.难点突破15.(5分)[2017·南昌一模]已知点P在直线x+3y-2=0上,点Q在直线x+3y+6=0上,线段PQ的中点为M(x0,y0),且y0<x0+2,则的取值范围是()A.B.C.D.∪16.(5分)已知x,y为实数,则代数式++的最小值是.课时作业(四十八)第48讲圆的方程基础热身1.方程x2+y2-2x+m=0表示一个圆,则m的取值范围是()A.m<1B.m<2C.m≤D.m≤12.已知点P是圆(x-3)2+y2=1上的动点,则点P到直线y=x+1的距离的最小值是()A.3B.2C.2-1D.2+13.[2017·天津南开区模拟]圆心在y轴上,且过点(3,1)的圆与x轴相切,则该圆的方程是()B.x2+y2-10y=0C.x2+y2+10x=0D.x2+y2-10x=04.[2017·武汉三模]若直线2x+y+m=0过圆x2+y2-2x+4y=0的圆心,则m的值为.5.[2017·郑州、平顶山、濮阳二模]以点M(2,0),N(0,4)为直径的圆的标准方程为.能力提升6.[2017·湖南长郡中学、衡阳八中等十三校联考]圆(x-2)2+y2=4关于直线y=x对称的圆的方程是()A.+=4B.+=4C.x2+=4D.+=47.已知两点A(a,0), B(-a,0)(a>0),若曲线x2+y2-2x-2y+3=0上存在点P,使得∠APB=90°,则正实数a的取值范围为()A.(0,3]B.[1,3]C.[2,3]D.[1,2]8.[2017·九江三模]已知直线l经过圆C:x2+y2-2x-4y=0的圆心,且坐标原点O到直线l的距离为,则直线l的方程为()B.2x+y-5=0C.x+2y-5=0D.x-2y+3=09.[2017·海南中学、文昌中学联考]抛物线y=x2-2x-3与坐标轴的交点在同一个圆上,则该圆的方程为()A.x2+=4B.+=4C.+y2=4D.+=510.[2017·广州一模]已知圆C:x2+y2+2x-4y+1=0的圆心在直线ax-by+1=0上,则ab的取值范围是()A.B.C.D.11.已知直线l1:x+2y-5=0与直线l2:mx-ny+5=0(n∈Z)相互垂直,点(2,5)到圆C:(x-m)2+(y-n)2=1的最短距离为3,则mn= .12.已知圆C:(x-3)2+(y-4)2=25,圆C上的点到直线l:3x+4y+m=0(m<0)的最短距离为1,若点N(a,b)在直线l位于第一象限的部分,则+的最小值为.13.(15分)已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆半径r的取值范围;(3)求该圆圆心的纵坐标的最小值.14.(15分)已知曲线C1:x2+y2=1,点N是曲线C1上的动点,O为坐标原点.(1)已知定点M(-3,4),动点P满足=+,求动点P的轨迹方程;(2)设点A为曲线C1与x轴正半轴的交点,将A沿逆时针旋转得到点B,若=m+n,求m+n的最大值.难点突破15.(5分)[2018·赣州红色七校联考]已知圆C:x2+y2-2ax-2by+a2+b2-1=0(a<0)的圆心在直线x-y+=0上,且圆C 上的点到直线x+y=0的距离的最大值为1+,则a2+b2的值为()A.1B.2C.3D.416.(5分)[2017·北京朝阳区二模]已知过定点P(2,0)的直线l与曲线y=相交于A,B两点,O为坐标原点,当△AOB的面积最大时,直线l的倾斜角为()A.150°B.135°C.120°D.30°课时作业(四十九)第49讲直线与圆、圆与圆的位置关系基础热身1.直线y=2x+1与圆x2+y2-2x+4y=0的位置关系为()A.相交且经过圆心B.相交但不经过圆心C.相切D.相离2.[2017·惠州调研]圆(x+2)2+y2=4与圆(x-2)2+(y-1)2=9的位置关系为()A.内切B.相交C.外切D.相离3.[2017·大连一模]直线4x-3y=0与圆(x-1)2+(y-3)2=10相交所得弦的长为()A.6B.3C.6D.34.圆心为(4,0)且与直线x-y=0相切的圆的方程为.5.[2017·昆明一中模拟]若点A,B在圆O:x2+y2=4上,弦AB的中点为D(1,1),则直线AB的方程是.能力提升6.[2017·洛阳二模]已知圆C的方程为x2+y2=1,直线l的方程为x+y=2,过圆C上任意一点P作与l的夹角为45°的直线交l于A,则的最小值为()A.B.1C.-1D.2-7.[2017·天津红桥区八校联考]若直线2ax-by+2=0 (a>0,b>0)经过圆x2+y2+2x-4y+1=0的圆心,则+的最小值是()A. B.4C. D.28.[2017·湖北六校联考]过点P(1,2)的直线与圆x2+y2=1相切,且与直线l:ax+y-1=0垂直,则实数a的值为()A.0B.-C.0或D.9.[2017·广州模拟]已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab的最大值为()A.15B.9C.1D.-10.[2017·安阳二模]已知圆C1:x2+y2+4x-4y-3=0,动点P在圆C2:x2+y2-4x-12=0上,则△PC1C2面积的最大值为()A.2B.4C.8D.2011.[2017·宜春二模]已知圆x2+y2=1和圆外一点P(1,2),过点P作圆的切线,则切线方程为.12.[2017·长沙雅礼中学模拟]在平面直角坐标系xOy中,以点(0,1)为圆心且与直线mx-y-2m-1=0(m>0)相切的所有圆中,半径最大的圆的标准方程为.13.(15分)[2017·汕头三模]已知圆C经过点(2,4),(1,3),圆心C在直线x-y+1=0上,过点A(0,1),且斜率为k的直线l与圆相交于M,N两点.(1)求圆C的方程.(2)①请问·是否为定值?若是,请求出该定值;若不是,请说明理由.②若O为坐标原点,且·=12,求直线l的方程.14.(15分)已知圆O:x2+y2=9及点C(2,1).(1)若线段OC的垂直平分线交圆O于A,B两点,试判断四边形OACB的形状,并给出证明;(2)过点C的直线l与圆O交于P,Q两点,当△OPQ的面积最大时,求直线l的方程.难点突破15.(5分)[2017·汉中质检]已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的切线,A,B是切点,C 是圆心,那么四边形PACB面积的最小值是()A.2B.2C.3D.316.(5分)[2017·重庆巴蜀中学三模]已知P为函数y=的图像上任一点,过点P作直线PA,PB分别与圆x2+y2=1相切于A,B两点,直线AB交x轴于M点,交y轴于N点,则△OMN的面积为.课时作业(五十)第50讲椭圆基础热身1.[2017·陕西黄陵中学二模]已知椭圆的标准方程为x2+=1,则椭圆的焦点坐标为()A.(,0),(-,0)B.(0,),(0,-)C.(0,3),(0,-3)D.(3,0),(-3,0)2.[2017·河南息县一中模拟]已知圆O:x2+y2=4经过椭圆C:+=1(a>b>0)的短轴端点和两个焦点,则椭圆C的标准方程为()A.+=1B.+=1C.+=1D.+=13.[2017·淮北模拟]椭圆+=1的右焦点到直线y=x的距离是()A.B.C.1D.4.[2017·河南师范大学附属中学模拟]椭圆C: +=1(a>b>0)的左焦点为F,若F关于直线x+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为.5.[2017·南宁期末]定义:椭圆上一点与两焦点构成的三角形为椭圆的焦点三角形.已知椭圆C:+=1(a>b>0)的焦距为4,焦点三角形的周长为4+12,则椭圆C的方程是.能力提升6.[2017·株洲一模]已知椭圆+=1(a>b>0),F1为左焦点,A为右顶点, B1,B2分别为上、下顶点,若F1,A,B1,B2四点在同一个圆上,则此椭圆的离心率为 ()A.B.C.D.7.[2017·韶关二模]在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为,点P为椭圆上一点,且△PF1F2的周长为12,那么C的方程为()A.+y2=1B.+=1C.+=1D.+=18.[2017·郑州三模]椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M,N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.9.[2017·泉州模拟]已知椭圆C:+=1(a>b>0)的左焦点为F,若点F关于直线y=-x的对称点P在椭圆C上,则椭圆C的离心率为()A. B.C.D.10.[2017·沈阳东北育才学校九模]椭圆+=1的左、右焦点分别为F1,F2,弦AB过F1,若△ABF2的内切圆的周长为π,A,B两点的坐标分别为(x1,y1),(x2,y2),则|y1-y2|的值为()A. B.C.D.11.[2017·泉州质检]已知椭圆C:+=1的左顶点、上顶点、右焦点分别为A,B,F,则·= .12.[2017·运城二模]已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上的一点,PF⊥x轴,若|PF|=|AF|,则该椭圆的离心率是.13.(15分)[2018·海南八校联考]如图K50-1,点M(,)在椭圆+=1(a>b>0)上,且点M到两焦点的距离之和为6.(1)求椭圆的方程;(2)设与MO (O为坐标原点)垂直的直线交椭圆于A,B (A,B不重合),求·的取值范围.图K50-114.(15分)[2017·南宁质检]已知椭圆C:+=1(a>b>0)的离心率为,短轴长为2.(1)求椭圆C的标准方程;(2)若圆O:x2+y2=1的切线l与椭圆C相交于A,B两点,线段AB的中点为M,求的最大值.难点突破15.(5分)[2017·长沙模拟]已知F是椭圆+=1的左焦点,设动点P在椭圆上,若直线FP的斜率大于,则直线OP(O为坐标原点)的斜率的取值范围是()A.B.∪C.∪D.16.(5分)[2017·郑州模拟]某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xOy中,已知椭圆x2+2y2=1的左顶点为A,过点A作两条斜率之积为2的射线与椭圆交于B,C……”②解:“设直线AB的斜率为k……点B,,D-,0……”据此,请你写出直线CD的斜率为.(用k表示)课时作业(五十一)第51讲双曲线基础热身1.[2017·浙江名校联考]双曲线-=1的渐近线方程是()A.y=±xB.y=±xC.y=±xD.y=±x2.若双曲线C:x2-=1(b>0)的离心率为2,则b=()A.1B.C.D.23.[2017·泉州一模]在平面直角坐标系xOy中,双曲线C的一个焦点为F(2,0),一条渐近线的倾斜角为60°,则C 的标准方程为()A.-y2=1B.-x2=1C.x2-=1D.y2-=14.已知双曲线经过点(2,1),其一条渐近线方程为y=x,则该双曲线的标准方程为.5.[2017·柳州模拟]设双曲线-=1的左、右焦点分别为F1,F2,过F1的直线l交双曲线左支于A,B两点,则|AF2|+|BF2|的最小值为.能力提升6.[2017·洛阳模拟]已知双曲线C:-=1(a>0,b>0)的离心率为2,则C的两条渐近线的方程为 ()A.y=±xB.y=±xC.y=±2xD.y=±x7.[2017·汉中二模]如图K51-1,F1,F2分别是双曲线C:-=1(a>0,b>0)的左、右焦点,过F1的直线l与C的左、右两个分支分别交于点B,A.若△ABF2为等边三角形,则双曲线的离心率为()图K51-1A.4B.C.D.8.[2017·泸州三诊]已知在Rt△ABC中,|AB|=3,|AC|=1,A=,以B,C为焦点的双曲线-=1(a>0,b>0)经过点A,且与AB边交于点D,则的值为()A. B.3C. D.49.已知O为坐标原点,F是双曲线C:-=1(a>0,b>0)的左焦点,A,B分别为C的左、右顶点,P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E,直线BM与y轴交于点N,若=2,则C的离心率为()A.3B.2C. D.10.[2017·重庆一中期中]已知A(-2,0),B(2,0),若在斜率为k的直线l上存在不同的两点M,N,满足|MA|-|MB|=2,|NA|-|NB|=2,且线段MN的中点为(6,1),则k的值为()A.-2B.-C. D.211.[2017·衡阳联考]双曲线的两条渐近线的方程为x±2y=0,则它的离心率为.12.[2017·石家庄二模]双曲线-=1(a>0,b>0)上一点M(-3,4)关于一条渐近线的对称点恰为右焦点F2,则该双曲线的标准方程为.13.(15分)[2017·海南一模]双曲线C的一条渐近线方程是x-2y=0,且双曲线C过点(2,1).(1)求双曲线C的方程;(2)设双曲线C的左、右顶点分别是A1,A2,P为C上任意一点,直线PA1,PA2分别与直线l:x=1交于M,N,求|MN|的最小值.14.(15分)[2017·菏泽模拟]双曲线C的中心在原点,右焦点为F,0,渐近线方程为y=±x.(1)求双曲线C的方程.(2)设直线l:y=kx+1与双曲线C交于A,B两点,当k为何值时,以线段AB为直径的圆过原点?难点突破15.(5分)[2017·重庆一中月考]已知F2是双曲线E:x2-=1的右焦点,过点F2的直线交E的右支于不同的两点A,B,过点F2且垂直于直线AB的直线交y轴于点P,则的取值范围是()A.B.C.D.16.(5分)[2017·日照三模]在等腰梯形ABCD中,AB∥CD且|AB|=2,|AD|=1,|CD|=2x,其中x∈(0,1),以A,B为焦点且过点D的双曲线的离心率为e1,以C,D为焦点且过点A的椭圆的离心率为e2,若对任意x∈(0,1),不等式m<e1+e2恒成立,则m的最大值为()A.B.C.2D.课时作业(五十二)第52讲抛物线基础热身1.[2017·渭南质检]抛物线y=x2的焦点到准线的距离为()A.2B.C. D.42.若抛物线y2=2px(p>0)的焦点在圆C:(x+2)2+y2=16上,则p的值为()A.1B.2C.4D.83.[2017·合肥六校联考]抛物线y=x2的焦点到双曲线y2-=1的渐近线的距离为 ()A. B.C.1D.4.焦点坐标为(-2,0)的抛物线的标准方程为.5.已知抛物线y2=6x上的一点到焦点的距离是到y轴距离的2倍,则该点的横坐标为.能力提升6.已知点A的坐标为(5,2),F为抛物线y2=x的焦点,若点P在抛物线上移动,当|PA|+|PF|取得最小值时,点P的坐标是()A.(1,)B.(,2)C.(,-2)D.(4,2)7.若抛物线y2=2px的焦点到双曲线-=1的渐近线的距离为p,则抛物线的标准方程为()A.y2=16xB.y2=8xC.y2=16x或y2=-16xD.y2=8x或y2=-8x8.[2017·豫南九校联考]设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A,B两点,点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若=4,则直线l的方程为()A.y=2x+1B.y=x+1C.y=x+1D.y=2x+29.[2017·蚌埠三模]设抛物线y2=8x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率为-,则|PF|=()A.4B.6C.8D.1610.[2018·长沙模拟]已知F为抛物线C: y2=4x的焦点,过F的直线l与C相交于A,B两点,线段AB的垂直平分线交x轴于点M,垂足为E,若=6,则= ()A.2B.C.2D.11.[2017·漳州八校联考]已知M是抛物线C:y2=2px(p>0)上一点,F是抛物线C的焦点,若|MF|=p,K是抛物线C的准线与x轴的交点,则∠MKF= .12.[2017·天津河西区二模]已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,+=3,则线段AB的中点到y轴的距离为.13.(15分)[2017·孝感模拟]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,离心率e=,过F2作垂直于x轴的直线交椭圆C于A,B两点,△F1AB的面积为3,抛物线E:y2=2px(p>0)以椭圆C的右焦点F2为焦点.(1)求抛物线E的方程;(2)若点P-,t(t≠0)为抛物线E的准线上一点,过点P作y轴的垂线交抛物线于点M,连接PO并延长交抛物线于点N,求证: 直线MN过定点.14.(15分)[2017·广东海珠区调研]已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且到原点的距离为2.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆必与直线GB相切.难点突破15.(5分)[2017·长沙三模]已知抛物线y2=4x,焦点为F,过点F作直线l交抛物线于A,B两点,则|AF|-的最小值为()A.2-2B.C.3-D.2-216.(5分)[2017·抚州二模]已知直线y=2x-2与抛物线y2=8x交于A,B两点,抛物线的焦点为F,则·的值为.课时作业(五十三)第53讲曲线与方程基础热身1.在平面直角坐标系中,已知定点A(0,-),B(0,),直线PA与直线PB的斜率之积为-2,则动点P的轨迹方程为()A.+x2=1B.+x2=1(x≠0)C.-x2=1D.+y2=1(x≠0)2.过点F(0,3)且和直线y+3=0相切的动圆圆心的轨迹方程为()A.x2=12yB.y2=-12xC.y2=12xD.x2=-12y3.设P为双曲线-y2=1上一动点,O为坐标原点,M为线段OP的中点,则点M的轨迹方程是()A.x2-4y2=1B.4y2-x2=1C.x2-=1D.-y2=14.[2017·沈阳模拟]平面直角坐标系中,已知O为坐标原点,点A,B的坐标分别为(1,1),(-3,3).若动点P满足=λ+μ,其中λ,μ∈R,且λ+μ=1,则点P的轨迹方程为()A.x-y=0B.x+y=0C.x+2y-3=0D.+=55.[2017·北京海淀区期中]已知F1(-2,0),F2(2,0),满足||PF1|-|PF2||=2的动点P的轨迹方程为.能力提升6.[2017·上海普陀区二模]动点P在抛物线y=2x2+1上移动,若P与点Q(0,-1)连线的中点为M,则动点M的轨迹方程为()A.y=2x2B.y=4x2C.y=6x2D.y=8x27.到直线3x-4y-1=0的距离为2的点的轨迹方程是()A.3x-4y-11=0B.3x-4y+9=0C.3x-4y+11=0或3x-4y-9=0D.3x-4y-11=0或3x-4y+9=08.[2017·马鞍山质检]已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是()A.y2-=1B.x2-=1C.y2-=1D.x2-=19.[2017·襄阳五中月考]已知||=3,A,B分别在x轴和y轴上运动,O为坐标原点,=+,则动点P的轨迹方程是()A.x2+=1B.+y2=1C.x2+=1D.+y2=110.[2017·黄山二模]在△ABC中,B(-2,0),C(2,0),A(x,y),给出△ABC满足的条件,就能得到动点A的轨迹方程.下表给出了一些条件及方程::则分别满足条件①②③的轨迹方程依次为()A.C3,C1,C2B.C1,C2,C3C.C3,C2,C1D.C1,C3,C211.[2017·浙江名校一联]已知两定点A(-2,0),B(2,0)及定直线l:x=,点P是l上一个动点,过B作BP的垂线与AP交于点Q,则点Q的轨迹方程为.12.[2017·哈尔滨三模]已知圆C:x2+y2=25,过点M(-2,3)作直线l交圆C于A,B两点,分别过A,B两点作圆的切线,当两条切线相交于点Q时,点Q的轨迹方程为.13.(15分)[2017·石家庄模拟]已知P,Q为圆x2+y2=4上的动点,A(2,0),B(1,1)为定点.(1)求线段AP的中点M的轨迹方程;(2)若∠PBQ=90°,求线段PQ的中点N的轨迹方程.14.(15分)[2017·合肥二模]如图K53-1,抛物线E:y2=2px(p>0)与圆O:x2+y2=8相交于A,B两点,且点A的横坐标为2.过劣弧AB上动点P(x0,y0)作圆O的切线交抛物线E于C,D两点,分别以C,D为切点作抛物线E的切线l1,l2,l1与l2相交于点M.(1)求p的值;(2)求动点M的轨迹方程.图K53-1难点突破15.(5分)[2017·湖南师大附中月考]已知圆O的方程为x2+y2=9,若抛物线C过点A(-1,0),B(1,0),且以圆O的切线为准线,则抛物线C的焦点F的轨迹方程为 ()A.-=1B.+=1C.-=1D.+=116.(5分)[2017·太原三模]已知过点A(-2,0)的直线与直线x=2相交于点C,过点B(2,0)的直线与x=-2相交于点D,若直线CD与圆x2+y2=4相切,则直线AC与BD的交点M的轨迹方程为.课时作业(五十四)第54讲第1课时直线与圆锥曲线的位置关系基础热身1.[2017·大庆一模]斜率为的直线与双曲线-=1恒有两个公共点,则双曲线离心率的取值范围是()A.B.C.D.2.若直线l:mx+ny=4和圆O:x2+y2=4没有交点,则过点(m,n)的直线与椭圆+=1的交点有()A.0个B.至多1个C.1个D.2个3.已知过抛物线y2=4x焦点F的直线l交抛物线于A,B两点(点A在第一象限),若=3,则直线l的斜率为()A.2B.C.D.4.[2017·锦州质检]设抛物线x2=2y的焦点为F,经过点P(1,3)的直线l与抛物线相交于A,B两点,且点P恰为AB 的中点,则||+||= .5.已知抛物线C:y2=4x,直线l与抛物线C交于A,B两点,若线段AB的中点坐标为(2,2),则直线l的方程为.能力提升6.若直线y=2x+与抛物线x2=2py(p>0)相交于A,B两点,则等于()A.5pB.10pC.11pD.12p7.[2017·太原二模]已知双曲线Γ:-=1(a>0,b>0)的焦距为2c,直线l: y=kx-kc.若k=,则l与Γ的左、右两支各有一个交点;若k=,则l与Γ的右支有两个不同的交点.Γ的离心率的取值范围为()A.B.C.D.8.已知椭圆E:+=1的一个顶点为C(0,-2),直线l与椭圆E交于A,B两点,若E的左焦点为△ABC的重心,则直线l的方程为()A.6x-5y-14=0B.6x-5y+14=0C.6x+5y+14=0D.6x+5y-14=09.[2017·石家庄模拟]已知双曲线C:-=1(a>0,b>0),过点P(3,6)的直线l与C相交于A,B两点,且AB的中点为N(12,15),则双曲线C的离心率为()A.2B.C.D.10.过抛物线y2=2px(p>0)的焦点作一条斜率为1的直线交抛物线于A,B两点,过A,B分别向y轴引垂线交y轴于D,C,若梯形ABCD的面积为3,则p=()A.1B.2C.3D.411.[2017·洛阳一模]已知椭圆C:+=1的左、右顶点分别为A,B,F为椭圆C的右焦点.圆x2+y2=4上有一动点P,P 不同A,B两点,直线PA与椭圆C交于点Q(异于点A),若直线QF的斜率存在,则的取值范围是.12.[2017·三湘名校联考]已知双曲线-=1(a>0,b>0)上的一点到双曲线的左、右焦点的距离之差的绝对值为4,若抛物线y=ax2上的两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1x2=-,则m的值为.13.(15分)[2017·东北三省二联]已知在平面直角坐标系中,O是坐标原点,动圆P经过点F(0,1),且与直线l:y=-1相切.(1)求动圆圆心P的轨迹C的方程;(2)过F(0,1)的直线m交曲线C于A,B两点,过A,B分别作曲线C的切线l1,l2,直线l1,l2交于点M,求△MAB面积的最小值.14.(15分)已知直线l:y=kx+m与椭圆C:+=1(a>b>0)相交于A,P两点,与x轴、y轴分别相交于点N和点M,且|PM|=|MN|,点Q是点P关于x轴的对称点,QM的延长线交椭圆于点B,过点A,B分别作x轴的垂线,垂足分别为A1,B1.(1) 若椭圆C的左、右焦点与其短轴的一个端点是正三角形的三个顶点,点D1,在椭圆C上,求椭圆C的方程;(2)当k=时,若点N平分线段A1B1,求椭圆C的离心率.难点突破15.(5分)[2017·武汉三模]已知椭圆E:+=1(a>b>0)内有一点M(2,1),过M的两条直线l1,l2分别与椭圆E交于A,C和B,D两点,且满足=λ,=λ(其中λ>0且λ≠1),若λ变化时直线AB的斜率总为-,则椭圆E的离心率为()A. B.C.D.16.(5分)已知抛物线C1:y2=8x的焦点为F,椭圆C2:+=1(m>n>0)的一个焦点与抛物线C1的焦点重合,若椭圆C2上存在关于直线l:y=x+对称的两个不同的点,则椭圆C2的离心率e的取值范围为.课时作业(五十四)第54讲第2课时最值﹑范围﹑证明问题基础热身1.(12分)[2017·重庆调研]如图K54-1,已知椭圆E:+=1(a>b>0)的左顶点为A,右焦点为F(1,0),过点A且斜率为1的直线交椭圆E于另一点B,交y轴于点C,=6.(1)求椭圆E的方程;(2)过点F作直线l与椭圆E交于M,N两点,连接MO(O为坐标原点)并延长交椭圆E于点Q,求△MNQ面积的最大值及取最大值时直线l的方程.图K54-12.(12分)[2017·临汾模拟]已知动圆C与圆C1:(x-2)2+y2=1相外切,又与直线l:x=-1相切.(1)求动圆圆心轨迹E的方程;(2)若动点M为直线l上任一点,过点P(1,0)的直线与曲线E相交于A,B两点,求证: k MA+k MB=2k MP.能力提升3.(12分)[2017·广州模拟]已知定点F(0,1),定直线l:y=-1,动圆M过点F,且与直线l相切.(1)求动圆圆心M的轨迹C的方程;(2)过点F的直线与曲线C相交于A,B两点,分别过点A,B作曲线C的切线l1,l2,两条切线相交于点P,求△PAB外接圆面积的最小值.4.(12分)[2017·永州一模]已知曲线C上的任一点到点F(0,1)的距离减去它到x轴的距离的差都是1.(1)求曲线C的方程;(2)设直线y=kx+m(m>0)与曲线C交于A,B两点,若对任意k∈R,都有·<0,求m的取值范围.5.(12分)[2017·蚌埠二模]已知椭圆+=1(a>b>0)的左、右顶点分别是A(- ,0),B(,0),离心率为.设点P(a,t)(t≠0),连接PA交椭圆于点C,坐标原点是O.(1)证明:OP⊥BC;(2)若三角形ABC的面积不大于四边形OBPC的面积,求|t|的最小值.难点突破6.(12分)[2017·石嘴山三模]经过原点的直线与椭圆C:+=1(a>b>0)交于A,B两点,点P为椭圆上不同于A,B的一点,直线PA,PB的斜率均存在,且直线PA,PB的斜率之积为-.(1)求椭圆C的离心率;(2)设F1,F2分别为椭圆的左、右焦点,斜率为k的直线l经过椭圆的右焦点,且与椭圆交于M,N两点,若点F1在以线段MN为直径的圆内部,求k的取值范围.课时作业(五十四)第54讲第3课时定点﹑定值﹑探索性问题基础热身1.(12分)[2017·岳阳一中月考]过抛物线C:x2=2py(p>0)的焦点F作直线l与抛物线C交于A,B两点,当点A的纵坐标为1时,=2.(1)求抛物线C的方程.(2)若直线l的斜率为2,则抛物线C上是否存在一点M,使得MA⊥MB?并说明理由.2.(12分)[2017·重庆二诊]如图K54-2,已知A,B分别为椭圆C:+=1的左、右顶点,P为椭圆C上异于A,B的任意一点,直线PA,PB的斜率分别记为k1,k2.(1)求k1·k2.(2)过坐标原点O作与直线PA,PB分别平行的两条射线,分别交椭圆C于点M,N,△MON的面积是否为定值?请说明理由.图K54-2能力提升3.(12分)[2017·遂宁三诊]已知点F是拋物线C:y2=2px(p>0)的焦点,若点M(x0,1)在C上,且=.(1)求p的值;(2)若直线l经过点Q(3,-1)且与C交于A,B(异于M)两点, 证明: 直线AM与直线BM的斜率之积为常数.4.(12分)[2017·长沙质检]已知P是抛物线E:y2=2px(p>0)上一点,P到直线x-y+4=0的距离为d1,P到E的准线的距离为d2,且d1+d2的最小值为3.(1)求抛物线E的方程;(2)直线l1:y=k1(x-1)交E于A,B两点,直线l2:y=k2(x-1)交E于C,D两点,线段AB,CD的中点分别为M,N,若k1k2=-2,直线MN的斜率为k,求证:直线l:kx-y-kk1-kk2=0恒过定点.5.(12分)[2017·哈尔滨二模]椭圆+=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为,点M为椭圆上一动点,△F1MF2内切圆面积的最大值为.(1)求椭圆的方程.(2)设椭圆的左顶点为A1,过右焦点F2的直线l与椭圆交于A,B两点,连接A1A,A1B并延长分别交直线x=4于P,Q两点,以线段PQ为直径的圆是否恒过定点?若是,请求出定点坐标;若不是,请说明理由.难点突破6.(12分)[2017·孝义模拟]设椭圆C:+=1(a>b>0)的左顶点为(-2,0),且椭圆C与直线y=x+3相切,(1)求椭圆C的标准方程.(2)过点P(0,1)的动直线与椭圆C交于A,B两点,O为坐标原点,是否存在常数λ,使得·+λ·=-7?请说明理由.课时作业(四十六)1.B[解析] 由斜率公式可得,直线l的斜率k==,故选B.2.A[解析] ∵直线在x轴、y轴上的截距分别为<0,-<0,∴直线Ax-By-C=0不经过的象限是第一象限,故选A.3.60°[解析] 由题意得,直线的斜率k=,即tan α=,所以α=60°.4.60°[解析] ∵点(,4)在直线l:ax-y+1=0上,∴a-4+1=0,∴a=,即直线l的斜率为,∴直线l的倾斜角为60°.5.y=(x-4)[解析] 易知直线BC的倾斜角为,故斜率为,由点斜式得直线方程为y=(x-4).6.D[解析] 由题意,得k=-=,故tan α=-,故cos α=-,故选D.7.C[解析] 由题意,当直线经过原点时,直线的方程为x+y=0;当直线不经过原点时,设直线的方程为+=1,则+=1,解得a=,此时直线的方程为+=1,即x+4y-30=0.故选C.8.B[解析] 令x=0,得y=sin α<0,令y=0,得x=cos α>0,所以直线过点(0,sin α),(cos α,0)两点,因而直线不过第二象限,故选B.9.C[解析] 将(2,1)代入得2m-m2-1=0,所以m=1,所以直线l的方程为x-y-1=0,所以直线l的斜率为1,倾斜角为,则所求直线的斜率为-1,故选C.10.D[解析] 设直线l的倾斜角为θ,则θ∈[0,π).易知直线l:ax-y-1=0(a≠0)经过定点P(0,-1),则k PA==-1,k PB==.∵点A(1,-2),B,0在直线l:ax-y-1=0(a≠0)的两侧,∴k PA<a<k PB,∴-1<tan θ<,tan θ≠0,得0<θ<或<θ<π,故选D.11.A[解析] 以C为坐标原点,CB所在直线为x轴建立直角坐标系(如图所示),则A(0,4),B(3,0),直线AB的方程为+=1.设P(x,y)(0≤x≤3),所以P到AC,BC的距离的乘积为xy,因为+≥2,当且仅当==时取等号,所以xy≤3,所以xy的最大值为3.故选A.12.(2,3)[解析] 直线(2k-1)x-(k+3)y-(k-11)=0,即k(2x-y-1)+(-x-3y+11)=0,根据k的任意性可得解得∴不论k取什么实数,直线(2k-1)x-(k+3)y-(k-11)=0都经过定点(2,3).13.x+2y-2=0或2x+y+2=0[解析] 设直线方程为+=1,得+=1.由题意知|ab|=1,即|ab|=2,所以或所以直线方程为x+2y-2=0或2x+y+2=0.14.[-2,2][解析] 设P,y,∵|PA|=|PB|,∴4|PA|2=|PB|2,又∵|PA|2=+(y-1)2,|PB|2=+(y-4)2,∴(y-m)2=16-4y2,其中4-y2≥0,故m=y±2,y∈[-2,2].令y=2sinθ,θ∈-,,则m=2sin θ±4cos θ=2sin(θ±φ),其中tan φ=2,故实数m的取值范围是[-2,2].15.C[解析] 设M(x,y),由k MA·k MB=3,得·=3,即y2=3x2-3.联立得-3x2+x+6=0(m≠0),则Δ=-24-3≥0,即m2≥,解得m≤-或m≥.∴实数m的取值范围是-∞,-∪,+∞.16.C[解析] 由|log a x|=m,得x A=a m,x B=a-m,所以y C=ka-m,y D=ka m,则直线CD的斜率为==-k,所以直线CD的斜率与m无关,与k有关,故选C.课时作业(四十七)1.B[解析] 由平行线间的距离公式可知,l1与l2之间的距离d==.2.A[解析] 直线3x+2y-2a=0的斜率为-,直线2x-3y+3b=0的斜率为,∵两直线斜率的乘积为-1,∴两直线垂直,故选A.3.A[解析] 设坐标原点为O,满足条件的直线为与OP垂直的直线,所以该直线的斜率为-,所以直线方程为y-2=-(x-1),即x+2y-5=0,故选A.4.[解析] 直线x+y+2=0的斜率为-,所求直线与直线x+y+2=0垂直,故所求直线的斜率为,故倾斜角为.5.(3,2)[解析] 设点(-1,-2)关于直线x+y=1对称的点的坐标是(m,n),则∴故所求坐标为(3,2).6.B[解析] 若m=-2,则l1:-6x-8=0,l2:-3x+1=0,∴l1∥l2.若l1∥l2,则(m-4)(m+2)+(2m+4)(m-1)=0,解得m=2 或m=-2.∴“m=-2”是“l1∥l2”的充分不必要条件,故选B.。

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

解析几何-2020年高考数学十年真题精解(全国Ⅰ卷) 解析几何(原卷版)

十年高考真题精解解析几何十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一: 圆锥曲线的基础性质(2019新课标I 卷T10理科).已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若222AF F B =││││,1AB BF =││││,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=(2013新课标Ⅰ卷T4理科)已知双曲线C :2222=1x y a b -(a >0,b >0)的离心率为2,则C 的渐近线方程为( ).A .y =14x ±B .y =13x ±C .y =12x ± D .y =±x(2013新课标Ⅰ卷T10理科)已知椭圆E :2222=1x y a b+(a >b >0)的右焦点为F (3,0),过点F 的直线交E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( ).A .22=14536x y +B .22=13627x y +C .22=12718x y + D .22=1189x y +(2015新课标I 卷T14理科)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .(2014新课标Ⅰ卷T4理科)已知F 为双曲线C :x 2﹣my 2=3m (m >0)的一个焦点,则点F 到C 的一条渐近线的距离为( ) A. B. 3 C.m D.3m(2011新课标I 卷T14理科)在平面直角坐标系xoy ,椭圆C 的中心为原点,焦点F 1F 2在x 轴上,离心率为.过F l 的直线交于A ,B 两点,且△ABF 2的周长为16,那么C的方程为.(2012新课标I 卷T10文科)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =C 的实轴长为(A (B ) (C )4 (D )8轨迹条件点集:({M ||MF 1+|MF 2|=2a,|F 1F 2|<2a =点集:{M ||MF 1|-|MF 2|. =±2a,|F 2F 2|>2a}.点集{M | |MF |=点M 到直线l 的距离}.图形方程标准方程 (>0) (a>0,b>0) px y 22=参数方程(t 为参数) 范围 ─a x a ,─b y b |x| a ,y R x 0中心原点O (0,0) 原点O (0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b) (a,0), (─a,0) (0,0)对称轴x 轴,y 轴;长轴长2a,短轴长2bx 轴,y 轴;实轴长2a, 虚轴长2b.x 轴焦点 F 1(c,0), F 2(─c,0) F 1(c,0), F 2(─c,0)12222=+b y a x b a >12222=-by a x 为离心角)参数θθθ(sin cos ⎩⎨⎧==b y a x 为离心角)参数θθθ(tan sec ⎩⎨⎧==b y a x ⎩⎨⎧==pt y pt x 222)0,2(p F双曲线:(1)等轴双曲线:双曲线称为等轴双曲线,其渐近线方程为,离心率. (2)共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.与互为共轭双曲线,它们具有共同的渐近线:. (3)共渐近线的双曲线系方程:的渐近线方程为如果双曲线的渐近线为时,它的双曲线方程可设为. 抛物线:(1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下. (2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设222a y x ±=-x y ±=2=e λ=-2222b y a x λ-=-2222b y a x 02222=-by a x )0(2222≠=-λλb y a x 02222=-b y a x 0=±b y a x )0(2222≠=-λλby a xA(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221p x AF p x x +==(AF 叫做焦半径).二、考向题型研究二: 简单的离心率求解问题(2019新课标I 卷T10文科)双曲线C :﹣=1(a >0,b >0)的一条渐近线的倾斜角为130°,则C的离心率为( ) A .2sin40° B .2cos40°C .D .(2016新课标I 卷T5文科)直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) A .13 B .12 C .23 D .34(2011新课标I 卷T7理科)设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于 A ,B 两点,|AB|为C 的实轴长的2倍,则C 的离心率为( ) A .B .C .2D .3(2012新课标I 卷T4文科)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的左、右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D .45一、直接求出或求出a 与b 的比值,以求解。

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》两条直线的位置关系

2024年高考数学总复习第九章《平面解析几何》§9.2两条直线的位置关系最新考纲1.能根据斜率判定两条直线平行或垂直.2.能用解方程组的方法求两直线的交点坐标.3.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.1.两条直线的位置关系(1)两条直线平行与垂直①两条直线平行:(ⅰ)对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)两条直线的交点直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组1x +B 1y +C 1=0,2x +B 2y +C 2=0的解.2.几种距离(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离d =|C 1-C 2|A 2+B2.概念方法微思考1.若两条直线l 1与l 2垂直,则它们的斜率有什么关系?提示当两条直线l 1与l 2的斜率都存在时,12l l k k ⋅=-1;当两条直线中一条直线的斜率为0,另一条直线的斜率不存在时,l 1与l 2也垂直.2.应用点到直线的距离公式和两平行线间的距离公式时应注意什么?提示(1)将方程化为最简的一般形式.(2)利用两平行线之间的距离公式时,应使两平行线方程中x ,y 的系数分别对应相等.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)当直线l 1和l 2斜率都存在时,一定有k 1=k 2⇒l 1∥l 2.(×)(2)已知直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0(A 1,B 1,C 1,A 2,B 2,C 2为常数),若直线l 1⊥l 2,则A 1A 2+B 1B 2=0.(√)(3)点P (x 0,y 0)到直线y =kx +b 的距离为|kx 0+b |1+k2.(×)(4)直线外一点与直线上一点的距离的最小值就是点到直线的距离.(√)(5)若点A ,B 关于直线l :y =kx +b (k ≠0)对称,则直线AB 的斜率等于-1k ,且线段AB 的中点在直线l 上.(√)题组二教材改编2.已知点(a,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于()A.2B .2-2 C.2-1D.2+1答案C 解析由题意得|a -2+3|1+1=1.解得a =-1+2或a =-1- 2.∵a >0,∴a =-1+ 2.3.已知P (-2,m ),Q (m,4),且直线PQ 垂直于直线x +y +1=0,则m =________.答案1解析由题意知m -4-2-m=1,所以m -4=-2-m ,所以m =1.4.若三条直线y =2x ,x +y =3,mx +2y +5=0相交于同一点,则m 的值为________.答案-9解析=2x ,+y =3,=1,=2.所以点(1,2)满足方程mx +2y +5=0,即m ×1+2×2+5=0,所以m =-9.题组三易错自纠5.直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m 等于()A .2B .-3C .2或-3D .-2或-3答案C解析直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则有2m =m +13≠4-2m =2或-3.故选C.6.直线2x +2y +1=0,x +y +2=0之间的距离是______.答案324解析先将2x +2y +1=0化为x +y +12=0,则两平行线间的距离为d =|2-12|2=324.7.若直线(3a +2)x +(1-4a )y +8=0与(5a -2)x +(a +4)y -7=0垂直,则a =________.答案0或1解析由两直线垂直的充要条件,得(3a +2)(5a -2)+(1-4a )(a +4)=0,解得a =0或a =1.题型一两条直线的平行与垂直例1已知直线l 1:ax +2y +6=0和直线l 2:x +(a -1)y +a 2-1=0.(1)试判断l 1与l 2是否平行;(2)当l 1⊥l 2时,求a 的值.解(1)方法一当a =1时,l 1:x +2y +6=0,l 2:x =0,l 1不平行于l 2;当a =0时,l 1:y =-3,l 2:x -y -1=0,l 1不平行于l 2;当a ≠1且a ≠0时,两直线可化为l 1:y =-a2x -3,l 2:y =11-ax -(a +1),l 1∥l 2-a2=11-a ,3≠-(a +1),解得a =-1,综上可知,当a=-1时,l1∥l2,a≠-1时,l1与l2不平行.方法二由A1B2-A2B1=0,得a(a-1)-1×2=0,由A1C2-A2C1≠0,得a(a2-1)-1×6≠0,∴l1∥l2(a-1)-1×2=0,(a2-1)-1×6≠0,2-a-2=0,(a2-1)≠6,可得a=-1,故当a=-1时,l1∥l2.a≠-1时,l1与l2不平行.(2)方法一当a=1时,l1:x+2y+6=0,l2:x=0,l1与l2不垂直,故a=1不成立;当a=0时,l1:y=-3,l2:x-y-1=0,l1不垂直于l2,故a=0不成立;当a≠1且a≠0时,l1:y=-a2x-3,l2:y=11-ax-(a+1),·11-a=-1,得a=23.方法二由A1A2+B1B2=0,得a+2(a-1)=0,可得a=23.思维升华(1)当直线方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x,y的系数不能同时为零这一隐含条件.(2)在判断两直线平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.跟踪训练1(1)(2018·潍坊模拟)直线l1:(3+m)x+4y=5-3m,l2:2x+(5+m)y=8,则“m=-1或m=-7”是“l1∥l2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案B解析由题意,当直线l1∥l2时,满足3+m2=45+m≠5-3m8,解得m=-7,所以“m=-1或m=-7”是“l1∥l2”的必要不充分条件,故选B.(2)(2018·青岛模拟)已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.①l1⊥l2,且直线l1过点(-3,-1);②l 1∥l 2,且坐标原点到这两条直线的距离相等.解①∵l 1⊥l 2,∴a (a -1)-b =0,又∵直线l 1过点(-3,-1),∴-3a +b +4=0.故a =2,b =2.②∵直线l 2的斜率存在,l 1∥l 2,∴直线l 1的斜率存在.∴k 1=k 2,即ab=1-a .又∵坐标原点到这两条直线的距离相等,∴l 1,l 2在y 轴上的截距互为相反数,即4b=b .故a =2,b =-2或a =23,b =2.题型二两直线的交点与距离问题1.(2018·西宁调研)若直线l 与两直线y =1,x -y -7=0分别交于M ,N 两点,且MN 的中点是P (1,-1),则直线l 的斜率是()A .-23 B.23C .-32D.32答案A解析由题意,设直线l 的方程为y =k (x -1)-1,分别与y =1,x -y -7=0联立解得1,又因为MN 的中点是P (1,-1),所以由中点坐标公式得k =-23.2.若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|PQ |的最小值为()A.95B.185C.2910D.295答案C解析因为36=48≠-125,所以两直线平行,将直线3x +4y -12=0化为6x +8y -24=0,由题意可知|PQ |的最小值为这两条平行直线间的距离,即|-24-5|62+82=2910,所以|PQ |的最小值为2910.3.已知直线y =kx +2k +1与直线y =-12x +2的交点位于第一象限,则实数k 的取值范围是________.答案-16,解析方法一=kx +2k +1,=-12x +2,=2-4k 2k +1,=6k +12k +1.(若2k +1=0,即k =-12,则两直线平行)∴又∵交点位于第一象限,,,解得-16<k <12.方法二如图,已知直线y =-12x +2与x 轴、y 轴分别交于点A (4,0),B (0,2).而直线方程y =kx +2k +1可变形为y -1=k (x +2),表示这是一条过定点P (-2,1),斜率为k 的动直线.∵两直线的交点在第一象限,∴两直线的交点必在线段AB 上(不包括端点),∴动直线的斜率k 需满足k P A <k <k PB .∵k P A =-16,k PB =12.∴-16<k <12.4.已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,若在坐标平面内存在一点P ,使|PA |=|PB |,且点P 到直线l 的距离为2,则P点坐标为________________.答案(1,-4)解析设点P 的坐标为(a ,b ).∵A (4,-3),B (2,-1),∴线段AB 的中点M 的坐标为(3,-2).而AB 的斜率k AB =-3+14-2=-1,∴线段AB 的垂直平分线方程为y +2=x -3,即x -y -5=0.∵点P (a ,b )在直线x -y -5=0上,∴a -b -5=0.①又点P (a ,b )到直线l :4x +3y -2=0的距离为2,∴|4a +3b -2|42+32=2,即4a +3b -2=±10,②由①②a =1,b =-4a =277,b =-87.∴所求点P 的坐标为(1,-4)277,-87思维升华(1)求过两直线交点的直线方程的方法先求出两直线的交点坐标,再结合其他条件写出直线方程.(2)利用距离公式应注意:①点P (x 0,y 0)到直线x =a 的距离d =|x 0-a |,到直线y =b 的距离d =|y 0-b |;②两平行线间的距离公式要把两直线方程中x ,y 的系数化为相等.题型三对称问题命题点1点关于点中心对称例2过点P (0,1)作直线l ,使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.答案x +4y -4=0解析设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.命题点2点关于直线对称例3如图,已知A (4,0),B(0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是()A .33B .6C .210D .25答案C解析直线AB 的方程为x +y =4,点P (2,0)关于直线AB 的对称点为D (4,2),关于y 轴的对称点为C (-2,0),则光线经过的路程为|CD |=62+22=210.命题点3直线关于直线的对称问题例4直线2x -y +3=0关于直线x -y +2=0对称的直线方程是______________.答案x -2y +3=0解析设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0),-y +y 02+2=0,(y -y 0),0=y -2,0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上,∴2(y -2)-(x +2)+3=0,即x -2y +3=0.思维升华解决对称问题的方法(1)中心对称①点P (x ,y )关于Q (a ,b )的对称点P ′(x ′,y ′)′=2a -x ,′=2b -y .②直线关于点的对称可转化为点关于点的对称问题来解决.(2)轴对称①点A (a ,b )关于直线Ax +By +C =0(B ≠0)的对称点A ′(m ,n ),则有1,B ·b +n 2+C =0.②直线关于直线的对称可转化为点关于直线的对称问题来解决.跟踪训练2已知直线l :3x -y +3=0,求:(1)点P (4,5)关于l 的对称点;(2)直线x -y -2=0关于直线l 对称的直线方程;(3)直线l 关于(1,2)的对称直线.解(1)设P (x ,y )关于直线l :3x -y +3=0的对称点为P ′(x ′,y ′),∵k PP ′·k l =-1,即y ′-yx ′-x×3=-1.①又PP ′的中点在直线3x -y +3=0上,∴3×x ′+x 2-y ′+y 2+3=0.②由①②′=-4x +3y -95,③′=3x +4y +35.④把x =4,y =5代入③④得x ′=-2,y ′=7,∴点P (4,5)关于直线l 的对称点P ′的坐标为(-2,7).(2)用③④分别代换x -y -2=0中的x ,y ,得关于l 对称的直线方程为-4x +3y -95-3x +4y +35-2=0,化简得7x +y +22=0.(3)在直线l :3x -y +3=0上取点M (0,3),关于(1,2)的对称点M ′(x ′,y ′),∴x ′+02=1,x ′=2,y ′+32=2,y ′=1,∴M ′(2,1).l 关于(1,2)的对称直线平行于l ,∴k =3,∴对称直线方程为y -1=3×(x -2),即3x -y -5=0.妙用直线系求直线方程在求解直线方程的题目中,可采用设直线系方程的方式简化运算,常见的直线系有平行直线系,垂直直线系和过直线交点的直线系.一、平行直线系例1求与直线3x +4y +1=0平行且过点(1,2)的直线l 的方程.解由题意,设所求直线方程为3x +4y +c =0(c ≠1),又因为直线过点(1,2),所以3×1+4×2+c =0,解得c =-11.因此,所求直线方程为3x +4y -11=0.二、垂直直线系例2求经过A (2,1),且与直线2x +y -10=0垂直的直线l 的方程.解因为所求直线与直线2x +y -10=0垂直,所以设该直线方程为x -2y +C =0,又直线过点A (2,1),所以有2-2×1+C =0,解得C =0,即所求直线方程为x -2y =0.三、过直线交点的直线系例3求经过两直线l 1:x -2y +4=0和l 2:x +y -2=0的交点P ,且与直线l 3:3x -4y +5=0垂直的直线l 的方程.解方法一-2y +4=0,+y -2=0,得P (0,2).∵l 3的斜率为34,且l ⊥l 3,∴直线l 的斜率为-43,由斜截式可知l 的方程为y =-43x +2,即4x +3y -6=0.方法二设直线l 的方程为x -2y +4+λ(x +y -2)=0,即(1+λ)x +(λ-2)y +4-2λ=0.又∵l ⊥l 3,∴3×(1+λ)+(-4)×(λ-2)=0,解得λ=11.∴直线l 的方程为4x +3y -6=0.1.直线2x +y +m =0和x +2y +n =0的位置关系是()A .平行B .垂直C .相交但不垂直D .不能确定答案C解析直线2x +y +m =0的斜率k 1=-2,直线x +2y +n =0的斜率k 2=-12,则k 1≠k 2,且k 1k 2≠-1.故选C.2.已知直线l 1:x +my +7=0和l 2:(m -2)x +3y +2m =0互相平行,则实数m 等于()A .-1或3B .-1C .-3D .1或-3答案A解析当m =0时,显然不符合题意;当m ≠0时,由题意得,m -21=3m ≠2m7,解得m =-1或m =3,故选A.3.已知过点A (-2,m )和B (m,4)的直线为l 1,直线2x +y -1=0为l 2,直线x +ny +1=0为l 3.若l 1∥l 2,l 2⊥l 3,则实数m +n 的值为()A .-10B .-2C .0D .8答案A解析因为l 1∥l 2,所以k AB =4-mm +2=-2.解得m =-8.又因为l 2⊥l 3,所以-1n ×(-2)=-1,解得n =-2,所以m +n =-10.4.过点M (-3,2),且与直线x +2y -9=0平行的直线方程是()A .2x -y +8=0B .x -2y +7=0C .x +2y +4=0D .x +2y -1=0答案D 解析方法一因为直线x +2y -9=0的斜率为-12,所以与直线x +2y -9=0平行的直线的斜率为-12,又所求直线过M (-3,2),所以所求直线的点斜式方程为y -2=-12(x +3),化为一般式得x +2y -1=0.故选D.方法二由题意,设所求直线方程为x +2y +c =0,将M (-3,2)代入,解得c =-1,所以所求直线为x +2y -1=0.故选D.5.若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2之间的距离为()A.423B .42 C.823D .22答案C解析∵l 1∥l 2,∴a ≠2且a ≠0,∴1a -2=a 3≠62a,解得a =-1,∴l 1与l 2的方程分别为l 1:x -y +6=0,l 2:x -y +23=0,∴l 1与l 2的距离d =|6-23|2=823.6.已知直线l1:y=2x+3,直线l2与l1关于直线y=-x对称,则直线l2的斜率为()A.1 2B.-12C.2D.-2答案A解析直线y=2x+3与y=-x的交点为A(-1,1),而直线y=2x+3上的点(0,3)关于y=-x的对称点为B(-3,0),而A,B两点都在l2上,所以kl2=1-0-1-(-3)=12.7.已知直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,若l1⊥l2,则a=________,此时点P的坐标为________.答案1(3,3)解析∵直线l1:ax+y-6=0与l2:x+(a-2)y+a-1=0相交于点P,且l1⊥l2,∴a×1+1×(a-2)=0,即a=1+y-6=0,-y=0,易得x=3,y=3,∴P(3,3).8.将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m,n)重合,则m+n=________.答案34 5解析由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y=2x-3,它也是点(7,3)与点(m,n)连线的中垂线,2×7+m2-3,=-12,=35,=315,故m+n=34 5 .9.直线l1:y=2x+3关于直线l:y=x+1对称的直线l2的方程为______________.答案x-2y=0解析=2x+3,=x+1,解得直线l1与l的交点坐标为(-2,-1),所以可设直线l2的方程为y+1=k(x+2),即kx-y+2k-1=0.在直线l上任取一点(1,2),由题设知点(1,2)到直线l1,l2的距离相等,由点到直线的距离公式得|k -2+2k -1|k 2+1=|2-2+3|22+1,解得k =12(k =2舍去),所以直线l 2的方程为x -2y =0.10.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为______________.答案6x -y -6=0解析设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′,=-1,-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0.11.已知方程(2+λ)x -(1+λ)y -2(3+2λ)=0与点P (-2,2).(1)证明:对任意的实数λ,该方程都表示直线,且这些直线都经过同一定点,并求出这一定点的坐标;(2)证明:该方程表示的直线与点P 的距离d 小于42.(1)解显然2+λ与-(1+λ)不可能同时为零,故对任意的实数λ,该方程都表示直线.∵方程可变形为2x -y -6+λ(x -y -4)=0,x -y -6=0,-y -4=0,=2,=-2,故直线经过的定点为M (2,-2).(2)证明过P 作直线的垂线段PQ ,由垂线段小于斜线段知|PQ |≤|PM |,当且仅当Q 与M 重合时,|PQ |=|PM |,此时对应的直线方程是y +2=x -2,即x -y -4=0.但直线系方程唯独不能表示直线x -y -4=0,∴M 与Q 不可能重合,而|PM |=42,∴|PQ |<42,故所证成立.12.已知三条直线:l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件:①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解(1)直线l 2:2x -y -12=0,所以两条平行线l 1与l 2间的距离为d =7510,所以|a +12|5=7510,即|a +12|=72,又a >0,解得a =3.(2)假设存在点P ,设点P (x 0,y 0).若P 点满足条件②,则P 点在与l 1,l 2平行的直线l ′:2x -y +c =0上,且|c -3|5=12|c +12|5,即c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0;若P 点满足条件③,由点到直线的距离公式,有|2x 0-y 0+3|5=25|x 0+y 0-1|2,即|2x 0-y 0+3|=|x 0+y 0-1|,所以x 0-2y 0+4=0或3x 0+2=0;由于点P 在第一象限,所以3x 0+2=0不可能.联立方程2x 0-y 0+132=0和x 0-2y 0+4=0,0=-3,0=12,(舍去)联立方程2x 0-y 0+116=0和x 0-2y 0+4=0,=19,0=3718.所以存在点P 13.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C的坐标为()A.(-2,4)B.(-2,-4) C.(2,4)D.(2,-4)答案C解析设A(-4,2)关于直线y=2x的对称点为(x,y),则2=-1,2×-4+x2,解得=4,=-2,∴BC所在直线方程为y-1=-2-14-3(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),∴AC所在直线方程为y-2=3-2-1-(-4)(x+4),即x-3y+10=0.x+y-10=0,-3y+10=0,=2,=4,则C(2,4).故选C.14.若三条直线y=2x,x+y=3,mx+ny+5=0相交于同一点,则点(m,n)到原点的距离的最小值为()A.5B.6C.23D.25答案A解析=2x,+y=3,解得x=1,y=2.把(1,2)代入mx+ny+5=0可得,m+2n+5=0.∴m=-5-2n.∴点(m,n)到原点的距离d=m2+n2=(5+2n)2+n2=5(n+2)2+5≥5,当n=-2,m=-1时取等号.∴点(m,n)到原点的距离的最小值为 5.15.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半.这条直线被后人称为三角形的欧拉线.已知△ABC的顶点A (1,0),B (0,2),且AC =BC ,则△ABC 的欧拉线的方程为()A .4x +2y +3=0B .2x -4y +3=0C .x -2y +3=0D .2x -y +3=0答案B解析因为AC =BC ,所以欧拉线为AB 的中垂线,又A (1,0),B (0,2),故AB k AB =-2,故AB 的中垂线方程为y -1即2x -4y +3=0.16.在平面直角坐标系xOy 中,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1.再将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,又与直线l 重合.若直线l 与直线l 1关于点(2,4)对称,求直线l 的方程.解由题意知直线l 的斜率存在,设直线l 的方程为y =kx +b ,将直线l 沿x 轴正方向平移3个单位长度,沿y 轴正方向平移5个单位长度,得到直线l 1:y =k (x -3)+5+b ,将直线l 1沿x 轴正方向平移1个单位长度,沿y 轴负方向平移2个单位长度,则平移后的直线方程为y =k (x -3-1)+b +5-2,即y =kx +3-4k +b ,∴b =3-4k +b ,解得k =34,∴直线l 的方程为y =34x +b ,直线l 1为y =34x +114+b ,取直线l 上的一点,b P 关于点(2,4)-m ,8-b ∴8-b -3m 4=34(4-m )+b +114,解得b =98.∴直线l 的方程是y =34x +98,即6x -8y +9=0.。

2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

2020版高考数学总复习第八篇平面解析几何(必修2、选修2_1)第3节椭圆课件理

等于常数2a(2a>|F1F2|)的点的轨
焦点
,两焦点间的距离叫做椭圆
2.椭圆的标准方程及其简单几何性质
标准 方程
焦点在 x 轴上 x2 + y 2 =1(a>b>0) a2 b2
图形
范围 对称性
|x|≤a;|y|≤b
曲线关于 x轴、 y轴、原点 对称
焦点在 y 轴上 y 2 + x2 =1(a>b>0) a2 b2
答案:④⑤
考点专项突破
在讲练中理解知识
考点一 椭圆的定义及其应用
【例1】 (1)已知△ABC的周长为26且点A,B的坐标分别是(-6,0),(6,0),则点
C的轨迹方程为
.
解析:(1)因为△ABC 的周长为 26,顶点 A(-6,0),B(6,0),所以|AB|=12,|AC|+|BC|=2612=14,且 14>12,点 C 到两个定点的距离之和等于定值,所以点 C 的轨迹是椭圆,因为
【跟踪训练 3】
(1)过椭圆 x2 a2
+ y2 b2
=1(a>b>0)的左焦点 F1 作 x 轴的垂线交椭圆于点 P,F2
为椭圆的右焦点,若∠F1PF2=60°,则椭圆的离心率为( )
(A) 2 (B) 3 (C) 1
5 55 以 b2≥1,所以 a2-c2≥1,4-c2≥1,解得 0<c≤ 3 ,所以 0< c ≤ 3 ,所以椭圆的离心率
a2 的取值范围为(0, 3 ).故选 A.
2
反思归纳 (1)求椭圆离心率的方法 ①直接求出a,c的值,利用离心率公式直接求解. ②列出含有a,b,c的齐次方程(或不等式),借助于b2=a2-c2消去b,转化为含有e 的方程(或不等式)求解. (2)利用椭圆几何性质求值或范围的思路 求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、 焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系.

高考数学解析几何专题练习与答案解析版

高考数学解析几何专题练习与答案解析版

高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)

直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。

直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。

二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。

三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。

但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。

四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。

既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。

高考数学 解析几何 专题练习及答案解析版

高考数学 解析几何 专题练习及答案解析版

高考数学解析几何专题练习解析版82页【1】1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A.19422=+y x B.14922=+y x C.113422=+y x D.141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1 B . 2 C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A .54B .45 C .254D .425 9. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B.13222=+y x C.12222=+y xD.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .3 12.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B 2 (C 3(D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π)C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32C .32-D .23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( ) A .()21,1-B .()21,2-C .()1,2D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61B .⎪⎭⎫ ⎝⎛-61,21C .⎪⎭⎫ ⎝⎛61,21.D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4B. 3C. 2D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。

2020高考数学解析几何内容剖析及备考建议

2020高考数学解析几何内容剖析及备考建议

2020高考数学解析几何内容剖析及备考建议解析几何是高中数学的重要内容。

高考主要考查直线与圆、椭圆、抛物线、双曲线的定义、标准方程和简单的几何性质。

其中直线与圆、直线与圆锥曲线的位置关系是考查重点。

运动与变化是研究几何问题的基本观点,利用代数方法研究几何问题是基本方法。

试题强调综合性,综合考查数形结合思想、函数与方程思想、特殊与一般思想等思想方法,突出考查考生推理论证能力和运算求解能力。

一、直线与方程1.在平面直角坐标系下,结合具体图形掌握确定直线位置的几何要素.2. 理解直线的倾斜角概念,掌握过两点的直线斜率的计算公式.3.能根据两条直线的斜率判断两条直线平行或垂直.4.掌握确定直线的几何要素,掌握直线方程的三种形式(点斜式、两点式、一般式),了解斜截式与一次函数的关系.5.能用解方程组的方法求两条相交直线的交点坐标.6.掌握两点间的距离公式,点到直线的距离公式,会求两平行直线间的距离.二、圆的方程1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程.2.能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判定圆与圆的位置关系.3.能用直线与圆的方程解决一些简单的问题。

4 .初步了解用代数方法处理几何问题的思想。

三、空间直角坐标系1.了解空间直角坐标系,会用空间直角坐标表示点的位置。

2.会简单应用空间两点间的距离公式。

四、圆锥曲线(理科)1.了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用。

2.掌握椭圆、抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).3.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).4.了解曲线与方程的对应关系。

5.理解数形结合思想。

了解圆锥曲线的简单应用。

四、圆锥曲线(文科)1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率).2.了解双曲线的定义、几何图形和标准方程,知道双曲线的简单的几何性质(范围、对称轴、顶点、离心率、渐近线).3.了解抛物线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称轴、顶点、离心率).4.理解数形结合思想。

2019-2020年高考数学二轮复习第一部分专题六解析几何1.6.1直线与圆限时规范训练理

2019-2020年高考数学二轮复习第一部分专题六解析几何1.6.1直线与圆限时规范训练理

2019-2020年高考数学二轮复习第一部分专题六解析几何1.6.1直线与圆限时规范训练理一、选择题(本题共12小题,每小题5分,共60分)1.(xx·山东省实验中学二诊)设a ,b ,c 分别是△ABC 中角A ,B ,C 所对的边,则直线sinA ·x +ay -c =0与bx -sinB ·y +sinC =0的位置关系是( )A .平行B .重合C .垂直D .相交但不垂直解析:选C.由题意可得直线sin A ·x +ay -c =0的斜率k 1=-sin Aa,bx -sin B ·y +sin C=0的斜率k 2=bsin B ,故k 1k 2=-sin A a ·bsin B=-1,则直线sin A ·x +ay -c =0与直线bx -sin B ·y +sin C =0垂直,故选C.2.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x +3)2+(y -2)2=1相切,则反射光线所在直线的斜率为( )A .-53或-35B .-32或-23C .-54或-45D .-43或-34解析:选D.点(-2,-3)关于y 轴的对称点为(2,-3),故可设反射光线所在直线的方程为y +3=k (x -2),∵反射光线与圆(x +3)2+(y -2)2=1相切,∴圆心(-3,2)到直线的距离d =|-3k -2-2k -3|k 2+1=1,化简得12k 2+25k +12=0,解得k =-43或-34. 3.已知点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A.95 B .1 C.45D.135解析:选 C.圆心(-1,-1)到点M 的距离的最小值为点(-1,-1)到直线的距离d =|-3-4-2|5=95,故点N 到点M 的距离的最小值为d -1=45. 4.两个圆C 1:x 2+y 2+2x +2y -2=0,C 2:x 2+y 2-4x -2y +1=0的公切线的条数为( ) A .1条 B .2条 C .3条D .4条解析:选 B.C 1:(x +1)2+(y +1)2=4,C 2:(x -2)2+(y -1)2=4.圆心距d =|C 1C 2|=2+12+1+12=13.|r 1-r 2|<d <r 1+r 2,∴两圆C 1与C 2相交,有两条公切线,故选B.5.圆C :x 2+y 2-4x +8y -5=0被抛物线y 2=4x 的准线截得的弦长为( ) A .6 B .8 C .10D .12解析:选B.依题意,圆的标准方程为(x -2)2+(y +4)2=25,圆心为(2,-4),半径为5,抛物线y 2=4x 的准线为x =-1,故弦长为252-2+12=8,故选B.6.(xx·吉林长春三模)直线kx -3y +3=0与圆(x -1)2+(y -3)2=10相交所得弦长的最小值为( )A .2 5 B. 5 C .210D.10解析:选A.由题意易知直线kx -3y +3=0恒过圆内的定点(0,1),则圆心(1,3)到定点(0,1)的距离为5,当圆心到直线kx -3y +3=0的距离最大时(即圆心(1,3)到定点(0,1)的距离),所得弦长最小,因此最短弦长为2×10-5=2 5.故选A.7.若两直线l 1:3x +4y +a =0与l 2:3x +4y +b =0都与圆x 2+y 2+2x +4y +1=0相切,则|a -b |=( )A. 5 B .2 5 C .10D .20解析:选D.由题意知直线l 1与l 2平行,且它们间的距离等于d =|a -b |5;又直线l 1,l 2均与题中的圆相切,因此它们间的距离等于该圆的直径4,即有|a -b |5=4,即|a -b |=20,故选D.8.(xx·山东潍坊模拟)圆C :(x -1)2+y 2=25,过点P (2,-1)作圆的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( )A .1013B .921C .1023D .911解析:选C.因为圆的方程为(x -1)2+y 2=25,所以圆心坐标为C (1,0),半径r =5,因为P (2,-1)是该圆内一点,所以经过P 点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.因为|PC |=2-12+-12=2,所以与PC 垂直的弦长为225-2=223.因此所求四边形的面积S =12×10×223=1023.9.已知P (x ,y )是直线kx +y +4=0(k >0)上一动点,PA 是圆C :x 2+y 2-2y =0的一条切线,A 是切点,若线段PA 长度最小值为2,则k 的值为( )A .3B.212C .2 2D .2解析:选D.圆C :x 2+(y -1)2=1,圆心C (0,1),半径r =1,圆心到直线的最小距离d =5k 2+1=22+12,解得k =2或k =-2(舍去),故选D.10.(xx·河北石家庄二检)若圆(x -5)2+(y -1)2=r 2(r >0)上有且仅有两点到直线4x +3y +2=0的距离等于1,则实数r 的取值范围为( )A .[4,6]B .(4,6)C .[5,7]D .(5,7)解析:选B.因为圆心(5,1)到直线4x +3y +2=0的距离为|20+3+2|5=5,又圆上有且仅有两点到直线4x +3y +2=0的距离为1,则4<r <6,故选B.11.若曲线C 1:x 2+y 2-2x =0与曲线C 2:x (y -mx -m )=0有三个不同的公共点,则实数m 的取值范围是( )A .(0,3)B .(-3,0)∪(0,3) C.⎝ ⎛⎭⎪⎫0,33 D.⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33 解析:选D.由x (y -mx -m )=0可知x =0,y =m (x +1),当直线y =m (x +1)与圆x 2+y 2-2x =0相切时,m =±33,当m =0时,只有两个公共点,因此m ∈⎝ ⎛⎭⎪⎫-33,0∪⎝⎛⎭⎪⎫0,33,故选D. 12.已知两点M (-1,0),N (1,0),若直线y =k (x -2)上存在点P ,使得PM ⊥PN ,则实数k 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-13,0∪⎝ ⎛⎦⎥⎤0,13B.⎣⎢⎡⎭⎪⎫-33,0∪⎝⎛⎦⎥⎤0,33 C.⎣⎢⎡⎦⎥⎤-13,13 D .[-5,5]解析:选B.因为直线y =k (x -2)上存在点P ,使PM ⊥PN ,即以MN 为直径的圆x 2+y 2=1与y =k (x -2)相交或相切,即|-2k |k 2+1≤1且k ≠0,解得k ∈⎣⎢⎡⎭⎪⎫-33,0∪⎝⎛⎦⎥⎤0,33. 二、填空题(本题共4小题,每小题5分,共20分)13.圆心在直线x =2上的圆与y 轴交于A (0,-4),B (0,-2)两点,则该圆的标准方程是________.解析:根据题意,设圆的方程为(x -2)2+(y -a )2=r 2,则⎩⎪⎨⎪⎧0-22+-4-a 2=r 2,0-22+-2-a2=r 2,解得⎩⎪⎨⎪⎧a =-3,r 2=5,所以所求圆的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=514.与直线x -y -4=0和圆A :x 2+y 2+2x -2y =0都相切的半径最小的圆的标准方程是________.解析:如图,易知所求圆C 的圆心在直线y =-x 上,故设其坐标为C (c ,-c )半径为r ,又其直径为圆A 的圆心A (-1,1)到直线x -y-4=0的距离减去圆A 的半径2,即2r =62-2=22⇒r =2,即圆心C 到直线x -y -4=0的距离等于2, 故有|2c -4|2=2⇒c =3或c =1,当c =3时圆C 在直线x -y -4=0下方,不符合题意,故所求圆的方程为(x -1)2+(y +1)2=2.答案:(x -1)2+(y +1)2=215.(xx·山东威海模拟)抛物线y 2=12x 的焦点为F ,点P 为抛物线上的动点,点M 为其准线上的动点,当△FPM 为等边三角形时,△FPM 的外接圆的方程为________.解析:据题意知,△PMF 为等边三角形,PF =PM ,∴PM ⊥抛物线的准线,F (3,0).设M (-3,m ),则P (9,m ),等边三角形边长为MP =2MA =2×6=12,如图.在直角△APF 中,PF =12,FQ =23FA =23×PF 2-PA 2=23×122-62=43,外心Q 的坐标为(3,±43),则△FPM的外接圆的半径为FQ =4 3.∴△FPM 的外接圆的方程为(x -3)2+(y ±43)2=48. 答案:(x -3)2+(y ±43)2=4816.(xx·山东青岛模拟)在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.解析:圆C :(x -4)2+y 2=1,如图,直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需保证圆心C 到y =kx -2的距离小于等于2即可,∴|4k -2|1+k2≤2⇒0≤k ≤43. ∴k max =43.答案:43。

专题8.8 抛物线及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

专题8.8 抛物线及其几何性质-2020届高考数学一轮复习学霸提分秘籍(原卷版)

第八篇 平面解析几何 专题8.08 抛物线及其几何性质【考试要求】1.了解抛物线的实际背景,了解抛物线在刻画现实世界和解决实际问题中的作用;2.掌握抛物线的定义、几何图形、标准方程及简单几何性质. 【知识梳理】 1.抛物线的定义(1)平面内与一个定点F 和一条定直线l (F ∉l )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.(2)其数学表达式:{M ||MF |=d }(d 为点M 到准线l 的距离). 2.抛物线的标准方程与几何性质图形标准方程y 2=2px(p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离性质顶点 O (0,0)对称轴 y =0x =0焦点F ⎝⎛⎭⎫p 2,0F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p2 离心率e =1准线方程 x =-p2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下【微点提醒】1.通径:过焦点且垂直于对称轴的弦长等于2p ,通径是过焦点最短的弦.2.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F ⎝⎛⎭⎫p 2,0的距离|PF |=x 0+p2,也称为抛物线的焦半径.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是⎝⎛⎭⎫a 4,0,准线方程是x =-a4.( ) (3)抛物线既是中心对称图形,又是轴对称图形.( )(4)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( )【教材衍化】2.(选修2-1P72A1改编)顶点在原点,且过点P (-2,3)的抛物线的标准方程是________________.3. (选修2-1P67A3改编)抛物线y 2=8x 上到其焦点F 距离为5的点的个数为________.【真题体验】4.(2019·黄冈联考)已知方程y 2=4x 表示抛物线,且该抛物线的焦点到直线x =m 的距离为4,则m 的值为( ) A.5 B.-3或5 C.-2或6 D.65.(2019·北京海淀区检测)设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A.4 B.6 C.8 D.126.(2019·宁波调研)已知抛物线方程为y 2=8x ,若过点Q (-2,0)的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是________.【考点聚焦】考点一 抛物线的定义及应用【例1】 (1)(2019·厦门外国语模拟)已知抛物线x 2=2y 的焦点为F ,其上有两点A (x 1,y 1),B (x 2,y 2)满足|AF |-|BF |=2,则y 1+x 21-y 2-x 22=( )A.4B.6C.8D.10(2)若抛物线y 2=4x 的准线为l ,P 是抛物线上任意一点,则P 到准线l 的距离与P 到直线3x +4y +7=0的距离之和的最小值是( ) A.2 B.135 C.145D.3【规律方法】 应用抛物线定义的两个关键点(1)由抛物线定义,把抛物线上点到焦点距离与到准线距离相互转化.(2)注意灵活运用抛物线上一点P (x 0,y 0)到焦点F 的距离|PF |=|x 0|+p 2或|PF |=|y 0|+p2.【训练1】 (1)动圆过点(1,0),且与直线x =-1相切,则动圆的圆心的轨迹方程为__________.(2)(2017·全国Ⅱ卷)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.考点二 抛物线的标准方程及其性质【例2】 (1)(2018·晋城模拟)抛物线C :y 2=4x 的焦点为F ,其准线l 与x 轴交于点A ,点M 在抛物线C 上,当|MA ||MF |=2时,△AMF 的面积为( ) A.1B. 2C.2D.2 2(2)已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,且|AB |=855,则抛物线C 2的方程为( ) A.y 2=85xB.y 2=165xC.y 2=325xD.y 2=645x【规律方法】 1.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程. 2.在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.【训练2】 (1)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为________.(2)(2019·济宁调研)已知点A (3,0),过抛物线y 2=4x 上一点P 的直线与直线x =-1垂直相交于点B ,若|PB |=|PA |,则P 的横坐标为( ) A.1 B.32C.2D.52考点三 直线与抛物线的综合问题【例3】 (2019·武汉调研)已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值; (2)若△ABN 面积的最小值为4,求抛物线C 的方程.【规律方法】 1.有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点,可直接使用公式|AB|=x1+x2+p,若不过焦点,则必须用一般弦长公式.2.涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.【提醒】:涉及弦的中点、斜率时一般用“点差法”求解.【训练3】(2017·全国Ⅰ卷)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则|AB|+|DE|的最小值为()A.16B.14C.12D.10【反思与感悟】1.抛物线定义的实质可归结为“一动三定”:一个动点M ,一个定点F (抛物线的焦点),一条定直线l (抛物线的准线),一个定值1(抛物线的离心率).2.抛物线的焦点弦:设过抛物线y 2=2px (p >0)的焦点的直线与抛物线交于A (x 1,y 1),B (x 2,y 2),则: (1)y 1y 2=-p 2,x 1x 2=p 24;(2)若直线AB 的倾斜角为θ,则|AB |=2psin 2θ;|AB |=x 1+x 2+p ; (3)若F 为抛物线焦点,则有1|AF |+1|BF |=2p .【易错防范】1.认真区分四种形式的标准方程(1)区分y =ax 2(a ≠0)与y 2=2px (p >0),前者不是抛物线的标准方程.(2)求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y 2=mx 或x 2=my (m ≠0). 2.直线与抛物线结合的问题,不要忘记验证判别式. 【核心素养提升】【数学抽象】——活用抛物线焦点弦的四个结论1.数学抽象素养水平表现为能够在关联的情境中抽象出一般的数学概念和规则,能够将已知数学命题推广到更一般情形.本课时中研究直线方程时常用到直线系方程就是其具体表现之一.2.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α(α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点).【例1】 过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A.4 B.92C.5D.6【一般解法】【应用结论】【例2】 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( ) A.334B.938C.6332D.94【一般解法】【应用结论】【例3】 (2019·益阳、湘潭调研)如图,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若F 是AC 的中点,且|AF |=4,则线段AB 的长为( )A.5B.6C.163 D.203【一般解法】【应用结论】【分层训练】【基础巩固题组】(建议用时:40分钟) 一、选择题1.抛物线y =4x 2的焦点到准线的距离为( ) A.2 B.1C.14D.182.(2019·抚顺模拟)已知点F 是抛物线y 2=2x 的焦点,M ,N 是该抛物线上的两点,若|MF |+|NF |=4,则线段MN 的中点的横坐标为( ) A.32 B.2C.52D.33.设抛物线C :y 2=3x 的焦点为F ,点A 为C 上一点,若|FA |=3,则直线FA 的倾斜角为( ) A.π3 B.π4 C.π3或2π3D.π4或3π44.(2019·德州调研)已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为( ) A.x 2=8y B.x 2=4y C.y 2=8xD.y 2=4x5.(2019·河南中原联考)已知抛物线C :y 2=2px (p >0)的焦点为F ,准线为l ,且l 过点(-2,3),M 在抛物线C 上,若点N (1,2),则|MN |+|MF |的最小值为( ) A.2B.3C.4D.5二、填空题6.如图是抛物线形拱桥,当水面在l时,拱顶离水面2米,水面宽4米.水位下降1米后,水面宽________米.7.在平面直角坐标系xOy中,抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.若直线AF的斜率k=-3,则线段PF的长为________.8.已知双曲线C1:x2a2-y2b2=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为________.三、解答题9.(2019·天津耀华中学模拟)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.10.(2017·全国Ⅰ卷)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【能力提升题组】(建议用时:20分钟)11.抛物线y 2=8x 的焦点为F ,设A ,B 是抛物线上的两个动点,|AF |+|BF |=233|AB |,则∠AFB 的最大值为( )A.π3B.3π4C.5π6D.2π312.(2019·武汉模拟)过点P (2,-1)作抛物线x 2=4y 的两条切线,切点分别为A ,B ,PA ,PB 分别交x 轴于E ,F 两点,O 为坐标原点,则△PEF 与△OAB 的面积之比为( )A.32 B.33 C.12 D.3413.已知抛物线方程为y 2=-4x ,直线l 的方程为2x +y -4=0,在抛物线上有一动点A ,点A 到y 轴的距离为m ,到直线l 的距离为n ,则m +n 的最小值为________.14.(2019·泉州一模)在平面直角坐标系xOy 中,抛物线C :x 2=2py (p >0)的焦点为F ,点A 在C 上,若|AO |=|AF |=32. (1)求抛物线C 的方程;(2)设直线l 与C 交于P ,Q ,若线段PQ 的中点的纵坐标为1,求△OPQ 的面积的最大值.【新高考创新预测】15.(思维创新)已知点A (0,2),抛物线C :y 2=2px (p >0)的焦点为F ,射线FA 与抛物线C 相交于点M ,与其准线相交于点N ,若|FM ||MN |=55,则p 的值等于( ) A.14 B.2 C.4 D.8。

2020高考数学三轮冲刺提分专项练习:解析几何

2020高考数学三轮冲刺提分专项练习:解析几何

解析几何1.(2019·浙江)渐近线方程为x±y=0的双曲线的离心率是()A.22B.1 C. 2 D.2答案 C解析因为双曲线的渐近线方程为x±y=0,所以无论双曲线的焦点在x轴上还是在y轴上,都满足a=b,所以c=2a,所以双曲线的离心率e=ca= 2.2.已知椭圆x2a2+y2b2=1(a>b>0)的离心率为53,椭圆上一点P到两焦点距离之和为12,则椭圆短轴长为()A.8 B.6 C.5 D.4 答案 A解析椭圆x2a2+y2b2=1(a>b>0)的离心率e=ca=53,椭圆上一点P到两焦点距离之和为12,即2a=12,可得a=6,c=25,∴b=a2-c2=36-20=4,则椭圆短轴长2b=8.故选A.3.已知a∈R且为常数,圆C:x2+2x+y2-2ay=0,过圆C内一点(1,2)的直线l与圆C相交于A,B两点,当弦AB最短时,直线l的方程为2x-y=0,则a的值为()A.2 B.3 C.4 D.5答案 B解析圆C:x2+2x+y2-2ay=0,化简为(x+1)2+(y-a)2=a2+1,圆心坐标为C(-1,a),半径为a2+1.如图,由题意可得,当弦AB最短时,过圆心与点(1,2)的直线与直线2x-y=0垂直.则a -2-1-1=-12,即a =3.4.已知抛物线y 2=4x 的焦点为F ,以F 为圆心的圆与抛物线交于M ,N 两点,与抛物线的准线交于P ,Q 两点,若四边形MNPQ 为矩形,则矩形MNPQ 的面积是( ) A .16 3 B .12 3 C .4 3 D .3 答案 A解析 根据题意,四边形MNPQ 为矩形, 可得|PQ |=|MN |,从而得到圆心F 到准线的距离与到MN 的距离是相等的, 所以M 点的横坐标为3,代入抛物线方程, 设M 为x 轴上方的交点,从而求得M (3,23),N (3,-23), 所以|MN |=43,||NP =4,从而求得四边形MNPQ 的面积为S =4×43=16 3.5.(2019·金华十校联考)如图,已知椭圆C :x 24+y 2=1上的三点A ,B ,C ,斜率为负数的直线BC 与y 轴交于M ,若原点O 是△ABC 的重心,且△BMA 与△CMO 的面积之比为32,则直线BC 的斜率为( )A .-24 B .-14 C .-36 D .-33答案 C解析 设B (x 1,y 1),C (x 2,y 2),M (0,m ).A (x 3,y 3),直线BC 的方程为y =kx +m . ∵原点O 是△ABC 的重心, ∴△BMA 与△CMO 的高之比为3, 又△BMA 与△CMO 的面积之比为32,则2BM =MC ,即2BM →=MC →,∴2x 1+x 2=0,①联立⎩⎪⎨⎪⎧y =kx +m ,x 2+4y 2=4,得(4k 2+1)x 2+8mkx +4m 2-4=0.x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-41+4k 2,②由①②整理可得36k 2m 2=1-m 2+4k 2,③ ∵原点O 是△ABC 的重心, ∴x 3=-(x 1+x 2)=8km1+4k 2,y 3=-(y 2+y 1)=-[k (x 1+x 2)+2m ]=-2m1+4k 2.∵x 23+4y 23=4,∴⎝⎛⎭⎫8km 1+4k 22+4⎝ ⎛⎭⎪⎫-2m 1+4k 22=4, 即1+4k 2=4m 2.④ 由③④可得k 2=112,∵k <0.∴k =-36.故选C. 6.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右两个焦点分别为F 1,F 2,以线段F 1F 2为直径的圆与双曲线的渐近线在第一象限的交点为M ,若|MF 1|-|MF 2|=2b ,该双曲线的离心率为e ,则e 2等于( ) A .2 B .3 C.3+222D.5+12答案 D解析 以线段F 1F 2 为直径的圆的方程为x 2+y 2=c 2, 双曲线经过第一象限的渐近线方程为y =ba x ,联立方程⎩⎪⎨⎪⎧x 2+y 2=c 2,y =b a x ,求得M (a ,b ),因为||MF 1||-MF 2=2b <2c ,所以M (a ,b )在双曲线x 2b 2-y 2a 2=1(a >0,b >0)上,所以a 2b 2-b 2a 2=1,所以a 2c 2-a 2-c 2-a 2a 2=1,化简得e 4-e 2-1=0,解得e 2=5+12(负值舍去). 7.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),直线y =x 与椭圆相交于A ,B 两点,若椭圆上存在异于A ,B 两点的点P 使得k P A ·k PB ∈⎝⎛⎭⎫-13,0,则离心率e 的取值范围为( ) A.⎝⎛⎭⎫0,63 B.⎝⎛⎭⎫63,1 C.⎝⎛⎭⎫0,23 D.⎝⎛⎭⎫23,1 答案 B解析 设P (x 0,y 0),直线y =x 过原点,由椭圆的对称性设A (x 1,y 1),B (-x 1,-y 1),k P A k PB=y 0-y 1x 0-x 1×y 0+y 1x 0+x 1=y 20-y 21x 20-x 21,又x 20a 2+y 20b 2=1,x 21a 2+y 21b 2=1,两式作差,得x 20-x 21a 2=-y 20-y 21b 2,所以k P A k PB=-b 2a 2∈⎝⎛⎭⎫-13,0,故0<b 2a 2<13,所以e =1-b 2a 2∈⎝⎛⎭⎫63,1. 8.已知椭圆x 2a 2+y 2b 2=1(a >b >0),点F 为左焦点,点P 为下顶点,平行于FP 的直线l 交椭圆于A ,B 两点,且AB 的中点为M ⎝⎛⎭⎫1,12,则椭圆的离心率为( ) A.22 B.12 C.14 D.32答案 A解析 设A (x 1,y 1),B (x 2,y 2).∵AB 的中点为M ⎝⎛⎭⎫1,12,∴x 1+x 2=2,y 1+y 2=1. ∵PF ∥l ,∴k PF =k l =-b c =y 1-y 2x 1-x 2.由x 21a 2+y 21b 2=1,x 22a 2+y 22b2=1. ∴(x 1+x 2)(x 1-x 2)a 2+(y 1+y 2)(y 1-y 2)b 2=0.∴2a 2-b cb 2=0,可得2bc =a 2. ∴4c 2(a 2-c 2)=a 4, 化为4e 4-4e 2+1=0, 解得e 2=12,0<e <1.∴e =22.9.(2019·浙江绍兴一中模拟)已知抛物线C :x 2=4y ,过抛物线C 上两点A ,B 分别作抛物线的两条切线P A ,PB ,P 为两切线的交点,O 为坐标原点,若P A →·PB →=0,则直线OA 与OB 的斜率之积为( )A .-14B .-3C .-18 D .-4答案 A解析 设A (2a ,a 2),B (2b ,b 2),a ≠b , ∵y =14x 2,∴y ′=12x ,∴k P A =12×2a =a ,k PB =12×2b =b ,∴切线P A 的方程为y -a 2=a (x -2a ), 即ax -y -a 2=0,切线PB 的方程为y -b 2=b (x -2b ), 即bx -y -b 2=0, 联立切线P A ,PB 的方程, 解得x =a +b ,y =ab , ∴P (a +b ,ab ),∴P A →·PB →=(a -b ,a 2-ab )·(b -a ,b 2-ab )=(a -b )(b -a )+(a 2-ab )(b 2-ab )=(a -b )(b -a )(ab +1)=0,∵a ≠b ,∴ab =-1. ∴k OA ·k OB =a 22a ·b 22b =ab 4=-14.10.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,P 为双曲线右支上一点(异于右顶点),△PF 1F 2的内切圆与x 轴切于点(2,0).过F 2作直线l 与双曲线交于A ,B 两点,若使|AB |=b 2的直线l 恰有三条,则双曲线离心率的取值范围是( ) A .(1,2) B .(1,2) C .(2,+∞) D .(2,+∞)答案 C解析 |F 1F 2|=2c (c 2=a 2+b 2),设△PF 1F 2的内切圆分别与PF 1,F 1F 2,PF 2切于点G ,H ,I , 则|PG |=|PI |,|F 1G |=|F 1H |,|F 2H |=|F 2I |. 由双曲线的定义知2a =|PF 1|-|PF 2|=|F 1G |-|F 2I |=|F 1H |-|F 2H |,又|F 1H |+|F 2H |=|F 1F 2|=2c , 故|F 1H |=c +a ,|F 2H |=c -a , 所以H (a,0), 即a =2.若直线l 与双曲线的右支交于A ,B 两点, 则当l ⊥x 轴时,|AB |有最小值2b 2a=b 2;若直线l 与双曲线的两支各交于一点(A ,B 两点), 则当l ⊥y 轴时,|AB |有最小值2a ,于是,因为使|AB |=b 2的直线l 恰有3条,所以b 2>2a =4,b >2,c =a 2+b 2>22, 所以双曲线的离心率e =ca> 2.11.若直线(a +1)x -2y =0与直线x -ay =1互相平行,则实数a =__________,若这两条直线互相垂直,则a =________. 答案 -2或1 -13解析 由直线(a +1)x -2y =0与直线x -ay =1互相平行,得(a +1)×(-a )-(-2)×1=0,解得a =-2或a =1.由直线(a +1)x -2y =0与直线x -ay =1互相垂直得(a +1)×1+(-2)×(-a )=0,解得a =-13.12.已知方程mx 2+(2-m )y 2=1表示双曲线,则m 的取值范围为________________.若表示椭圆,则m 的取值范围为________________. 答案 (-∞,0)∪(2,+∞) (0,1)∪(1,2) 解析 若mx 2+(2-m )y 2=1表示双曲线, 则m (2-m )<0,解得m <0或m >2.若mx 2+(2-m )y 2=1表示椭圆,则⎩⎪⎨⎪⎧m >0,2-m >0,m ≠2-m ,解得0<m <1或1<m <2.13.已知双曲线的方程为16x 2-9y 2=144,则该双曲线的实轴长为________,离心率为________. 答案 6 53解析 将双曲线方程化成标准方程为x 29-y 216=1,则半实轴长a =3,半虚轴长b =4,半焦距c =a 2+b 2=5,所以该双曲线的实轴长为2a =6,离心率为e =c a =53.14.已知抛物线y =ax 2-1的焦点是坐标原点,则a =________,以抛物线与两坐标轴的三个交点为顶点的三角形的面积为________. 答案 142解析 抛物线y =ax 2-1可以看作是由抛物线y =ax 2向下平移1个单位长度得到的,因为抛物线y =ax 2-1的焦点为坐标原点,所以抛物线y =ax 2,即x 2=1a y 的焦点为(0,1),则14a =1,解得a =14,则抛物线方程为y =14x 2-1,易得其与坐标轴的交点分别为(2,0),(-2,0),(0,-1),构成的三角形的面积为12×1×(2+2)=2.15.(2019·浙江省宁波市镇海中学模拟)设椭圆C 2:x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为e =12,抛物线C 1:y 2=-4mx (m >0)的准线经过椭圆的右焦点,抛物线C 1与椭圆C 2交于x 轴上方一点P ,若△PF 1F 2的三边长恰好是三个连续的自然数,则a 的值为_________. 答案 6解析 由题意,可知c =m ,a =2m ,b =3m , ⎩⎪⎨⎪⎧y 2=-4mx ,x 24m 2+y 23m2=1,解得x =-23m 或x =6m (舍), 所以P ⎝⎛⎭⎫-23m ,263m ,所以|PF 1|=5m 3,|PF 2|=4m -5m 3=7m 3,|F 1F 2|=6m 3, 所以m =3,a =6.16.(2019·浙江省三校联考)已知抛物线y 2=4x ,过点A (1,2)作直线l 交抛物线于另一点B ,Q 是线段AB 的中点,过Q 作与y 轴垂直的直线l 1,交抛物线于点C ,若点P 满足QC →=CP →,则|OP |的最小值是________. 答案22解析 由y 2=4x ,可设B ⎝⎛⎭⎫b24,b . 因为A (1,2),Q 是AB 的中点, 所以Q ⎝⎛⎭⎫b 2+48,b +22.所以直线l 1的方程为y =b +22,代入y 2=4x ,可得C ⎝⎛⎭⎫(b +2)216,b +22.因为QC →=CP →,所以点C 为PQ 的中点, 可得P ⎝⎛⎭⎫b 2,b +22.所以|OP |2=b 24+(b +2)24=12(b +1)2+12.所以当b =-1时,|OP |2取得最小值12,即|OP |的最小值为22.17.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)中,A 1,A 2是左、右顶点,F 是右焦点,B 是虚轴的上端点.若在线段BF 上(不含端点)存在不同的两点P i (i =1,2),使得P i A 1→·P i A 2→=0,则双曲线离心率的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫2,5+12 解析 设c 为半焦距, 则F (c ,0),又B (0,b ), 所以直线BF :bx +cy -bc =0,以A 1A 2为直径的圆的方程为⊙O :x 2+y 2=a 2,因为P i A 1→·P i A 2→=0,i =1,2, 所以⊙O 与线段BF (不含端点)有两个交点, 所以⎩⎪⎨⎪⎧bc b 2+c 2<a ,b >a ,即⎩⎪⎨⎪⎧c 4-3a 2c 2+a 4<0,c 2>2a 2, 故⎩⎪⎨⎪⎧e 4-3e 2+1<0,e 2>2, 解得2<e <5+12.。

高考数学解析几何专题练习及答案解析版

高考数学解析几何专题练习及答案解析版

交于点 A ,与 C 的一个交点为 B .若 AM MB ,则 P 的值为(

( A) 1
( B) 2
( C) 3
( D) 4
35.若动圆与圆 (x-2) 2+y2=1 外切,又与直线 x+1=0 相切,则动圆圆心的轨迹方程是
() A. y2=8 x
B. y2=-8 x
C.y2=4x
D.y2=-4x
3 的直线交
A. 3 B. 2 3 C. 1 3 D. 2 3
3.已知过抛物线 y2 =2px( p>0)的焦点 F 的直线 x-my+m=0 与抛物线交于 A,B 两点,
且△ OAB( O 为坐标原点)的面积为 2 2 ,则 m 6+ m4 的值为(

A. 1
B. 2
C. 3
D.4
4.若直线经过 A(0,1), B(3,4) 两点,则直线 AB 的倾斜角为
42.已知直线 l 经过坐标原点,且与圆 x2 y2 4x 3 0 相切,切点在第四象限,则
直线 l 的方程为 ( )
试卷第 5 页,总 24 页
A. y 3x B . y
3x
C .y
3x
D .y
3x
3
3
43.当曲线 y 1 4 x2 与直线 kx y 2k 4 0 有两个相异的交点时,实数 k 的
B 、圆心 P 1,3 ,半径 r 10 ;
C 、圆心 P 1, 3 ,半径 r 10 ;
D 、圆心 P 1, 3 ,半径 r 10 。
29. F1、 F2 是双曲线
C: x 2-
y2
2
=1的两个焦点,
P 是 C 上一点,且△F 1PF2 是等腰直

高考数学《平面解析几何》练习题及答案

高考数学《平面解析几何》练习题及答案

平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。

高考数学 解析几何 专题练习及答案解析版

高考数学 解析几何 专题练习及答案解析版

高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A .3 B .32+ C . 31+ D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a by ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )(A )1 (B 2 (C 3 (D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r⋅的取值范围为( )A .()21,1- B .()21,2- C .()1,2 D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A. B.C. =x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题(附高考数学真题讲析)

【知识梳理】解析几何的20个微专题[1]专题1:直线与方程知识梳理: (1)直线的倾斜角定义:当直线l 与x 轴相交时,我们取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为︒0.倾斜角的范围为[)︒︒180,0. (2)直线的斜率:定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即=k αtan .倾斜角是︒90的直线,斜率不存在. (3) 过两点的直线的斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:当21x x ≠时,1212x x y y k --=;当21x x =时,斜率不存在.注:①任何直线都有倾斜角,但不是任何直线都有斜率,倾斜角是︒90的直线的斜率不存在.②斜率随倾斜角的变化规律:③可以用斜率来证明三点共线,即若AC AB k k =,则C B A ,,三点共线. 直线方程的五种形式注意:①求直线方程的方法主要有两种:一是直接法,根据已知条件,选择适当的直线方程的形式,直接写出直线方程;二是待定系数法,先设出直线方程,再根据条件求出待定系数,最后代入求出直线方程.但使用直线方程时,一定要注意限制条件,以免解题过程中丢解.②截距与距离的区别:截距可为一切实数,纵截距是直线与y 轴交点的纵坐标,横截距是直线与x 轴交点的横坐标,而距离是一个非负数.直线与直线位置关系1.两条直线的交点若直线1l :0111=++C y B x A 和2l :0222=++C y B x A 相交,则交点坐标是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解. 2.两条直线位置关系的判定 (1)利用斜率判定若直线1l 和2l 分别有斜截式方程1l :11b x k y +=和2l :22b x k y +=,则 ①直线1l ∥2l 的等价条件为2121,b b k k ≠=. ②直线1l 与2l 重合的等价条件为2121,b b k k ==.③直线1l 与2l 相交的等价条件为21k k ≠;特别地,1l ⊥2l 的等价条件为121-=⋅k k .若1l 与2l 斜率都不存在,则1l 与2l 平行或重合.若1l 与2l 中的一条斜率不存在而另一条斜率为0,则1l 与2l 垂直.(2)用直线一般式方程的系数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,则 ①直线1l ∥2l 的等价条件为0012211221≠-=-C B C B B A B A 且. ②直线1l 与2l 重合的等价条件为0012211221=-=-C B C B B A B A 且.③直线1l 与2l 相交的等价条件为01221≠-B A B A ;特别地, 1l ⊥2l 的等价条件为02121=+B B A A .注:与0=++CBy Ax 平行的直线方程一般可设为0=++m By Ax 的形式,与0=++C By Ax 垂直的直线方程一般可设为0=+-n Ay Bx 的形式.(3)用两直线联立的方程组的解的个数判定设直线1l :0111=++C y B x A ,2l :0222=++C y B x A ,将这两条直线的方程联立,得方程组⎩⎨⎧=++=++00222111C y B x A C y B x A ,若方程组有惟一解,则1l 与2l 相交,此解就是1l ,2l 交点的坐标;若方程组无解,此时1l 与2l 无公共点,则1l ∥2l ;若方程组有无数个解,则1l 与2l 重合.3. 直线系问题(1)设直线1l :0111=++C y B x A 和2l :0222=++C y B x A若1l 与2l 相交,则0)(222111=+++++C y B x A C y B x A λ表示过1l 与2l 的交点的直线系(不包括2l );若1l ∥2l ,则上述形式的方程表示与与2l 平行的直线系.(2)过定点),(00y x 的旋转直线系方程为))((00R k x x k y y ∈-=-(不包括0x x =);斜率为0k 的平行直线系方程为)(0R b b x k y ∈+=.注:直线系是具有某一共同性质的直线的全体,巧妙地使用直线系,可以减少运算量,简化运算过程. 距离公式与对称问题 1.距离公式(1)两点间的距离公式平面上的两点),(),,(222111y x P y x P 间的距离=21P P 212212)()(y y x x -+-.特别地,原点)0,0(O 与任一点),(y x P 的距离=OP 22y x +.若x P P //21轴时,=21P P 21x x -;若y P P //21轴时,=21P P 21y y -. (2)点到直线的距离公式已知点),(000y x P ,直线l :0=++C By Ax ,则点0P 到直线l 的距离=d 2200BA CBy Ax +++.已知点),(000y x P ,直线l :a x =,则点0P 到直线l 的距离=d a x -0. 已知点),(000y x P ,直线l :b y =,则点0P 到直线l 的距离=d b y -0. 注:用此公式求解点到直线距离问题时,直线方程要化成一般式. (3)两条平行直线间的距离公式已知两平行直线1l :0111=++C y B x A 和2l :0222=++C y B x A ,若点),(000y x P 在1l 上,则两平行直线1l 和2l 的距离可转化为),(000y x P 到直线2l 的距离.已知两平行直线1l :01=++C By Ax 和2l :02=++C By Ax ,则两直线1l 和2l 的距离=d 2221BA C C +-.注:用此公式求解两平行直线间的距离时,直线方程要化成一般式,并且y x ,项的系数必须对应相等. 2.对称问题 (1)中心对称 ①点关于点的对称点),(00y x P 关于),(b a A 的对称点为)2,2(001y b x a P --. ②直线关于点的对称在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线的方程,或者求出一个对称点,再利用1l ∥2l ,由点斜式求出直线的方程,或者在所求直线上任取一点),(y x ,求出它关于已知点的对称点的坐标,代入已知直线,即可得到所求直线的方程. (2)轴对称①点关于直线的对称点),(00y x P 关于b kx y +=的对称点为),(111y x P ,则有⎪⎪⎩⎪⎪⎨⎧++⋅=+-=⋅--b x x k y y k x x y y 22101010101,由此可求出11,y x .特别地, 点),(00y x P 关于a x =的对称点为),2(001y x a P -,点),(00y x P 关于b y =的对称点为)2,(001y b x P -. ②直线关于直线的对称此类问题一般转化为点关于直线的对称问题来解决,有两种情况:一是已知直线与对称直线相交,一是已知直线与对称直线平行. 本章知识结构专题2:圆的标准方程与一般方程知识梳理:⑴.圆的一般方程的概念:当 时,二元二次方程220x y Dx Ey F ++++=叫做圆的一般方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 ( ) A.33 B.32 C.22 D.23 2.(福建)直线x+2y=0被曲线x2+y2-6x-2y-15=0所截得的弦长等于 . 3.(福建)如图,P是抛物线C:y=21x2上一点,直线l过点P且与抛物线C交于另一点Q.(Ⅰ)若直线l与过点P的切线垂直,求线段PQ中点M的轨迹方程; (Ⅱ)若直线l不过原点且与x轴交于点S,与y轴交于点T,试求||||||||SQSTSP

ST

的取值范围.

4.(湖北)已知点M(6,2)和M2(1,7).直线y=mx—7与线段M1M2的交点M分有向线段M1M2的比为3:2,则m的值为 ( ) A.23 B.32 C.41 D.4 5.(湖北)两个圆0124:0222:22222

1yxyxCyxyxC与

公切线有且仅有 ( ) A.1条 B.2条 C.3条 D.4条 6.(湖北)直线12:1:22yxCkxyl与双曲线

的右支交于不同的两

点A、B. (Ⅰ)求实数k的取值范围; (Ⅱ)是否存在实数k,使得以线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由. 7.(湖南)如果双曲线1121322yx上一点P到右焦点的距离为13, 那

么点P到右准线的距离是 ( ) A.513 B.13 C.5 D.135 8.(湖南)F1,F2是椭圆C:14822xx的焦点,在C上满足PF1⊥PF2的点P的个数为__________. 9.(湖南)如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点。 (I)设点P分有向线段AB所成的比为,证明:)(QBQAQP (II)设直线AB的方程是x-2y+12=0,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.

10.(广东)若双曲线2220)xykk(

的焦点到它相对应的准线的距 A. 6 B. 8 C. 1 D. 4

11.(广东)如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x–y+1=0的交点在( ) A.第四象限 B. 第三象限 C.第二象限 D、第一象限 12.(广东)设直线与椭圆2212516

xy相交于A、B两点,又与双

曲线x2–y2=1相交于C、D两点, C、D三等分线段AB. 求直线的方程. 13.(江苏)若双曲线18222byx的一条准线与抛物线xy82

的准线重

合,则双曲线的离心率为 ( ) A.2 B.22 C. 4 D.24 14、(江苏)以点(1,2)为圆心,与直线4x+3y-35=0相切的圆的方程是________________. 15.(江苏)制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目. 根据预测,

Oyx甲、乙项目可能的最大盈利率分别为100﹪和50﹪,可能的最大亏损率分别为30﹪和10﹪. 投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元. 问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?

16.(江苏)已知椭圆的中心在原点,离心率为12 ,一个焦点是F(-m,0)(m是大于0的常数). (Ⅰ)求椭圆的方程; (Ⅱ)设Q是椭圆上的一点,且过点F、Q的直线l与y轴交于点M. 若QFMQ2,求直线l的斜率. 17、(辽宁)已知点)0,2(

1F

、)0,2(2F,动点P满足2||||12PFPF. 当

点P的纵坐标是21时,点P到坐标原点的距离是

( ) A.26 B.23 C.3 D.2 18、(辽宁)若经过点P(-1,0)的直线与圆032422yxyx

相切,则此直线在y轴上的截距是 .

19、(辽宁)设椭圆方程为1

4

2

2yx

,过点M(0,1)的直线l交

椭圆于点A、B,O是坐标原点,点P满足)(

2

1

OBOAOP,点N

的坐标为)

21,2

1

(,当l绕点M旋转时,求: (1)动点P的轨迹

方程; (2)||NP的最小值与最大值. 20.(上海)设抛物线的顶点坐标为(2,0),准线方程为x=-1,则它的焦点坐标为 . 21.(上海)圆心在直线x=2上的圆C与y轴交于两点A(0, -4),B(0, -2),则圆C的方程为 . 22、(上海)如图, 直线y=21x与抛物线y=81x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点. (1) 求点Q的坐标;(2) 当P为抛物线上位于线段AB下方(含A、B) 的动点时, 求ΔOPQ面积的最大值. 23.(重庆)圆222430xyxy

的圆心到直线1xy的距离为

( ) A.2 B.22 C.1 D.2

24.(重庆)已知双曲线22221,(0,0)xyabab的左,右焦点分别为12,FF,

点P在双曲线的右支上,且12||4||PFPF,则此双曲线的离心率e

的最大值为( ) A.43 B.53 C.2 D.73 25、(重庆)设直线2xay与抛物线py22

交于相异两点A、B,

以线段AB为直经作圆H(H为圆心). 试证抛物线顶点在圆H的圆周上;并求a的值,使圆H的面积最小. 26.(河南)椭圆1422yx的两个焦点为F1、F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则||

2PF=

( )

A.23 B.3 C.27 D.4 27、(河南)设抛物线xy82

的准线与x轴交于点Q,若过点Q的

直线l与抛物线有公共点,则直线l的斜率的取值范围是 ( ) A.]

21,2

1

[ B.[-2,2] C.[-1,1] D.[-4,4]

28、(河南)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,∠APB=60°,则动点P的轨迹方程为 . 29、(河南)设双曲线C:1:)0(12

2

2yxlayax与直线相交于两个

不同的点A、B.(I)求双曲线C的离心率e的取值范围: (II)设直线l与y轴的交点为P,且.

12

5

PBPA求a的值.

30.(四川)已知圆C与圆1)1(22yx

关于直线xy对称,则圆

C的方程为( ) A.1)1(22yx B.122yx

C.1)1(22yx D.1)1(22yx

31、(四川)在坐标平面内,与点A(1,2)距离为1,且与点B A.1条 B.2条 C.3条 D.4条 32、(四川).设中心在原点的椭圆与双曲线2222yx

=1有公共的焦

点,且它们的离心率互为倒数,则该椭圆的方程是 . 33、(四川)给定抛物线C:y2=4x,F是C的焦点,过点F的直线l与C相交于A、B两点。 (Ⅰ)设l的斜率为1,求OA与OB的夹

角的大小; (Ⅱ)设AFFB,若λ∈[4,9],求l在y轴上截距的变化范围. 34.(宁夏)过点(-1,3)且垂直于直线032yx的直线方程为 ( ) A.012yx B.052yx C.052yx D.072yx 35.(宁夏)已知椭圆的中心在原点,离心率2

1

e,且它的一个焦

点与抛物线xy42

的焦点重合, 则此椭圆方程为

( )

A.13422yx B.16822yx C.1222yx D.1422yx

36.(宁夏)设yx,满足约束条件: 1,,0,

xyyxy







相关文档
最新文档