高考数学(文)名师讲义:第3章《三角函数与解三角形》(6)【含解析】

合集下载

高考数学第3章三角函数、解三角形第6节正弦定理和余弦定理教学案(含解析)

高考数学第3章三角函数、解三角形第6节正弦定理和余弦定理教学案(含解析)

第六节 正弦定理和余弦定理[考纲传真] 掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.1.正弦定理和余弦定理(1)S =12a ·h a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为内切圆半径).[常用结论]1.三角形内角和定理 在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2. 2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (2)sinA +B2=cos C 2;(4)cos A +B 2=sin C 2. 3.在△ABC 中,sin A >sin B ⇔A >B ⇔a >b , cos A >cos B ⇔A <B ⇔a <b. 4.三角形射影定理a =b cosc +c cos B b =a cos C +c cos A c =a cos B +b cos A5.三角形中任意两边之和大于第三边,任意两边之差小于第三边.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)在△ABC 中,若A >B ,则必有sin A >sin B .( )(2)在△ABC 中,若b 2+c 2>a 2,则△ABC 为锐角三角形. ( )(3)在△ABC 中,若A =60°,a =43,b =42,则B =45°或135°.( )(4)在△ABC 中,a sin A =a +b -csin A +sin B -sin C. ( )[解析] (1)正确.A >B ⇔a >b ⇔sin A >sin B.(2)错误.由cos A =b 2+c 2-a 22bc>0知,A 为锐角,但△ABC 不一定是锐角三角形.(3)错误.由b <a 知,B <A.(4)正确.利用a =2R sin A ,b =2R sin B ,c =2R sin C ,可知结论正确. [答案] (1)√ (2)× (3)× (4)√2.(教材改编)在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定C [由正弦定理,得a 2R =sin A ,b 2R =sin B ,c2R=sin C ,代入得到a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab<0,所以C 为钝角,所以该三角形为钝角三角形.]3.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =5,c =2,cos A =23,则b=( )A. 2B. 3 C .2 D .3D [由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.]4.在△ABC 中,A =45°,C =30°,c =6,则a 等于( ) A .3 2 B .6 2C .2 6D .3 6B [由正弦定理得a sin A =c sinC ,所以a =c sin A sin C =6×sin 45°sin 30°=6 2.]5.(教材改编)在非钝角△ABC 中,2b sin A =3a ,则角B 为( ) A.π6 B.π4C.π3 D.π2C [由2b sin A =3a 得2sin B sin A =3sin A. ∴sin B =32,又B 是锐角或直角. ∴B =π3.]【例1】 5,则AB =( )A .4 2 B.30C.29 D .2 5(2)(2019·青岛模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =c ,a 2=2b 2(1-sin A ),则A 等于( )A.3π4 B.π3C.π4 D.π6(1)A (2)C [(1)因为cos C 2=55,所以cos C =2cos 2 C 2-1=2×552-1=-35.于是,在△ABC 中,由余弦定理得AB 2=AC 2+BC 2-2AC ×BC ×cos C =52+12-2×5×1×-35=32,所以AB =4 2.故选A.(2)在△ABC 中,由余弦定理得a 2=b 2+c 2-2bc cos A =2b 2-2b 2cos A. 又a 2=2b 2(1-sin A ),所以sin A =cos A ,即t a n A =1,又A 是三角形内角,则A =π4,故选C.]求.,求出正弦值,再求角,即已知两边和夹角或已知三边可利用余弦定理求解灵活利用式子的特点转化:如出现关于边或角的正弦的齐次式用正弦定理且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30° B.45°C .60°D .120°(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.(1)A (2)217 3 [(1)由正弦定理a sin A =b sin B =c sin C及(b -c )·(sin B +sin C )=(a -3c )sin A 得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,∴a 2+c 2-b 2=3ac .又∵cos B =a 2+c 2-b 22ac ,∴cos B =32,∴B =30°.(2)因为a =7,b =2,A =60°,所以由正弦定理得sin B =b sin A a =2×327=217.由余弦定理a 2=b 2+c 2-2bc cos A 可得c 2-2c -3=0,所以c =3.]【例2】 a ,b ,c .已知b sinC +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为________.233[由b sin C +c sin B =4a sin B sin C 得sin B sin C +sin C sin B =4sin A sin B sin C ,因为sin B sin C ≠0,所以sin A =12.因为b 2+c 2-a 2=8,cos A =b 2+c 2-a 22bc ,所以bc =833,所以S △ABC =12bc sin A =12×833×12=233.](2)(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin(A +C )=8sin 2B2.①求cos B ;②若a +c =6,△ABC 的面积为2,求b.[解] ①由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0, 解得cos B =1(舍去),或cos B =1517.故cos B =1517.②)由cos B =1517得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.的面积为a 2+b 2-c 24,则C =( )A.π2 B.π3 C.π4 D.π6C [因为S △ABC =12ab sin C ,所以a 2+b 2-c 24=12ab sin C .由余弦定理a 2+b 2-c 2=2ab cos C ,得2ab cos C =2ab sin C ,即cos C =sin C ,所以在△ABC 中,C =π4.故选C.](2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b +c =2a cos B.①证明:A =2B ;②若△ABC 的面积S =a 24,求角A 的大小.[解] ①证明:由b +c =2a cos B 得 sin B +sin C =2sin A cos B. 即2sin A cos B =sin B +sin(A +B ) =sin B +sin A cos B +cos A sin B ; 所以sin(A -B )=sin B.又A ,B ∈(0,π),故0<A -B <π, 所以B +(A -B )=π或A -B =B , 所以A =π(舍去)或A =2B , 所以A =2B.②由S =a 24得12ab sin C =a 24,则sin B sin C =12sin A =12sin 2B =sin B cos B.由sin B ≠0得sin C =cos B. 又B ,C ∈(0,π),所以C =π2±B. 当B +C =π2时,A =π2,当C -B =π2时,A =π4,综上知A =π2或A =π4.►考法1 【例3】 (1)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,满足a cos A =b cos B ,则△ABC 的形状为( )A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形(2)(2019·广州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且b 2+c 2=a 2+bc ,若sin B ·sin C =sin 2A ,则△ABC 的形状是( )A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形(1)D (2)C [(1)因为a cos A =b cos B ,由正弦定理得sin A cos A =sin B cos B ,即sin 2A =sin 2B ,所以2A =2B 或2A +2B =π,即A =B 或A +B =π2,所以△ABC 为等腰三角形或直角三角形,故选D.(2)由b 2+c 2=a 2+bc 得cos A =b 2+c 2-a 22bc =bc 2bc =12.∵A ∈(0,π),∴A =π3.由sin B ·sin C =sin 2A 得bc =a 2,代入b 2+c 2=a 2+bc 得(b -c )2=0,即b =c ,从而△ABC 是等边三角形,故选C.]►考法2 求解几何计算问题【例4】 (2019·哈尔滨模拟)如图,在△ABC 中,B =π3,AB =8,点D 在边BC 上,且CD =2,cos∠ADC =17.(1)求sin∠BAD ; (2)求BD ,AC 的长.[解] (1)在△ADC 中,∵cos∠ADC =17,∴sin∠ADC =1-cos 2∠ADC =1-⎝ ⎛⎭⎪⎫172=437,则sin∠BAD =sin(∠ADC -B ) =sin∠ADC ·cos B -cos∠ADC ·sin B =437×12-17×32=3314.(2)在△ABD 中,由正弦定理得BD =AB ·sin∠BADsin∠ADB =8×3314437=3.在△ABC 中,由余弦定理得AC 2=AB 2+CB 2-2AB ·BC cos B =82+52-2×8×5×12=49,即AC =7.►考法3 正、余弦定理与三角函数的交汇问题【例5】 (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知b sin A =a cos ⎝⎛⎭⎪⎫B -π6(1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值.[解] (1)在△ABC 中,由正弦定理a sin A =bsin B,可得b sin A =a sin B ,又由b sin A=a cos ⎝ ⎛⎭⎪⎫B -π6,得a sin B =a cos ⎝ ⎛⎭⎪⎫B -π6,即sin B =cos ⎝⎛⎭⎪⎫B -π6,可得t a n B = 3.又因为B ∈(0,π),可得B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有b 2=a 2+c 2-2ac cos B =7,故b=7.由b sin A =a cos ⎝ ⎛⎭⎪⎫B -π6,可得sin A =37.因为a <c ,故cos A =27.因此sin 2A =2sin A cos A =437,cos 2A =2cos 2A -1=17.所以,sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314.把所提供的平面图形拆分成若干个三角形,理求解;寻找各个三角形之间的联系,交叉使用公共条件,求出结果易错警示:做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题面积的2倍.(1)求sin Bsin C;(2)若AD =1,DC =22,求BD 和AC 的长. [解] (1)S △ABD =12AB ·AD sin∠BAD ,S △ADC =12AC ·AD sin∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD , 所以AB =2AC .由正弦定理可得sin B sin C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC , 所以BD = 2.在△ABD 和△ADC 中,由余弦定理,知AB 2=AD 2+BD 2-2AD ·BD cos∠ADB ,AC 2=AD 2+DC 2-2AD ·DC cos∠ADC .故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6, 又由(1)知AB =2AC ,所以解得AC =1.1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sinC -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3B [因为a =2,c =2,所以由正弦定理可知,2sin A =2sin C ,故sin A =2sin C . 又B =π-(A +C ),故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即t a n A =-1.又A ∈(0,π),所以A =3π4.从而sin C =12sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6,故选B.]2.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.π3[由2b cos B =a cos C +c cos A 及正弦定理, 得2sin B cos B =sin A cos C +sin C cos A. ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B. ∴2sin B cos B =sin(π-B )=sin B. 又sin B ≠0,∴cos B =12.∴B =π3.]3.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 2113 [在△ABC 中,∵cos A =45,cos C =513, ∴sin A =35,sin C =1213,∴sin B =sin(A +C )=sin A cos C +cos A sin C =35×513+45×1213=6365.又∵a sin A =b sin B ,∴b =a sin Bsin A =1×636535=2113.]4.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.75° [如图,由正弦定理,得3sin 60°=6sin B ,∴sin B =22.又c >b ,∴B =45°,∴A =180°-60°-45°=75°.]5.(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. [解] (1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C ,即2cos C sin(A +B )=sin C ,故2sin C cos C =sin C . 可得cos C =12,所以C =π3. (2)由已知得12ab sin C =332. 又C =π3,所以ab =6. 由已知及余弦定理得a 2+b 2-2ab cos C =7,故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.自我感悟:______________________________________________________________________________________________________________________________________________________________________________________。

高考数学文科解三角形最全讲解含答案解析

高考数学文科解三角形最全讲解含答案解析

第六单元 解三角形教材复习课“解三角形”相关基础知识一课过1.正弦定理a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形:(1)a ∶b ∶c =sin_A ∶sin_B ∶sin_C ; (2)a =2R sin A ,b =2R sin B ,c =2R sin C . 2.余弦定理a 2=b 2+c 2-2bc cos_A , b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos_C .余弦定理可以变形:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab .[小题速通]1.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =2 3,cos A =32,且b <c ,则b =( )A .3B .2 2C .2D. 3解析:选C 由a 2=b 2+c 2-2bc cos A ,得4=b 2+12-6b ,解得b =2或4,∵b <c ,∴b =2.2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若b 2+c 2-a 2=bc ,则角A 的大小为( )A .30°B .60°C .120°D .150°解析:选B 由余弦定理可得b 2+c 2-a 2=2bc cos A ,又因为b 2+c 2-a 2=bc ,所以cos A =12,则A =60°.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a sin A +b sin B <c sin C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选C 根据正弦定理可得a 2+b 2<c 2.由余弦定理得cos C =a 2+b 2-c 22ab <0,所以角C 是钝角,故选C.4.(2018·郑州质量预测)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,且(b -c )(sin B +sin C )=(a -3c )sin A ,则角B 的大小为( )A .30°B .45°C .60°D .120°解析:选A 由正弦定理及(b -c )(sin B +sin C )=(a -3c )·sin A ,得(b -c )(b +c )=(a -3c )a ,即b 2-c 2=a 2-3ac ,所以a 2+c 2-b 2=3ac ,又因为cos B =a 2+c 2-b 22ac,所以cos B =32,所以B =30°. 5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b cos C +3b sin C -a =0,则B =________.解析:由正弦定理可得sin B cos C +3sin B sin C =sin A =sin(B +C )=sin B cos C +sin C cos B ,则3sin B sin C =sin C cos B ,又sin C ≠0,所以tan B =33,则B =30°. 答案:30°[清易错]1.由正弦定理解已知三角形的两边和其中一边的对角求另一边的对角时易忽视解的判断.2.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制. 1.在△ABC 中,若a =18,b =24,A =45°,则此三角形解的情况是( ) A .无解 B .两解 C .一解D .不确定解析:选B ∵a sin A =b sin B ,∴sin B =b a sin A =2418sin 45°=223.又∵a <b ,∴B 有两个解, 即此三角形有两解.2.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b=________.解析:在△ABC 中,∵sin B =12,0<B <π,∴B =π6或B =5π6.又∵B +C <π,C =π6,∴B =π6,∴A =2π3.∵a sin A =b sin B ,∴b =a sin B sin A=1. 答案:13.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =7,b =8,c =13,则角C 的大小为________.解析:∵在△ABC 中,a =7,b =8,c =13,∴由余弦定理可得cos C =a 2+b 2-c 22ab =72+82-1322×7×8=-12,∵C ∈(0,π),∴C =2π3. 答案:2π3设△ABC 的边为a ,b ,c ,所对的三个角为A ,B ,C ,其面积为S . (1)S =12ah (h 表示边a 上的高).(2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为△ABC 内切圆的半径).[小题速通]1.在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若a =1,b =3,B =60°,则△ABC 的面积为( )A.12B.32C .1D. 3解析:选B 在△ABC 中,由正弦定理可得sin A =a sin B b =12,则A =30°,所以C =90°,则△ABC 的面积S =12ab sin C =12×1×3×1=32.2.在△ABC 中,A =60°,AB =2,且△ABC 的面积为32,则BC 的长为( ) A.32B. 3 C .2 3D .2解析:选B 由题意S △ABC =12·AB ·AC ·sin A =32,则AC =1,由余弦定理可得BC =4+1-2×2×1×cos 60°= 3.3.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3.故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15344.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.解析:由cos A =-14,得sin A =154,所以△ABC 的面积为12bc sin A =12bc ×154=315,解得bc =24,又b -c =2,所以a 2=b 2+c 2-2bc cos A =(b -c )2+2bc -2bc cos A =22+2×24-2×24×⎝⎛⎭⎫-14=64,解得a =8. 答案:8[清易错]应用三角形面积公式S =12ab sin C =12ac sin B =12bc sin A 时,注意公式中的角应为两边的夹角.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2,c =23,A =30°,则△ABC 的面积为________.解析:∵a =2,c =23,A =30°, ∴由正弦定理得sin C =c ·sin A a =32,∴C =60°或120°, ∴B =90°或30°,则S △ABC =12ac sin B =23或 3.答案:23或 31.仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图①).2.方位角从指北方向顺时针转到目标方向线的水平角,如B 点的方位角为α(如图②). 3.方向角相对于某一正方向的水平角.(1)北偏东α,即由指北方向顺时针旋转α到达目标方向(如图③); (2)北偏西α,即由指北方向逆时针旋转α到达目标方向; (3)南偏西等其他方向角类似.4.坡角与坡度(1)坡角:坡面与水平面所成的二面角(如图④,角θ为坡角);(2)坡度:坡面的铅直高度与水平长度之比(如图④,i 为坡度).坡度又称为坡比. [小题速通]1.(2018·潍坊调研)海面上有A ,B ,C 三个灯塔,AB =10 n mile ,从A 望C 和B 成60°视角,从B 望C 和A 成75°视角,则BC =( )A .10 3 n mile B.1063 n mileC .5 2 n mileD .5 6 n mile解析:选D 如图,在△ABC 中,C =180°-60°-75°=45°,又A =60°,由正弦定理,得AB sin C =BC sin A ,即10sin 45°=BC sin 60°,解得BC =5 6. 2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO ·tan 45°=30(m), ON =AO ·tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN =900+300-2×30×103×32=300=103(m). 答案:10 33.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.则此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:32[清易错]易混淆方位角与方向角概念:方位角是指北方向线按顺时针转到目标方向线之间的水平夹角,而方向角是正北或正南方向线与目标方向线所成的锐角.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示,∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.一、选择题1.已知△ABC 中,sin A ∶sin B ∶sin C =1∶1∶3,则此三角形的最大内角为( ) A .60° B .90° C .120°D .135°解析:选C ∵sin A ∶sin B ∶sin C =1∶1∶3, ∴a ∶b ∶c =1∶1∶3,设a =m ,则b =m ,c =3m . ∴cos C =a 2+b 2-c 22ab =m 2+m 2-3m 22m 2=-12, ∴C =120°.2.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若c =2a ,b =4,cos B =14.则c 的值为( )A .4B .2C .5D .6解析:选A ∵c =2a ,b =4,cos B =14,∴由余弦定理得b 2=a 2+c 2-2ac cos B , 即16=14c 2+c 2-14c 2=c 2,解得c =4.4.已知△ABC 中,内角A ,B ,C 所对边分别为a ,b ,c ,若A =π3,b =2a cos B ,c =1,则△ABC 的面积等于( )A.32B.34C.36D.38解析:选B 由正弦定理得sin B =2sin A cos B ,故tan B =2sin A =2sin π3=3,又B ∈(0,π),所以B =π3,又A =B =π3,则△ABC 是正三角形,所以S △ABC =12bc sin A =12×1×1×32=34.5.(2018·湖南四校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若(a 2+b 2-c 2)tan C =ab ,则角C 的大小为( )A.π6或5π6B.π3或2π3C.π6D.2π3解析:选A 由题意知,a 2+b 2-c 22ab =12tan C ⇒cos C =cos C 2sin C ,sin C =12,又C ∈(0,π),∴C =π6或5π6.6.已知A ,B 两地间的距离为10 km ,B ,C 两地间的距离为20 km ,现测得∠ABC =120°,则A ,C 两地间的距离为( )A .10 kmB .10 3 kmC .10 5 kmD .107 km解析:选D 如图所示,由余弦定理可得,AC 2=100+400-2×10×20×cos 120°=700,∴AC =107(km).7.(2018·贵州质检)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332D .3 3解析:选C ∵c 2=(a -b )2+6, ∴c 2=a 2+b 2-2ab +6.①∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6. ∴S △ABC =12ab sin C =12×6×32=332.8.一艘海轮从A 处出发,以每小时40 n mile 的速度沿南偏东40°的方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是南偏东70°,在B 处观察灯塔,其方向是北偏东65°,那么B ,C 两点间的距离是( )A .10 2 n mileB .10 3 n mileC .20 3 n mileD .20 2 n mile解析:选A 画出示意图如图所示,易知,在△ABC 中,AB =20,∠CAB =30°,∠ACB =45°,根据正弦定理得BC sin 30°=ABsin 45°,解得BC =10 2.故B ,C 两点间的距离是10 2 n mile. 二、填空题9.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =2,cos C =-14,3sin A=2sin B ,则c =________.解析:因为3sin A =2sin B ,所以由正弦定理可得3a =2b ,则b =3,由余弦定理可得c 2=a 2+b 2-2ab cos C =4+9-2×2×3×⎝⎛⎭⎫-14=16,则c =4. 答案:410.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若角A ,B ,C 成等差数列,且边a ,b ,c 成等比数列,则△ABC 的形状为________.解析:∵在△ABC 中,角A ,B ,C 成等差数列, ∴2B =A +C ,由三角形内角和定理,可得B =π3,又∵边a ,b ,c 成等比数列,∴b 2=ac , 由余弦定理可得b 2=a 2+c 2-2ac cos B , ∴ac =a 2+c 2-ac ,即a 2+c 2-2ac =0, 故(a -c )2=0,可得a =c , 所以△ABC 的形状为等边三角形. 答案:等边三角形11.已知△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且a =x ,b =2,B =45°,若三角形有两解,则x 的取值范围为________.解析:由AC =b =2,要使三角形有两解,就是要使以C 为圆心,以2为半径的圆与AB 有两个交点,当A =90°时,圆与AB 相切,只有一解;当A =45°时,交于B 点,也就是只有一解,所以要使三角形有两解,需满足45°<A <90°,即22<sin A <1,由正弦定理可得a =x =b sin Asin B=22sin A ,所以2<x <2 2. 答案:(2,22)12.如图,航空测量组的飞机航线和山顶在同一铅直平面内,已知飞机的飞行高度为10 000 m ,速度为50 m/s.某一时刻飞机看山顶的俯角为15°,经过420 s 后看山顶的俯角为45°,则山顶的海拔高度为________m .(取2=1.4,3=1.7)解析:如图,作CD 垂直于AB 的延长线于点D ,由题意知∠A =15°,∠DBC =45°,∴∠ACB =30°,AB =50×420=21 000(m).又在△ABC 中,BC sin A =ABsin ∠ACB ,∴BC =21 00012×sin 15°=10 500(6-2).∵CD ⊥AD ,∴CD =BC ·sin ∠DBC =10 500(6-2)×22=10 500(3-1)=7 350. 故山顶的海拔高度h =10 000-7 350=2 650(m). 答案:2 650 三、解答题13.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知b =3,AB ―→AC ―→=-6,S △ABC =3,求A 和a .解:因为AB ―→·AC ―→=-6, 所以bc cos A =-6, 又S △ABC =3, 所以bc sin A =6,因此tan A =-1,又0<A <π, 所以A =3π4. 又b =3,所以c =2 2.由余弦定理a 2=b 2+c 2-2bc cos A , 得a 2=9+8-2×3×22×⎝⎛⎭⎫-22=29, 所以a =29.14.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2b cos C =a cos C +c cos A . (1)求角C 的大小;(2)若b =2,c =7,求a 及△ABC 的面积. 解:(1)∵2b cos C =a cos C +c cos A ,∴由正弦定理可得2sin B cos C =sin A cos C +cos A sin C ,即2sin B cos C =sin(A +C )=sin B.又sin B ≠0,∴cos C =12,C =π3.(2)∵b =2,c =7,C =π3,∴由余弦定理可得7=a 2+4-2×a ×2×12,即a 2-2a -3=0, 解得a =3或-1(舍去),∴△ABC 的面积S =12ab sin C =12×3×2×32=332.高考研究课(一)正、余弦定理的3个基础点——边角、形状和面积 [全国卷5年命题分析][典例] ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝⎛⎭⎫2A +π4的值. [解] (1)在△ABC 中,因为a >b , 故由sin B =35,可得cos B =45.由已知及余弦定理,得b 2=a 2+c 2-2ac cos B =13, 所以b =13.由正弦定理a sin A =b sin B ,得sin A =a sin B b =31313.所以b 的值为13,sin A 的值为31313. (2)由(1)及a <c ,得cos A =21313,所以sin 2A =2sin A cos A =1213,cos 2A =1-2sin 2A =-513. 故sin ⎝⎛⎭⎫2A +π4=sin 2A cos π4+cos 2A sin π4=22×⎝⎛⎭⎫1213-513=7226. [方法技巧]应用正、余弦定理的解题策略(1)解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(2)三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.[即时演练]1.(2017·山东高考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A解析:选A 由题意可知sin B +2sin B cos C =sin A cos C +sin(A +C ),即2sin B cos C =sin A cos C ,又cos C ≠0,故2sin B =sin A ,由正弦定理可知a =2b .2.(2017·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析:法一:由2b cos B =a cos C +c cos A 及正弦定理,得 2sin B cos B =sin A cos C +sin C cos A =sin(A +C )=sin B >0, 因此cos B =12.又0<B <π,所以B =π3.法二:由2b cos B =a cos C +c cos A 及余弦定理,得 2b ·a 2+c 2-b 22ac =a ·a 2+b 2-c 22ab +c ·b 2+c 2-a 22bc ,整理得,a 2+c 2-b 2=ac , 所以2ac cos B =ac >0,cos B =12.又0<B <π,所以B =π3.答案:π33.(2018·成都二诊)如图,在平面四边形ABCD 中,已知A =π2,B =2π3,AB =6.在AB 边上取点E ,使得BE =1,连接EC ,ED .若∠CED =2π3,EC =7.(1)求sin ∠BCE 的值; (2)求CD 的长.解:(1)在△BEC 中,由正弦定理,知BE sin ∠BCE =CEsin B .∵B =2π3,BE =1,CE =7,∴sin ∠BCE =BE ·sin B CE =327=2114.(2)∵∠CED =B =2π3,∴∠DEA =∠BCE ,∴cos ∠DEA =1-sin 2∠DEA =1-sin 2∠BCE =1-328=5714.∵A =π2,∴△AED 为直角三角形,又AE =5,∴ED =AE cos ∠DEA =55714=27.在△CED 中,CD 2=CE 2=+DE 2-2CE ·DE ·cos ∠CED =7+28-2×7×27×⎝⎛⎭⎫-12=49.∴CD =7.+b )sin(A -B )=(a -b )·sin(A +B )”,试判断三角形的形状.[解] ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ), ∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], ∴2sin A cos B ·b 2=2cos A sin B ·a 2,即a 2cos A sin B =b 2sin A cos B. 法一:用“边化角”解题由正弦定理得a =2R sin A ,b =2R sin B , ∴sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π, ∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰三角形或直角三角形. 法二:用“角化边”解题 由正弦定理、余弦定理得:a 2b ·b 2+c 2-a 22bc =b 2a ·a 2+c 2-b 22ac , ∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0. 即a =b 或a 2+b 2=c 2.∴△ABC 为等腰三角形或直角三角形. [方法技巧]判断三角形形状的2种方法(1)“边化角”利用正弦、余弦定理把已知条件转化为只含内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.(2)“角化边”利用正弦、余弦定理把已知条件转化为只含边的关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.[提醒] 在两种解法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.[即时演练]1.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B 依据题设条件的特点,由正弦定理, 得sin B cos C +cos B sin C =sin 2A ,有sin(B +C )=sin 2A , 从而sin(B +C )=sin A =sin 2A ,解得sin A =1, ∴A =π2,∴△ABC 是直角三角形.2.在△ABC 中,“2a sin A =(2b +c )sin B +(2c +b )sin C ,且sin B +sin C =1”,试判断△ABC 的形状.解:由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc ,由余弦定理得,cos A =-12,sin A =32,则sin 2A =sin 2B +sin 2C +sin B sin C . 又sin B +sin C =1,所以sin B sin C =14,解得sin B =sin C =12.因为0<B <π2,0<C <π2,故B =C =π6,所以△ABC 是等腰钝角三角形.[典例] (2017·a ,b ,c ,已知sin(A +C )=8sin 2B2.(1)求cos B ;(2)若a +c =6,△ABC 的面积为2,求b .[解] (1)由题设及A +B +C =π得sin B =8sin 2B2,即sin B =4(1-cos B ), 故17cos 2B -32cos B +15=0, 解得cos B =1517或cos B =1(舍去).(2)由cos B =1517,得sin B =817,故S △ABC =12ac sin B =417ac .又S △ABC =2,则ac =172. 由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝⎛⎭⎫1+1517=4. 所以b =2. [方法技巧]三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化. [即时演练]1.(2018·太原一模)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若A =60°,b =1,S △ABC =3,则c 等于( )A .1B .2C .3D .4解析:选D ∵S △ABC =12bc sin A ,∴3=12×1×c ×32,∴c =4.2.(2018·陕西四校联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos A =13. (1)求cos 2B +C2+cos 2A 的值;(2)若a =3,求△ABC 面积的最大值. 解:(1)cos 2B +C2+cos 2A =1+cos (B +C )2+2cos 2A -1=12-cos A 2+2cos 2A -1 =12-12×13+2×⎝⎛⎭⎫132-1 =-49.(2)由余弦定理可得(3)2=b 2+c 2-2bc cos A =b 2+c 2-23bc ≥2bc -23bc =43bc ,所以bc ≤94,当且仅当b =c =32时,bc 有最大值94.又cos A =13,A ∈(0,π),所以sin A =1-cos 2A =1-⎝⎛⎭⎫132=223,于是△ABC 面积的最大值为12×94×223=324.1.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010 C .-1010D .-31010解析:选C 法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a 22bc =59a 2+29a 2-a 22×53a ×23a=-1010.法二:如图,AD 为△ABC 中BC 边上的高.设BC =a ,由题意知AD =13BC =13a ,B =π4,易知BD =AD =13a ,DC =23a .在Rt △ABD 中,由勾股定理得, AB =⎝⎛⎭⎫13a 2+⎝⎛⎭⎫13a 2=23a .同理,在Rt △ACD 中,AC = ⎝⎛⎭⎫13a 2+⎝⎛⎭⎫23a 2=53a . ∴cos A =59a 2+29a 2-a 22×53a ×23a=-1010.2.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知C =60°,b =6,c =3,则A =________.解析:由正弦定理,得sin B =b sin Cc =6sin 60°3=22, 因为0°<B <180°,所以B =45°或135°. 因为b <c ,所以B <C ,故B =45°, 所以A =180°-60°-45°=75°.答案:75°3.(2016·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 解析:因为A ,C 为△ABC 的内角,且cos A =45,cos C =513,所以sin A =35,sin C =1213,所以sin B =sin(π-A -C )=sin(A +C ) =sin A cos C +cos A sin C =35×513+45×1213=6365.又a =1,所以由正弦定理得b =a sin B sin A =6365×53=2113.答案:21134.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A. (1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a 3sin A. 由正弦定理得12sin C sin B =sin A 3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9, 得b +c =33.故△ABC 的周长为3+33.5.(2017·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin A +3cos A=0,a =27,b =2.(1)求c ;(2)设D 为BC 边上一点,且AD ⊥AC ,求△ABD 的面积. 解:(1)由已知可得tan A =-3,所以A =2π3.在△ABC 中,由余弦定理得28=4+c 2-4c cos 2π3, 即c 2+2c -24=0. 解得c =4(负值舍去). (2)由题设可得∠CAD =π2,所以∠BAD =∠BAC -∠CAD =π6.故△ABD 的面积与△ACD 的面积的比值为 12AB ·AD ·sin π612AC ·AD =1.又△ABC 的面积为12×4×2×sin 2π3=23,所以△ABD 的面积为 3.6.(2016·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos C (a cos B +b cos A )=c .(1)求C ;(2)若c =7,△ABC 的面积为332,求△ABC 的周长. 解:(1)由已知及正弦定理得2cos C (sin A cos B +sin B cos A )=sin C , 即2cos C sin(A +B )=sin C , 故2sin C cos C =sin C .因为sin C ≠0,可得cos C =12,所以C =π3.(2)由已知得12ab sin C =332.又C =π3,所以ab =6.由已知及余弦定理得a 2+b 2-2ab cos C =7, 故a 2+b 2=13,从而(a +b )2=25. 所以△ABC 的周长为5+7.7.(2015·全国卷Ⅱ)△ABC 中,D 是BC 上的点,AD 平分∠BAC ,BD =2DC . (1)求sin Bsin C; (2)若∠BAC =60°,求B . 解:(1)由正弦定理,得AD sin B =BD sin ∠BAD ,AD sin C =DCsin ∠CAD . 因为AD 平分∠BAC ,BD =2DC , 所以sin B sin C =DC BD =12.(2)因为C =180°-(∠BAC +B ),∠BAC =60°, 所以sin C =sin(∠BAC +B )=32cos B +12sin B. 由(1)知2sin B =sin C ,所以tan B =33, 所以B =30°.8.(2013·全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B.(1)求B ;(2)若b =2,求△ABC 面积的最大值.解:(1)由已知及正弦定理得sin A =sin B cos C +sin C sin B . ① 又A =π-(B +C ),故sin A =sin(B +C )=sin B cos C +cos B sin C . ② 由①②和C ∈(0,π)得sin B =cos B. 又B ∈(0,π),所以B =π4.(2)△ABC 的面积S =12ac sin B =24ac .由已知及余弦定理得4=a 2+c 2-2ac cos π4.又a 2+c 2≥2ac ,故ac ≤42-2, 当且仅当a =c 时,等号成立. 因此△ABC 面积的最大值为24×42-2=2+1.一、选择题1.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,b =3,A =30°,若B 为锐角,则A ∶B ∶C =( )A .1∶1∶3B .1∶2∶3C .1∶3∶2D .1∶4∶1解析:选B 因为a =1,b =3,A =30°,B 为锐角,所以由正弦定理可得sin B =b sin Aa =32,则B =60°,所以C =90°,则A ∶B ∶C =1∶2∶3. 2.如果将直角三角形三边增加相同的长度,则新三角形一定是( ) A .锐角三角形 B .钝角三角形 C .直角三角形D .根据增加的长度确定三角形的形状解析:选A 设原来直角三角形的三边长是a ,b ,c 且a 2=b 2+c 2,在原来的三角形三条边长的基础上都加上相同的长度,设为d ,原来的斜边仍然是最长的边,故cos A =(b +d )2+(c +d )2-(a +d )22(b +d )(c +d )=2bd +2cd +d 2-2ad2(b +d )(c +d )>0,所以新三角形中最大的角是一个锐角,故选A.3.(2018·太原模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 2+c 2-a 2=3bc ,且b =3a ,则下列关系一定不成立的是( )A .a =cB .b =cC .2a =cD .a 2+b 2=c 2解析:选B 由余弦定理,得cos A =b 2+c 2-a 22bc =3bc 2bc =32,则A =30°.又b =3a ,由正弦定理得sin B =3sin A =3sin 30°=32,所以B =60°或120°.当B =60°时,△ABC 为直角三角形,且2a =c ,可知C 、D 成立;当B =120°时,C =30°,所以A =C ,即a =c ,可知A 成立,故选B.4.在直角梯形ABCD 中,AB ∥CD ,∠ABC =90°,AB =2BC =2CD ,则cos ∠DAC =( )A.1010 B.31010C.55D.255解析:选B 如图所示,设CD =a ,则易知AC =5a ,AD =2a ,在△ACD 中,CD 2=AD 2+AC 2-2AD ×AC ×cos ∠DAC ,∴a 2=(2a )2+(5a )2-2×2a ×5a ×cos ∠DAC ,∴cos ∠DAC =31010. 5.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =(a +b )2-c 2,则tan C 等于( )A.34B.43 C .-43D .-34解析:选C 因为2S =(a +b )2-c 2=a 2+b 2-c 2+2ab , 则由面积公式与余弦定理,得ab sin C =2ab cos C +2ab , 即sin C -2cos C =2,所以(sin C -2cos C )2=4, 即sin 2C -4sin C cos C +4cos 2C sin 2C +cos 2C =4,所以tan 2C -4tan C +4tan 2C +1=4,解得tan C =-43或tan C =0(舍去).6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足b 2+c 2-a 2=bc ,AB ―→·BC ―→>0,a =32,则b +c 的取值范围是( ) A.⎝⎛⎭⎫1,32 B.⎝⎛⎭⎫32,32C.⎝⎛⎭⎫12,32D.⎝⎛⎦⎤12,32解析:选B 在△ABC 中,b 2+c 2-a 2=bc , 由余弦定理可得cos A =b 2+c 2-a 22bc =bc 2bc =12,∵A 是△ABC 的内角,∴A =60°. ∵a =32, ∴由正弦定理得a sin A =b sin B =c sin C =c sin (120°-B )=1, ∴b +c =sin B +sin(120°-B )=32sin B +32cos B=3sin(B +30°).∵AB ―→·BC ―→=|AB ―→|·|BC ―→|·cos(π-B )>0, ∴cos B <0,B 为钝角,∴90°<B <120°,120°<B +30°<150°,故sin(B +30°)∈⎝⎛⎭⎫12,32, ∴b +c =3sin(B +30°)∈⎝⎛⎭⎫32,32. 二、填空题7.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2c cos B =2a +b ,若△ABC 的面积S =32c ,则ab 的最小值为________. 解析:将2c cos B =2a +b 中的边化为角可得2sin C cos B =2sin A +sin B =2sin C cos B +2sin B cos C +sin B .则2sin B cos C +sin B =0,因为sin B ≠0,所以cos C =-12,则C =120°,所以S =12ab sin 120°=32c ,则c =12ab .由余弦定理可得⎝⎛⎭⎫12ab 2=a 2+b 2-2ab cos C ≥3ab ,则ab ≥12,当且仅当a =b =23时取等号,所以ab 的最小值为12.答案:128.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.解析:在△ABC 中,AB =AC =4,BC =2, 由余弦定理得cos ∠ABC =AB 2+BC 2-AC 22AB ·BC=42+22-422×4×2=14, 则sin ∠ABC =sin ∠CBD =154, 所以S △BDC =12BD ·BC sin ∠CBD =12×2×2×154=152.因为BD =BC =2,所以∠CDB =12∠ABC ,则cos ∠CDB = cos ∠ABC +12=104.答案:1521049.已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.解析:因为a =2,且(2+b )(sin A -sin B )=(c -b )sin C , 所以(a +b )(sin A -sin B )=(c -b )sin C . 由正弦定理得b 2+c 2-bc =4,又因为b 2+c 2≥2bc ,所以bc ≤4,当且仅当b =c =2时取等号,此时三角形为等边三角形,所以S =12bc sin 60°≤12×4×32=3,故△ABC 的面积的最大值为 3. 答案: 3 三、解答题10.(2017·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin A =4b sin B ,ac =5(a 2-b 2-c 2).(1)求cos A 的值; (2)求sin(2B -A )的值. 解:(1)由a sin A =4b sin B ,及a sin A =bsin B,得a =2b . 由ac =5(a 2-b 2-c 2)及余弦定理, 得cos A =b 2+c 2-a 22bc =-55ac ac =-55.(2)由(1),可得sin A =255,代入a sin A =4b sin B ,得sin B =a sin A 4b =55. 由(1)知,A 为钝角,所以cos B =1-sin 2B =255. 于是sin 2B =2sin B cos B =45,cos 2B =1-2sin 2B =35,故sin(2B -A )=sin 2B cos A -cos2B sin A=45×⎝⎛⎭⎫-55-35×255=-255. 11.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知a sin B =3b cos A . (1)求角A 的大小;(2)若a =7,b =2,求△ABC 的面积.解:(1)因为a sin B =3b cos A ,由正弦定理得sin A sin B =3sin B cos A . 又sin B ≠0,从而tan A = 3. 由于0<A <π,所以A =π3.(2)法一:由余弦定理a 2=b 2+c 2-2bc cos A ,及a =7,b =2,A =π3,得7=4+c 2-2c ,即c 2-2c -3=0. 因为c >0,所以c =3.故△ABC 的面积S =12bc sin A =332.法二:由正弦定理,得7sinπ3=2sin B ,从而sin B =217,又由a >b ,知A >B ,所以cos B =277. 故sin C =sin(A +B )=sin ⎝⎛⎭⎫B +π3=sin B cos π3+cos B sin π3=32114. 所以△ABC 的面积S =12ab sin C =332.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin B ·(a cos B +b cos A )=3c cos B.(1)求B ;(2)若b =23,△ABC 的面积为23,求△ABC 的周长. 解:(1)由正弦定理得,sin B (sin A cos B +sin B cos A )=3sin C cos B , ∴sin B sin(A +B )=3sin C cos B , ∴sin B sin C =3sin C cos B.∵sin C ≠0,∴sin B =3cos B ,即tan B = 3. ∵B ∈(0,π),∴B =π3.(2)∵S △ABC =12ac sin B =34ac =23,∴ac =8.根据余弦定理得,b 2=a 2+c 2-2ac cos B , ∴12=a 2+c 2-8,即a 2+c 2=20, ∴a +c =(a +c )2=a 2+2ac +c 2=6, ∴△ABC 的周长为6+2 3.1.在平面五边形ABCDE 中,已知∠A =120°,∠B =90°,∠C =120°,∠E =90°,AB =3,AE =3,当五边形ABCDE 的面积S ∈⎣⎡⎭⎫63,3334时,则BC 的取值范围为________. 解析:因为AB =3,AE =3,且∠A =120°,由余弦定理可得BE =AB 2+AE 2-2AB ·AE ·cos A =33,且∠ABE =∠AEB =30°. 又∠B =90°,∠E =90°,所以∠DEB =∠EBC =60°. 又∠C =120°,所以四边形BCDE 是等腰梯形. 易得三角形ABE 的面积为934,所以四边形BCDE 的面积的取值范围是⎣⎡⎭⎫1534,63. 在等腰梯形BCDE 中,令BC =x ,则CD =33-x ,且梯形的高为3x2, 故梯形BCDE 的面积为12·(33+33-x )·3x 2,即15≤(63-x )x <24, 解得3≤x <23或43<x ≤5 3. 答案:[3,23)∪(43,53]2.如图,有一直径为8 m 的半圆形空地,现计划种植果树,但需要有辅助光照.半圆周上的C 处恰有一可旋转光源满足果树生长的需要,该光源照射范围是∠ECF =π6,点E ,F 在直径AB 上,且∠ABC =π6.(1)若CE =13,求AE 的长;(2)设∠ACE =α,求该空地种植果树的最大面积. 解:(1)由已知得△ABC 为直角三角形, 因为AB =8,∠ABC =π6,所以∠BAC =π3,AC =4.在△ACE 中,由余弦定理得,CE 2=AC 2+AE 2-2AC ·AE cos A ,且CE =13, 所以13=16+AE 2-4AE , 解得AE =1或AE =3.(2)因为∠ACB =π2,∠ECF =π6,所以∠ACE =α∈⎣⎡⎦⎤0,π3, 所以∠AFC =π-∠BAC -∠ACF =π-π3-⎝⎛⎭⎫α+π6=π2-α, 在△ACF 中,由正弦定理得CF sin ∠BAC =AC sin ∠AFC =AC sin ⎝⎛⎭⎫π2-α=AC cos α,所以CF =23cos α,在△ACE 中,由正弦定理得CE sin ∠BAC =AC sin ∠AEC =ACsin ⎝⎛⎭⎫π3+α,所以CE =23sin ⎝⎛⎭⎫π3+α,所以S △ECF =12CE ·CF sin ∠ECF =3sin ⎝⎛⎭⎫π3+αcos α=122sin ⎝⎛⎭⎫2α+π3+3.因为α∈⎣⎡⎦⎤0,π3,所以π3≤2α+π3≤π, 所以0≤sin ⎝⎛⎭⎫2α+π3≤1, 所以当sin ⎝⎛⎭⎫2α+π3=0,即α=π3时,S △ECF 取得最大值为4 3. 即该空地种植果树的最大面积为4 3 m 2. 高考研究课(二)正、余弦定理的3个应用点——高度、距离和角度 [全国卷5年命题分析]考点 考查频度 考查角度 高度问题 5年1考 测量山高问题距离问题 未考查 角度问题未考查测量高度问题[典例] 如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =________m.[解析] 由题意,在△ABC 中,∠BAC =30°, ∠ABC =180°-75°=105°,故∠ACB =45°. 又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°, 解得BC =300 2 m. 在Rt △BCD 中, CD =BC ·tan 30°=3002×33=100 6(m). [答案] 100 6 [方法技巧]利用正、余弦定理求解高度问题应注意的3个方面(1)在处理有关高度问题时,要理解仰角、俯角(它是在铅垂面上所成的角)、方向(位)角(它是在水平面上所成的角)是关键.(2)在实际问题中,可能会遇到空间与平面(地面)同时研究的问题,这时最好画两个图形,一个空间图形,一个平面图形,这样处理起来既清楚又不容易搞错.(3)注意山或塔垂直于地面或海平面,把空间问题转化为平面问题. [即时演练]1.要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,则电视塔的高度为( )A .10 2 mB .20 mC .20 3 mD .40 m解析:选D 设电视塔的高度为x m ,则BC =x ,BD =3x .在△BCD 中,根据余弦定理得3x 2=x 2+402-2×40x ×cos 120°,即x 2-20x -800=0,解得x =40或x =-20(舍去).故电视塔的高度为40 m.2.如图,为测得河岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10 m 到位置D ,测得∠BDC =45°,则塔AB 的高是________m.解析:在△BCD 中,CD =10,∠BDC =45°, ∠BCD =15°+90°=105°,∠DBC =30°, 由正弦定理得,BC sin 45°=CDsin 30°, 所以BC =CD sin 45°sin 30°=10 2.在Rt △ABC 中,tan 60°=ABBC ,AB =BC tan 60°=106(m). 答案:10 6测量距离问题[典例]侧,且B 点不可到达,要测出A ,B 的距离,其方法在A 所在的岸边选定一点C ,可以测出A ,C 的距离m ,再借助仪器,测出∠ACB =α,∠CAB =β,在△ABC 中,运用正弦定理就可以求出AB .若测出AC =60 m ,∠BAC =75°,∠BCA =45°,则A ,B 两点间的距离为________m. [解析] ∵∠ABC =180°-75°-45°=60°, ∴由正弦定理得,AB sin C =ACsin B,∴AB =AC ·sin C sin B =60×sin 45°sin 60°=206(m).即A ,B 两点间的距离为20 6 m. [答案] 20 6 [方法技巧]求距离问题的2个注意事项(1)选定或确定要创建的三角形,首先确定所求量所在的三角形,若其他量已知则直接求解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理. [即时演练]1.如图所示,要测量一水塘两侧A ,B 两点间的距离,其方法先选定适当的位置C ,用经纬仪测出角α,再分别测出AC ,BC 的长b ,a ,则可求出A ,B 两点间的距离.即AB =a 2+b 2-2ab cos α.若测得CA =400 m ,CB =600 m ,∠ACB =60°,则AB 的长为________m. 解析:在△ABC 中,由余弦定理得 AB 2=AC 2+BC 2-2AC ·BC cos ∠ACB ,∴AB 2=4002+6002-2×400×600cos 60°=280 000. ∴AB =200 7 (m).即A ,B 两点间的距离为200 7 m. 答案:200 72.隔河看两目标A 与B ,但不能到达,在岸边选取相距 3 km 的C ,D 两点,同时,测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°(A ,B ,C ,D 在同一平面内),求两目标A ,B 之间的距离.解:在△ACD 中,∠ACD =120°, ∠CAD =∠ADC =30°,所以AC =CD = 3.在△BCD 中,∠BCD =45°,∠BDC =75°,∠CBD =60°,由正弦定理知BC =3sin 75°sin 60°=6+22. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos ∠ACB =(3)2+⎝⎛⎭⎪⎫6+222-2×3×6+22×cos 75°=3+2+3-3=5,所以AB = 5 , 所以A ,B 两目标之间的距离为 5 km.角度问题[典例] (2018·南昌模拟)如图所示,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救,甲船立即前往营救,同时把消息告知在甲船的南偏西30°相距10海里C 处的乙船,乙船立即朝北偏东θ+30°角的方向沿直线前往B 处营救,则sin θ的值为( )A.217 B.22C.32D.5714[解析] 如图,连接BC ,在△ABC 中,AC =10,AB =20,∠BAC=120°,由余弦定理,得BC 2=AC 2+AB 2-2AB ·AC ·cos 120°=700,∴BC =107, 再由正弦定理,得BC sin ∠BAC =ABsin θ,∴sin θ=217. [答案] A [方法技巧]解决测量角度问题的3个注意点(1)明确方向角的含义.(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步.(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用. [即时演练]1.如图,两座灯塔A 和B 与海岸观察站C 的距离相等,灯塔A 在观察站南偏西40°,灯塔B 在观察站南偏东60°,则灯塔A 在灯塔B 的( )A .北偏东10°B .北偏西10°C .南偏东80°D .南偏西80°解析:选D 由条件及图可知,∠A =∠B =40°,又∠BCD =60°,所以∠CBD =30°,所以∠DBA =10°,因此灯塔A 在灯塔B 南偏西80°.2.如图,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C 处的乙船,现乙船朝北偏东θ的方向沿直线CB 前往B 处救援,求cos θ的值.。

2020版高考数学(文)高分计划一轮高分讲义:第3章三角函数、解三角形 3.6 正弦定理和余弦定理 Word版

2020版高考数学(文)高分计划一轮高分讲义:第3章三角函数、解三角形 3.6 正弦定理和余弦定理 Word版

3.6正弦定理和余弦定理[知识梳理]1.正弦定理、余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则2.在△ABC 中,已知a ,b 和A 时,三角形解的情况3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高). (2)S =12bc sin A =12ac sin B =12ab sin C .(3)S =12r (a +b +c )(r 为三角形的内切圆半径). 4.在△ABC 中,常有的结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. [诊断自测] 1.概念思辨(1)在三角形中,已知两角和一边或已知两边和一角都能解三角形.( )(2)在△ABC 中,asin A =a +b -c sin A +sin B -sin C.( )(3)若a ,b ,c 是△ABC 的三边,当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )(4)在△ABC 中,若sin A sin B <cos A cos B ,则此三角形是钝角三角形.( )答案 (1)√ (2)√ (3)√ (4)√2.教材衍化(1)(必修A5P 10A 组T 4)在△ABC 中,a =4,b =5,c =6,则sin2Asin C =________.答案 1解析 由正弦定理得sin A ∶sin B ∶sin C =a ∶b ∶c =4∶5∶6,又由余弦定理知cos A =b 2+c 2-a 22bc =25+36-162×5×6=34,所以sin2Asin C =2sin A cos A sin C =2×46×34=1.(2)(必修A5P 20A 组T 11)若锐角△ABC 的面积为103,且AB =5,AC =8,则BC 等于________.答案 7解析 因为△ABC 的面积S △ABC =12AB ·AC sin A ,所以103=12×5×8sin A ,解得sin A =32,因为角A 为锐角,所以cos A =12.根据余弦定理,得BC 2=52+82-2×5×8cos A =52+82-2×5×8×12=49,所以BC =7.3.小题热身(1)(2016·天津高考)在△ABC 中,若AB =13,BC =3,∠C = 120°,则AC =( ) A .1 B .2 C .3 D .4 答案 A解析 在△ABC 中,设A ,B ,C 所对的边分别为a ,b ,c ,则由c 2=a 2+b 2-2ab cos C ,得13=9+b 2-2×3b ×⎝ ⎛⎭⎪⎫-12,即b 2+3b -4=0,解得b =1(负值舍去),即AC =1.故选A.(2)(2016·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C =513,a =1,则b =________.答案 2113解析 由已知可得sin A =35,sin C =1213,则sin B =sin(A +C )=35×513+45×1213=6365,再由正弦定理可得a sin A =b sin B ⇒b =1×636535=2113.题型1 利用正、余弦定理解三角形 典例1 (2018·郑州预测)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B=asin A ,则cos B =( ) A .-12 B.12 C .-32 D.32边角互化法.答案 B解析 由正弦定理知sin B 3cos B =sin Asin A =1,即tan B =3,由B ∈(0,π),所以B =π3,所以cos B =cos π3=12.故选B.典例2(2018·重庆期末)在△ABC 中,已知AB =43,AC =4,∠B =30°,则△ABC 的面积是( )A .4 3B .8 3C .43或8 3 D. 3注意本题的多解性.答案 C解析 在△ABC 中,由余弦定理可得AC 2=42=(43)2+BC 2-2×43BC cos30°,解得BC =4或BC =8.当BC =4时,AC =BC ,∠B =∠A =30°,△ABC 为等腰三角形,∠C =120°,△ABC 的面积为12AB ·BC sin B =12×43×4×12=4 3.当BC =8时,△ABC 的面积为12AB ·BC sin B =12×43×8×12=8 3.故选C.方法技巧正、余弦定理在解三角形中的应用技巧1.已知两边和一边的对角或已知两角和一边都能用正弦定理解三角形,正弦定理的形式多样,其中a =2R sin A ,b =2R sin B ,c =2R sin C 能够实现边角互化.见典例1.2.已知两边和它们的夹角、已知两边和一边的对角或已知三边都能直接运用余弦定理解三角形.见典例2.3.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.见典例2.冲关针对训练1.(2017·河西五市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(b -a )sin A =(b -c )·(sin B +sin C ),则角C 等于( )A.π3B.π6C.π4D.2π3 答案 A解析 由题意,得(b -a )a =(b -c )(b +c ),∴ab =a 2+b 2-c 2,∴cos C =a 2+b 2-c 22ab =12,∴C =π3.故选A.2.(2018·山东师大附中模拟)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知cos2A =-13,c =3,sin A =6sin C .(1)求a 的值;(2)若角A 为锐角,求b 的值及△ABC 的面积.解 (1)在△ABC 中,c =3,sin A =6sin C ,由正弦定理asin A =csin C ,得a =6c =6×3=3 2.(2)由cos2A =1-2sin 2A =-13得,sin 2A =23,由0<A <π2,得sin A=63,则cos A =1-sin 2A =33.由余弦定理a 2=b 2+c 2-2bc cos A , 化简,得b 2-2b -15=0, 解得b =5(b =-3舍去).所以S △ABC =12bc sin A =12×5×3×63=522.题型2 利用正、余弦定理判断三角形的形状典例(2017·陕西模拟)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定用边角互化法.答案 B解析 ∵b cos C +c cos B =a sin A ,由正弦定理得sin B cos C +sin C cos B =sin 2A ,∴sin(B +C )=sin 2A ,即sin A =sin 2A .又sin A >0,∴sin A =1,∴A =π2,故△ABC 为直角三角形.故选B.[条件探究1] 将本典例条件变为“若2sin A cos B =sin C ”,那么△ABC 一定是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形答案 B解析 解法一:由已知得2sin A cos B =sin C =sin(A +B )=sin A cos B +cos A sin B ,即sin(A -B )=0,因为-π<A -B <π,所以A =B .故选B. 解法二:由正弦定理得2a cos B =c ,由余弦定理得2a ·a 2+c 2-b 22ac =c ⇒a 2=b 2⇒a =b .故选B. [条件探究2] 将本典例条件变为“若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13”,则△ABC ( )A .一定是锐角三角形B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形 答案 C解析 在△ABC 中,sin A ∶sin B ∶sin C =5∶11∶13, ∴a ∶b ∶c =5∶11∶13,故设a =5k ,b =11k ,c =13k (k >0),由余弦定理可得 cos C =a 2+b 2-c 22ab =25k 2+121k 2-169k 22×5×11k2=-23110<0, 又∵C ∈(0,π),∴C ∈⎝ ⎛⎭⎪⎫π2,π, ∴△ABC 为钝角三角形.故选C.[条件探究3] 将本典例条件变为“若b cos B +c cos C =a cos A ”,试判断三角形的形状.解 由已知得b ·a 2+c 2-b 22ac +c ·a 2+b 2-c 22ab =a ·b 2+c 2-a 22bc , ∴b 2(a 2+c 2-b 2)+c 2(a 2+b 2-c 2)=a 2(b 2+c 2-a 2). ∴(a 2+c 2-b 2)(b 2+a 2-c 2)=0.∴a 2+c 2=b 2或b 2+a 2=c 2,即B =π2或C =π2.∴△ABC 为直角三角形. 方法技巧判定三角形形状的两种常用途径提醒:“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.冲关针对训练在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A=(2b -c )sin B +(2c -b )sin C .(1)求角A 的大小;(2)若sin B +sin C =3,试判断△ABC 的形状.解 (1)由2a sin A =(2b -c )sin B +(2c -b )sin C 及正弦定理,得2a 2=(2b -c )b +(2c -b )c ,即bc =b 2+c 2-a 2,∴cos A =b 2+c 2-a 22bc =12,A ∈(0,π), ∴A =60°.(2)∵A +B +C =180°, ∴B +C =180°-60°=120°.由sin B +sin C =3,得sin B +sin(120°-B )=3, ∴sin B +sin120°cos B -cos120°sin B = 3. ∴32sin B +32cos B =3,即sin(B +30°)=1. ∵0°<B <120°,∴30°<B +30°<150°. ∴B +30°=90°,即B =60°.∴A =B =C =60°,∴△ABC 为等边三角形. 题型3 与三角形有关的最值角度1 与三角形边长有关的最值典例(2017·杏花岭区模拟)已知锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =b cos C +33c sin B . (1)求B ;(2)若b =2,求ac 的最大值.本题采用转化法.解 (1)在△ABC 中,∵a =b cos C +33c sin B ,∴sin A =sin B cos C +33sin C sin B ,∴sin A =sin(B +C )=sin B cos C +33sin C sin B , 化为cos B sin C =33sin C sin B ,sin C ≠0, 可得tan B =3,B ∈(0,π),∴B =π3. (2)由正弦定理得b sin B =2R =43,令y =ac =2R sin A ·2R sin C =163sin A sin C =163sin A sin ⎝ ⎛⎭⎪⎫2π3-A =83sin ⎝ ⎛⎭⎪⎫2A -π6+43. ∵0<A <π2,0<2π3-A <π2,∴π6<A <π2. 故π6<2A -π6<5π6,∴sin ⎝ ⎛⎭⎪⎫2A -π6∈⎝ ⎛⎦⎥⎤12,1,∴y ∈⎝ ⎛⎦⎥⎤83,4.∴ac 的最大值为4. 角度2 与三角形内角有关的最值典例(2017·庄河市期末)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,设f (x )=a 2x 2-(a 2-b 2)x -4c 2.(1)若f (1)=0,且B -C =π3,求角C 的大小; (2)若f (2)=0,求角C 的取值范围.本题采用放缩法.解 (1)由f (1)=0,得a 2-a 2+b 2-4c 2=0, ∴b =2c ,又由正弦定理,得sin B =2sin C , ∵B -C =π3,∴sin ⎝ ⎛⎭⎪⎫π3+C =2sin C ,整理得3sin C =cos C ,∴tan C =33. ∵角C 是三角形的内角,∴C =π6. (2)∵f (2)=0,∴4a 2-2a 2+2b 2-4c 2=0, 即a 2+b 2-2c 2=0,由余弦定理,得cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12(当且仅当a =b 时取等号).又∵余弦函数在⎝ ⎛⎭⎪⎫0,π2上递减,C 是锐角,∴0<C ≤π3. 方法技巧求与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角的取值范围、函数值域的求法求解范围即可.冲关针对训练(2018·绵阳检测)已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x 4,记f (x )=m ·n .(1)若f (x )=1,求cos ⎝ ⎛⎭⎪⎫2π3-x 的值;(2)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.解 (1)f (x )=m ·n =3sin x 4cos x 4+cos 2x4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. 因为f (x )=1,所以sin ⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫x +π3=1-2sin 2⎝ ⎛⎭⎪⎫x 2+π6=12,cos ⎝ ⎛⎭⎪⎫2π3-x =-cos ⎝ ⎛⎭⎪⎫x +π3=-12. (2)因为(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , 所以2sin A cos B -sin C cos B =sin B cos C , 所以2sin A cos B =sin(B +C ),因为A +B +C =π,所以sin(B +C )=sin A ,且sin A ≠0, 所以cos B =12,B =π3,所以0<A <2π3,所以π6<A 2+π6<π2,12<sin ⎝ ⎛⎭⎪⎫A 2+π6<1,又因为f (x )=m ·n =sin ⎝ ⎛⎭⎪⎫x 2+π6+12,所以f (A )=sin ⎝ ⎛⎭⎪⎫A 2+π6+12,故函数f (A )的取值范围是⎝ ⎛⎭⎪⎫1,32.1.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3 答案 B解析 因为a =2,c =2, 所以由正弦定理可知,2sin A =2sin C , 故sin A =2sin C .又B =π-(A +C ), 故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即tan A =-1. 又A ∈(0,π),所以A =3π4. 从而sin C =12sin A =22×22=12.由A =3π4知C 为锐角,故C =π6. 故选B.2.(2018·南阳模拟)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =________.答案 π6解析 由正弦定理,得sin B (sin A cos C +sin C cos A )=12sin B ,即sin B sin(A +C )=12sin B ,因为sin B ≠0,所以sin B =12,所以B =π6或5π6,又因为a >b ,故B =π6.3.(2018·沈阳模拟)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足(a -b )(sin A +sin B )=(c -b )·sin C .若a =3,则b 2+c 2的取值范围是________.答案 5<b 2+c 2≤6解析 由正弦定理可得,(a -b )·(a +b )=(c -b )·c ,即b 2+c 2-a 2=bc ,cos A =b 2+c 2-a 22bc =12,又A ∈⎝ ⎛⎭⎪⎫0,π2,∴A =π3.∵b sin B =c sin C =3sin π3=2,∴b 2+c 2=4(sin 2B +sin 2C )=4[sin 2B +sin 2(A +B )]=4⎣⎢⎡⎦⎥⎤1-cos2B 2+1-cos2(A +B )2=3sin2B -cos2B +4=2sin ⎝ ⎛⎭⎪⎫2B -π6+4. ∵△ABC 是锐角三角形,且A =π3,∴B ∈⎝ ⎛⎭⎪⎫π6,π2,即2B -π6∈⎝ ⎛⎭⎪⎫π6,5π6,∴12<sin ⎝⎛⎭⎪⎫2B -π6≤1,∴5<b 2+c 2≤6.4.(2015·全国卷Ⅰ)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C .(1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 解 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14. (2)由(1)知b 2=2ac .因为B =90°,由勾股定理得a 2+c 2=b 2. 故a 2+c 2=2ac ,得c =a = 2. 所以△ABC 的面积为1.[重点保分 两级优选练]A 级一、选择题1.(2017·长沙模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =13,b =3,A =60°,则边c =( )A .1B .2C .4D .6 答案 C解析 a 2=c 2+b 2-2cb cos A ⇒13=c 2+9-6c cos60°,即c 2-3c -4=0,解得c =4或c =-1(舍去).故选C.2.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则( )A .a >bB .a <bC .a =bD .a 与b 的大小关系不能确定 答案 A解析 据题意由余弦定理可得a 2+b 2-2ab cos120°=c 2=(2a )2,化简整理得a 2=b 2+ab ,变形得a 2-b 2=(a +b )(a -b )=ab >0,故有a -b >0,即a >b .故选A.3.(2017·湖南长郡中学六模)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin2A =a sin B ,且c =2b ,则ab 等于( )A .2B .3 C. 2 D. 3 答案 A解析 由2b sin2A =a sin B ,得4b sin A cos A =a sin B ,由正弦定理得4sin B sin A cos A =sin A sin B ,∵sin A ≠0,且sin B ≠0,∴cos A =14,由余弦定理得a 2=b 2+4b 2-b 2,∴a 2=4b 2,∴ab =2.故选A.4.(2017·衡水中学调研)在△ABC 中,三边之比a ∶b ∶c =2∶3∶4,则sin A -2sin Bsin2C =( )A .1B .2C .-2 D.12答案 B解析 不妨设a =2,b =3,c =4,故cos C =4+9-162×2×3=-14,故sin A -2sin B sin2C =a -2b 2c cos C =2-68×⎝⎛⎭⎪⎫-14=2.故选B.5.在△ABC 中,A ,B ,C 是三角形的三个内角,a ,b ,c 是三个内角对应的三边,已知b 2+c 2=a 2+bc .若sin B sin C =34,△ABC 的形状( )A .等边三角形B .不含60°的等腰三角形C .钝角三角形D .直角三角形答案 A解析 在△ABC 中,由余弦定理,可得cos A =b 2+c 2-a 22bc ,由已知,得b 2+c 2-a 2=bc ,∴cos A =12.∵0<A <π,故A =π3.∵A +B +C =π,A =π3,∴C =2π3-B .由sin B sin C =34,得sin B sin ⎝ ⎛⎭⎪⎫2π3-B =34.即sin B ⎝ ⎛⎭⎪⎫sin 2π3cos B -cos 2π3sin B =34. 32sin B cos B +12sin 2B =34, 34sin2B +14(1-cos2B )=34,32sin2B -12cos2B =1,∴sin ⎝ ⎛⎭⎪⎫2B -π6=1. 又∵-π6<2B -π6<7π6,∴2B -π6=π2,即B =π3.∴C =π3,也就是△ABC 为等边三角形.故选A.6.(2014·江西高考)在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932 C.332 D .3 3 答案 C解析 c 2=(a -b )2+6,即c 2=a 2+b 2-2ab +6.① ∵C =π3,∴由余弦定理得c 2=a 2+b 2-ab ,②由①和②得ab =6,∴S △ABC =12ab sin C =12×6×32=332.故选C. 7.(2018·上海杨浦质量调研)设锐角△ABC 的三内角A ,B ,C 所对边的边长分别为a ,b ,c ,且a =1,B =2A ,则b 的取值范围为( )A .(2,3)B .(1,3)C .(2,2)D .(0,2) 答案 A解析 由a sin A =b sin B =bsin2A ,得b =2cos A . π2<A +B =3A <π,从而π6<A <π3. 又2A <π2,所以A <π4,所以π6<A <π4,22<cos A <32,所以2<b < 3.故选A.8.(2014·全国卷Ⅱ)钝角三角形ABC 的面积是12,AB =1,BC =2,则AC =( )A .5 B. 5 C .2 D .1 答案 B解析 S △ABC =12AB ·BC sin B =12×1×2sin B =12,∴sin B =22,∴B =45°或135°.若B =45°,则由余弦定理得AC =1,∴△ABC 为直角三角形,不符合题意,因此B =135°,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos B =1+2-2×1×2×⎝⎛⎭⎪⎫-22=5,∴AC = 5.故选B.9.(2018·辽宁五校第一次联考)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若直线bx +y cos A +cos B =0与ax +y cos B +cos A =0平行,则△ABC 一定是( )A .锐角三角形B .等腰三角形C .直角三角形D .等腰或者直角三角形 答案 C解析 由两直线平行可得b cos B -a cos A =0,由正弦定理可知sin B cos B -sin A cos A =0,即12sin2A =12sin2B ,又A ,B ∈(0,π),且A +B ∈(0,π),所以2A =2B 或2A +2B =π,即A =B 或A +B =π2.若A =B ,则a =b ,cos A =cos B ,此时两直线重合,不符合题意,舍去,故A +B =π2,则△ABC 是直角三角形.故选C.10.(2017·武昌调研)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若a =2b sin C ,则tan A +tan B +tan C 的最小值是( )A .4B .3 3C .8D .6 3 答案 C解析 a =2b sin C ⇒sin A =2sin B sin C ⇒sin(B +C )=2sin B sin C ⇒tan B +tan C =2tan B tan C ,又根据三角形中的三角恒等式tan A +tan B +tan C =tan A tan B tan C (注:tan A =tan(π-B -C )=-tan(B +C )=-tan B +tan C1-tan B tan C,即tan A +tan B +tan C =tan A tan B tan C )⇒tan B tan C =tan Atan A -2,∴tan A tan B tan C =tan A ·tan A tan A -2=m 2m -2(tan A =m ),令m -2=t ⇒(t +2)2t =t +4t +4≥8,当且仅当t =4t ,即t =2,tan A =4时,取等号.故选C.二、填空题11.(2015·重庆高考)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sin B ,则c =________.答案 4解析 由3sin A =2sin B 及正弦定理,得3a =2b ,所以b =32a =3.由余弦定理cos C =a 2+b 2-c 22ab ,得-14=22+32-c22×2×3,解得c =4.12.(2018·河北唐山一模)在△ABC 中,角A ,B ,C 的对边a ,b ,c 成等差数列,且A -C =90°,则cos B =________.答案 34解析 ∵a ,b ,c 成等差数列,∴2b =a +c . ∴2sin B =sin A +sin C .∵A -C =90°,∴2sin B =sin(90°+C )+sin C . ∴2sin B =cos C +sin C . ∴2sin B =2sin(C +45°).①∵A +B +C =180°且A -C =90°,∴C =45°-B 2,代入①式中,2sin B =2sin ⎝ ⎛⎭⎪⎫90°-B 2. ∴2sin B =2cos B 2.∴4sin B 2cos B 2=2cos B2. ∴sin B 2=24.∴cos B =1-2sin 2B 2=1-14=34.13.(2018·沈阳监测)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________.答案 8解析 由题意得4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得2bc sin A =-2bc cos A +2bc , 即sin A +cos A =1,2sin ⎝ ⎛⎭⎪⎫A +π4=1, 又0<A <π,∴π4<A +π4<5π4,∴A +π4=3π4, ∴A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc , 当且仅当b =c 时取“=”,∴bc ≤16, ∴S 的最大值为8.14.(2017·浙江高考)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.答案152104解析 依题意作出图形,如图所示,则sin ∠DBC =sin ∠ABC .由题意知AB =AC =4,BC =BD =2, 则cos ∠ABC =14,sin ∠ABC =154.所以S △BDC =12BC ·BD ·sin ∠DBC =12×2×2×154=152.因为cos ∠DBC =-cos ∠ABC =-14=BD 2+BC 2-CD22BD ·BC=8-CD 28,所以CD =10.由余弦定理,得cos ∠BDC =4+10-42×2×10=104.B 级三、解答题15.(2018·郑州质检)已知△ABC 的外接圆直径为433,角A ,B ,C 所对的边分别为a ,b ,c ,C =60°.(1)求a +b +c sin A +sin B +sin C 的值;(2)若a +b =ab ,求△ABC 的面积. 解 (1)因为a sin A =b sin B =c sin C =2R =433, 所以a =433sin A ,b =433sin B ,c =433sin C . 所以a +b +csin A +sin B +sin C =433(sin A +sin B +sin C )sin A +sin B +sin C =433.(2)由c =433sin C ,得c =433×32=2,c 2=a 2+b 2-2ab cos C ,即4=a 2+b 2-ab =(a +b )2-3ab ,又a +b =ab ,所以(ab )2-3ab -4=0,解得ab =4或ab =-1(舍去), 所以S △ABC =12ab sin C =12×4×32= 3.16.(2017·湖北四校联考)已知在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且满足sin 2A +sin A sin B -6sin 2B =0.(1)求ab 的值;(2)若cos C =34,求sin B 的值.解 (1)因为sin 2A +sin A sin B -6sin 2B =0,sin B ≠0,所以⎝ ⎛⎭⎪⎫sin A sin B 2+sin A sin B -6=0,得sin A sin B =2或sin A sin B =-3(舍去). 由正弦定理得a b =sin A sin B =2.(2)由余弦定理得cos C =a 2+b 2-c 22ab =34.① 将ab =2,即a =2b 代入①, 得5b 2-c 2=3b 2,得c =2b . 由余弦定理cos B =a 2+c 2-b 22ac ,得 cos B =(2b )2+(2b )2-b 22×2b ×2b =528,则sin B =1-cos 2B =148.17.(2018·海淀区模拟)在△ABC 中,角A ,B ,C 所对的边长分别是a ,b ,c .满足2a cos C +c cos A =b .(1)求角C 的大小;(2)求sin A cos B +sin B 的最大值.解 (1)由正弦定理及2a cos C +c cos A =b , 得2sin A cos C +sin C cos A =sin B . 在△ABC 中,A +B +C =π, ∴A +C =π-B ,即sin(A +C )=sin B .∴2sin A cos C +sin C cos A =sin(A +C )+sin A cos C =sin B +sin A cos C =sin B ,∴sin A cos C =0,又∵0<A <π,0<C <π,∴sin A >0. ∴cos C =0,∴C =π2. (2)由(1)得C =π2, ∴A +B =π2,即A =π2-B .∵sin A cos B +sin B =cos 2B +sin B =-sin 2B +sin B +1=-⎝⎛⎭⎪⎫sin B -122+54.∵0<B <π2,∴当sin B =12,即B =π6时, sin A cos B +sin B 取得最大值54.18.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD .(1)求tan ∠ADB 的值; (2)若CD =33,求S △ABC .解 (1)如图,设AB =AC =a ,AD =BD =b ,由3BC =2AB 得,BC =233a .在△ABC 中,由余弦定理得,cos ∠ABC =AB 2+BC 2-AC 22AB ·BC =a 2+⎝⎛⎭⎪⎫23a 32-a 22a ·233a=33,∴∠ABC 是锐角,则sin ∠ABC =1-cos 2∠ABC =63.在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2AB ·BD cos ∠ABD , 得b 2=a 2+b 2-233ab ,解得a =233b . 由正弦定理AD sin ∠ABD =ABsin ∠ADB ,得b 63=a sin ∠ADB ,解得sin ∠ADB =223,又2b 2>a 2,∴∠ADB 为锐角,∴cos ∠ADB =1-sin 2∠ADB =13,tan ∠ADB =2 2.(2)由已知可得3⎝⎛⎭⎪⎫b +33=2a ,①由(1)可知a =233b ,② 联立①②得a =2,b = 3.过A 作AH ⊥BC 于H ,则H 为BC 的中点,易求得DH =33. 则tan ∠ADB =AH33=2 2. ∴AH =263,∴S △ABC =12×433×263=423.海阔天空专业文档。

2021高考数学一轮复习第三章三角函数解三角形第6讲正弦定理和余弦定理课件.ppt

2021高考数学一轮复习第三章三角函数解三角形第6讲正弦定理和余弦定理课件.ppt

2× 3
3 2=
2 2.
因为 AB>AC,所以 C>B,
所以 B∈0,π2,所以 B=45°,又 C=60°, 所以 A=180°-B-C=180°-45°-60°=75°.
角度 2 用余弦定理解三角形
3.在△ABC 中,若 AB= 13,BC=3,C=120°,则 AC=( )
A.1
B.2
C.3
2.小题热身
(1)△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 a= 5,c=2,
cosA=23,则 b=( )
A. 2 C.2
B. 3 D.3
答案 D
解析 由余弦定理得 5=b2+4-2×b×2×23,解得 b=3 或 b=-13(舍 去),故选 D.
(2)在△ABC 中,已知 b=40,c=20,C=60°,则此三角形的解的情况
(5)在△ABC 中,a=4,b=5,c=6,则ssiinn2CA=___1_____.
解析 因为 a=4,b=5,c=6,所以 cosA=b2+2cb2c-a2=522+×652×-642=34, 所以ssiinn2CA=2sinsiAncCosA=2accosA=2×64×34=1.
2
PART TWO
=π6,c=4,所以由正弦定理得 b=cssiinnCB=4×2 12=3. 3
2.(2020·丹东模拟)在△ABC 中,C=60°,AC= 2,AB= 3,则 A=( )
A.15°
B.45°
C.75°
D.105°
答案 C
解析 在△ABC 中,C=60°,AC= 2,AB= 3,
由正弦定理得 sinB=ACAsBinC=
第三章 三角函数、解三角形

2024届高考数学一轮总复习第三章三角函数解三角形第六讲函数y=Asinωx+φ的图象及应用课件

2024届高考数学一轮总复习第三章三角函数解三角形第六讲函数y=Asinωx+φ的图象及应用课件
答案:C
【题后反思】函数 y=A sin (ωx+φ)(A>0,ω>0)的图象的 作法
(1)五点法:用“五点法”作 y=A sin (ωx+φ)的简图,主要是 通过变量代换,令 z=ωx+φ,由 z 取 0,π2,π,32π,2π 来求出相 的 x,通过列表得出五点坐标,描点,连线后得出图象.
(2)图象变换法:由函数 y=sin x 的图象通过变换得到 y= A sin (ωx+φ)的图象有两种途径:“先平移后伸缩”与“先伸缩后 平移”.
第六讲 函数y=Asin(ωx+φ)的图象及应用
课标要求
考情分析
结合具体实例,了解y =A sin (ωx+φ)的实际 意义;能借助图象理解 参数ω,φ,A的意义, 了解参数的变化对函数 图象的影响
1.从近几年的高考试题来看,函数y=A sin (ωx+φ)的图象的平移和伸缩变换以及根据图 象确定A,ω,φ的值等问题是高考的热点, 复习时,应抓住“五点法”作图和图象的变 换以及性质的应用,通过适量的训练,掌握 解决问题的通法. 2.题型一般是选择题或填空题
故 f(x)的单调递增区间为-51π2+kπ,1π2+kπ(k∈Z).
答案:-51π2+kπ,1π2+kπ(k∈Z)
2.已知函数 f(x)=sin (ωx+φ)ω>0,|φ|<π2的部分图象如图 3-6-4 所示,则 y=fx+π6取得最小值时 x 的集合为__________.
图 3-6-4
解析:根据题干所给图象,周期 T=4×172π-π3=π, 故 π=2ωπ,∴ω=2,因此 f(x)=sin (2x+φ),另外图象经过点
图 3-6-6
由图象得,当 22≤a<1 时,方程 cos 2x-π4=a 恰好有三个不 同的实数根.

高考数学一轮复习 第三章 三角函数、解三角形 3.6.2 正弦定理和余弦定理的应用课件

高考数学一轮复习 第三章 三角函数、解三角形 3.6.2 正弦定理和余弦定理的应用课件

第二十三页,共四十三页。
【解】 (1)解法 1:由题设及正弦定理得 2sinBsinC=sinAcosC +sinCcosA,又 sinAcosC+sinCcosA=sin(A+C)=sin(π-B)= sinB,所以 2sinBsinC=sinB.
由于 sinB= 23≠0,所以 sinC=12. 又 0<C<3π,所以 C=π6. 解法 2:由题设及余弦定理可得 2bsinC=a×a2+2ba2b-c2+ c×b2+2cb2c-a2,
12/8/2021
第三十四页,共四十三页。
当 a=2 时,S=12acsinB=12×2×6× 23=3 3. 当 a=4 时,S=12acsinB=12×4×6× 23=6 3. (2)解法 1:建立关于边 b 的不等关系 由余弦定理得 b2=a2+c2-2accosB =a2+36-6a=(a-3)2+27. 因为 1≤a≤6,所以 27≤b2≤36,即 3 3≤b≤6.
12/8/2021
第十九页,共四十三页。
如图,四边形 ABCD 中,AC= 3BC,AB=4,∠ABC=π3.
(1)求∠ACB; (2)若∠ADC=23π,四边形 ABCD 的周长为 10,求四边形 ABCD 的 面积.
12/8/2021
第二十页,共四十三页。
解:(1)设 BC=a,则 AC= 3a, 在△ABC 中由余弦定理 AC2=AB2+BC2-2AB·BC·cos∠ABC, 得 3a2=42+a2-2×4·a·12, ∴a2+2a-8=0,∴a=2 或 a=-4(舍去), ∴AB2=AC2+BC2,∴∠ACB=2π.
方法技巧 平面图形中计算问题的解题关键及思路 求解平面图形中的计算问题,关键是梳理条件和所求问题的 类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建 立已知和所求的关系. 具体解题思路如下: 1把所提供的平面图形拆分成若干个三角形,然后在各个三 角形内利用正弦、余弦定理求解; 2寻找各个三角形之间的联系,交叉使用公共条件,求出结 果.

2019版高考数学文高分计划一轮高分讲义:第3章三角函

2019版高考数学文高分计划一轮高分讲义:第3章三角函

3.3 三角函数的图象与性质[知识梳理]1.用五点法作正弦函数和余弦函数的简图正弦函数y =sin x ,x ∈[0,2π]的图象上,五个关键点是:(0,0),⎝⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0). 余弦函数y =cos x ,x ∈[0,2π]的图象上,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1). 2.正弦函数、余弦函数、正切函数的图象和性质[诊断自测] 1.概念思辨(1)y =tan x 在整个定义域上是增函数.( )(2)函数f (x )=sin(-2x )与f (x )=sin2x 的单调增区间都是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z ).( )(3)由sin ⎝ ⎛⎭⎪⎫π6+2π3=sin π6知,2π3是正弦函数y =sin x (x ∈R )的一个周期.( )(4)若非零实数T 是函数f (x )的周期,则kT (k 是非零整数)也是函数f (x )的周期.( )答案 (1)× (2)× (3)× (4)√2.教材衍化(1)(必修A4P 46T 2)函数f (x )=(1+3tan x )cos x 的最小正周期、最大值为( )A .2π,2 B.3π2, 3 C .π,2 D.π2, 3 答案 A解析 f (x )=(1+3tan x )cos x =cos x +3sin x cos x ·cos x =2cos ⎝ ⎛⎭⎪⎫x -π3,则T =2π.最大值为2.故选A.(2)(必修A4P 40T 4)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π2(x ∈R ),下列结论错误的是( )A .函数f (x )是偶函数B .函数f (x )的最小正周期为πC .函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上是增函数 D .函数f (x )的图象关于直线x =π4对称 答案 D解析 f (x )=sin ⎝⎛⎭⎪⎫2x -π2=-cos2x ,此函数为最小正周期为π的偶函数,所以A ,B 正确.由函数y =cos x 的单调性知C 正确.函数图象的对称轴方程为x =k π2(k ∈Z ),显然,无论k 取任何整数,x ≠π4,所以D 错误.故选D.3.小题热身(1)函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-1 B .-22 C.22 D .0 答案 B解析 由已知x ∈⎣⎢⎡⎦⎥⎤0,π2,得2x -π4∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以sin ⎝⎛⎭⎪⎫2x -π4∈⎣⎢⎡⎦⎥⎤-22,1,故函数f (x )=sin ⎝ ⎛⎭⎪⎫2x -π4在区间⎣⎢⎡⎦⎥⎤0,π2上的最小值为-22.故选B.(2)函数y =tan ⎝ ⎛⎭⎪⎫x 2+π3的单调递增区间是________,最小正周期是________.答案 ⎝⎛⎭⎪⎫2k π-5π3,2k π+π3(k ∈Z ) 2π 解析 由k π-π2<x 2+π3<k π+π2,k ∈Z ,得2k π-5π3<x <2k π+π3,k ∈Z .周期T =π12=2π.题型1 三角函数的定义域和值域 典例1函数f (x )=64-x 2+log 2(2sin x -1)的定义域是________. 本题采用数形结合.答案 ⎝⎛⎭⎪⎫-11π6,-7π6∪⎝ ⎛⎭⎪⎫π6,5π6∪⎝ ⎛⎦⎥⎤13π6,8 解析 由题意,得⎩⎪⎨⎪⎧64-x 2≥0,①2sin x -1>0,②由①得-8≤x ≤8,由②得sin x >12,由正弦曲线得π6+2k π<x <5π6+2k π(k ∈Z ).所以不等式组的解集为⎝ ⎛⎭⎪⎫-11π6,-7π6∪⎝ ⎛⎭⎪⎫π6,5π6∪⎝ ⎛⎦⎥⎤13π6,8. 典例2 是否存在实数a ,使得函数y =sin 2x +a cos x +58a -32在闭区间⎣⎢⎡⎦⎥⎤0,π2上的最大值是1?若存在,求出对应的a 值;若不存在,试说明理由.用转化法将问题化为二次函数型,然后分类讨论.解 y =1-cos 2x +a cos x +58a -32=-⎝ ⎛⎭⎪⎫cos x -a 22+a 24+58a -12.当0≤x ≤π2时,0≤cos x ≤1.若a 2>1,即a >2,则当cos x =1时,y max =a +58a -32=1⇒a =2013<2(舍去),若0≤a 2≤1,即0≤a ≤2,则当cos x =a 2时,y max =a 24+58a -12=1⇒a =32或a =-4<0(舍去).若a 2<0,即a <0,则当cos x =0时,y max =58a -12=1⇒a =125>0(舍去)综合上述,存在a =32符合题设.方法技巧1.三角函数定义域的求法求三角函数定义域实际上是构造简单的三角不等式(组),常借助三角函数线或三角函数图象来求解.见典例1.2.三角函数值域的不同求法(1)形如y =a sin x +b cos x +k 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求值域(最值).(2)形如y =a sin 2x +b sin x +k 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值).见典例2.(3)形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).冲关针对训练1.(2017·郑州模拟)已知函数f (x )=sin ⎝ ⎛⎭⎪⎫x +π6,其中x ∈⎣⎢⎡⎦⎥⎤-π3,a ,若f (x )的值域是⎣⎢⎡⎦⎥⎤-12,1,则实数a 的取值范围是________.答案 ⎣⎢⎡⎦⎥⎤π3,π 解析 由x ∈⎣⎢⎡⎦⎥⎤-π3,a ,知x +π6∈⎣⎢⎡⎦⎥⎤-π6,a +π6.∵x +π6∈⎣⎢⎡⎦⎥⎤-π6,π2时,f (x )的值域为⎣⎢⎡⎦⎥⎤-12,1, ∴由函数的图象知π2≤a +π6≤7π6,所以π3≤a ≤π.2.已知3sin 2α+2sin 2β=2sin α,求y =sin 2α+sin 2β的取值范围. 解 ∵3sin 2α+2sin 2β=2sin α, ∴sin 2β=-32sin 2α+sin α,∵0≤sin 2β≤1,∴⎩⎪⎨⎪⎧-32sin 2α+sin α≥0,-32sin 2α+sin α≤1,解得0≤sin α≤23,∵y =sin 2α+sin 2β=-12sin 2α+sin α=-12(sin α-1)2+12,0≤sin α≤23,∴sin α=0时,y min =0;sin α=23时,y max =49, ∴0≤sin 2α+sin 2β≤49.题型2 三角函数的单调性典例1 (2017·长沙一模)函数y =sin ⎝ ⎛⎭⎪⎫π3-12x ,x ∈[-2π,2π]的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤-π3,5π3 B.⎣⎢⎡⎦⎥⎤-2π,-π3C.⎣⎢⎡⎦⎥⎤5π3,2π D.⎣⎢⎡⎦⎥⎤-2π,-π3和⎣⎢⎡⎦⎥⎤5π3,2π 本题用子集法.答案 D解析 依题意得y =-sin ⎝ ⎛⎭⎪⎫12x -π3,当2k π+π2≤12x -π3≤2k π+3π2(k ∈Z ),即4k π+5π3≤x ≤4k π+11π3(k ∈Z )时,函数y =-sin ⎝⎛⎭⎪⎫12x -π3是单调递增函数.又x ∈[-2π,2π],因此函数y =-sin ⎝ ⎛⎭⎪⎫12x -π3,x ∈[-2π,2π]的单调递增区间是⎣⎢⎡⎦⎥⎤-2π,-π3和⎣⎢⎡⎦⎥⎤5π3,2π.选D. 典例2 已知ω>0,函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π4在⎝ ⎛⎭⎪⎫π2,π上单调递减,则实数ω的取值范围是( )A.⎣⎢⎡⎦⎥⎤12,54B.⎣⎢⎡⎦⎥⎤12,34C.⎝ ⎛⎦⎥⎤0,12 D .(0,2] 子集反推法.答案 A解析 由π2<x <π,得ωπ2+π4<ωx +π4<ωπ+π4.又y =sin α在⎝⎛⎭⎪⎫π2,3π2上递减,所以⎩⎪⎨⎪⎧ωπ2+π4≥π2,ωπ+π4≤3π2,解得12≤ω≤54.故选A.方法技巧1.求三角函数单调区间的方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u (或t ),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.(3)子集法:求出原函数的相应单调区间,由已知区间是所求某区间的子集,列不等式(组)求解.见典例1.2.已知三角函数的单调区间求参数的取值范围的方法 (1)反子集法:由所给区间求出整体角的范围,由该范围是某相应正、余弦函数的某个单调区间的子集,列不等式(组)求解.见典例2.(2)周期法:由所给区间的两个端点到其相应对称中心的距离不超过14周期列不等式(组)求解.提醒:要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,若ω<0,那么一定先借助诱导公式将ω化为正数.同时切莫漏掉考虑函数自身的定义域.冲关针对训练1.(2017·济宁检测)下列函数中,周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上为减函数的是( )A .y =sin ⎝ ⎛⎭⎪⎫2x +π2 B .y =cos ⎝ ⎛⎭⎪⎫2x +π2 C .y =sin ⎝⎛⎭⎪⎫x +π2D .y =cos ⎝⎛⎭⎪⎫x +π2答案 A解析 对于选项A ,注意到y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos2x 的周期为π,且在⎣⎢⎡⎦⎥⎤π4,π2上是减函数.故选A.2.(2017·莆田一模)已知函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2,A ⎝ ⎛⎭⎪⎫13,0为f (x )图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,若BC =4,则f (x )的单调递增区间是( )A.⎝ ⎛⎭⎪⎫2k -23,2k +43,k ∈Z B.⎝ ⎛⎭⎪⎫2k π-2π3,2k π+4π3,k ∈Z C.⎝ ⎛⎭⎪⎫4k -23,4k +43,k ∈Z D.⎝ ⎛⎭⎪⎫4k π-2π3,4k π+4π3,k ∈Z 答案 C解析 函数f (x )=3sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,-π2<φ<π2,A ⎝ ⎛⎭⎪⎫13,0为f (x )图象的对称中心,B ,C 是该图象上相邻的最高点和最低点,∵BC =4,∴(23)2+⎝ ⎛⎭⎪⎫T 22=42,即12+π2ω2=16,求得ω=π2. 再根据π2·13+φ=k π,k ∈Z ,可得φ=-π6,∴f (x )=3sin ⎝ ⎛⎭⎪⎫π2x -π6. 令2k π-π2≤π2x -π6≤2k π+π2,求得4k -23≤x ≤4k +43, 故f (x )的单调递增区间为⎝⎛⎭⎪⎫4k -23,4k +43,k ∈Z .故选C.题型3 三角函数的奇偶性及对称性典例1(2018·江西模拟)已知函数f (x )=A cos(ωx +φ)(A >0, ω>0,0<φ<π)为奇函数,该函数的部分图象如图所示,△EFG 是边长为2的等边三角形,则f (1)的值为( )A .-32B .-62 C.3 D .- 3数形结合思想.答案 D解析 ∵f (x )=A cos(ωx +φ)为奇函数,∴f (0)=A cos φ=0 ∵0<φ<π,∴φ=π2,∴f (x )=A cos ⎝⎛⎭⎪⎫ωx +π2=-A sin ωx .∵△EFG 是边长为2的等边三角形,则y E =3=A , 又∵函数的周期T =2FG =4,根据周期公式可得,ω=2π4=π2. ∴f (x )=-A sin π2x =-3sin π2x , 则f (1)=- 3.故选D.典例2(2018·江南十校联考)已知函数f (x )=sin(ωx + φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为4π,且对∀x ∈R ,有f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,则f (x )图象的一个对称中心是( )A.⎝ ⎛⎭⎪⎫-2π3,0B.⎝ ⎛⎭⎪⎫-π3,0C.⎝⎛⎭⎪⎫2π3,0 D.⎝⎛⎭⎪⎫5π3,0 应用公式法.答案 A解析 由f (x )=sin(ωx +φ)的最小正周期为4π,得ω=12.因为f (x )≤f ⎝ ⎛⎭⎪⎫π3恒成立,所以f (x )max =f ⎝ ⎛⎭⎪⎫π3,即12×π3+φ=π2+2k π(k ∈Z ).由|φ|<π2,得φ=π3,故f (x )=sin ⎝⎛⎭⎪⎫12x +π3.令12x +π3=k π(k ∈Z ),得x =2k π-2π3(k ∈Z ),故f (x )图象的对称中心为⎝⎛⎭⎪⎫2k π-2π3,0(k ∈Z ).当k =0时,f (x )图象的对称中心为⎝ ⎛⎭⎪⎫-2π3,0.故选A.方法技巧1.若f (x )=A sin(ωx +φ)为偶函数,则φ=k π+π2(k ∈Z ),同时当x =0时,f (x )取得最大或最小值.若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ),同时当x =0时,f (x )=0.见典例1.2.解决对称性问题的关键:熟练掌握三角函数的对称轴、对称中心.对于函数y =A sin(ωx +φ),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x =x 0或点(x 0,0)是否是函数的对称轴或对称中心时,可通过检验f (x 0)的值进行判断.见典例2.冲关针对训练1.(2017·揭阳模拟)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f ⎝ ⎛⎭⎪⎫3π4-x ( )A .是奇函数且图象关于点⎝ ⎛⎭⎪⎫π2,0对称 B .是偶函数且图象关于点(π,0)对称 C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称 答案 C解析 ∵当x =π4时,函数f (x )取得最小值,∴sin ⎝ ⎛⎭⎪⎫π4+φ=-1,∴φ=2k π-3π4(k ∈Z ), ∴f (x )=sin ⎝ ⎛⎭⎪⎫x +2k π-3π4=sin ⎝ ⎛⎭⎪⎫x -3π4,∴y =f ⎝ ⎛⎭⎪⎫3π4-x =sin(-x )=-sin x ,∴y =f ⎝⎛⎭⎪⎫3π4-x 是奇函数,且图象关于直线x =π2对称.故选C.2.(2018·南阳期末)已知函数f (x )=1-cos 2x ,试讨论该函数的奇偶性、周期性以及在区间[0,π]上的单调性.解 因为y =1-cos 2x =sin 2x =|sin x |=⎩⎪⎨⎪⎧sin x ,2k π≤x ≤2k π+π,k ∈Z ,-sin x ,2k π+π<x ≤2k π+2π,k ∈Z ,所以作函数的图象如下:所以,该函数是偶函数,周期为π.在区间⎣⎢⎡⎭⎪⎫0,π2上是增函数,在区间⎣⎢⎡⎦⎥⎤π2,π上是减函数,在区间[0,π]上不是单调函数.1.(2017·全国卷Ⅲ)设函数f (x )=cos ⎝ ⎛⎭⎪⎫x +π3,则下列结论错误的是( )A .f (x )的一个周期为-2πB .y =f (x )的图象关于直线x =8π3对称 C .f (x +π)的一个零点为x =π6D .f (x )在⎝⎛⎭⎪⎫π2,π单调递减答案 D解析 因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的周期为2k π(k ∈Z ),所以f (x )的一个周期为-2π,A 项正确.因为f (x )=cos ⎝⎛⎭⎪⎫x +π3图象的对称轴为直线x=k π-π3(k ∈Z ),所以y =f (x )的图象关于直线x =8π3对称,B 项正确.f (x +π)=cos ⎝⎛⎭⎪⎫x +4π3.令x +4π3=k π+π2(k ∈Z ),得x =k π-56π,当k =1时,x =π6,所以f (x +π)的一个零点为x =π6,C 项正确.因为f (x )=cos ⎝ ⎛⎭⎪⎫x +π3的递减区间为⎣⎢⎡⎦⎥⎤2k π-π3,2k π+2π3(k ∈Z ),递增区间为⎣⎢⎡⎦⎥⎤2k π+2π3,2k π+5π3(k ∈Z ),所以⎝ ⎛⎭⎪⎫π2,2π3是减区间,⎣⎢⎡⎭⎪⎫2π3,π是增区间,D 项错误.故选D.2.(2018·舟山模拟)若函数f (x )=3sin(2x +θ)(0<θ<π)是偶函数,则f (x )在[0,π]上的递增区间是( )A.⎣⎢⎡⎦⎥⎤0,π2B.⎣⎢⎡⎦⎥⎤π2,πC.⎣⎢⎡⎦⎥⎤π4,π2D.⎣⎢⎡⎦⎥⎤3π4,π 答案 B解析 ∵函数f (x )=3sin(2x +θ)(0<θ<π)是偶函数,∴θ=π2,f (x )=3sin ⎝ ⎛⎭⎪⎫2x +π2=3cos2x ,令2k π-π≤2x ≤2k π,求得k π-π2≤x ≤k π,可得函数f (x )的增区间为⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z ). 则f (x )在[0,π]上的递增区间为⎣⎢⎡⎦⎥⎤π2,π.故选B.3.(2014·北京高考)设函数f (x )=A sin(ωx +φ)(A ,ω,φ是常数,A >0,ω>0).若f (x )在区间⎣⎢⎡⎦⎥⎤π6,π2上具有单调性,且f ⎝ ⎛⎭⎪⎫π2=f ⎝ ⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,则f (x )的最小正周期为________.答案 π解析 记f (x )的最小正周期为T . 由题意知T 2≥π2-π6=π3,又f ⎝ ⎛⎭⎪⎫π2=f ⎝⎛⎭⎪⎫2π3=-f ⎝ ⎛⎭⎪⎫π6,且2π3-π2=π6.可作出示意图如图所示,∴x 1=⎝ ⎛⎭⎪⎫π2+π6×12=π3,x 2=⎝ ⎛⎭⎪⎫π2+2π3×12=7π12,∴T 4=x 2-x 1=7π12-π3=π4,∴T =π.4.(2017·赣榆区期中)已知函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,φ∈⎝ ⎛⎭⎪⎫0,π2的图象在y 轴上的截距为1,在相邻两个最值点⎝ ⎛⎭⎪⎫x 0-32,2和(x 0,-2)上(x 0>0),函数f (x )分别取最大值和最小值.(1)求函数f (x )的解析式;(2)若f (x )=k +12在区间⎣⎢⎡⎦⎥⎤0,32内有两个不同的零点,求k 的取值范围;(3)求函数f (x )在区间⎣⎢⎡⎦⎥⎤134,234上的对称轴方程.解 (1)A =2,T 2=x 0-⎝⎛⎭⎪⎫x 0-32=32⇒T =3⇒ω=2π3,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2π3x +φ,代入(0,1)点,2sin φ=1,∵φ∈⎝ ⎛⎭⎪⎫0,π2,∴φ=π6,∴f (x )=2sin ⎝ ⎛⎭⎪⎫2π3x +π6.(2)x ∈⎣⎢⎡⎦⎥⎤0,32⇒2π3x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6⇒1≤k +12<2⇒1≤k <3.(3)2π3x +π6=π2+k π,k ∈Z ⇒x =12+32k ,k ∈Z ⇒函数f (x )在区间⎣⎢⎡⎦⎥⎤134,234上的对称轴方程为x =72,x =5.[基础送分 提速狂刷练]一、选择题1.如果函数y =3cos(2x +φ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称,那么|φ|的最小值为( )A.π6B.π4C.π3D.π2 答案 A解析 依题意得3cos ⎝ ⎛⎭⎪⎫8π3+φ=0,8π3+φ=k π+π2,φ=k π-136π(k∈Z ),因此|φ|的最小值是π6.故选A.2.(2017·长沙模拟)已知函数y =sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π3上是增函数,则实数ω的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32,0 B .[-3,0) C.⎝ ⎛⎦⎥⎤0,32 D .(0,3]答案 C解析 由于y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,为保证y =sin ωx 在⎣⎢⎡⎦⎥⎤-π3,π3上是增函数,所以ω>0,且π3ω≤π2,则0<ω≤32.故选C.3.(2017·成都调研)函数y =2sin ⎝⎛⎭⎪⎫π6x -π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3 答案 A解析 因为0≤x ≤9,所以-π3≤π6x -π3≤7π6, 所以sin ⎝ ⎛⎭⎪⎫π6x -π3∈⎣⎢⎡⎦⎥⎤-32,1.所以y ∈[-3,2],所以y max +y min =2- 3.选A.4.设函数f (x )=2sin ⎝ ⎛⎭⎪⎫ωx +φ+π4⎝ ⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且是偶函数,则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4内单调递减C .f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4内单调递增答案 A解析 由条件,知ω=2.因为f (x )是偶函数,且|φ|<π2,所以φ=π4, 这时f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π2=2cos2x .因为当x ∈⎝ ⎛⎭⎪⎫0,π2时,2x ∈(0,π), 所以f (x )在⎝ ⎛⎭⎪⎫0,π2内单调递减.故选A.5.将函数y =sin x 的图象向左平移π2个单位,得到函数y =f (x )的图象,则下列说法正确的是( )A .y =f (x )是奇函数B .y =f (x )的周期为πC .y =f (x )的图象关于直线x =π2对称D .y =f (x )的图象关于点⎝⎛⎭⎪⎫-π2,0对称答案 D解析 由题意知,f (x )=cos x ,所以它是偶函数,A 错误;它的周期为2π,B 错误;它的对称轴是直线x =k π,k ∈Z ,C 错误;它的对称中心是点⎝⎛⎭⎪⎫k π+π2,0,k ∈Z ,D 正确.故选D. 6.(2017·广州综合测试)已知函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫0<φ<π2的图象的一个对称中心为⎝ ⎛⎭⎪⎫3π8,0,则函数f (x )的单调递减区间是( ) A.⎣⎢⎡⎦⎥⎤2k π-3π8,2k π+π8(k ∈Z ) B.⎣⎢⎡⎦⎥⎤2k π+π8,2k π+5π8(k ∈Z ) C.⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8(k ∈Z ) D.⎣⎢⎡⎦⎥⎤k π+π8,k π+5π8(k ∈Z )答案 D解析 由题意得f ⎝ ⎛⎭⎪⎫3π8=sin ⎝ ⎛⎭⎪⎫2×3π8+φ=0,则2×3π8+φ=k π,k ∈Z ,解得φ=-3π4+k π,k ∈Z ,又因为0<φ<π2,所以φ=π4,则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4,则由π2+2k π≤2x +π4≤3π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z ,所以函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π4的单调递减区间为⎣⎢⎡⎦⎥⎤π8+k π,5π8+k π,k ∈Z .故选D.7.已知函数y =sin πx3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是( )A .6B .7C .8D .9 答案 C解析 由y =sin πx 3可得T =6,则由图象可知5T 4≤t ,即152≤t , ∴t min =8.故选C.8.将函数f (x )=sin(2x +φ)⎝ ⎛⎭⎪⎫|φ|<π2的图象向左平移π6个单位长度后关于原点对称,则函数f (x )在⎣⎢⎡⎦⎥⎤0,π2上的最小值为( ) A .-32 B .-12 C.12 D.32 答案 A解析 将f (x )=sin(2x +φ)的图象左移π6个单位长度得y =sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π6+φ=sin ⎝ ⎛⎭⎪⎫2x +π3+φ的图象,该图象关于原点对称,即为奇函数,则π3+φ=k π(k ∈Z ),且|φ|<π2,所以φ=-π3,即f (x )=sin ⎝⎛⎭⎪⎫2x -π3,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x -π3∈⎣⎢⎡⎦⎥⎤-π3,2π3,所以当2x -π3=-π3,即x =0时,f (x )取得最小值,最小值为-32.选A.9.若函数f (x )=M sin(ωx +φ)(ω>0)在区间[a ,b ]上是增函数,且f (a )=-M ,f (b )=M ,则函数g (x )=M cos(ωx +φ)在[a ,b ]上( )A .是增函数B .是减函数C .可以取得最大值MD .可以取得最小值-M答案 C解析 T =2πω,g (x )=M cos(ωx +φ)=M sin ⎝ ⎛⎭⎪⎫ωx +φ+π2=M sin ⎣⎢⎡⎦⎥⎤ω⎝ ⎛⎭⎪⎫x +π2ω+φ,∴g (x )的图象是由f (x )的图象向左平移π2ω⎝⎛⎭⎪⎫即T 4得到的.由b -a =T2,可知,g (x )的图象由f (x )的图象向左平移b -a 2得到的. ∴得到g (x )图象如图所示.选C.10.(2018·新疆质检)已知函数f (x )=|sin x |cos x ,给出下列五个结论:①f ⎝ ⎛⎭⎪⎫2018π3=-34; ②若|f (x 1)|=|f (x 2)|,则x 1=x 2+k π(k ∈Z );③f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上单调递增;④函数f (x )的周期为π;⑤f (x )的图象关于点⎝ ⎛⎭⎪⎫π2,0成中心对称. 其中正确的结论是( )A .①⑤B .①②⑤C .②④D .②⑤答案 A解析 ①f ⎝ ⎛⎭⎪⎫2018π3=⎪⎪⎪⎪⎪⎪sin 2018π3cos 2018π3=32×⎝ ⎛⎭⎪⎫-12=-34,∴①正确;②若|f (x 1)|=|f (x 2)|,则⎪⎪⎪⎪⎪⎪12sin2x 1=⎪⎪⎪⎪⎪⎪12sin2x 2,当x 1=0,x 2=π2时也成立,∴②不正确; ③∵当x ∈⎣⎢⎡⎦⎥⎤-π4,π4时, f (x )=|sin x |cos x =⎩⎪⎨⎪⎧ -12sin2x ,-π4≤x <0,12sin2x ,0≤x ≤π4,∴f (x )在⎣⎢⎡⎦⎥⎤-π4,π4上不是单调函数,∴③不正确;④∵f (x +π)≠f (x ),∴函数f (x )的周期不是π,∴④不正确; ⑤∵f (x )=|sin x |cos x=⎩⎪⎨⎪⎧ -12sin2x ,-π+2k π<x <2k π,12sin2x ,2k π≤x <π+2k π,k ∈Z ,∴结合图象可知f (x )的图象关于点⎝ ⎛⎭⎪⎫π2,0成中心对称,∴⑤正确.故选A. 二、填空题11.设函数f (x )=sin(x +φ)(0<φ<π),若函数f (x )+f ′(x )是奇函数,则φ=________.答案 3π4解析 由题意得f (x )=sin(x +φ)=sin x cos φ+cos x sin φ,f ′(x )=cos(x +φ),f (x )+f ′(x )=2sin ⎝ ⎛⎭⎪⎫x +φ+π4是奇函数,因此φ+π4=k π(其中k ∈Z ),φ=k π-π4.又0<φ<π,所以φ=3π4.12.将函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫π2<φ<π的图象,仅向右平移4π3,或仅向左平移2π3,所得到的函数图象均关于原点对称,则ω=________. 答案 12解析 注意到函数的两条相邻对称轴之间的距离是函数周期的一半,即有T 2=4π3-⎝ ⎛⎭⎪⎫-2π3=2π,T =4π,即2πω=4π,ω=12. 13.(2017·绵阳模拟)已知函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,A (a,0),B (b,0)是其图象上两点,若|a -b |的最小值是1,则f ⎝ ⎛⎭⎪⎫16=________. 答案 -2解析 ∵函数f (x )=4cos(ωx +φ)(ω>0,0<φ<π)为奇函数,∴φ=π2,f (x )=-4sin ωx .A (a,0),B (b,0)是其图象上两点,若|a -b |的最小值是1,则12·2πω=1,∴ω=π,f (x )=-4sinπx ,则f ⎝ ⎛⎭⎪⎫16=-4sin π6=-2. 14.设函数y =sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,φ∈⎝ ⎛⎭⎪⎫-π2,π2的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点⎝ ⎛⎭⎪⎫π4,0对称; ②图象关于点⎝ ⎛⎭⎪⎫π3,0对称;③在⎣⎢⎡⎦⎥⎤0,π6上是增函数; ④在⎣⎢⎡⎦⎥⎤-π6,0上是增函数. 所有正确结论的编号为________.答案 ②④解析 ∵y =sin(ωx +φ)的最小正周期为π,∴ω=2ππ=2.又其图象关于直线x =π12对称,得π6+φ=π2+k π(k ∈Z ).令k =0,得φ=π3.∴y =sin ⎝ ⎛⎭⎪⎫2x +π3.当x =π3时,f ⎝ ⎛⎭⎪⎫π3=0,∴函数图象关于点⎝ ⎛⎭⎪⎫π3,0对称.所以②正确.解不等式-π2+2k π≤2x +π3≤π2+2k π,得-5π12+k π≤x ≤π12+k π(k ∈Z ),所以④正确.三、解答题15.已知函数f (x )=2sin x +1.(1)设ω为大于0的常数,若f (ωx )在区间⎣⎢⎡⎦⎥⎤-π2,2π3上单调递增,求实数ω的取值范围;解16.(2017·洛阳校级月考)已知函数f (x )=sin 2x +a cosx +a ,a ∈R .(1)当a =1时,求函数f (x )的最大值;(2)如果对于区间⎣⎢⎡⎦⎥⎤0,π2上的任意一个x ,都有f (x )≤1成立,求a 的取值范围.解 (1)当a =1时,f (x )=-cos 2x +cos x +2=-⎝ ⎛⎭⎪⎫cos x -122+94, ∵cos x ∈[-1,1],∴当cos x =12,即x =2k π±π3(k ∈Z )时,f (x )max =94.(2)依题意sin 2x +a cos x +a ≤1, 即sin 2x +a (cos x +1)≤1对任意x ∈⎣⎢⎡⎦⎥⎤0,π2恒成立.当x ∈⎣⎢⎡⎦⎥⎤0,π2时,0≤cos x ≤1,则1≤cos x +1≤2,∴a ≤ cos 2x cos x +1对任意x ∈⎣⎢⎡⎦⎥⎤0,π2恒成立. 令t =cos x +1,则1≤t ≤2,∴a ≤(t -1)2t =t 2-2t +1t =t +1t -2对任意1≤t ≤2恒成立,于是a ≤⎝ ⎛⎭⎪⎫t +1t -2min .又∵t +1t -2≥0,当且仅当t =1,即x =π2时取等号, ∴a ≤0.。

第三章 三角函数、解三角形 复习讲义

第三章 三角函数、解三角形 复习讲义

第1节 任意角和弧度制及任意角的三角函数◆考纲·了然于胸◆ 1.了解任意角的概念.2.了解弧度制的概念,能进行弧度与角度的互化. 3.理解任意角的三角函数(正弦、余弦、正切)的定义.[要点梳理]1.角的概念(1)角的分类(按旋转的方向):角⎩⎪⎨⎪⎧正角:按照逆时针方向旋转而成的角。

负角:按照顺时针方向旋转而成的角。

零角:射线没有旋转.(2)象限角与轴线角:(3)终边相同的角所有与α终边相同的角,包括α本身构成一个集合,这个集合可记为S ={β|β=α+k·360°,k ∈Z }. 质疑探究1:(1)第二象限角一定是钝角吗?(2)终边相同的角一定相等吗?提示:(1)钝角是第二象限角,但第二象限角不一定是钝角;(2)终边相同的角不一定相等. 2.弧度制(1)定义:长度等于半径长的弧所对的圆心角叫做1弧度的角.弧度记作rad. (2)公式(3)规定:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是3.任意角的三角函数任意角α的终边与单位圆交于点P (x ,y )时,sin α=y ,cos α=x ,tan α=yx(x ≠0).三个三角函数的初步性质如下表:如下图,设角α的终边与单位圆交于点P ,过P 作PM ⊥x 轴,垂足为M ,过A (1,0)作单位圆的切线与α的终边或终边的反向延长线相交于点T .质疑探究[小题查验]1.-870°角的终边在第几象限( )A .一B .二C .三D .四2.(2016·龙岩质检)已知α为第二象限角,sin α=45,则tan α的值为( )A.34 B .-34 C.43 D .-433.(2016·洛阳一模)已知△ABC 为锐角三角形,且A 为最小角,则点P (sin A -cos B,3cos A -1)位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.已知扇形的周长是6 cm ,面积是2 cm 2,则扇形的圆心角的弧度数是________. 5.给出下列命题:①三角形的内角必是第一、二象限角.②第一象限角必是锐角.③不相等的角终边一定不相同.④若β=α+k ·720°(k ∈Z ),则α和β终边相同.⑤点P (tan α,cos α)在第三象限,则角α的终边在第二象限. 其中正确的是________.(写出所有正确命题的序号)考点一 象限角及终边相同的角(基础型考点——自主练透)[方法链接]1.利用终边相同的角的集合可以求适合某些条件的角,方法是先写出与这个角的终边相同的所有角的集合,然后通过对集合中的参数k 赋值来求得所需角. 2.表示区间角的三个步骤:(1)先按逆时针方向找到区域的起始和终止边界.(2)按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间. (3)起始、终止边界对应角α,β再加上360°的整数倍,即得区间角集合.3.已知角α终边所在的象限,求2α、α2、π-α等角的终边所在象限问题,可由条件先写出α的范围,解不等式得出角2α、α2、π-α等的范围,再根据范围确定象限.[题组集训]1.若角θ的终边与6π7角的终边相同,则在[0,2π)内终边与θ3角的终边相同的角为________.2.终边在直线y =3x 上的角的集合为________. 3.已知角α的终边落在阴影所表示的范围内(包括边界),则角α的集合为______________________.4.如果α是第三象限的角,则角-α的终边所在位置是____________,角2α的终边所在位置是________,角α3终边所在的位置是________.考点二 三角函数的定义(深化型考点——引申发散)[一题多变]【例1】 设角α终边上一点P (-4a,3a )(a <0),求sin α的值. [发散1] 若本例中“a <0”,改为“a ≠0”,求sin α的值.[发散2] 若本例中条件变为:已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值. 活学活用 若本例中条件变为:已知角α的终边上一点P (-3,m )(m ≠0), 且sin α=2m4,求cos α,tan α的值. [类题通法]用定义法求三角函数值的两种情况(1)已知角α终边上一点P 的坐标,则可先求出点P 到原点的距离r ,然后用三角函数的定义求解;(2)已知角α的终边所在的直线方程,则可先设出终边上一点的坐标,求出此点到原点的距离,然后用三角函数的定义来求解.考点三 三角函数线、三角函数值的符号(重点型考点——师生共研) 【例2】 (1)若sin αtan α<0,且cos αtan α<0,则角α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 (2)已知cos α≤-12,则角α的集合为________.【名师说“法”】(1)熟练掌握三角函数在各象限的符号.(2)利用单位圆解三角不等式(组)的一般步骤:①用边界值定出角的终边位置;②根据不等式(组)定出角的范围;③求交集,找单位圆中公共的部分;④写出角的表达式.跟踪训练(1)y=sin x-32的定义域为____________.(2)已知sin 2θ<0,且|cos θ|=-cos θ,则点P(tan θ,cos θ)在第________象限.考点四扇形的弧长、面积公式的应用(深化型考点——引申发散)【例3】已知扇形周长为10,面积是4,求扇形的圆心角.[发散1]去掉本例条件“面积是4”,问当它的半径和圆心角取何值时,才使扇形面积最大?[发散2]若本例中条件变为:圆弧长度等于该圆内接正方形的边长,则其圆心角的弧度数是________.[发散3]若本例条件变为:扇形的圆心角是α=120°,弦长AB=12 cm,求弧长l.[类题通法]应用弧度制解决问题的方法(1)利用扇形的弧长和面积公式解题时,要注意角的单位必须是弧度.(2)求扇形面积最大值的问题时,常转化为二次函数的最值问题,利用配方法使问题得到解决.(3)在解决弧长问题和扇形面积问题时,要合理地利用圆心角所在的三角形.易错警示3错用三角函数的定义(2016·天津模拟)已知角θ的终边上一点P(3a,4a)(a≠0),则sin θ=________.成功破障已知角α的终边经过点P(-3,m),且sin α=34m(m≠0),则tan α的值为________.[课堂小结]【方法与技巧】1.在利用三角函数定义时,点P可取终边上任一点,如有可能则取终边与单位圆的交点.|OP|=r一定是正值.2.三角函数符号是重点,也是难点,在理解的基础上可借助口诀:一全正,二正弦,三正切,四余弦.3.在解简单的三角不等式时,利用单位圆及三角函数线是一个小技巧.【失误与防范】1.注意易混概念的区别:象限角、锐角、小于90°的角是概念不同的三类角.第一类是象限角,第二、第三类是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.已知三角函数值的符号确定角的终边位置不要遗漏终边在坐标轴上的情况.课时活页作业(十七)[基础训练组]1.(2016·南平质检)喜洋洋从家步行到学校,一般需要10分钟,则10分钟时间钟表的分针走过的角度是() A.30°B.-30°C.60°D-60°2.(2014·新课标全国卷Ⅰ)若tan α>0,则( )A .sin α>0B .cos α>0C .sin 2α>0D .cos 2α>03.(2016·乌鲁木齐模拟)设函数f (x )满足f (sin α+cos α)=sin α cos α,则f (0)=( )A .-12B .0 C.12 D .14.(2016·潍坊模拟)如图,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( ) A .(cos θ,sin θ) B .(-cos θ,sin θ) C .(sin θ,cos θ) D .(-sin θ,cos θ) 5.点P 从(1,0)出发,沿单位圆逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-32,-12C.⎝⎛⎭⎫-12,-32D.⎝⎛⎭⎫-32,126.在与2010°终边相同的角中,绝对值最小的角的弧度数为________. 7.已知角β的终边在直线y =3x 上,则sin β=________.8.(2016·玉溪模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=________.9.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值. 10.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求圆心角的大小;(2)求这个扇形的面积取得最大值时圆心角的大小和弦长AB .[能力提升组]11.(2016·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称12.已知角α=2k π-π5(k ∈Z ),若角θ与角α的终边相同,则y =sin θ|sin θ|+cos θ|cos θ|+tan θ|tan θ|的值为( )A .1B .-1C .3D .-313.(2016·太原模拟)已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3] 14.(2016·合肥调研)函数y =lg(3-4sin 2x )的定义域为________. 15.已知sin α<0,tan α>0.(1)求α角的集合;(2)求α2终边所在的象限;(3)试判断tan α2 sin α2 cos α2的符号.第2节 同角三角函数基本关系及诱导公式◆考纲·了然于胸◆1.理解同角三角函数的基本关系式:sin 2α+cos 2α=1,sin αcos α=tan α.2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.[要点梳理]1.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2.下列各角的终边与角α的终边的关系31.给出下列命题:①sin 2θ+cos 2φ=1.②同角三角函数的基本关系式中角α可以是任意角.③六组诱导公式中的角α可以是任意角. ④诱导公式的口诀“奇变偶不变,符号看象限”中的“符号”与α的大小无关. ⑤若sin(k π-α)=13(k ∈Z ),则sin α=13.其中正确的是( )A .①③B .④C .②⑤D .④⑤2.(2015·高考福建卷)若sin α=-513,且α为第四象限角,则tan α的值等于( )A.125 B .-125 C.512 D .-512 3.sin 585°的值为( )A .-22 B.22 C .-32 D.324.若cos α=-35,且α∈(π,3π2),则tan α=________.5.(2015·高考四川卷)已知sin α+2cos α=0,则2sin αcos α-cos 2 α的值是________.考点一 同角三角函数关系式的应用(深化型考点——引申发散)[一题多变]【例1】 已知α是三角形的内角,且sin α+cos α=15.(1)求tan α的值;(2)把1cos 2α-sin 2α用tan α表示出来,并求其值.[发散1] 若本例中的条件和结论互换:已知α是三角形的内角,且tan α=-13,求sin α+cos α的值.[发散2] 保持本例条件不变,求:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+2sin αcos α的值.[发散3] 若本例条件变为:sin α+3cos α3cos α-sin α=5,求tan α的值.[类题通法]1.利用sin 2α+cos 2α=1可以实现角α的正弦、余弦的互化,利用sin αcos α=tan α可以实现角α的弦切互化.2.应用公式时注意方程思想的应用:对于sin α+cos α,sin αcos α,sin α-cos α这三个式子,利用(sin α±cos α)2=1±2sin αcos α,可以知一求二.3.注意公式逆用及变形应用:1=sin 2α+cos 2α,sin 2α=1-cos 2α,cos 2α=1-sin 2α. 考点二 三角函数的诱导公式的应用(基础型考点——自主练透)[方法链接](1)给角求值的原则和步骤①原则:负化正、大化小、化到锐角为终了.②步骤:利用诱导公式可以把任意角的三角函数转化为0~π4之间角的三角函数,然后求值,其步骤为:(2)给值求值的原则:寻求所求角与已知角之间的联系,通过相加或相减建立联系,若出现π2的倍数,则通过诱导公式建立两者之间的联系,然后求解.常见的互余与互补关系①常见的互余关系有:π3-α与π6+α;π3+α与π6-α;π4+α与π4-α等.②常见的互补关系有:π3+θ与2π3-θ;π4+θ与3π4-θ等.遇到此类问题,不妨考虑两个角的和,要善于利用角的变换的思想方法解决问题.[题组集训]1.sin(-1 200°)·cos 1 290°+cos (-1 020°)·sin(-1 050°)+tan 945°=________. 2.已知cos(π6-α)=23,则sin(α-2π3)=________.3.设f (α)=2sin (π+α)cos (π-α)-cos (π+α)1+sin 2α+cos (3π2+α)-sin 2(π2+α)(1+2sin α≠0),则f (-23π6)=________.4.已知sin α是方程5x 2-7x -6=0的根,α是第三象限角,则sin (-α-32π)cos (32π-α)cos (π2-α)sin (π2+α)·tan 2(π-α)=________.考点三 同角关系式、诱导公式在三角形中的应用(重点型考点——师生共研)【例2】 在△ABC 中,若sin(3π-A )=2sin(π-B ),cos(3π2-A )=2cos(π-B ).试判断三角形的形状.【名师说“法”】(1)在△ABC 中常用到以下结论:sin(A +B )=sin(π-C )=sin C ,cos(A +B )=cos(π-C )=-cos C ,tan(A +B )=tan(π-C )=-tan C , sin(A 2+B 2)=sin(π2-C 2)=cos C 2,cos(A 2+B 2)=cos(π2-C 2)=sin C 2.(2)求角时,一般先求出该角的某一个三角函数值,如正弦值,余弦值或正切值,再确定该角的范围,最后求角. 跟踪训练在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos (π-B ),求△ABC 的三个内角.思想方法11 分类讨论思想在三角函数化简中的应用 典例 化简:sin(4n -14π-α)+cos(4n +14π-α)(n ∈Z ).即时突破 已知A =sin (kπ+α)sin α+cos (kπ+α)cos α(k ∈Z ),则A 的值构成的集合是( )A .{1,-1,2,-2}B .{-1,1}C .{2,-2}D .{1,-1,0,2,-2}[课堂小结]【方法与技巧】同角三角恒等变形是三角恒等变形的基础,主要是变名、变式.1.同角关系及诱导公式要注意象限角对三角函数符号的影响,尤其是利用平方关系在求三角函数值时,进行开方时要根据角的象限或范围,判断符号后,正确取舍.2.三角求值、化简是三角函数的基础,在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan x =sin xcos x化成正弦、余弦函数;(2)和积转换法:如利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化;(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=sin 2θ(1+1tan 2θ)=tan π4=….【失误与防范】利用诱导公式进行化简求值时,先利用公式化任意角的三角函数为锐角三角函数,其步骤:去负—脱周—化锐.特别注意函数名称和符号的确定.课时活页作业(十八)[基础训练组]1.已知α和β的终边关于直线y =x 对称,且β=-π3,则sin α等于( )A .-32 B.32 C .-12 D.122.(2016·济南质检)α∈(-π2,π2),sin α=-35,则cos(-α)的值为( )A .-45 B.45 C.35 D .-353.已知f (α)=sin (π-α)·cos (2π-α)cos (-π-α)·tan (π-α),则f (-25π3)的值为( )A.12 B .-12 C.32 D .-324.(2016·皖北模拟)若sin(π6+α)=35,则cos(π3-α)=( )A .-35 B.35 C.45 D .-455.(2016·石家庄模拟)已知α为锐角,且2tan(π-α)-3cos(π2+β)+5=0,tan(π+α)+6sin(π+β)=1,则sin α的值是( )A.355 B.377 C.31010 D.136.(2016·成都一模)已知sin(π-α)=log 814 ,且α∈(-π2,0),则tan(2π-α)的值为________.7.(2015·辽宁五校第二次联考)已知sin x =m -3m +5,cos x =4-2m m +5,且x ∈(3π2,2π),则tan x =________.8.已知cos(π6-θ)=a (|a |≤1),则cos(5π6+θ)+sin(2π3-θ)的值是________.9.已知sin(3π+α)=2sin(3π2+α),求下列各式的值:(1)sin α-4cos α5sin α+2cos α;(2)sin 2α+sin 2α.10.设0≤θ≤π,P =sin 2θ+sin θ-cos θ.(1)若t =sin θ-cos θ,用含t 的式子表示P ; (2)确定t 的取值范围,并求出P 的最大值和最小值.[能力提升组]11.(2016·厦门模拟)已知cos 31°=a ,则sin 239°·tan 149°的值是( )A.1-a 2aB.1-a 2C.a 2-1aD .-1-a 212.(2016·太原二模)已知sin α+cos α=2,α∈(-π2,π2),则tan α=( )A .-1B .-22 C.22D .1 13.(2016·海淀模拟)已知sin 2θ+4cos θ+1=2,那么(cos θ+3)(sin θ+1)的值为( )A .6B .4C .2D .014.(2016·新疆阿勒泰二模)已知α为第二象限角,则cos α1+tan 2α+sin α1+1tan 2α=________. 15.已知A 、B 、C 是三角形的内角,3sin A ,-cos A 是方程x 2-x +2a =0的两根.(1)求角A ;(2)若1+2sin B cos Bcos 2B -sin 2B=-3,求tanB.第3节 三角函数的图象与性质◆考纲·了然于胸◆1.能画出y =sin x ,y =cos x ,y =tan x 的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在[0,2π]上的性质(如单调性、最大值和最小值,图象与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.[要点梳理]1.用五点法作正弦函数和余弦函数的简图:正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),(π2,1),(π,0),(3π2,-1),(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).2.正弦函数、余弦函数、正切函数的图象和性质1.下列说法正确的是( )A .函数y =cos x 在第一象限内是减函数B .函数y =tan x 在定义域内是增函数C .函数y =sin x cos x 是R 上的奇函数D .所有周期函数都有最小正周期2.(2015·新课标卷Ⅰ)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为( )A .(k π-14,k π+34),k ∈ZB .(k -14,k +34),k ∈ZC .(2k π-14,2k π+34),k ∈ZD .(2k -14,2k +34),k ∈Z3.(2016·三明模拟)已知函数f (x )=2sin(ωx +φ)对任意x 都有f (π6+x )=f (π6-x ),则f (π6)等于( )A .2或0B .-2或2C .0D .-2或0 4.函数y =tan (2x +π4)的图象与x 轴交点的坐标是________.5.(2015·江苏高考)已知函数y =cos x 与y =sin(2x +φ)(0≤φ<π),它们的图象有一个横坐标为π3的交点,则φ的值是__.考点一 三角函数的定义域、值域问题(基础型考点——自主练透)[方法链接](1)求三角函数的定义域实际上是解简单的三角不等式,常借助三角函数线或三角函数图象来求解. (2)求解三角函数的值域(最值)常见到以下几种类型的题目:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域); ②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值).[题组集训]1.函数y =sin x -cos x 的定义域为________.2.函数f (x )=3sin(2x -π6)在区间[0,π2]上的值域为________.3.当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________.考点二 三角函数的单调性(重点型考点——师生共研) 【例】 (1) y =sin(π3-2x )的单调递减区间为________.(2)(2016·洛阳模拟)若f (x )=2sin ωx +1(ω>0)在区间[-π2,2π3] 上是增函数,则ω的取值范围是________.互动探究 在本例(1)中函数不变,求函数在[-π,0]上的单调递减区间. 【名师说“法”】求三角函数单调区间的两种方法](1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间.(2)图象法:函数的单调性表现在图象上是:从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.提醒:]求解三角函数的单调区间时若x 的系数为负应先化为正,同时切莫漏掉考虑函数自身的定义域. 跟踪训练(1)y =tan(2x -π3)的单调递增区间为________.(2)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 考点三 三角函数的奇偶性、周期性和对称性(高频型考点——全面发掘)[考情聚焦]正、余弦函数的图象既是中心对称图形,又是轴对称图形.正切函数的图象只是中心对称图形,应把三角函数的对称性与奇偶性结合,体会二者的统一.归纳起来常见的命题角度有:(1)三角函数的周期;(2)求三角函数的对称轴或对称中心;(3)三角函数对称性的应用. 角度一 三角函数的周期1.函数y =-2cos 2(π4+x )+1是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的非奇非偶函数2.(2016·长沙一模)若函数f (x )=2tan(kx +π3)的最小正周期T 满足1<T <2,则自然数k 的值为________.角度二 求三角函数的对称轴或对称中心3.(2016·揭阳一模)当x =π4时,函数f (x )=sin(x +φ)取得最小值,则函数y =f (3π4-x )( )A .是奇函数且图象关于点(π2,0)对称 B .是偶函数且图象关于点(π,0)对称C .是奇函数且图象关于直线x =π2对称 D .是偶函数且图象关于直线x =π对称角度三 三角函数对称性的应用 4.(2016·辽宁五校联考)设偶函数f (x )=A sin(ωx +φ)(A >0,ω>0,0<φ<π)的部分图象如图所示,△KLM 为等腰直角三角形,∠KML =90°,KL =1,则f (16)的值为( )A .-34 B .-14 C .-12 D.345.函数y =cos(3x +φ)的图象关于原点成中心对称图形,则φ=________.[通关锦囊](1)求三角函数周期的方法: ①利用周期函数的定义;②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|;③利用图象:对含绝对值的三角函数的周期问题,通常要画出图象,结合图象进行判断. (2)三角函数的对称性、奇偶性①正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数图象只是中心对称图形,应熟记它们的对称轴和对称中心.②若f (x )=A sin(ωx +φ)为偶函数,则φ=π2+k π(k ∈Z );若f (x )=A sin(ωx +φ)为奇函数,则φ=k π(k ∈Z ).③若求f (x )=A sin(ωx +φ)的对称轴,只需令ωx +φ=π2+k π(k ∈Z ),求x ;若求f (x )=A sin(ωx +φ)的对称中心的横坐标,只需令ωx +φ=k π(k ∈Z ),求x 即可.[题组集训]1.(2016·泉州模拟)已知f (x )=cos(3x +φ)-3sin(3x +φ)为偶函数,则φ可以取的一个值为( )A.π6B.π3 C .-π6 D .-π32.(2016·湖南六校联考)若函数f (x )=a sin ωx +b cos ωx (0<ω<5,ab ≠0)的图象的一条对称轴方程是x =π4ω,函数f ′(x )的图象的一个对称中心是(π8,0),则f (x )的最小正周期是________.易错警示4 三角函数单调性忽视x 的系数致错 典例 求函数y =12sin(π4-2x3)的单调区间为________.提醒:](1)对于其它形式的三角函数,首先要变换到y =A sin(ωx +φ)或y =A cos(ωx +φ),y =A tan(ωx +φ)(ω>0)才可.(2)求单调区间要注意定义域.即时突破 函数y =cos(2x +π6)的单调递增区间为________.[课堂小结]【方法与技巧】1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式.2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 【失误与防范】1.闭区间上最值或值域问题,首先要在定义域基础上分析单调性,含参数的最值问题,要讨论参数对最值的影响. 2.要注意求函数y =A sin(ωx +φ)的单调区间时ω的符号,尽量化成ω>0时情况.课时活页作业(十九)[基础训练组]1.函数y =cos x -32的定义域为( ) A .[-π6,π6] B .[k π-π6,k π+π6],k ∈Z C .[2k π-π6,2k π+π6],k ∈Z D .R2.(2016·南昌联考)已知函数f (x )=sin (ωx +π6)-1(ω>0)的最小正周期为2π3,则f (x )的图象的一条对称轴方程( )A .x =π9B .x =π6C .x =π3D .x =π23.(2016·广州测试)若函数y =cos(ωx +π6)(ω∈N *)的一个对称中心是(π6,0),则ω的最小值为( )A .1B .2C .4D .8 4.(2016·九江模拟)下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 5.将函数f (x )=3sin 2x -cos 2x 的图象向左平移|m |个单位,若所得的图象关于直线x =π6对称,则|m |的最小值为( )A.π3 B.π6 C .0 D.π126.已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ=π2”的________条件.7.(2016·大庆模拟)若f (x )=2sin ωx (0<ω<1)在区间[0,π3]上的最大值是2,则ω=________.8.(2016·荆州质检)函数y =sin(ωx +φ)(ω>0,0<φ<π)的最小正周期为π,且函数图象关于点(-3π8,0)对称,则函数的解析式为________.9.设函数f (x )=cos ⎝⎛⎭⎫2x -π3+2sin 2⎝⎛⎭⎫x +π2.(1)求f (x )的最小正周期和对称轴方程;(2)当x ∈⎣⎡⎦⎤-π3,π4时,求f (x )的值域. 10.设函数f (x )=sin(πx 3-π6)-2cos 2πx6.(1)求y =f (x )的最小正周期及单调递增区间;(2)若函数y =g (x )与y =f (x )的图象关于直线x =2对称,当x ∈[0,1]时,求函数y =g (x )的最大值.[能力提升组]11.(2014·课标全国Ⅰ)在函数①y =cos |2x |,②y =|cos x |,③y =cos(2x +π6),④y =tan(2x -π4)中,最小正周期为π的所有函数为( )A .②④ B .①③④ C .①②③ D .①③12.(2016·济南调研)已知f (x )=sin 2 x +sin x cos x ,则f (x )的最小正周期和一个单调增区间分别为( )A .π,[0,π]B .2π,[π4,3π4]C .π,[-π8,3π8]D .2π,[-π4,π4]13.(2016·豫北六校联考)若函数f (x )=cos(2x +φ)的图象关于点(4π3,0)成中心对称,且-π2<φ<π2,则函数y =f (x +π3)为( )A .奇函数且在(0,π4)上单调递增B .偶函数且在(0,π2)上单调递增C .偶函数且在(0,π2)上单调递减D .奇函数且在(0,π4)上单调递减14.(2015·安阳模拟)已知函数y =A cos(π2x +φ)(A >0)在一个周期内的图象如图所示,其中P ,Q 分别是这段图象的最高点和最低点,M ,N 是图象与x 轴的交点,且∠PMQ =90°,则A 的值为________. 15.(2016·荆门调研)已知函数f (x )=a (2cos 2x 2+sin x )+b .(1)若a =-1,求函数f (x )的单调增区间;(2)若x ∈[0,π]时,函数f (x )的值域是[5,8],求a ,b 的值.第4节 函数y =A sin(ωx +φ)的图象及应用◆考纲·了然于胸◆1.了解函数y =A sin(ωx +φ)的物理意义,能画出函数y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单的实际问题.[要点梳理]1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个特征点.如下表所示.2.函数y3.图象的对称性:函数y =A sin(ωx +φ) (A >0,ω>0)的图象是轴对称也是中心对称图形,具体如下:(1)函数y =A sin(ωx +φ)的图象关于直线x =x k (其中ωx k +φ=k π+π2,k ∈Z )成轴对称图形.(2)函数y =A sin(ωx +φ)的图象关于点(x k,0)(其中ωx k +φ=k π,k ∈Z )成中心对称图形.[小题查验]1.函数y =sin(2x -π3)在区间[-π2,π]上的简图是( )2.(2015·高考山东卷)要得到函数y =sin(4x -π3)的图象,只需将函数y =sin 4x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π3个单位D .向右平移π3个单位3.函数y =tan(π4x -π2)的部分图象如图所示,则(OB →-OA →)·OB →=( )A .-4B .2C .-2D .44.已知函数f (x )=sin(ωx +φ)(ω>0)的图象如图所示,则ω=________.5.把函数y =sin(5x -π2)的图象向右平移π4个单位,再把所得函数图象上各点的横坐标缩短为原来的12,所得的函数解析式为________.考点一 求函数y =A sin(ωx +φ)的解析式(基础型考点——自主练透)确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法(1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.[题组集训]1.(2016·山西四校联考)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f (x +π6)取得最小值时x 的集合为( )A .{x |x =k π-π6,k ∈Z }B .{x |x =k π-π3,k ∈Z }C .{x |x =2k π-π6,k ∈Z }D .{x |x =2k π-π3,k ∈Z }2.(2016·东北三校联考)已知函数y =A sin(ωx +φ)+b (A >0,ω>0)的最大值为4,最小值为0,最小正周期为π2,直线x =π3是其图象的一条对称轴,则下面各式中符合条件的解析式为( ) A .y =4sin(4x +π6) B .y =2sin(2x +π3)+2 C .y =2sin(4x +π3)+2 D .y =2sin(4x +π6)+23.已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图象如图所示,则f (π24)等于( )A .2+3 B.3 C.33D .2- 3 考点二 函数y =A sin(ωx +φ)的图象(题点多变型考点——全面发掘)【例1】 (2014·重庆高考)将函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ<π2)图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f (π6)=________.[发散1] 将本例变为:由函数y =sin x 的图象作怎样的变换可得到y =2sin(2x -π3)的图象?[发散2] 将本例中函数f (x )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值为. [发散3] 将本例变为:若将函数y =tan(ωx +π4)(ω>0)的图象向右平移π6个单位长度后,与函数y =tan(ωx +π6)的图象重合,则ω的最小值为________.[类题通法]函数y =A sin(ωx +φ)(A >0,ω>0)的图象的两种作法(1)五点法:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,3π2,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换法:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径“先平移后伸缩”与“先伸缩后平移”.[提醒] ]平移变换和伸缩变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 考点三 三角函数模型的应用(重点型考点——师生共研)【例2】 (2014·湖北高考)某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cosπ12t -sin π12t ,t ∈[0,24). (1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温? 【名师说“法”】本题属三角函数模型的应用,通常的解决方法:转化为y =sin x ,y =cos x 等函数解决图象、最值、单调性等问题,体现了化归的思想方法;用三角函数模型解决实际问题主要有两种:一种是用已知的模型去分析解决实际问题,另一种是需要建立精确的或者数据拟合的模型去解决问题,尤其是利用数据建立拟合函数解决实际问题,充分体现了新课标中“数学建模”的本质. 跟踪训练如图所示,某地夏天从8~14时用电量变化曲线近似满足函数y =A sin(ωx +φ)+b ,φ∈(0,π).(1)求这一天的最大用电量及最小用电量;(2)写出这段曲线的函数解析式.规范答题3 三角函数图象与性质的综合问题典例 (本小题满分12分)已知函数f (x )=23sin(x 2+π4)·cos (x 2+π4)-sin(x +π).(1)求f (x )的最小正周期.(2)若将f (x )的图象向右平移π6个单位,得到函数g (x )的图象,求函数g (x )在区间[0,π]上的最大值和最小值.即时突破 (2016·湖北八校联考)已知函数f (x )=2cos 2x +23sin x cos x ,x ∈R .(1)求函数f (x )的最小正周期;(2)求函数f (x )在区间[-π6,π4]上的值域.[课堂小结]【方法与技巧】1.五点法作图及图象变换问题(1)五点法作简图要取好五个关键点,注意曲线凸凹方向;(2)图象变换时的伸缩、平移总是针对自变量x 而言,而不是看角ωx +φ的变化. 2.由图象确定函数解析式由函数y =A sin(ωx +φ)的图象确定A 、ω、φ的题型,常常以“五点法”中的第一个零点(-φω,0)作为突破口,要从图象的升降情况找准第一个零点的位置.要善于抓住特殊量和特殊点. 3.对称问题函数y =A sin(ωx +φ)的图象与x 轴的每一个交点均为其对称中心,经过该图象上坐标为(x ,±A )的点与x 轴垂直的每一条直线均为其图象的对称轴,这样的最近两点间横坐标的差的绝对值是半个周期(或两个相邻平衡点间的距离) 【失误与防范】1.由函数y =sin x 的图象经过变换得到y =A sin(ωx +φ)的图象,如先伸缩,则平移时要把x 前面的系数提出来. 2.复合形式的三角函数的单调区间的求法.函数y =A sin(ωx +φ)(A >0,ω>0)的单调区间的确定,基本思想是把ωx +φ看做一个整体.若ω<0,要先根据诱导公式进行转化.课时活页作业(二十)[基础训练组]1.(2016·深圳二模)如果函数f (x )=sin(πx +θ)(0<θ<2π)的最小正周期为T ,且当x =2时,f (x )取得最大值,那么( )A .T =2,θ=π2B .T =1,θ=πC .T =2,θ=πD .T =1,θ=π22.已知ω>0,函数f (x )=sin(ωx +π4)在(π2,π)上单调递减,则ω的取值范围是( )A .[12,54]B .[12,34]C .(0,12] D .(0,2]3.(2016·长沙一模)定义⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3,若函数f (x )=⎪⎪⎪⎪⎪⎪sin2x cos 2x 1 3,则将f (x )的图象向右平移π3个单位所得曲线的一条对称轴的方程是( )A .x =π6B .x =π4C .x =π2D .x =π4.(2016·长春模拟)函数f (x )=sin(2x +φ)(|φ|<π2)向左平移π6个单位后是奇函数,则函数f (x )在[0,π2]上的最小值为( )A .-32 B .-12 C.12 D.32。

文科高考数学重难点02 三角函数与解三角形(解析版)

文科高考数学重难点02  三角函数与解三角形(解析版)

重难点02 三角函数与解三角形【高考考试趋势】新高考环境下,三角函数与解三角形依然会作为一个重点参与到高考试题中,其中对应的题目的分布特点与命题规律分析可以看出,三角试题每年都考,而且文理有别,或"一大一小",或"三小",或"二小"("小"指选择题或填空题,"大"指解答题),解答题以简单题或中档题为主,选择题或填空题比较灵活,有简单题,有中档题,也有对学生能力和素养要求较高的题.三角函数的图象与性质是高考考查的重点及热点内.备考时要熟练掌握三角函数的图象与性质、三角恒等变换公式及正、余弦定理,在此基础上掌握一些三角恒变换的技巧,如角的变换,函数名称的变换等,此外,还要注意题目中隐含的各种限制条件,选择合理的解决方法,灵活实现问题的转化鉴于新课标核心素养的要求,三角函数与解三角形在实际背景下的应用也将是一个考试试点.考点主要集中在三角函数图像及其性质的应用,三角函数恒等变换,以及正弦余弦定理的应用.本专题在以往高考常见的题型上,根据新课标的要求,精选了部分预测题型,并对相应的题型的解法做了相应的题目分析以及解题指导,希望你在学习完本专题以后能够对三角函数以及解三角形的题型以及解答技巧有一定的提升.【知识点分析以及满分技巧】三角函数与解三角形:从返几年高考情况来看,高考对本部分内容的考查主要有,1.三解恒等变换与三角函数的图象、性质相结合;2.三角恒等变换与解三角形相结合;3.平面向量、不等式、数列与三角函数和解三角形相结合,难度一般不大,属中档题型.三角函数图形的性质以及应用:对于选择题类型特别是对称中心,对称轴等问题选项中特殊点的带入简单方便,正确率比较高.总额和性的问题一般采用换元法转化成最基本的函数问题去解答.对于三角函数有关恒等变换的题目应注重公式的变形.解三角形类型的大题中,重点是角边转化,但是要注意两边必须同时转化,对于对应的面积的最大值问题以及周长的最值问题一般转化成基本不等式去求,但是在用基本不等式的时候应注意不等式等号成立的条件.【常见题型限时检测】(建议用时:35分钟)一、单选题1.(2020·贵溪市实验中学高三月考(文))在中,角,,所对的边分别ABC :A B C 为,,,且,则的最大值是( )a b c BC c bb c +A .8B .6C .D .4【答案】D【分析】由已知可得:,11sin 22bc A a =所以,2sin a A =因为,所以222cos 2b c a A bc +-=2222cos sin 2cos b c a bc AA bc A +=+=+所以,222cos 4sin 46c b b c A A A b c bc π+⎛⎫+==+=+≤ ⎪⎝⎭所以的最大值是4c bb c +故选:D2.(2020·南昌市新建一中(文))在中,内角,,所对应的边分别为ABC :A B C a ,,,且,若,则边的最小值为()b c sin 2sin 0a B b A +=2a c +=b AB .C .2D【答案】D【分析】根据由正弦定理可得,sin2sin 0a B b A +=sin sin2sin sin 0A B B A +=即,,2sin sin cos sin sin 0A B B B A +=sin 0,sin 0A B ≠≠ ,,∴1cos 2B =-23B π∴=由余弦定理可得.()2222222cos 4b a c ac B a c ac a c ac ac=+-=++=+-=- .2a c +=≥ 1ac ∴≤ 即.,243bac ∴=-≥,b ≥故边.b 故选:D .3.(2020·吉林高三其他模拟(文))在中,内角,,所对的边分别为,ABC :A B C a ,,且,,在边上,且,则b c 3a =b =c =M AB BM CM =AMAB=( )A .B .C .D .14133423【答案】C【分析】因为,BM CM =所以为等腰三角形,MBC △因为,,.3a =b =c =由条件可得,222cos2a c b B ac +-==所以,解得3·cos 22BC BM B ==BM =所以AM AB BM =-=可得.34AM AB =故选:.C 4.(2020·河南郑州市·高三月考(文))已知的三个内角,,对应的边分ABC :A B C 别为,,,且,,成等差数列,则a b c sin 2a C π⎛⎫- ⎪⎝⎭()cos 4b B π-()cos 3c A π-的形状是( )ABC :A .直角三角形B .锐角三角形C .钝角三角形D .正三角形【答案】C【分析】,,sin cos 2a C a Cπ⎛⎫-=- ⎪⎝⎭()cos 4cos b B b B π-=,()cos 3cos c A c Aπ-=-依题意得,2cos cos cos b B a C c A =--根据正弦定理可得,()2sin cos sin cos cos sin B B A C A C =-+即,()2sin cos sin sin B B A C B=-+=-又,则,sin 0B ≠1cos 2B =-又,所以,()0,B π∈23B π=故的形状是钝角三角形.ABC :故选:C .5.(2020·安徽六安市·六安一中高三月考(文))已知的三个内角,,所ABC :A B C 对的边分别为,,,满足,且a b c 222cos cos cos 1sin sin A B C A C -+=+,则的形状为( )sin sin 1A C +=ABC :A .等边三角形B .等腰直角三角形C .顶角为的非等腰三角形D .顶角为的等腰三角形120120【答案】D【分析】因为,222cos cos cos 1sin sin A B C A C -+=+所以,2221sin (1sin )1sin 1sin sin A B C A C ---+-=+所以,222sin sin sin sin sin A C B A C +-=-根据正弦定理可得,即,222a cb ac +-=-222122a c b ac +-=-所以,因为,所以,所以,1cos 2B =-0B π<<120B = 60A C += 由得,sin sin 1A C +=sin sin(60)1A A +-=得,sin sin 60cos cos 60sin 1AA A +-=得,1sin sin 12A A A +-=得,1sin 12A A +=得,因为为三角形的内角,所以,,sin(60)1A +=A 30A = 30C =所以为顶角为的等腰三角形.ABC :120故选:D6.(2020·贵州黔东南苗族侗族自治州·高三月考(文))将函数的图象向右平2sin 2y x =移个单位得到函数的图象.若,则的值为(02πϕϕ⎛⎫<<⎪⎝⎭()f x 50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ϕ)A .B .C .D .12π8π6π3π【答案】A依题意,函数,由得()()2sin 22)i (2s n 2f x x x ϕϕ-=-=50412f f ππ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即,故5124f f ππ⎛⎫⎛⎫=-- ⎪ ⎪⎝⎭⎝⎭52sin 222sin 22124ππϕϕ⎛⎫⎛⎫⨯-=--⨯- ⎪ ⎪⎝⎭⎝⎭,即,5sin 262sin 2ππϕϕ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭1cos 22cos 22ϕϕϕ+=2cos 2ϕϕ=故,又,则,故,即.tan 2ϕ=02πϕ<<02ϕπ<<26πϕ=12πϕ=故选:A.7.(2020·梅河口市第五中学高三月考(文))已知角的顶点为坐标原点,始边与αβ,轴的非负半轴重合,若角的终边过点,,且,则x α()21,()4cos 5αβ+=0,2πβ⎛⎫∈ ⎪⎝⎭( )sin β=ABCD【答案】C【分析】因为角的终边过点,所以是第一象限角,α()21,α所以sin α==cos α==因为,,所以为第一象限角,,0,2πβ⎛⎫∈⎪⎝⎭()4cos 5αβ+=αβ+所以,()sin 35αβ+==所以()()()sin sin sin cos cos sin βαβααβααβα=+-=+-+⎡⎤⎣⎦3455==故选:C.8.(2020·罗山县楠杆高级中学高三月考(文))函数的()()cosln 2xx f x x e e π-⎛⎫=-+ ⎪⎝⎭图象大致为()A .B .C .D .【答案】C【分析】因为,()()()πcos ln sin ln 2x x x x f x x e e x e e --⎛⎫=-+=+ ⎪⎝⎭所以,()()()()()sin ln sin ln x x x x f x x x e e x e e f x ---=-+=-+=-即函数为奇函数,其图象关于原点对称,故排除D ,()f x又因为,当且仅当时取等号,2xxy e e-=+≥=0x =所以,()ln ln 2ln10x x e e -+≥>=当时,,当时,,[)0,πx ∈sin 0x ≥[)π,2πx ∈sin 0x ≤所以,当时,,当时,,故排除A 、B ,[)0,πx ∈()0f x >[)π,2πx ∈()0f x ≤故选:C .二、填空题9.(2020·新疆实验高三月考(文))在中,ABC :BC =,则外接圆的面积为______.222cos cos sin sin C A B B C --=ABC :【答案】π【分析】,222cos cos sin sin C A B B C --=,()()2221sin 1sin sin sin C A B B C∴----=即.222sin sin sin sin A C B B C --=由正弦定理得,222222a cb ac b --=⇒-=+由余弦定理得,所以,2222cos a c b bc A =+-cos A =,则,0A π<< 4A π=设的外接圆半径为,则,则,ABC :R 2sin BCRA =1R =则外接圆的面积为:,ABC :2R ππ=故答案为:.π10.(2020·山西高三期中(文))中,角A ,B ,C 所对的边分别为a ,b ,c ,若ABC :函数有极值点,则的取值范围是()()3222113f x x bx a c ac x =+++-+cos 23B π⎛⎫- ⎪⎝⎭______.【答案】11,2⎡⎫-⎪⎢⎣⎭【分析】由题意,函数,()()3222113f x x bx a c ac x =+++-+可得,()2222()f x x bx a c ac '=+++-因为函数有极值点,所以有两个不同的实数根,()f x 2222()0x bx a c ac +++-=可得,整理得,222(2)4()0b a c ac ∆=-+->222ac a c b >+-又由,2221cos 222a c b ac B ac ac +-=<=因为,所以,可得,(0,)B π∈3B ππ<<52333B πππ<-<当时,即时,取得最小值,最小值为;23B ππ-=23B π=cos 23B π⎛⎫- ⎪⎝⎭cos 1π=-当时,即时,此时,233B ππ-=3B π=1cos 2cos 332B ππ⎛⎫-<= ⎪⎝⎭所以的取值范围是.cos 23B π⎛⎫- ⎪⎝⎭11,2⎡⎫-⎪⎢⎣⎭三、解答题11.(2020·山东济南市·高三开学考试)在四边形中,,是上的ABCD A C ∠=∠E AD 点且满足与相似,,,.BED ∆ABD ∆34AEB π∠=6DBE π∠=6DE =(1)求的长度;BD (2)求三角形面积的最大值.BCD【答案】(1)2)36+【分析】(1),4BED AEB ππ∠=-∠=在三角形中,,BDE sin sin DE BD DBE BED =∠∠即,6sinsin 64BD ππ=所以612=BD =(2)因为,所以,BED ABD ∆∆:C A ∠=∠=6DBE π∠=在三角形中,,BDC 2222cos 6BD DC BC DC BCπ=+-::所以,2272DCBC BC =+:所以,722DCBC BC ≥::所以,(72DCBC ≤:所以,((11sin 7218264BCD S DC BC π∆=≤⨯=::所以三角形面积的最大值为BCD 36+12.(2020·北京海淀区·人大附中高三月考)已知,(2sin ,sin cos )mx x x =-,记函数.,sin cos )n x x x =+ ()f x m n =⋅ (1)求函数取最大值时的取值集合;()f x x (2)设函数在区间是减函数,求实数的最大值.()f x ,2m π⎡⎤⎢⎥⎣⎦m【答案】(1) ;(2).,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭56π【分析】(1)由题意,得,()2cos 22sin(26f x m n x x x π=⋅=-=- 当取最大值时,即,此时()f x sin(2)16x π-=22()62x k k Z πππ-=+∈所以的取值集合为.x ,3x x k k Z ππ⎧⎫=+∈⎨⎬⎩⎭(2)由得3222262k x k πππππ+≤-≤+,41022266k x k ππππ+≤≤+536k x k ππππ+≤≤+所以的减区间,()f x 5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦当,得是一个减区间,且1k =5,36ππ⎡⎤⎢⎥⎣⎦52,36πππ∈⎡⎤⎢⎥⎣⎦所以,5,,236m πππ⎡⎤⎡⎤⊂⎢⎥⎢⎥⎣⎦⎣⎦所以, 5(,]26m ππ∈所以的最大值为.m 56π13.(2020·宁夏固原市·固原一中高三月考(文))已知函数.()2cos sin 3f x x x x π⎛⎫=⋅+ ⎪⎝⎭x ∈R(1)求的最小正周期;()f x (2)求在闭区间上的值域.()f x ,44ππ⎡⎤-⎢⎥⎣⎦【答案】(1);(2).π11,24⎡⎤-⎢⎥⎣⎦【分析】(1)由已知,有21()cos sin 2f x x x x x ⎛⎫=⋅+ ⎪ ⎪⎝⎭21sin cos 2x x x =⋅-1sin 2cos 2)4x x =-+,11sin 22sin 2423x x x π⎛⎫=-=- ⎪⎝⎭的最小正周期;∴()f x 22T ππ==(2)∵,,,44x ππ⎡⎤∈-⎢⎥⎣⎦52,366x πππ⎡⎤∴-∈-⎢⎥⎣⎦当,即时,取得最大值为,236x ππ-=4x π=()f x 14当,即时,取得最小值为,232x ππ-=-12x π=-()f x 12-的值域为.()f x ∴11,24⎡⎤-⎢⎥⎣⎦14.(2020·梅河口市第五中学高三月考(文))在的中,角,,的对边分ABC :A B C别为,且a b c ,,sin (sin sin )sin 0a A b A B c C ++-=(1)求角;C (2)若,求的取值范围.2c =+a b 【答案】(1);(2).23C π=2⎛ ⎝【分析】:(1)由,及正弦定理得sin (sin sinB)sin 0a A b A c C ++-=,2220a ab b c ++-=由余弦定理得,又,所以;2221cos 222a b c ab C ab ab +--===-0C π<<23C π=(2)由及,得,即,2220a ab b c ++-=2c =224a ab b ++=2()4a b ab +-=所以,所以,当且仅当221()4()4ab a b a b =+-≤+a b +≤a b ==成立,又,所以,2a b c +>=2a b <+≤所以的取值范围为.+a b 2⎛ ⎝15.(2020·黑龙江高三月考(文))在中,角,,所对的边分别为,ABC :A B C a b,,,.c sin 3sin b A B =222b c a bc +-=(1)求外接圆的面积;ABC :(2)若的周长.BC ABC :【答案】(1);(2)9.3π【分析】解:(1)因为,又,即,所以,sin 3sin b A B =sin sin a b A B =sin sin b A a B =3a =由,得,设外接圆的半径为2221cos 22b c a A bc --==3A π=ABC :R 则,所以外接圆的面积为.12sin a R A=⋅==ABC :3π(2)设的中点为,则.因为,BC D AD =()12AD AB AC =+ 所以,()()222221127||2444AD AB AC AB AC c b bc =++⋅=++= 即,又,,则 ,2227c b bc ++=222b c a bc +-=3a =22918bc b c =⎧⎨+=⎩整理得,解得或(舍去),则.所以的周长为9.()2290b -=3b =3-3c =ABC :。

高考数学一轮复习 第三章 三角函数、解三角形 3.6.1 正弦定理、余弦定理课件

高考数学一轮复习 第三章 三角函数、解三角形 3.6.1 正弦定理、余弦定理课件
A.等边三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形
12/11/2021
第三十一页,共四十五页。
解析:因为 cos2B2=a+ 2cc, 所以 2cos2B2-1=a+c c-1, 所以 cosB=ac,所以a2+2ca2c-b2=ac, 所以 c2=a2+b2.所以△ABC 为直角三角形.故选 B.
(1)求 A; (2)若 2a+b=2c,求 sinC.
【解】 (1)由已知得 sin2B+sin2C-sin2A=sinBsinC, 故由正弦定理得 b2+c2-a2=bc. 由余弦定理得 cosA=b2+2cb2c-a2=12. 因为 0°<A<180°, 所以 A=60°.
12/11/2021
12/11/2021
第二十五页,共四十五页。
考点二 判断三角形形状
【例 2】 (1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,
若bc<cosA,则△ABC 为( A )
A.钝角三角形 B.直角三角形 C.锐角三角形 D.等边三角形 (2)设△ABC 的内角 A,B,C 所对的边分别为 a,b,c,若 bcosC
第二十二页,共四十五页。
1.在△ABC 中,内角 A,B,C 所对的边分别为 a,b,c,a=15,
b=10,A=60°,则 cosB=( D )
A.-2 3 2
22 B. 3
C.-
6 3
6 D. 3
12/11/2021
第二十三页,共四十五页。
解析:由正弦定理,得sianA=sibnB,即sin1650°=si1n0B,所以 sinB
第十三页,共四十五页。
2.小题热身
(1)在锐角△ABC 中,角 A,B 所对的边长分别为 a,b,2asinB=b,

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

3 2.
由sin A= 3sin B及正弦定理得a= 3b.
于是3b22+b32b-2 c2= 23,由此可得b=c.
由③c= 3b,与b=c矛盾.
因此,选条件③时问题中的三角形不存在.
应用正、余弦定理的解题技能
技能 边化

角化 边
和积 互化
解读
将表达式中的边利用公式a=2Rsin A,b=2Rsin B,c=2Rsin C化为角的关系
得cos A·(sin B+sin C)=0,在△ABC中,sin B+sin C≠0,
则cos A=0,所以△ABC为直角三角形.
判断三角形形状的常用技能 若已知条件中既有边又有角,则 (1)化边:通过因式分解、配方等得出边的相应关系,从而判断三 角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形 的形状.此时要注意应用A+B+C=π这个结论.

43 3
.由余弦定理DC2+BC2-
2DC·BCcos∠DCB=BD2,可得3BC2+4
3 ·BC-5=0,解得BC=
3 3

BC=-5 3 3(舍去).故BC的长为
3 3.
求解该题第(2)问时易出现的问题是不能灵活利用“AB⊥BC”, 将已知条件和第(1)问中所求值转化为△BCD内的边角关系.解决 平面图形中的计算问题时,学会对条件进行分类与转化是非常重 要的,一般来说,尽可能将条件转化到三角形中,这样就可以根 据条件类型选用相应的定理求解.如该题中,把条件转化到 △BCD中后,利用正弦定理和余弦定理就可以求出BC的长.
解析:选条件①. 由C=π6和余弦定理得a2+2ba2b-c2= 23. 由sin A= 3sin B及正弦定理得a= 3b. 于是3b22+b32b-2 c2= 23, 由此可得b=c. 由①ac= 3,解得a= 3,b=c=1. 因此,选条件①时问题中的三角形存在,此时c=1.

高考数学(文)名师讲义:第3章《三角函数与解三角形》(4)【含解析】

高考数学(文)名师讲义:第3章《三角函数与解三角形》(4)【含解析】

第四节简单三角函数的恒等变换能运用和与差的三角函数公式、二倍角的正弦、余弦、正切公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式、但对这三组公式不要求记忆).知识梳理一、将二倍角公式变形可得到的公式1.降幂公式:sin2α=____________、cos2α=___________、sin αcos α=________.2.升幂公式:1+cos α=________、1-cos α=________.3.半角公式:sin α2=±1-cos α2、cosα2=±1+cos α2、tan α2=±1-cos α1+cos α=1-cos αsin α=sin α1+cos α.注意:等号后的正、负号由α2所在的象限决定.二、辅助角公式a sin x+b cos x=a2+b2·sin(x+φ)、其中sin φ=ba2+b2、cos φ=aa2+b2、即tan φ=ba.一、1.1-cos 2α2 1+cos 2α2 12sin 2α 2.2cos 2α2 2sin 2α2基础自测1.(2012·哈尔滨三中月考)已知cos ⎝ ⎛⎭⎪⎫x -π6=-33、则cos x +cos ⎝ ⎛⎭⎪⎫x -π3=( )A .-233 B .±233 C .-1D .±1解析:∵cos ⎝ ⎛⎭⎪⎫x -π6=-33、∴32cos x +12sin x =-33、∴cos x+cos ⎝ ⎛⎭⎪⎫x -π3=32cos x +32sin x =332cos x +12sin x = 3×⎝⎛⎭⎪⎫-33=-1.故选C.答案:C2.(2012·深圳调研)已知过点(0,1)的直线l :x tan α-y -3tan β=0的斜率为2、则tan(α+β)=( )A .-73B.73C.57D .1解析:依题意有-1-3tan β=0、且tan α=2、所以tan β=-13.所以tan (α+β)=tan α+tan β1-tan αtan β=2-131-2×⎝ ⎛⎭⎪⎫-13=1.故选D. 答案:D3.(2013·无锡联考)已知锐角α满足cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α、则sin2α等于________.解析:由cos 2α=cos ⎝ ⎛⎭⎪⎫π4-α得(cos α-sin α)(cos α+sin α)=22(cos α+sin α)、由α为锐角知cos α+sin α≠0.∴cos α-sin α=22、平方得1-sin 2α=12.∴sin 2α=12. 答案:124. (2013·江西师大附中三模)已知sin ()3π-θ=-2sin ⎝ ⎛⎭⎪⎫π2+θ、则tan 2θ=__________.解析:由sin(3π-θ)=-2sin ⎝ ⎛⎭⎪⎫π2+θ得tan θ=-2、所以tan 2θ=2tan θ1-tan 2 θ=43. 答案:431.(2013·新课标全国卷Ⅱ)已知sin 2α=23、则cos 2⎝ ⎛⎭⎪⎫α+π4=( )A.16B.13C.12D.23解析:因为cos 2⎝ ⎛⎭⎪⎫α+π4=1+cos2⎝ ⎛⎭⎪⎫α+π42=1+cos ⎝ ⎛⎭⎪⎫2α+π22=1-sin 2α2、所以cos 2⎝ ⎛⎭⎪⎫α+π4=1-sin 2α2=1-232=16、选A. 答案:A2. (2013·北京卷)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝ ⎛⎭⎪⎫π2,π、且f (α)=22、求α的值.解析:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )=22sin ⎝ ⎛⎭⎪⎫4x +π4、所以f (x )的最小正周期为π2、最大值为22.(2)因为f (a )=22、所以sin ⎝ ⎛⎭⎪⎫4α+π4=1.因为α∈⎝ ⎛⎭⎪⎫π2,π、所以4α+π4∈⎝ ⎛⎭⎪⎫9π4,17π4、所以4α+π4=5π2、故α=9π16.1.(2012·杭州市学军中学月考)若直线x =t 与函数y =sin ⎝ ⎛⎭⎪⎫2x +π4和y =cos ⎝ ⎛⎭⎪⎫2x +π4的图象分别交于P 、Q 两点、则|PQ |的最大值为( )A .2B .1 C. 3D.2解析:依题意有|PQ |=sin ⎝ ⎛⎭⎪⎫2t +π4-cos ⎝ ⎛⎭⎪⎫2t +π4=2|sin 2t |≤ 2.故选D.答案:D2.若1+tan θ1-tan θ=2 015、则1cos 2θ+tan 2θ=________.解析:1cos 2θ+tan 2θ=1cos 2θ-sin 2θ+tan 2θ=sin 2θ+cos 2θcos 2θ-sin 2θ+tan 2θ=tan 2θ+11-tan 2θ+2tan θ1-tan 2θ=(tan θ+1)2(1+tan θ)(1-tan θ)=1+tan θ1-tan θ=2 015. 答案:2 015。

高考数学一轮复习 第三章 三角函数、解三角形 第6讲 正弦定理和余弦定理课件 文

高考数学一轮复习 第三章 三角函数、解三角形 第6讲 正弦定理和余弦定理课件 文

又因为 A 与 B 均为△ABC 的内角,所以 A=B, 又由 a2+b2-c2=ab, 由余弦定理,得 cos C=a2+2ba2b-c2=2aabb=12, 又 0°<C<180°,所以 C=60°, 所以△ABC 为等边三角形.
12/11/2021
第十六页,共四十七页。
判断三角形形状的两种常用途径 (1)通过正弦定理和余弦定理,化边为角,利用三角变换得出 三角形内角之间的关系进行判断. (2)利用正弦定理、余弦定理,化角为边,通过代数恒等变换, 求出边与边之间的关系进行判断.
12/11/2021
第二十六页,共四十七页。
=4-2cos 2B+cos43πcos 2B+sin43πsin 2B =4-2cos2B+π3. 因为 B∈0,23π, 所以 2B+π3∈π3,53π,cos2B+π3∈-1,12,
所以 b2+c2∈(3,6].
12/11/2021
第二十七页,共四十七页。
12/11/2021
第十八页,共四十七页。
所以 sin Ccos C=sin Bcos B,即 sin 2C=sin 2B, 因为∠B、∠C 均为△ABC 的内角, 所以 2∠C=2∠B 或 2∠C+2∠B=180°,所以∠B=∠C 或 ∠B+∠C=90°,故三角形为等腰或直角三角形.
12/11/2021
12/11/2021
第二十五页,共四十七页。
(2)因为 a= 3,
所以由正弦定理得sina A=sinb B=sinc C=
3=2. 3
2
所以 b2+c2=4(sin2B+sin2C)
=41-c2os
2B+1-c2os
2C
=4-2(cos 2B+cos 2C)

高考数学一轮复习 第3章 三角函数、解三角形 第6讲 正弦定理和余弦定理课件

高考数学一轮复习 第3章 三角函数、解三角形 第6讲 正弦定理和余弦定理课件

考向 利用正、余弦定理解三角形
例 1 (1)[2018·浙江模拟]设△ABC 的内角 A,B,C
所对边的长分别为 a,b,c.若 b+c=2a,3sinA=5sinB,则角

C=_____3___. 解析 由 3sinA=5sinB,得 3a=5b,a=53b,
又 b+c=2a,所以 c=73b. 根据余弦定理的推论 cosC=a2+2ba2b-c2,
情况
A 为锐角
A 为钝角或直 角
图形
关系式 a=bsinA bsinA<a<b a≥b
解的个数 一解
两解
一解
a>b a≤b 一解 无解
2021/12/11
第六页,共四十六页。
考点 4 三角形中常用的面积公式 1.S=12ah(h 表示边 a 上的高). 2.S=12bcsinA= 12acsinB=12absinC . 3.S=12r(a+b+c)(r 为三角形的内切圆半径).

a,b,c,若
cosA=45,cosC=153,a=1,则
21 b=___1_3____.
解析 由条件可得 sinA=35,sinC=1132,从而有 sinB=
sin[π-(A+C)]=sin(A+C)=sinAcosC+cosAsinC=6653.由正
弦定理 a = b ,可知 sinA sinB
第二十九页,共四十六页。
解 (1)由题设得12acsinB=3sain2 A,即12csinB=3sainA. 由正弦定理得12sinCsinB=3ssininAA . 故 sinBsinC=23. (2)由题设及(1)得 cosBcosC-sinBsinC=-12, 即 cos(B+C)=-12.所以 B+C=23π,故 A=π3.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六节函数y=A sin(ωx+φ)的图象及三角函数模型的应用1、能画出y=sin x、y=cos x、y=tan x的图象、2、了解函数y=A sin(ωx+φ)的物理意义;能画出y=A sin(ωx+φ)的图象、了解参数A、ω、φ对函数图象变化的影响、3、了解三角函数是描述周期变化现象的重要函数模型、会用三角函数解决一些简单的实际问题、知识梳理一、三角函数图象的作法1、几何法(利用三角函数线)、2、描点法:五点作图法(正、余弦曲线)、三点二线作图法(正切曲线)、(1)正弦函数和余弦函数的图象:正弦函数y=sin x和余弦函数y=cos x的图象的作图方法(用五点法):先取横坐标分别为0、π2、π、3π2、2π的五点、再用光滑的曲线把这五点连接起来、就得到正弦曲线和余弦曲线在一个周期内的图象、再将一个周期内的图象向左右平移2kπ(k∈N*)个单位长度、即得函数的整个图象、(2)正切函数的图象:作正切曲线常用三点二线作图法、正弦函数、余弦函数、正切函数的图象:图象与x轴的交点:正弦函数为________、k∈Z、余弦函数为________、k∈Z、正切函数为________ 、k∈Z.二、三角函数图象的对称轴与对称中心正弦曲线y=sin x的对称轴为x=__________(k∈Z)、对称中心为________(k∈Z);余弦曲线y=cos x的对称轴为x=__________(k∈Z);对称中心为________、(k∈Z);正切曲线y=tan x的对称中心为________(k∈Z)、其中、正弦函数与余弦函数在对称轴与曲线交点处有最大(小)值、三、函数y=A sin(ωx+φ)图象的画法1、五点法作y=A sin(ωx+φ)(A>0、ω>0)的简图、设X =ωx +φ、由X 取0、π2、π、 3π2、2π来求相应的x 值及对应的y 值、再描点作图、2、正弦型函数y =A sin(ωx +φ)+B (其中A >0、ω>0)的一些结论:最大值是A +B 、最小值是B -A 、周期是T =2πω、频率是f =ω2π、相位是ωx +φ、初相是φ(即当x =0时的相位);其图象的对称轴是直线ωx +φ=k π+π2(k ∈Z )、凡是该图象与直线y =B 的交点都是该图象的对称中心、对于y =A sin(ωx +φ)和y =A cos(ωx +φ)来说、对称中心与零点相联系、对称轴与最值点相联系、3、利用图象变换作三角函数的图象、三角函数的图象变换有振幅变换、周期变换和相位变换等、重点掌握函数y =A sin(ωx +φ)+B 的作法、(1)________或叫沿y 轴的伸缩变换:由y =sin x 的图象上的点的横坐标保持不变、纵坐标伸长(当|A |>1)或缩短(当0<|A |<1)到原来的________倍、得到y =A sin x 的图象、(2)________或叫做沿x 轴的伸缩变换:由y =sin x 的图象上的点的纵坐标保持不变、横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的________倍、得到y =sin ωx 的图象、(3)________或叫做左右平移:由y =sin x 的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动________个单位长度、得到y =sin(x +φ)的图象、(4)上下平移:由y =sin x 的图象上所有的点向上(当B >0)或向下(当B <0)平行移动________个单位长度、得到y =sin x +B 的图象、4、由y =A sin(ωx +φ)的图象求其解析式、给出图象确定解析式y =A sin(ωx +φ)的题型、一般从寻找“五点”中的第一零点⎝ ⎛⎭⎪⎫-φω,0作为突破口、要从图象的升降情况找准第一个零点的位置、一、2.(2)(k π、0)⎝ ⎛⎭⎪⎫k π+π2,0(k π、0)二、k π+π2 (k π、0) k π ⎝ ⎛⎭⎪⎫k π+π2,0 ⎝ ⎛⎭⎪⎫k π2,0三、3.(1)振幅变换 |A | (2)周期变换 ⎪⎪⎪⎪⎪⎪1ω (3)相位变换|φ| (4)|B |基础自测1、(2013·唐山模拟)函数y =sin 3x 的图象可以由函数y =cos 3x 的图象( )A 、向左平移π3个单位得到 B 、向右平移π3个单位得到 C 、向左平移π6个单位得到 D 、向右平移π6个单位得到解析:因为sin 3x =cos ⎝ ⎛⎭⎪⎫π2-3x =cos ⎝ ⎛⎭⎪⎫3x -π2=cos3⎝ ⎛⎭⎪⎫x -π6.所以函数y =cos 3x 的图象向右平移π6个单位即可得到函数y =sin 3x 的图象、故选D.答案:D2、(2013·新课标全国卷Ⅰ)函数f (x )=(1-cos x )sin x 在的图象大致为( )解析:f (x )=(1-cos x )sin x 在上为奇函数、x 在原点右侧附近f (x )>0.可排除A 、B.f (x )在⎣⎢⎡⎦⎥⎤0,π2上是增函数、且当x =π2时、f (x )=1.排除D.故选C.答案:C3、(2012·广东金山中学综合测试)如果函数y =3cos(2x +θ)的图象关于点⎝ ⎛⎭⎪⎫4π3,0成中心对称、那么|θ|的最小值是________、解析:对称中心的横坐标满足2x +θ=k π+π2(k ∈Z )、当x =4π3时、解得θ=k π-13π6、当k =2时、|θ|最小、最小值为π6.答案:π64、函数f (x )=A sin(ωx +φ)(A 、ω、φ是常数、A >0、ω>0)的部分图象如图所示、则f (0)=______.解析:由图可知A =2、T 4=712π-π3=π4、ω=2、2×7π12+φ=2k π+3π2、φ=2k π+π3、∴f (x )=2sin ⎝ ⎛⎭⎪⎫2x +2k π+π3(k ∈Z )、∴f (0)=2sin ⎝ ⎛⎭⎪⎫2k π+π3=62.答案:621、(2013·福建卷)将函数f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2的图象向右平移φ(φ>0)个单位长度后得到函数g (x )的图象、若f (x )、g (x )的图象都经过点P ⎝⎛⎭⎪⎫0,32、则φ的值可以是( )A.5π3B.5π6C.π2D.π6解析:本题考查的三角函数的图象的平移、把P ⎝⎛⎭⎪⎫0,32代入f (x )=sin(2x +θ)⎝ ⎛⎭⎪⎫-π2<θ<π2、解得θ=π3、所以g (x )=sin ⎝ ⎛⎭⎪⎫2x +π3-2φ、把P ⎝⎛⎭⎪⎫0,32代入得、φ=k π或φ=k π-π6、观察选项、故选B.答案:B2、已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图象上各点的横坐标缩短到原来的12、纵坐标不变、得到函数y =g (x )的图象、求函数y =g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值、解析:(1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx 、 所以f (x )=sin ωx cos ωx +1+cos 2ωx2 =12sin 2ωx +12cos 2ωx +12 =22sin ⎝ ⎛⎭⎪⎫2ωx +π4+12.由于ω>0、依题意得2π2ω=π、 所以ω=1.(2)由(1)知f (x )=22sin ⎝ ⎛⎭⎪⎫2x +π4+12、 所以g (x )=f (2x )=22sin ⎝ ⎛⎭⎪⎫4x +π4+12.当0≤x ≤π16时、π4≤4x +π4≤π2、所以22≤sin ⎝ ⎛⎭⎪⎫4x +π4≤1⇒12≤22sin ⎝ ⎛⎭⎪⎫4x +π4≤22⇒1≤22sin4x +π4+12≤1+22、故g (x )在区间⎣⎢⎡⎦⎥⎤0,π16上的最小值为1.1、(2013·广州二模)若函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N +)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0、则ω的最小值为( )A 、1B 、2C 、4D 、8解析:因为函数y =cos ⎝ ⎛⎭⎪⎫ωx +π6(ω∈N +)的一个对称中心是⎝ ⎛⎭⎪⎫π6,0、所以cos ⎝⎛⎭⎪⎫ω×π6+π6=0、∴ω×π6+π6=k π+π2、k ∈Z 、即ω=6k +2、k ∈Z .再由ω为正整数可得ω的最小值为2、故选B. 答案:B2、(2012·长春调研)函数y =sin(ωx +φ)ω>0且|φ|<π2在区间⎣⎢⎡⎦⎥⎤π6,2π3上单调递减、且函数值从1减小到-1、那么此函数图象与y 轴交点的纵坐标为( )A.12B.22C.32D.6+24解析:因为函数的最大值为1、最小值为-1、且在区间⎣⎢⎡⎦⎥⎤π6,2π3上单调递减、又函数值从1减小到-1、可知2π3-π6=π2为半周期、则周期为π、ω=2πT =2ππ=2、此时原式为y =sin(2x +φ)、又由函数过点⎝ ⎛⎭⎪⎫π6,1、代入可得φ=π6、因此函数为y =sin ⎝ ⎛⎭⎪⎫2x +π6、令x =0、可得y =12.答案:A。

相关文档
最新文档