2011-2012学年四川省成都市八年级上学期期末数学考试(含答案)
2013-2014学年上学期期末考试(含答案)八年级数学
八年级(上)数学期末测试题第1卷(选择题)一、选择题(本题20小题,每小题3分,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,并把答题卡上对应题目的正确答案标号涂黑)1.下列各组数中不能作为直角三角形的三条边长的是( )A.6,8,10B.9,12, 15C.1.5,2,3D.7,24, 252.一三,27t,等,o,0.23 2233 2233 2233…中,有理数的个数是( ) A.l B.2 C.3 D.43.下列扑克牌中,绕着某一点旋转1800后可以与原来的完全重合的是( )4.点P(-5,6)关于原点对称的点的坐标是( )A.(-5, -6)B.(5,6)C.(6,.5)D.(5,.6)5.估算24的算术平方根在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间中,一次函数的有( )A.4个B.3个C.2个D.l个7.为了筹备班级初中毕业联欢会,班长对全班同学爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( )A.平均数 B.力口权平均数 C.中位数 D.众数8.-次函数y= -x-l不经过的象限是( )A.t第一象限 B.第二象限 C.第三象限 D.第四象限A. 20 B.15 C.10 D.510.w边形ABCD中,AC、BD相交于点D,能判别这个四边形是正方形的条件是( )11.点彳的坐标为(6,3),D为原点,将OA绕点0按顺时针方向旋转90度得到OA1,则点A1的坐标为 ( )么.(3.-6) B.(-3,6) C.(一3,.6) D.(3,6)12.下列说法正确的有____个.( )①有两个底角相等的梯形是等腰梯形②有两边相等的梯形是等腰梯形③有两条对角线相等的梯形是等腰梯形④等腰梯形上下底中点连线把梯形分成面积相等的两部分A.l个 B.2个 C.3个 n 4个13.如果直线y=3x+6 y=2x-4交点坐标为(a,b),的解( )14.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输为 15,那么与实际平均数的差为( )A.3B..3C.j 0.5D.3.515.把一张正方形纸片按如图所示的方法对折两次后剪去两个角,那么打开以后的形状是( )么.六边形 B.八边形 C.十二边形D.十六边形16.如图,在四边形ABCD中,动点P从点A开始沿A→_B→C→D的路径匀速前进到D为止。
四川省成都市天府新区2022-2023学年八年级上学期期末考试数学试卷(含答案)
八年级上期期末数学测试卷(天府卷)(满分:150分时间:120分钟)班级________ 姓名________ 学号________ 得分A卷(共100分)第I卷(选择题,共32分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1.9的算术平方根是()A.81B.-81C.3D.-32.在平面直角坐标系中,点A关于原点对称的点在第三象限,则点A在()A.第一象限B.第二象限C.第三象限D.第四象限3.下列各式中,计算正确的是()A. B.C. D.4.下列各组数中,是勾股数的是()A.5,6,7B.3,4,5C.1,2,D.0.6,0.8,15.在某促销活动前期,商场卖鞋商家对市场进行了一次调研,那么商家应最重视鞋码的()A.方差B.众数C.中位数D.平均数6.如图,由下列条件能判定的是()A. B.C. D.7.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问:几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问:多久后甲、乙相逢?设甲出发日,乙出发日后甲、乙相逢,则所列方程组正确的是()A. B.C. D.8.关于一次函数,下列结论正确的是()A.图象不经过第二象限B.图象与轴的交点是(0,3)C.将一次函数的图象向上平移3个单位长度后,所得图象的函数表达式为D.点和在一次函数的图象上,若,则第Ⅱ卷(非选择题,共68分)二、填空题(本大题共5个小题,每小题4分,共20分)9.比较大小:3_________.(填“>”“<”或“=”)10.若有意义,则的取值范围是________.11.平面直角坐标系中,点A在第二象限,且到x轴的距离是2,到y轴的距离是3,则点A 的坐标是_________.12.如图,直线:与直线:相交于点,则关于x,y的方程组的解为_________.13.如图,在中,按以下步骤作图:①以点B为圆心,任意长为半径作弧,分别交AB,BC于点D和E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;③作射线BF交AC于点G;④过点G作交AB于点H.若,则的度数是___________.三、解答题(本大题共5个小题,共48分)14.(本小题满分12分,每题6分)(1)计算:;(2)解方程组:15.(本小题满分8分)如图,在平面直角坐标系中,各顶点的坐标分别为,,.(1)作出与关于轴对称的图形;(2)已知点,直线轴,求点P的坐标.16.(本小题满分8分)2022年11月29日23时08分,随着“神舟十五号”成功发射,拥有“三室三厅”的中国“天宫”也创下首次同时容纳6名航天员的纪录.对此,天府新区某学校想了解本校八年级学生对中国空间站相关知识的了解情况,组织开展了“中国空间站知多少”知识竞赛,现随机抽取部分学生的成绩分成五个等级(A:90~100分;B:80~89分;C:70~79分;D:60~69分;E:59分及以下)进行统计,并绘制成如图所示的两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)本次调查共抽取了_________名学生的成绩;(2)补全条形统计图;(3)若该校有800名学生参加此次竞赛,竞赛成绩为80分及其以上为优秀,请估计该校竞赛成绩为优秀的学生共有多少名.17.(本小题满分10分)如图,已知正方形ABCD,分别以AB,CD为斜边在正方形ABCD 内作直角和直角,且.(1)求证:;(2)连接EF,猜想线段EF与线段BC之间的位置关系,并说明理由.18.(本小题满分10分)如图,在平面直角坐标系中,点M,N的坐标分别为(2,0),(0,6),在x轴的负半轴上有一点A,且满足,连接MN,AN.(1)求直线AN的函数表达式.(2)将线段MN沿y轴方向平移至,连接,'.①当线段MN向下平移2个单位长度时(如图所示),求的面积;②当为直角三角形时,求点的坐标.B卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.已知关于x,y的二元一次方程组为则的值为_________.20.已知x,y是实数,且,则_________.21.如图是由五个边长为1的小正方形组成的十字形,小明说只剪两刀就可以拼成一个没有缝隙的大正方形,则剪完后拼成的大正方形的边长是_________.22.如图,中,,分别以AC,AB为直角边在外作等腰直角和等腰直角,且,连接DE.若,,则的面积为__________.23.如图,AE和AD分别为的角平分线和高线,已知,且,,则AC的长为_________.二、解答题(本大题共3个小题,共30分)24.(本小题满分8分)随着疫情防控“新十条”出台,连日来,全国多地优化完善疫情防控措施,成都宣布不再按行政区域开展全员核酸检测,鼓励家庭自备抗原试剂盒.某公司为员工集体采购了一批抗原试剂盒以保证每个员工恰好都能检测一次,采购的抗原试剂盒信息如下:名称规格销售价格抗原试剂盒A25支/盒200元/盒抗原试剂盒B20支/盒180元/盒已知该公司共有员工5000人,花费42500元.(1)该公司采购了抗原试剂盒A和抗原试剂盒B各多少盒?(2)若抗原试剂盒B在原价的基础上打九折销售,该公司打算再次采购1000盒抗原试剂盒,其中抗原试剂盒A有m盒,采购费用为W元,请写出W关于m的函数关系式.25.(本小题满分10分)已知和都是等腰直角三角形,,且A,D,E三点在同一条直线上.(1)当与在如图1所示位置时,连接CE,求证:;(2)在(1)的条件下,判断AE,CE,BD之间的数量关系,并说明理由;(3)当与在如图2所示的位置时,连接CE,若BE平分,,求的面积.26.(本小题满分12分)如图,在平面直角坐标系中,直线:交x轴于点A,交y轴于点B,点在直线上,直线经过点C和点.(1)求直线的函数表达式;(2)Q是直线上一动点,若,求点Q的坐标;(3)在x轴上有一动点E,连接CE,将沿直线CE翻折后,点D的对应点恰好落在直线上,请求出点E的坐标.八年级上期期末数学测试卷(天府卷)A卷1.C2.A3.D4.B5.B6.C7.D8.C9.< 10.11.12.13.110°14.(1)解:原式.(2)解:化简,得②×3+①,得.解得.将代入②,得.解得.∴原方程组的解为15.解:(1)如图,即为所求.(2)∵,点与点B关于x轴对称,∴.∵,轴,∴点P的纵坐标为1,∴,∴,∴,∴点的坐标为.16.解:(1)100(2)C等级的学生为100×20%=20(名).故B等级的学生为100-26-20-10-4=40(名).补全条形统计图如图所示:(3)(名),即估计该校竞赛成绩为优秀的学生共有528名.17.(1)证明:∵四边形ABCD是正方形,∴.在和中,∴,∴.在正方形ABCD中,∵,∴,∴.在和中,∴.(2)解:.理由如下:由(1)可知,,∴,,∴,∴,∴.∵,∴,∴,∴,∴.∵四边形ABCD是正方形,∴,∴.18.解:(1)∵,∴.∵,∴.又∵点A在x轴的负半轴上,∴.设直线AN的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.(2)①∵将线段MN向下平移2个单位长度,∴,.由,,可得直线的函数表达式为.设直线与y轴相交于点C,则.∴.②设将线段MN沿y轴方向平移m个单位长度至,则,.∴,,.当时,,解得,此时,;当时,,解得,此时,;当时,不成立.综上所述,点的坐标为或.B卷19.7解:①+②,得.20.1解:由题意知,,,∴且,∴,∴,∴,∴.21.解:由题意知,五个边长为1的小正方形组成的十字形的面积为1×1×5=5.∵小明只剪两刀就可以将其拼成一个没有缝隙的大正方形,∴拼成的大正方形的面积为5,∴拼成的大正方形的边长为.22.30解:如图,过点D作AB的垂线交BA的延长线于点H,交DE于点F,则.又∵,∴,∴.又∵,∴,∴,.在中,,,∴,∴.∵是等腰直角三角形,∴,,∴,,∴.又∵,∴,∴,∴.∵,∴.23.解:如图,在AD上截取AG,使,则,∴.∵,∴.设,,则,.在中,由勾股定理,得,即,化简,得.由AD是的高线,,易得,即,∴.联立解得∴,∴,,∴.在中,.设点E到直线AB的距离为h,则,∴.∵AE是的角平分线,∴点E到直线AC的距离为.设,则.∵,∴,解得或(舍去),∴.24.解:(1)设该公司采购了抗原试剂盒A x盒,抗原试剂盒B y盒.由题意,得,解得故该公司采购了抗原试剂盒A100盒,抗原试剂盒B125盒.(2)由题意,得.即W关于m的函数关系式为.25.(1)证明:∵和都是等腰直角三角形,∴.如图1,记BC与AE相交于点O,则,∴在和中,.(2)解:.理由如下:如图1,过点C作于点F.∵,∴.由(1)知,,∴,即.在和中,∴,∴,.在等腰直角中,,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴,即.(3)解:如图2,过点C作交AE的延长线于点F.∵,∴.在和中,∴,∴,.又∵,∴,∴,∴,∴,∴是等腰直角三角形,∴,∴.∵平分,而在等腰直角中,,∴,∴,∴,∴,∴,∴.∵,∴,∴.在中,.∴.26.解:(1)∵点在直线:上,∴,∴,∴.设直线的函数表达式为.∵点,在直线上,∴,解得∴直线的函数表达式为.(2)由直线:,可知,如图1,分以下两种情况讨论:①当点Q在线段DC的延长线上时,∵,∴,∴,∴.②当点Q在线段DC上时,在y轴上取一点M,使得,则.∵,∴点Q在直线AM上.设,则.在中,,∴,解得.∴.由,,可得直线AM的函数表达式为.联立解得∴.综上所述,点的坐标为或.(3)①当点E在点A的左侧时,如图2所示.∵,,,∴,,,∴,∴为直角三角形,且.∵将沿直线翻折得到,∴.以为直角边作等腰直角,交射线CE于点F,构造,使,可得.设直线CF的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.②当点E在点A的右侧时,如图3所示.同理可得:.以为直角边作等腰直角,交直线CE于点F,构造,使,可得.设直线的函数表达式为.将,代入上式,得解得∴直线的函数表达式为.令,则,∴.综上所述,点的坐标为或.。
2011-2012学年八年级下册数学期末考试模拟卷(二)北师版(含答案)
2011-2012学年八年级下册数学期末考试模拟卷(二)北师版一、单选题(共9道,每道3分)1.下列调查,比较适合普查的是()A.了解我省八年级学生视力情况B.了解郑州市民对郑州地铁建造的欢迎程度C.环保部门调查4月份黄河某段水域的水质量情况D.了解某校八年级(2)班学生爱好音乐的情况答案:D试题难度:三颗星知识点:全面调查与抽样调查2.已知下列命题:①两条边及一个角对应相等的两个三角形全等②两条对角线互相垂直的四边形是菱形③两相似三角形的面积比等于周长比的平方④过直线外一点只能画一条直线与已知直线平行下列命题是真命题的个数是()A.1B.2C.3D.4答案:B试题难度:三颗星知识点:真命题、假命题3.下列计算错误的是()A.B.C.D.答案:D试题难度:三颗星知识点:分式的混合运算4.把不等式组的解集表示在数轴上,正确的是()A.B.C.D.答案:C试题难度:三颗星知识点:解一元一次不等式并用数轴表示5.将多项式分解因式时,应提取的公因式是()A.B.C.D.答案:A试题难度:三颗星知识点:因式分解--提取公因式6.如图,直线y=kx+b经过A(1,2),B(-2,-1)两点,则不等式x<kx+b<2的解集为().A.-1<x<1B.-1<x<2C.-2<x<1D.-2<x<2答案:C试题难度:三颗星知识点:一元一次不等式与一次函数7.甲乙丙丁四名参赛选手在预赛中所得的平均成绩及其方差如下图所示,如果选拔其中一人参加决赛,综合考虑,应该选择()A.甲B.乙C.丙D.丁答案:C试题难度:三颗星知识点:方差8.如图,已知AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠2+∠3=180°B.∠1+∠2-∠3=180°C.∠1-∠2+∠3=180°D.∠2+∠3-∠1=180°答案:D试题难度:三颗星知识点:余角、补角的性质9.△ABC与△A′B′C′中,有下列条件:①;②;③∠A=∠A;④∠C=∠C.如果从中任取两个条件组成一组,那么能判断△ABC∽△A′B′C′的共有()A.1组B.2组C.3组D.4组答案:C试题难度:三颗星知识点:相似三角形的判定二、填空题(共9道,每道3分)1.若,则.答案:-5试题难度:三颗星知识点:比例的基本性质2.当x 时,分式有意义答案:≠5试题难度:三颗星知识点:分式有意义的条件3.分解因式结果为.答案:试题难度:三颗星知识点:先提取后公式4.在比例尺为1:2000000的地图上测得A、B两地间的距离为5cm,则A、B两地间的实际距离为km.答案:100试题难度:三颗星知识点:比例尺的应用5.如果不等式组的解集是,那么m的取值范围是.答案:m≧2试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题6.关于x的分式方程的解是一个非负数,则k的取值范围为.答案:k≧-3且k≠试题难度:三颗星知识点:含字母的不等式组的已知解集求字母问题7.如图,Rt△ABC∽Rt△ACD,AC=,AD=2,则BC= .答案:试题难度:三颗星知识点:相似三角形的判定与性质8.把命题“矩形的两条对角线相等”改写成“如果…,那么…”的形式为:如果,那么.答案:一个四边形是矩形;该四边形的两条对角线相等.试题难度:三颗星知识点:命题的条件和结论(命题结构)9.现有一大一小,形状相同的两张三角形年画,已知第一张的三边长为4dm、5dm、6dm,第二张的一边长为2dm,则第二张年画的周长为.答案:5dm或6dm或7.5dm试题难度:三颗星知识点:相似性质三、解答题(共7道,每道6分)1.请先化简1+,并在2,3,4选择一个你喜欢的数代入求值.答案:解:原式=1+=1+=1∵x≠±4且x≠2∴只能将x=3代入,原式=1综上,答案为试题难度:三颗星知识点:分式化简求值2.解分式方程:答案:解:方程两边同乘以x(x+1)得:去括号,合并同类项得:x=-1 检验:x=-1使得x(x+1)=0 综上:x=-1为原分式方程的增根.试题难度:三颗星知识点:解分式方程3.如图,若O是△ABC的内角的平分线交点,∠A=x°,∠BOC=y°,写出y与x函数关系式,并指出自变量x的取值范围.答案:解:如图,∵O是△ABC的内角的平分线交点,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°-x).∵∠BOC=180°-(∠OBC+∠OCB),∴∠BOC=180°-(180-x),∴y=90°+x(0<x<180).试题难度:三颗星知识点:内角平分线的交点4.梯形ABCD的四个顶点分别为A(0,6),B(2,2),C(4,2)D(6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,使其与梯形ABCD的相似比为的位似图形;(2)画出位似图形向下平移五个单位长度后的图形.答案:解:(1)图形正确得(3分)(2)图形正确得(1分)试题难度:三颗星知识点:作图-位似变换5.我国从2011年5月1日起在公共场所“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一道记10分,答错(或不答)一题记-5分,现在知道小明参加本次竞赛的分数不小于100分,但不超过150分,那么他答对了多少道题?答案:解:设小明答对了x道题则有:100≦10x-5(20-x)≦150解得:∵x为正整数∴x=14,15,16 答:小明答对了14或15或16道题试题难度:三颗星知识点:一元一次不等式(组)的应用(关键词型)6.为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成了“控制噪声污染”课题学习研究小组.该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据均为正整数),得频数分布表如下:根据表中提供的信息解答下列问题:(1)频数分布表中的_,_,_;(2)补充完整频数分布直方图(3)计算如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?答案:(1)根据频数与频率的正比例关系,可知,首先可求出a=8,再通过40-4-6-8-10=12,求出b=12,最后求出c=0.3;(2)(3)算出样本中噪声声级小于75dB的测量点的频率是0.3,0.3×200=60,∴在这一时刻噪声声级小于75dB的测量点约有60个.试题难度:三颗星知识点:图表信息型问题7.如图,在梯形ABCD中,AD∥BC,AD=3,DC=5,AB=,∠B=45°.动点M从B点出发沿线段BC以每秒2个单位长度的速度向终点C运动;动点N同时从点C出发沿线段CD以每秒1个单位长度的速度向终点D运动.设运动的时间为t秒.(1)求BC的长;(2)当MN∥AB时,求t的值;(3)试探究:t为何值时,△MNC为等腰三角形.答案:(1)过点A作AK垂直BC于点K,过点D作DH垂直BC于点H,从而AK∥DH,如图①∵AK⊥BC,∠B=45°,AB=∴AK=BK=4∵AD//BC,AK∥DH,AK⊥BC∴ADHD为矩形∴AK=DH=4,KH=AD=3∵∠DHC=90°,DC=5∴HC=3∴BC=BK+KH+HC=3+3+4=10(2)依题意可知:CN=t,BM=2t,CM=10-2t(0≦t≦5),过点D作DG//AB交BC于点G,如图②,∵MN//AB∴DG//MN∴△GDC∽△MNC∵AD//BG,AB//DG∴AD=BG=3∴GC=BC-BG=10-3=7∵△GDC∽△MNC∴∵DC=5,CG=7,CN=t,CM=10-2t∴∴t=∵0≦≦5∴t=符合题意(3)0<t<5分三种情况讨论:①当NC=MC时,如图③,即t=10-2t,∴t=②当MN=NC时,如图④,过N作NE⊥MC于E,CE=∵∠C=∠C,∠DHC=∠NEC=90°,∴△NEC∽△DHC.∴即∴t=③当MN=MC时,如图⑤,过M作MF⊥CN于F点.FC=NC=t.∵∠C=∠C,∠MFC=∠DHC=90°,∴△MFC∽△DHC.∴即∴t=.由于0<<5,0<<5,0<<5,所以均符合题意综上所述,当t=、t=或t=时,△MNC为等腰三角形.试题难度:三颗星知识点:相似中的动点问题。
2023-2024学年四川省成都市金牛区八年级上册期末数学模拟试题(有答案)
四川省成都市金牛区2023-2024学年八年级上册期末数学模拟试题注意事项:1.全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.2.在作答前,考生务必将自己的姓名,准考证号涂写在答题卡规定的地方.考试结束,监考人员只将答题卡收回.3.选择题部分必须使用2B 铅笔填涂;非选择题部分必须使用黑色签字笔书写,字体工整,笔迹清楚.4.请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效.5.保持答题卡清洁,不得折叠、污染、破损等。
A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.下列四个数中,最大的数是( )3,3,2,10-A .3B .2C .D .3-102.下列计算正确的是( )A .B .C .D .93=±8210+=()255-=623÷=3.点关于轴的对称点的坐标为( )()2,5-y A .B .C .D .()2,5--()5,2--()2,5()2,5-4.下列函数中,的值随的值增大而减小的是( )y x A .B .C .D .31y x =+23y x =-21y x =--112y x =+(第6题)(第13题)参加测试的学生成绩条形统计图参加测试的学生成绩扇形统计图16题)(第17题)(第18题)(第23题)备用图八年级数学答案A 卷(100分)一、选择题题号12345678答案DCACBADC二、填空题9.510.111.12.34-46︒13.12x y =⎧⎨=⎩三、解答题14.(1)3;(2)44x y =⎧⎨=⎩15.(1)略;(2).96︒16.(1)人数是50,中位数是8,众数是8.(2)八年级350名学生中,估计测试成绩有70人能达到10分.17.(1)略;(2);(3).()1,5-7218.(1)6;(2);(3)或1322y x =+52,2⎛⎫⎪⎝⎭()1,2B 卷(50分)一、填空题19.20.321..10-5222.,23..13,22⎛⎫ ⎪ ⎪⎝⎭13331,22n n +⎛⎫- ⎪ ⎪⎝⎭342+二、解答题24.(1);()()20041614449x x y x x ⎧<≤⎪=⎨-+<≤⎪⎩(2)两船相遇时间为2小时或5小时.25.(1);(2)或;(3).()1,2-()3,1()3,7-7,03⎛⎫⎪⎝⎭26.(1)5;(2)或;(3).833648395-58。
四川省成都市八年级(上)期末数学试卷(含解析)
四川省成都市成华区八年级(上)期末数学试卷一.选择题(本大题共10个小题,每小题3分)1.下列各数中,为无理数的是()A.B.C.D.2.关于的叙述正确的是()A.在数轴上不存在表示的点B.=C.与最接近的整数是2D.=3.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数4.如图,直线a,b被直线c所截,下列条件中,不能判定a∥b的是()A.∠2=∠5B.∠1=∠3C.∠5=∠4D.∠1+∠5=180°5.已知直线a∥b,将一块含45°角的直角三角板(∠C=90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为()A.80°B.70°C.85°D.75°6.二元一次方程组的解是()A.B.C.D.7.若一次函数y=(k﹣2)x+1的函数值y随x的增大而增大,则()A.k<2B.k>2C.k>0D.k<08.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.”设鸡x只,兔y只,可列方程组为()A.B.C.D.9.如图,在矩形AOBC中,A(﹣2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k 的值为()A.B.C.﹣2D.210.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米.如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二.填空题:(每小题4分,共16分)11.若关于x、y的二元一次方程3x﹣ay=1有一个解是,则a=.12.若|3x﹣2y+1|+=0,则xy的算术平方根是.13.如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.14.如图,在Rt△ABC中,∠C=90°,AC=3,AB=5,分别以点A,B为圆心,大于AB的长为半径画弧,两弧交点分别为点P,Q,过P,Q两点作直线交BC于点D,则CD的长是.三.解答下列各题(共54分)15.(10分)计算下列各题:(1)计算:×﹣(1﹣)2(2)计算:6×+(π﹣2019)0﹣|5﹣|﹣()﹣216.(10分)解下列方程组:(1)(2)17.(8分)某单位750名职工积极参加向贫困地区学校捐书活动,为了解职工的捐数量,采用随机抽样的方法抽取30名职工作为样本,对他们的捐书量进行统计,统计结果共有4本、5本、6本、7本、8本五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示的不完整的条形统计图,由图中给出的信息解答下列问题:(1)补全条形统计图;(2)这30名职工捐书本数的众数是本,中位数是本;(3)求这30名职工捐书本数的平均数是多少本?并估计该单位750名职工共捐书多少本?18.(8分)如图,已知点D,E分别是△ABC的边BA和BC延长线上的点,作∠DAC的平分线AF,若AF∥BC.(1)求证:△ABC是等腰三角形;(2)作∠ACE的平分线交AF于点G,若∠B=40°,求∠AGC的度数.19.(8分)某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)若小李11月份上网20小时,他应付多少元的上网费用?(2)当x≥30,求y与x之间的函数关系式;(3)若小李12月份上网费用为135元,则他在该月份的上网时间是多少?20.(10分)如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B 两点,正比例函数的图象l2与l1交于点C(m,3).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,直接写出k的值.一.填空题(每小题4分,共20分)21.函数y=﹣x的图象与函数y=x+1的图象的交点在第象限.22.如图,数轴上点A表示的数为a,化简:a+=.23.对于实数a,b,定义运算“※”:a※b=,例如3※4,因为3<4.所以3※4=3×4=12.若x,y满足方程组,则x※y=.24.如图,将长方形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD 边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,则BC的长为.25.用若干个形状和大小完全相同的长方形纸片围成正方形.如图①所示的大正方形是由四个长方形纸片围成的,其中阴影部分小正方形的面积为12;如图②所示的大正方形是由八个长方形纸片围成的,其中阴影部分小正方形的面积为8;如图③所示的大正方形是由十二个长方形纸片围成的,则其中阴影部分小正方形的面积为.二.解答题(共30分)26.(8分)某水果店11月份购进甲、乙两种水果共花费1700元,其中甲种水果8元/千克,乙种水果18元/千克.12月份,这两种水果的进价上调为:甲种水果10元/千克,乙种水果20元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款300元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到120千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过90千克,则12月份该店需要支付这两种水果的货款最少应是多少元?27.(10分)(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.28.(12分)如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB,OC的长分别是二元一次方程组的解(OB>OC).(1)求点A和点B的坐标;(2)点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线l与y轴平行,直线l交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线l恰好过点C.①当0<t<3时,求m关于t的函数关系式;②当m=时,求点P的横坐标t的值.参考答案与试题解析一.选择题(本大题共10个小题,每小题3分)1.【解答】解:,,是有理数,是无理数.故选:C.2.【解答】解:A、数轴上的点既可以表示有理数,也可以表示无理数,所以在数轴上存在表示的点,故选项错误;B、=2,故选项错误;C、与最接近的整数是3,故选项错误;D、=2,故选项正确.故选:D.3.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.4.【解答】解:∵∠2=∠5,∴a∥b,∵∠4=∠5,∴a∥b,∵∠1+∠5=180°,∴a∥b,故选:B.5.【解答】解:∵∠1=∠3=55°,∠B=45°,∴∠4=∠3+∠B=100°,∵a∥b,∴∠5=∠4=100°,∴∠2=180°﹣∠5=80°,故选:A.6.【解答】解:,①+②得:2x=0,解得:x=0,把x=0代入①得:y=2,则方程组的解为,故选:B.7.【解答】解:由题意,得k﹣2>0,解得k>2,故选:B.8.【解答】解:由题意可得,,故选:D.9.【解答】解:∵A(﹣2,0),B(0,1).∴OA=2、OB=1,∵四边形AOBC是矩形,∴AC=OB=1、BC=OA=2,则点C的坐标为(﹣2,1),将点C(﹣2,1)代入y=kx,得:1=﹣2k,解得:k=﹣,故选:A.10.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.4米,∴AB2=0.72+2.42=6.25.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.二.填空题:(每小题4分,共16分)11.【解答】解:把代入方程得:9﹣2a=1,解得:a=4,故答案为:4.12.【解答】解:∵|3x﹣2y+1|+=0,∴,解得:,则xy=2,2的算术的平方根是,故答案为:13.【解答】解:∵一次函数y=ax+b的图象与x轴相交于点(2,0),∴关于x的方程ax+b=0的解是x=2.故答案为x=2.14.【解答】解:连接AD,如图,∵∠C=90°,AC=3,AB=5,∴BC==4,由作法得PQ垂直平分AB,∴DA=DB,设CD=x,则DB=DA=4﹣x,在Rt△ACD中,x2+32=(4﹣x)2,解得x=,即CD的长为.故答案为.三.解答下列各题(共54分)15.【解答】解:(1)原式=﹣(1﹣2+3)=2﹣4+2=4﹣4;(2)原式=2+1+5﹣3﹣4=2﹣.16.【解答】解:(1)②﹣①×2得:x=6,把x=6代入①得:y=﹣3,则方程组的解为;(2)①+②得:x=,解得:x=,把x=代入①得:y=﹣,则方程组的解为.17.【解答】解:(1)D组人数=30﹣4﹣6﹣9﹣3=8.(2)众数是6本中位数是6本.故答案为6,6.(3)平均数=6(本),该单位750名职工共捐书约4500本.18.【解答】(1)证明:∵AF平分∠DAC,∴∠DAF=∠CAF,∵AF∥BC,∴∠DAF=∠B,∠CAF=∠ACB,∴∠B=∠ACB,∴△ABC是等腰三角形;(2)解:∵AB=AC,∠B=40°,∴∠ACB=∠B=40°,∴∠BAC=100°,∴∠ACE=∠BAC+∠B=140°,∵CG平分∠ACE,∴ACE=70°,∵AF∥BC,∴∠AGC=180°﹣∠BCG=180°﹣40°﹣70°=70°.19.【解答】解:(1)根据题意,从图象上看,30小时以内的上网费用都是60元;(2)当x≥30时,设函数关系式为y=kx+b,则,解得,,故函数关系式为y=3x﹣30;(3)由135=3x﹣30解得x=55,故12月份上网55个小时.20.【解答】解:(1)把C (m ,3)代入一次函数y =﹣x +5,可得3=﹣m +5,解得m =4,∴C (4,3),设l 2的解析式为y =ax ,则3=4a ,解得a =,∴l 2的解析式为y =x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD =3,CE =4,y =﹣x +5,令x =0,则y =5;令y =0,则x =10,∴A (10,0),B (0,5),∴AO =10,BO =5,∴S △AOC ﹣S △BOC =×10×3﹣×5×4=15﹣10=5;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,∴当l 3经过点C (4,3)时,k =;当l 2,l 3平行时,k =;当l 1,l 3平行时,k =﹣;故k 的值为或或﹣.一.填空题(每小题4分,共20分)21.【解答】解:函数y =﹣x 的图象应该在二、四象限,函数y =x +1的图象在一、二、三象限,因此他们的交点一定在第二象限.22.【解答】解:由数轴可得:0<a<2,则a+=a+=a+(2﹣a)=2.故答案为:2.23.【解答】解:方程组,①+②×4得:9x=108,解得:x=12,把x=12代入②得:y=5,则x※y=12※5==13,故答案为:1324.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++,故答案为:3++.25.【解答】解:图①中阴影边长为=2,图②阴影边长为=2,设矩形长为a,宽为b,根据题意得,解得,所以图③阴影面积为(a﹣3b)2=44﹣16,故答案为:44﹣16.二.解答题(共30分)26.【解答】解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克,根据题意得:,解得,答:该店5月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(120﹣a)千克,根据题意得:w=10a+20(120﹣a)=﹣10a+2400;(3)根据题意得,a≤90,由(2)得,w=﹣10a+2400,∵﹣10<0,w随a的增大而减小,∴a=90时,w有最小值w=﹣10×90+2400=1500(元).最小答:12月份该店需要支付这两种水果的货款最少应是1500元.27.【解答】(1)①解:BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=EC,∴BC=DC+BD=DC+EC,;故答案为:BC=DC+EC;②证明:∵Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B=45°,∴∠DCE=∠ACB+∠ACE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(2)解:作AE⊥AD,使AE=AD,连接CE,DE,如图2所示:∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=9,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE===6,∵∠DAE=90°,∴AD=AE=DE=6.28.【解答】解:(1)方程组的解为:,∵OB>OC,∴OB=6,OC=5,∴点B的坐标为:(6,0),过点A作AM⊥x轴于M,如图1所示:∵∠OAB=90°且OA=AB,∴△AOB是等腰直角三角形,∴OM=BM=AM=OB=×6=3,∴点A的坐标为:(3,3);(2)①过点C作CN⊥x轴于N,如图2所示:∵t=4时,直线l恰好过点C,∴ON=4,CN===3,∴点C的坐标为:(4,﹣3),设直线OC的解析式为:y=kx,把C(4,﹣3)代入得:﹣3=4k,∴k=﹣,∴直线OC的解析式为:y=﹣x,∴R(t,﹣t),设直线OA的解析式为:y=k′x,把A(3,3)代入得:3=3k′,∴k′=1,∴直线OA的解析式为:y=x,∴Q(t,t),∴QR=t﹣(﹣t)=t,即:m=t;②分三种情况:当0<t<3时,m=t,m=,则t=,解得:t=2;当3≤t<4时,设直线AB的解析式为:y=px+q,把A(3,3)、B(6,0)代入得,解得:,∴直线AB的解析式为:y=﹣x+6,∴Q(t,﹣t+6),R(t,﹣t),∴m=﹣t+6﹣(﹣t)=﹣t+6,∵m=,∴﹣t+6=,解得:t=10>4(不合题意舍去);当4≤t<6时,设直线BC的解析式为:y=ax+b,把B(6,0)、C(4,﹣3)代入得,解得:,∴直线BC的解析式为:y=x﹣9,∴Q(t,﹣t+6),R(t,t﹣9),∴m=﹣t+6﹣(t﹣9)=﹣t+15,∵m=,∴﹣t+15=,解得:t=;综上所述,满足条件的点P的横坐标t的值为2或.。
2023-2024学年四川省成都市成华区八年级(上)期末数学试卷+答案解析
2023-2024学年四川省成都市成华区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在实数,,,中,无理数是( )A. B. C. D.2.估计的值在( )A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间3.下列运算中,正确的是( )A. B. C. D.4.近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市2023年12月某五天的空气质量指数:34,28,35,61,27,则这组数据的中位数是( )A. 34B. 28C. 35D. 275.某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了4棵桂花树.分别以两条小路为x,y轴建立如图所示的平面直角坐标系,若A,B两处桂花树的位置关于x轴对称,点A的坐标为,则点B的坐标为( )A.B.C.D.6.如图,直线,,,则的度数为( )A.B.C.D.7.中国象棋文化历史悠久.如图是某次对弈的残图,如果在图中建立平面直角坐标系,使棋子“帅”位于点的位置,则经过棋子“帅”和“马”所在的点的一次函数解析式为( )A.B.C.D.8.的三边长a,b,c满足,则是( )A. 等腰直角三角形B. 等腰三角形C. 直角三角形D. 等边三角形二、填空题:本题共10小题,每小题4分,共40分。
9.已知是方程的一个解,则m的值是______.10.一次函数的图象一定不经过第______象限.11.某校在12月9日举办了以“不忘国耻振兴中华”为主题的合唱比赛,每支参赛队的最终成绩按歌曲内容占,演唱技巧占,精神面貌占进行考评.八一班参赛歌曲内容获得90分,演唱技巧获得94分,精神面貌获得95分,则八一班的最终成绩是______分.12.《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛斛:古代容量单位;大容器1个,小容器5个,总容量为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x斛,小容器的容量为y斛,则可列二元一次方程组为______.13.如图,我国汉代数学家赵爽证明勾股定理时创制了一幅由4个全等的直角三角形和一个小正方形组成的“勾股圆方图”,后人称之为“赵爽弦图”.设直角三角形的直角边长为a,b,斜边长为c,若,,则每个直角三角形面积为______.14.计算:______.15.关于x,y的方程组的解满足,则m的值是______.16.如图,在中,,,点D为外一点,满足,,则的面积是______.17.如图,直线:与x轴交于点,与直线:交于点,过点作的垂线交x轴于点,过点作的平行线交于点,过点作的垂线交x轴于点,过点作的平行线交于点,…按此方法作下去,则点的坐标是______.18.如图,BD是边长为6的等边的高,E为BD上的动点,以CE为边长在CE的右上方作等边,连接DF,则的周长的最小值是______.三、解答题:本题共8小题,共78分。
四川省成都市六校协作体2011-2012学年高一上学期期中考试(数学)
四川省成都市六校协作体2011-2012学年高一上学期期中考试数学试题1.已知全集{12345}U =,,,,,集合{1,3}A =,{3,4,5}B =,则集合=⋂)(B A C u ( ) A .{3} B .{4,5}C .{1245},,, D .{3,4,5} 2.若集合{|1}X x x =>-,下列关系式中成立的是( )A .0X ÍB .{}0X ÎC .X f ÎD .{}0X Í 3.下列四组函数中表示相等函数的是( )A .2)(x x f =与x x g =)( B .x x f =)(与xx x g 2)(=C .2ln )(x x f =与x x g ln 2)(=D .xa a x f l o g )(=a (>0)1,≠a 与33)(x x g = 4.下列四个图像中,是函数图像的是( )A .(1)(2)B .(1)(3)(4)C .(1)(2)(3)D .(3)(4) 5.函数()2xf x e x =--的零点所在的区间为( )(1)(2)(3)(4)A. (-1,0)B. (1,2)C. (0,1)D. (2,3) 6.已知函数2log ,0()2,x x x f x x >⎧=⎨≤⎩,则(f f 的值是( ) A..2D.2-7. 若一元二次方程2350x x a -+=的一根大于2-且小于0,另一根大于1而小于3,则实数a 取值范围( )A .()12,0-B .15,14⎛⎫-∞ ⎪⎝⎭ C .15,14⎛⎫+∞ ⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭ 8. 函数212log (2)y x x =-++的单调增区间是 ( )A .11,2⎛⎫- ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .1,2⎛⎫+∞⎪⎝⎭D .1,22⎛⎫ ⎪⎝⎭9.给定下列函数:①21x y = ②()1log 1+=x y ③1-=x y ④12+=x y ,其中在区间(0,1)上单调递减的函数的序号是( )A. ① ②B. ② ③C. ③ ④D. ① ④ 10.设5log 3a =,ln 3b =,125c -= 则( )A. b c a <<B. c b a <<C. c b a <<D. c a b << 11.已知实数,a b 满足等式1123log log a b =,下列四个关系式:①01b a <<<;②01a b <<<;③1b a <<;④a b =,其中不可能成立的关系式有( ) .A 1个 .B 2个 .C 3个 .D 4个12.对实数a 和b ,定义运算“⊗”:,1,, 1.a ab a b b a b -≤⎧⊗=⎨->⎩ 设函数()()22()2,.f x x x x x R =-⊗-∈若函数()y f x c =-的图像与x 轴恰有两个公共点,则实数c 的取值范围是A .(]3,21,2⎛⎫-∞-⋃- ⎪⎝⎭B .(]3,21,4⎛⎫-∞-⋃--⎪⎝⎭C .111,,44⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭D .311,,44⎛⎫⎡⎫--⋃+∞ ⎪⎪⎢⎝⎭⎣⎭13.函数y =的定义域是 ▲ ;14.已知a =2lg ,b =3lg 则=12log 2 ▲ (请用a,b 表示结果);15.函数1()3,0()(01)2,0x a x a x f x a a a x ⎧-+<⎪=>≠⎨⎪≥⎩且是R 上的减函数,则a 的取值范围是 ▲ ;16. 给出下列四个命题:①已知1()2()3,f x f x x+=则函数()(2)x g x f =在(0,1)上有唯一零点;②对于函数12()f x x =的定义域中任意的1212()x x x x ≠、必有1212()()();22x x f x f x f ++< ③已知1()|21|,,()()x f x a b f a f b -+=-<<,则必有0()1;f b <<④已知()()f x g x 、是定义在R 上的两个函数,对任意x y R ∈、满足关系式()()2()(),(0=0且),f x y f x y f x g y f ++-=g 但0x ≠时()()0.f x g x ≠g 则函数()()f x g x 、都是奇函数.其中正确命题的序号是 ▲ .三、解答题:(本大题共6小题,共 74 分. 解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分)已知集合2{|37},{|12200}=≤<=-+<A x x B x x x , {|}=<C x x a . (1)求A B ⋃;()⋂ðR A B ;(2)若A C A ⋂=,求a 的取值范围。
2023-2024学年四川省成都市双流区八年级(上)期末数学试卷+答案解析
2023-2024学年四川省成都市双流区八年级(上)期末数学试卷一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列数是无理数的是( )A. B. 0 C. D.2.如图,已知直线,,则的度数为( )A.B.C.D.3.在平面直角坐标系xOy中,点关于x轴的对称点的坐标是( )A. B. C. D.4.下列各组中的三条线段,能构成直角三角形的是( )A. 3,4,5B. 4,5,6C.D. 8,15,165.某射击队准备挑选运动员参加射击比赛,下表是其中一名运动员10次射击的成绩单位:环,则该名运动员射击成绩的平均数是( )成绩8910频数3241A. B. C. D.6.如图是小颖画的一张脸的示意图,如果用表示右眼,用表示嘴,那么左眼的位置可以表示成( )A.B.C.D.7.如图,D是的边BC上一点,若,,则的度数为( )A.B. C.D.8.关于一次函数,下列说法不正确的是( )A. 图象经过第一、三、四象限B. 图象与y 轴交于点C. 函数值y 随自变量x 的增大而减小D. 当时,二、填空题:本题共10小题,每小题4分,共40分。
9.比较大小:______10.如图,在中,,,,则的度数是______.11.已知是二元一次方程的一个解,则a 的值为______.12.如图,要围一个长方形ABCD 的菜园,菜园的一边利用足够长的墙,用35米长的篱笆围成另外三边.为了方便进出,在BC 边上留了一个2米宽的小门.设AB 边的长为x 米,BC 边的长为y 米,则y 与x 之间的关系式是______.13.如图,数轴上点A ,B 分别对应2,4,过点B 作,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ;以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则BM 的长为______.14.计算______.15.如图,直线,以直线m上的点A为圆心,适当长为半径画弧,分别交直线m,n于点B,C,连接AB,若,则______16.若关于x,y的二元一次方程组的解也是二元一次方程的一个解,则m的值为______.17.如图,在中,,以AC,BC为边分别作正方形ACDE和正方形BCGF,若图中阴影部分的面积为16,,则BD的长为______.18.如图,在中,,,以BC所在直线为x轴,过点A作BC的垂线为y轴建立直角坐标系,D,E分别为线段AO和线段AC上一动点,且当的值最小时,点E的坐标为______.三、解答题:本题共8小题,共78分。
2024届四川省成都市青羊区八上数学期末联考试题含解析
2024届四川省成都市青羊区八上数学期末联考试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题3分,共30分)1.下列各图中,不是轴对称图形的是( )A .B .C .D .2.式子2x +在实数范围内有意义,则x 的取值范围是( )A .x >﹣2B .x≥﹣2C .x <﹣2D .x≤﹣2 3.下列各因式分解中,结论正确的是( )A .256(1)(6)x x x x ++=-+B .26(2)(3)x x x x -+=+-C .2221(1)(1)a ab b a b a b -+-=+++-D .2()223(3)(1)a b a b a b a b +++-=+++-4.A ,B 两地相距20km ,甲乙两人沿同一条路线从A 地到B 地,如图反映的是二人行进路程y (km )与行进时间t (h )之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A .1个B .2个C .3个D .4个5.如图,已知AB =AC ,AF =AE ,∠EAF=∠BAC,点C 、D 、E 、F 共线.则下列结论,其中正确的是( )①△AFB≌△AEC;②BF=CE ;③∠BFC=∠EAF;④AB=BC .A .①②③B .①②④C .①②D .①②③④6.式子21x +有意义的x 的取值范围是( )A .x ≧1-2且x≠1 B .x≠1 C .x≥-12 D .x >-12且x≠1 7.如图:若函数11y x =--与23y ax =-的图象交于点(),2P m -,则关于x 的不等式13x ax --<-的解集是( )A .1x <B .1x >C .2x <-D .2x >-8.一个两位数,个位上的数字与十位上的数字之和为7,如果这个两位数加上45则恰好成为个位数字与十位数字对调后组成的新两位数,则原来的两位数是( )A .61B .16C .52D .259.(-a 5)2+(-a 2)5的结果是( )A .0B .72a -C .102aD .102a -10.如图,在等腰△ABC 中,AB =AC ,∠A =20°,AB 上一点D ,且AD =BC ,过点D 作DE ∥BC 且DE =AB ,连接EC ,则∠DCE 的度数为( )A .80°B .70°C .60°D .45°二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.12.若分式方程211x m x x-=--有增根,则m =________. 13.若实数,满足,则______. 14.若+x x -有意义,则+1x =___________.15.已知线段AB//x 轴,且AB=3,若点A 的坐标为(-1,2),则点B 的坐标为_______;16.一次函数的图象经过(-1,0)且函数值随自变量增大而减小,写出一个符合条件的一次函数解析式__________.17.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm ;②桌子高为90cm ;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm ;④若有x 本字典叠成一摞放在这张桌面上,字典的离地高度为y (cm ),则y=5x+1.其中说法正确的有________.18.整体思想就是通过研究问题的整体形式从面对问题进行整体处理的解题方法.如113237x y x y⎧+=⎪⎪⎨⎪+=⎪⎩,此题设“1a x =,1b y =”,得方程3237a b a b +=⎧⎨+=⎩,解得21a b =⎧⎨=⎩,0.51x y =⎧∴⎨=⎩.利用整体思想解决问题:采采家准备装修-厨房,若甲,乙两个装修公司,合做6需周完成,甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,设甲公司单独完成需x 周,乙公司单独完成需y 周,则得到方程_______.利用整体思想 ,解得__________.三、解答题(共66分)19.(10分)先化简再求值:(2221244x x x x x x ---+++)÷42x x -+,其中x =(﹣1)1. 20.(6分)解下列分式方程.(1)1212x x=-(2)2115225x x x -+-=-- 21.(6分)如图,在7×7网格中,每个小正方形的边长都为1. (1)建立适当的平面直角坐标系后,若点A(1,3)、C(2,1),则点B 的坐标为______;(2)△ABC 的面积为______;(3)判断△ABC 的形状,并说明理由.22.(8分)已知△ABC 等边三角形,△BDC 是顶角120°的等腰三角形,以D 为顶点作60°的角,它的两边分别与AB .AC 所在的直线相交于点M 和N ,连接MN .(1)如图1,当点M 、点N 在边AB 、AC 上且DM=DN 时,探究:BM 、MN 、NC 之间的关系,并直接写出你的结论; (2)如图2,当点M 、点N 在边AB 、AC 上,但DM≠DN 时,(1)中的结论还成立吗?写出你的猜想并加以证明; (3)如图3,若点M 、N 分别在射线AB 、CA 上,其他条件不变,(1)中的结论还成立吗?若成立,写出你的猜想;若不成立,请直接写出新的结论.23.(8分)已知:直线//AB CD ,P 为图形内一点,连接PB ,PD .(1)如图①,写出ABP ∠,BPD ∠,PDC ∠之间的等量关系,并证明你的结论;(2)如图②,请直接写出ABP ∠,BPD ∠,PDC ∠之间的关系式;(3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).24.(8分)先化简,再取一个你喜欢的x 的值带入并求值 21211()()111x x x x x x +⨯--+-+ 25.(10分)如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______;(3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______.26.(10分)阅读下列解方程组的部分过程,回答下列问题解方程组25323x y x y -=⎧⎨-=⎩①② 现有两位同学的解法如下:解法一;由①,得x =2y+5,③把③代入②,得1(2y+5)﹣2y =1.……解法二:①﹣②,得﹣2x =2.……(1)解法一使用的具体方法是________,解法二使用的具体方法是______,以上两种方法的共同点是________.(2)请你任选一种解法,把完整的解题过程写出来参考答案一、选择题(每小题3分,共30分)1、C【解题分析】试题解析:根据轴对称图形的意义可知:选项A. B. D 都是轴对称图形,而C 不是轴对称图形; 故选C.点睛:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;依次进行判断即可.2、B【分析】根据二次根式有意义的条件可得20x +≥ ,再解不等式即可.【题目详解】解:由题意得:20x +≥,解得:2x ≥-,故选:B .【题目点拨】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.3、D【分析】根据因式分解的定义逐项判断即可.【题目详解】解:A. 256(1)(6)x x x x ++=-+,变形错误,不是因式分解,不合题意;B. 26(2)(3)x x x x -+=+-,变形错误,不是因式分解,不合题意;C. 2221(1)(1)a ab b a b a b -+-=+++-,变形错误,不是因式分解,不合题意;D. 2()223(3)(1)a b a b a b a b +++-=+++-,变形正确,是因式分解,符合题意.故选:D【题目点拨】本题考查了因式分解的定义,“将一个多项式变形为几个整式的积的形式叫因式分解”,注意因式分解是一种变形,故等号左右两边要相等.4、A【分析】根据题意结合图象依次判断即可.【题目详解】①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.【题目点拨】此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.5、A【分析】根据题意结合图形证明△AFB ≌△AEC ;利用四点共圆及全等三角形的性质问题即可解决.【题目详解】如图,∵∠EAF=∠BAC ,∴∠BAF=∠CAE ;在△AFB 与△AEC 中,AF AE BAF CAE AB AC ⎧⎪∠∠⎨⎪⎩===,∴△AFB ≌△AEC (SAS ),∴BF=CE ;∠ABF=∠ACE ,∴A 、F 、B 、C 四点共圆,∴∠BFC=∠BAC=∠EAF ;故①、②、③正确,④错误.故选A..【题目点拨】本题主要考查了全等三角形的判定及其性质的应用问题;解题的关键是准确找出图形中隐含的全等三角形,灵活运用四点共圆等几何知识来分析、判断、推理或证明.6、C【分析】根据二次根式的被开方数的非负性、解一元一次不等式即可得.【题目详解】由二次根式的被开方数的非负性得:210x +≥, 解得21x ≥-, 故选:C .【题目点拨】本题考查了二次根式的被开方数的非负性、解一元一次不等式,掌握理解二次根式的被开方数的非负性是解题关键. 7、B【分析】首先得出m 的值,再观察函数图象得到,当1x >时,一次函数3y ax =-的图象都在一次函数1y x =--的图象的上方,由此得到不等式13x ax --<-的解集.【题目详解】∵函数11y x =--与23y ax =-的图象相交于点()2P m -,, ∴21m -=--,解得:1m =,观察函数图象得到:关于x 的不等式13x ax --<-的解集是:1x >.故选:B .【题目点拨】本题考查一次函数与一元一次不等式、一次函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.8、B【分析】先设这个两位数的十位数字和个位数字分别为x ,7-x ,根据“如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数”列出方程,求出这个两位数.【题目详解】设这个两位数的十位数字为x ,则个位数字为7−x ,由题意列方程得,10x+7−x+45=10(7−x)+x ,解得x=1,则7−x=7−1=6,故这个两位数为16.故选B.【题目点拨】此题考查一元一次方程的应用,解题关键在于理解题意列出方程.9、A【分析】直接利用幂的乘方运算法则化简进而合并求出答案.【题目详解】(-a 5)2+(-a 2)5=a 11-a 11=1.故选A .【题目点拨】此题主要考查了幂的乘方运算,正确化简各式是解题关键.10、B【解题分析】连接AE .根据ASA 可证△ADE ≌△CBA ,根据全等三角形的性质可得AE=AC ,∠AED=∠BAC=20°,根据等边三角形的判定可得△ACE 是等边三角形,根据等腰三角形的判定可得△DCE 是等腰三角形,再根据三角形内角和定理和角的和差关系即可求解.【题目详解】如图所示,连接AE .∵AB=DE ,AD=BC∵DE ∥BC ,∴∠ADE=∠B ,可得AE=DE∵AB=AC ,∠BAC=20°,∴∠DAE=∠ADE=∠B=∠ACB=80°,在△ADE 与△CBA 中,DAE ACB AD BCADE B ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ADE ≌△CBA (ASA ),∴AE=AC ,∠AED=∠BAC=20°,∵∠CAE=∠DAE-∠BAC=80°-20°=60°,∴△ACE 是等边三角形,∴CE=AC=AE=DE ,∠AEC=∠ACE=60°,∴△DCE 是等腰三角形,∴∠CDE=∠DCE ,∴∠DEC=∠AEC-∠AED=40°,∴∠DCE=∠CDE=(180-40°)÷2=70°.故选B .【题目点拨】考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,等腰三角形的判定和性质,三角形内角和定理,平行线的性质,综合性较强,有一定的难度.二、填空题(每小题3分,共24分)11、(3,2)- 517【分析】如图(见解析),先根据一次函数的解析式可得点A 、B 的坐标,从而可得OA 、OB 、AB 的长,再根据正方形的性质可得90BAD ∠=︒,DA AB =,然后根据三角形全等的判定定理与性质可得,AE OB DE OA ==,由此即可得出点D 的坐标;同样的方法可求出点C 的坐标,再根据轴对称的性质可得点C '的坐标,然后根据轴对称的性质和两点之间线段最短得出MDC △的周长值最小时,点M 的位置,最后利用两点之间的距离公式、三角形的周长公式即可得.【题目详解】如图,过点D 作DE x ⊥轴于点E ,作点C 关于y 轴的对称点C ',交y 轴于点F ,连接C D ',交y 轴于点M ',连接C M ',则CF y ⊥轴 对于112y x =+ 当0y =时,1102x +=,解得2x =-,则点A 的坐标为(2,0)A - 当0x =时,1y =,则点B 的坐标为(0,1)B2,1,OA OB AB ∴====四边形ABCD 是正方形90BAD ∴∠=︒,CD DA AB ===90DAE OAB ABO OAB ∴∠+∠=∠+∠=︒DAE ABO ∴∠=∠在ADE 和BAO 中,90AED BOA DAE ABO DA AB ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()ADE BAO AAS ∴≅1,2AE OB DE OA ∴====213OE OA AE ∴=+=+=则点D 的坐标为(3,2)D -同理可证:CBF BAO ≅1,2CF OB BF OA ∴====123OF OB BF ∴=+=+=则点C 的坐标为(1,3)C -由轴对称的性质得:点C '的坐标为(1,3)C ',且CM C M '=MDC ∴△的周长为CD DM CM DM C M '++=+由两点之间线段最短得:当点M 与点M '重合时,DM C M '+取得最小值DC '(3,2),(1,3)D C '- 22(31)(23)17DC '∴=--+-=则MDC △的周长的最小值为5517DC '+=+故答案为:(3,2)-,517+.【题目点拨】本题是一道较难的综合题,考查了正方形的性质、三角形全等的判定定理与性质、轴对称的性质等知识点,正确找出MDC △的周长最小时,点M 的位置是解题关键.12、-1【分析】首先根据分式方程的解法求出x 的值,然后根据增根求出m 的值.【题目详解】解:解方程可得:x=m+2,根据方程有增根,则x=1,即m+2=1,解得:m=-1.故答案为:-1【题目点拨】本题考查分式方程的增根,掌握增根的概念是本题的解题关键.13、1.5【解题分析】根据非负数的性质列式求出m ,n 的值,然后代入代数式进行计算即可得解.【题目详解】解:根据题意得:,∴∴;故答案为:.【题目点拨】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0,解题的关键是利用非负性正确求值. 14、1 x +x -有意义,∴x ⩾0,−x ⩾0,∴x=0, x+11=1故答案为115、(-4,2)或(2,2)【解题分析】A 、B 的纵坐标相同,横坐标为134,2-±=- ,则点B 的坐标为(-4,2)或(2,2)16、y=-x-1 ,满足()y=ax+a a 0<即可【分析】根据题意假设解析式,因为函数值随自变量增大而减小,所以解析式需满足a 0< ,再代入(-1,0)求出a 和b 的等量关系即可.【题目详解】设一次函数解析式()y=ax+b a <0代入点(-1,0)得0=-a+b ,解得()a=b a 0<所以()y=ax+a a 0<我们令a=-1y=-x-1故其中一个符合条件的一次函数解析式是y=-x-1.故答案为:y=-x-1.【题目点拨】本题考察了一次函数的解析式,根据题意得出a 和b 的等量关系,列出其中一个符合题意的一次函数解析式即可.17、①④【分析】设桌子高度为xcm ,每本字典的厚度为ycm ,根据题意列方程组求得x 、y 的值,再逐一判断即可.【题目详解】解:设桌子高度为xcm ,每本字典的厚度为ycm ,根据题意,41057120x y x y +=⎧⎨+=⎩ ,解得:855x y =⎧⎨=⎩, 则每本字典的厚度为5cm ,故①正确;桌子的高度为1cm ,故②错误;把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:1+11×5=140cm ,故③错误;若有x 本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+1,故④正确;故答案为:①④.【题目点拨】本题主要考查了二元一次方程组和一次函数的应用能力,解题的关键是根据题意列方程组求得桌子高度和每本字典厚度.18、116()1491x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 1015x y =⎧⎨=⎩【分析】设甲公司单独完成需x 周,乙公司单独完成需y 周,依题意得分式方程组,换元后得关于a 和b 的二元一次方程组,解得a 和b ,再根据倒数关系可得x 和y 的值,从而问题得解.【题目详解】设甲公司单独完成需x 周,乙公司单独完成需y 周, 依题意得:116()1491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩, 设11b x a y==,, 原方程化为:()61491a b a b ⎧+⎨+⎩==, 解得:110115a b ⎧⎪⎪⎨⎪⎪⎩==, ∴1015x y ⎧⎨⎩==,故答案为:116()1491x y x y⎧+=⎪⎪⎨⎪+=⎪⎩;1015x y =⎧⎨=⎩. 【题目点拨】本题考查了换元法解分式方程组在工程问题中的应用,要注意整体思想在该类型习题中的应用.三、解答题(共66分)19、212x x +,13【分析】直接将括号里面通分运算,再计算除法,化简后,再代入x 的值得出答案. 【题目详解】解:原式=2214[](2)(2)2x x x x x x x ----÷+++ =22(2)(2)(1)4[](2)(2)2x x x x x x x x x x -+---÷+++ =222244[](2)(2)2x x x x x x x x x ----÷+++ =242(2)4x x x x x -++- =1(2)x x + =212x x+ 当x =(﹣1)1=1时,原式=2111213=+⨯ 【题目点拨】本题主要考查分式的化简求值,掌握分式加减乘除混合运算顺序和法则是解题的关键.20、(1)14x =;(2)2x = 【分析】(1)根据解分式方程的一般步骤解分式方程即可;(2)根据解分式方程的一般步骤解分式方程即可;【题目详解】解:(1)1212x x=- 化为整式方程为:122x x -=移项、合并同类项,得41x -=-解得:14x = 经检验:14x =是原方程的解. (2)2115225x x x -+-=-- 化为整式方程为:2152x x -++=-移项、合并同类项,得36x =解得:2x =经检验:2x =是原方程的解.【题目点拨】此题考查的是解分式方程,掌握解分式方程的一般步骤是解决此题的关键,需要注意的是解分式方程要验根.21、 (1)(-2,-1);(2)5;(3)△ABC 是直角三角形,∠ACB=90°.【解题分析】(1)首先根据A 和C 的坐标确定坐标轴的位置,然后确定B 的坐标;(2)利用矩形的面积减去三个直角三角形的面积求解;(3)利用勾股定理的逆定理即可作出判断.【题目详解】解:(1)则B 的坐标是(-2,-1).故答案是(-2,-1);(2)S △ABC =4×4-12×4×2-12×3×4-12×1×2=5, 故答案是:5;(3)∵AC 2=22+12=5,BC 2=22+42=20,AB2=42+32=25,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠ACB=90°.【题目点拨】本题考查了平面直角坐标系确定点的位置以及勾股定理的逆定理,正确确定坐标轴的位置是关键.22、(1)BM +CN=MN ;(2)成立;证明见解析;(3)MN=CN-BM .【分析】(1)首先证明Rt △BDM ≌Rt △CDN ,进而得出△DMN 是等边三角形,∠BDM=∠CDN=30°,NC=BM=12DM=12MN ,即可得出答案; (2)延长AC 至E ,使得CE=BM 并连接DE ,构造全等三角形,找到相等的线段DE= DM ,再进一步证明△MDN ≌△EDN ,进而等量代换得到MN=BM+NC ;(3)在CA 上截取CE=BM ,同理先证Rt △DCE ≌Rt △DBM ,再证△MDN ≌△EDN (SAS ),即可得证.【题目详解】(1)∵△ABC 是正三角形,∴∠ABC=∠ACB=60°,∵△BDC 是顶角∠BDC=120°的等腰三角形,∴∠DBC=∠DCB=30°,∴∠DBM=∠DCN=90°,∵在Rt △BDM 和Rt △CDN 中,BD DC DM DN =⎧⎨=⎩, ∴Rt △BDM ≌Rt △CDN (HL ),∴BM=CN ,∠BDM=∠CDN ,∵∠MDN=60°,DM DN =,∴△DMN 是等边三角形,∠BDM=∠CDN=30°,∴NC=BM=12DM=12MN , ∴MN=MB+NC ;(2)成立.理由如下:延长AC 至E ,使CE=BM ,连接DE ,∵△BDC 是顶角∠BDC=120°的等腰三角形,△ABC 是等边三角形,∴∠BCD=30°,∴∠ABD=∠ACD=90°,即∠ECD=∠MBD=90°,∵在Rt △DCE 和Rt △DBM 中,90EC BM ECD MBD DC BD =⎧⎪∠=∠=︒⎨⎪=⎩,∴Rt △DCE ≌Rt △DBM (SAS ),∴∠BDM=∠CDE ,DE= DM ,又∵∠BDC=120°,∠MDN=60°,∴∠BDM+∠NDC=∠BDC-∠MDN=60°,∴∠CDE+∠NDC=60°,即∠NDE=60°,∴∠MDN=∠NDE=60°,∵在△DMN 和△DEN 中,60DM DE MDN NDE DN DN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△DMN ≌△DEN (SAS ),∴NE=NM ,即CE+CN=NM ,∴BM+CN=NM ;(2)MN=CN-BM ,理由如下:在CA 上截取CE=BM ,连接DM ,同理可证明:Rt △DCE ≌Rt △DBM (SAS ),∴DE=DM ,∠EDC=∠BDM ,∵∠MDN=∠MDB+∠BDN=60°,∴∠BDN+∠CDE=60°,∴∠NDE=∠NDM=60°,∵在△MDN 和△EDN 中,ND ND NDM NDE MD ED =⎧⎪∠=∠⎨⎪=⎩=60°, ∴△MDN ≌△EDN (SAS ),∴MN=NE=NC-CE=NC-BM .【题目点拨】本题考查了全等三角形的判定与性质,等边三角形的判定和性质,含30度角的直角三角形的性质及等腰三角形的性质;此题从不同角度考查了作相等线段构造全等三角形的能力,要充分利用等边三角形及等腰三角形的性质,转换各相等线段解答.23、(1)∠=∠-∠ABP BPD PDC ,见解析;(2)360∠+∠+︒∠=ABP PDC BPD ;(3)∠=∠+∠ABP BPD PDC ,见解析【分析】(1)如图①,延长BP 交CD 于点E ,根据两直线平行,内错角相等可得∠=∠ABP PED ,再根据三角形外角的性质即可得解;(2)如图②中,过P 作PG ∥AB ,利用平行线的性质即可解决问题;(3) 如图③,在PFD ∆利用外角的性质以及两直线平行,内错角相等的性质,即可得出∠=∠+∠ABP BPD PDC .【题目详解】证明:(1)如图①,延长BP 交CD 于点E .在PED ∆中则有PED PDE BPD ∠+∠=∠.(三角形一个外角等于和它不相邻的两个内角的和)又//AB CD ,ABP PED ∴∠=∠(两直线平行,内错角相等)ABP PDC BPD ∴∠+∠=∠.ABP BPD PDC ∴∠=∠-∠.(图①) (图②)(2)如图②中,过P 作PG ∥AB ,∵AB//CD∴PG//CD∵AB//PG∴∠ABP+∠BPG=180°∵PG//CD∴∠GPD+∠PDC=180°∴∠ABP+∠BPG +∠GPD+∠PDC =360°∴360∠+∠+︒∠=ABP PDC BPD故答案为:360∠+∠+︒∠=ABP PDC BPD .(3)如图③∠=∠+∠ABP BPD PDC .证明如下:(图③)在PFD ∆中则有∠+∠=∠D P BFD .(三角形一个外角等于和它不相邻的两个内角的和)又//AB CD ,∴∠=∠ABP BFD (两直线平行,内错角相等)∴∠=∠+∠ABP BPD PDC .【题目点拨】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作出辅助线是解题的关键.24、224421x x x ---,x=1时值为1. 【分析】先对分式进行化简,要是分式有意义,则需要使在整个运算过程中的分母不为0,取值时避开这些使分母为0的数即可. 【题目详解】解:原式2221211=+111x x x x x x x x ++-⎛⎫⎛⎫⨯-- ⎪ ⎪--⎝⎭⎝⎭()()()()()()()()()()()()22222122=+1111421114211141211114421x x x x x x x x x x x x x x x x x x x x x x x x x +⎛⎫⨯- ⎪+-⎝⎭+=⨯-+-+=-++--=-+-+---=- 要使分式有意义,则x ≠0,1,-1则当=2x 时,代入得2244244422=2141x x x --⨯-⨯-=-- 【题目点拨】本题主要考查的是分式的化简求值以及使分式有意义的条件,掌握这两个知识点并正确的运用是解题的关键.25、(1)3;(2)6(3)0,1,0,5【分析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答;(2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答.【题目详解】(1)∵C (−1,−3),∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3),∴AB =4−(−2)=6, AC=BC=(3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
2017-2018学年八年级数学上学期期末考试试题 (含答案)
2017-2018学年八年级数学上学期期末考试试题(考试时间120分钟,总分150分)第Ⅰ卷(选择题,共30分)一、选择题(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求,答案填在答题卡上.1.下已知⎩⎪⎨⎪⎧x =1y =2是二元一次方程组⎩⎪⎨⎪⎧ax +y =-12x -by =0的解,则a +b 的值是( )(A )2 (B )-2 (C )4 (D )-42.将直尺和直角三角板按如图方式摆放(ACB ∠为直角),已知130∠=︒,则2∠的大小是( )A. 30︒B. 45︒C. 60︒D. 65︒3.在这学期的六次体育测试中,甲、乙两同学的平均成绩一样,方差分别为1.5, 1.0,则下列说法正确的是( )(A )乙同学的成绩更稳定 (B )甲同学的成绩更稳定(C )甲、乙两位同学的成绩一样稳定 (D )不能确定哪位同学的成绩更稳定 4. 如图,以两条直线1l ,2l 的交点坐标为解的方程组是((A )⎩⎪⎨⎪⎧x -y =12x -y =1 (B )⎩⎪⎨⎪⎧x -y =-12x -y =-1 (C )⎩⎪⎨⎪⎧x -y =-12x -y =1 (D )⎩⎪⎨⎪⎧x -y =12x -y =-15.如图,长方体的底面边长分别为2cm 和3cm ,高为6cm. 如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B ,那么所用细线最短需要( ) (A )11cm (B )234cm (C )(8+210)cm (D )(7+35)cm 6. 16的平方根是( )(A )±4 (B )±2 (C )4 (D )4- 7.在平面直角坐标系中,下列的点在第二象限的是( )A B 3cm2cm6cm8.如图,AC ∥DF ,AB ∥EF ,若∠2=50°,则∠1的大小是( ) (A )60° (B )50° (C )40° (D )30°9.一次函数y =x +1的图像不经过( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 10. 满足下列条件的△ABC ,不是直角三角形的是( ) (A )b 2-c 2=a 2(B )a:b:c =3:4:5 (C )∠A: ∠B: ∠C =9:12:15 (D )∠C =∠A -∠B 第Ⅱ卷(非选择题,共70分) 二、填空题(每小题4分,共l6分) 11. 计算:(-2)2= .12.李老师最近6个月的手机话费(单位:元)分别为:27,36,54,29,38,42,这组数据的中位数是 . 13、点A(-2,3)关于x 轴对称的点B 的坐标是14、如图,直线l 过正方形ABCD 的顶点B ,点A 、点B 到直线l 的距离分别是3和4,则该正方形的面积是 。
2022-2023学年四川省成都市金牛区八年级(上)期末数学试卷+答案解析(附后)
2022-2023学年四川省成都市金牛区八年级(上)期末数学试卷1. 下列给出的四组数中,能构成直角三角形三边的一组是( )A. 3,4,5B. 6,7,8C. 5,12,15D. 8,13,142. 64的算术平方根是( )A. 4B.C. 8D.3. 点关于x轴的对称点的坐标为( )A. B. C. D.4. 下列命题正确的个数有( )①实数与数轴上的点一一对应;②无限不循环的小数是无理数;③三角形的一个外角大于任何一个和它不相邻的内角;④两条直线被第三条直线所截,同旁内角互补.A. 1个B. 2个C. 3个D. 4个5. 如果是关于x和y的二元一次方程的解,那么a的值是( )A. B. 2 C. D. 46. 将一块含角的直角三角板按如图所示方式放置,并且顶点A、C分别落在直线a、b上,若直线,,则的度数是( )A. B. C. D.7. 甲、乙、丙三个人进行排球垫球测试,他们的平均成绩相同,方差分别是:,,,成绩最稳定的是( )A. 甲B. 乙C. 丙D. 三个都一样8. 一次函数的图象如图所示,则下列结论正确的是( )A.B.C. y随x的增大而减小D. 函数的图象不经过第三象限9. 已知,则______ .10. 比较大小:______11. 关于x,y的二元一次方程组的解为,则直线AB:与直线CD:的交点坐标为______ .12.如图是“赵爽弦图”,,,和是四个全等的直角三角形,四边形ABCD和四边形EFGH都是正方形,如果,,则四边形GFEH的面积为______ .13. 如图,在中,,利用尺规在AB,AC上分别截取AD,AE,使,分别以D,E为圆心、以大于的长为半径作弧,两弧在内交于点F,作射线AF交BC于点若,,则的面积为______ .14. 计算:解方程组:15. 如图,点F在线段AB上,点E,G在线段CD上,,求证:;若于点H,BC平分,,求的度数.16. 为了解学生每天回家完成作业时间情况,某中学对学生每天回家完成作业时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:被抽样调查的学生有______ 人,并补全条形统计图;每天回家完成作业时间的中位数是______ 小时,众数是______ 小时;该校共有2000名学生,请估计该校每天回家完成作业时间超过2小时的学生有多少人?17. 如图,在平面直角坐标系内,已知点A的坐标为,点B的坐标为,点P 为直线AB上任意一点不与A、B重合,点Q是点P关于x轴的对称点.在方格纸中标出A、B,并求出的面积;设点P的纵坐标为a,求点Q的坐标;设和的面积相等,且点P在点Q的上方,求出此时P点坐标.18. 如图1,在平面直角坐标系xOy中,直线AB:与x轴交于点,与y轴交于点求直线AB的解析式;若直线CD:与x轴、y轴、直线AB分别交于点C、D、E,求面积;如图2,在的条件下,点F为线段AC上一动点,将沿直线EF翻折得到,EN交x轴于点当为直角三角形时,求点N的坐标.19. 如图,正方形边长为1,,则数轴上点A对应的数是______ .20. 已知关于x、y的方程组的解满足,则______ .21. 定义:我们把直线与直线的交点称为直线的“不动点”.例如求直线的“不动点”:联立方程,解得,则的“不动点”为若直线的“不动点”为,则m、n的值分别为__________ .22. 如图,在中,CD是中线,作点B关于CD对称的点E,连接CE、DE、AE,若,,则点D到EC的距离______ .23. 如图,在中,,,以AC为边向上作等边,连接DB,当______ 时,BD最大,最大值为______ .24. 某商店销售3台A型和5台B型电脑的利润为3000元,销售5台A型和3台B型电脑的利润为3400元.求每台A型电脑和B型电脑的销售利润各多少元?该商店计划一次购进两种型号的电脑共60台,设购进A型电脑n台,这60台电脑的销售总利润为w元.求w关于n的函数关系式.25. 如图,在直角坐标系中,已知直线AO:,直线AC:直线AC与y 轴交于点直接写出点A的坐标为______ .若点D在直线OA上,点E在直线AC上,且轴,,求点D的坐标.若点B在x轴上,当的面积等于的面积的三分之一时,求的度数.26. 中,,,点D为BC边上一点.如图1,若,,①求证:;②若,求的值.如图2,点E为线段CD上一点,且,,,求DE的长.答案和解析1.【答案】A【解析】解:A、,能构成直角三角形,故此选项符合题意;B、,不能构成直角三角形,故此选项不符合题意;C、,不能构成直角三角形,故此选项不符合题意;D、,不能构成直角三角形,故此选项不符合题意.故选:根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.2.【答案】C【解析】解:,的算术平方根是故选根据求算术平方根的方法可以求得64的算术平方根.本题考查算术平方根,解题的关键是明确求算术平方根的方法.3.【答案】A【解析】解:点关于x轴的对称点的坐标是故选:根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.【答案】C【解析】解:①实数与数轴上的点一一对应,正确,符合题意;②无限不循环的小数是无理数,正确,符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,符合题意;④两条平行直线被第三条直线所截,同旁内角互补,故原命题错误,不符合题意.正确的有3个,故选:利用实数的性质、无理数的定义、三角形的外角的性质及平行线的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解有关的定义及性质,难度较小.5.【答案】B【解析】解:把代入方程得:,解得:,故选:把代入方程得出,再求出a即可.本题考查了二元一次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.6.【答案】C【解析】解:过点B作直线a,交AC于点E,如图所示.直线a,直线,直线b,,,,故选:过点B作直线a,交AC于点E,利用“两直线平行,内错角相等”,可得出,,结合,即可求出的度数.本题考查了平行线的性质,牢记“两直线平行,内错角相等”是解题的关键.7.【答案】B【解析】解:,,,,成绩最稳定的是乙,故选:根据方差的意义,方差越小数据越稳定即可求解.本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.【答案】A【解析】解:将,代入得:,解得:,选项A符合题意,选项B不符合题意;C.观察函数图象,可知y随x的增大而增大,选项C不符合题意;D.观察函数图象,可知函数的图象不经过第二象限,选项D不符合题意.故选:利用待定系数法,可求出k,b的值;C.观察函数图象,可得出y随x的增大而增大;D.观察函数图象,可得出函数的图象不经过第二象限.本题考查了待定系数法求一次函数解析式以及一次函数图象,逐一分析各选项的正误是解题的关键.9.【答案】【解析】解:由题意得,,,解得,,则,故答案为:根据非负数的性质分别求出x、y的值,代入计算即可.本题考查的是非负数的性质,掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键.10.【答案】<【解析】解:,,,故答案为:先估算出的值的范围,从而估算出的值的范围,即可解答.本题考查了实数大小比较,熟练掌握估算无理数的大小是解题的关键.11.【答案】【解析】解:关于x,y的二元一次方程组的解为,直线AB:与直线CD:的交点坐标为故答案为:函数图象交点坐标为两函数解析式组成的方程组的解,据此即可求解.本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.12.【答案】9【解析】解:、、和是四个全等的直角三角形,,,在中,,,四边形EFGH是正方形,四边形GFEH的面积为9,故答案为:由全等三角形的性质和勾股定理求得,,再由正方形的性质即可得出答案.本题考查了勾股定理的证明、全等三角形的性质、正方形的性质等知识;熟练掌握勾股定理是解题的关键.13.【答案】【解析】解:过点G作于点H,由题意得,AG为的平分线,,,,,,由勾股定理得,,设,则,由勾股定理得,,解得,的面积为故答案为:过点G作于点H,由题意得,AG为的平分线,即可得,,则,,,设,则,由勾股定理得,,求出x的值,结合三角形的面积公式计算即可.本题考查作图-基本作图、角平分线的性质、全等三角形的判定与性质、勾股定理,熟练掌握角平分线的作图方法及性质、全等三角形的判定与性质、勾股定理是解答本题的关键.14.【答案】解:原式,①+②得:,,,将代入①式中,故二元一次方程组的解为【解析】根据零指数幂的意义、负整数指数幂的意义以及二次根式的乘法运算法则即可求出答案.根据二元一次方程组的解法即可求出答案.本题考查实数的运算以及二元一次方程组的解法,解题的关键是熟练运用零指数幂的意义、负整数指数幂的意义、二次根式的乘法运算法则以及二元一次方程组的解法,本题属于基础题型.15.【答案】证明:,,,;解:,,,,,平分,,,的度数为【解析】利用平行线的性质可得,再结合已知可得,然后利用平行线的判定,即可解答;根据垂直定义可得,再利用平行线的性质可得,然后利用角平分线的定义可得,从而利用直角三角形的两个锐角互余,进行计算即可解答.本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.16.【答案】80 2 2【解析】解:人,完成时间在“3小时以上”的所占的百分比为,完成时间在“2小时”的所占的百分比为,完成时间在“2小时”的人数为人,补全条形统计图如图所示:这80名学生完成作业时间出现次数最多的是“2小时”,共出现40次,因此众数是2小时,将这80名学生完成作业时间从小到大排列后处在中间位置的两个数都是2小时,因此中位数是2小时,故答案为:2,2;人,答:该校2000名学生中每天回家完成作业时间超过2小时的有400人.由两个统计图可知,完成作业在“1小时”的有24人,中调查人数的,可求出调查人数;求出完成作业时间在“2小时”的人数即可补全条形统计图;根据中位数、众数的意义求解即可;求出完成作业时间超过2小时的学生中总人数的百分比,即可求出相应的人数.本题考查条形统计图、扇形统计图,理解两个统计图中的数量和数量关系是解决问题的关键.17.【答案】解:的面积;是点P关于x轴的对称点,的坐标是;和的面积相等,且点P在点Q的上方,,点P在点Q的上方,,,的坐标是【解析】由三角形的面积公式,即可计算;关于x轴的对称点的坐标特点:横坐标不变,纵坐标互为相反数,由此即可得到答案;由和的面积相等,且点P在点Q的上方,得到,即可求出P的坐标.本题考查关于x,y轴对称的点的坐标,三角形的面积,关键是掌握关于x,y轴对称的点的坐标的特点.18.【答案】解:把代入得,,,直线AB:;直线AB:,点B的坐标为,直线CD:与x轴、y轴、直线AB分别交于点C、D、E,当时,,当时,,解得,、,联立与得,解得,,,,的面积为;如图2,当时,过点E作轴于H,由翻折得,,,,,,,,,由翻折得,点N的坐标为;如图3,当时,由翻折得,,,,,,点N的坐标为;综上,点N的坐标为或【解析】把代入,求出,即可得得直线AB:;求出点C、D、E的坐标,根据三角形的面积公式即可求解;分两种情况讨论,当时,求出,得,得,得点F坐标,进而可得点N的坐标;当时,由翻折得,根据勾股定理得,则,即可得点N的坐标为此题为一次函数的综合题,考查了待定系数法,两直线的交点,勾股定理,三角形的面积,直角三角形的性质和判定,翻折的性质等,解题的关键是数形结合以及分类思想的运用.19.【答案】【解析】解:由题意得,数轴上点M对应的数是,,即,数轴上点A对应的数是,故答案为:先确定点M对应的数和线段MB的长,再求解点A对应的数.此题考查了实数与数轴的应用能力,关键是能准确理解并运用数形结合思想进行求解.20.【答案】【解析】解:,①+②,得,除以4,得,关于x、y的方程组的解满足,,解得:故答案为:①+②得出,求出,根据方程组的解满足得出,再求出n即可.本题考查了二元一次方程组的解和解二元一次方程组,能选择适当的方法求解是解此题的关键.21.【答案】,【解析】【分析】由定义可知一次函数的“不动点”为,再将点代入即可求m的值,本题考查了一次函数与二元一次方程组,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数解析式,因此方程组的解就是两个相应的一次函数图象的交点坐标.【解答】解:一次函数的“不动点”为,,,“不动点”为,,解得;故答案为:,22.【答案】【解析】解:连接BE,交CD于点O,过点D作于点F,如图,点B关于CD对称的为点E,,,,为的中线,,为的中位线,,,,在中,,,由勾股定理得,,在中,由勾股定理得,在中,由勾股定理得,,,,即点D到EC的距离为故答案为:连接BE,交CD于点O,过点D作于点F,根据轴对称的性质可得CD垂直平分BE,以此可得,进而得到OD为的中位线,则,根据直角三角形斜边上的中线性质得,根据勾股定理先求出BE,再求出OD、OC,进而得到CD 的长,再根据等面积法得,最后代入计算即可求解.本题主要考查轴对称的性质、三角形中位线的判定与性质、直角三角形斜边上的中线性质、勾股定理,根据题意正确作出辅助线,灵活运用所学知识解决问题是解题关键.23.【答案】;4【解析】解:如图,以点D为中心,将按顺时针旋转,使得DC与DA重合,得到,连接,,,,,,为等边三角形,,为等边三角形,,在中,,,,当A、B、三点共线时,,最大,最大值为4,即当时,BD最大,最大值为4,故答案为:;以点D为中心,将按顺时针旋转,使得DC与DA重合,得到,连接,则为等边三角形,利用三角形三边关系得,则当A、B、三点共线时,,最大,最大值为本题主要考查了旋转的性质,等边三角形的判定与性质,三角形的三边关系等知识,利用旋转构造等边三角形是解题的关键.24.【答案】解:设每台A型电脑的销售利润为x元,每台B型电脑的销售利润为y元,由题意可得:,解得,答:每台A型电脑的销售利润为500元,每台B型电脑的销售利润为300元;由题意可得,,即w关于n的函数关系式是【解析】根据商店销售3台A型和5台B型电脑的利润为3000元,销售5台A型和3台B 型电脑的利润为3400元,可以列出相应的方程组,然后求解即可;根据题意和题目中的数据,可以写出w关于n的函数关系式.本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程,写出相应的函数解析式25.【答案】【解析】解:联立,解得,点A坐标为,故答案为:;,设点D的坐标为,轴,点E的坐标为,,,解得或,当时,,当时,,点D的坐标为或;当时,,,的面积,的面积等于的面积的三分之一,,,作点B关于y轴的对称点,连接,,过点A作轴于点H,如图所示:则有,,,,坐标为,,在和中,,≌,,,,,是等腰直角三角形,,即,,解方程组即可得到结论;根据搞定了得到,设点D的坐标为,则点E的坐标为,解方程即可得到结论;当时,得到,根据三角形的面积得到,作点B关于y轴的对称点,连接,,过点A作轴于点H,如图所示:于是得到,,,得到坐标为,根据全等三角形的性质得到,,推出是等腰直角三角形,根据三角形的内角和定理即可得到结论.本题考查了一次函数综合,涉及求交点坐标,三角形面积,全等三角形的判定和性质,轴对称等,本题综合性较强,难度较大.26.【答案】①证明:,,又,,≌,;②解:,,,≌,,,又,是等腰直角三角形,,;解:,,,,,,如图,将绕点A顺时针旋转,得到,连接DH,连接BH,过点D作于N,≌,,,,,,,是等腰直角三角形,,,,,,又,,≌,,设,则,,,,,,【解析】①由“SAS”可证≌,可得;②通过证明是等腰直角三角形,可得,即可求解;由旋转的性质可得,,,,由“SAS”可证≌,可得,由勾股定理可求解.本题是三角形综合题,考查了全等三角形的判定和性质,旋转的性质,等腰直角三角形的性质,勾股定理等知识,添加恰当辅助线构造全等三角形是解题的关键.。
四川省成都市金牛区八年级(上)期末数学试卷(含解析)
四川省成都市金牛区八年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.(3分)9的算术平方根是()A.±3B.﹣3C.3D.±812.(3分)在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4B.4,5,6C.5,12,13D.5,6,7 4.(3分)已知a,b,c均为实数,若a>b,c≠0.下列结论不一定正确的是()A.a+c>b+c B.a2>ab C.D.c﹣a<c﹣b 5.(3分)对于函数y=﹣2x+1,下列结论正确的是()A.它的图象必经过点(﹣1,3)B.它的图象经过第一、二、三象限C.当时,y>0D.y值随x值的增大而增大6.(3分)已知是方程组的解,则a+b=()A.2B.﹣2C.4D.﹣47.(3分)若x=﹣4,则x的取值范围是()A.2<x<3B.3<x<4C.4<x<5D.5<x<6 8.(3分)下面四条直线,可能是一次函数y=kx﹣k(k≠0)的图象是()A.B.C.D.9.(3分)下列命题是真命题的是()A.中位数就是一组数据中最中间的一个数B.计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动小C.一组数据的众数可以不唯一D.一组数据的标准差就是这组数据的方差的平方根10.(3分)在Rt△ABC中,∠ACB=90°,AB=10cm,AB边上的高为4cm,则Rt△ABC 的周长为()cm.A.24B.C.D.二、填空题(每小题4分,共16分)11.(4分)的相反数是,8的立方根是.12.(4分)若点P(﹣1,a)、Q(2,b)在一次函数y=﹣3x+4图象上,则a与b的大小关系是.13.(4分)如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.(结果保留根号)14.(4分)如图,已知函数y=ax+b和y=cx+d的图象交于点M,则根据图象可知,关于x,y的二元一次方程组的解为.三、解答题(共54分)15.(10分)计算下列各题(1)(2)16.(10分)计算题(1)解方程组:(2)解不等式组(并把解集在数轴上表示出来)17.(7分)已知;如图,在四边形ABCD中,AB∥CD,∠BAD,∠ADC的平分线AE、DF 分别与线段BC相交于点E、F,AE与DF相交于点G,求证:AE⊥DF.18.(8分)某中学10月份召了校运动会,需要购买奖品进行表彰,学校工作人员到某商场标价购买了甲种商品25件,乙种商品26件,共花费了2800元;回学校后发现少买了2件甲商品和1件乙种商品,于是马上到该商场花了170元把少买的商品买回.(1)分别求出甲、乙两种商品的标价.(2)若元旦前,学校准备为全校教职工购买甲、乙两种商品作为慰问品,需要购买甲、乙两种商品共200件,请求出总费用w(元)与甲种商品a(件)之间的函数关系式(不需要求出自变量取值范围)19.(9分)为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.20.(10分)如图,已知直线AB:y=﹣x+4与直线AC交于点A,与x轴交于点B,且直线AC过点C(﹣2,0)和点D(0,1),连接BD.(1)求直线AC的解析式;(2)求交点A的坐标,并求出△ABD的面积;(3)在x轴上是否存在一点P,使得AP+PD的值最小?若存在,求出点P;若不存在,请说明理由.一、填空题(每小题4分,共20分)21.(4分)函数中,自变量x的取值范围是.22.(4分)将一张长方形纸片按图中方式折叠,若∠2=65°,则∠1的度数为.23.(4分)若x=﹣1,则x3+x2﹣3x+2019的值为.24.(4分)如图,在平面直角坐标系中,直线y=﹣x+6分别与x轴,y轴交于点B,C 且与直线y=x交于点A,点D是直线OA上的点,当△ACD为直角三角形时,则点D 的坐标为.25.(4分)把自然数按如图的次序在直角坐标系中,每个点坐标就对应着一个自然数,例如点(0,0)对应的自然数是1,点(1,2)对应的自然数是14,那么点(1,4)对应的自然数是;点(n,n)对应的自然数是二、解答题(共30分)26.(8分)已知A,B两地相距120km,甲,乙两人分别从两地出发相向而行,甲先出发,中途加油休息一段时间,然后以原来的速度继续前进,两人离A地的距离y(km)与甲出发时间x(h)的关系式如图所示,请结合图象解答下列问题:(1)甲行驶过程中的速度是km/h,途中休息的时间为h.(2)求甲加油后y与x的函数关系式,并写出自变量x的取值范围;(3)甲出发多少小时两人恰好相距10km?27.(10分)已知△ABC是等边三角形,点D是直线AB上一点,延长CB到点E,使BE =AD,连接DE,DC,(1)若点D在线段AB上,且AB=6,AD=2(如图①),求证:DE=DC;并求出此时CD的长;(2)若点D在线段AB的延长线上,(如图②),此时是否仍有DE=DC?请证明你的结论;(3)在(2)的条件下,连接AE,若,求CD:AE的值.28.(12分)如图,已知长方形OABC的顶点O在坐标原点,A、C分别在x、y轴的正半轴上,顶点B(8,6),直线y=﹣x+b经过点A交BC于D、交y轴于点M,点P是AD的中点,直线OP交AB于点E(1)求点D的坐标及直线OP的解析式;(2)求△ODP的面积,并在直线AD上找一点N,使△AEN的面积等于△ODP的面积,请求出点N的坐标(3)在x轴上有一点T(t,0)(5<t<8),过点T作x轴的垂线,分别交直线OE、AD 于点F、G,在线段AE上是否存在一点Q,使得△FGQ为等腰直角三角形,若存在,请求出点Q的坐标及相应的t的值;若不存在,请说明理由参考答案与试题解析一、选择题(每小题3分,共30分)1.【解答】解:∵32=9,∴9算术平方根为3.故选:C.2.【解答】解:点P(2,﹣3)在第四象限.故选:D.3.【解答】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选:C.4.【解答】解:∵a>b,c≠0,∴﹣a<﹣b,∴a+c>b+c,故A选项正确;,故C选项正确;c﹣a<c﹣b,故D选项正确;又∵a的符号不确定,∴a2>ab不一定成立,故选:B.5.【解答】解:当x=﹣1时,y=3,故A选项正确,∵函数y=2x+1图象经过第一、二、四象限,y随x的增大而减小,∴B、D选项错误,∵y>0,∴﹣2x+1>0∴x<∴C选项错误,故选:A.6.【解答】解:∵是方程组的解∴将代入①,得a+2=﹣1,∴a=﹣3.把代入②,得2﹣2b=0,∴b=1.∴a+b=﹣3+1=﹣2.故选:B.7.【解答】解:∵36<37<49,∴6<<7,∴2<﹣4<3,故x的取值范围是2<x<3.故选:A.8.【解答】解:∵一次函数y=kx﹣k(k≠0),∴当k>0时,函数图象在第一、三、四象限,故选项A错误,选项D正确,当k<0时,函数图象在第一、二、四象限,故选项C、D错误,故选:D.9.【解答】解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;B、计算两组数的方差,所S甲2=0.39,S乙2=0.25,则甲组数据比乙组数据波动大;故错误;C、一组数据的众数可以不唯一,故正确;D、一组数据的标准差就是这组数据的方差的算术平方根,故错误;故选:C.10.【解答】解:由勾股定理得,AC2+BC2=AB2=100,由三角形的面积公式可知,•AC•BC=•AB•CD=20,∴2•AC•BC=80则(AC+BC)2=AC2+BC2+2•AC•BC=180,解得,AC+BC=6,∴Rt△ABC的周长=AC+BC+AB=6+10,故选:D.二、填空题(每小题4分,共16分)11.【解答】解:﹣的相反数是:;8的立方根是:2.故答案为:;2.12.【解答】解:∵点P(﹣1,a)、Q(2,b)在一次函数y=﹣3x+4图象上,∴a=3+4=7,b=﹣6+4=﹣2,∴a>b故答案为:a>b.13.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=2,CB=3.∴AC=.故答案为:14.【解答】解:由图可知:直线y=ax+b和直线y=cx+d的交点坐标为(﹣2,3);因此方程组的解为:.三、解答题(共54分)15.【解答】解:(1)=2﹣3+=﹣3;(2)=﹣(3﹣)÷+﹣=﹣3++﹣=﹣3+2.16.【解答】解:(1),②×2得:8x+2y=20 ③,①+③,得:11x=33,解得x=3,将x=3代入②,得:12+y=10,解得y=﹣2,所以方程组的解为;(2)解不等式4x﹣12≥5x﹣10,得:x≤﹣2,解不等式2(2x﹣3)﹣3(x+1)≥﹣12,得:x≥﹣3,则不等式组的解集为﹣3≤x≤﹣2,将不等式组的解集表示在数轴上如下:17.【解答】证明:∵AB∥DC,∴∠BAD+∠ADC=180°.∵AE,DF分别是∠BAD,∠ADC的平分线,∴∠DAE=∠BAE=∠BAD,∠ADF=∠CDF=∠ADC.∴∠DAE+∠ADF=∠BAD+∠ADC=90°.∴∠AGD=90°.∴AE⊥DF.18.【解答】解:(1)设甲种商品的标价为每件x元,则乙种商品的标价为每件(170﹣2x)元,根据题意得,25x+26(170﹣2x)=2800,解得x=60,则170﹣2×60=50.答:甲种商品的标价为每件60元,乙种商品的标价为每件50元;(2)由题意,可得w=60a+50(200﹣a),化简得,w=10a+10000.19.【解答】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,抽查的学生劳动时间的众数是1.5小时,中位数是1.5小时,故答案为:1.5,1.5;(2)所有被调查同学的平均劳动时间为:×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均劳动时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×=290(人).20.【解答】解:(1)设直线AC解析式为:y=kx+b,根据题意得:∴k=,b=1∴直线AC解析式为:y=x+1(2)根据题意得:解得:∴点A坐标为(2,2)如图,设直线AB与y轴交点为E,∵直线AB与x轴交于点B,与y轴交于点E,∴点B(4,0),点E(0,4)∴OB=4,OE=4,∵DO=1,∴DE=3,∵S△ADB=S△BEO﹣S△ADE﹣S△BDO,∴S△ADB==3,(3)如图,作点D(0,1)关于x轴的对称点D'(0,﹣1),∵AP+DP=AP+PD',∴当点P在AD'上时,AP+DP的值最小,连接AD'交x轴于点P,设直线AD'的解析式为:y=mx+n,根据题意得:解得:∴直线AD'的解析式为:y=x﹣1当y=0时,x=∴点P坐标为(,0)一、填空题(每小题4分,共20分)21.【解答】解:根据题意得:x+3≥0且x﹣1≠0,解得:x≥﹣3且x≠1.22.【解答】解:如图,延长CD至G,∵AB∥CD,∴∠2=∠BDG=65°,由折叠可得,∠BDE=∠BDG=65°,∴△BDE中,∠BED=180°﹣65°×2=50°,∴∠1=∠BED=50°,故答案为:50°.23.【解答】解:∵x=﹣1,∴x2=(﹣1)2=2﹣2+1=3﹣2,则原式=x•x2+x2﹣3x+2019=(﹣1)×(3﹣2)+3﹣2﹣3(﹣1)+2019=3﹣4﹣3+2+3﹣2﹣3+3+2019=2018,故答案为:2018.24.【解答】解:(1)直线y=﹣x+6,当x=0时,y=6,当y=0时,x=12,则B(12,0),C(0,6),解方程组:得:,则A(6,3),故A(6,3),B(12,0),C(0,6),∵△ACD为直角三角形,∴①当∠ADC=90°,∴CD⊥OA,∴设直线CD的解析式为:y=﹣2x+b,把C(0,6)代入得,b=6,∴直线CD的解析式为:y=﹣2x+6,解得,∴D(,),②当∠ACD=90°,∴DC⊥BC,∴设直线CD的解析式为:y=2x+a,把C(0,6)代入得,a=6,∴直线CD的解析式为:y=2x+6,解得,,∴D(﹣4,﹣2),综上所述:D(,)或(﹣4,﹣2).故答案为:D(,)或(﹣4,﹣2).25.【解答】解:观察图的结构,发现这些数是围成多层正方形,从内到外每条边数依次+2,所有正方形内自然数个数即(每边自然数个数的平方数)都在第四象限的角平分线上(正方形右下角).其规律为(n,﹣n)表示的数为(2n+1)2,而且每条边上有2n+1个数,点(1,4)在第四层正方形边上,该层每边有2×4+1=9个数,右下角(4,﹣4)表示的数是81,所以点(1,4)表示的是第四层从左下角开始顺时针(从81倒数)第21个数,即为81﹣8﹣8﹣5=60,点(n,﹣n)在第n层正方形边上,该层每边有2n+1个数,右下角(n,﹣n)表示的数是(2n+1)2,点(n,n)是正方形右上角的数,是从左下角开始顺时针(从(2n+1)2倒数)第6n个数,即为(2n+1)2﹣6n=4n2﹣2n+1.故答案为:60,4n2﹣2n+1.二、解答题(共30分)26.【解答】解:(1)根据甲的图象可知前1小时走了120﹣60千米,故甲的速度为60 km/h;甲走120千米需要2小时,而他到达终点的时间是2.5小时,故休息了0.5h.故答案为:60;0.5.(2)设甲加油后y=kx+b,将(1.5,60)和(2.5,0)代入解析式,,解得.故y=﹣60x+150(1.5≤x≤2.5).(3)设乙路程y1=k1x+b,将(1,0)和(4,120)代入,解得.故y1=40x﹣40.当x=1.5时,y1=40×1.5﹣40=20,此时两车相距60﹣20=40千米.故相距10km时间段为1.5h~2.5小时之间.依题意得,|(﹣60x+150)﹣(40x﹣40)|=10解得,x=1.8或2故甲出发1.8小时或2小时两车相距10km.27.【解答】解:(1)过点D作DF∥BC交AC于点F,作DM⊥BC于点M,∵△ABC是等边三角形∴∠ABC=∠ACB=∠A=60°,AB=AC=BC=6,∴∠DBE=120°∵DF∥BC∴∠ADF=∠ABC=60°,∠AFD=∠ACB=60°∴△ADF是等边三角形,∠DFC=120°∴AD=AF=DF=2,∴BD=AB﹣AD=4=AC﹣AF=CF∵BE=AD=DF=2,∠DBE=∠DFC=120°,CF=DB∴△DBE≌△CFD(SAS)∴DE=DC又∵DM⊥BC∴CM=EM=EC=(BE+BC)=4∵在Rt△DBM中,BD=4,∠DBM=60°∴BM=2,DM=BM=2∴CD==2(2)DE=DC理由如下:过点D作DF∥BC交AC的延长线于点F,∵BC∥DF∴∠ABC=∠ADF=60°,∠ACB=∠AFD=60°,∴△ADF是等边三角形,∴AD=DF=AC,∴AD﹣AB=AF﹣AC∴BD=CF,且BE=AD=DF,∠EBD=∠ABC=60°=∠AFD∴△EBD≌△DFC(SAS)∴DE=CD(3)如图,过点C作CH⊥AB于点H,过点A作AN⊥BC于点N,∵∴设AB=2x,AD=3x,∴BC=AC=2x,DF=BE=3x,BD=AD﹣AB=x,∵△ABC是等边三角形,AN⊥BC,CH⊥AB∴BN=BH=x,AN=x=CH在Rt△DHC中,DC==x,在Rt△AEN中,AE==x∴CD:AE==28.【解答】解:(1)∵四边形OABC为长方形,点B的坐标为(8,6),∴点A的坐标为(8,0),BC∥x轴.∵直线y=﹣x+b经过点A,∴0=﹣8+b,∴b=8,∴直线AD的解析式为y=﹣x+8.当y=6时,有﹣x+8=6,解得:x=2,∴点D的坐标为(2,6).∵点P是AD的中点,∴点P的坐标为(,),即(5,3),∴直线OP的解析式为y=x.(2)S△ODP=S△ODA﹣S△OP A,=×8×6﹣×8×3,=12.当x=8时,y=x=,∴点E的坐标为(8,).设点N的坐标为(m,﹣m+8).∵S△AEN=S△ODP,∴××|8﹣m|=12,解得:m=3或m=13,∴点N的坐标为(3,5)或(13,﹣5).(3)∵点T的坐标为(t,0)(5<t<8),∴点F的坐标为(t,t),点G的坐标为(t,﹣t+8).分三种情况考虑:①当∠FGQ=90°时,如图1所示.∵△FGQ为等腰直角三角形,∴FG=GQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);②当∠GFQ=90°时,如图2所示.∵△FGQ为等腰直角三角形,∴FG=FQ,即t﹣(﹣t+8)=8﹣t,解得:t=,此时点Q的坐标为(8,);③当∠FQG=90°时,过点Q作QS⊥FG于点S,如图3所示.∵△FGQ为等腰直角三角形,∴FG=2QS,即t﹣(﹣t+8)=2(8﹣t),解得:t=,此时点F的坐标为(,4),点G的坐标为(,)此时点Q的坐标为(8,),即(8,).综上所述:在线段AE上存在一点Q,使得△FGQ为等腰直角三角形,当t=时点Q 的坐标为(8,)或(8,),当t=时点Q的坐标为(8,).。
四川省成都市成华区2021-2022学年八年级上学期期末考试数学试卷(解析版)
2021-2022学年四川省成都市成华区八年级(上)期末数学试卷答案与解析一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)9的平方根是()A.±81B.±3C.﹣3D.3【分析】利用平方根定义计算即可得到结果.【解答】解:∵(±3)2=9,∴9的平方根是±3,故选:B.2.(3分)在直角三角形中,若勾为3,股为4,则弦为()A.3B.4C.5D.7【分析】直接根据勾股定理求解即可.【解答】解:在直角三角形中,勾为3,股为4,∴弦为√32+42=5.故选:C.3.(3分)下列计算正确的是()A.√22=2B.√(−2)2=−2C.√22=±2D.√(−2)2=±2【分析】求出√22=2,√(−2)2=2,再逐个判断即可.【解答】解:A.√22=2,故本选项符合题意;B.√(−2)2=2,故本选项不符合题意;C.√22=2,故本选项不符合题意;D.√(−2)2=2,故本选项不符合题意;故选:A.4.(3分)下列命题是假命题的是()A.两直线平行,内错角相等B.三角形的外角和为360°C.无限不循环小数是无理数D.同旁内角相等,两直线平行【分析】理由平行线的性质、三角形的外角和定理、无理数的定义及平行线的判定分别判断即可确定正确的选项.【解答】解:A、两直线平行,内错角相等,正确,是真命题,不符合题意;B 、三角形的外角和为360°,正确,是真命题,不符合题意;C 、无限不循环小数是无理数,正确,是真命题,不符合题意;D 、同旁内角互补,两直线平行,故原命题错误,是假命题,符合题意. 故选:D .5.(3分)若a =√73,b =√5,c =2,则a ,b ,c 的大小关系为( ) A .b <c <aB .b <a <cC .a <c <bD .a <b <c【分析】根据算术平方根、立方根的意义估算出a 、b 的近似值,再进行比较即可. 【解答】解:∵√13<√73<√83, ∴1<√73<2, 即1<a <2, 又∵2<√5<3, ∴2<b <3, ∴a <c <b , 故选:C .6.(3分)在正比例函数y =kx 中,y 的值随着x 值的增大而减小,则点A (﹣3,k )在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】因为在正比例函数y =kx 中,y 的值随着x 值的增大而减小,所以k <0,所以点A (﹣3,k )在第二象限.【解答】解:∵在正比例函数y =kx 中,y 的值随着x 值的增大而减小, ∴k <0,∴点A (﹣3,k )在第二象限. 故选:B .7.(3分)为落实“双减”政策,学校随机调查了部分学生一周平均每天的睡眠时间,统计结果如表,则这些被调查学生睡眠时间的众数和中位数分别是( )时间/小时 7 8 9 10 人数 6 9114A .9,8.5B .9,9C .10,9D .11,8.5【分析】根据中位数、众数的意义求解即可.【解答】解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9小时, 将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为8+92=8.5,因此中位数是8.5小时, 故选:A .8.(3分)如图,已知直线m∥n,∠1=40°,∠2=30°,则∠3的度数为()A.80°B.70°C.60°D.50°【分析】由两直线平行,同位角相等得到∠4=40°,再根据三角形的外角性质即可得解.【解答】解:如图,∵直线m∥n,∠1=40°,∴∠4=∠1=40°,∵∠3=∠2+∠4,∠2=30°,∴∠3=30°+40°=70°,故选:B.9.(3分)某天早晨,小明从家骑自行车去上学,途中因自行车发生故障而维修.如图所示的图象反映了他骑车上学的整个过程,则下列结论正确的是()A.修车花了10分钟B.小明家距离学校1000米C.修好车后花了25分钟到达学校D.修好车后骑行的速度是110米/分钟【分析】根据横坐标,可得时间;根据函数图象的纵坐标,可得路程.【解答】解:A.由横坐标看出,小明修车时间为20﹣5=15(分钟),故本选项不符合题意;B .由纵坐标看出,小明家离学校的距离2100米,故本选项不合题意;C .由横坐标看出,小明修好车后花了30﹣20=10(分钟)到达学校,故本选项不合题意;D .小明修好车后骑行到学校的平均速度是:(2100﹣1000)÷10=110(米/分钟),故本选项符合题意; 故选:D .10.(3分)如图是用三块正方形纸片设计的“毕达哥拉斯”图案,其中三块正方形围成的三角形是直角三角形.现有若干块正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,则下列选取中,围成的直角三角形面积最大的是( )A .1,4,5B .2,3,5C .3,4,5D .2,2,4【分析】根据题意可知,三块正方形的面积中,两个较小的面积之和等于最大的面积,围成的三角形是直角三角形,再根据三角形的面积,分别计算出几个较大的正方形纸片围成的直角三角形的面积,比较大小,即可解答本题. 【解答】解:∵五种正方形纸片,面积分别是1,2,3,4,5, ∴五种正方形纸片的边长分别是1,√2,√3,√4,√5, 由题意可得,三角形各边的平方是对应的各个正方形的面积,当选取的三块纸片的面积分别是1,4,5时,1+4=5,围成的三角形是直角三角形,面积是1×√42=1, 当选取的三块纸片的面积分别是2,3,5时,2+3=5,围成的三角形是直角三角形,面积是√2×√32=√62; 当选取的三块纸片的面积分别是2,2,4时,2+2=4,围成的三角形是直角三角形,面积是√2×√22=1, ∵√62>1, ∴所围成的三角形是面积最大的直角三角形,则选取的三块纸片的面积分别是2,3,5, 故选:B .二.填空题(本大题4个小题,每小题4分,共16分)11.(4分)已知{x =2y =m是方程3x +2y =10的一个解,则m 的值是 2 .【分析】把二元一次方程的解代入到方程中,得到关于m 的一元一次方程,解方程即可. 【解答】解:把{x =2y =m 代入方程得:3×2+2m =10,∴m =2, 故答案为:2.12.(4分)如图,点A (4,0),C (﹣1,0),以点A 为圆心,AC 长为半径画弧,交y 轴的正半轴于点B ,则点B 的坐标为 (0,3) .【分析】根据已知可得AB =AC =5,OA =4.利用勾股定理即可求解. 【解答】解:根据已知可得:AB =AC =5,OA =4. 在Rt △ABO 中,OB =√AB 2−OA 2=3. ∴B (0,3). 故答案为:(0,3).13.(4分)将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为 y =﹣6x ﹣2 . 【分析】直接根据“上加下减”的平移规律求解即可.【解答】解:将直线y =﹣6x +2向下平移4个单位,平移后的直线解析式为y =﹣6x +2﹣4=﹣6x ﹣2, 故答案为:y =﹣6x ﹣2.14.(4分)《九章算术》中有一题,大意是:甲乙二人,不知其钱包里各有多少钱,若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50.问甲、乙各有多少钱?设甲持钱数为x ,乙持钱数为y ,则可列二元一次方程组为 {x +12y =5023x +y =50 . 【分析】根据“若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己三分之二的钱给乙,则乙的钱数也为50”,即可得出关于x ,y 的二元一次方程组,此题得解. 【解答】解:∵若乙把自己一半的钱给甲,则甲的钱数为50, ∴x +12y =50;又∵若甲把自己三分之二的钱给乙,则乙的钱数也为50,∴23x +y =50.∴根据题意,可列二元一次方程组为{x +12y =5023x +y =50.故答案为:{x +12y =5023x +y =50.三.解答题(本大题共6个小题,满分54分) 15.(10分)(1)计算:(π﹣3)0+|1−√2|−√8; (2)计算:√32−√24+√65×√45.【分析】(1)先利用零指数幂、绝对值的意义计算,再把√8化简,然后合并即可; (2)先利用二次根式的乘法公式计算,然后化简后合并即可. 【解答】解:(1)原式=1+√2−1﹣2√2 =−√2;(2)原式=√62−2√6+√65×45 =√62−2√6+3√6=3√62.16.(10分)(1)解方程组:{2x +y =3①x −2y =−1②;(2)解方程组:{3x −2y +20=0①2x +15y −3=0②.【分析】(1)由②得出x =﹣1+2y ③,把③代入①得出2(﹣1+2y )+y =3,求出y ,再把y =1代入③求出x 即可;(2)②×3得出6x +45y =9③,①×2得出6x ﹣4y =﹣40④,③﹣④得出﹣49y =﹣49,求出y ,再把y =1代入①求出x 即可. 【解答】解:(1){2x +y =3①x −2y =−1②,由②,得x =﹣1+2y ③,把③代入①,得2(﹣1+2y )+y =3, 解得:y =1,把y =1代入③,得x =﹣1+2×1=1, 所以原方程组的解是{x =1y =1;(2){3x −2y +20=0①2x +15y −3=0②,②×3,得6x +45y =9③, ①×2,得6x ﹣4y =﹣40④, ③﹣④,得﹣49y =﹣49, 解得:y =1,把y =1代入①,得3x ﹣2+20=0, 解得:x =﹣6,所以原方程组的解是{x =−6y =1.17.(6分)已知m +n ﹣5的算术平方根是3,m ﹣n +4的立方根是﹣2,试求√3m −n +22m+1的值.【分析】根据算术平方根和立方根的定义得到m +n ﹣5=9①,m ﹣n +4=﹣8②,解方程组可求m ,n 的值,再代入计算可求√3m −n +22m+1的值.【解答】解:根据题意得{m +n −5=9m −n +4=−8.,解得{m =1n =13.,所以3m ﹣n +2=﹣8,2m +1=3, 所以√3m −n +22m+1=−2.18.(8分)如图,在平面直角坐标系xOy 中,△ABC 的顶点坐标分别为A (1,﹣1),B (4,1),C (2,2),CD 为AB 边上的高.(1)请画出△ABC 关于y 轴的对称图形△A 1B 1C 1; (2)请填出下列线段的长度:AB = √13 ,BC = √5 ,AC = √10 ,CD =7√1313.【分析】(1)利用轴对称的性质作出A ,B ,C 的对应点A 1,B 1,C 1即可; (2)利用勾股定理以及三角形的面积求解即可. 【解答】解:(1)如图,△A 1B 1C 1即为所求;(2)AB =√22+32=√13,BC =√12+22=√5,AC =√12+32=√10, ∵S △ABC =12×AB ×CD =3×3−12×1×3−12×1×2−12×2×3, ∴CD =7√1313. 故答案为:√13,√5,√10,7√1313.19.(10分)某通讯公司就手机流量套餐推出A ,B ,C 三种方案(如表),三种方案每月所需的费用y (元)与每月使用的流量x (兆)之间的函数图象如图.结合表格和图象解答下列问题:A 方案B 方案C 方案 每月基本费用(元) 2056266每月兔费使用流量(兆) 1024m无限超出后每兆收费(元)nn(1)填空:表中m = 3072 ,n = 0.3 ;(2)在A 方案中,当每月使用的流量不少于1024兆时,求每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式;(3)在这三种方案中,当每月使用的流量超过多少兆时,选择C 方案最划算?【分析】(1)根据题意可得m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; (2)利用待定系数法解答即可;(3)利用B 方案当每月使用的流量不少于3072兆时的函数关系式即可得到答案. 【解答】解:(1)根据题意,m =3072,n =(56﹣20)÷(1144﹣1024)=0.3; 故答案为:3072,0.3;(2)设在A 方案中,当每月使用的流量不少于1024兆时,每月所需的费用y (元)与每月使用的流量x (兆)之间的函数关系式为y =kx +b (k ≠0), 把(1024,20),(1144,56)代入,得:{1024k +b =201144k +b =56,解得:{k =0.3b =−287.2,∴y 关于x 的函数关系式为y =0.3x ﹣287.2(x ≥1024); (3)在B 方案中,当每月使用的流量不少于3072兆时, 根据题意得:y =56+0.3(x ﹣3072), 令56+0.3(x ﹣3072)=266, 解得x =3772,由图象得,当每月使用的流量超过3772兆时,选择C 方案最划算.20.(10分)已知:△ABC 中,∠CAB =60°,D 是BC 的中点,延长AB 到点E ,使BE =AC ,连结CE ,AD .(1)如图1,若△ABC 是等边三角形,AD =√3,则CE 的长等于 2√3 ; (2)如图2,过点B 作AC 的平行线交AD 的延长线于点F ,连接EF . ①求证:△BEF 是等边三角形; ②求证:CE =2AD .【分析】(1)由△ABC 是等边三角形,AC =BE ,先证明∠ACE =90°,因为D 是BC 的中点,所以∠ADB =90°,∠BAD =12∠CAB =30°,则BD =12AB ,根据勾股定理可以求出AB 的长,再求出AC 、AE 的长,再根据勾股定理求出CE 的长;(2)①由BE ∥AC 得∠FBE =∠CAB =60°,∠DFB =∠DAC ,再证明△DFB ≌△DAC ,得FB =AC ,则FB =BE ,则△BEF 是等边三角形; ②证明△ACE ≌△EF A ,则CE =F A =2AD .【解答】(1)解:如图1,∵△ABC 是等边三角形,BE =AC , ∴AB =BC =AC =BE ,∠ABC =∠ACB =∠CAB =60°, ∴∠BCE =∠E , ∵∠BCE +∠E =∠ABC , ∴2∠E =60°, ∴∠BCE =∠E =30°, ∴∠ACE =60°+30°=90°, ∵D 是BC 中点,∴AD ⊥BC ,∠BAD =∠CAD =12∠CAB =30°, ∴∠ADB =90°, ∴BD =12AB ,∴AB 2﹣(12AB )2=AD 2=(√3)2,∴AB =2,∴AC =BE =AB =2, ∴AE =AB +BE =4,∴CE =√AE 2−AC 2=√42−22=2√3, 故答案为:2√3.(2)①证明:如图2,∵BE ∥AC , ∴∠FBE =∠CAB =60°,∠DFB =∠DAC , 在△DFB 和△DAC 中,{∠DFB =∠DAC ∠FDB =∠ADC BD =CD,∴△DFB ≌△DAC (AAS ),∴FB =AC ,FD =AD ,∴FB =BE ,∴△BEF 是等边三角形.②证明:如图2,∵∠FEA =60°,∠CAE =60°,∴∠CAE =∠FEA ,∵EF =BE ,BE =AC ,∴AC =EF ,在△ACE 和△EF A 中,{AC =EF ∠CAE =∠FEA AE =EA,∴△ACE ≌△EF A (SAS ),∴CE =F A =2AD .一.填空题(每小题4分,共20分)21.(4分)若x =√2+1,则代数式x 2﹣2x +2的值为 3 .【分析】利用完全平方公式将原式进行变形,然后代入求值.【解答】解:原式=x 2﹣2x +1+1=(x ﹣1)2+1,当x =√2+1时,原式=(√2+1﹣1)2+1=(√2)2+1=2+1=3,故答案为:3.22.(4分)已知△ABC 中,∠A =60°,∠ABC 、∠ACB 的平分线交于点O ,则∠BOC 的度数为 120 度.【分析】利用角平分线的性质计算.【解答】解:∵∠A =60°∴∠ABC +∠ACB =120°∴∠BOC =180°−12(∠ABC +∠ACB )=120°.23.(4分)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a ,较短直角边为b ,若ab =8,大正方形的面积为25,则小正方形的边长为 3 .【分析】由题意可知:中间小正方形的边长为:a ﹣b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】解:由题意可知:中间小正方形的边长为:a ﹣b ,∵每一个直角三角形的面积为:12ab =12×8=4, ∴4×12ab +(a ﹣b )2=25,∴(a ﹣b )2=25﹣16=9,∴a ﹣b =3,故答案是:324.(4分)如图1,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图2是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 是曲线部分的最低点,则△ABC 的面积是 84 .【分析】先分析出点P 在BC 和CA 上运动时BP 的大小变化,再结合函数图象得到相应线段长.【解答】解:由图象分析可得:当点P 在BC 上运动时,BP 不断增大,到达C 点时,BP 达到最大值,此时BP =BC =15;当P 在CA 上运动时,BP 先减小再增大,在此过程中,BP ⊥AC 时,此位置记为P ',BP 有最小值为BP '=12,由勾股定理可得CP '=9,P 点到达C 点时,可得BA =13,由勾股定理可得AP '=5,∴AC =AP '+CP '=5+9=14,∴S △ABC =12×14×12=84. 故答案为84.25.(4分)某商家将蓝牙耳机、多接口优盘、迷你音箱共22个,搭配为A ,B ,C 三种盲盒各一个.其中A 盒中有2个耳机,3个优盘,1个音箱;B 盒中耳机与音箱的数量之和等于优盘的数量,耳机与音箱的数量之比为3:2;C 盒中有1个耳机,3个优盘,2个音箱.经核算,A 盒的价值为145元,B 盒的价值为245元,则C 盒的价值为 155 元.【分析】设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个,根据A ,B 盒的价值,即可得出关于x ,y ,z 的三元一次方程组,分析两盒价值间的关系可得出n 只能为1,进而可得出方程②为3x +5y +2z =245③,再利用3×③﹣4×②即可求出C 盒的价值.【解答】解:设1个耳机的价值为x 元,1个优盘的价值为y 元,1个音箱的价值为z 元,B 盒中耳机的数量为3n (n 为正整数)个,则音箱的数量为2n 个,优盘的数量为5n 个, 依题意得:{2x +3y +z =145①3nx +5ny +2nz =245②. 若n =2,则B 盒的价值至少是A 盒价值的3倍,∴n =2不合适,∴n 只能为1,∴方程②为3x +5y +2z =245③.3×③﹣4×②得:x +3y +2z =155,即C 盒的价值为155元.故答案为:155.二、解答题(本大题有3个小题,共30分)26.(8分)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且A 型消毒液数量不少于30瓶但不超过70瓶.设购进这两种消毒液所需费用为w 元,购进A 型消毒液m 瓶,求w 与m 之间的函数关系式,并求出学校最少所需费用多少元?【分析】(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据已知得{2x +3y =415x +2y =53,即可解得答案;(2)由已知得w =﹣2m +810(30≤m ≤70),再根据一次函数性质可得答案.【解答】解:(1)设A 型消毒液单价是x 元,B 型消毒液单价是y 元,根据题意得:{2x +3y =415x +2y =53, 解得{x =7y =9, 答:A 型消毒液单价是7元,B 型消毒液单价是9元;(2)根据题意得:w =7m +9(90﹣m )=﹣2m +810(30≤m ≤70),∵﹣2<0,∴w 随m 的增大而减小,∴m =70时,w 最小,w 的最小值是﹣2×70+810=670(元),答:w 与m 之间的函数关系式是w =﹣2m +810,学校最少所需费用670元.27.(10分)如图,在△ABC 中,∠ACB =90°,CA =CB ,点M 是AB 的中点,点D 在BM 上,AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F ,连接ME ,MF .(1)求证:CE =BF ;(2)求证:△EFM 是等腰直角三角形;(3)试判断线段DE ,DF ,DM 之间有何数量关系?写出你的结论并证明.【分析】(1)由“AAS ”可证△BCF ≌△CAE ,即可得出结论;(2)由“SAS ”可证△BFM ≌△CEM ,得FM =EM ,∠BMF =∠CME ,再证∠EMF =90°,即可得出结论;(3)设AE 与CM 交于点N ,连接DN ,证△BFD ≌△CEN (ASA ),得DF =NE ,BD =CN ,再证△DMN 是等腰直角三角形,得DN 2=DM 2+NM 2=2DM 2,然后在Rt △DEN 中,由勾股定理得DN 2=DE 2+NE 2=DE 2+DF 2,即可得出结论.【解答】(1)证明:∵∠ACB =90°,∴∠BCF +∠ACE =90°,∵AE ⊥CD ,BF ⊥CD ,∴∠CEA =∠BFC =90°,∴∠BCF +∠CBF =90°,∴∠ACE =∠CBF ,又∵AC =CB ,∴△CAE≌△BCF(AAS),∴CE=BF;(2)证明:∵△CAE≌△BCF,∴AE=CF,BF=CE,∴AE﹣CE=CF﹣CE=EF,∵点M是AB中点,∴CM=12AB=BM=AM,CM⊥AB,∴∠CMB=90°,在△BDF和△CDM中,∠BFD=∠CMD,∠BDF=∠CDM,∴∠DBF=∠DCM,∴△BFM≌△CEM(SAS),∴FM=EM,∠BMF=∠CME,∴∠BMF+∠DME=∠CME+∠DME=∠BMC=90°,即∠EMF=90°,∴△EFM为等腰直角三角形;(3)解:DE2+DF2=2DM2,理由如下:设AE与CM交于点N,连接DN,∵∠BFD=∠CMD=90°,∠BDF=∠CDM,∴∠DBF=∠NCE,又∵BF=CE,∠BFD=∠CEN=90°,∴△BFD≌△CEN(ASA),∴DF=NE,BD=CN,∵CM=BM,∴CM﹣CN=BM﹣BD,即DM=NM,∴△DMN是等腰直角三角形,∴DN2=DM2+NM2=2DM2,∵AE⊥CD,∴∠AED=90°,在Rt△DEN中,由勾股定理得:DN2=DE2+NE2,∴DN2=DE2+DF2,∴DE2+DF2=2DM2.28.(12分)如图,在平面直角坐标系中,一次函数y =kx +b 经过A (a ,0),B (0,b )两点,且a ,b 满足(a +8)2+√b +6=0,∠ABO 的平分线交x 轴于点E .(1)求直线AB 的表达式;(2)求直线BE 的表达式;(3)点B 关于x 轴的对称点为点C ,过点A 作y 轴的平行线交直线BE 于点D ,点M 是线段AD 上一动点,点P 是直线BE 上一动点,则△CPM 能否为不以点C 为直角顶点的等腰直角三角形?若能,请直接写出点P 的坐标;若不能,说明理由.【分析】(1)求出点A 与点B 的坐标,再由待定系数法求直线AB 的解析式即可;(2)过点E 作EH ⊥AB 于点H ,求出点E 的坐标,再由再由待定系数法求直线BE 的解析式即可;(3)①当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,证明△PMG ≌△CPH (AAS ),可得8+t =2t +12,求出t 即可求P (﹣4,2);②当∠MPC =90°,P 点在C 点上时,由①得8+t =﹣2t ﹣12,求出t 即可求P (﹣,223);③当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K ,证明△PKM ≌△MLC (AAS ),由8=﹣2t ﹣6﹣(14+t ),求出t =−283,即可求P (−283,383). 【解答】解:(1)∵(a +8)2+√b +6=0,∴a =﹣8,b =﹣6,∴A (﹣8,0),B (0,﹣6),∵一次函数y =+b 经过A (﹣8,0),B (0,﹣6), ∴{0=−8k +b b =−6, ∴{k =−34b =−6, ∴直线AB 的表达式y =−34x ﹣6;(2)∵A (﹣8,0),B (0,﹣6),∴OA =8,OB =6,∴在Rt △AOB 中AB =10,过点E 作EH ⊥AB 于点H ,∵∠ABO 的平分线交x 轴于点E ,∴EH =EO ,AE =8﹣EO ,AH =10﹣6=4,在Rt △AEH 中,(8﹣EO )2=42+EO 2,解得:EO =3,∴E (﹣3,0),设直线BE 的表达式为y =k 1x +b 1,∴{0=−3k 1+b 1b 1=−6, ∴{k 1=−2b 1=−6, ∴直线BE 的表达式为y =﹣2x ﹣6;(3)设P (t ,﹣2t ﹣6),①如图1,当∠MPC =90°时,P 点在C 点下,过点P 作GH ⊥y 轴交AD 于点G ,交y 轴于点H ,∵∠MPC =90°,∴∠MPG +∠CPH =90°,∵∠MPG +∠GMP =90°,∴∠CPH =∠GMP ,∵PM =PC ,∴△PMG ≌△CPH (AAS ),∴MG =PH ,CH =GP ,∵PH =﹣t ,CH =6﹣(﹣2t ﹣6)=2t +12,∴GP =8﹣(﹣t )=8+t =2t +12,∴t =﹣4,∴P (﹣4,2);②如图2,当∠MPC =90°,P 点在C 点上时,由①得,HC =﹣2t ﹣6﹣6=﹣2t ﹣12,GP =8﹣(﹣t )=8+t , ∴8+t =﹣2t ﹣12,∴t =−203,∴P (﹣,223);③如图3,当∠PMC =90°时,过点M 作KL ⊥y 轴交y 轴于点L ,过P 点作PK ⊥KL 交于K , ∵∠PMC =90°,∴∠PMK +∠CML =90°,∵∠PMK +∠MPK =90°,∴∠CML =∠MPK ,∵PM =CM ,∴△PKM ≌△MLC (AAS ),∴KM =CL ,PK =ML ,∴ML =PK =8,CL =KM =﹣8﹣t ,∴LO =6﹣(﹣8﹣t )=14+t ,∴PK =8=﹣2t ﹣6﹣(14+t ),∴t =−283, ∴P (−283,383); 综上所述:点P 的坐标为:(﹣4,2)或(−203,223)或(−283,383).。
四川省成都市龙泉驿区2022-2023学年八年级上学期期末数学试卷(含解析)
2022-2023学年四川省成都市龙泉驿区八年级(上)期末数学试卷一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.如图,在高为3m,斜坡长为5m的楼梯台阶上铺地毯( )A.5m B.6m C.7m D.8m2.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6m,该木块的较长边与AD平行,横截面是边长为2米的正方形( )A.8m B.10m C.m D.m3.16的算术平方根是( )A.﹣4B.4C.8D.﹣84.已知点P(3,n+2)与点Q(m,2)关于x轴对称,则(m+n)2023的值是( )A.1B.2023C.﹣1D.﹣20235.若点A(﹣1,y1)和B(2,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y1>y2,则k的值可能是( )A.0B.﹣3C.2D.36.关于x、y的方程组无解,则a的值为( )A.﹣6B.6C.9D.307.元旦期间,某校数学综合实践活动小组对前往开封某文化生态园的游客的出行方式进行了随机抽样调查,将结果整理后(尚不完整),根据图中的信息,下列结论中错误的是( )A.本次抽样调查的样本容量是200B.样本中选择私家车出行的有100人C.扇形统计图中的m为5D.若元旦期间去该地观光的游客有1000人,则选择私家车方式出行的大约有450人8.下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等二、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)9.荡秋千是中国古代发明的体育娱乐运动.小亮想利用所学的勾股定理知识测算公园里一架秋千立柱AC的高度.如图,他发现秋千静止时,秋千踏板离地面的垂直高度BC=0.8m,使秋千绳索AB到达AD的位置,测得推送的水平距离为3m m.10.计算|= .11.在平面直角坐标系中,点M(4,1)到点N(﹣1,1) .12.在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大.则k值可以是 .(写出一个答案即可)13.如图,一次函数y=kx+b与y=﹣x+6的图象相交于点P,若点P的纵坐标为2,y的二元一次方程组的解为 .三、解答题(本大题共5个小题,共48分,解答过程写在答题卡上)14.(10分)我国汉代数学家赵爽在证明勾股定理时,创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”.如图,AB=c,BE=a(b>a).(1)请你利用这个图形,推导勾股定理:a2+b2=c2;(2)若直角三角形ABE的面积为54,c=15,求小正方形EFGH的边长.15.(10分)(1)计算:|﹣3|;(2)解方程:(x﹣1)3=﹣27.16.(8分)已知点A(﹣2,4),点B(3,4),在y轴上找一点P使得S△ABP=20,求点P的坐标,写出解答过程.17.(10分)如图,直线y=kx+6与x轴、y轴分别相交于点E、F.点E的坐标为(﹣6,0),点A的坐标为(﹣4,0)(x,y)是第二象限内的直线上的一个动点.(1)求k的值;(2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式;(3)当△OPA的面积是10时,求此时P点的坐标.18.(10分)一个两位数,十位上的数与个位上的数之和是8,个位数字与十位数字交换后所得新数比原数大18.求这个两位数.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)19.如图,一个三级台阶,它的每一级长、宽和高分别为5dm、3dm、1dm,则它爬行的最短路程为 .20.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,等式右边是通常的加法和乘法的运算.若成立 .21.已知点A关于x轴的对称点为B(m,3),关于y轴的对称点为C(2,n),那么m+n= .22.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是 .23.已知关于x,y的二元一次方程组的解是 .二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(10分)春运期间的一种拉杆式旅行箱的示意图如图所示,箱体长AB=46cm,拉杆最大伸长距离BC=70cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(结果保留根号).25.(10分)计算:.26.(10分)中国象棋棋盘中蕴含着平面直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图①中“马”所在的位置可以直接走到点A、B处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为 ,点C的坐标为 ,点D的坐标为 .(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,并用坐标表示.参考答案与试题解析1.如图,在高为3m,斜坡长为5m的楼梯台阶上铺地毯( )A.5m B.6m C.7m D.8m【解答】解:在Rt△ABC中,AC=,故可得地毯长度=AC+BC=5(米),故选:C.2.如图,在一个长方形草坪ABCD上,放着一根长方体的木块.已知AD=6m,该木块的较长边与AD平行,横截面是边长为2米的正方形( )A.8m B.10m C.m D.m【解答】解:如图,将木块展开,则AP=4+2+7=8(米),BC=AD=6米,∴最短路径为:AC===10(米).故选:B.3.16的算术平方根是( )A.﹣4B.4C.8D.﹣8【解答】解:16的算术平方根是4,故选:B.4.已知点P(3,n+2)与点Q(m,2)关于x轴对称,则(m+n)2023的值是( )A.1B.2023C.﹣1D.﹣2023【解答】解:∵点P(3,n+2)与点Q(m,∴m=7,n+2=﹣2,解得m=4,n=﹣4,∴(m+n)2023=(﹣1)2023=﹣6.故选:C.5.若点A(﹣1,y1)和B(2,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y1>y2,则k的值可能是( )A.0B.﹣3C.2D.3【解答】解:∵点A(﹣1,y1)和B(7,y2)都在一次函数y=kx﹣1(k为常数)的图象上,且y5>y2,∴y随x的增大而减小,∴k<0,∴k的值可能是﹣3.故选:B.6.关于x、y的方程组无解,则a的值为( )A.﹣6B.6C.9D.30【解答】解:原方程组,由(2)式得y=2x﹣3ax+6x﹣3=6,解得x=,当a+6=6时原方程组无解.故选:A.7.元旦期间,某校数学综合实践活动小组对前往开封某文化生态园的游客的出行方式进行了随机抽样调查,将结果整理后(尚不完整),根据图中的信息,下列结论中错误的是( )A.本次抽样调查的样本容量是200B.样本中选择私家车出行的有100人C.扇形统计图中的m为5D.若元旦期间去该地观光的游客有1000人,则选择私家车方式出行的大约有450人【解答】解:A.本次抽样调查的样本容量是70÷35%=200,不符合题意;B.样本中选择私家车出行的有200×45%=90(人),符合题意;C.扇形统计图中的m=100﹣(45+35+15)=5,不符合题意;D.若元旦期间去该地观光的游客有1000人,此选项正确;故选:B.8.下列真命题中,它的逆命题也是真命题的是( )A.全等三角形的对应角相等B.等边三角形是锐角三角形C.两直线平行,同位角相等D.对顶角相等【解答】解:A、逆命题为:对应角相等的三角形全等,为假命题;B、逆命题为:锐角三角形是等边三角形,为假命题;C、逆命题为:同位角相等,正确,符合题意;D、逆命题为:相等的角为对顶角,为假命题;故选:C.9.荡秋千是中国古代发明的体育娱乐运动.小亮想利用所学的勾股定理知识测算公园里一架秋千立柱AC的高度.如图,他发现秋千静止时,秋千踏板离地面的垂直高度BC=0.8m,使秋千绳索AB到达AD的位置,测得推送的水平距离为3m 5.8 m.【解答】解:设绳索AD的长度为x m,则AB=x m,AC=AB+BC=(x+0.8)m,∵BE=EC﹣BC=DF﹣BC=3.8﹣0.6=1(m),∴AE=AB﹣BE=(x﹣1)m,由题意得:∠AED=90°,在Rt△AED中,由勾股定理得:DE4+AE2=AD2,即22+(x﹣1)4=x2,解得:x=5,∴x+5.8=5+8.8=5.7,即立柱AC的高度为5.8m,故答案为:5.8.10.计算|= 3 .【解答】解:原式=2+1=4,故答案为:3.11.在平面直角坐标系中,点M(4,1)到点N(﹣1,1) 5 .【解答】解:∵点M(4,1)到点N(﹣4,∴|MN|=4﹣(﹣1)=4+1=5,故答案为:7.12.在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大.则k值可以是 2(答案不唯一) .(写出一个答案即可)【解答】解:∵在一次函数y=(k﹣1)x+2的图象中,y随x的增大而增大,∴k﹣3>0,解得:k>1.∴k值可以为6.故答案为:2(答案不唯一).13.如图,一次函数y=kx+b与y=﹣x+6的图象相交于点P,若点P的纵坐标为2,y的二元一次方程组的解为 .【解答】解:∵一次函数y=kx+b与y=﹣x+6的图象相交于点P,且点P的纵坐标为2,∴2=﹣x+6,解得:x=4,∴点P坐标为(6,2),∴关于x,y的二元一次方程组.故答案为:.14.我国汉代数学家赵爽在证明勾股定理时,创制了一幅“勾股圆方图”,后人称之为“赵爽弦图”.如图,AB =c,BE=a(b>a).(1)请你利用这个图形,推导勾股定理:a2+b2=c2;(2)若直角三角形ABE的面积为54,c=15,求小正方形EFGH的边长.【解答】解:(1)∵正方形ABCD由4个全等的直角三角形和一个小正方形EFGH组成,AB=c,AE=b (b>a),∴c2=3×+(b﹣a)6,整理,得a2+b2=c3;(2)∵直角三角形ABE的面积为54,c=15,∴ab=54,a4+b2=c2=158=225,∴ab=108,∴小正方形EFGH的面积=(b﹣a)2=a2+b2﹣2ab=225﹣2×108=3,∴小正方形EFGH的边长为3.15.(1)计算:|﹣3|;(2)解方程:(x﹣1)3=﹣27.【解答】解:(1)|﹣3|=1+6﹣3﹣2=8;(2)开立方,得x﹣1=﹣3, 移项,合并同类项,得x=﹣7.16.已知点A(﹣2,4),点B(3,4),在y轴上找一点P使得S△ABP=20,求点P的坐标,写出解答过程.【解答】解:设AB与y轴交于点C,点P的坐标为(0,∵点A(﹣2,3),4),∴AB=|﹣2﹣5|=5,C(0.∴PC=|p﹣3|.∴.∴|p﹣4|=8,解得p 4=12,p2=﹣4.∴点P的坐标为(5,12)或(0.17.如图,直线y=kx+6与x轴、y轴分别相交于点E、F.点E的坐标为(﹣6,0),点A的坐标为(﹣4,0)(x,y)是第二象限内的直线上的一个动点.(1)求k的值;(2)当点P运动过程中,试写出△OPA的面积S与x的函数关系式;(3)当△OPA的面积是10时,求此时P点的坐标.【解答】解:(1)因为点E(﹣6,0)在直线y=kx+4上,所以0=﹣6k+5,解得:k=1,(2)由(1)得:直线的解析式为y=x+6;∵点A的坐标为(﹣6,0),∴OA=4,∴S=×4y=2y,∵y=x+7,∴S=2(x+6)=8x+12;(3)当S=10时,2x+12=10,∴x=﹣1,∴y=x+3,∴y=5,P点的坐标为P(﹣1,7).18.一个两位数,十位上的数与个位上的数之和是8,个位数字与十位数字交换后所得新数比原数大18.求这个两位数.【解答】解:设这个两位数的十位数字为x,个位数字为y,依题意,得:,解得:,∴10x+y=35.答:这个两位数为35.19.如图,一个三级台阶,它的每一级长、宽和高分别为5dm、3dm、1dm,则它爬行的最短路程为 13dm .【解答】解:将三级台阶展开为平面图形如图所示,则AB的长即为它爬行的最短路程,由勾股定理得,AB=,∴它爬行的最短路程为13dm.故答案为:13dm.20.对于X,Y定义一种新运算“*”:X*Y=aX+bY,其中a,等式右边是通常的加法和乘法的运算.若成立 7 .【解答】解:∵,∴,∴a=2,∴,∴b=1,∴X*Y=5X+Y,∴2*3=8×2+3=5.故答案为:7.21.已知点A关于x轴的对称点为B(m,3),关于y轴的对称点为C(2,n),那么m+n= ﹣5 .【解答】解:∵点A关于x轴的对称点为B(m,3),∴A点坐标为:(m,﹣3),∵点A关于y轴的对称点为C(5,n),∴A点坐标为:(﹣2,n),∴m=﹣2,n=﹣4,故m+n=﹣5.故答案为:﹣5.22.将直线y=﹣7x+4向下平移3个单位长度后得到的直线的表达式是 y=﹣7x+1 .【解答】解:直线y=﹣7x+4向下平移6个单位长度后得到的直线的表达式是y=﹣7x+4﹣3=﹣7x+1.故答案为:y=﹣6x+1.23.已知关于x,y的二元一次方程组的解是 ±2 .【解答】解:把代入关于x得:,①+②得:a=4,把a=1代入②得:,∴,∴2a﹣4b==2+5=4,∴2a﹣6b的平方根是±2,故答案为:±2.24.春运期间的一种拉杆式旅行箱的示意图如图所示,箱体长AB=46cm,拉杆最大伸长距离BC=70cm,旅行箱与水平面AE成60°角,求拉杆把手处C到地面的距离(结果保留根号).【解答】解:如图,过点C作CH⊥DF于点H,则四边形ADHG为矩形,∴GH=AD=6cm,∵AB=46cm,BC=70cm,∴AC=AB+BC=116(cm),在Rt△AGC中,∠CAG=60°,则∠ACG=90°﹣60°=30°,∴AG=AC=58cm,由勾股定理得:CG===58,∴拉杆把手处C到地面的距离为(58+6)cm.25.计算:.【解答】解:=3﹣=.26.中国象棋棋盘中蕴含着平面直角坐标系,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.例如:图①中“马”所在的位置可以直接走到点A、B处.(1)如果“帅”位于点(0,0),“相”位于点(4,2),则“马”所在的点的坐标为 (﹣3,0) ,点C的坐标为 (1,3) ,点D的坐标为 (3,1) .(2)若“马”的位置在C点,为了到达D点,请按“马”走的规则,并用坐标表示.【解答】解:(1)结合图形以“帅”(0,0)作为基准点,2),3),点D的坐标为(3,6);(2)若“马”的位置在C点,为了到达D点,3)⇒(2,4)⇒(1,1).。
四川省成都市八年级上学期数学期中考试试卷
四川省成都市八年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列轴对称图形中,对称轴的数量小于3的是()A .B .C .D .2. (2分) (2017八上·海勃湾期末) 下列长度的三条线段能组成三角形的是()A . 3,4,8B . 5,6,11C . 5,6,10D . 1,2,33. (2分) (2017八上·金华期中) 如果,那么下列各式中正确的是()A .B .C .D .4. (2分)下列命题中,正确命题是()A . 两个角是直角的四边形是直角梯形B . 一组对边相等,另一组对边平行的四边形是平行四边形C . 四个角都相等的四边形是正方形D . 对角互补的梯形是等腰梯形5. (2分)如图,△ABC中,AB=AC,∠BAD=25°,且AD=AE,则∠EDC=()A . 25°B . 10°C . 5°D . 12.5°6. (2分) (2016八上·南宁期中) 尺规作图作∠AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA,OB于C,D,再分别以点C,D为圆心,以大于长为半径画弧,两弧在∠AOB内部交于点P,作射线OP.由作法得△OCP≌△ODP的依据是()A . SASB . ASAC . AASD . SSS7. (2分) (2016九上·南浔期末) 如图,已知在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A,D为圆心,大于 AD的长为半径在AD两侧作弧,交于M,N两点;第二步,连结MN,分别交AB,AC于点E,F;第三步,连结DE,DF.若BD=6,AF=5,CD=3,则BE的长是()A . 7B . 8C . 9D . 108. (2分) (2017八下·灌阳期中) 在Rt△ABC中,∠C=90°,AC=3,BC=4,CD是中线,则CD的长为()A . 2.5B . 3C . 4D . 59. (2分) (2017八下·濮阳期中) 菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较长的对角线的长度是()A . 20 cmB . 5 cmC . cmD . 5 cm10. (2分)如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为()A .B .C .D .二、填空题(每题3分,共6小题,共18分) (共6题;共17分)11. (3分)某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,娜娜得分要超过90分,设她答对了n道题,则根据题意可列不等式________12. (3分)△ABC≌△DEC,△ABC的周长为100cm,DE=30cm,EC=25cm,那么AC长为________cm.13. (3分)(2019·海州模拟) 如图,△ABC中,AB=AC,∠A=40º,点P是△ABC内一点,连结PB、PC,∠1=∠2,则∠BPC的度数是________.14. (2分)(2013·湖州) 如图,已知在Rt△ACB中,∠C=90°,AB=13,AC=12,则cosB的值为________.15. (3分) (2016八上·青海期中) 如图,OP平分∠MON,PE⊥OM于E,PF⊥ON于F,OA=OB,则图中有________对全等三角形.16. (3分)如图,E为正方形ABCD内一点,∠AEB=135°,△AEB按顺时针方向旋转一个角度后成为△CFB,图中________是旋转中心,若BE=1,则EF=________.三、解答题(共7小题,共52分) (共7题;共44分)17. (8分)(2019·白云模拟) (理论学习)学习图形变换中的轴对称知识后,我们容易在直线上找到点,使的值最小,如图所示,根据这一理论知识解决下列问题:(1)(实践运用)如图,已知的直径为,弧所对圆心角的度数为,点是弧的中点,请你在直径上找一点,使的值最小,并求的最小值.(2)(拓展延伸)在图中的四边形的对角线上找一点,使 .(尺规作图,保留作图痕迹,不必写出作法).18. (2分) (2018八上·浦江期中) 如图,已知∠DAB=∠CAE,AB=AE,AD=AC.求证:BC=DE.19. (2分)已知△ABC的三边分别为a,b,c,a=n2﹣16,b=8n,c=n2+16(n>4).求证:∠C=90°.20. (6分) (2018九上·北京期末) 如图,AB为⊙O的直径,弦CD⊥AB于点E,连接BC.若AB=6,∠B=30°,求弦CD的长.21. (8分) (2017八上·腾冲期中) 如图,已知在中,AD平分,为边的中点,过点作,垂足分别为 .(1)求证:AB=AC;(2)若,BE=1,求的周长.22. (8分)(2017·微山模拟) 如图,在直角坐标系中,已知直线y=﹣ x+4与y轴交于A点,与x轴交于B点,C点的坐标为(﹣2,0).(1)求证:直线AB⊥AC;(2)求经过A,B,C三点的抛物线l的解析式和对称轴;(3)在直线AB上方的抛物线l上,是否存在一点P,使直线AB平分∠PBC?若存在,请求出P点的坐标;若不存在,请说明理由.23. (10.0分) (2019七下·邓州期中) 根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2016年5月1日起对居民生活用电试行新的“阶梯电价”收费,具体收费标准如表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过150千瓦时的部分a超过150千瓦时,但不超过300千瓦时的部b分超过300千瓦时的部分a+0.52016年5月份,该市居民甲用电200千瓦时,交费170元;居民乙用电400千瓦时,交费400元.(1)求上表中a、b的值:(2)试行“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月的平均电价每千瓦时不超过0.85元?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(每题3分,共6小题,共18分) (共6题;共17分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题(共7小题,共52分) (共7题;共44分)17-1、17-2、18-1、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
2023-2024学年四川省成都市锦江区重点中学八年级(上)期末数学试卷(含解析)
2023-2024学年四川省成都市锦江区重点中学八年级(上)期末数学试卷一、选择题1.在实数3.14159, 5,−4,π,227中,无理数有( )A. 1个B. 2个C. 3个D. 4个2.下列各式中正确的是( )A. 9=±3 B. 3−27=−3 C. ± 16=4 D. (−2)2=−23.满足下列条件的△ABC 是直角三角形的是( )A. ∠A :∠B :∠C =3:4:5B. a :b :c =1:2:3C. ∠A =∠B =2∠CD. a =1,b =2,c = 34.下列语句正确的有个( )①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a ,b 外一点P ,画直线c ,使c//a ,且c//b④若直线a//b ,b//c ,则c//a .A. 4B. 3C. 2D. 15.我国古代数学著作《九章算术》卷七有下列问题:“今有共买物,人出八,盈三:人出七,不足四,问人数、物价几何?“意思是:现在有几个人共同出钱去买件物品,如果每人出8钱,则剩余3钱;如果每人出7钱,则差4钱.问有多少人,物品的价格是多少?设有x 人,物品的价格为y 元,可列方程组为( )A. {8x−3=y 7x +4=y B. {8x +3=y 7x−4=y C. {8x =y−37x =y−4 D. {8x =y +37x =y +46.在平面直角坐标系中,已知点M(a,b),N(4,7),MN//x 轴,则一定有( )A. a =4B. a =−4C. b =−7D. b =77.已知一次函数y =kx +b ,函数值y 随自变量x 的增大而减小,且kb <0,则函数y =kx +b 的图象大致是( )A. B.C. D.8.乐乐和姐姐一起出去运动,两人同时从家出发.沿相同路线前行,途中姐姐有事返回,乐乐继续前行,5分钟后也原路返回,两人恰好同时到家,乐乐和姐姐在整个运动过程中家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示,下列结论中错误的是( )A. 两人前行过程中的速度为180米/分B. m的值是15,n的值是2700C. 姐姐返回时的速度为90米/分D. 运动18分钟时,两人相距800米二、非选择题9.若x−2+(y+1)2=0,则(x+y)2023=______.10.如图,点E,F分别在AB,CD上,AF⊥CE,垂足为O,∠BFD=∠C.若AF=4,BF=3,则点F到直线AB的距离为______.11.如图,在平面直角坐标系中,直线y=2x+1与直线y=−3x+m相交于点P,若点P的横坐标为1,则关于x,y的二元一次方程组{y=2x+1y=−3x+m的解是______.12.如果点A(3,a),B(2,b)在函数y=2x+1图象上,则a______b.(请在横线上选择>,<,=,≤,≥填写)13.如图,分别以直角三角形的三边为边长向外作正方形,然后分别以三个正方形的中心为圆心,正方形边长的一半为半径作圆,记三个圆的面积分别为S1,S2,S3,则S1,S2,S3之间的关系是______.14.计算:(1)183+|2−2|+20230−(12)−1;(2){x3−y+12=14x−(2y−5)=11.15.如图,在平面直角坐标系中,A(2,4),B(3,1),C(−2,−1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并直接写出点C1的坐标;(2)求△ABC的面积;(3)点P(a,a−2)与点Q关于x轴对称,若PQ=8,直接写出点P的坐标.16.某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:202119162718312921222520192235331917182918352215181831311922整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如表所示:统计量平均数众数中位数数值23m21根据以上信息,解答下列问题:(1)上表中众数m的值为______;(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据______来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.17.如图,在△ABC中,点D在BC上,点E在AC上,AD交BE于F.已知EG//AD交BC于G,EH⊥BE交BC于H,∠HEG=50°.(1)求∠BFD的度数;(2)若∠BAD=∠EBC,∠C=41°,求∠BAC的度数.18.直线AB:y=x+3分别与x,y轴交于A,B两点、过点B的直线交x轴正半轴于点C,且OB:OC=3:1.(1)直接写出点A、B、C的坐标;(2)在线段OB上存在点P,使点P到B,C的距离相等,求出点P的坐标:(3)在第一象限内是否存在一点E,使得△BCE为等腰直角三角形,若存在,直接写出E点坐标;若不存在,说明理由.19.已知x=y+3,则x2−2xy+y2的值为______.20.如图有两张正方形纸片A和B,图1将B放置在A内部,测得阴影部分面积为3;图2将正方形AB并列放置后构造新正方形,测得阴影部分面积为23;若将3个正方形A和2个正方形B并列放置后构造新正方形如图3(图2,图3中正方形AB纸片均无重叠部分),则图3阴影部分面积是______.21.对于实数a,b,定义运算“※”:a※b={ab,(a<b)a2+b2,(a≥b),例如3※4,因为3<4.所以3※4=3×4=12.若x,y满足方程组{x−4y=−82x+y=29,则x※y=______.22.如图,在Rt△ABC中,∠BAC=90°,点D在BC上,点E在AB上,∠EDB=∠ADC,点F在BC上,∠AFE=2∠FAC,∠DAF=60°,AF=4,AD=3,则ED=______.23.如图,点D是等腰Rt△ABC斜边BC所在直线上的一动点,连接AD,以点A为直角顶点作等腰Rt△ADE,当BD=3,BC=9时,则DE的长为______.24.已知2辆A型车和1辆B型车载满货物一次可运货10吨.用1辆A型车和2柄B型车载满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a柄和B型车b辆,一次运完,且每辆车都满载货物.根据以上信息解答下列问题:(1)1辆A型车和1辆B型车载满贷物一次分别可运货物多少吨?(2)请帮助物流公司设计租车方案.(3)若A型车每辆车租金每次100元,B型车每辆车租金每次120元.请选出最省钱的租车方案并求出最少的租车费.25.阅读理解:若x满足(30−x)(x−10)=160,求(30−x)2+(x−10)2的值.解:设30−x=a,x−10=b,则(30−x)(x−10)=ab=160,a+b=(30−x)+(x−10)=20,(30−x)2 +(x−10)2=a2+b2=(a+b)2−2ab=202−2×160=80解决问题:(1)若x满足(2020−x)(x−2016)=2.则(2020−x)2+(x−2016)2=______;(2)若x满足(2021−x)2+(x−2018)2=2020,求(2021−x)(x−2018)的值;(3)如图,在长方形ABCD中,AB=20,BC=12,点E、F是BC、CD上的点,且BE=DF=x,分别以FC、CE为边在长方形ABCD外侧作正方形CFGH和CEMN,若长方形CEPF的面积为160平方单位,则图中阴影部分的面积和为______平方单位.26.如图1,已知直线l1:y=kx+b与直线l2:y=4x交于点M,直线l1与坐标轴分别交于A,C两点,且3点A坐标为(0,7),点C坐标为(7,0).(1)求直线l1的函数表达式;(2)在直线l2上是否存在点D,使△ADM的面积等于△AOM面积的2倍,若存在,请求出点D的坐标,若不存在,请说明理由;(3)若点P是线段OM上的一动点(不与端点重合),过点P作PB//x轴交CM于点B,设点P的纵坐标为m,以点P为直角顶点作等腰直角△PBF(点F在直线PB下方),设△PBF与△MOC重叠部分的面积为S,求S与m之间的函数关系式,并写出相应m的取值范围.答案和解析1.【答案】B【解析】解:5和π是无理数,共2个.故选:B.根据无理数的定义即可解答.本题主要考查了无理数,掌握“无限不循环小数叫做无理数”是解题的关键.2.【答案】B【解析】解:A、9=3,错误;B、3−27=−3,正确;C、±16=±4,错误;D、(−2)2=|−2|=2,错误,故选B原式利用立方根、平方根定义计算即可得到结果.此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.3.【答案】D【解析】解:A、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形;B、∵12+22≠32,∴△ABC不是直角三角形;C、∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴∠A=∠B=75°,∠C=37.5°,∴△ABC不是直角三角形;D、∵12+(3)2=22,∴△ABC是直角三角形.故选:D.根据三角形内角和定理判断A、C即可;根据勾股定理的逆定理判断B、D即可.本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.4.【答案】D【解析】解:①任意两条直线的位置关系不是相交就是平行,说法错误,还有重合;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c//a,且c//b,说法错误;④若直线a//b,b//c,则c//a,说法正确;故选:D.根据任意两条直线的位置关系是相交、平行和重合;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.5.【答案】A【解析】解:设有x人,物品的价格为y元,根据题意得:{8x−3=y7x+4=y,故选:A.根据“每人出8钱,则剩余3钱;如果每人出7钱,则差4钱”列出方程组即可.考查了二元一次方程组的知识,解题的关键是找到等量关系并列出二元一次方程组,难度不大.6.【答案】D【解析】解:根据平行于x轴的直线上的点纵坐标相等可知:b=7,故选:D.根据平行于x轴的直线上点的纵坐标相等即可解答.本题考查了坐标与图形的性质,平行于x轴的直线上的点纵坐标相等是关键.7.【答案】A【解析】解:一次函数y=kx+b,∵函数值y随自变量x的增大而减小,∴k<0,∴函数图象过第二、四象限.∵kb<0,∴b>0,∴函数图象与y轴的交点在x轴上方,即图象经过第一、二、四象限.故选:A.根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第一、二、四象限.本题考查了一次函数性质,一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b),熟记一次函数的图象与k、b的关系是解题的关键.8.【答案】D【解析】解:由图可得,两人前行过程中的速度为3600÷20=180(米/分),故选项A不合题意;m的值是20−5=15,n的值是180×15=2700,故选项B不合题意;姐姐返回时的速度为:2700÷(45−15)=90(米/分),故选项C不合题意;运动18分钟时两人相距:180×(18−15)+90×(18−15)=810(米),故选项D符合题意,故选:D.根据题意和图象中的数据可以判断各选项中的说法是否正确,从而可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.9.【答案】1【解析】解:由题意得,x−2=0,y+1=0,解得x=2,y=−1,所以(x+y)2023=(2−1)2023=1.故答案为:1.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质.解题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.【答案】125【解析】解:∵∠BFD=∠C,∴BF//CE,∵AF⊥CE,即∠COF=90°,∴∠AFB=∠COF=90°,∴AB=AF2+BF2=5,设点F 到直线AB 的距离为ℎ,且AF =4,BF =3,AB =5,∴S △AFB =12AF ⋅FB =12AB ⋅ℎ,∴12×4×3=12×5×ℎ,∴ℎ=125,故答案为:125.首先证明BF//CE ,再证明∠AFB =90°,利用勾股定理求出AB ,最后运用面积法可求出点F 到直线AB 的距离.本题主要考查了平行线的判定与性质及点到直线的距离,勾股定理,熟练应用平行线的判定与性质和点到直线的距离计算方法进行计算是解决本题的关键.11.【答案】{x =1y =3【解析】解:∵直线y =2x +1与直线y =−3x +m 相交于点P ,若点P 的横坐标为1,∴对于直线y =2x +1,当x =1时,y =3,∴点P 的坐标为(1,3),∴二元一次方程组{y =2x +b y =−3x +6的解为{x =1y =3故答案为:.{x =1y =3.首先根据直线y =2x +1与直线y =−3x +m 相交于点P ,点P 的横坐标为1可求出点P 的坐标为(1,3),然后再根据一次函数与二元一次方程组之间的关系可得出答案.此题主要考查了二元一次方程组和一次函数之间的关系,理解二元一次方程组的解即为两个一次函数图象的交点坐标是解答此题的关键.12.【答案】<【解析】解:∵函数y = 2x +1中,k = 2>0,∴y 随x 的增大而增大,∵ 3<2,∴a <b .故答案为:<.根据一次函数k 大于0时,y 随x 的增大而增大解答即可.本题考查了一次函数图象上点的坐标特征,确定函数的增减性是解答本题的关键.13.【答案】S1+S2=S3【解析】解:设大圆的半径是r3,则S3=πr23;设两个小圆的半径分别是r1和r2,则S1=πr21,S2=πr22.由勾股定理,知(2r3)2=(2r1)2+(2r2)2,得r23=r21+r22.所以S1+S2=S3.故答案为S1+S2=S3.分别计算大圆的面积S3,两个小圆的面积S1,S2,根据直角三角形中大圆小圆直径(2r3)2=(2r1)2+(2r2)2的关系,可以求得S1+S2=S3.本题考查了勾股定理的正确运算,在直角三角形中直角边与斜边的关系,本题中巧妙地运用勾股定理求得:(2r3)2=(2r1)2+(2r2)2是解题的关键.14.【答案】解:(1)原式=18+2−2+1−29=2+2−2+1−2=1;(2)原方程组整理得:{2x−3y=9①2x−y=3②,②−①得:2y=−6,解得:y=−3,将y=−3代入②得2x+3=3,解得:x=0,故原方程组的解为{x=0y=−3.【解析】(1)利用二次根式的运算法则,绝对值的性质,零指数幂及负整数指数幂计算即可;(2)将原方程组整理后利用加减消元法解方程组即可.本题考查实数的运算及解二元一次方程组,熟练掌握相关运算法则及解方程组的方法是解题的关键.15.【答案】解:(1)如图,△A1B1C1即为所求,点C1的坐标(2,−1).故答案为:(2,−1);(2)S△ABC=5×5−12×4×5−12×1×3−12×5×2=8.5.(3)∵点P(a,a−2)与点Q关于x轴对称,若PQ=8,∴a−2=±4,∴a=6或−2,∴点P的坐标为(6,3)或(−2,−3).【解析】(1)利用轴对称变换的性质分别作出A,B,C的对应点A1,B1,C1即可;(2)把三角形的面积看成矩形面积仅为掌握三个三角形面积即可;(3)构建方程求出a可得结论.本题考查作图−轴对称变换,三角形的面积等知识,解题的关键是掌握轴对称变换的性质,灵活运用所学知识解决问题.16.【答案】解:(1)18;(2)中位数;(3)300×1+1+2+3+1+230=100(名),答:该部门生产能手有100名工人.【解析】解:(1)由图可得,众数m的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)见答案.【分析】(1)根据条形统计图中的数据可以得到m的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计算该部门生产能手的人数.本题考查条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.17.【答案】解:(1)∵EH⊥BE,∴∠BEH=90°,∵∠HEG=50°,∴∠BEG=40°,又∵EG//AD,∴∠BFD=∠BEG=40°;(2)∵∠BFD=180°−∠AFB=∠BAD+∠ABE,∠BAD=∠EBC,∴∠BFD=∠EBC+∠ABE=∠ABC=40°,∵∠C=41°,∴∠BAC=180°−∠ABC−∠C=180°−40°−41°=99°.【解析】本题考查了三角形的内角和定理,平行线的性质,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.(1)根据垂直的定义可得∠BEH=90°,然后求出∠BEG=40°,再根据两直线平行线,同位角相等可得∠BFD=∠BEG;(2)根据三角形内角和定理和平角定义可得∠BFD=∠BAD+∠ABE,由∠BAD=∠EBC得到∠BFD=∠ABC,然后根据三角形的内角和定理列式计算即可得解.18.【答案】解:(1)把y=0代入y=x+3得:0=x+3,解得:x=−3,∴A(−3,0),把x=0代入y=x+3得:y=3,∴B(0,3),∴OB=3,∵OB:OC=3:1,∴OC=1,∴C(1,0);(2)连接PC,∵点P到B,C的距离相等,∴PB=PC,设PB=PC=x,则OP=3−x,在Rt△OPC中,根据勾股定理可得:OC2+OP2=PC2,∴12+(3−x)2=x2,,解得:x=53∴PB=5,3∴OP=3−x=4,3∴P(0,4);3(3)①当BC=CE时,过点E作EF⊥x轴于点F,∵△BCE为等腰直角三角形,∴∠BCE=90°,∴∠BCO+∠FCE=90°,∵∠BCO+∠OBC=90°,∴∠FCE=∠OBC,∵∠FCE=∠OBC,∠BOC=∠CFE=90°,BC=CE,∴△OBC≌△FCE,∴CF=OB=3,OC=EF=1,∴E(4,1);②当BC=BE时,过点E作EG⊥y轴于点G,和①同理可证:△OBC≌△GEB,∴BG=OC=1,OB=GE=3,∴E(3,4)③当BE=CE时,过点E作EN⊥y轴于点N,过点E作EM⊥x轴于点M,∵OB=3,OC=1,∴BC=OC2+OB2=10,根据勾股定理可得:BE2+CE2=2BE2=BC2=10,解得:BE=5,∵EN⊥y轴,EM⊥x轴,∠MON=90°,∴四边形OMEN为矩形,∴ON=EM,∠MEN=90°,则∠CEM+∠CEN=90°,∵∠BEC=∠BEN+∠CEN=90°,∴∠BEN=∠CEM,∵∠BEN=∠CEM,∠BNE=∠CME=90°,BE=CE,∴△BNE≌△CME,∴BN=CM,NE=ME,设ON=ME=NE=x,则BN=3−x,∵BN2+NE2=BE2,∴(3−x)2+x2=5,解得:x1=1,x2=2,∴ON=2或ON=1(舍),∴E(2,2);综上:E(4,1)或E(3,4)或E(2,2).【解析】(1)把y=0代入y=x+3求出x的值,即可得出点A的坐标;把x=0代入y=x+3求出y的值,即可求出B的坐标;根据OB:OC=3:1,求出OC=1,即可求出点C的坐标;(2)连接PC,设PB=PC=x,则OP=3−x,在Rt△OPC中,根据勾股定理可得:OC2+OP2=PC2,据此列出方程求出x的值,进而得出OP,即可求出点P的坐标;(3)根据题意进行分类讨论:①当BC=CE时,过点E作EF⊥x轴于点F,通过证明△OBC≌△FCE,得出CF=OB=3,OC=EF=1,即可得出点E的坐标;②当BC=BE时,过点E作EG⊥y轴于点G,和①同理可证:△OBC≌△GEB,BG=OC=1,OB=GE=3,即可求出点E坐标;③当BE=CE时,过点E 作EN⊥y轴于点N,过点E作EM⊥x轴于点M,通过证明△BNE≌△CME,设ON=ME=NE=x,则BN=3−x,根据勾股定理列出方程求解即可.本题主要考查了一次函数图象上点的坐标,全等三角形的判定和性质,勾股定理,正确画出辅助线,构造全等三角形和直角三角形求解是解题的关键.19.【答案】9【解析】解:∵x=y+3,∴x−y=3,∴x2−2xy+y2=(x−y)2=32=9.故答案为:9.先利用完全平方公式变形得到原式=(x−y)2,然后利用整体代入的方法计算.本题主要考查了完全平方公式.熟练掌握完全平方公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2.20.【答案】49【解析】解:设正方形A的边长为a,正方形B的边长为b.∴a2−b2=3,(a+b)2−a2−b2=23.∴2ab=23.∵图3阴影部分的面积=(2a+b)2−3a2−2b2=4a2+4ab+b2−3a2−2b2=a2−b2+4ab,∴图3阴影部分的面积=3+2×2ab=3+2×23=49.故答案为:49.设正方形A的边长为a,正方形B的边长为b,根据图1可得a2−b2=3;根据图2可得(a+b)2−a2−b2=23.那么图3阴影部分的面积=(2a+b)2−3a2−2b2,化简后整理计算即可.本题考查完全平方公式的应用.根据图形得到相应的等式是解决本题的关键.用到的知识点为:(a+b)2 =a2+2ab+b2.21.【答案】13【解析】解:方程组{x−4y=−8 ①2x+y=29 ②,①+②×4得:9x=108,解得:x=12,把x=12代入②得:y=5,则x※y=12※5=122+52=13,故答案为:13求出方程组的解得到x与y的值,代入原式利用题中的新定义计算即可求出值.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.【答案】1【解析】解:作FM⊥AB于M,延长ED至N使∠DNF=60°,设∠FAC=α,∵∠BAC=90°,FM⊥AB,∴MF//AC,∴∠MFA=∠FAC=α,∵∠AFE=2∠FAC=2α,∴∠MFA=∠MFE=α,∴∠AEF=∠EAF=90°−α,∴△AEF为等腰三角形,∴EF=AF=4,∵∠FDN=∠EDB,∠EDB=∠ADC,∴∠FDN=∠ADC,在△DAF和△DNF中,{∠ADF=∠NDF∠DNF=∠DAF=60°,DF=DF∴△DAF≌△DNF(AAS),∴NF=AF=4,DN=AD=3,∵EF=AF=4,∴EF=NF=4,∵∠DNF=60°,∴△ENF是等边三角形,∴EN=NF=4,∴ED=EN−DN=4−3=1.故答案为:1.作FM⊥AB于M,延长ED至N使∠DNF=60°,设∠FAC=α,首先证明△AEF为等腰三角形,然后证△DAF≌△△DNF,根据全等三角形的性质得NF=AF=4,DN=AD=3,从而得出NF=EF,即可得△ENF是等边三角形,求出EN,由ED=EN−DN即可求解.此题主要考查了全等三角形的性质与判定等知识点,此题关键是正确找出辅助线,通过辅助线构造全等三角形解决问题,要掌握辅助线的作图根据.23.【答案】35或317【解析】解:①当点D在线段BC上时,如图,连接BE.∵∠BAC=∠EAD=90°,∴∠EAB=∠DAC,∵AE=AD,AB=AC,∴△EAB≌△ADC(SAS),∴∠ABE=∠C=∠ABC=45°,EB=CD=6,∴∠EBD=90°,∴DE2=BE2+BD2=62+32=45,∴DE=35.②当点D在CB的延长线上时,如图,连接BE.同法可证△DBE是直角三角形,EB=CD=12,DB=3,∴DE2=EB2+BD2=144+9=153,∴DE=317,故答案为:35或317.分两种情形①当点D在线段BC上时,如图2中,连接BE.由△EAD≌△ADC,推出∠ABE=∠C=∠ABC=45°,EB=CD=5,推出∠EBD=90°,推出DE2=BE2+BD2=62+32=45,即可解决问题.②当点D在CB的延长线上时,如图3中,同法可得DE2=153,即可解决问题.本题考查了等腰直角三角形的性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.24.【答案】解:(1)设每辆A型车、B型车都装满货物一次可以分别运货x吨、y吨,依题意列方程组得:{2x+y=10x+2y=11,解方程组,得:{x=3y=4,答:1辆A型车装满货物一次可运3吨,1辆B型车装满货物一次可运4吨.(2)结合题意和(1)得:3a+4b=31,∴a=31−4b3,∵a、b都是正整数,∴{a=9b=1,或{a=5b=4,或{a=1b=7,答:有3种租车方案:方案一:A型车9辆,B型车1辆;方案二:A型车5辆,B型车4辆;方案三:A型车1辆,B型车7辆.(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,∴方案一需租金:9×100+1×120=1020(元);方案二需租金:5×100+4×120=980(元);方案三需租金:1×100+7×120=940(元);∵1020>980>940,∴最省钱的租车方案是方案三:A型车1辆,B型车7辆,最少租车费为940元.【解析】(1)根据“用2辆A型车和1辆B型车载满货物一次可运货10吨;”“用1辆A型车和2辆B型车载满货物一次可运货11吨”,分别得出方程,组成方程组求出即可;(2)由题意理解出:3a+4b=31,解此二元一次方程,求出其整数解,得到三种租车方案;(3)根据(2)中所求方案,利用A型车每辆需租金100元/次,B型车每辆需租金120元/次,分别求出租车费用即可.本题主要考查了二元一次方程组和二元一次方程的实际应用,此题型是各地中考的热点,同学们在平时练习时要加强训练,属于中档题.25.【答案】解:(1)12;(2)设2021−x =a ,x−2018=b ,则(2021−x )2+(x−2018)2=a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,所以(2021−x)(x−2018)=ab =12[(a +b )2−(a 2+b 2)]=12×(32−2020)=−20112;答:(2021−x)(x−2018)的值为−20112;(3)384.【解析】解:(1)设2020−x =a ,x−2016=b ,则(2020−x)(x−2016)=ab =2,a +b =(2020−x)+(x−2016)=4,所以(2020−x )2+(x−2016)2=a 2+b 2=(a +b )2−2ab =42−2×2=12;故答案为:12;(2)设2021−x =a ,x−2018=b ,则(2021−x )2+(x−2018)2=a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,所以(2021−x)(x−2018)=ab =12[(a +b )2−(a 2+b 2)]=12×(32−2020)=−20112;答:(2021−x)(x−2018)的值为−20112;(3)由题意得,FC =(20−x),EC =(12−x),∵长方形CEPF 的面积为160,∴(20−x)(12−x)=160,∴(20−x)(x−12)=−160,∴阴影部分的面积为(20−x )2+(12−x )2,设20−x =a ,x−12=b ,则(20−x)(x−12)=ab =−160,a +b =(20−x)+(x−12)=8,所以(20−x )2+(x−12)2=(20−x )2+(12−x )2=a 2+b 2=(a +b )2−2ab =82−2×(−160)=384;故答案为:384.(1)根据题目提供的方法,进行计算即可;(2)根据题意可得,a 2+b 2=2020,a +b =(2021−x)+(x−2018)=3,将ab 化成=12[(a +b )2−(a 2+b 2)]的形式,代入求值即可;(3)根据题意可得,(20−x)(12−x)=160,即(20−x)(x−12)=−160,根据(1)中提供的方法,求出(20−x )2+(12−x )2的结果就是阴影部分的面积.本题考查完全平方公式的应用,阅读理解题目中提供的方法,是类比、推广的前提和关键.26.【答案】解:(1)∵直线l 1:y =kx +b 与坐标轴分别交于A(0,7),C(7,0),∴{b =77k +b =0,∴{b =7k =−1,∴直线l 1的函数表达式为:y =−x +7;(2)联立l 1:y =−x +7和l 2:y =43x ,解得,{x =3y =4,∴M(3,4),如图1,过点M 作ME ⊥x 轴于E ,∴OE =3,ME =4,根据勾股定理得,OM =5,设D(3n,4n),①当点D 在射线OM 上时,△ADM 的面积等于△AOM 面积的2倍,且边AM 和OM 上的高相同,∴DM =2OM =10,∴OD =15,∴(3n )2+(4n )2=152,∴n =3或n =−3,由于点D 在第一象限内,∴n =3,∴D(9,12);②当点D 在射线MO 上时,△ADM 的面积等于△AOM 面积的2倍,且边AM 和OM 上高相同,∴DM =2OM ,∴OM =OD =5,∴(3n )2+(4n )2=52,∴n =1或n =−1,由于点D 在第三象限内,∴n =−1,∴D(−3,−4),即点D(9,12)或(−3,−4);(3)∵点P 的纵坐标为m ,∴P(34m,m),∵PB//x 轴,∴B(7−m,m),∴PB =7−m−34m =7−74m ,∵以点P 为直角顶点作等腰直角△PBF ,∴PF =PB =7−74m ,当7−74m =m 时,m =2811;①当0<m <2811时,如图2,记PF 与x 轴相交于G ,BF 与x 轴相交于H ,∴PG =m ,FG =PF−PG =7−74m−m =7−114m ,∵△PBF 是等腰直角三角形,∴∠F =∠PBF =45°,∵PB//x 轴,∴∠GHF =45°=∠F ,∴FG =HG ,∴S =S △PBF −S △FGH =12PB 2−12FG 2=12[(7−74m )2−(7−114m )2]=−94m 2+7m ;②当2811≤m <4时,如图3,S =S △PBF =12PB 2=12(7−74m )2=4932m 2−494m +492【解析】此题是一次函数综合题,主要考查了待定系数法,三角形的面积公式,等腰直角三角形的性质,用分类讨论的思想解决问题是解本题的关键.(1)将点A,C坐标代入直线y=kx+b中,求解,即可得出结论;(2)先求出点M的坐标,再分点D在射线OM和射线MO上,利用面积的关系求出OD,即可得出结论;m,再分两种情况,利用面积公式,即可得出结论.(3)先表示出PF=PB=7−74。
四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题
四川省成都市成都市第十七中学2023-2024学年八年级上学期期末数学试题一、单选题1.下列说法正确的是( ) A2 B .3-是27负的立方根 C .125216的立方根是56± D .()21-的立方根是1-2.下列函数中是正比例函数的是( ) A .7y x =-B . 7y x-=C .221y x =+D .0.65y x =-3.已知点(,3)P a b +、(2,)Q b -关于y 轴对称,则ab 的值是( ) A .-1B .2C .-3D .34x 的取值范围是( ) A .3x ≤B .3x <C .3x >D .3x ≥5.下列命题为真命题的是( ). A .若a 2=b 2,则a =b B .直角三角形的两锐角互余C .同位角相等D .若⎺x 甲=⎺x 乙,22S s >甲乙,则甲组数据更稳定6.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( ) A .垂直 B .平行 C .相交D .不能确定7.在平面直角坐标系中,点()34A ,绕原点O 逆时针旋转90︒得到点B ,点B 关于x 轴对称的点为C ,则点C 的坐标是( ). A .()43--,B .()43,C .()43-,D .()34--,8.一次函数y =﹣2x ﹣3的图象和性质.叙述正确的是( ) A .y 随x 的增大而增大 B .与y 轴交于点(0,﹣2)C .函数图象不经过第一象限D .与x 轴交于点(﹣3,0)二、填空题9.已知数据1x ,2x ,…,n x 的方差是3,则数据125x -+,225x -+,……,25n x -+的方差为.10.如图,在数轴上点B 表示的数为1,在点B 的右侧作一个边长为1的正方形BACD ,将对角线BC 绕点B 逆时针转动,使对角线的另一端落在数轴负半轴的点M 处,则点M 表示的数是.11.如图,在△ABC 中,AD 是BC 边上的高线,AE 是∠BAC 的平分线,且∠B=40º,∠C=60º,则∠EAD 的度数是.12.下面的图(2)是图(1)的侧面展开图一只小昆虫沿着圆柱的侧面,从A 点沿最短的距离爬到B 点,则B 点在图(2)中的位置是.(请填序号)13.如图,将ABC V 绕点A 逆时针旋转一定角度,得到ADE V .若63CAE ∠=︒,71E ∠=︒,且AD BC ⊥,则BAC ∠的度数为.三、解答题14.计算,解方程组: (1)()()()22012131π32-⎛⎫-+-⨯- ⎪⎝⎭;(2)25123150.20.3x yx y --⎧-=⎪⎪⎨+⎪-=⎪⎩.15.某校为了解学生每周参加家务劳动的情况,随机调查了该校部分学生每周参加家务劳动的时间.根据调查结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为______,图①中m 的值为______. (2)求统计的这组每周参加家务劳动时间数据的众数、中位数和平均数.(3)根据统计的这组每周参加家务劳动时间的样本数据,若该校共有800名学生,估计该校每周参加家务劳动的时间大于1h 的学生人数. 16.如图,已知直线AB 经过点(1,5)和(4,2).(1)求直线AB的解析式;(2)若把横、纵坐标均为整数的点称为格点,则图中阴影部分(不包括边界)所含格点的个数有______个;(3)在图中作点(4,0)C关于直线AB的对称点D,则点D的坐标为_____;(4)若在直线AB和y轴上分别存在一点M、N使CMNV的周长最短,请在图中标出点M、N (不写作法,保留痕迹).17.曹州牡丹园售票处规定:入园门票每张80元.非节假日的票价打6折售票;节假日根据团队人数实行分段售票:不超过10人,则按原票价购买;超过10人,则其中10人按原票价购买,超过部分的按原票价打8折购买.某旅行社带团x人到牡丹园游览,设非节假日的购票款为y1元,在节假日的购票款为y2元.求:(1)当x>10时,y1、y2与x的函数关系式;(2)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到牡丹园游览,甲、乙两个团各25人,请问乙团比甲团便宜多少元?18.如图甲所示,已知直线139 42y x-+=与x轴和y轴分别相交于点A,B,直线2320y kx k k=+-≠()与y轴相交于点C,两直线交于点P.(1)求AOBV的面积;(2)如图乙所示,过点P作x轴的平行线交y轴于点D,若点B,C关于直线DP对称,求点C 的坐标;(3)当BCP V 是以BC 为腰的等腰三角形,求直线2y 的函数解析式.四、填空题1920.已知点A (3,0)和B (1,3),如果直线y =kx +1与线段AB 有公共点,那么k 的取值范围是.21.对于实数a ,b ,定义运算“◆”:),()a b a b ab a b ≥=<⎪⎩◆,例如32◆,因为32>,所以32◆x ,y 满足方程组2353210x y x y +=⎧⎨+=⎩,则()x y x =◆◆. 22.如图,ABC ABD ACE V V V 、、均为直角三角形,90ABC BAD ACE AB AD ∠=∠=∠=︒=,,AC CE AE =,与BD 交于点F ,若DF =EF =BC 边的长为.23.已知正比例函数y kx =(k =.五、解答题24.目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml 和500ml 的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元. (1)求甲、乙两种免洗手消毒液的单价.(2)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L 的免洗手消毒液全部装入最大容量分别为300ml 和500ml 的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml ,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.25.如图,在平面直角坐标系中,一次函数4y x =+的图象与x 轴交于点A ,与y 轴交于点B ,与直线CD 交于点43E a ⎛⎫- ⎪⎝⎭,,C 点坐标为()02,.(1)求直线CD 的函数表达式;(2)平面内存在点F ,使得以A ,B ,D ,F 为顶点的四边形为平行四边形,请直接写出点F 的坐标;(3)直线AB 在E 点左侧部分上有一点P ,y 轴右侧有一动直线l y P 轴交AB 于M ,作直线PD 交l 于N ,是否存在点P 使得无论直线l 如何运动始终有PDE △与PMN V 相似,若存在请求出P 点坐标,若不存在请说明理由.26.定义:如图1,点,M N 把线段AB 分割成,AM MN 和BN ,若以,,AM MN BN 为边的三角形是一个直角三角形,则称点,M N 是线段AB 的勾股分割点.(1)已知点M ,N 是线段AB 的勾股分割点,若2,3AM MN ==,求BN 的长.(2)如图2,在等腰直角ABC V 中, ,90AC BC ACB =∠=︒,点,M N 为边AB 上两点,满足45MCN ∠=︒,求证:点,M N 是线段AB 的勾股分割点;阳阳同学在解决第(2)小题时遇到了困难,陈老师对阳阳说:要证明勾股分割点,则需设法构造直角三角形,你可以把CBN △绕点C 逆时针旋转90︒试一试.请根据陈老师的提示完成第(2)小题的证明过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市2011—2012学年度上期期末学生综合素质测评八年级数学答题说明:1、本试卷分为A 卷和B 卷。
其中A 卷满分100分,B 卷满分50分。
A 卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其它类型题。
第Ⅰ卷答案必须用2B 铅笔填涂在机读答题卡上,第Ⅱ卷和B 卷答案必须全部写在试卷上。
2、答题前,务必将自己的姓名、学校、准考证号、考试科目涂写在试卷和机读答题卡上。
3、完卷时间:120分钟。
A 卷(共100分) 第I 卷(选择题,共30分)一、选择题(每小题3分,共30分)1、81的算术平方根是( )A.9± B.3± C. 9 D. 32、 已知ABC ∆的三边长分别为5、12、13,则ABC ∆的面积是 ( ) A. 30 B. 60 C. 78 D.不能确定3、以下五个图形中,是中心对称的图形共有………………………………………( )A.2个B.3个C.4个D.5个 4、为了解某小区“全民健身”活动的开展情况,某志愿者对居住在该小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图.根据图中提供的信息,这50人一周的体育锻炼时间的众数和中位数分别是( )A .6小时、6小时B .6小时、4小时C .4小时、4小时D . 4小时、6小时题号A Ⅱ卷 A Ⅱ卷 总分B 卷B 卷 总分 二 三 四 五 一 二 三 四得分5、函数=y 111-++x x 的自变量x 的取值范围是( ) A .x ≠1 B .x >-1 C .x ≥-1 D .x ≥-1且x ≠1 6、点),(y x A 在第二象限内,且||2||3x y ==,,则点A 关于原点对称点的坐标为( ) A .(2-,3) B .(2,3-) C .(3-,2) D .(3,2-)7、如下图,在同一坐标系中,直线32:1-=x y l 和直线23:2+-=x y l 的图象大致可能是( )8、如图,在矩形ABCD 中,A B =2,BC =1,动点P 从点B 出发,沿路线B →C →D 作匀速运动,那么△APB 的面积S 与点P 运动的路程之间的函数图象大致是( )9、如果方程组⎩⎨⎧=-+=525y x y x 的解是方程532=+-a y x 的解, 那么a 的值是( )A .20B .15-C .10-D .510、菱形的周长是32cm ,一个内角的度数是600,则两条对角线的长分别为( ) A.cm cm 16,8 B. cm cm 8,8 C.cm cm 34,4 D.cm cm 38,8第Ⅱ卷(非选择题,共70分)二、 填空题(每小题4分,共16分)11、已知一个多边形的每个外角都等于︒45,则这个多边形的内角和为 . 12、已知ABCD 的周长是28,对角线AC 与BD 相交于O ,若△AOB 的周长比△BOC 的周长多4,则AB=__________,BC=__________. 13、若0164)5(2=-+-y x ,则=-2009)(x y .14、一次函数的图象平行于直线121+-=x y ,且经过点(4,3),则次一次函数的解析式为 .三、解答题(第15题每小题6分,16题6分,共18分) 15、(1)化简: )35(2232640--- ; (2)解方程组: ⎩⎨⎧=+=-82332y x y x .16、如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,ABC △的顶点均在格点上,点C 的坐标为(41)-,.①把ABC △向上平移5个单位后得到对应的111A B C △,画出111A B C △的图形并写出点1C 的坐标; ②以原点O 为对称中心,再画出与111A B C △关于原点O 对称的222A B C △,并写出点2C 的坐标.四、(每小题8分,共16分) 17、 列方程组或列方程解答:某工厂有工人60名,生产某种由一个螺栓套两个螺母的配套产品.每人每天平均生产螺栓14个或螺母20个,应分配多少工人生产螺栓,多少工人生产螺母,才能使生产出的螺栓和螺母刚好配套呢?18、 如图,在梯形中ABCD 中,CD BE ABC BC AD ⊥︒=∠,90,//于点E ,BE AB =. (1)试证明DC BC =;(2)若︒=∠45C ,,2=CD 求AD 的长. C B A O x y五、(每小题10分,共20分)19、如图,直线OC 、BC 的函数关系式分别是x y =1和622+-=x y ,动点P 沿路线0→C →B 运动. (1)求点C 的坐标,并回答当x 取何值时21y y >? (2)求COB ∆的面积.(3)当P OB ∆的面积是△COB 的面积的一半时,求出这时点P 的坐标.20、如图,四边形ABCD 是正方形,点E ,K 分别在BC ,AB 上,点G 在BA 的延长线上,且CE =BK =AG .(1)求证:①DE =DG ;②DE ⊥DG ;(2)现在以线段DE ,DG 为边作出正方形DEFG ,连接KF ,猜想并写出四边形CEFK 是怎样的特殊四边形,并证明你的猜想; (3)当31=CB CE 时,请直接写出ABCD DEFGS S 正方形正方形的值.B 卷(50分)一、填空题(每小题4分,共20分)21、在平面直角坐标系中,点P(2,a )在正比例函数12y x =的图象上,则点Q( 35a a -,)位于第______象限.22、若一次函数62,≤≤-+=x b kx y 当时,函数值的范围为62≤≤y ,则此一次函的解析式为 . 23、已知:94114+-+-=x x y ,=+y x 36则 .24、如图,已知在ABC ∆中,AD 、AE 分别是边BC 上的高线和中线,cm BC cm AC cm AB 8,7,9===则DE 的长为 .25、如图,已知菱形11D ABC 的边长︒=∠=60,11AB D cm AB ,则菱形221D C AC 的边长1AC = cm ,四边形332D C AC 也是菱形,如此下去,则菱形998D C AC 的边长=______cm .二、解答题 (8分)26、小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50 min 才乘上缆车,缆车的平均速度为180 m /min .设小亮出发x min 后行走的路程为y m .图中的折线表示小亮在整个行走过程中y 与x 的函数关系. ⑴小亮行走的总路程是____________m ,他途中休息了________min . ⑵①当50≤x ≤80时,求y 与x 的函数关系式;②小颖乘缆车到达终点所用的时间是多少?当小颖到达缆车终点为时,小亮行走的路程是多少?三、解答题(10分)27、如图,已知在四边形ABFC 中,︒=∠90ACB ,BC 的垂直平分线EF 交BC 于点D ,交AB 于点E ,且CF=AE 。
(1) 试探究四边形BECF 是什么特殊的四边形, 并说明理由;(2) 当A ∠的大小满足什么条件时,四边形BECF 是正方形? 并证明你的结论.四、解答题 (12分)28、如图,在平面直角坐标系中,点A 、B 分别在x 轴、y 轴上,线段OA 、OB 的长(0A<OB) 是方程组⎩⎨⎧=-=632y x yx 的解,点C 是直线x y 2=与直线AB 的交点,点D 在线段OC 上,OD=52。
(1)求直线AB 的解析式及点C 的坐标; (2)求直线AD 的解析式;(3)P 是直线AD 上的点,在平面内是否存在点Q ,使以0、A 、P 、Q 为顶点的四边形是菱形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.CBAO xy1B 1C 1A 2C 2A 2B 八年级数学答案A 卷一、选择题(每小题3分,共30分) DABAD BBBCD二、 填空题(每小题4分,共16分)11、︒1080 12、9 ,5 13、1- 14、521+-=x y 三、解答题(第15题每小题6分,16题6分,共18分) 15、 (1)解:=6210262102+--………4分 = 0 ………6分 (2)解:由①得: 32-=x y ………2分 代入②中得8643=-+x x ,得2=x ………4分再代入32-=x y 得1=y ⎩⎨⎧==12y x ………6分16、 ①1(44)C ,………1分;②2(44)C --,………1分 ;画图各2分.四、(每小题8分,共16分)17、解:设x 个工人生产螺栓,y 人生产螺母.列方程得:⎩⎨⎧=⨯=+y x y x 2014260 ………5分(正确一个方程得2分)解得⎩⎨⎧==3525y x ………7分答:25个工人生产螺栓,35人生产螺母. ………8分 18、(1)过点D 作BC DF ⊥于F. 得四边形ABFD 是矩形. ………1分∴BEC DFC BE DF AB ∠=∠==,DC BC DFC BEC C C =∴∆≅∆∴∠=∠ ………5分2,45,90=︒=∠︒=∠CD C DFC2=∴CF ………7分 22-==∴BF AD ………8分19、解:(1) 列方程组⎩⎨⎧+-==62x y x y 解得⎩⎨⎧==22y xC ∴:(2,2) ………2分当2>x 时,21y y >; ………4分 (2)3=∆COB S …………6分 (3)P 为(1,1)或(25,1)……10分 20、解:(1)证明:∵四边形ABCD 是正方形, ∴DC=DA ,∠DCE=∠DAG=90°. 又∵CE=AG , ∴△DCE ≌△DAG , ∴DE=DG , …………………2分 ∠EDC=∠GDA , 又∵∠ADE+∠EDC=90°, ∴∠ADE+∠GDA=90°, ∴DE ⊥DG . …………………4分 (2)四边形CEFK 为平行四边形. …………………5分 证明:∵四边形ABCD 和四边形DEFG 都是正方形, ∴AB ∥CD ,AB=CD ,EF=DG ,EF ∥DG , ∵BK=AG , ∴KG=AB=CD , ∴四边形CKGD 是平行四边形, ∴CK=DG=EF ,CK ∥DG ∥EF , ∴四边形CEFK 为平行四边形. …………………8分 (3)错误!未找到引用源。
109= …………………10分一、填空题(每小题4分,共20分) 21、四 22、321+=x y 或521+-=x y 23、23 24、 2cm 25、3 , 81二、解答题 (此题8分)26、解:⑴3600,20. ………2分 ⑵①当5080x ≤≤时,设y 与x 的函数关系式为y kx b =+. 根据题意,当50x =时,1950y =;当80x =,3600y =.所以,y 与x 的函数关系式为55800y x =-. ………4分②缆车到山顶的路线长为3600÷2=1800(m ),缆车到达终点所需时间为1800÷180=10(min ). ………6分 小颖到达缆车终点时,小亮行走的时间为10+50=60(min ). 把60x =代入55800y x =-,得y=55×60—800=2500.所以,当小颖到达缆车终点时,小亮行走的路程是2500 m ………8分 三、解答题(10分) 27、解:(1)EF 垂直平分BC ,,,CE BE CF BF ==∴ ………2分 BCE CBA ∠=∠∴ ………3分︒=∠+∠︒=∠+∠90,90A CBA ACE BCE AC EC A ECA =∴∠=∠∴ ………5分 BF CF EC BE ===∴∴四边形BECF 是菱形. ………6分(2)当,45︒=∠A 四边形BECF 是正方形. ………7分 证明: ︒=∠︒=∠90,45ACB A︒=∠∴︒=∠∴9045EBF CBA∴菱形BECF 是正方形. ………10分28、解:(1)OA=6,OB=12直线AB 122:+-=x y ……………2分联立⎩⎨⎧==⎩⎨⎧=+-=632122y x x y x y 解之 ∴ 点C 的坐标为(3,6) ………………4分 (2)设点D:(a ,a 2)由OD=52得:222)52()2(=+a a解得:2=a∴D:(2,4) ………………………6分设直线AD 的解析式为b kx y +=把A(6,0),D(2,4)代人得6024k b k b +=⎧⎨+=⎩解得16k b =-⎧⎨=⎩∴ 直线AD 的解析式为6+-=x y ………………8分 (3)存在.Q 1(-32,32) Q 2(32,-32) Q 3(3,-3)Q 4(6,6) …………………12分。