北京市2019年中考数学一模分类汇编 反比例综合题

合集下载

北京中考数学试题分类汇编

北京中考数学试题分类汇编

目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。

2019年北京市东城区中考数学一模试卷含答案解析

2019年北京市东城区中考数学一模试卷含答案解析

2019年北京市东城区中考数学一模试卷一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2019年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×1082.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y23.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下A.甲B.乙C.丙D.丁5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣39.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.810.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=______.12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是______.13.已知一个多边形的每个外角都是72°,这个多边形是______边形.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是______.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为______.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确______;这位同学作图的依据是______.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.18.解不等式组,并把它的解集表示在数轴上.19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8“”(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是______;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.28.如图,等边△ABC ,其边长为1,D 是BC 中点,点E ,F 分别位于AB ,AC 边上,且∠EDF=120°.(1)直接写出DE 与DF 的数量关系;(2)若BE ,DE ,CF 能围成一个三角形,求出这个三角形最大内角的度数;(要求:写出思路,画出图形,直接给出结果即可)(3)思考:AE +AF 的长是否为定值?如果是,请求出该值,如果不是,请说明理由.29.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若存在过点P 的直线l 交⊙C 于异于点P 的A ,B 两点,在P ,A ,B 三点中,位于中间的点恰为以另外两点为端点的线段的中点时,则称点P 为⊙C 的相邻点,直线l 为⊙C 关于点P 的相邻线.(1)当⊙O 的半径为1时,①分别判断在点D (,),E (0,﹣),F (4,0)中,是⊙O 的相邻点有______; ②请从①中的答案中,任选一个相邻点,在图1中做出⊙O 关于它的一条相邻线,并说明你的作图过程;③点P 在直线y=﹣x +3上,若点P 为⊙O 的相邻点,求点P 横坐标的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=﹣与x 轴,y 轴分别交于点M ,N ,若线段MN 上存在⊙C 的相邻点P ,直接写出圆心C 的横坐标的取值范围.2019年北京市东城区中考数学一模试卷参考答案与试题解析一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个是符合题意的.1.数据显示,2019年全国新建、改扩建校舍约为51 660 000平方米,全面改善贫困地区义务教育薄弱学校基本办学条件工作取得明显成果.将数据51 660 000用科学记数法表示应为()A.5.166×107B.5.166×108C.51.66×106D.0.5166×108【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:51 660 000用科学记数法表示应为5.166×107,故选A.2.下列运算中,正确的是()A.x•x3=x3B.(x2)3=x5C.x6÷x2=x4D.(x﹣y)2=x2+y2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【分析】根据同底数幂的乘法底数不变指数相加;幂的乘方底数不变指数相乘;同底数幂的除法底数不变指数相减;差的平方等于平方和减积的二倍;可得答案.【解答】解:A、同底数幂的乘法底数不变指数相加,故A错误;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C正确;D、差的平方等于平方和减积的二倍,故D错误;故选:C.3.有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是()A.B.C.D.【考点】概率公式.【分析】根据有五张质地、大小、反面完全相同的不透明卡片,其中奇数有1,3,5,共3个,再根据概率公式即可得出答案.【解答】解:∵共有5个数字,奇数有3个,∴抽出的数字是奇数的概率是.故选C.4.甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如下表所示A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布越稳定进行比较即可.【解答】解:∵0.019<0.022<0.030<0.121,∴乙的方差最小,∴这四人中乙发挥最稳定,故选:B5.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【考点】平行线的性质.【分析】先求出∠3,再由平行线的性质可得∠1.【解答】解:如图:∠3=∠2=38°°(两直线平行同位角相等),∴∠1=90°﹣∠3=52°,故选A.6.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离为()A.29米B.58米C.60米D.116米【考点】全等三角形的应用.【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:B.7.在平面直角坐标系中,将点A(﹣1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(﹣4,﹣2)B.(2,2)C.(﹣2,2)D.(2,﹣2)【考点】关于x轴、y轴对称的点的坐标;坐标与图形变化-平移.【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【解答】解:点A(﹣1,2)向右平移3个单位长度得到的B的坐标为(﹣1+3,2),即(2,2),则点B关于x轴的对称点C的坐标是(2,﹣2),故选D.8.对式子2a2﹣4a﹣1进行配方变形,正确的是()A.2(a+1)2﹣3 B.(a﹣1)2﹣C.2(a﹣1)2﹣1 D.2(a﹣1)2﹣3【考点】配方法的应用.【分析】利用完全平方公式进行变形即可.【解答】解:2a2﹣4a﹣1,=2(a2﹣2a+1)﹣3,=2(a﹣1)2﹣3.故选:D.9.为了举行班级晚会,小张同学准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个25元,如果购买金额不超过200元,且买的球拍尽可能多,那么小张同学应该买的球拍的个数是()A.5 B.6 C.7 D.8【考点】一元一次不等式组的应用.【分析】设小张同学应该买的球拍的个数为x个,利用购买金额不超过200元得到20×1.5+25x≤200,然后解不等式后求出不等式的最大整数解即可.【解答】解:设小张同学应该买的球拍的个数为x个,根据题意得20×1.5+25x≤200,解得x≤6.8,所以x的最大整数值为6,所以小张同学应该买的球拍的个数是6个.故选B.10.如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰Rt △ABC,使∠BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.【解答】解:作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1.故选A.二、填空题(本题共18分,每小题3分)11.分解因式:ab2﹣ac2=a(b+c)(b﹣c).【考点】提公因式法与公式法的综合运用.【分析】原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2﹣c2)=a(b+c)(b﹣c),故答案为:a(b+c)(b﹣c)12.请你写出一个一次函数,满足条件:①经过第一、三、四象限;②与y轴的交点坐标为(0,﹣1).此一次函数的解析式可以是y=x﹣1(答案不唯一)..【考点】一次函数图象与系数的关系.【分析】首先根据函数经过的象限确定比例系数的符号,然后根据其与y轴的交点确定答案即可.【解答】解:∵一次函数的图象经过第一、三、四象限,∴k>0,∴设一次函数的解析式为y=x+b,∵经过点(0,﹣1),∴b=﹣1,∴解析式为y=x﹣1,故答案为:y=x﹣1(答案不唯一).13.已知一个多边形的每个外角都是72°,这个多边形是五边形.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°.用外角和除以每个外角的度数即可得到边数.【解答】解:360÷72=5.故这个多边形是五边形.故答案为:五.14.为了解一路段车辆行驶速度的情况,交警统计了该路段上午7:00至9:00来往车辆的车速(单位:千米/时),并绘制成如图所示的条形统计图.这些车速的众数是70千米/时.【考点】众数;条形统计图.【分析】根据众数是出现次数最多的数直接写出答案即可;【解答】解:70千米/时是出现次数最多的,故众数是70千米/时,故答案为:70千米/时.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有甲乙二人持钱不知其数.甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”译文:“假设有甲乙二人,不知其钱包里有多少钱.若乙把自己一半的钱给甲,则甲的钱数为50;而甲把自己的钱给乙,则乙的钱数也能为50.问甲、乙各有多少钱?”设甲持钱为x,乙持钱为y,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】设甲持钱为x,乙持钱为y,根据题意可得,甲的钱+乙的钱的一半=50元,乙的钱+甲所有钱的=50元,据此可列方程组.【解答】解:设甲持钱为x,乙持钱为y,根据题意,可列方程组:,故答案为:.16.阅读下面材料:在数学课上,老师提出如下问题:如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC.甲、乙、丙、丁四位同学的主要作法如下:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P 就是所求的点.丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点.请你判断哪位同学的作法正确丁同学;这位同学作图的依据是垂直平分线上的点到线段两端的距离相等;等量代换.【考点】作图—复杂作图.【分析】分别利用线段垂直平分线的性质结合圆的性质分析得出答案.【解答】解:甲同学的作法:如图甲:以点B为圆心,BA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;乙同学的作法:如图乙:作线段AC的垂直平分线交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丙同学的作法:如图丙:以点C为圆心,CA长为半径画弧,交BC于点P,则点P就是所求的点.无法得出AP=BP,故无法得出PA+PC=BC,故此选项错误;丁同学的作法:如图丁:作线段AB的垂直平分线交BC于点P,则点P就是所求的点,可得:AP=BP,则PA+PC=BC.故答案为:丁;垂直平分线上的点到线段两端的距离相等;等量代换.三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17.计算:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】本题涉及特殊角的三角函数值、绝对值、零指数幂、负整数指数幂4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:tan60°+|﹣2|﹣(﹣1)0﹣()﹣1=+2﹣﹣1﹣2=﹣1.18.解不等式组,并把它的解集表示在数轴上.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2(x﹣2)≤3(x﹣1),得:x≥﹣1,解不等式,得:x<3,∴不等式组的解集为﹣1≤x<3,不等式组的解集在数轴上的表示如下:19.已知x2﹣x﹣3=0,求代数式(x+1)2﹣x(2x+1)的值.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:原式=x2+2x+1﹣2x2﹣x=﹣x2+x+1,由x2﹣x﹣3=0,得到x2﹣x=3,则原式=﹣3+1=﹣2.20.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠BAC=40°,请你选择图中现有的一个角并求出它的度数(要求:不添加新的线段,所有给出的条件至少使用一次).【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB=70°,由角平分线的性质得到∠ABD=∠CBD=35°,根据平行线的性质得到∠E=∠EAB=35°,于是得到结论.【解答】解:∠EAC=75°,∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=35°,∵AE∥BD,∴∠E=∠EAB=35°,∴∠EAC=∠EAB+∠BAC=75°.21.列方程或方程组解应用题:在“春节”前夕,某花店用13 000元购进第一批礼盒鲜花,上市后很快销售一空.根据市场需求情况,该花店又用6 000元购进第二批礼盒鲜花.已知第二批所购鲜花的盒数是第一批所购鲜花的,且每盒鲜花的进价比第一批的进价少10元.问第二批鲜花每盒的进价是多少元?【考点】分式方程的应用.【分析】可设第二批鲜花每盒的进价是x元,根据等量关系:第二批所购鲜花的盒数是第一批所购鲜花的,列出方程求解即可.【解答】解:设第二批鲜花每盒的进价是x元,依题意有=×,解得x=120,经检验:x=120是原方程的解,答:第二批鲜花每盒的进价是120元.22.如图:在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【考点】菱形的判定与性质;平行四边形的性质;作图—基本作图.【分析】(1)由尺规作∠BAF的角平分线的过程可得,AB=AF,∠BAE=∠FAE,根据平行四边形的性质可得∠FAE=∠AEB,然后证明AF=BE,进而可得四边形ABEF为平行四边形,再由AB=AF可得四边形ABEF为菱形;(2)根据菱形的性质可得AE⊥BF,BO=FB=3,AE=2AO,利用勾股定理计算出AO的长,进而可得AE的长.【解答】(1)证明:由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO==4,∴AE=2AO=8.23.在平面直角坐标系xOy中,直线y=k1x+b与x轴交于点B,与y轴交于点C,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA.(1)求反比例函数y=的解析式;(2)若S△AOB:S△BOC=1:2,求直线y=k1x+b的解析式.【考点】反比例函数与一次函数的交点问题.【分析】(1)将点A的坐标代入反比例函数解析式中,得出关于k2的一元一次方程,解方程即可得出结论;(2)分两种情况考虑:①直线y=k1x+b经过第一、三、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式;②直线y=k1x+b经过第一、二、四象限,由S△AOB:S△BOC=1:2结合三角形的面积公式得出点C的坐标,由待定系数法即可求出此时直线的函数解析式.【解答】解:(1)将点A(3,1)代入到y=中,得1=,解得:k2=3.故反比例函数的解析式为y=.(2)符合题意有两种情况:①直线y=k1x+b经过第一、三、四象限,如图1所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,﹣2).则有,解得:.∴直线的解析式为y=x﹣2.②直线y=k1x+b经过第一、二、四象限,如图2所示.∵S△AOB:S△BOC=1:2,点A(3,1),∴点C的坐标为(0,2).则有,解得:.∴直线的解析式为y=﹣x+2.24.某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8“”请根据以上信息回答下列问题:(1)求出本次随机抽取的学生总人数;(2)分别求出统计表中的x,y的值;(3)估计该校九年级400名学生中为“优秀”档次的人数.【考点】扇形统计图;用样本估计总体.【分析】(1)根据题意当3≤n<5时为“一般”可知一般档次人数为6+7,结合其所占百分比为26%,相除可得总人数;(2)由良好档次的百分比及总人数可得良好档次的人数,减去阅读本数为5、7的人数可得x的值,将总人数减去其余各项人数可得y的值;(3)根据样本中优秀档次所占百分比乘以九年级总人数可得.【解答】解:(1)由表知被调查学生中“一般”档次的有13人,所占比例是26%,故被调查的学生数是13÷26%=50(人);(2)被调查的学生中“良好”档次的人数为50×60%=30(人),∴x=30﹣(12+7)=11(人),y=50﹣(1+2+6+7+12+11+7+1)=3(人);(3)由样本数据可知:“优秀”档次所占的百分比为×100%=8%,∴估计九年级400名学生中优秀档次的人数为:400×8%=32(人).25.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.(1)求证:PB是⊙O的切线.(2)若PB=3,DB=4,求DE的长.【考点】切线的判定与性质.【分析】(1)由已知角相等,及对顶角相等得到三角形DOE与三角形POB相似,利用相似三角形对应角相等得到∠OBP为直角,即可得证;(2)在直角三角形PBD中,由PB与DB的长,利用勾股定理求出PD的长,由切线长定理得到PC=PB,由PD﹣PC求出CD的长,在直角三角形OCD中,设OC=r,则有OD=8﹣r,利用勾股定理列出关于r的方程,求出方程的解得到r的值,然后通过相似三角形的性质即可得到结论.【解答】(1)证明:∵在△DEO和△PBO中,∠EDB=∠EPB,∠DOE=∠POB,∴∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;(2)解:在Rt△PBD中,PB=3,DB=4,根据勾股定理得:PD==5,∵PD与PB都为圆的切线,∴PC=PB=3,∴DC=PD﹣PC=5﹣3=2,在Rt△CDO中,设OC=r,则有DO=4﹣r,根据勾股定理得:(4﹣r)2=r2+22,解得:r=,∴OP==,∵∠E=∠PCO,∠CPO=∠CPO,∴△DEP∽△OBP,∴,∴DE=.26.在课外活动中,我们要研究一种四边形﹣﹣筝形的性质.定义:两组邻边分别相等的四边形是筝形(如图1).小聪根据学习平行四边形、菱形、矩形、正方形的经验,对筝形的性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据筝形的定义,写出一种你学过的四边形满足筝形的定义的是菱形;(2)通过观察、测量、折叠等操作活动,写出两条对筝形性质的猜想,并选取其中的一条猜想进行证明;(3)如图2,在筝形ABCD中,AB=4,BC=2,∠ABC=120°,求筝形ABCD的面积.【考点】四边形综合题.【分析】(1)根据筝形的定义解答即可;(2)根据全等三角形的判定和性质证明;(3)连接AC,作CE⊥AB交AB的延长线于E,根据正弦的定义求出CE,根据三角形的面积公式计算即可.【解答】解:(1)∵菱形的四条边相等,∴菱形是筝形,故答案为:菱形;(2)筝形是轴对称图形;筝形的对角线互相垂直;筝形的一组对角相等.已知:四边形ABCD是筝形,求证:∠B=∠D,证明:如图1,连接AC,在△ABC和△ADC中,,∴△ABC≌△ADC,∴∠B=∠D;(3)如图2,连接AC,作CE⊥AB交AB的延长线于E,∵∠ABC=120°,∴∠EBC=60°,又BC=2,∴CE=BC×sin∠EBC=,∴S△ABC=AB×CE=2,∵△ABC≌△ADC,∴筝形ABCD的面积=2S△ABC=4.27.已知关于x的一元二次方程mx2+(3m+1)x+3=0.(1)当m取何值时,此方程有两个不相等的实数根;(2)当抛物线y=mx2+(3m+1)x+3与x轴两个交点的横坐标均为整数,且m为正整数时,求此抛物线的解析式;(3)在(2)的条件下,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象直接写出实数a的取值范围.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)根据一元二次方程的根的判别式,直接计算即可;(2)根据求根公式,求出两根,由抛物线与x轴的两个交点的横坐标都为正整数,求出m 的值,可得抛物线解析式;(3)画出图象,找到当y1=y2时,a的值,根据图象,直接判断即可.【解答】解:(1)由题意可知,△=b2﹣4ac=(3m+1)2﹣4m×3=(3m﹣1)2>0,解得m≠,∵mx2+(3m+1)x+3=0是一元二次方程,∴m≠0,。

2019-2020年中考数学:反比例函数与一次函数综合题(含答案)

2019-2020年中考数学:反比例函数与一次函数综合题(含答案)

2019-2020年中考数学:反比例函数与一次函数综合题(含答案) 针对演练1. 如图,一次函数y =kx +1(k ≠0)与反比例函数y =mx (m ≠0)的图象有公共点A (1,2),直线l ⊥x 轴于点N (3,0),与一次函数和反比例函数的图象分别相交于点B ,C ,连接AC . (1)求k 和m 的值; (2)求点B 的坐标; (3)求△ABC 的面积.第1题图2. 已知正比例函数y =2x 的图象与反比例函数y =kx (k ≠0)在第一象限内的图象交于点A ,过点A 作x 轴的垂线,垂足为点P ,已知△OAP 的面积为1.(1)求反比例函数的解析式;(2)有一点B 的横坐标为2,且在反比例函数图象上,则在x 轴上是否存在一点M ,使得MA +MB 最小?若存在,请求出点M 的坐标;若不存在,请说明理由.第2题图3. 如图,反比例函数2yx=的图象与一次函数y=kx+b的图象交于点A、B,点A、B的横坐标分别为1、-2,一次函数图象与y轴交于点C,与x轴交于点D.(1)求一次函数的解析式;(2)对于反比例函数2yx=,当y<-1时,写出x的取值范围;(3)在第三象限的反比例函数图象上是否存在一点P,使得S△ODP=2S△OCA?若存在,请求出点P的坐标;若不存在,请说明理由.第3题图4. (2016巴中10分)已知,如图,一次函数y =kx +b (k 、b 为常数, k ≠0)的图象与x 轴、y 轴分别交于A 、B 两点,且与反比例函数y =nx (n 为常数且n ≠0)的图象在第二象限交于点C .CD ⊥x 轴,垂足为D .若OB =2OA =3OD =6.(1)求一次函数与反比例函数的解析式; (2)求两函数图象的另一个交点坐标; (3)直接写出不等式:kx +b ≤nx 的解集.第4题图5. 如图,点A (-2,n ),B(1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点. (1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围;(3)若C 是x 轴上一动点,设t =CB -CA ,求t 的最大值,并求出此时点C 的坐标.第5题图6. 如图,直线y 1=14x +1与x 轴交于点A ,与y 轴交于点C ,与反比例函数y 2=mx (x >0)的图象交于点P ,过点P 作PB ⊥x 轴于点B ,且AC =BC .(1)求点P 的坐标和反比例函数y 2的解析式; (2)请直接写出y 1>y 2时,x 的取值范围;(3)反比例函数y 2图象上是否存在点D ,使四边形BCPD 为菱形?如果存在,求出点D 的坐标;如果不存在,说明理由.第6题图7. 如图,直线y =x +b 与x 轴交于点C(4,0),与y 轴交于点B ,并与双曲线y =mx (x <0)交于点A (-1,n ). (1)求直线与双曲线的解析式; (2)连接OA ,求∠OAB 的正弦值;(3)若点D 在x 轴的正半轴上,是否存在以点D 、C 、B 构成的三角形△OAB 相似?若存在求出D 点的坐标,若不存在,请说明理由.第7题图8. (2016金华8分)如图,直线y=33x-3与x,y轴分别交于点A,B,与反比例函数y=kx(k>0)图象交于点C,D,过点A作x轴的垂线交该反比例函数图象于点E.(1)求点A的坐标;(2)若AE=AC.①求k的值;②试判断点E与点D是否关于原点O成中心对称?并说明理由.第8题图9. 如图,已知双曲线y =kx 经过点D (6,1),点C 是双曲线第三象限上的动点,过点C 作CA ⊥x 轴,过点D 作DB ⊥y 轴,垂足分别为A ,B ,连接AB ,BC . (1)求k 的值;(2)若△BCD 的面积为12,求直线CD 的解析式; (3)判断AB 与CD 的位置关系,并说明理由.第9题图10. 如图,点B 为双曲线y =kx (x >0)上一点,直线AB 平行于y 轴,交直线y =x 于点A ,交x 轴于点D ,双曲线y =kx 与直线y =x 交于点C ,若OB 2-AB 2=4. (1)求k 的值;(2)点B 的横坐标为4时,求△ABC 的面积;(3)双曲线上是否存在点P ,使△APC ∽△AOD ?若存在,求出点P 的坐标;若不存在,请说明理由.第10题图【答案】1.解:(1)∵点A (1,2)是一次函数y =kx +1与反比例函数y =mx 的公共点,∴k +1=2,1m=2,∴k =1,m =2;(2)∵直线l ⊥x 轴于点N (3,0),且与一次函数的图象交于点B , ∴点B 的横坐标为3,将x =3代入y =x +1,得y =3+1=4, ∴点B 的坐标为(3,4);(3)如解图,过点A 作AD ⊥直线l ,垂足为点D , 由题意得,点C 的横坐标为3, ∵点C 在反比例函数图象上,∴y =2x=23, ∴C 点坐标为(3,23),∴BC =BN -CN =4-23=103, 又∵AD =3-1=2,∴S △ABC =12BC ·AD =12×103×2=103.第1题解图2.解:(1)设A 点的坐标为(x ,y ),则OP =x ,P A =y , ∵△OAP 的面积为1, ∴12xy =1, ∴xy =2,即k =2, ∴反比例函数的解析式为2y x=; (2)存在,如解图,作点A 关于x 轴的对称点A ′,连接A ′B ,交x 轴于点M ,此时MA +MB 最小,∵点B 的横坐标为2, ∴点B 的纵坐标为y =22=1, 即点B 的坐标为(2,1).又∵两个函数图象在第一象限交于A 点, ∴22x x=, 解得x 1=1,x 2=-1(舍去). ∴y =2,∴点A 的坐标为(1,2),∴点A 关于x 轴的对称点A ′(1,-2),设直线A ′B 的解析式为y =kx +b ,代入A ′(1,-2),B (2,1)得,23,215k b k k b b +=-=⎧⎧⎨⎨+==-⎩⎩解得, ∴直线A ′B 的解析式为y =3x -5,令y =0,得x =53,∴直线y =3x -5与x 轴的交点为(53,0), 即点M 的坐标为(53,0).第2题解图3.解:(1)∵反比例函数y =2x图象上的点A 、B 的横坐标分别为1、-2,∴点A 的坐标为(1,2),点B 的坐标为(-2,-1), ∵点A (1,2)、B (-2,-1)在一次函数y =kx +b 的图象上,∴21,211k b k k b b +==⎧⎧⎨⎨-+=-=⎩⎩解得,∴一次函数的解析式为y =x +1; (2)由图象知,对于反比例函数2y x=,当y <-1时,x 的取值范围是-2<x <0;(3)存在.对于y =x +1,当y =0时,x =-1,当x =0时,y =1, ∴点D 的坐标为(-1,0),点C 的坐标为(0,1), 设点P (m ,n ),∵S △ODP =2S △OCA ,∴12×1×(-n )=2×12×1×1, ∴n =-2,∵点P (m ,-2)在反比例函数图象上,∴-2= 2m ,∴m =-1,∴点P 的坐标为(-1,-2). 4.解:(1)∵OB =2OA =3OD =6, ∴OA =3,OD =2.∴A (3,0),B (0,6),D (-2,0). 将点A (3,0)和B (0,6)代入y =kx +b 得,302,66k b k b b +==-⎧⎧⎨⎨==⎩⎩解得, ∴一次函数的解析式为y =-2x +6. ……………………(3分) 将x =-2代入y =-2x +6,得y =-2×(-2)+6=10, ∴点C 的坐标为(-2,10). 将点C (-2,10)代入y =nx ,得10=2n-,解得n =-20,∴反比例函数的解析式为20y x=-;………………………(5分)(2)将两个函数解析式组成方程组,得26,20y x y x =-+⎧⎪⎨=-⎪⎩解得x 1=-2,x 2=5. ………………………………………(7分) 将x =5代入204,y x=-=- ∴两函数图象的另一个交点坐标是(5,-4); …………… (8分) (3)-2≤x <0或x ≥5. …………………………………… (10分) 【解法提示】不等式kx +b ≤n x 的解集,即是直线位于双曲线下方的部分所对应的自变量x 的取值范围,也就是-2≤x <0或x ≥5.5.解:(1)∵点A (-2,n ),B (1,-2)是一次函数y =kx +b 的图象和反比例函数y =mx 的图象的两个交点,∴m =-2,∴反比例函数解析式为2y x=-, ∴n =1, ∴点A (-2,1),将点A (-2,1),B (1,-2)代入y =kx +b ,得211,21k b k k b b -+==-⎧⎧⎨⎨+=-=-⎩⎩解得, ∴一次函数的解析式为y =-x -1;(2)结合图象知:当-2<x <0或x >1时,一次函数的值小于反比例函数的值;(3)如解图,作点A 关于x 轴的对称点A ′,连接BA ′延长交x 轴于点C ,则点C 即为所求,∵A (-2,1), ∴A ′(-2,-1),设直线A ′B 的解析式为y =mx +n , 1123,253m m n m n n ⎧=-⎪-=-+⎧⎪⎨⎨-=+⎩⎪=-⎪⎩解得, ∴y =-13x -53, 令y =0,得x =-5, 则C 点坐标为(-5,0),∴t 的最大值为A ′B =(-2-1)2+(-1+2)2=10.第5题解图6.解:(1)∵一次函数y 1=14x +1的图象与x 轴交于点A ,与 y 轴交于点C , ∴A (-4,0),C (0,1), 又∵AC =BC ,CO ⊥AB ,∴O 为AB 的中点,即OA =OB =4,且BP =2OC =2,∴点P 的坐标为(4,2),将点P (4,2)代入y 2=mx ,得m =8,∴反比例函数的解析式为y 2=8x;(2)x >4;【解法提示】由图象可知,当y 1>y 2时,即是直线位于双曲线上方的部分,所对应的自变量x 的取值范围是x >4.(3)存在.假设存在这样的D 点,使四边形BCPD 为菱形,如解图,连接DC 与PB 交于点E ,∵四边形BCPD 为菱形, ∴CE =DE =4, ∴CD =8,∴D 点的坐标为(8,1),将D (8,1)代入反比例函数8y x,D 点坐标满足函数关系式,即反比例函数图象上存在点D ,使四边形BCPD 为菱形,此时 D 点坐标为(8,1).第6题解图7.解:(1)∵直线y =x +b 与x 轴交于点C (4,0), ∴把点C (4,0)代入y =x +b ,得b =-4,∴直线的解析式为y =x -4, ∵直线也过A 点,∴把点A (-1,n )代入y =x -4,得n =-5, ∴A (-1,-5),将A (-1,-5)代入y =mx (x <0),得m =5, ∴双曲线的解析式为5y x; (2)如解图,过点O 作OM ⊥AC 于点M , ∵点B 是直线y =x -4与y 轴的交点, ∴令x =0,得y =-4,∴点B (0,-4),∴OC =OB =4, ∴△OCB 是等腰直角三角形, ∴∠OBC =∠OCB =45°,∴在△OMB 中,sin45°=OM OB =4OM ,∴OM =22,∵AO =12+52=26,∴在△AOM 中,sin ∠OAB =OM OA =2226=21313;第7题解图(3)存在.如解图,过点A 作AN ⊥y 轴于点N ,则AN =1,BN =1, ∴AB =12+12=2, ∵OB =OC =4, ∴BC =42+42=42, 又∵∠OBC =∠OCB =45°, ∴∠OBA =∠BCD =135°,∴△OBA ∽△BCD 或△OBA ∽△DCB , ∴OB BC =BA CD 或OB DC =BA BC ,即442=CD 或4DC =242, ∴CD =2或CD =16, ∵点C (4,0),∴点D 的坐标是(6,0)或(20,0).8.解:(1)当y =0时,得0=33x -3,解得x =3.∴点A 的坐标为(3,0); ……………………………………(2分) (2)①如解图,过点C 作CF ⊥x 轴于点F . 设AE =AC =t , 点E 的坐标是(3,t ). 在Rt △AOB 中, tan ∠OAB =OB OA =33, ∴∠OAB =30°.在Rt △ACF 中,∠CAF =30°, ∴CF =12t ,AF =AC ·cos30°=32t , ∴点C 的坐标是(3+32t ,12t ). ∵点C 、E 在y =kx 的图象上, ∴(3+32t )×12t =3t , 解得t 1=0(舍去),t 2=23,∴k =3t =63; …………………………………………… (5分) ②点E 与点D 关于原点O 成中心对称,理由如下: 由①知,点E 的坐标为(3,23), 设点D 的坐标是(x ,33x -3),∴x (33x -3)=63,解得x 1=6(舍去),x 2=-3, ∴点D 的坐标是(-3,-23),∴点E 与点D 关于原点O 成中心对称.…………………(8分)第8题解图9.解:(1)∵双曲线y =k x 经过点D (6,1), ∴6k =1,解得k =6; (2)设点C 到BD 的距离为h ,∵点D 的坐标为(6,1),DB ⊥y 轴,∴BD =6,∴S △BCD =12×6×h =12,解得h =4,∵点C 是双曲线第三象限上的动点,点D 的纵坐标为1, ∴点C 的纵坐标为1-4=-3, ∴6x=-3,解得x =-2, ∴点C 的坐标为(-2,-3),设直线CD 的解析式为y =kx +b ,则123,2612k b k k b b ⎧-+=-=⎧⎪⎨⎨+=⎩⎪=-⎩解得, ∴直线CD 的解析式为y =12x -2;(3)AB ∥CD .理由如下:∵CA ⊥x 轴,DB ⊥y 轴,点D 的坐标为(6,1),设点C 的坐标为(c ,6c), ∴点A 、B 的坐标分别为A (c ,0),B (0,1),设直线AB 的解析式为y =mx +n ,则10,11mc n m c n n ⎧+==-⎧⎪⎨⎨=⎩⎪=⎩解得, ∴直线AB 的解析式为y =-1x c+1, 设直线CD 的解析式为y =ex +f ,则16,661e ec f c c c e f f c ⎧=-⎧⎪+=⎪⎪⎨⎨+⎪⎪+==⎩⎪⎩解得, ∴直线CD 的解析式为y =-1x c +6c c+, ∵AB 、CD 的解析式中k 都等于1c-, ∴AB 与CD 的位置关系是AB ∥CD .10.解:(1)设D 点坐标为(a ,0),∵AB ∥y 轴,点A 在直线y =x 上,B 为双曲线y =k x (x >0)上一点,∴A 点坐标为(a ,a ),B 点坐标为(a ,k a ),∴AB =a -k a ,BD =k a ,在Rt △OBD 中,OB 2=BD 2+OD 2=(k a )2+a 2,∵OB 2-AB 2=4,∴(k a )2+a 2-(a -k a )2=4,∴k =2;(2)如解图,过点C 作CM ⊥AB 于点M , ,2y x y x =⎧⎪⎨=⎪⎩联立 2222x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩解得或(舍去), ∴C 点坐标为(2,2),∵点B 的横坐标为4,∴A 点坐标为(4,4),B 点坐标为(4,12), ∴AB =4-12=72,CM =4-2, ∴S △ABC =12CM ·AB =12×(4-2)×72=7-724;第10题解图(3)不存在,理由如下:若△APC ∽△AOD ,∵△AOD 为等腰直角三角形,∴△APC 为等腰直角三角形,∠ACP =90°,∴CM =12AP , 设P 点坐标为(a ,2a),则A 点坐标为(a ,a ), ∴AP =|a -2a|, ∵C 点坐标为(2,2),∴CM =|a -2|,∴|a -2|=12|a -2a|, ∴(a -2)2=14×222(2)a a-,即(a -2)2=14×222((a a a +⨯-, ∴4a 2-(a +2)2=0,解得a =2或a =-23(舍去), ∴P 点坐标为(2,2),则此时点C 与点P 重合,所以不能构成三角形,故不存在.。

中考数学专题09 反比例函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

中考数学专题09 反比例函数-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题09.反比例函数一、单选题1.(2021·山西中考真题)已知反比例函数6y x=,则下列描述不正确的是( ) A .图象位于第一,第三象限 B .图象必经过点34,2⎛⎫ ⎪⎝⎭C .图象不可能与坐标轴相交D .y 随x 的增大而减小2.(2021·四川达州市·中考真题)在反比例函数21k y x+=(k 为常数)上有三点()11,A x y ,()22,B x y ,()33,C x y ,若1230x x x <<<,则1y ,2y ,3y 的大小关系为( )A .123y y y <<B .213y y y <<C .132y y y <<D .321y y y <<3.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =--B .212y x x =+和21y x =-+C .11y x =-和21y x =-- D .11y x=-和21y x =-+ 4.(2021·天津中考真题)若点()()()1235,,1,,5,A y B y C y -都在反比例函数5y x=-的图象上,则123,,y y y 的大小关系是( ) A .123y y y <<B .231y y y <<C .132y y y <<D .312y y y <<5.(2021·四川乐山市·中考真题)如图,直线1l 与反比例函数3(0)y x x=>的图象相交于A 、B 两点,线段AB 的中点为点C ,过点C 作x 轴的垂线,垂足为点D .直线2l 过原点O 和点C .若直线2l 上存在点(,)P m n ,满足APB ADB ∠=∠,则m n +的值为( )A .3B .3或32C .3+或3-D .36.(2021·重庆中考真题)如图,在平面直角坐标系中,菱形ABCD 的顶点D 在第二象限,其余顶点都在第一象限,AB ∥X 轴,AO ⊥AD ,AO =A D .过点A 作AE ⊥CD ,垂足为E ,DE =4CE .反比例函数()0ky x x=>的图象经过点E ,与边AB 交于点F ,连接OE ,OF ,EF .若118EOFS =,则k 的值为( ) A .73B .214C .7D .2127.(2021·江苏扬州市·中考真题)如图,点P 是函数()110,0k y k x x=>>的图像上一点,过点P 分别作x 轴和y 轴的垂线,垂足分别为点A 、B ,交函数()220,0k y k x x=>>的图像于点C 、D ,连接OC 、OD 、CD 、AB ,其中12k k >,下列结论:①//CD AB ;②122OCDk kS-=;③()21212DCPk k Sk -=,其中正确的是( ) A .①②B .①③C .②③D .①8.(2021·浙江宁波市·中考真题)如图,正比例函数()1110y k x k =<的图象与反比例函数()2220k y k x=<的图象相交于A ,B 两点,点B 的横坐标为2,当12y y >时,x 的取值范围是( )A .2x <-或2x >B .20x -<<或2x >C .2x <-或02x <<D .20x -<<或02x << 9.(2021·浙江金华市·中考真题)已知点()()1122,,,A x y B x y 在反比例函数12y x=-的图象上.若120x x <<,则( ) A .120y y <<B .210y y <<C .120y y <<D .210y y <<10.(2021·江苏连云港市·中考真题)关于某个函数表达式,甲、乙、丙三位同学都正确地说出了该函数的一个特征.甲:函数图像经过点(1,1)-;乙:函数图像经过第四象限; 丙:当0x >时,y 随x 的增大而增大.则这个函数表达式可能是( ) A .y x =-B .1y x=C .2yx D .1y x=-11.(2021·浙江温州市·中考真题)如图,点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,AC x ⊥轴于点C ,BD x ⊥轴于点D ,BE y ⊥轴于点E ,连结AE .若1OE =,23OC OD =,AC AE =,则k的值为( )A .2B .2C .94D .12.(2021·浙江嘉兴市·中考真题)已知三个点()11,x y ,()22,x y ,()33,x y 在反比例函数2y x=的图象上,其中1230x x x <<<,下列结论中正确的是( ) A .2130y y y <<< B .1230y y y <<< C .3210y y y <<<D .3120y y y <<<13.(2021·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,B 在x 轴的正半轴上,反比例函数(0,0)ky k x x=>>的图象经过顶点D ,分别与对角线AC ,边BC 交于点E ,F ,连接EF ,AF .若点E 为AC 的中点,AEF 的面积为1,则k 的值为( ) A .125B .32C .2D .314.(2021·四川自贡市·中考真题)已知蓄电池的电压为定值,使用蓄电池时,电流O (单位:A )与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示.下列说法正确的是( ) A .函数解析式为13I R=B .蓄电池的电压是18VC .当10A I ≤时, 3.6R ≥ΩD .当6R =Ω时,4A I = 15.(2021·浙江丽水市·中考真题)一杠杆装置如图,杆的一端吊起一桶水,水桶对杆的拉力的作用点到支点的杆长固定不变.甲、乙、丙、丁四位同学分别在杆的另一端竖直向下施加压力 F F F F 丁乙甲丙、、、,将相同重量的水桶吊起同样的高度,若 F F F F <<<甲丁丙乙,则这四位同学对杆的压力的作用点到支点的距离最远的是( ) A .甲同学B .乙同学C .丙同学D .丁同学16.(2020·西藏中考真题)如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x(x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( ) A .1B .2C .3D .417.(2020·辽宁铁岭市·)如图,矩形ABCD 的顶点D 在反比例函数(0)ky x x=>的图象上,点(1,0)E 和点(0,1)F 在AB 边上,AE EF =,连接,//DF DF x 轴,则k 的值为( )A .B .3C .4D .18.(2020·山东烟台市·中考真题)如图,正比例函数y 1=mx ,一次函数y 2=ax+b 和反比例函数y 3=kx的图象在同一直角坐标系中,若y 3>y 1>y 2,则自变量x 的取值范围是( )A .x <﹣1B .﹣0.5<x <0或x >1C .0<x <1D .x <﹣1或0<x <119.(2020·黑龙江大庆市·中考真题)已知正比例函数1y k x =和反比例函数2k y x=,在同一直角坐标系下的图象如图所示,其中符合120k k ⋅>的是( )A .①②B .①④C .②③D .③④20.(2020·山东威海市·中考真题)如图,点(,1)P m ,点(-2,)Q n 都在反比例函数4y x=的图象上,过点P 分别向x 轴、y 轴作垂线,垂足分别为点M ,N .连接OP ,OQ ,PQ .若四边形OMPN 的面积记作1S ,POQ △的面积记作2S ,则( )A .12:2:3S S =B .12:1:1S S =C .12:4:3S S =D .12:5:3S S =21.(2020·广西中考真题)如图,点,A B 是直线y x =上的两点,过,A B 两点分别作x 轴的平行线交双曲线()10y x x=>于点,C D.若AC =,则223OD OC -的值为( ) A .5B.C .4D.22.(2020·湖南郴州市·中考真题)在平面直角坐标系中,点A 是双曲线11(0)k y x x=>上任意一点,连接AO ,过点O 作AO 的垂线与双曲线22(0)k y x x=<交于点B ,连接AB .已知2AOBO =,则12k k =( ) A .4B .4-C .2D .2-23.(2020·江苏徐州市·中考真题)如图,在平面直角坐标系中,函数4y x=()0x >与1y x =-的图像交于点(),P a b ,则代数式11a b-的值为( ) A .12-B .12C .14-D .1424.(2020·湖北中考真题)如图,菱形ABCD 的顶点分别在反比例函数1k y x =和2ky x=的图象上,若120BAD ∠=︒,则12k k =( ) A .13B .3CD25.(2020·湖北武汉市·中考真题)若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是( ) A .1a <-B .11a -<<C .1a >D .1a <-或1a >26.(2020·湖北咸宁市·中考真题)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A .y x =-B .2y x =+C .2y x=D .22y x x =-27.(2020·湖北鄂州市·中考真题)如图,点123,,A A A 在反比例函数1(0)y x x=>的图象上,点123,,n B B B B 在y 轴上,且11212323B OA B B A B B A ∠=∠=∠=,直线y x =与双曲线1y x=交于点111122123322,,A B A OA B A B A B A B A ⊥⊥⊥,,则n B (n 为正整数)的坐标是( ) A.B.C. D.28.(2020·湖南湘西土家族苗族自治州·中考真题)已知正比例函数1y 的图象与反比例函数2y 的图象相交于点(2,4)A -,下列说法正确的是( )A .正比例函数1y 的解析式是12y x =B .两个函数图象的另一交点坐标为()4,2-C .正比例函数1y 与反比例函数2y 都随x 的增大而增大D .当2x <-或02x <<时,21y y < 29.(2020·天津中考真题)若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .312x x x <<30.(2020·湖南衡阳市·中考真题)反比例函数ky x=经过点(2,1),则下列说法错误..的是( ) A .2k =B .函数图象分布在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x >时,y 随x 的增大而减小31.(2019·湖南娄底市·中考真题)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图,则所得图象的解析式为( ) A .111y x =++ B .111y x =-+ C .111y x =+- D .111y x =--32.(2019·湖南娄底市·中考真题)如图,⊙O 的半径为2,双曲线的解析式分别为1y x =和1y x=-,则阴影部分的面积是( ) A .4π B .3πC .2πD .π二、填空题目33.(2021·浙江绍兴市·中考真题)如图,在平面直角坐标系中,正方形ABCD 的顶点A 在x 轴正半轴上,顶点B ,C 在第一象限,顶点D 的坐标5(,2)2. 反比例函数ky x=(常数0k >,0x >)的图象恰好经过正方形ABCD 的两个顶点,则k 的值是_______. 34.(2021·湖南中考真题)在反比例函数3m y x-=的图象的每一支曲线上,函数值y 随自变量x 的增大而增大,则m 的取值范围是________.35.(2021·湖北武汉市·中考真题)已知点()1,A a y ,()21,B a y +在反比例函数21m y x+=(m是常数)的图象上,且12y y <,则a 的取值范围是__________.36.(2021·湖南株洲市·中考真题)点()11,A x y 、()121,B x y +是反比例函数ky x=图像上的两点,满足:当1>0x 时,均有12y y <,则k 的取值范围是__________. 37.(2021·陕西中考真题)若()11,A y ,()23,B y 是反比例函数2112m y m x -⎛⎫=< ⎪⎝⎭图象上的两点,则1y 、2y 的大小关系是1y ______2y (填“>”、“=”或“<”)38.(2021·浙江宁波市·中考真题)在平面直角坐标系中,对于不在坐标轴上的任意一点(),A x y ,我们把点11,B x y ⎛⎫⎪⎝⎭称为点A 的“倒数点”.如图,矩形OCDE 的顶点C 为()3,0,顶点E 在y 轴上,函数()20=>y x x 的图象与DE 交于点A .若点B 是点A 的“倒数点”,且点B 在矩形OCDE 的一边上,则OBC 的面积为_________.39.(2021·云南中考真题)若反比例函数的图象经过点()1,2-,则该反比例函数的解析式(解析式也称表达式)为_________.40.(2020·山东日照市·中考真题)如图,在平面直角坐标系中,▱ABCD 的顶点B 位于y 轴的正半轴上,顶点C ,D 位于x 轴的负半轴上,双曲线y =kx(k <0,x <0)与▱ABCD 的边AB ,AD 交于点E 、F ,点A 的纵坐标为10,F (﹣12,5),把△BOC 沿着BC 所在直线翻折,使原点O 落在点G 处,连接EG ,若EG ∥y 轴,则△BOC 的面积是_____.41.(2020·湖北荆门市·中考真题)如图,矩形OABC 的顶点A 、C 分别在x 轴、y 轴上,()2,1B -,将OAB 绕点O 顺时针旋转,点B 落在y 轴上的点D 处,得到OED ,OE 交BC 于点G ,若反比例函数(0)ky x x=<的图象经过点G ,则k 的值为______. 42.(2020·广西中考真题)反比例函数y =kx(x <0)的图象如图所示,下列关于该函数图象的四个结论:①k >0;②当x <0时,y 随x 的增大而增大;③该函数图象关于直线y =﹣x 对称;④若点(﹣2,3)在该反比例函数图象上,则点(﹣1,6)也在该函数的图象上.其中正确结论的个数有_____个.43.(2020·内蒙古呼伦贝尔市·中考真题)如图,在平面直角坐标系中,正方形OABC 的顶点O 与坐标原点重合,点C 的坐标为(0,3),点A 在x 轴的正半轴上.直线1y x =-分别与边,AB OA 相交于,D M 两点,反比例函数(0)ky x x=>的图象经过点D 并与边BC 相交于点N ,连接MN .点P 是直线DM 上的动点,当CP MN =时,点P 的坐标是________________.44.(2020·江苏宿迁市·中考真题)如图,点A 在反比例函数y =kx(x >0)的图象上,点B 在x 轴负半轴上,直线AB 交y 轴于点C ,若AC BC=12,△AOB 的面积为6,则k 的值为_____. 45.(2020·辽宁锦州市·中考真题)如图,平行四边形ABCD 的顶点A 在反比例函数(0)ky x x=>的图象上,点B 在y 轴上,点C ,点D 在x 轴上,AD 与y 轴交于点E ,若3BCES=,则k 的值为_______.46.(2020·江苏南通市·中考真题)将双曲线y =3x向右平移1个单位长度,再向下平移2个单位长度,得到的新双曲线与直线y =kx ﹣2﹣k (k >0)相交于两点,其中一个点的横坐标为a ,另一个点的纵坐标为b ,则(a ﹣1)(b +2)=_____.47.(2020·湖南永州市·中考真题)如图,正比例函数y x =-与反比例函数6y x=-的图象交于A ,C 两点,过点A 作AB x ⊥轴于点B ,过点C 作CD x ⊥轴于点D ,则ABD △的面积为_________.48.(2020·山东东营市·中考真题)如图,在平面直角坐标系中,已知直线1y x =+和双曲线1y x=-,在直线上取一点,记为1A ,过1A 作x 轴的垂线交双曲线于点1B ,过1B 作y 轴的垂线交直线于点2A ,过2A 作x 轴的垂线交双曲线于点2B ,过2B 作y 轴的垂线交直线于点3,A ······,依次进行下去,记点n A 的横坐标为n a ,若12,a =则2020a =______.49.(2020·广东深圳市·中考真题)如图,在平面直角坐标系中,ABCO 为平行四边形,O (0,0),A (3,1),B (1,2),反比例函数(0)ky k x=≠的图象经过OABC 的顶点C ,则k =___.50.(2020·广西玉林市·中考真题)已知函数1y x =与函数21y x=的部分图像如图所示,有以下结论: ①当0x <时,12,y y 都随x 的增大而增大;②当1x <-时, 12y y >;③12,y y 的图像的两个交点之间的距离是2;④函数12y y y =+的最小值为2;则所有正确的结论是_________.51.(2020·辽宁抚顺市·中考真题)如图,在ABC ∆中,AB AC =,点A 在反比例函数ky x=(0k >,0x >)的图象上,点B ,C 在x 轴上,15OC OB =,延长AC 交y 轴于点D ,连接BD ,若BCD ∆的面积等于1,则k 的值为_________.52.(2020·江苏盐城市·中考真题)如图,已知点()5,2,54()(),81A B C ,,,直线l x ⊥轴,垂足为点0(),M m ,其中52m <,若A B C '''与ABC 关于直线l 对称,且A B C '''有两个顶点在函数(0)k y k x=≠的图像上,则k 的值为:_______________________.53.(2020·江苏淮安市·中考真题)如图,等腰ABC ∆的两个顶点(1,4)A --、(4,1)B --在反比例函数1k y x=(0x <)的图象上,AC BC =.过点C 作边AB 的垂线交反比例函数1k y x =(0x <)的图象于点D ,动点P 从点D 出发,沿射线CD 方向运动到达反比例函数2ky x=(0x >)图象上一点,则2k =__________.54.(2020·湖北鄂州市·中考真题)如图,点A 是双曲线1(0)y x x=<上一动点,连接OA ,作OB OA ⊥,且使3OB OA =,当点A 在双曲线1y x =上运动时,点B 在双曲线k y x=上移动,则k 的值为___________.55.(2020·河北中考真题)如图是8个台阶的示意图,每个台阶的高和宽分别是1和2,每个台阶凸出的角的顶点记作m T (m 为1~8的整数).函数ky x=(0x <)的图象为曲线L .(1)若L 过点1T ,则k =_________;(2)若L 过点4T ,则它必定还过另一点m T ,则m =_________; (3)若曲线L 使得18~T T 这些点分布在它的两侧,每侧各4个点,则k 的整数值有_________个.56.(2020·四川自贡市·中考真题)如图, 直线y b =+与y 轴交于点A ,与双曲线ky x=在第三象限交于B C 、两点,且 ⋅=AB AC 16;下列等边三角形11OD E ,122E D E ,233E D E ,……的边1OE ,12E E ,23E E ,……在x 轴上,顶点123D ,D ,D ,……在该双曲线第一象限的分支上,则k = ____,前25个等边三角形的周长之和为 _______.57.(2019·贵州安顺市·中考真题)如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.59.(2019·湖南长沙市·中考真题)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM⊥AM 于点M ,则∠MBA =30°;③若M 点的横坐标为1,△OAM 为等边三角形,则2k =+25MF MB =,则MD =2MA .其中正确的结论的序号是_______.60.(2019·四川南充市·中考真题)在平面直角坐标系xOy 中,点(3,2)A m n 在直线1y x =-+上,点(,)B m n 在双曲线ky x=上,则k 的取值范围为___________. 三、解答题61.(2021·湖北随州市·中考真题)如图,一次函数1y kx b =+的图象与x 轴、y 轴分别交于点A ,B ,与反比例函数2my x=(0m >)的图象交于点()1,2C ,()2,D n . (1)分别求出两个函数的解析式;(2)连接OD ,求BOD 的面积.62.(2021·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,Rt ABC 的斜边BC 在x 轴上,坐标原点是BC 的中点,30ABC ∠=︒,4BC =,双曲线ky x=经过点A .(1)求k ;(2)直线AC 与双曲线y =D .求ABD △的面积.63.(2021·四川广安市·中考真题)如图,一次函数()1y kx b k 0=+≠的图象与反比例函数()2my m 0x=≠的图象交于()1,A n -,()3,2B -两点.(1)求一次函数和反比例函数的解析式;(2)点P 在x 轴上,且满足ABP △的面积等于4,请直接写出点P 的坐标.64.(2021·浙江杭州市·中考真题)在直角坐标系中,设函数11k y x=(1k 是常数,10k >,0x >)与函数22y k x =(2k 是常数,20k ≠)的图象交于点A ,点A 关于y 轴的对称点为点B .(1)若点B 的坐标为()1,2-,①求1k ,2k 的值.②当12y y <时,直接写出x 的取值范围. (2)若点B 在函数33k y x=(3k 是常数,30k ≠)的图象上,求13k k +的值.65.(2021·山东临沂市·中考真题)已知函数()()()31 31131x x y x x x x⎧≤-⎪⎪=-⎨⎪⎪≥⎩<<(1)画出函数图象;列表:描点,连线得到函数图象:(2)该函数是否有最大或最小值?若有,求出其值,若没有,简述理由; (3)设1122(,),(,)x y x y 是函数图象上的点,若120x x +=,证明:120y y +=.66.(2021·安徽中考真题)已知正比例函数(0)y kx k =≠与反比例函数6y x=的图象都经过点A (m ,2).(1)求k ,m 的值;(2)在图中画出正比例函数y kx =的图象,并根据图象,写出正比例函数值大于反比例函数值时x 的取值范围.67.(2021·浙江中考真题)已知在平面直角坐标系xOy 中,点A 是反比例函数1(0)y x x=>图象上的一个动点,连结,AO AO 的延长线交反比例函数(0,0)ky k x x=><的图象于点B ,过点A 作AE y ⊥轴于点E .(1)如图1,过点B 作BF x ⊥轴于点F ,连结EF .①若1k =,求证:四边形AEFO 是平行四边形; ②连结BE ,若4k =,求BOE △的面积.(2)如图2,过点E 作//EP AB ,交反比例函数(0,0)ky k x x=><的图象于点P ,连结OP .试探究:对于确定的实数k ,动点A 在运动过程中,POE △的面积是否会发生变化?请说明理由.68.(2021·四川乐山市·中考真题)通过实验研究发现:初中生在数学课上听课注意力指标随上课时间的变化而变化,上课开始时,学生兴趣激增,中间一段时间,学生的兴趣保持平稳状态,随后开始分散.学生注意力指标y 随时间x (分钟)变化的函数图象如图所示,当010x ≤<和1020x ≤<时,图象是线段;当2045x ≤≤时,图象是反比例函数的一部分.(1)求点A 对应的指标值;(2)张老师在一节课上讲解一道数学综合题需要17分钟,他能否经过适当的安排,使学生在听这道综合题的讲解时,注意力指标都不低于36?请说明理由.69.(2021·重庆中考真题)探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程.以下是我们研究函数|26|y x x m =+-++性质及其应用的部分过程,请按要求完成下列各小题.(1)写出函数关系式中m 及表格中a ,b 的值:m =________,a =_________,b =__________; (2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象,并根据图象写出该函数的一条性质:__________;(3)已知函数16y x=的图象如图所示,结合你所画的函数图象,直接写出不等式16|26|x x m x+-++>的解集.70.(2021·四川自贡市·中考真题)函数图象是研究函数的重要工具.探究函数性质时,我们经历了列表、描点、连线画出函数图象,然后观察分析图象特征,概括函数性质的过程.请结合已有的学习经验,画出函数28xy =-的图象,并探究其性质.列表如下:(1)直接写出表中a 、b 的值,并在平面直角坐标系中画出该函数的图象;(2)观察函数284xy x =-+的图象,判断下列关于该函数性质的命题: ①当22x -≤≤时,函数图象关于直线y x =对称;②2x =时,函数有最小值,最小值为2-;③11x -<<时,函数y 的值随x 的增大而减小.其中正确的是_________.(请写出所有正确命题的序号) (3)结合图象,请直接写出不等式284xx x >+的解集_________.71.(2021·四川遂宁市·中考真题)如图,一次函数1y =k x + b (k ≠0)与反比例函数2my x=(m ≠0)的图象交于点A (1,2)和B (-2,a ),与y 轴交于点M .(1)求一次函数和反比例函数的解析式;(2)在y 轴上取一点N ,当△AMN 的面积为3时,求点N 的坐标; (3)将直线1y 向下平移2个单位后得到直线y 3,当函数值123y y y >>时,求x 的取值范围.72.(2021·四川凉山州·中考真题)如图,AOB 中,90∠=︒ABO ,边OB 在x 轴上,反比例函数(0)ky x x=>的图象经过斜边OA的中点M,与AB相交于点N,912,2AOBS AN==.(1)求k的值;(2)求直线MN的解析式.73.(2021·四川泸州市·中考真题)一次函数y=kx+b(k≠0)的图像与反比例函数myx=的图象相交于A(2,3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求PQMN的值74.(2020·柳州市柳林中学中考真题)如图,平行于y轴的直尺(部分)与反比例函数myx=(x>0)的图象交于A、C两点,与x轴交于B、D两点,连接AC,点A、B对应直尺上的刻度分别为5、2,直尺的宽度BD=2,OB=2.设直线AC的解析式为y=kx+b.(1)请结合图象,直接写出:①点A的坐标是;②不等式mkx bx+>的解集是;(2)求直线AC的解析式.75.(2020·山东济南市·中考真题)如图,矩形OABC的顶点A,C分别落在x轴,y轴的正半轴上,顶点B(2,),反比例函数kyx=(x>0)的图象与BC,AB分别交于D,E,BD=12.(1)求反比例函数关系式和点E的坐标;(2)写出DE与AC的位置关系并说明理由;(3)点F在直线AC上,点G是坐标系内点,当四边形BCFG为菱形时,求出点G的坐标并判断点G是否在反比例函数图象上.76.(2020·江苏镇江市·中考真题)如图,正比例函数y=kx(k≠0)的图象与反比例函数y=﹣8x的图象交于点A(n,2)和点B.(1)n=,k=;(2)点C在y轴正半轴上.∠ACB=90°,求点C的坐标;(3)点P(m,0)在x轴上,∠APB为锐角,直接写出m的取值范围.77.(2020·内蒙古赤峰市·中考真题)阅读理解:材料一:若三个非零实数x ,y ,z 满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x ,y ,z 构成“和谐三数组”.材料二:若关于x 的一元二次方程ax 2+bx +c = 0(a ≠0)的两根分别为1x ,2x ,则有12b x x a +=-,12cx x a⋅=. 问题解决:(1)请你写出三个能构成“和谐三数组”的实数 ;(2)若1x ,2x 是关于x 的方程ax 2+bx +c = 0 (a ,b ,c 均不为0)的两根,3x 是关于x 的方程bx +c =0(b ,c 均不为0)的解.求证:x 1,x 2,x 3可以构成“和谐三数组”;(3)若A (m ,y 1) ,B (m + 1,y 2) ,C (m +3,y 3)三个点均在反比例函数4y x=的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m 的值.78.(2020·四川绵阳市·中考真题)如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y =k x(k <0)的图象在第二象限交于A (﹣3,m ),B (n ,2)两点.(1)当m =1时,求一次函数的解析式; (2)若点E 在x 轴上,满足∠AEB =90°,且AE =2﹣m ,求反比例函数的解析式.79.(2020·云南昆明市·中考真题)为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min ;完成2间办公室和1间教室的药物喷洒要11min .(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y (单位:mg /m 3)与时间x (单位:min )的函数关系如图所示:校医进行药物喷洒时y 与x 的函数关系式为y =2x ,药物喷洒完成后y 与x 成反比例函数关系,两个函数图象的交点为A (m ,n ).当教室空气中的药物浓度不高于1mg /m 3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.80.(2020·四川眉山市·中考真题)已知一次函数y kx b =+与反比例函数my x=的图象交于(3,2)A -、(1,)B n 两点.(1)求一次函数和反比例函数的表达式;(2)求AOB 的面积;(3)点P 在x 轴上,当PAO 为等腰三角形时,直接写出点P 的坐标.81.(2020·湖北荆州市·中考真题)九年级某数学兴趣小组在学习了反比例函数的图像和性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下: (1)绘制函数图像,如图1①列表;下表是x 与y 的几组对应值,其中______m =;②描点:根据表中各组对应值(x ,y)在平面直角坐标系中描出了各点;③连线:用平滑的曲线顺次连接各点,画出了部分图像,请你把图像补充完整;(2)通过观察图1,写出该函数的两条性质:①_______________;②_______________; (3)①观察发现:如图2,若直线y=2交函数2y x=的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于点C ,则________OABC S =;②探究思考:将①的直线y=2改为直线y=a(a>0),其他条件不变,则________OABC S =; ③类比猜想:若直线y=a(a>0)交函数(0)ky k x=>的图像于A ,B 两点,连接OA ,过点B 作BC//OA 交x 轴于C ,则________OABC S =;82.(2020·湖南郴州市·中考真题)为了探索函数1(0)y x x x=+>的图象与性质,我们参照学习函数的过程与方法.列表:描点:在平面直角坐标系中,以自变量x 的取值为横坐标,以相应的函数值y 为纵坐标,描出相应的点,如图1所示:(1)如图1,观察所描出点的分布,用一条光滑曲线将点顺次连接起来,作出函数图象; (2)已知点1122(,),(,)x y x y 在函数图象上,结合表格和函数图象,回答下列问题:若1201x x <<≤,则1y 2y ;若121x x <<,则1y 2y ;若121x x ⋅=,则1y 2y (填“>”,“=”,“<”). (3)某农户要建造一个图2所示的长方体形无盖水池,其底面积为1平方米,深为1米.已知底面造价为1千元/平方米,侧面造价为0.5千元/平方米,设水池底面一边的长为x 米,水池总造价为y 千元.①请写出y 与x 的函数关系式;②若该农户预算不超过3.5千元,则水池底面一边的长x 应控制在什么范围内?83.(2020·甘肃天水市·中考真题)如图所示,一次函数()0y mx nm =+≠的图象与反比例函数()0ky k x=≠的图象交于第二、四象限的点()2,A a -和点(),1B b -,过A 点作x 轴的垂线,垂足为点C ,AOC △的面积为4.(1)分别求出a 和b 的值;(2)结合图象直接写出kmx n x +>中x 的取值范围; (3)在y 轴上取点P ,使PB PA -取得最大值时,求出点P 的坐标.84.(2019·江苏泰州市·中考真题)已知一次函数()10y kx n n =+<和反比例函数()20,0my m x x=>>.(1)如图1,若2n =-,且函数1y 、2y 的图象都经过点()3,4A . ①求m ,k 的值;②直接写出当12y y >时x 的范围;(2)如图2,过点()1,0P 作y 轴的平行线l 与函数2y 的图象相交于点B ,与反比例函数()30ny x x=>的图象相交于点C .①若2k =,直线l 与函数1y 的图象相交点D .当点B 、C 、D 中的一点到另外两点的距离相等时,求m n -的值;②过点B 作x 轴的平行线与函数1y 的图象相交于点E .当m n -的值取不大于1的任意实数时,点B 、C 间的距离与点B 、E 间的距离之和d 始终是一个定值.求此时k 的值及定值d .祝你考试成功!祝你考试成功!。

2019年北京市海淀区首都师大附中中考数学一模试卷含参考答案

2019年北京市海淀区首都师大附中中考数学一模试卷含参考答案

2019年北京市海淀区首都师大附中中考数学一模试卷一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+13.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.5.下列命题正确的个数是()①若代数式有意义,则x 的取值范围为x ≤1且x ≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m 为常数),当x >0时,y 随x 增大而增大,则一次函数y =﹣2x +m 的图象一定不经过第一象限.④若函数的图象关于y 轴对称,则函数称为偶函数,下列三个函数:y =3,y =2x +1,y =x 2中偶函数的个数为2个.A .1B .2C .3D .46.下列图形中,阴影部分面积最大的是( )A .B .C .D .7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是( )A .B .C .D .8.为了解中学生获取资讯的主要渠道,设置“A .报纸.B .电视.C .网络,D .身边的人.E .其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是( ),图中的a 的值是( )A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,249.正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.10.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x(x≠0)的图象大致是()A.B.C.D.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起分钟该容器内的水恰好放完.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为米(结果保留根号).16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1,B2,B3;(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标;(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.2019年北京市海淀区首都师大附中中考数学一模试卷参考答案与试题解析一、选择题1.在实数|﹣3|,﹣2,0,π中,最小的数是()A.|﹣3|B.﹣2C.0D.π【分析】直接利用利用绝对值的性质化简,进而比较大小得出答案.【解答】解:在实数|﹣3|,﹣2,0,π中,|﹣3|=3,则﹣2<0<|﹣3|<π,故最小的数是:﹣2.故选:B.【点评】此题主要考查了实数大小比较以及绝对值,正确掌握实数比较大小的方法是解题关键.2.下列各式的变形中,正确的是()A.(﹣x﹣y)(﹣x+y)=x2﹣y2B.﹣x=C.x2﹣4x+3=(x﹣2)2+1D.x÷(x2+x)=+1【分析】根据平方差公式和分式的加减以及整式的除法计算即可.【解答】解:A、(﹣x﹣y)(﹣x+y)=x2﹣y2,正确;B、,错误;C、x2﹣4x+3=(x﹣2)2﹣1,错误;D、x÷(x2+x)=,错误;故选:A.【点评】此题考查平方差公式和分式的加减以及整式的除法,关键是根据法则计算.3.某大型超市从生产基地购进一批水果,运输过程中质量损失10%,假设不计超市其它费用,如果超市要想至少获得20%的利润,那么这种水果的售价在进价的基础上应至少提高()A.40%B.33.4%C.33.3%D.30%【分析】缺少质量和进价,应设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,根据题意得:购进这批水果用去ay元,但在售出时,只剩下(1﹣10%)a千克,售货款为(1﹣10%)a×(1+x)y元,根据公式×100%=利润率可列出不等式,解不等式即可.【解答】解:设购进这种水果a千克,进价为y元/千克,这种水果的售价在进价的基础上应提高x,则售价为(1+x)y元/千克,由题意得:×100%≥20%,解得:x≥≈33.4%,经检验,x≥是原不等式的解.∵超市要想至少获得20%的利润,∴这种水果的售价在进价的基础上应至少提高33.4%.故选:B.【点评】此题主要考查了一元一次不等式的应用,关键是弄清题意,设出必要的未知数,表示出售价,售货款,进货款,利润.注意在解出结果后,要考虑实际问题,利用收尾法,不能用四舍五入.4.如图,等边△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(s),y=PC2,则y关于x的函数的图象大致为()A.B.C.D.【分析】需要分类讨论:①当0≤x≤3,即点P在线段AB上时,根据余弦定理知cos A=,所以将相关线段的长度代入该等式,即可求得y与x的函数关系式,然后根据函数关系式确定该函数的图象.②当3<x≤6,即点P在线段BC上时,y与x的函数关系式是y =(6﹣x)2=(x﹣6)2(3<x≤6),根据该函数关系式可以确定该函数的图象.【解答】解:∵正△ABC的边长为3cm,∴∠A=∠B=∠C=60°,AC=3cm.①当0≤x≤3时,即点P在线段AB上时,AP=xcm(0≤x≤3);根据余弦定理知cos A=,即=,解得,y=x2﹣3x+9(0≤x≤3);该函数图象是开口向上的抛物线;解法二:过C作CD⊥AB,则AD=1.5cm,CD=cm,点P在AB上时,AP=xcm,PD=|1.5﹣x|cm,∴y=PC2=()2+(1.5﹣x)2=x2﹣3x+9(0≤x≤3)该函数图象是开口向上的抛物线;②当3<x≤6时,即点P在线段BC上时,PC=(6﹣x)cm(3<x≤6);则y=(6﹣x)2=(x﹣6)2(3<x≤6),∴该函数的图象是在3<x≤6上的抛物线;故选:C.【点评】本题考查了动点问题的函数图象.解答该题时,需要对点P的位置进行分类讨论,以防错选.5.下列命题正确的个数是()①若代数式有意义,则x的取值范围为x≤1且x≠0.②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元.③若反比例函数(m为常数),当x>0时,y随x增大而增大,则一次函数y=﹣2x+m的图象一定不经过第一象限.④若函数的图象关于y轴对称,则函数称为偶函数,下列三个函数:y=3,y=2x+1,y=x2中偶函数的个数为2个.A.1B.2C.3D.4【分析】根据有关的定理和定义作出判断即可得到答案.【解答】解:①若代数式有意义,则x的取值范围为x<1且x≠0,原命题错误;②我市生态旅游初步形成规模,2012年全年生态旅游收入为302 600 000元,保留三个有效数字用科学记数法表示为3.03×108元正确.③根据反比例函数(m为常数)的增减性得出m<0,故一次函数y=﹣2x+m的图象一定不经过第一象限.,此选项正确;④若函数的图象关于y轴对称,则函数称为偶函数,三个函数中有y=3,y=x2是偶函数,原命题正确,故选:C.【点评】本题考查了命题与定理的知识,在判断一个命题正误的时候可以举出反例.6.下列图形中,阴影部分面积最大的是()A.B.C.D.【分析】分别根据反比例函数系数k的几何意义以及三角形面积求法以及梯形面积求法得出即可.【解答】解:A、根据反比例函数系数k的几何意义,阴影部分面积和为:xy=3,B、根据反比例函数系数k的几何意义,阴影部分面积和为:3,C、根据反比例函数系数k的几何意义,以及梯形面积求法可得出:阴影部分面积为:3+×(1+3)×2﹣﹣=4,D、根据M,N点的坐标以及三角形面积求法得出,阴影部分面积为:×1×6=3,阴影部分面积最大的是4.故选:C.【点评】此题主要考查了反比例函数系数k的几何意义以及三角形面积求法等知识,将图形正确分割得出阴影部分面积是解题关键.7.如图是一个由5个完全相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形, 故选:B .【点评】本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.8.为了解中学生获取资讯的主要渠道,设置“A .报纸.B .电视.C .网络,D .身边的人.E .其他”五个选项(五项中必选且只能选一项)的调查问卷.先随机抽取50名中学生进行该问卷调查.根据调查的结果绘制条形图如图.该调查的方式是( ),图中的a 的值是( )A .全面调查,26B .全面调查,24C .抽样调查,26D .抽样调查,24【分析】根据题意得到此调查为抽样调查,由样本容量求出a 的值即可.【解答】解:根据题意得:该调查的方式是抽样调查,a =50﹣(6+10+6+4)=24, 故选:D .【点评】此题考查了条形统计图,以及全面调查与抽样调查,弄清题意是解本题的关键. 9.正方形ABCD 的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD 内投一粒米,则米粒落在阴影部分的概率为( )A .B .C .D .【分析】求得阴影部分的面积后除以正方形的面积即可求得概率. 【解答】解:如图,连接PA 、PB 、OP ;则S 半圆O ==,S △ABP =×2×1=1,由题意得:图中阴影部分的面积=4(S 半圆O ﹣S △ABP )=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A .【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.10.定义新运算:a ⊕b =例如:4⊕5=,4⊕(﹣5)=.则函数y =2⊕x (x ≠0)的图象大致是( )A .B .C .D .【分析】根据题意可得y =2⊕x =,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.【解答】解:由题意得:y =2⊕x =,当x >0时,反比例函数y =在第一象限,当x <0时,反比例函数y =﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数的图象是双曲线.二、填空题11.计算(﹣π)0﹣(﹣1)2018的值是0.【分析】根据零指数幂的意义以及实数的运算法则即可求出答案.【解答】解:原式=1﹣1=0,故答案为:0【点评】本题考查实数的运算,解题的关键熟练运用实数的运算法则,本题属于基础题型.12.若关于x、y的二元一次方程组的解是,则关于a、b的二元一次方程组的解是.【分析】利用关于x、y的二元一次方程组的解是可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想整理找到两个方程组的联系求解的方法更好.【解答】解:方法一:∵关于x、y的二元一次方程组的解是,∴将解代入方程组可得m=﹣1,n=2∴关于a、b的二元一次方程组可整理为:解得:方法二:关于x、y的二元一次方程组的解是,由关于a、b的二元一次方程组可知解得:故答案为:【点评】本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式.若,则x=2.【分析】根据题中的新定义将所求的方程化为普通方程,整理后即可求出方程的解,即为x的值.【解答】解:根据题意化简=8,得:(x+1)2﹣(1﹣x)2=8,整理得:x2+2x+1﹣(1﹣2x+x2)﹣8=0,即4x=8,解得:x=2.故答案为:2【点评】此题考查了整式的混合运算,属于新定义的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.14.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8分钟该容器内的水恰好放完.【分析】先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.【解答】解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.【点评】本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.15.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.16.一块直角三角形板ABC,∠ACB=90°,BC=12cm,AC=8cm,测得BC边的中心投影B1C1长为24cm,则A1B1长为cm.【分析】由题意易得△ABC∽△A1B1C1,根据相似比求A1B1即可.【解答】解:∵∠ACB=90°,BC=12cm,AC=8cm,∴AB=4,∵△ABC∽△A1B1C1,∴A1B1:AB=B1C1:BC=2:1,即A1B1=8cm.【点评】本题综合考查了中心投影的特点和规律以及相似三角形性质的运用.解题的关键是利用中心投影的特点可知在这两组三角形相似,利用其相似比作为相等关系求出所需要的线段.三、解答题17.先化简,再求值(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣【分析】利用平方差公式、单项式乘多项式及完全平方公式去括号,再合并同类项化简后,再将x的值代入计算可得.【解答】解:原式=4x2﹣9﹣4x2+4x+x2﹣4x+4=x2﹣5,当x=﹣时,原式=(﹣)2﹣5=3﹣5=﹣2.【点评】本题主要考查整式的混合运算﹣化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.18.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【分析】(1)设每千克核桃降价x元,利用销售量×每件利润=2240元列出方程求解即可;(2)为了让利于顾客因此应下降6元,求出此时的销售单价即可确定几折.【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.【点评】本题考查了一元二次方程的应用,解题的关键是根据题目中的等量关系列出方程.19.如图,矩形ABCD的两边AD、AB的长分别为3、8,E是DC的中点,反比例函数y=的图象经过点E,与AB交于点F.(1)若点B坐标为(﹣6,0),求m的值及图象经过A、E两点的一次函数的表达式;(2)若AF﹣AE=2,求反比例函数的表达式.【分析】(1)根据矩形的性质,可得A,E点坐标,根据待定系数法,可得答案;(2)根据勾股定理,可得AE的长,根据线段的和差,可得FB,可得F点坐标,根据待定系数法,可得m的值,可得答案.【解答】解:(1)点B坐标为(﹣6,0),AD=3,AB=8,E为CD的中点,∴点A(﹣6,8),E(﹣3,4),函数图象经过E点,∴m=﹣3×4=﹣12,设AE的解析式为y=kx+b,,解得,∴一次函数的解析式为y=﹣x;(2)AD=3,DE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在函数y=图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴m=﹣1×4=﹣4,∴y=﹣.【点评】本题考查了反比例函数,解(1)的关键是利用待定系数法,又利用了矩形的性质;解(2)的关键利用E,F两点在函数y=图象上得出关于a的方程.20.某商场为缓解我市“停车难”问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,AB⊥BD,∠BAD=18°,C在BD上,BC=0.5m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说的对?请你判断并计算出正确的结果.(参考数据:sin18°=0.31,cos18°=0.95,tan18°=0.325)(结果精确到0.1m)【分析】先根据CE⊥AE,判断出CE为高,再根据解直角三角形的知识解答.【解答】解:在△ABD中,∠ABD=90°,∠BAD=18°,BA=10m,∵tan∠BAD=,∴BD=10×tan18°,∴CD=BD﹣BC=10×tan18°﹣0.5=2.75(m).在△ABD中,∠CDE=90°﹣∠BAD=72°,∵CE⊥ED,∴sin∠CDE=,∴CE=sin∠CDE×CD=sin72°×2.75=cos18°×2.75=0.95×2.75=2.6125≈2.6(m),∵2.6m<2.75m,且CE⊥AE,∴小亮说的对.答:小亮说的对,CE为2.6m.【点评】此题考查了三角函数的基本概念,主要是正弦、正切概念及运算,关键把实际问题转化为数学问题加以计算.21.某校七年级共有500名学生,在“世界读书日”前夕,开展了“阅读助我成长”的读书活动.为了解该年级学生在此次活动中课外阅读情况,童威随机抽取m名学生,调查他们课外阅读书籍的数量,将收集的数据整理成如下统计表和扇形图.学生读书数量统计表阅读量/本学生人数1152a3b45(1)直接写出m、a、b的值;(2)估计该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本?【分析】(1)根据题意和统计图中的数据可以求得m、a、b的值;(2)根据统计图中的数据可以求得该年级全体学生在这次活动中课外阅读书籍的总量大约是多少本.【解答】解:(1)由题意可得,m=15÷30%=50,b=50×40%=20,a=50﹣15﹣20﹣5=10,即m的值是50,a的值是10,b的值是20;(2)(1×15+2×10+3×20+4×5)×=1150(本),答:该年级全体学生在这次活动中课外阅读书籍的总量大约是1150本.【点评】本题考查扇形统计图、用样本估计总体、统计表,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:AC=AM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.【分析】(1)在RT△OAB中,利用勾股定理OA=求解,(2)由四边形ABCD是菱形,求出△AFM为等边三角形,∠M=∠AFM=60°,再求出∠MAC=90°,在Rt△ACM中tan∠M=,求出AC.(3)求出△AEM≌△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF===,得出△AFM的周长为3.【解答】解:(1)∵四边形ABCD是菱形,∴AC⊥BD,OB=OD=BD,∵BD=24,∴OB=12,在Rt△OAB中,∵AB=13,∴OA===5.(2)如图2,∵四边形ABCD是菱形,∴BD垂直平分AC,∴FA=FC,∠FAC=∠FCA,由已知AF=AM,∠MAF=60°,∴△AFM为等边三角形,∴∠M=∠AFM=60°,∵点M,F,C三点在同一条直线上,∴∠FAC+∠FCA=∠AFM=60°,∴∠FAC=∠FCA=30°,∴∠MAC=∠MAF+∠FAC=60°+30°=90°,在Rt△ACM中∵tan∠M=,∴tan60°=,∴AC=AM.(3)如图,连接EM,∵△ABE是等边三角形,∴AE=AB,∠EAB=60°,由(2)知△AFM为等边三角形,∴AM=AF,∠MAF=60°,∴∠EAM=∠BAF,在△AEM和△ABF中,,∴△AEM≌△ABF(SAS),∵△AEM的面积为40,△ABF的高为AO∴BF•AO=40,BF=16,∴FO=BF﹣BO=16﹣12=4AF===,∴△AFM的周长为3.【点评】本题主要考查四边形的综合题,解题的关键是灵活运用等边三角形的性质及菱形的性质.23.在平面直角坐标系中xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3…、A n和点C1,C2,C3…、∁n分别落在直线y=x+1和x轴上.抛物线L1过点A1、B1,且顶点在直线y=x+1上,抛物线L2过点A2、B2,且顶点在直线y=x+1上,…,按此规律,抛物线L n过点A n、B n,且顶点也在直线y=x+1上,其中抛物线L1交正方形A1B1C1O的边A1B1于点D1,抛物线L2交正方形A2B2C2C1的边A2B2于点D2…,抛物线L n交正方形A n B n∁n C n﹣1的边A n B n于点D n(其中n≥2且n为正整数).(1)直接写出下列点的坐标:B1(1,1),B2(3,2),B3(7,4);(2)写出抛物线L2,、L3的解析式,并写出其中一个解析式的求解过程,再猜想抛物线L n的顶点坐标(3×2n﹣2﹣1,3×2n﹣2);(3)①设A1D1=k•D1B1,A2D2=k2•D2B2,试判断k1与k2的数量关系并说明理由;②点D1、D2、…,D n是否在一条直线上?若是,直接写出这条直线与直线y=x+1的交点坐标;若不是,请说明理由.【分析】(1)先求出直线y=x+1与y轴的交点坐标即可得出A1的坐标,故可得出OA1的长,根据四边形A1B1C1O是正方形即可得出B1的坐标,再把B1的横坐标代入直线y=x+1即可得出A1的坐标,同理可得出B2,B3的坐标;(2)根据四边形A1B1C1O是正方形得出C1的坐标,再由点A2在直线y=x+1上可知A2(1,2),B2的坐标为(3,2),由抛物线L2的对称轴为直线x=2可知抛物线L2的顶点为(2,3),再用待定系数法求出直线L2的解析式;根据B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),抛物线L3的对称轴为直线x=5,同理可得出直线L2的解析式;(3)①同(2)可求得L2的解析式为y=(x﹣2)2+3,当y=1时,求出x的值,由A1D1=﹣D1B1,可得出k1的值,同理可得出k2的值,由此可得出结论;②由①中的结论可知点D1、D2、…,D n是否在一条直线上,再用待定系数法求出直线D1D2的解析式,求出与直线y=x+1的交点坐标即可.【解答】解:(1)∵令x=0,则y=1,∴A1(0,1),∴OA1=1.∵四边形A1B1C1O是正方形,∴A1B1=1,∴B1(1,1).∵当x=1时,y=1+1=2,∴B2(3,2);同理可得,B3(7,4).故答案为:(1,1),(3,2),(7,4);(2)抛物线L2、L3的解析式分别为:y=﹣(x﹣2)2+3;,y=﹣(x﹣5)2+6;抛物线L2的解析式的求解过程:对于直线y=x+1,设x=0,可得y=1,A1(0,1),∵四边形A1B1C1O是正方形,∴C1(1,0),又∵点A2在直线y=x+1上,∴点A2(1,2),又∵B2的坐标为(3,2),∴抛物线L2的对称轴为直线x=2,∴抛物线L2的顶点为(2,3),设抛物线L2的解析式为:y=a(x﹣2)2+3,∵L2过点B2(3,2),∴当x=3时,y=2,∴2=a(3﹣2)2+3,解得:a=﹣1,∴抛物线L2的解析式为:y=﹣(x﹣2)2+3;抛物线L3的解析式的求解过程:又∵B3的坐标为(7,3),同上可求得点A3的坐标为(3,4),∴抛物线L3的对称轴为直线x=5,∴抛物线L3的顶点为(5,6),设抛物线L3的解析式为:y=a(x﹣5)2+6,∵L3过点B3(7,4),∴当x=7时,y=﹣4,∴4=a×(7﹣5)2+6,解得:a=﹣,∴抛物线L3的解析式为:y=﹣(x﹣5)2+6;猜想抛物线L n的顶点坐标为(3×2n﹣2﹣1,3×2n﹣2);(猜想过程:方法1:可由抛物线L1、L2、L3…的解析式:∵y=﹣2(x﹣)2+,y=﹣(x﹣2)2+3,y=﹣(x﹣5)2+6…,归纳总结;方法2:可由正方形A n B n ∁n C n ﹣1顶点A n 、B n 的坐标规律A n (2n ﹣1﹣1,2n ﹣1)与B n (2n ,2n ﹣1),再利用对称性可得抛物线L n 的对称轴为直线x =,即x ==3×2n ﹣2﹣1,又顶点在直线 y =x +1上,所以可得抛物线L n 的顶点坐标为(3×2n ﹣2﹣1,3×2n ﹣2). 故答案为:(3×2n ﹣2﹣1,3×2n ﹣2);(3)①、k 1与k 1的数量关系为:k 1=k 2,理由如下:同(2)可求得L 2的解析式为y =(x ﹣2)2+3,当y =1时,1=﹣(x ﹣2)2+3解得:x 1=2﹣,x 2=2+,∴x =2﹣,∴A 1D 1=2﹣=(﹣1),∴D 1B 1=1﹣(2﹣)=﹣1,∴A 1D 1=﹣D 1B 1,即k 1=;同理可求得A 2D 2=4﹣2=2(﹣1),D 2B 2=2﹣(4﹣2)=2﹣2=2(﹣1),A 2D 2=﹣D 2B 2,即k 2=,∴k 1=k 2;②∵由①知,k 1=k 2,∴点D 1、D 2、…,D n 在一条直线上; ∵抛物线L 2的解析式为y =﹣(x ﹣2)2+3,∴当y =1时,x =2﹣,∴D 1(2﹣,1);同理,D 2(5﹣2,2),∴设直线D 1D 2的解析式为y =kx +b (k ≠0),则,解得,∴直线D 1D 2的解析式为y =(3+)x +﹣3,∴,解得,∴这条直线与直线y =x +1的交点坐标为(﹣1,0).。

2019年北京中考数学试题(解析版)

2019年北京中考数学试题(解析版)
{答案}0
{解析}本题考查了反比例函数表达式的求法,确定关于x轴的对称点的坐标是解题的关键.∵点A(a,b)在双曲线 上,∴k1=ab.∵点A与点B关于x轴对称,∴B(a,-b).∵点B在双曲线 上,∴k2=-ab.∴k1+k2=0.
{分值}2
{章节:[1-26-1]反比例函数的图像和性质}
{考点:反比例函数的解析式}
{分值}2
{章节:[1-11-1]与三角形有关的线段}
{考点:三角形的面积}
{考点:准确数与近似数}
{类别:常考题}
{难度:2-简单}
{题目}11.(2019年北京)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)
{答案}①②
{解析}本题考查了几何体的三视图.①中长方体的主视图、俯视图和左视图都是矩形,②中圆柱的主视图和左视图都是矩形,③中圆锥的三视图都不是矩形.
{分值}2
{章节:[1-18-2-3] 正方形}
{考点:平行四边形边的性质}
{考点:平行四边形对角线的性质}
{考点:矩形的判定}
{考点:菱形的判定}
{考点:正方形的判定}
{类别:高度原创}{类别:易错题}
{难度:4-较高难度}
{
{题目}17.(2019年北京)计算: .
{解析}本题考查了实数的运算,掌握绝对值的性质、零指数幂、特殊角的三角函数值及负指数幂是解题才能正确解答.
{分值}2
{章节:[1-18-2-2]菱形}
{考点:菱形的性质}
{考点:二元一次方程组的应用}
{类别:常考题}
{难度:3-中等难度}
{题目}15.(2019年北京)小天想要计算一组数据92,90,94,86,99,85的方差 ,在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为 ,则 .(填“>”,“=”或“<”)

中考数学:反比例函数的图象与性质综合问题真题+模拟(原卷版北京专用)

中考数学:反比例函数的图象与性质综合问题真题+模拟(原卷版北京专用)

中考数学反比例函数的图象与性质综合问题【方法归纳】(1)双曲线kyx=与坐标轴没有交点,当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(2)对称性图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(3)k的几何意义如图1,设点P(a,b)是双曲线kyx=上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是12|k|).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.图1 图22.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【典例剖析】(x>0)的图象【例1】(2017·北京·中考真题)如图,在平面直角坐标系xOy中,函数y=kx与直线y=x−2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平(x>0)的图象于点N.行于y轴的直线,交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.(x>0)的图象G经【例2】(2018·北京·中考真题)在平面直角坐标系xOy中,函数y=kxx+b与图象G交于点B,与y轴交于点C.过点A(4,1),直线l∶y=14(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC 围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【真题再现】1.(2011·北京·中考真题)如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC⊥x轴于点C. 若△OAC的面积为1,且tan∠AOC=2 . (1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.2.(2012·北京·中考真题)如图,在平面直角坐标系xoy中,函数y=4x(x>0)的图象与一次函数y=kx-k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足△PAB的面积是4,直接写出点P的坐标.3.(2011·北京·中考真题)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=kx的图象的一个交点为A(﹣1,n).(1)求反比例函数y=kx的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.4.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足34【模拟精练】1.(2022·北京市广渠门中学模拟预测)在平面直角坐标系xOy中,一次函数y=k(x−1)+4(k>0)(m≠0)的图象的一个交点的横坐标为1.的图象与反比例函数y=mx(1)求这个反比例函数的解析式;(2)当x<−4时,对于x的每一个值,反比例函数y=m的值大于一次函数y=k(x−1)+x4(k>0)的值,直接写出k的取值范围.2.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交的图象在第四象限的交点为(n,−1).于点(4,0),且与反比例函数y=mx(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.(k≠0)与一次函数3.(2022·北京·二模)图,在平面直角坐标系xOy中,反比例函数y1=kxy2=ax+4(a≠0)的图像只有一个公共点A(2,2),直线y3=mx(m≠0)也过点A.(1)求k、a及m的值;(2)结合图像,写出y1>y2>y3时x的取值范围.4.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.5.(2022·北京顺义·二模)在平面直角坐标系xOy中,直线l:y=kx−k+4与函数y=mx(x>0)的图象交于点A(1,4).(1)求m的值;(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=mx(x>0)的图象所围成的区域(不含边界)为W.点B(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;②当区域W内恰有5个整点时,直接写出n和k的值.6.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,直线l1:y=−x+b与双曲线G:y=−12x的一个交点为A(−3,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=−12x有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线l1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.7.(2022·北京海淀·二模)在平面直角坐标系xOy中,一次函数y=k(x−1)+6(k>0)的图象与反比例函数y=mx(m≠0)的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数y=mx的值大于一次函数y=k(x−1)+6(k> 0)的值,直接写出k的取值范围.8.(2022·北京东城·一模)在平面直角坐标系xOy中,一次函数y=x−2的图象与x轴交于点A,与反比例函数y=kx (k≠0)B(3,m),点P为反比例函数y=kx(k≠0)的图象上一点.(1)求m,k的值;(2)连接OP,AP.当S△OAP=2时,求点P的坐标.9.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.10.(2022·北京师大附中模拟预测)如图,一次函数y=-2x-2的图象分别交x轴、y轴于点B、A,与反比例函数y=mx(m≠0)的图象在第二象限交于点M,△OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.11.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.12.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=k(k≠0)的两x个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.13.(2022·北京市第一六一中学分校一模)如图,在平面直角坐标系中,A(a,2)是直线l:(x>0)的图像G的交点.y=x−1与函数y=kx(1)①求a的值;(x>0)的解析式.②求函数y=kx(2)过点P(n,0)(n>0)且垂直于x轴的直线与直线l和图像G的交点分别为M,N,当S△OPM> S△OPN时,直接写出n的取值范围.14.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值15.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.16.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线l:y=x﹣1的图象与反(x>0)的图象交于点A(3,m).比例函数y=kx(1)求m、k的值;(2)点P(xp,0)是x轴上的一点,过点P作x轴的垂线,交直线l于点M,交反比例函数y=kx (x>0)的图象于点N.横、纵坐标都是整数的点叫做整点.记y=kx(x>0)的图象在点A,N之间的部分与线段AM,MN围成的区域(不含边界)为W.①当xp=5时,直接写出区域W内的整点的坐标为_____;②若区域W内恰有6个整点,结合函数图象,求出xp的取值范围.17.(2022·北京·中国人民大学附属中学分校一模)有这样一个问题:探究函数y=2x−1−3的图象与性质.小亮根据学习函数的经验,对函数y=2x−1−3的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1)函数y=2x−1−3中自变量x的取值范围是;(2)表格是y与x的几组对应值.直接写出m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.②请再写出此函数的一条性质:.(5)已知不等式kx+b<2−3的解集为1<x<2或x>4,则k+b的值为.x−118.(2020·北京·模拟预测)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.标为(2,4),双曲线y=kx(1)求k的值及点E的坐标;(2)若点F是边OC上一点,当△FBC~△DEB时,求直线FB的解析式.19.(2022·北京四中模拟预测)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=2x 的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=2有两个公共点,它们的横坐标分别为x1,x2x(x1<x2),直线l1与直线l2的交点横坐标为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2022·北京朝阳·模拟预测)已知:一次函数y1=x﹣2﹣k与反比例函数y2=−2k(k≠0).x(1)当k=1时,①求出两个函数图象的交点坐标;②根据图象回答:x取何值时,y1<y2;(2)请说明:当k取任何不为0的值时,两个函数图象总有交点;(3)若两个函数图象有两个不同的交点A、B,且AB=5√2,求k值.21.(2022·北京·北理工附中模拟预测)在平面直角坐标系xOy中已知双曲线y=k过点A(1,x1),与直线y=4x交于B,C两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=k,交于点D(t,y1),与直线y=4x交于点E(t,y2).当y1<y2x时,直接写出t的取值范围.22.(2022·北京朝阳·模拟预测)如图,一次函数y=kx+b的图象交反比例函数y=m的图x象于A(2,−4),B(a,−1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求ΔOAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?23.(2022·北京·二模)一次函数y=kx+b(k≠0)的图像与反比例函数y=m的图象相交于A(2,x3),B(6,n)两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与的值反比例函数的图象相交于点P,Q,求PQMN24.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)经过点A(0,-1)和点B(3,2).(1)求直线y=kx+b(k≠0)的表达式;(m≠0).(2)已知双曲线y=mx(m≠0)经过点B时,求m的值;①当双曲线y=mx②若当x>3时,总有kx+b>m直接写出m的取值范围.x(x>0)的图象上.25.(2021·北京·二模)如图,A、B两点在函数y=mx(1)求m的值及直线AB的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数y=m(x>0)的图象与直线AB围出的封闭图形中(不包括边界)所含格点的坐标.x26.(2021·北京朝阳·二模)在平面直角坐标系xOy中,过点A(2,2)作x轴,y轴的垂线,(k<4)的图象分别交于点B,C,直线AB与x轴相交于点D.与反比例函数y=kx(1)当k=−4时,求线段AC,BD的长;(2)当AC<2BD时,直接写出k的取值范围.27.(2021·北京顺义·二模)在平面直角坐标系xOy中,反比例函数y=m与一次函数y=kx+xb相交于A(3,2)、B(-2,n)两点.(1)求反比例函数和一次函数的表达式;(2)过P(p,0)(P≠0)作垂直于x轴的直线,与反比例函数y=m交于点C,与一次函数xy=kx+b交于点D,若SΔCOP=3SΔDOP,直接写出p的值.28.(2021·北京门头沟·二模)在平面直角坐标系xOy中,反比例函数y=k的图象过点P(2 , 2 ).x(1)求k的值;(2)一次函数y=x+a与y轴相交于点M,与反比例函数y=k(x > 0)的图象交于点N,x≤S△MNQ≤2时,过点M作x轴的平行线,过点N作y轴的平行线,两平行线相交于点Q,当12通过画图,直接写出a的取值范围.29.(2021·北京丰台·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与反比例函数(m≠0)的图象交于点A(−1,n),B(2,−1)两点.y=mx(1)求m,n的值;(2)已知点P(a,0)(a>0),过点P作x轴的垂线,分别交直线y=kx+b(k≠0)和反比例(m≠0)的图象于点M,N,若线段MN的长随a的增大而增大,直接写出a的取值范函数y=mx围.30.(2021·北京西城·二模)在平面直角坐标系xOy中,直线l:y=kx−k+2(k>0),函数y=2k(x>0)的图象为F.x(x>0)的图象F上,求直线l对应的函数解析式:(1)若A(2,1)在函数y=2kx(2)横、纵坐标都是整数的点叫做整点.记直线l:y=kx−k+2(k>0),图象F和直线y=12围成的区域(不含边界)为图形.①在(1)的条件下,写出图形G内的整点的坐标;②若图形G内有三个整点,直接写出k的取值范围.。

2019-2020年中考数学专题训练二次函数与反比例函数1

2019-2020年中考数学专题训练二次函数与反比例函数1

2019-2020年中考数学专题训练二次函数与反比例函数1一、选择题1.抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2) C.(1,﹣2)D.(1,2)2.对于二次函数y=﹣x2+2x.有下列四个结论:①它的对称轴是直线x=1;②设y1=﹣x12+2x1,y2=﹣x22+2x2,则当x2>x1时,有y2>y1;③它的图象与x轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为()A.1 B.2 C.3 D.43.已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴()A.只能是x=﹣1B.可能是y轴C.可能在y轴右侧且在直线x=2的左侧D.可能在y轴左侧且在直线x=﹣2的右侧4.二次函数y=x2+4x﹣5的图象的对称轴为()A.x=4 B.x=﹣4 C.x=2 D.x=﹣25.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣16.如图,反比例函数y=的图象经过二次函数y=ax2+bx图象的顶点(﹣,m)(m>0),则有()A.a=b+2k B.a=b﹣2k C.k<b<0 D.a<k<07.设二次函数y=(x﹣3)2﹣4图象的对称轴为直线l,若点M在直线l上,则点M的坐标可能是()A.(1,0) B.(3,0) C.(﹣3,0)D.(0,﹣4)8.已知一个函数图象经过(1,﹣4),(2,﹣2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A.正比例函数B.一次函数 C.反比例函数D.二次函数9.二次函数y=x2﹣2x﹣3的图象如图所示,下列说法中错误的是()A.函数图象与y轴的交点坐标是(0,﹣3)B.顶点坐标是(1,﹣3)C.函数图象与x轴的交点坐标是(3,0)、(﹣1,0)D.当x<0时,y随x的增大而减小10.在下列二次函数中,其图象对称轴为x=﹣2的是()A.y=(x+2)2B.y=2x2﹣2 C.y=﹣2x2﹣2 D.y=2(x﹣2)211.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<012.若正比例函数y=mx(m≠0),y随x的增大而减小,则它和二次函数y=mx2+m的图象大致是()A.B.C.D.13.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系中的大致图象为()A .B .C .D .14.数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y=的交点的横坐标x 0的取值范围是( )A .0<x 0<1B .1<x 0<2C .2<x 0<3D .﹣1<x 0<015.已知二次函数y=a (x ﹣1)2﹣c 的图象如图所示,则一次函数y=ax+c 的大致图象可能是( )A .B .C .D .16.下列三个函数:①y=x+1;②;③y=x 2﹣x+1.其图象既是轴对称图形,又是中心对称图形的个数有( )A .0B .1C .2D .3 17.在同一直角坐标系中,函数y=mx+m 和y=﹣mx 2+2x+2(m 是常数,且m ≠0)的图象可能是( )A .B .C .D .18.一次函数y=ax+b(a≠0)、二次函数y=ax2+bx和反比例函数y=(k≠0)在同一直角坐标系中的图象如图所示,A点的坐标为(﹣2,0),则下列结论中,正确的是()A.b=2a+k B.a=b+k C.a>b>0 D.a>k>0二、填空题19.抛物线y=x2+2x+3的顶点坐标是.20.已知二次函数y=(x﹣2)2+3,当x 时,y随x的增大而减小.21.二次函数y=x2+2x的顶点坐标为,对称轴是直线.22.二次函数y=﹣x2+2x﹣3图象的顶点坐标是.23.函数y=x2+2x+1,当y=0时,x= ;当1<x<2时,y随x的增大而(填写“增大”或“减小”).24.定义:给定关于x的函数y,对于该函数图象上任意两点(x1,y1),(x2,y2),当x1<x2时,都有y1<y2,称该函数为增函数,根据以上定义,可以判断下面所给的函数中,是增函数的有(填上所有正确答案的序号)①y=2x;②y=﹣x+1;③y=x2(x>0);④y=﹣.25.下列函数(其中n为常数,且n>1)①y=(x>0);②y=(n﹣1)x;③y=(x>0);④y=(1﹣n)x+1;⑤y=﹣x2+2nx (x<0)中,y的值随x的值增大而增大的函数有个.26.二次函数y=x2﹣2x+3图象的顶点坐标为.27.二次函数y=x2﹣4x﹣3的顶点坐标是(,).三、解答题28.已知抛物线y=ax2+bx+3的对称轴是直线x=1.(1)求证:2a+b=0;(2)若关于x的方程ax2+bx﹣8=0的一个根为4,求方程的另一个根.29.在平面直角坐标系xOy中,过点(0,2)且平行于x轴的直线,与直线y=x﹣1交于点A,点A关于直线x=1的对称点为B,抛物线C1:y=x2+bx+c经过点A,B.(1)求点A,B的坐标;(2)求抛物线C1的表达式及顶点坐标;(3)若抛物线C2:y=ax2(a≠0)与线段AB恰有一个公共点,结合函数的图象,求a的取值范围.30.已知点A(﹣2,n)在抛物线y=x2+bx+c上.(1)若b=1,c=3,求n的值;(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是﹣4,请画出点P(x ﹣1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.2019-2020年中考数学专题训练二次函数与反比例函数21.如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.2.如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?3.如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.(1)求抛物线的解析式;(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.4.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B 点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.5.如图,抛物线y=ax2+bx+c经过A(﹣3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.6.如图,已知抛物线y=x2+bx+c的顶点坐标为M(0,﹣1),与x轴交于A、B两点.(1)求抛物线的解析式;(2)判断△MAB的形状,并说明理由;(3)过原点的任意直线(不与y轴重合)交抛物线于C、D两点,连接MC,MD,试判断MC、MD是否垂直,并说明理由.7.如图,在平面直角坐标系xOy中,顶点为M的抛物线是由抛物线y=x2﹣3向右平移一个单位后得到的,它与y轴负半轴交于点A,点B在该抛物线上,且横坐标为3.(1)求点M、A、B坐标;(2)连接AB、AM、BM,求∠ABM的正切值;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为α,当α=∠ABM时,求P点坐标.8.如图①,直线l:y=mx+n(m<0,n>0)与x,y轴分别相交于A,B两点,将△AOB绕点O逆时针旋转90°得到△COD,过点A,B,D的抛物线P叫做l的关联抛物线,而l叫做P 的关联直线.(1)若l:y=﹣2x+2,则P表示的函数解析式为;若P:y=﹣x2﹣3x+4,则l表示的函数解析式为.(2)求P的对称轴(用含m,n的代数式表示);(3)如图②,若l:y=﹣2x+4,P的对称轴与CD相交于点E,点F在l上,点Q在P的对称轴上.当以点C,E,Q,F为顶点的四边形是以CE为一边的平行四边形时,求点Q的坐标;(4)如图③,若l:y=mx﹣4m,G为AB中点,H为CD中点,连接GH,M为GH中点,连接OM.若OM=,直接写出l,P表示的函数解析式.9.如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A和点B,其中点A的坐标为(﹣2,0),抛物线的对称轴x=1与抛物线交于点D,与直线BC交于点E.(1)求抛物线的解析式;(2)若点F是直线BC上方的抛物线上的一个动点,是否存在点F使四边形ABFC的面积为17,若存在,求出点F的坐标;若不存在,请说明理由;(3)平行于DE的一条动直线l与直线BC相交于点P,与抛物线相交于点Q,若以D、E、P、Q为顶点的四边形是平行四边形,求点P的坐标.10.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上.(1)求抛物线的解析式;(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.11.如图,抛物线y=(x﹣3)2﹣1与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B,D的坐标;(2)连接CD,过原点O作OE⊥CD,垂足为H,OE与抛物线的对称轴交于点E,连接AE,AD,求证:∠AEO=∠ADC;(3)以(2)中的点E为圆心,1为半径画圆,在对称轴右侧的抛物线上有一动点P,过点P作⊙E的切线,切点为Q,当PQ的长最小时,求点P的坐标,并直接写出点Q的坐标.12.如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C (0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.13.如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,),顶点坐标为N(﹣1,),且与x轴交于A、B两点,与y轴交于C点.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的动点,当△PBC为等腰三角形时,求点P的坐标;(3)在直线AC上是否存在一点Q,使△QBM的周长最小?若存在,求出Q点坐标;若不存在,请说明理由.14.如图,在平面直角坐标系中,矩形OCDE的三个顶点分别是C(3,0),D(3,4),E (0,4).点A在DE上,以A为顶点的抛物线过点C,且对称轴x=1交x轴于点B.连接EC,AC.点P,Q为动点,设运动时间为t秒.(1)填空:点A坐标为;抛物线的解析式为.(2)在图①中,若点P在线段OC上从点O向点C以1个单位/秒的速度运动,同时,点Q 在线段CE上从点C向点E以2个单位/秒的速度运动,当一个点到达终点时,另一个点随之停止运动.当t为何值时,△PCQ为直角三角形?(3)在图②中,若点P在对称轴上从点A开始向点B以1个单位/秒的速度运动,过点P 做PF⊥AB,交AC于点F,过点F作FG⊥AD于点G,交抛物线于点Q,连接AQ,CQ.当t为何值时,△ACQ的面积最大?最大值是多少?15.如图,抛物线y=x2+bx+c与直线y=x﹣1交于A、B两点.点A的横坐标为﹣3,点B在y 轴上,点P是y轴左侧抛物线上的一动点,横坐标为m,过点P作PC⊥x轴于C,交直线AB 于D.(1)求抛物线的解析式;(2)当m为何值时,S四边形OBDC=2S△BPD;(3)是否存在点P,使△PAD是直角三角形?若存在,求出点P的坐标;若不存在,说明理由.16.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设过点A,B,C三点的圆与y轴的另一个交点为D.(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);①求此抛物线的表达式与点D的坐标;②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.17.如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E,使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA的度数.18.如图,二次函数y=x2+bx+c的图象交x轴于A、D两点,并经过B点,已知A点坐标是(2,0),B点的坐标是(8,6).(1)求二次函数的解析式.(2)求函数图象的顶点坐标及D点的坐标.(3)该二次函数的对称轴交x轴于C点.连接BC,并延长BC交抛物线于E点,连接BD,DE,求△BDE的面积.(4)抛物线上有一个动点P,与A,D两点构成△ADP,是否存在S△ADP=S△BCD?若存在,请求出P点的坐标;若不存在.请说明理由.19.如图1,抛物线y=ax2+bx﹣1经过A(﹣1,0)、B(2,0)两点,交y轴于点C.点P 为抛物线上的一个动点,过点P作x轴的垂线交直线BC于点D,交x轴于点E.(1)请直接写出抛物线表达式和直线BC的表达式.(2)如图1,当点P的横坐标为时,求证:△OBD∽△ABC.(3)如图2,若点P在第四象限内,当OE=2PE时,求△POD的面积.(4)当以点O、C、D为顶点的三角形是等腰三角形时,请直接写出动点P的坐标.20.如图,抛物线y=ax2+bx+c(a≠0)的顶点为A(﹣1,﹣1),与x轴交点M(1,0).C 为x轴上一点,且∠CAO=90°,线段AC的延长线交抛物线于B点,另有点F(﹣1,0).(1)求抛物线的解析式;(2)求直线AC的解析式及B点坐标;(3)过点B做x轴的垂线,交x轴于Q点,交过点D(0,﹣2)且垂直于y轴的直线于E 点,若P是△BEF的边EF上的任意一点,是否存在BP⊥EF?若存在,求出P点的坐标,若不存在,请说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+3与x轴交于点A(﹣4,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)在第三象限的抛物线上有一动点D.①如图(1),若四边形ODAE是以OA为对角线的平行四边形,当平行四边形ODAE的面积为6时,请判断平行四边形ODAE是否为菱形?说明理由.②如图(2),直线y=x+3与抛物线交于点Q、C两点,过点D作直线DF⊥x轴于点H,交QC于点F.请问是否存在这样的点D,使点D到直线CQ的距离与点C到直线DF的距离之比为:2?若存在,请求出点D的坐标;若不存在,请说明理由.22.如图,抛物线y=x2+bx+c与x轴交于A(5,0)、B(﹣1,0)两点,过点A作直线AC⊥x轴,交直线y=2x于点C;(1)求该抛物线的解析式;(2)求点A关于直线y=2x的对称点A′的坐标,判定点A′是否在抛物线上,并说明理由;(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段CA′于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.23.如图,二次函数y=ax2+bx(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)求该二次函数的解析式;(2)求点B坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?。

中考数学综合题专题复习【反比例函数】专题解析附答案

中考数学综合题专题复习【反比例函数】专题解析附答案

一、反比例函数真题与模拟题分类汇编(难题易错题)1.如图.一次函数y=x+b的图象经过点B(﹣1,0),且与反比例函数(k为不等于0的常数)的图象在第一象限交于点A(1,n).求:(1)一次函数和反比例函数的解析式;(2)当1≤x≤6时,反比例函数y的取值范围.【答案】(1)解:把点B(﹣1,0)代入一次函数y=x+b得: 0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=(2)解:反比例函数y= ,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y= ,∴当1≤x≤6时,反比例函数y的值:≤y≤2【解析】【分析】(1)根据题意首先把点B(﹣1,0)代入一次函数y=x+b求出一次函数解析式,又点A(1,n)在一次函数y=x+b的图象上,再利用一次函数解析式求出点A的坐标,然后利用代入系数法求出反比例函数解析式,(2)根据反比例函数的性质分别求出当x=1,x=6时的y值,即可得到答案.2.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y 随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【答案】(1)解:设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2= ,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)解:令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【解析】【分析】(1)根据一次函数和反比例函数的应用,用待定系数法求出线段AB所在的直线的解析式,和C、D所在双曲线的解析式;把x1=5时和进行比较得到y1<y2,得出第30分钟注意力更集中;(2)当y1=36时,得到x1=8,当y2=36,得到,由27.8﹣8=19.8>19,所以经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.3.抛物线y= +x+m的顶点在直线y=x+3上,过点F(﹣2,2)的直线交该抛物线于点M、N两点(点M在点N的左边),MA⊥x轴于点A,NB⊥x轴于点B.(1)先通过配方求抛物线的顶点坐标(坐标可用含m的代数式表示),再求m的值;(2)设点N的横坐标为a,试用含a的代数式表示点N的纵坐标,并说明NF=NB;(3)若射线NM交x轴于点P,且PA•PB= ,求点M的坐标.【答案】(1)解:y= x2+x+m= (x+2)2+(m﹣1)∴顶点坐标为(﹣2,m﹣1)∵顶点在直线y=x+3上,∴﹣2+3=m﹣1,得m=2;(2)解:过点F作FC⊥NB于点C,∵点N在抛物线上,∴点N的纵坐标为: a2+a+2,即点N(a, a2+a+2)在Rt△FCN中,FC=a+2,NC=NB﹣CB= a2+a,∴NF2=NC2+FC2=( a2+a)2+(a+2)2,=( a2+a)2+(a2+4a)+4,而NB2=( a2+a+2)2,=( a2+a)2+(a2+4a)+4∴NF2=NB2,NF=NB(3)解:连接AF、BF,由NF=NB,得∠NFB=∠NBF,由(2)的思路知,MF=MA,∴∠MAF=∠MFA,∵MA⊥x轴,NB⊥x轴,∴MA∥NB,∴∠AMF+∠BNF=180°∵△MAF和△NFB的内角总和为360°,∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90°,∵∠MAB+∠NBA=180°,∴∠FBA+∠FAB=90°,又∵∠FAB+∠MAF=90°,∴∠FBA=∠MAF=∠MFA,又∵∠FPA=∠BPF,∴△PFA∽△PBF,∴ = ,PF2=PA×PB= ,过点F作FG⊥x轴于点G,在Rt△PFG中,PG= = ,∴PO=PG+GO= ,∴P(﹣,0)设直线PF:y=kx+b,把点F(﹣2,2)、点P(﹣,0)代入y=kx+b,解得k= ,b= ,∴直线PF:y= x+ ,解方程 x2+x+2= x+ ,得x=﹣3或x=2(不合题意,舍去),当x=﹣3时,y= ,∴M(﹣3,).【解析】【分析】(1)利用配方法将二次函数化成顶点式,写出顶点坐标,由顶点再直线y=x+3上,建立方程求出m的值。

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷(含答案)

北京市海淀区2019年中考数学模拟试卷一.选择题(满分30分,每小题3分)1.点C在线段AB上,下列条件中不能确定点C是线段AB中点的是()A.AC=BC B.AC+BC=AB C.AB=2AC D.BC=AB2.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A.B.C.D.3.下列计算正确的是()A.2a+3b=5ab B.=±6C.a6÷a2=a4D.(2ab2)3=6a3b54.在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A.2:7:2:7 B.2:2:7:7 C.2:7:7:2 D.2:3:4:5 5.如图所示是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(﹣2,﹣1),白棋③的坐标是(﹣1,﹣3),则黑棋②的坐标是()A.(0,﹣2)B.(1,﹣2)C.(2,﹣1)D.(1,2)6.一个公园有A,B,C三个入口和D,E二个出口小明进入公园游玩,从“A口进D口出”的概率为()A.B.C.D.7.如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6 B.C.8 D.8.下列y关于x的函数中,当x>0时,函数值y随x的值增大而减小的是()A.y=x2B.y=C.y=D.y=9.若关于x、y的二元一次方程组的解满足x+y=9,则k的值是(()A.1 B.2 C.3 D.410.(3分)某数学研究性学习小组制作了如下的三角函数计算图尺:在半径为1的半圆形量角器中,画一个直径为1的圆,把刻度尺CA的0刻度固定在半圆的圆心O处,刻度尺可以绕点O旋转.从图中所示的图尺可读出sin∠AOB的值是()A.B.C.D.二.填空题(满分18分,每小题3分)11.若使代数式有意义,则x的取值范围是.12.点A(0,3),点B(4,0),则点O(0,0)在以AB为直径的圆(填内、上或外)13.若m+n=1,mn=2,则的值为.14.潜水艇上浮记为正,下潜记为负,若潜水艇原来在距水面50米深处,后来两次活动记录的情况分别是﹣20米,+10米,那么现在潜水艇在距水面米深处.15.为测量学校旗杆的高度,小明的测量方法如下:如图,将直角三角形硬纸板DEF的斜边DF与地面保持平行,并使边DE与旗杆顶点A在同一直线上.测得DE=0.5米,EF =0.25米,目测点D到地面的距离DG=1.5米,到旗杆的水平距离DC=20米.按此方法,请计算旗杆的高度为米.16.样本数据2,4,3,5,6的极差是.三.解答题(共13小题,满分72分)17.(5分)计算:﹣|1﹣|﹣sin30°+2﹣1.18.(5分)解不等式组19.(5分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC ≌△DEF.20.(5分)关于x的分式方程﹣=总无解,求a的值.21.(5分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.22.(5分)某市“每天锻炼一小时,幸福生活一辈子”活动已开展了一年,为了解该市此项活动的开展情况,某调查统计公司准备采用以下调查方式中的一种进行调查:A、从一个社区随机选取200名居民;B、从一个城镇的不同住宅楼中随机选取200名居民;C、从该市公安局户籍管理处随机抽取200名城乡居民作为调查对象,然后进行调查.(1)在上述调查方式中,你认为比较合理的一个是(填番号).(2)由一种比较合理的调查方式所得到的数据制成了如图所示的频数分布直方图,在这个调查中,这200名居民每天锻炼2小时的人数是多少?(3)若该市有100万人,请你利用(2)中的调查结果,估计该市每天锻炼2小时及以上的人数是多少?(4)你认为这个调查活动的设计有没有不合理的地方?谈谈你的理由.23.(5分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB、BC于点E、F、G,连接ED、DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,求GC的长.24.(5分)老王的鱼塘里年初养了某种鱼2000条,到年底捕捞出售,为了估计鱼的总产量,从鱼塘里捕捞了三次,得到如下表的数据:若老王放养这种鱼的成活率是95%,则:(1)鱼塘里这种鱼平均每条重约多少千克;(2)鱼塘里这种鱼的总产量多少千克?25.(5分)如图,AB是⊙O的直径,PA切⊙O于A,OP交⊙O于C,连BC.若∠P=30°,求∠B的度数.26.(5分)已知y是x的函数,自变量x的取值范围是x≠0的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出x=2时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.27.(7分)二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.(1)求该二次函数的对称轴方程;(2)过动点C(0,n)作直线l⊥y轴.①当直线l与抛物线只有一个公共点时,求n与m的函数关系;②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.28.(7分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC 边上(点D不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F (点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).29.(8分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB=,BC=,AC=;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=AB,则点C是线段AB中点.故选:B.2.解:从上面看,是正方形右边有一条斜线,如图:故选:B.3.解:A、2a+3b,无法计算,故此选项错误;B、=6,故此选项错误;C、a6÷a2=a4,正确;D、(2ab2)3=8a3b6,故此选项错误;故选:C.4.解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠B=∠D,∴∠A:∠B:∠C:∠D的可能情况是2:7:2:7.故选:A.5.解:如图,黑棋②的坐标为(0,﹣2).故选:A.6.解:根据题意画树形图:共有6种等情况数,其中“A口进D口出”有一种情况,从“A口进D口出”的概率为;故选:D.7.解:作OE⊥AB交AB与点E,作OF⊥CD交CD于点F,如右图所示,则AE=BE,CF=DF,∠OFP=∠OEP=90°,又∵圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,∴∠FPE=90°,OB=10,BE=8,∴四边形OEPF是矩形,OE=6,同理可得,OF=6,∴EP=6,∴OP=,故选:B.8.解:A、二次函数y=x2的图象,开口向上,并向上无限延伸,在y轴右侧(x>0时),y 随x的增大而增大;故本选项错误;B、一次函数y=x+1的图象,y随x的增大而增大;故本选项错误;C、正比例函数y=x的图象在一、三象限内,y随x的增大而增大;故本选项错误;D、反比例函数y=中k=1>0,所以当x>0时,y随x的增大而减小;故本选项正确;故选:D.9.解:①﹣②,得3y=k+7,∴y=;①+2×②,得3x=13k﹣8,∴x=∵x+y=9,∴=9即14k=28,∴k=2故选:B.10.解:如图,连接AD.∵OD是直径,∴∠OAD=90°,∵∠AOB+∠AOD=90°,∠AOD+∠ADO=90°,∴∠AOB=∠ADO,∴sin∠AOB=sin∠ADO==,故选:D.二.填空题(共6小题,满分18分,每小题3分)11.解:∵分式有意义,∴x的取值范围是:x+2≠0,解得:x≠﹣2.故答案是:x≠﹣2.12.解:如图,∵点A(0,3),点B(4,0),∴AB=,点C(2,1.5),∴OC==CA,∴点O(0,0)在以AB为直径的圆上,故答案为:上13.解:∵m+n=1,mn=2,∴原式==.故答案为:14.解:﹣20+10=﹣10,所以,现在潜水艇在原来的位置下面10米,∵潜水艇原来在距水面50米深处,∴现在潜水艇在距水面60米深处.故答案为:60.15.解:由题意得:∠DEF=∠DCA=90°,∠EDF=∠CDA,∴△DEF∽△DCA,则=,即=,解得:AC=10,故AB=AC+BC=10+1.5=11.5(米),即旗杆的高度为11.5米;故答案为:11.5.16.解:样本数据2,4,3,5,6的极差是=6﹣2=4,故答案为:4.三.解答题(共13小题,满分72分)17.解:原式=3﹣+1﹣+=2+1.18.解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.19.证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).20.解:去分母得:3﹣x﹣a(x﹣2)=﹣2,即(a+1)x=2a+5,当a=﹣1时,显然方程无解;当a≠﹣1时,x=,当x=2时,a不存在;当x=3时,a=2,综上,a的值为﹣1,2.21.解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C(0,3),∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.22.解:(1)A、B两种调查方式具有片面性,故C比较合理;(2)由条形图可得,每天锻炼2小时的人数是52人;(3)设100万人中有x万人锻炼时间在2小时及以上,则有=,解之,得x=53(万);(4)这个调查有不合理的地方.比如:在100万人的总体中,随机抽取的200人作为样本,样本容量偏小,会导致调查的结果不够准确,建议增大样本容量.(只要说法正确即可)23.解:(1)四边形EBGD是菱形.理由:∵EG垂直平分BD,∴EB=ED,GB=GD,∴∠EBD=∠EDB,∵∠EBD=∠DBC,∴∠EDF=∠GBF,在△EFD和△GFB中,,∴△EFD≌△GFB,∴ED=BG,∴BE=ED=DG=GB,∴四边形EBGD是菱形.(2)作DH⊥BC于H,∵四边形EBGD为菱形ED=DG=2,∴∠ABC=30°,∠DGH=30°,∴DH=1,GH=,∵∠C=45°,∴DH=CH=1,∴CG=GH+CH=1+.24.解:(1)鱼的平均重量为:=1.84千克.答:鱼塘里这种鱼平均每条的质量约1.84千克;(2)鱼的总重量为2000×95%×1.84=3496千克.答:鱼塘里这种鱼的总质量估计是3496千克.25.解:∵PA切⊙O于A,AB是⊙O的直径,∴∠PAO=90°,∵∠P=30°,∴∠AOP=60°,∴∠B=∠AOP=30°.26.解:(1)当自变量是﹣2时,函数值是;故答案为:(2)该函数的图象如图所示;(3)当x=2时所对应的点如图所示,且m=;故答案为:;(4)函数的性质:当0<x<1时,y随x的增大而减小.故答案为:当0<x<1时,y随x的增大而减小.27.解:(1)∵y=(m+2)x2﹣2(m+2)x﹣m+5=(m+2)(x﹣1)2﹣2m+3,∴对称轴方程为x=1.(2)①如图,由题意知直线l的解析式为y=n,∵直线l与抛物线只有一个公共点,∴n=﹣2m+3.②依题可知:当﹣2m+3=﹣7时,直线l与新的图象恰好有三个公共点.∴m=5.(3)抛物线y=(m+2)x2﹣2(m+2)x﹣m+5的顶点坐标是(1,﹣2m+3).依题可得解得∴m的取值范围是﹣2<m≤1.28.(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),则C△AEF=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.29.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

2019年北京市中考数学试卷附答案

2019年北京市中考数学试卷附答案
18.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴 号”的速度比原来列车的速度每小时快 40 千米,提速后从北京到上海运行时间缩短了 30 分钟,已知从北京到上海全程约 1320 千米,求“复兴号”的速度.设“复兴号”的速度为 x 千米/时,依题意,可列方程为_____. 19.如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD,过点 A 作 AM⊥BD 于点
3.D
解析:D 【解析】 【分析】根据分式的乘除运算步骤和运算法则逐一计算即可判断.
【详解】∵ x2 2x x2 x 1 1 x
x2 2x 1 x
=
x 1
· x
2
x2 2x x 1
=
· x 1
x2
x x 2 x 1
= x 1 · x2
x 2
=
x
=2x, x
∴出现错误是在乙和丁,
D.6
A.
B.
C.
D.
8.如果关于 x 的分式方程 1 ax 2 1 有整数解,且关于 x 的不等式组
x2
2x
x
3
a
0
的解集为 x>4,那么符合条件的所有整数 a 的值之和是( )
x 2 2(x 1)
A.7
B.8
C.4
D.5
9.如图,正比例函数 y=k1x
与反比例函数
y=
k2 x
的图象相交于点
间的关系如图 2 所示(图 1 的图象是线段,图 2 的图象是抛物线) (1)已知 6 月份这种蔬菜的成本最低,此时出售每千克的收益是多少元?(收益=售价﹣ 成本) (2)哪个月出售这种蔬菜,每千克的收益最大?简单说明理由. (3)已知市场部销售该种蔬菜 4、5 两个月的总收益为 22 万元,且 5 月份的销售量比 4 月 份的销售量多 2 万千克,求 4、5 两个月的销售量分别是多少万千克?

2020北京市中考数学专题复习:一次函数、反比例函数综合题(含答案)

2020北京市中考数学专题复习:一次函数、反比例函数综合题(含答案)

2. (2019 通州区一模)如图,在平面直角坐标系 xOy 中,直线 y =2x 与函数 y = x (x >0)的图象交于点 A (1, (2)过点 A 作 x 轴的平行线 l ,直线 y =2x +b 与直线 l 交于点 B ,与函数 y = (x >0)的图象交于点 C ,与一、简单专题集训一次函数、反比例函数综合题(连续 5 年考查)类型一根据线段关系确定参数取值范围(8 年 2 考:2017.23、2016.21)1. (2019 海淀区二模)如图,在平面直角坐标系 xOy 中,直线 y =x +b 与 x 轴、y 轴分别交于点 A ,B ,2与双曲线 y =x 的交点为 M ,N .(1)当点 M 的横坐标为 1 时,求 b 的值;(2)若 MN ≤3AB ,结合函数图象,直接写出 b 的取值范围.第 1 题图m2).(1)求 m 的值;mxx 轴交于点 D.①当点 C 是线段 BD 的中点时,求 b 的值;②当 BC >BD 时,直接写出 b 的取值范围.第 2 题图3.在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=-2x的图象与直线AB交于点P.(1)求点P的坐标;(2)若点Q是x轴上一点,且△PQB的面积为6,求点Q的坐标;(3)若直线y=-2x+m与△AOB三条边只有两个公共点,求m的取值范围.第3题图数 y =x (x <0)的图象经过点 A. (2)若过点 A 的直线 l 平行于直线 OB ,且与函数 y = (x <0)图象的另一个交点为 D. ②横、纵坐标都是整数的点叫做整点.记函数 y =x (x <0)的图象在点 A ,D 之间的部分与线段 AD 围成的类型二根据区域内整点个数确定参数取值范围(8 年 2 考:2019.25、2018.23)1. 在平面直角坐标系 xOy 中,直线 l :y =kx +b (k ≠0)与直线 y =kx (k ≠0)平行,与直线 y =3 相交于点A (3,3).(1)求 k 和 b 的关系式;(2)横、纵坐标都是整数的点叫做整点,记直线 l ∶y =kx +b 、y =kx 、y =3 与 x 轴构成的封闭区域(不含边界)为 W .①当 k =2 时,结合函数图象,求区域 W 内的整点个数;②若区域 W 内恰有 2 个整点,直接写出 k 的取值范围.2. 如图,在平面直角坐标系 xOy 中,B (3,-3),C (5,0),以 OC ,CB 为边作平行四边形 OABC ,函k(1)求 k 的值;kx①求直线 l 的表达式;k区域(含边界)为 W .结合函数图象,直接写出区域 W 内(含边界)的整点个数.第 2 题图3. (2019 延庆区一模)如图,在平面直角坐标系 xOy 中,函数 y =x (x>0)的图象经过边长为 2 的正方形OABC 的顶点 B ,直线 y =mx +m +1 与 y = (x >0)的图象交于点 D (点 D 在直线 BC 的上方),与 x 轴交于点 (2)横、纵坐标都是整数的点叫做整点,记y = (x >0)的图象在点 B 、D 之间的部分与线段 AB 、AE 、DEkkxE .(1)求 k 的值;kx围成的区域(不含边界)为 W .1①当 m =2时,直接写出区域 W 内的整点个数;②若区域 W 内恰有 3 个整点,结合函数图象,求 m 的取值范围.第 3 题图2.(2018石景山区一模)在平面直角坐标系xOy中,函数y=x(x>0)的图象与直线l1:y=x+b交于点类型三根据面积关系确定参数取值范围1.如图,在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)交y轴于点A,交x轴于点B(3,0),平行于y轴的直线x=2交AB于点D,交x轴于点E,点P是直线x=2上一点,且在点D的上方,设P(2,n).(1)求直线l的表达式和点A的坐标;(2)连接AP、BP,若△SABP ≤2△SABO,求n的取值范围.第1题图aA(3,a-2).(1)求a,b的值;(2)直线l2:y=-x+m与x轴交于点B,与直线l1交于点C,若S△ABC≥6,求m的取值范围.1. 如图,直线 y =3x +4 与 x 轴相交于点 A ,与 y 轴相交于点 B.2. (2019 东城区一模)在平面直角坐标系 xOy 中,直线 y =kx (k ≠0)与双曲线 y =x (x >0)交于点 A (2,n ).类型四根据线段、面积、图形求点坐标(8 年 2 考:2015.23、2012.17)2(1)求△AOB 的面积;(2)过点 B 作直线 BC 与 x 轴相交于点 △C ,若 ABC 的面积是 16,求点 C 的坐标.第 1 题图8(1)求 n 及 k 的值;(2)点 B 是 y 轴正半轴上的一点,且△OAB 是等腰三角形,请直接写出所有符合条件的点 B 的坐标.k3.(2019房山区一模)已知一次函数y=2x的图象与反比例函数y=x(k≠0)在第一象限内的图象交于点A(1,m).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,且点B的横坐标为2.若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.第3题图k4.(2019西城区二模)在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y=x交于点A(1,m)和点B(-2,-1),点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED≤45°,直接写出点E的横坐标t的取值范围.1. 解:(1)∵点 M 是双曲线 y = 上的点,且点 M 的横坐标为 1, b2. 解:(1)把 A (1,2)代入函数 y = (x >0)中,把 y =1 代入函数 y =x中,参考答案类型一根据线段关系确定参数取值范围2x∴点 M 的坐标为(1,2).∵点 M 是直线 y =x +b 上的点, ∴b =1;(2)b ≤-1 或 b ≥1.【解法提示】当 b =±1 时,满足 MN =3AB ,如解图,结合函数图象可得, 的取值范围是 b ≤-1 或 b ≥1.第 1 题解图mx解得 m =2;(2)①如解图①,过点 C 作 x 轴的垂线,交直线 l 于点 E ,交 x 轴于点 F . ∵点 C 是线段 BD 的中点, ∴CE =CF =1.∴点 C 的纵坐标为 1.2得 x =2.∴点 C 的坐标为(2,1).把 C (2,1)代入函数 y =2x +b 中得:1=4+b , 解得 b =-3;第 2 题解图①【解法提示】如解图②,当 BC >BD 时,点 C 在 AB 的上方,当 BC =BD 时,y C =2y B =4,∴可得 C (2 ,4).把 C ( ,4)代入函数 y =2x +b 中解得 b =3.∴当 BC >BD 时,b 的取值范围为 b >3.由题意:2·|m -3|·6=6,⎩ ⎩②b >3.112第 2 题解图②3. 解:(1)如解图,∵A (0,3)、点 B (3,0),∴直线 AB 的解析式为 y =-x +3.⎧⎪y =-2x , 由⎨⎪y =-x +3,⎧⎪x =-3, 解得⎨⎪y =6,∴P (-3,6);(2)设 Q (m ,0),1解得 m =5 或 1,∴Q (1,0)或 Q (5,0);(3)当直线 y =-2x +m 经过点 O 时,m =0, 当直线 y =-2x +m 经过点 B 时,m =6,∴若直线 y =-2x +m 与△AOB 三条边只有两个公共点,则 M 的取值范围为 0<m <6.第 3 题解图【解法提示】将函数表达式 y =x与直线表达式 y =-x -5 联立并整理得:x 2+5x +6=0,解得 x =-2类型二根据区域内整点个数确定参数取值范围1. 解:(1)∵直线 l :y =kx +b 过点 A (3,3), ∴3=3k +b .∴k 和 b 的关系式为 b =3-3k ; (2)①如解图所示,当 k =2 时,直线 l 表达式为 y =2x -3,直线 y =kx 为 y =2x , 结合函数图象,区域 W 内的整点个数有 2 个;第 1 题解图②1<k ≤2.【解法提示】当直线 y =kx 过点(2,2)时,此时直线的表达式为 y =x ,∵直线 l :y =kx +b 过点(3,3)且与 y =x 平行,故此时直线 l 的表达式也为 y =x ,区域 w 内没有整点,又由(1)可知,当区域 W 内有 2 个整点时,k =2.综上所述,若区域 W 内恰有 2 个整点时,k 的取值范围为 1<k ≤2.2. 解:(1)∵B (3,-3),C (5,0),四边形 OABC 是平行四边形,∴AB =OC =5.∴点 A 的坐标为(-2,-3). ∴k =6;(2)①设直线 OB 的表达式为 y =mx , 由 B 点坐标(3,-3),可得 m =-1, ∵过点 A 的直线 l 平行于直线 OB , ∴设直线 l 的表达式为 y =-x +b ,把点 A 的坐标(-2,-3)代入上式并解得 b =-5, ∴直线 l 的表达式为 y =-x -5; ②区域 W 内(含边界)有两个整点.6或-3,由(1)知 A (-2,-3),∴点 D 的坐标为(-3,-2),∴区域 W 内(含边界)只有 D 、A 两个整点.3. 解:(1)∵正方形 OABC 的边长为 2,把 B (2,2)代入 y =x(x >0)中,解得 k =2×2=4; 【解法提示】①当 m =2时,则直线 y =mx +m +1 为 y =2 x +2 ,②当直线 y =mx +m +1 过(0,2)时,区域 W 内恰好有 2 个整点,如解图①所示,此时 m =2 ,结合函数图象,区域 W 内恰有 3 个整点,m 的取值范围为2 <m ≤1.∴B (2,2).k(2)①区域 W 内有 2 个整点;1 1 3作出图象如解图①所示,结合函数图象,区域 W 内有 2 个整点.第 3 题解图①3 1当直线 y =mx +m +1 过(0,2)时,区域 W 内恰好有 3 个整点,如解图②所示,第 3 题解图②则 2=m +1,解得 m =1,1∴直线 l 的表达式是 y =-3x +1.∵x =2 时,y =-3 x +1=3 ,且点 P 在点 D 的上方,∴PD =n -3 ,∴△S APD =2AM ·PD =2 ×2×(n -3 )=n -3 ; ∴△S BPD =2×1×(n -3 )=2 (n -3 ), ∴△S P AB =△S APD +△S BPD =2n -2 ; ∵2△S ABO =2×2 ·AO ·BO =1×3=3.当 △S ABP =2△S ABO 时,2n -2 =3,解得 n =3 , 综上所述,当 △S ABP ≤2△S ABO 时,n 的取值范围为3<n ≤3 . 2. 解:(1)∵点 A 在 y = 图象上,类型三根据面积关系确定参数取值范围1. 解:(1)∵直线 l :y =kx +1(k ≠0)交 y 轴于点 A ,交 x 轴于点 B (3,0), ∴0=3k +1.1∴k =-3 .1当 x =0 时,y =1,∴点 A (0,1);(2)如解图,过点 A 作 AM ⊥PD ,垂足为点 M ,则有 AM =2,1 111 1 1 1∵B (3,0),∴点 B 到直线 x =2 的距离为 △1,即 BDP 的边 PD 上的高长为 1,1 1 1 13 113 1 71 7第 1 题解图axa∴a -2=3 .∴a =3.∴A (3,1).∵点 A 在 y =x +b 图象上,⎧x =m +2,解得⎨ ∴C ( 2, ). ∴2 ·(m -2)· 2- (m -2)×1≥6. ⎪ ⎩ 2∴1=3+b .∴b =-2;(2)由(1)知直线 l 1 为 y =x -2.设直线 l 1∶y =x -2 与 x 轴的交点为 D , ∴D (2,0).①当点 C 在点 A 的上方如解图①,第 2 题解图①∵直线 y =-x +m 与 x 轴交点为 B ,∴B (m ,0).∵点 C 在点 A 的上方, ∴m >4.∵直线 y =-x +m 与直线 y =x -2 相交于点 C ,⎧y =x -2, ∴⎨⎪y =-x +m ,2⎩y =m -2.m +2 m -22∵△S ABC =△S BCD -△S ABD ≥6,1 m -2 1 2∴m ≥8;②若点 C 在点 A 下方,如解图②, 此时 m <4.第 2 题解图②∵△S ABC =△S ABD +△S BCD ≥6,1 1 2-m∴2 (2-m )×1+2 (2-m )·2 ∴m ≤-2.综上所述,m ≥8 或 m ≤-2.≥6.1.解:(1)把x=0代入y=x+4得:y=4,把y=0代入y=x+4得:x+4=0,33∴△S AOB=×6×4=12;2∴△S ABC=×4·AC=16,22.解:(1)∵点A(2,n)在双曲线y=上,∴n==4.2(2)点B坐标为(0,8),(0,25),(0,).解得m=,22类型四根据线段、面积、图形求点坐标23∴B(0,4),22解得x=-6,∴A(-6,0),1(2)根据题意得:点B到AC的距离为4,1解得AC=8,即点C到点A的距离为8,∴点C的坐标为(-14,0)或(2,0).8x8∴点A的坐标为(2,4).将A(2,4)代入y=kx,得:4=2k,解得k=2;52【解法提示】分三种情况考虑,过点A作AC⊥y轴于点C,如解图所示.①当AB1=AO时,CO=CB1=4,∴点B1的坐标为(0,8);②当OA=OB2时,∵点A的坐标为(2,4),∴OC=4,AC=2.∴OA=OC2+AC2=25.∴OB2=25.∴点B2的坐标为(0,25);③当B3O=B3A时,设OB3=m(m>0),则CB3=4-m,AB3=m,在Rt△ACB3中,AB3=CB23+AC2,即m2=(4-m)2+22,5∴点B3的坐标为(0,2).将A(1,2)代入反比例函数y=x得k=2,∴反比例函数的表达式为y=x;∴点M的坐标为(3,0).⎪⎩⎩55综上所述:点B的坐标为(0,8),(0,25),(0,2).第2题解图3.解:(1)∵A(1,m)在一次函数y=2x的图象上,∴m=2.k2(2)如解图所示,作点A关于x轴的对称点A′,连接A′B交x轴于点M,此时MA+MB最小,∴点A关于x轴的对称点A′(1,-2),∵B(2,1),⎧-2=n+b,设A′B的表达式为y=nx+b,代入点A′、B得⎨⎪1=2n+b,⎧⎪n=3,解得⎨⎪b=-5,∴直线A′B的表达式为y=3x-5.5第3题解图4. 解:(1)①∵点 B (-2,-1)在双曲线 y = 上, ∵点 A (1,m )在双曲线 y = 上,x⎩ kx∴k =(-2)×(-1)=2.2∴反比例函数解析式为 y =x .2∴m =2.∴A (1,2).∵点 A 关于 x 轴的对称点为点 C , ∴C (1,-2);②∵直线 l :y =ax +b 经过点 A (1,2)和点 B (-2,-1),⎧⎪2=a +b , 得⎨⎪-1=-2a +b ,⎧⎪a =1, 解得⎨⎪⎩b =1.∴直线 l 的解析式为 y =x +1;(2)1- 3 ≤t ≤0 或 2≤t ≤1+ 3 .【解法提示】如解图,∵点 A 关于 x 轴的对称点为点 C , ∴AC ∥y 轴. ∵BD ⊥y 轴,∴∠BDC =90°,D (1,-1). ∵C (1,-2), ∴CD =1.①当点 E 在点 D 左侧时,当∠CED =45°时,DE =CD =1, ∴t =0.当∠CE ′D =30°时,DE ′= 3 CD = 3 , ∴t =1- 3 .∵30°≤∠CED ≤45°, ∴1- 3 ≤t ≤0;②当点 E 在点 D 右侧时,同理可得,2≤t ≤1+ 3 ,综上所述,1- 3 ≤t ≤0 或 2≤t ≤1+ 3 .第4题解图。

北京市丰台区卢沟桥中学2019年中考数学一模试卷(含解析)

北京市丰台区卢沟桥中学2019年中考数学一模试卷(含解析)

如果您喜欢这份文档,欢迎下载!祝您成绩进步,学习愉快!2019年北京市丰台区卢沟桥中学中考数学一模试卷一.选择题(共8小题,满分16分,每小题2分)1.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10132.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.实数a、b在数轴上的位置如图所示,则化简|a﹣b|﹣b的结果为()A.a﹣2b B.2b﹣a C.﹣a D.a4.如图所示的圆柱体从正面看得到的图形可能是()A.B.C.D.5.如图,在△ABC中,∠C=90°,EF∥AB,∠1=33°,则∠A的度数为()A.57°B.47°C.43°D.33°6.如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=1.5,BC=2,则cos B的值是()A.B.C.D.7.下表是某校合唱团成员的年龄分布:年龄/岁13 14 15 16频数 5 15 x10﹣x对于不同的x,下列关于年龄的统计量不会发生改变的是()A.众数、中位数B.中位数、方差C.平均数、中位数D.平均数、方差8.小明从家步行到校车站台,等候坐校车去学校,图中的折线表示这一过程中小明的路程S(km)与所花时间t(min)间的函数关系;下列说法:①他步行了1km到校车站台;②他步行的速度是100m/min;③他在校车站台等了6min;④校车运行的速度是200m/min;其中正确的个数是()个.A.1 B.2 C.3 D.4二.填空题(共8小题,满分16分,每小题2分)9.若式子的值为零,则x的值为.10.如图,正方形ABCD的顶点A(6,0)、B(6,2)、C(8,2)、D(8,0),OC分别交AB、BD 于点E、F,则△BEF的面积为.11.如果a2﹣a﹣1=0,那么代数式(a﹣)的值是.12.请写出一个开口向下,且与y轴的交点坐标为(0,4)的抛物线的表达式.13.一只蚂蚁在如图所示的正方形ABCD的图案内爬行(假设蚂蚁在图案内部各点爬行的机会是均等的),蚂蚁停留在阴影部分的概率为.14.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.15.如图,一等腰三角形,底边长是21厘米,底边上的高是21厘米,现在沿底边依次从下往上画宽度均为3厘米的矩形,画出的矩形是正方形时停止,则这个矩形是第个.16.下面是“作出所在的圆”的尺规作图过程.已知:.求作:所在的圆.作法:如图,(1)在上任取三个点D,C,E;(2)连接DC,EC;(3)分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.(4)以O为圆心,OC长为半径作圆,所以⊙O即为所求作的所在的圆.请回答:该尺规作图的依据是.三.解答题(共12小题,满分68分)17.计算:|﹣1+|﹣﹣(5﹣π)0+4cos45°.18.解不等式组19.在一空旷场地上设计一落地为矩形ABCD的小屋,AB+BC=10m.拴住小狗的10m长的绳子一端固定在B点处,小狗在不能进入小屋内的条件下活动,其可以活动的区域面积为S(m2).①如图1,若BC=4m,则S=m2.②如图2,现考虑在(1)中的矩形ABCD小屋的右侧以CD为边拓展一正△CDE区域,使之变成落地为五边形ABCED的小屋,其它条件不变则在BC的变化过程中,当S取得最小值时,边BC的长为m.20.如图,在△ABC中,D为BC的中点,过D点的直线GF交AC于点F,交AC的平行线BG于点G,DE⊥GF,并交AB于点E,连接EG,EF.(1)求证:BG=CF.(2)请你猜想BE+CF与EF的大小关系,并说明理由.21.阅读下列材料:求函数y=的最大值.解:将原函数转化成关于x的一元二次方程,得(y﹣2)x2+(y﹣3)x+0.25y=0当y≠2时,∵x为实数,∴△=(y﹣3)2﹣4•(y﹣2)•0.25y=﹣4y+9≥0.∴y≤且y≠2;当y=2时,(y﹣2)x2+(y﹣3)x+0.25y=0即为﹣x+0.5=0,方程有解(x的值存在);∴y≤.因此,y的最大值为.根据材料给你的启示,求函数y=的最小值.22.近几年,随着电子商务的快速发展,“电商包裹件”占快递件总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014 2015 2016 2017快递件总量(亿件)140 207 310 450电商包裹件(亿件)98 153 235 351(1)请计算出2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(精确到1%),并在图中对应画出折线统计图.(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”为多少亿件.23.如图,在三角形ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.24.已知一次函数y=k1x+b与反比例函数y=的图象交于第一象限内的P(,8),Q(4,m)两点,与x轴交于A点.(1)分别求出这两个函数的表达式;(2)直接写出不等式k1x+b≥的解集;(3)M为线段PQ上一点,且MN⊥x轴于N,求△MON的面积最大值及对应的M点坐标.25.如图,在△ABC中,AB=AC,O为BC的中点,AC与半圆O相切于点D.(1)求证:AB是半圆O所在圆的切线;(2)若cos∠ABC=,AB=12,求半圆O所在圆的半径.26.已知y是x的函数,该函数的图象经过A(1,6),B(3,2)两点.(1)请写出一个符合要求的函数表达式;(2)若该函数的图象还经过点C(4,3),自变量x的取值范围是x≥0,该函数无最小值.①如图,在给定的坐标系xOy中,画出一个符合条件的函数的图象;②根据①中画出的函数图象,写出x=6对应的函数值y约为;(3)写出(2)中函数的一条性质(题目中已给出的除外).27.如图,抛物线y=﹣x2+bx+c(b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB 的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);①探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;②试求出此旋转过程中,(NA+NB)的最小值.28.如图:在△ABC中,∠BAC=110°,AC=AB,射线AD、AE的夹角为55°,过点B作BF⊥AD于点F,直线BF交AE于点G,连结CG.(1)如图1,若射线AD、AE都在∠BAC的内部,且点B与点B′关于AD对称,求证:CG=B'G;(2)如图2,若射线AD在∠BAC的内部,射线AE在∠BAC的外部,其他条件不变,求证:CG=BG﹣2GF;(3)如图3,若射线AD、AE都在∠BAC的外部,其他条件不变,若CG=GF,AF=3,S△ABG=7.5,求BF的长.2019年北京市丰台区卢沟桥中学中考数学一模试卷参考答案与试题解析一.选择题(共8小题,满分16分,每小题2分)1.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,不是中心对称图形,故本选项错误;B、既是轴对称图形,又是中心对称图形,故本选项正确;C、是轴对称图形,不是中心对称图形,故本选项错误;D、是轴对称图形,不是中心对称图形,故本选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【分析】在数轴上,右边的数总大于左边的数.原点右边的表示正数,原点左边的表示负数.【解答】解:由图可知:a<0<b,∴a﹣b<0,可得:|a﹣b|﹣b=﹣a+b﹣b=﹣a,故选:C.【点评】本题考查了数轴,学会根据点在数轴上的位置来判断数的正负以及代数式的值的符号.4.【分析】根据圆柱从正面看的平面图形是矩形进行解答即可.【解答】解:一个直立在水平面上的圆柱体,从正面看是一个矩形,故选:B.【点评】本题考查了简单几何体的三视图,关键是掌握所看的位置,以及注意所有的看到的棱都应表现在三视图中.5.【分析】先根据平行线的性质求出∠B的度数,再由直角三角形的性质求出∠A的度数即可.【解答】解:∵EF∥AB,∠1=33°,∴∠B=∠1=33°,∵△ABC中,∠C=90°,∠B=33°,∴∠A=90°﹣∠B=90°﹣33°=57°.故选:A.【点评】本题考查的是平行线的性质及直角三角形的性质,用到的知识点为:两直线平行,内错角相等.6.【分析】根据直角三角形的性质求出AB,根据余弦的定义计算即可.【解答】解:∵Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=3,在Rt△ABC中,cos B==,故选:A.【点评】本题考查的是解直角三角形、直角三角形的性质,掌握余弦的定义、直角三角形斜边上的中线是斜边的一半是解题的关键.7.【分析】由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.【解答】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10﹣x=10,则总人数为:5+15+10=30,故该组数据的众数为14岁,中位数为:=14岁,即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:A.【点评】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.8.【分析】根据从原点开始的第一条线段可知:小明用了10分钟步行了1km到校站台,从第二条水平线段可知:小明在校站台等了6min,从第三条线段可知:小明用了14min的时间坐校车,走了7km的路程,依次分析①②③④,选出正确的个数即可.【解答】解:根据题意得:小明用了10分钟步行了1km到校站台,即小明步行了1km到校车站台,①正确,1000÷10=100m/min,即他步行的速度是100m/min,②正确,小明在校车站台从第10min等到第16min,即他在校车站台等了6min,③正确,小明用了14min的时间坐校车,走了7km的路程,7000÷14=500m/min,即校车运行的速度是500m/min,④不正确,即正确的是①②③,故选:C.【点评】本题考查了一次函数的应用,正确掌握结合图象分析问题的方法是解题的关键.二.填空题(共8小题,满分16分,每小题2分)9.【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【解答】解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.【点评】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.10.【分析】由BC∥AD,推出==,可得S△BCF=•S△BDC=,由BE∥CD,推出==,可得S△BEF=S△BCF解决问题.【解答】解:∵A(6,0)、B(6,2)、C(8,2)、D(8,0),∴OA=6,OD=8,AB=AD=CD=BC=2,∵四边形ABCD是正方形,∴BC∥AD,AB∥CD,∴==,∴S△BCF=•S△BDC=,∵BE∥CD,∴==,∴S△BEF=S△BCF=,故答案为.【点评】本题考查平行线分线段成比例定理,坐标与图形的性质,正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,约分得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:∵a2﹣a﹣1=0,即a2﹣a=1,∴原式=•=•=a(a﹣1)=a2﹣a=1,故答案为:1【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.12.【分析】把(0,4)作为抛物线的顶点,令a=﹣1,然后利用顶点式写出满足条件的抛物线解析式.【解答】解:因为抛物线的开口向下,则可设a=﹣1,又因为抛物线与y轴的交点坐标为(0,4),则可设顶点为(0,4),所以此时抛物线的解析式为y=﹣x2+4.故答案为y=﹣x2+4.【点评】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.13.【分析】根据正方形的性质求出阴影部分占整个面积的,进而得出答案.【解答】解:由题意可得出:图中阴影部分占整个面积的,因此一只蚂蚁在如图所示的矩形地砖上爬行,蚂蚁停在阴影部分的概率是:.故答案为:.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.14.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组,解决本题的关键是找到题目中所存在的等量关系.15.【分析】根据相似三角形的相似比求得顶点到这个正方形的长,再根据矩形的宽求得是第几张.【解答】解:已知剪得的纸条中有一张是正方形,则正方形中平行于底边的边是3,所以根据相似三角形的性质可设从顶点到这个正方形的线段为x,则,解得x=3,所以另一段长为21﹣3=18,因为18÷3=6,所以是第6个.故答案为:6【点评】本题主要考查了相相似三角形的判定和性质,关键是根据似三角形的性质及等腰三角形的性质的综合运用解答.16.【分析】由中垂线的性质知OD=OC=OE,继而根据“平面内,到定点的距离等于定长的点在同一个圆上”可得.【解答】解:∵分别作DC和EC的垂直平分线,两垂直平分线的交点为点O.∴OD=OC=OE(线段垂直平分线上的点到线段两个端点的距离相等),∴点A、B、C、D、E在以O为圆心,OC长为半径的圆上(平面内,到定点的距离等于定长的点在同一个圆上),故答案为:线段垂直平分线上的点到线段两个端点的距离相等;平面内,到定点的距离等于定长的点在同一个圆上.【点评】本题主要考查作图﹣尺规作图,解题的关键是熟练掌握中垂线的性质和圆的概念.三.解答题(共12小题,满分68分)17.【分析】原式利用绝对值的代数意义,二次根式性质,零指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:原式=﹣1﹣×2﹣1+4×=2﹣2.【点评】此题考查了实数的运算,零指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.18.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,据此列式求解可得;(2)此时小狗活动的区域面积为以B为圆心、10为半径的圆,以A为圆心、x为半径的圆、以C为圆心、10﹣x为半径的圆的面积和,列出函数解析式,由二次函数的性质解答即可.【解答】解:(1)如图1,拴住小狗的10m长的绳子一端固定在B点处,小狗可以活动的区域如图所示:由图可知,小狗活动的区域面积为以B为圆心、10为半径的圆,以C为圆心、6为半径的圆和以A为圆心、4为半径的圆的面积和,∴S=×π•102+•π•62+•π•42=88π,故答案为:88π;(2)如图2,设BC=x,则AB=10﹣x,∴S=•π•102+•π•x2+•π•(10﹣x)2=(x2﹣5x+250)=(x﹣)2+,当x=时,S取得最小值,∴BC=,故答案为:.【点评】本题主要考查二次函数的应用,解题的关键是根据绳子的长度结合图形得出其活动区域及利用扇形的面积公式表示出活动区域面积.20.【分析】(1)求出∠C=∠GBD,BD=DC,根据ASA证出△CFD≌△BGD即可.(2)根据全等得出BG=CF,根据三角形三边关系定理求出即可.【解答】(1)证明:∵BG∥AC,∴∠C=∠GBD,∵D是BC的中点,∴BD=DC,在△CFD和△BGD中,∴△CFD≌△BGD,∴BG=CF.(2)BE+CF>EF,理由如下:∵△CFD≌△BGD,∴CF=BG,在△BGE中,BG+BE>EG,∵由(2)知:GD=GD,ED⊥GF,∴EF=EG,∴BG+CF>EF.【点评】本题考查了全等三角形的性质和判定,平行线的性质,线段垂直平分线性质,三角形三边关系定理的应用,主要考查学生的推理能力.21.【分析】模仿例题,利用根的判别式解决问题即可;【解答】解:将原函数转化成关于x的一元二次方程,得(y﹣3)x2+(2y+2)x+y﹣1=0,当y≠3时,∵x为实数,∴△=(2y+2)2﹣4•(y﹣3)•(y﹣1)=24y﹣8≥0.∴y≥且y≠3;当y=3时,(y﹣3)x2+(2y+2)x+y﹣1=0即为8x+2=0,方程有解(x的值存在);∴y≥.因此,y的最小值为.【点评】本题考查根的判别式,一元二次方程等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.22.【分析】(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2017发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.【解答】解:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2017:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.【点评】本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.23.【分析】(1)只要证明四边形BCFE是平行四边形,又因为BE=FE,所以是菱形;(2)∠BCF是120°,所以∠EBC为60°,所以菱形的边长也为4,求出菱形的高面积就可求.【解答】(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC,又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC,∴四边形BCFE是平行四边形,又∵BE=FE,∴四边形BCFE是菱形;(2)解:∵∠BCF=120°,∴∠EBC=60°,∴△EBC是等边三角形,∴菱形的边长为4,高为2,∴菱形的面积为4×2=8.【点评】本题考查菱形的判定和性质、三角形中位线定理,以及菱形的面积的计算等知识点,解题的关键是灵活应用菱形的两个面积公式解决问题,掌握由120°这个条件推出等边三角形的方法,属于中考常考题型.24.【分析】(1)根据根据P(,8)可得反比例函数解析式,根据P(,8),Q(4,1)两点可得一次函数解析式;(2)根据图象性质可以解得;(3)设M(x,﹣2x+9),可用x表示S△MON,根据二次函数的最值可解△MON的面积最大值及对应的M点坐标.【解答】解:(1)∵点P(,8)在反比例函数图象上∴8=∴k2=4∴反比例函数的表达式为:y=∴Q(4,1)∵一次函数y=k1x+b与反比例函数y=的图象交于P,Q∴解得:∴一次函数的表达式为y=﹣2x+9;(2)由图象得:当x<0或≤x≤4时,k1x+b≥.(3)设M(x,﹣2x+9)∴ON=x,MN=﹣2X+9∴S△MON=×ON×MN=x×(﹣2x+9)=﹣x2+x=﹣(x﹣)2+∴当x=时,面积最大值为,即M(,)【点评】本题考查反比例函数与一次函数的交点问题,函数图象的性质,二次函数的最值问题.解决问题的关键是掌握待定系数法求函数解析式.25.【分析】(1)先判断出∠CAO=∠BAO,进而判断出OD=OE,即可得出结论;(2)先求出OB,再用勾股定理求出OA,最后用三角形的面积即可得出结论.【解答】解:(1)如图,作OE⊥AB于E,连接OD,OA,∵AB=AC,点O是BC的中点,∴∠CAO=∠BAO,∵AC与半圆O相切于D,∴OD⊥AC,∵OE⊥AB,∴OD=OE,∵AB经过半圆O的半径的外端点,∴AB是半圆O所在圆的切线;(2)∵AB=AC,O是BC的中点,∴AO⊥BC,在Rt△AOB中,OB=AB•cos∠ABC=12×=8,根据勾股定理得,OA==4,由三角形的面积得,S△AOB=AB•OE=OB•OA,∴OE==,即:半圆O所在圆的半径为.【点评】此题主要考查了切线的性质和判定,等腰三角形的性质,锐角三角函数,勾股定理,三角形的面积的计算方法,求出OB是解本题的关键.26.【分析】根据待定系数法求取函数解析式,在根据对称轴和描点法画图象即可.【解答】(1)答案不唯一,例如,y=﹣2x+8,y=x2﹣6x+11等;(2)当x=6时,y=11,(3)对称轴为x=3,当x=3时,y有最小值为y=2.【点评】本题考查了函数的解析式的求法,关键是找出符合条件的函数.27.【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x2﹣x+,于是得到C(1,0);(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m, m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB =,列方程即可得到结论;(3)①根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;②根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B(0,),A(﹣6,0),把B(0,),A(﹣6,0)代入y=﹣x2+bx+c得,,∴,∴抛物线的函数关系式为:y=﹣x2﹣x+,令y=0,则0=﹣x2﹣x+,∴x1=﹣6,x2=1,∴C(1,0);(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m, m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)①存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);②∵N在以O为圆心,4为半径的半圆上,由①知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.【点评】本题是二次函数综合题,其中涉及到待定系数法求抛物线的解析式,函数图象上点的坐标特征,等腰三角形的性质,相似三角形的性质,勾股定理等知识,正确作出辅助线是解题的关键.28.【分析】(1)先判断出AC=AB',再用等式的性质判断出∠BAF=∠B'AF,进而判断出△CGA≌△B'GA,即可得出结论;(2)先判断出∠GAF=∠G'AF,再判断出∠GAC=∠G'AB,进而得出△GAC≌△G'AB,即CG=G'B,即可得出结论;(3)同(2)的方法判断出CG=G'B,最后用面积建立方程求出k的值,即可得出结论.【解答】(1)证明:如图1,连接AB',∵B,B'关于AD对称,∴BB'被AD垂直平分,∴AB'=AB,∵AC=AB,∴AC=AB',∵AF⊥BG,∴∠BAF=∠B'AF,∵∠GAF=55°,∴∠B'AF+GAB'=55°,∵∠CAB=110°,∴∠CAG+∠FAB=55°,∴∠B'AF+∠GAB'=∠CAG+∠FAB,∵∠BAF=∠B'AF,∴∠GAB'=∠CAG,∵AG=AG,∴△CGA≌△B'GA,∴CG=B'G,(2)证明:如图2,在FB上截取FG'=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'﹣∠CAG'=∠CAB﹣∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵FG'=GF,∴CG'=2GF,∵GB=GG'+G'B,∴GB=2GF+CG,∴CG=GB﹣2GF,(3)解:延长BF至点G',使G'F=GF,连接AG',∵BF⊥AD,∴AG=AG',∴∠GAF=∠G'AF,∴∠GAG'=2∠GAF=110°,∵∠CAB=110°,∴∠GAG'=∠CAB,∴∠GAG'﹣∠CAG'=∠CAB﹣∠CAG',∴∠GAC=∠G'AB,∵AC=AB,∴△GAC≌△G'AB,∴CG=G'B,∵CG=GF,∴设GF=5k,CG=14k,∴G'F=5k,BG'=14k,∴BG=4k,∵S△ABG=7.5,AF=3,∴BG•AF=7.5,∴×4k×3=7.5,∴k=,∴BF=9k=.【点评】此题是几何变换综合题,主要考查了全等三角形的判定和性质,对称的性质,垂直平分线的性质,判断出CG=GB'是解本题的关键.。

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案

中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。

北京市2019年中考数学试题(含解析)和答案

北京市2019年中考数学试题(含解析)和答案

2019年北京市中考数学试卷一.选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个. 1.4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439 000米.将439 000用科学记数法表示应为()A.0.439×106B.4.39×106C.4.39×105D.139×103【解析】本题考察科学记数法较大数,Na 10⨯中要求10||1<≤a ,此题中5,39.4==N a ,故选C2.下列倡导节约的图案中,是轴对称图形的是()A. B. C. D. 【解析】本题考察轴对称图形的概念,故选C 3.正十边形的外角和为()A.180°B.360°C.720°D.1440°【解析】多边形的外角和是一个定值360°,故选B4.在数轴上,点A ,B 在原点O 的两侧,分别表示数a ,2,将点A 向右平移1个单位长度,得到点C .若CO=BO ,则a 的值为()A.-3B.-2C.-1D.1【解析】本题考察数轴上的点的平移及绝对值的几何意义.点A 表示数为a ,点B 表示数为2,点C 表示数为a+1,由题意可知,a <0,∵CO=BO,∴2|1|=+a ,解得1=a (舍)或3-=a ,故选A5.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作PQ ,交射线OB 于点D ,连接CD ;(2)分别以点C ,D 为圆心,CD 长为半径作弧,交PQ 于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是() A.∠COM=∠COD B.若OM=MN ,则∠AOB=20°C.MN∥CDD.MN=3CD【解析】连接ON ,由作图可知△COM≌△DON. A. 由△COM≌△DON.,可得∠COM=∠COD,故A 正确.B. 若OM=MN ,则△OMN 为等边三角形,由全等可知∠COM=∠COD=∠DON=20°,故B 正确C.由题意,OC=OD ,∴∠OCD=2COD180∠-︒.设OC 与OD 与MN 分别交于R ,S ,易证△MOR≌△NOS,则OR=OS ,∴∠ORS=2COD180∠-︒,∴∠OCD=∠ORS.∴MN∥CD,故C 正确.D.由题意,易证MC=CD=DN ,∴MC+CD+DN=3CD.∵两点之间线段最短.∴MN<MC+CD+DN=3CD ,故选D6.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为() A .-3B.-1C.1D.3【解析】:()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭))(()()(2n m n m n m m n m n m m n m -+⋅⎥⎦⎤⎢⎣⎡--+-+=)(3))(()(3n m n m n m n m m m+=-+⋅-=1=+n m∴原式=3,故选D7.用三个不等式a b >,0ab >,11a b<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为() A.0 B.1 C.2 D.3【解析】本题共有3种命题: 命题①,如果0,>>ab b a ,那么ba 11<. ∵b a >,∴0>-b a ,∵0>ab ,∴0>-ab b a ,整理得ab 11>,∴该命题是真命题. 命题②,如果,11,ba b a <>那么0>ab . ∵,11b a <∴.0,011<-<-aba b b a ∵b a >,∴0<-a b ,∴0>ab . ∴该命题为真命题. 命题③,如果ba ab 11,0<>,那么b a >. ∵,11b a <∴.0,011<-<-aba b b a ∵0>ab ,∴0<-a b ,∴a b < ∴该命题为真命题. 故,选D8.某校共有200名学生,为了解本学期学生参加公益劳动的情况,收集了他们参加公益劳动时间(单位:小时)等数据,以下是根据数据绘制的统计图表的一部分.学生类型人数时间010t≤<1020t≤<2030t≤<3040t≤<40t≥性别男7 31 25 30 4 女8 29 26 32 8 学段初中25 36 44 11 高中下面有四个推断:①这200名学生参加公益劳动时间的平均数一定在24.5-25.5之间②这200名学生参加公益劳动时间的中位数在20-30之间③这200名学生中的初中生参加公益劳动时间的中位数一定在20-30之间 ④这200名学生中的高中生参加公益劳动时间的中位数可能在20-30之间 所有合理推断的序号是()A.①③B.②④C.①②③D.①②③④【解析】①由条形统计图可得男生人均参加公益劳动时间为24.5h ,女生为25.5h ,则平均数一定在24.5~25.5之间,故①正确②由统计表类别栏计算可得,各时间段人数分别为15,60,51,62,12,则中位数在20~30之间,故②正确.③由统计表计算可得,初中学段栏0≤t<10的人数在0~15之间,当人数为0时,中位数在20~30之间;当人数为15时,中位数在20~30之间,故③正确.④由统计表计算可得,高中学段栏各时间段人数分别为0~15,35,15,18,1.当0≤t<10时间段人数为0时,中位数在10~20之间;当0≤t<10时间段人数为15时,中位数在10~20之间,故④错误 故,选C二、填空题(本题共16分,每小题2分)9.若分式1x x-的值为0,则x 的值为______.【解析】本题考查分式值为0,则分子01=-x ,且分母0≠x ,故答案为110.如图,已知△ABC,通过测量、计算得△ABC 的面积约为cm 2.(结果保留一位小数) 【解析】本题考查三角形面积,直接动手操作测量即可,故答案为“测量可知”11.在如图所示的几何体中,其三视图中有矩形的是______.(写出所有正确答案的序号) 【解析】本题考查对三视图的认识.①长方体的主视图,俯视图,左视图均为矩形;②圆柱的主视图,左视图均为矩形,俯视图为圆;③圆锥的主视图和左视图为三角形,俯视图为圆.故答案为①②第11题图③圆锥②圆柱①长方体第12题图PBA12.如图所示的网格是正方形网格,则PAB PBA ∠∠+=__________°(点A ,B ,P 是网格线交点).【解析】本题考查三角形的外角,可延长AP 交正方形网格于点Q ,连接BQ ,如图所示,经计算105===PB BQ PQ ,,∴222PB BQ PQ =+,即△PBQ 为等腰直角三角形,∴∠BPQ=45°,∵∠PAB+∠PBA=∠BPQ=45°,故答案为4513.在平面直角坐标系xOy 中,点A()a b ,()00a b >>,在双曲线1k y x=上.点A 关于x 轴的对称点B 在双曲线2k y x=上,则12k k +的值为______. 【解析】本题考查反比例函数的性质,A (a ,b )在反比例xk y 1=上,则ab k =1,A 关于x 轴的对称点B 的坐标为),(b a -,又因为B 在xk y 2=上,则ab k -=2,∴021=+k k 故答案为014.把图1中的菱形沿对角线分成四个全等的直角三角形,将这四个直角三角形分别拼成如图2,图3所示的正方形,则图1中菱形的面积为______.【解析】设图1中小直角三角形的两直角边分别为a ,b (b >a ),则由图2,图3可列方程组,15⎩⎨⎧=-=+a b b a 解得⎩⎨⎧==32b a ,所以菱形的面积.126421=⨯⨯=S 故答案为12. 15.小天想要计算一组数据92,90,94,86,99,85的方差20s .在计算平均数的过程中,将这组数据中的每一个数都减去90,得到一组新数据2,0,4,-4,9,-5.记这组新数据的方差为21s ,则21s ______2s . (填“>”,“=”或“<”) 【解析】本题考查方差的性质。

全国181套中考数学试题分类汇编19反比例函数的应用

全国181套中考数学试题分类汇编19反比例函数的应用

19:反比例函数的应用一、选择题A .2B .3C .4D .5 【答案】B 。

【考点】反比例函数综合题。

【分析】过A 、B 分别作x 轴的垂线,垂足分别为C 、D ,如图,∵双曲线xk =经过点A (2,2),∴k =2×2=4,而点B (4,m )在4y x=上,∴4•m=4,解得m=1,即B 点坐标为(4,1), ∴S △AOB =S △AOC +S 梯形ABDC -S △BOD = 12×2×2+12×(2+1)×(4-2)-12×4×1=3。

故选B 。

2. (江苏泰州3分)某公司计划新建一个容积V(m 3)一定的长方体污水处理池,池的底面积S(m 2)与其深度h (m )之间的函数关系式为)0(≠=h hV S ,这个函数的图象大致是【答案】C 。

【考点】反比例函数的图像和性质。

【分析】因为池的底面积S(m 2)与其深度h (m )之间的函数关系为反比例函数的一部分,所以根据反比例函数的图像特征,直接得出结果。

故选C 。

3.(江苏徐州2分)平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ⊥x 轴,垂足为点Q 。

若以点O 、P 、Q 为顶点的三角形与∆OAB 相似,则相应的点P 共有A .1个B .2个C .3个D .4个DABC【答案】D。

【考点】相似三角形的判定,反比例函数的图象。

【分析】Rt∆OAB两直角边的比是12,故只要Rt∆OPQ两直角边的比也是12即可。

由1yx=-知x y与异号,从而有111221x xx x==和::::,解之,得2x x=±=,所以相应的点P为22⎛⎛--⎝⎭⎝⎭,,22⎛⎛⎫-⎪⎪ ⎪⎝⎭⎝⎭,,。

4.(河北省3分)根据图1所示的程序,得到了y与x的函数图象,如图2.若点M是y轴正半轴上任意一点,过点M作PQ∥x轴交图象于点P,Q,连接OP,OQ.则以下结论:①x<0 时,2yx=②△OPQ的面积为定值.③x>0时,y随x的增大而增大.④MQ=2PM.⑤∠POQ可以等于90°.其中正确结论是A、①②④B、②④⑤C、③④⑤D、②③⑤【答案】B。

2019年中考数学压轴题专项训练:反比例函数(附解析)

2019年中考数学压轴题专项训练:反比例函数(附解析)

2019年中考数学压轴题专项训练:反比例函数一.选择题1.已知反比例函数y=﹣,下列结论错误的是()A.y随x的增大而减小B.图象位于二、四象限内C.图象必过点(﹣2,4)D.当﹣1<x<0时,y>82.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣4,﹣4),则k的值为()A.16 B.﹣3 C.5 D.5或﹣33.如图,在平面直角坐标系中,▱ABOC的顶点B,C在反比例函数y=(x>0)的图象上,点A在反比例函数y=(x>0)的图象上,若点B的坐标为(1,2),∠OBC=90°,则k的值为()A.B.3 C.5 D.4.如图,是反比例函数y=和y=﹣在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点A.B,则△AOB的面积是()A .5B .4C .10D .205.我们知道,如果一个矩形的宽与长之比为,那么这个矩形就称为黄金矩形.如图,已知A 、B 两点都在反比例函数y =(k >0)位于第一象限内的图象上,过A 、B 两点分别作坐标轴的垂线,垂足分别为C 、D 和E 、F ,设AC 与BF 交于点G ,已知四边形OCAD 和CEBG 都是正方形.设FG 、OC 的中点分别为P 、Q ,连接PQ .给出以下结论:①四边形ADFG 为黄金矩形;②四边形OCGF 为黄金矩形;③四边形OQPF 为黄金矩形.以上结论中,正确的是( )A .①B .②C .②③D .①②③6.如图,平行于x 轴的直线与函数y 1=(a >0,x >0),y 2=(b >0.x >0)的图象分别相交于A 、B 两点,且点A 在点B 的右侧,在X 轴上取一点C ,使得△ABC 的面积为3,则a ﹣b 的值为( )A .6B .﹣6C .3D .﹣37.如图,正比例函数y 1=﹣2x 的图象与反比例函数y 2=的图象交于A 、B 两点,点C 在x 轴负半轴上,AC =AO ,△ACO 的面积为6.则k 的值为( )A.3 B.﹣3 C.﹣6 D.68.如图,在菱形OABC中,点A的坐标为(10,0),对角线OB、AC相交于点D,OB•AC=160.双曲线y=(x>0)经过点D,交BC的延长线于点E,则过点E的双曲线表达式为()A.y=B.y=C.y=D.y=9.如图,一次函数与反比例函数的图象交于A(1,8)和B(4,2)两点,点P是线段AB 上一动点(不与点A和B重合),过P点分别作x轴,y轴的垂线PC,PD交反比例函数图象于点E,F,则四边形OEPF面积的最大值是()A.3 B.4 C.D.610.如图,平行四边形AOBC中,∠AOB=60°,AO=8,AC=15,反比例函数y=(x>0)图象经过点A,与BC交于点D,则的值为()A.B.C.D.二.填空题11.如图,在△OAB中,AO=AB,S=36,反比例函数y=(x>0)的图象与OA交于点△AOBC,点D是函数y=(x>0)的图象一点,且CD∥x轴,若∠ADC=90°,则k的值是.12.如图,点A是反比例函数y=﹣的图象第二象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角三角形ABC,顶点C在第三象限,AC与x轴交于点D,连结BD.当BD平分∠ABC时,点C的坐标是.13.如图,在平面直角坐标系xOy中,已知直线y=kx(k>0)分别交反比例函数y=和y=在第一象限的图象于点A,B,过点B作BD⊥x轴于点D,交y=的图象于点C,连接AC.若△ABC是等腰三角形,则k的值是.14.如图,直线y =2x ﹣1交y 轴于A ,交双曲线y =(k >0,x >0)于B ,将线段AB 绕B 点逆时针方向旋转90°,A 点的对应点为C ,若C 点落在双曲线y =(k >0,x >0)上,则k 的值为 .15.如图,点B 1(1,)在直线l 2:y =x 上,过点B 1作A 1B 1⊥l 1交直线l 1:y =x于点A 1,以A 1B 1为边在△OA 1B 1外侧作等边三角形A 1B 1C 1,过C 1的反比例函数为y =;再过点C 1作A 2B 2⊥l 1,分别交直线l 1和l 2于A 2,B 2两点,以A 2B 2为边在△OA 2B 2外侧作等边三角形A 2B 2C 2,过C 2的反比例函数为y =,…,按此规律进行下去,则第n 个反比例函数的k n = .(用含n 的代数式表示)16.如图,已知点A 在反比例函数上,作Rt △ABC ,使边BC 在x 轴上且∠ABC =90°,点D 在AC 上且CD =2AD ,连DB 并延长交y 轴于点E ,若△BCE 的面积为8,△ABC 的面积为3,则k = .17.如图,菱形ABCD的对角线BD与x轴平行,点B、C的坐标分别为(0,2)、(3,0),点A、D在函数(x>0)的图象上,则k的值为.18.如图,在△ABC中,∠ACB=90°,BC在x轴上,点B与点C关于原点对称,AB=5,AO=,边AC上的点P满足∠COP=∠CAO,且双曲线y=经过点P,则k值等于.19.如图,A、B是反比例函数y=在第一象限内的图象上的两点,且A、B两点的横坐标分别是4和8,则△OAB的面积是.20.如图,在直角坐标系中,四边形OABC为菱形,OA在x轴的正半轴上,∠AOC=60°,过点C的反比例函数的图象与AB交于点D,则△COD的面积为.三.解答题21.如图,一次函数y=kx+b与反比例函数y=的图象交于A(n,3),B(﹣3,﹣2)两点.(1)求反比例函数与一次函数的解析式;(2)过点B作BC⊥x轴,垂足为C,求S.△ABC22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k ≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,﹣4).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积;(3)观察图象,直接写出ax+b>的x取值范围.23.如图所示,一次函数y =kx +b 的图象与反比例函数y =的图象交于M 、N 两点.(1)根据图中条件求出反比例函数和一次函数的解析式;(2)连结OM 、ON ,求△MON 的面积;(3)根据图象,直接写出使一次函数的值大于反比例函数的值的x 的取值范围.24.如图,双曲线y 1=与直线y 2=的图象交于A 、B 两点.已知点A 的坐标为(4,1),点P (a ,b )是双曲线y 1=上的任意一点,且0<a <4.(1)分别求出y 1、y 2的函数表达式;(2)连接PA 、PB ,得到△PAB ,若4a =b ,求三角形ABP 的面积;(3)当点P 在双曲线y 1=上运动时,设PB 交x 轴于点E ,延长PA 交x 轴于点F ,判断PE 与PF 的大小关系,并说明理由.25.制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800℃,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600°C.煅烧时温度y(℃)与时间x(min)成一次函数关系;锻造时,温度y(℃)与时间x(min)成反比例函数关系(如图),已知该材料初始温度是26℃(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400°C时,须停止操作.那么锻造的操作时间有多长?26.如图,一次函数y1=kx+b(k≠0)和反比例函数y2=(m≠0)的图象相交于点A(﹣4,2),B(n,﹣4)(1)求一次函数和反比例函数的表达式;(2)观察图象,直接写出不等式y1<y2的解集.27.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(m ≠0)的图象交于A,B两点,与x轴交于点C,点A的坐标为(n,12),点C的坐标为(﹣4,0),且tan∠ACO=2.(1)求该反比例函数和一次函数的解析式;(2)求点B的坐标;(3)连接OA,OB,求△AOB的面积.28.如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于,若OA=OD=OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集.29.如图1,反比例函数图象经过等边△OAB 的一个顶点B ,点A 坐标为(2,0),过点B 作BM ⊥x 轴,垂足为M .(1)求点B 的坐标和k 的值; (2)若将△ABM 沿直线AB 翻折,得到△ABM ',判断该反比例函数图象是从点M '的上方经过,还是从点M '的下方经过,又或是恰好经过点M ',并说明理由;(3)如图2,在x 轴上取一点A 1,以AA 1为边长作等边△AA 1B 1,恰好使点B 1落在该反比例函数图象上,连接BB 1,求△ABB 1的面积.30.如图,已知反比例函数y =(x >0)的图象与反比例函数y =(x <0)的图象,A (1,4),B (4,m )是函数y =(x >0)图象上的两点,连接AB ,点C (﹣2,n )是函数y =(x <0)图象上的一点,点C 关于y 轴的对称点在y =(x >0)图象上,连接AC ,BC .(1)求m ,n 的值;(2)求BC 所在直线的表达式;(3)求△ABC 的面积.参考答案一.选择题1.解:反比例函数y =﹣中k =﹣8<0,在每个象限内y 随着x 的增大而增大,故A 错误,符合题意,故选:A .2.解:设C (x ,y ),如图,∵矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,∴△ABD 和△CDB 的面积相等,∴矩形AEOF 的面积等于矩形OMCN 的面积,∴xy =k 2﹣2k +1=4×4,即(k ﹣1)2=16,解得k 1=﹣3,k 2=5.故选:D .3.解:将B (1,2)代入反比例函数y =(x >0)中得:m =2,∴y =,∵∠OBC =90°,∴k OB ×k BC =﹣1,∵k OB =2,∴k BC =﹣,∵B (1,2),∴直线BC :y =﹣x +,联立,得:点C (4,),∴线段BC 的中点坐标为(,),∵▱ABOC ,∴线段OA 的中点坐标为(,),∴点A 的坐标为(5,),∵点A 在反比例函数y =(x >0)的图象上,∴k =5×=; 故选:D .4.解:∵x 轴的平行线AB 分别与这两个函数图象相交于点A .B ,∴AB ⊥y 轴,∵点A 、B 在反比例函数y =和y =﹣在x 轴上方的图象上,∴S △AOB =S △COB +S △AOC =(3+7)=5,故选:A .5.解:∵OCAD 和CEBG 都是正方形.∴设BE =a ,AD =b ,∴B (a +b ,a ),A (b ,b ),∵A 、B 两点都在反比例函数y =,∴a (a +b )=b •b ,∴,①四边形ADFG 中宽与长的比为,将代入,得到=, ∴四边形ADFG 不是黄金矩形;①不正确;四边形OCGF中宽与长的比为=,∴四边形OCGF为黄金矩形,②正确;∵FG、OC的中点分别为P、Q,∴OQ=b,四边形OQPF中宽与长的比为=,∴四边形OQPF不是黄金矩形;③不正确;故选:B.6.解:设A(,m),B(,m),则:△ABC的面积=•AB•y A=•(﹣)•m=3,则a﹣b=6.故选:A.7.解:设A(m,﹣2m),∵AC=AO,∴△ACO是等腰三角形,∴CO=﹣2m,∴S=×(﹣2m)×(﹣2m)=6,△ACO∴m2=3,∵k=2m2,∴k=﹣6,故选:C.8.解:如图,过B作BF⊥x轴于点F,过D作DG⊥x轴于点G,过C作CH⊥x轴于点H,∵A(10,0),∴OA=10,∴S菱形ABCD=OA•BF=AC•OB=×160=80,即10BF=80,∴BF=8,在Rt△ABF中,AB=10,BF=8,由勾股定理可得AF=6,∴OF=OA+AF=10+6=16,∵四边形OABC为菱形,∴D为OB中点,∴DG=BF=×8=4,OG=OF=×16=8,∴D(8,4),∵双曲线过点D,∴4=,解得k=32,∴双曲线解析式为y=,故选:D.9.解:设一次函数解析式为y=kx+b,反比例函数解析式为y=,∵A(1,8)和B(4,2)是两个函数图象的交点,∴y=,∴,∴,∴y=﹣2x+10,∵S△ODF =S△ECO=4,设点P的坐标(x,﹣2x+10),∴四边形OEPF面积=xy﹣8=x(﹣2x+10)﹣8=﹣2x2+10x﹣8=﹣2(x﹣)2+,∴当x=时,面积最大为;故选:C.10.解:作AE⊥OB于E,DF⊥OB于F,∵∠AOB=60°,AO=8,∴OE=OA=4,AE=OA=4,∴A(4,4),∵反比例函数y=(x>0)图象经过点A,∴k=4×=16,∴y=,∵四边形AOBC是平行四边形,∴OA∥BC,∴∠DBF=∠AOB=60°,设D点的纵坐标为n,∴DF=n,∴BF=n,∵OB=AC=15,∴D(15+n,n),∵点D在反比例函数y=(x>0)图象上,∴(15+n)•n=16,解得n1=,n2=﹣16(舍去),∴DF=,∵∠DBF=∠AOB=60°,∠OEA=∠BFD=90°,∴△BFD∽△OEA,∴===,故选:C.二.填空题(共10小题)11.解:过点C 作CE ⊥x 轴于点E ,延长AD ,交x 轴于点F ,连接OD ,如图所示. ∵AO =AB ,CD ∥x 轴,∠ADC =90°,∴AF ⊥OB ,∴S △AOF =S △AOB =18.∵函数y =(x >0)图象与OA 交于点C ,点D 是函数y =(x >0)的图象上一点,∴S △OCE =k ,S △ODF =×4=2,∴===.∵CE ⊥x 轴,AF ⊥x 轴,CD ∥x 轴,∴△OCE ∽△OAF ,CE =DF ,∴=()2=,∴S △O CE =k =×18=,∴k =.故答案为:.12.解:连接OC ,过点A 作AE ⊥x 轴于E ,过点C 作CF ⊥x 轴于F ,过点D 作DH ⊥AB 于H ,如图所示.∵△ABC 为等腰直角三角形,∴OA=OC,OC⊥AB,∴∠AOE+∠COF=90°.∵∠COF+∠OCF=90°,∴∠AOE=∠OCF.在△AOE和△OCF中,,∴△AOE≌△OCF(AAS),∴AE=OF,OE=CF.∵BD平分∠ABC,∴CD=DH,∵∠CFD=∠AED=90°,∠CDF=∠ADE,∴△CDF∽△ADE,∴=,∴=,∵∠BAC=45°,∴sin45°==∴==,∵OE=CF,∴=.∵k=﹣,∴设点A的坐标为(a,﹣)(a<0),∴=,解得:a=1或a=﹣1,∴A(﹣1,),∴OE=1,AE=,∴CF=OE=1,OF=AE=,∴点C的坐标为(﹣,﹣1).故答案为:(﹣,﹣1).13.解:∵点B是y=kx和y=的交点,y=kx=,∴点B坐标为(,4),同理可求出点A的坐标为(,2),∵BD⊥x轴,∴点C横坐标为,纵坐标为,∴BA=,AC=,BC=3,∴BA2﹣AC2=3k>0,∴BA≠AC,若△ABC是等腰三角形,①AB=BC,则=3,解得:k=;②AC=BC,则=3,解得:k=;故答案为:或.14.解:过点B作BE∥x轴交y轴于点E,过点C作CD⊥BD于点D,如图:则易证△ABE ≌△BCD ,∴BE =CD ,AE =BD ,∵直线y =2x ﹣1交y 轴于A ,∴A (0,﹣1),设点B (x ,),则BE =CD =x ,AE =BD =+1,∴C (x ++1,﹣x ),∵C 点落在双曲线y =(k >0,x >0)上,∴k =(x ++1)(﹣x )①,∵点B 在直线y =2x ﹣1上,∴=2x ﹣1②,∴联立①②解得:k =6,故答案为:6.15.解:直线l 2:y =x 与x 轴夹角为30°,直线l 1:y =x 与x 轴夹角为60°, ∴l 1与l 2的夹角30°,∵A 1B 1上l 1,∴∠OB 1A 1=60°,∵等边三角形A 1B 1C 1,∴B 1C 1⊥x 轴,∵B 1(1,),∴OB 1=,∴B 1C 1=,∴C 1(1,), ∴k 1=;∴OB 2=+=,∴A 2B 2=OB 2sin30°=,∴B 2的横坐标OB 2×cos30°=,B 2的纵坐标OB 2×sin30°=,∴C 2(,), ∴k 2=,以此得到OB n =×,∁n 的横坐标OB n ×cos30°=,∁n 的纵坐标2OB n×sin30°=×,∴k n =××=×,故答案为×; 16.解:∵BD 为Rt △ABC 的斜边AC 上的中线,∴BD =DC ,∠DBC =∠ACB ,又∠DBC =∠EBO ,∴∠EBO =∠ACB ,又∠BOE =∠CBA =90°,∴△BOE ∽△CBA ,∴=,即BC ×OE =BO ×AB .又∵S △BEC =3,∴BC •EO =3,即BC ×OE =6=BO ×AB =|k |.∵反比例函数图象在第二象限,k <0.∴k =﹣6.故答案为:﹣6.17.解:菱形ABCD 的对角线BD 与x 轴平行,点B 、C 的坐标分别为(0,2)、(3,0),∵菱形对角线互相垂直平分,∴A (3,4),将点A (3,4)代入中,∴k =12;故答案为12;18.解:∵点B 与点C 关于原点对称,∴BC =2OC ,在Rt △ABC 中,AB 2=AC 2+BC 2,∵AB =5,∴25=AC 2+4OC 2,在Rt △AOC 中,AO 2=AC 2+OC 2,∵AO =, ∴13=AC 2+OC 2,∴OC =2,AC =3,∵∠COP =∠CAO ,∴tan ∠COP =tan ∠CAO ,∴,∴PC =,∴P (2,),∴k =;故答案为;19.解:∵A ,B 是反比例函数y =在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是4和8,∴当x =4时,y =2,即A (4,2),当x =8时,y =1,即B (8,1).如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,则S △AOC =S △BOD =×8=4. ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =(BD +AC )•CD =(1+2)×4=6,∴S △AOB =6.故答案为:6.20.解:作DF ∥AO ,CE ⊥AO ,∵∠AOC =60°,∴tan ∠AOC =,∴设OE =x ,CE =x , ∴x •x =4,∴x =±2,∴OE =2,CE =2,由勾股定理得:OC =4,∴S 菱形OABC =OA •CE =4×2=8,∵四边形OABC 为菱形,∴AB ∥CO ,AO ∥BC ,∵DF ∥AO ,∴S △ADO =S △DFO ,同理S △BCD =S △CDF ,∵S 菱形ABCO =S △ADO +S △DFO +S △BCD +S △CDF ,∴S 菱形ABCO =2(S △DFO +S △CDF )=2S △CDO =8,∴S △CDO =4;故答案为4.三.解答题(共10小题)21.解:(1)将点B(﹣3,﹣2)代入y=,∴m=6,∴y=,∴n=2,∴A(2,3),将A(2,3),B(﹣3,﹣2)代入y=kx+b,,∴,∴y=x+1;(2)y=x+1与x轴交点坐标(﹣1,0),∴S=×1×(3+2)=;22.解:(1)∵反比例函数y=(k≠0)的图象过点B(4,﹣4),∴k=4×(﹣4)=﹣16,∴反比例函数解析式为:y=﹣.∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,将x=﹣2代入y=﹣,得y=8,,∴A(﹣2,8).设一次函数解析式为:y=kx+b,将A(﹣2,8),B(4,﹣4)代入,得:,解得:,∴一次函数解析式为:y=﹣2x+4;(2)∵HC=4,B(4,﹣4),∴△BCH的面积为:×4×4=8;(3)观察图象可知:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象的上方,所以ax+b>的x取值范围是x<﹣2或0<x<4.故答案为x<﹣2或0<x<4.23.解:(1)∵一次函数y=kx+b的图象与反比例函数y=的图象交于M(3,2)、N(﹣1,a)两点∴m=6,a=﹣6,∴反比例函数y=,N(﹣1,﹣6),把M(3,2),N(﹣1,﹣6)代入y=kx+b得,解得∴一次函数的解析式的解析式为y=2x﹣4.(2)设直线MN交x轴于点A,当y=0时,2x﹣4=0,∴x=2,∴A(2,0),∴S△MON=S△MOA+S△NOA=•OA•(y M﹣y N)=×2×8=8;(3)由图象可知,当﹣1<x<0或x>3时一次函数的值大于反比例函数的值.24.解:(1)把点A(4,1)代入双曲线y1=得k1=4,∴双曲线y1=;代入直线y2=得k2=4,∴直线为y=x;(2)∵点P(a,b)在y1=的图象上,∴ab=4,∵4a=b,∴4a2=4,则a=±1,∵0<a<4,∴a=1,∴P(1,4),又∵双曲线y1=与直线y2=的图象交于A、B两点,且A(4,1)∴B(﹣4,﹣1),过点P作PQ∥y轴交AB于点G,如图所示,把x=1代入y=x,得到y=,∴G(1,),∴PG=4﹣=,∴S△ABP=PG(x A﹣x B)=××8=15;(3)PE=PF.理由如下:∵点P(a,b)在y=的图象上,∴b=,∵B(﹣4,﹣1),设直线PB的表达式为y=mx+n,∴,∴∴直线PB的表达式为y=x+﹣1,当y=0时,x=a﹣4,∴E点的坐标为(a﹣4,0),同理F点的坐标为(a+4,0),过点P作PH⊥x轴于H,如图所示,∵P点坐标为(a,b),∴H点的坐标为(a,0),∴EH=x H﹣x E=a﹣(a﹣4)=4,同理可得:FH=4,∴MH=HN,∴PM=PN.25.解:(1)材料锻造时,设y=(k≠0),由题意得600=,解得k=4800,当y=800时,,解得x=6,∴点B的坐标为(6,800)材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,∴材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).∴锻造操作时y与x的函数关系式为y=(6<x≤150);(2)把y=400代入y=,得x=12,12﹣6=6(分),答:锻造的操作时间6分钟.=,26.【解答】解:(1)将点A(﹣4,2)代入y2∴m=﹣8,∴y=,将B(n,﹣4)代入y=,∴n=2,∴B(2,﹣4),=kx+b,将A(﹣4,2),B(2,﹣4)代入y1得到,∴,∴y=﹣x﹣2,(2)由图象直接可得:x>2或﹣4<x<0;27.解:(1)过点A作AD⊥x轴,垂足为D.由A(n,12),C(﹣4,0),可得OD=n,AD=12,CO=4.∵tan∠ACO=2,∴=2,即=2,∴n=2,∴A(2,12).将A(2,12)代入反比例函数y=,得m=2×12=24.∴反比例函数的解析式为y=.将A(2,12),C(﹣4,0)代入一次函数y=kx+b,得,解得.∴一次函数的解析式为y=2x+8.(2)y=与y=2x+8的交点为,2x+8=,∴x2+4x﹣12=0,∴x=﹣6或x=2,∴点B的坐标为(﹣6,﹣4).(3)∵C(﹣4,0),=×OC(y A﹣y B)=×4×[12﹣(﹣4)]=32.∴S△AOB28.解:(1)∵CD⊥OA,∴DC∥OB,∴,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段BC(包含C点,不包含B点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;29.解:(1)∵△OAB为等边三角形,OA=2,∴OM=OA=1,BM=OA=,∴点B的坐标为(1,).∵反比例函数图象经过点B,∴k=.(2)该反比例函数图象是从点M'的下方经过,理由如下:过点M′作M′C⊥x轴,垂足为点C,如图1所示.由折叠的性质,可知:AM′=AM=1,∠BAM′=∠BAM=60°,∴∠M′AC=180°﹣∠BAM﹣∠BAM′=60°.在Rt△ACM′中,AM′=1,∠ACM′=90°,∠M′AC=60°,∴∠AM′C=30°,∴AC=AM′=,CM′=AM′=.∴OC=OA+AC=,∴点M′的坐标为(,).当x=时,y==,∵<,∴该反比例函数图象是从点M '的下方经过.(3)过点B 1作B 1D ⊥x 轴,垂足为点D ,如图2所示.设AA 1=a ,则AD =a ,B 1D =a ,OD =2+a ,∴点B 1的坐标为(2+a ,a ).∵点B 1在该反比例函数y =的图象上,∴(2+a )•a =,解得:a 1=﹣2﹣2(舍去),a 2=2﹣2,∴MD =AM +AD =,B 1D =a =﹣,AD =a =﹣1,∴=﹣S △BMA ﹣,=(BM +B 1D )•MD ﹣BM •AM ﹣B 1D •AD ,=(+﹣)×﹣××1﹣×(﹣)×(﹣1),=﹣.30.解:(1)因为点A 、点B 在函数y =(x >0)图象上,∴k 1=1×4=4,∴m×4=k1=4,∴m=1,∵点C(﹣2,n)关于y轴的对称点在y=(x>0)图象上.∴对称点为(2,n),∴2×n=4,∴n=2;(2)设直线BC所在的直线表达式为y=kx+b把B(4,1),C(﹣2,2)代入,得,解得,∴BC所在直线的表达式为:y=﹣x+;(3)如图所示:过点A、B作x轴的平行线,过点C、B作y轴的平行线,它们的交点分别是E、F、B、G.∴四边形EFBG是矩形.则AF=3,BF=3,AE=3,EC=2,CG=1,GB=6,EG=3∴S△ABC=S矩形EFBG﹣S△AFB﹣S△AEC﹣S△CBG=BG×EG﹣AF×FB﹣AE×EC﹣BG×CG=18﹣﹣3﹣3=.。

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)

2019年数学中考一模试卷(附答案)一、选择题1.在下面的四个几何体中,左视图与主视图不相同的几何体是( )A .B .C .D .2.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .15B .14C .15D .417 3.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是( )A .94B .95分C .95.5分D .96分4.我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l :y=kx+43与x 轴、y 轴分别交于A 、B ,∠OAB=30°,点P 在x 轴上,⊙P 与l 相切,当P 在线段OA 上运动时,使得⊙P 成为整圆的点P 个数是( )A .6B .8C .10D .12 5.将两个大小完全相同的杯子(如图甲)叠放在一起(如图乙),则图乙中实物的俯视图是( ).A .B .C .D .6.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A.35B.53C.73D.547.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=70°,则∠AED度数为( )A.110°B.125°C.135°D.140°8.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5B.6C.7D.89.下面的几何体中,主视图为圆的是()A.B.C.D.10.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.1201508x x=-B.1201508x x=+C.1201508x x=-D.1201508x x=+11.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个12.某种工件是由一个长方体钢块中间钻了一个上下通透的圆孔制作而成,其俯视图如图所示,则此工件的左视图是()A .B .C .D .二、填空题13.色盲是伴X染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:抽取的体检表数n501002004005008001000120015002000色盲患者的频数m37132937556985105138色盲患者的频率m/n0.0600.0700.0650.0730.0740.0690.0690.0710.0700.069根据表中数据,估计在男性中,男性患色盲的概率为______(结果精确到0.01).14.一列数123,,,a a a……na,其中1231211111,,,,111nna a a aa a a-=-===---L L,则1232014a a a a++++=L L__________.15.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx=在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.18.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =_____.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________ 元.(按每吨运费20元计算)20.如图,矩形ABCD 中,AB=3,BC=4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点处,当△为直角三角形时,BE 的长为 .三、解答题21.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 22.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.23.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b 的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x ﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y ﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y 4+y2++2y3+y 2+y+y 4+y2+﹣2y3+y 2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式:(不要求写出定义域);(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.2.A解析:A【解析】∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC224115,则cos B=BCAB=154,故选A 3.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.A解析:A【解析】试题解析:∵直线l:y=kx+43与x轴、y轴分别交于A、B,∴B(0,43),∴OB=43,在RT△AOB中,∠OAB=30°,∴OA=3OB=3×43=12,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=12 PA,设P(x,0),∴PA=12-x,∴⊙P的半径PM=12PA=6-12x,∵x为整数,PM为整数,∴x可以取0,2,4,6,8,10,6个数,∴使得⊙P成为整圆的点P个数是6.故选A.考点:1.切线的性质;2.一次函数图象上点的坐标特征.5.C【解析】从上面看,看到两个圆形,故选C .6.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 7.B解析:B【分析】由AB ∥CD ,根据两直线平行,同旁内角互补可得∠CAB=110°,再由角平分线的定义可得∠CAE=55°,最后根据三角形外角的性质即可求得答案.【详解】∵AB ∥CD ,∴∠BAC+∠C=180°,∵∠C=70°,∴∠CAB=180°-70°=110°,又∵AE 平分∠BAC ,∴∠CAE=55°,∴∠AED=∠C+∠CAE=125°,故选B.【点睛】本题考查了平行线的性质,角平分线的定义,三角形外角的性质,熟练掌握相关知识是解题的关键.8.B解析:B【解析】【分析】根据垂径定理求出AD,根据勾股定理列式求出半径 ,根据三角形中位线定理计算即可.【详解】解:∵半径OC 垂直于弦AB ,∴AD=DB=12在Rt △AOD 中,OA 2=(OC-CD)2+AD 2,即OA 2=(OA-1)2 )2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键9.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.10.D解析:D【解析】【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴1201508x x=+,故选D.【点睛】本题考查了分式方程的实际应用,熟练掌握是解题的关键.11.C解析:C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.12.A解析:A【解析】从左面看应是一长方形,看不到的应用虚线,由俯视图可知,虚线离边较近,故选A.二、填空题13.07【解析】【分析】随着实验次数的增多频率逐渐稳定到的常数即可表示男性患色盲的概率【详解】解:观察表格发现随着实验人数的增多男性患色盲的频率逐渐稳定在常数007左右故男性中男性患色盲的概率为007故解析:07【解析】【分析】随着实验次数的增多,频率逐渐稳定到的常数即可表示男性患色盲的概率.【详解】解: 观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右, 故男性中,男性患色盲的概率为0.07故答案为:0.07.【点睛】本题考查利用频率估计概率.14.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】 解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.15.2【解析】由D 是AC 的中点且S △ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S △ADF -S △BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =216.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x ,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6, ∴这组数据的中位数为352+=4, 故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键. 18.6【解析】分析:根据BD=CDAB=CD 可得BD=BA 再根据AM ⊥BDDN ⊥AB 即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB ∠ABD=∠P+∠BAP 即可得到△APM 是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x 2+22=(4-x )2,解得,∴BE=; ②当点B′落在AD 边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE 的长为或3. 故答案为:或3.三、解答题21.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 22.(1)DE=3;(2)ADB S 15∆=.【解析】【分析】(1)根据角平分线性质得出CD=DE ,代入求出即可;(2)利用勾股定理求出AB 的长,然后计算△ADB 的面积.【详解】(1)∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=DE ,∵CD=3,∴DE=3;(2)在Rt △ABC 中,由勾股定理得:2222AB AC BC 6810=+=+=,∴△ADB 的面积为ADB 11S AB DE 1031522∆=⋅=⨯⨯=. 23.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)y=5x+400.(2)乙.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)绿化面积是1200平方米时,求出两家的费用即可判断;试题解析:(1)设y=kx+b ,则有400100900b k b =⎧⎨+=⎩ ,解得5400k b =⎧⎨=⎩, ∴y=5x+400.(2)绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元,∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.。

北京市2019年中考数学真题与模拟题分类汇编 专题09 函数之解答题(73道题)(原卷版)(1)

北京市2019年中考数学真题与模拟题分类汇编 专题09 函数之解答题(73道题)(原卷版)(1)

专题09 函数之解答题一.解答题(共73小题)1.(2019•北京)如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB 于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.2.(2019•北京)在平面直角坐标系xOy中,抛物线y=ax2+bx与y轴交于点A,将点A向右平移2个单位长度,得到点B,点B在抛物线上.(1)求点B的坐标(用含a的式子表示);(2)求抛物线的对称轴;(3)已知点P(,),Q(2,2).若抛物线与线段PQ恰有一个公共点,结合函数图象,求a的取值范围.3.(2019•北京)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=﹣k分别交于点A,B,直线x=k与直线y=﹣k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.4.(2019•朝阳区校级一模)如图,半圆O的直径AB=5cm,点M在AB上且AM=1cm,点P是半圆O上的动点,过点B作BQ⊥PM交PM(或PM的延长线)于点Q.设PM=xcm,BQ=ycm.(当点P与点A 或点B重合时,y的值为0)小石根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小石的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如表:(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当△PBM的面积为1时,PM的长度约为cm.5.(2019•怀柔区二模)研究发现:初中学生听课的注意力指标数是随着老师讲课时间的变化而变化的.讲课开始时,学生的注意力激增,中间有一段时间,学生的注意力保持平稳状态,随后开始分散.学生注意力指标数y随时间x变化的函数图象如图所示(y越大表示学生注意力越集中).当0≤x≤10时,图象是抛物线的一部分;当10≤x≤20和20≤x≤45时,图象是线段.根据图象回答问题:(1)课堂上,学生注意力保持平稳状态的时间段是.(2)结合函数图象回答,一道几何综合题如果需要讲25分钟,老师最好在上课后大约第分钟到第分钟讲这道题,能使学生处于注意力比较集中的听课状态.6.(2019•朝阳区校级一模)如图,在平面直角坐标系xOy中,过点A(2,0)的直线l:y=mx﹣3与y轴交于点B.(1)求直线l的表达式;(2)若点C是直线l与双曲线的一个公共点,AB=3AC,求n的值.7.(2019•西城区二模)某医药研究所开发一种新的药物,据监测,如果成年人按规定的剂量服用,服药后2小时,每毫升血液中的含药量达到最大值,之后每毫升血液中的含药量逐渐衰减.若一次服药后每毫升血液中的含药量y(单位:微克)与服药后的时间t(单位:小时)之间近似满足某种函数关系,如表是y与t的几组对应值,其部分图象如图所示.(1)在所给平面直角坐标系中,继续描出上表中已列出数值所对应的点(t,y),并补全该函数的图象;(2)结合函数图象,解决下列问题:①某病人第一次服药后5小时,每毫升血液中的含药量约为微克;若每毫升血液中含药量不少于0.5微克时治疗疾病有效,则第一次服药后治疗该疾病有效的时间共持续约小时;②若某病人第一次服药后8小时进行第二次服药,第二次服药对血液中含药量的影响与第一次服药相同,则第二次服药后2小时,每毫升血液中的含药量约为微克.8.(2019•海淀区二模)有这样一个问题:探究函数y的图象与性质.小宇从课本上研究函数的活动中获得启发,对函数y的图象与性质进行了探究.下面是小宇的探究过程,请补充完整:(1)函数y的自变量x的取值范围是;(2)如图,在平面直角坐标系xOy中,完成以下作图步骤:①画出函数y和y的图象;②在x轴上取一点P,过点P作x轴的垂线l,分别交函数y和y的图象于点M,N,记线段MN的中点为G;③在x轴正半轴上多次改变点P的位置,用②的方法得到相应的点G,把这些点用平滑的曲线连接起来,得到函数y在y轴右侧的图象.继续在x轴负半轴上多次改变点P的位置,重复上述操作得到该函数在y轴左侧的图象.(3)结合函数y的图象,发现:①该函数图象在第二象限内存在最低点,该点的横坐标约为(保留小数点后一位);②该函数还具有的性质为:(一条即可).9.(2019•丰台区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在两个点A、B,使得点P在射线BC上,且∠APB∠ACB(0°<∠ACB<180°),则称P为⊙C的依附点.(1)当⊙O的半径为1时,①已知点D(﹣1,0),E(0,﹣2),F(2.5,0),在点D、E、F中,⊙O的依附点是;②点T在直线y=﹣x上,若T为⊙O的依附点,求点T的横坐标t的取值范围;(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+2与x轴、y轴分别交于点M、N,若线段MN上的所有点都是⊙C的依附点,直接写出圆心C的横坐标m的取值范围.10.(2019•昌平区二模)如图,在平面直角坐标系xOy中,函数(x>0)的图象与直线y=2x﹣2交于点为A(2,m).(1)求k,m的值;(2)点B为函数(x>0)的图象上的一点,直线AB与y轴交于点C,当AC=2AB时,求点C的坐标.11.(2019•通州区三模)如图,在平面直角坐标系xOy中,B(3,﹣3),C(5,0),以OC,CB为边作平行四边形OABC,函数y(x<0)的图象经过点A.(1)求k的值;(2)若过点A的直线l平行于直线OB,且交函数y(x<0)的图象于点D.①求直线l的表达式;②定义:横、纵坐标都是整数的点叫做整点.记函数y(x<0)的图象在点A,D之间的部分与线段AD围成的区域(含边界)为W.结合函数图象,直接写出区域W内(含边界)的整点个数.12.(2019•房山区二模)在平面直角坐标系xOy中,已知点A(0,2),B(2,2),抛物线F:y=x2﹣2mx+m2﹣2.(1)求抛物线F的顶点坐标(用含m的式子表示);(2)当抛物线F与线段AB有公共点时,直接写出m的取值范围.13.(2019•通州区三模)在平面直角坐标系xOy中,抛物线y=ax2﹣4ax+4(a≠0)与y轴交于点A.(1)求点A的坐标和抛物线的对称轴;(2)过点B(0,3)作y轴的垂线l,若抛物线y=ax2﹣4ax+4(a≠0)与直线l有两个交点,设其中靠近y轴的交点的横坐标为m,且|m|<1,结合函数的图象,求a的取值范围.14.(2019•房山区二模)对于平面直角坐标系xOy中的点P和⊙C,给出如下定义:若⊙C上存在点A,使得∠APC=30°,则称P为⊙C的半角关联点.当⊙O的半径为1时,(1)在点D(,),E(2,0),F(0,)中,⊙O的半角关联点是;(2)直线l:交x轴于点M,交y轴于点N,若直线l上的点P(m,n)是⊙O的半角关联点,求m的取值范围.15.(2019•昌平区二模)在平面直角坐标系xOy中,直线y=x+1与抛物线y=ax2+bx+3a交于点A和点B,点A在x轴上.(1)点A的坐标为.(2)①用等式表示a与b之间的数量关系,并求抛物线的对称轴;②当AB时,结合函数图象,求a的取值范围.16.(2019•房山区二模)在平面直角坐标系xOy中,函数>的图象G与直线l:y=﹣x+7交于A (1,a),B两点.(1)求k的值;(2)记图象G在点A,B之间的部分与线段AB围成的区域(不含边界)为W.点P在区域W内,若点P的横纵坐标都为整数,直接写出点P的坐标.17.(2019•西城区二模)在平面直角坐标系xOy中.已知抛物线y=ax2+bx+a﹣2的对称轴是直线x=1.(1)用含a的式子表示b,并求抛物线的顶点坐标;(2)已知点A(0,﹣4),B(2,﹣3),若抛物线与线段AB没有公共点,结合函数图象,求a的取值范围;(3)若抛物线与x轴的一个交点为C(3,0),且当m≤x≤n时,y的取值范围是m≤y≤6,结合函数图象,直接写出满足条件的m,n的值.18.(2019•朝阳区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣2a2x(a≠0)的对称轴与x轴交于点P.(1)求点P的坐标(用含a的代数式表示);(2)记函数(﹣1≤x≤3)的图象为图形M,若抛物线与图形M恰有一个公共点,结合函数的图象,求a的取值范围.19.(2019•怀柔区二模)阅读材料:1903年,英国物理学家卢瑟福通过实验证实,放射性物质放出射线后,这种物质的质量将减少,物质所剩的质量与时间成某种函数关系.镭的质量由m0缩减到m0需1620年,由m0缩减到m0需1620年,由m0缩减到m0需1620年,即镭的质量缩减为原来的一半所用的时间是一个不变的量﹣﹣1620年,一般把1620年称为镭的半衰期.实际上,所有放射性物质都有自己的半衰期.铀的半衰期为4.5×109年,蜕变后的铀最后成为铅.科学家们测出一块岩石中现在含铀和铅的质量,便可以利用半衰期算出从原来含铀量到现在含铀量经过了多少时间,从而推算出这块岩石的年龄.根据以上材料回答问题:(1)设开始时岩石中含有铀的质量为m0千克,经过n个半衰期后,剩余的铀的质量为m1千克,下表是m1随n的变化情况,请补充完整:(2)写出矿石中剩余的铀的质量m1与半衰期n之间的函数关系;(3)设铀衰变后完全变成铅,如图是岩石中铅的质量m2与半衰期n的函数关系图象,请在同一坐标系中,利用描点法画出岩石中含铀的质量m1与半衰期n的函数关系图象:(4)结合函数图象,估计经过个半衰期(精确到0.1),岩石中铀铅质量相等.20.(2019•顺义区二模)在平面直角坐标系xOy中,抛物线y=mx2+2mx﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,该抛物线的顶点D的纵坐标是﹣4.(1)求点A、B的坐标;(2)设直线与直线AC关于该抛物线的对称轴对称,求直线的表达式;(3)平行于x轴的直线b与抛物线交于点M(x1,y1)、N(x2,y2),与直线交于点P(x3,y3).若x1<x3<x2,结合函数图象,求x1+x2+x3的取值范围.21.(2019•朝阳区二模)M(﹣1,),N(1,)是平面直角坐标系xOy中的两点,若平面内直线MN 上方的点P满足:45°≤∠MPN≤90°,则称点P为线段MN的可视点.(1)在点,,,,,,A4(2,2)中,线段MN的可视点为;(2)若点B是直线y=x上线段MN的可视点,求点B的横坐标t的取值范围;(3)直线y=x+b(b≠0)与x轴交于点C,与y轴交于点D,若线段CD上存在线段MN的可视点,直接写出b的取值范围.22.(2019•丰台区二模)在平面直角坐标系xOy中,抛物线C1:y=ax2﹣2ax﹣3a(a≠0)和点A(0,﹣3),将点A向右平移2个单位,再向上平移5个单位,得到点B.(1)求点B的坐标;(2)求抛物线C1的对称轴;(3)把抛物线C1沿x轴翻折,得到一条新抛物线C2,抛物线C2与抛物线C1组成的图象记为G,若图象G与线段AB恰有一个交点时,结合图象,求a的取值范围.23.(2019•东城区二模)在平面直角坐标系xOy中,直线y=kx+2与双曲线y的一个交点是A(m,3).(1)求m和k的值;(2)设点P是双曲线y上一点,直线AP与x轴交于点B.若AB=3PB,结合图象,直接写出点P 的坐标.24.(2019•朝阳区二模)在平面直角坐标系xOy中,反比例函数y的图象经过点P(3,4).(1)求k的值;(2)求OP的长;(3)直线y=mx(m≠0)与反比例函数的图象有两个交点A,B,若AB>10,直接写出m的取值范围.25.(2019•东城区二模)在平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣1与y轴交于点C.(1)试用含m的代数式表示抛物线的顶点坐标;(2)将抛物线y=x2﹣2mx+m2﹣1沿直线y=﹣1翻折,得到的新抛物线与y轴交于点D.若m>0,CD =8,求m的值;(3)已知A(2k,0),B(0,k),在(2)的条件下,当线段AB与抛物线y=x2﹣2mx+m2﹣1只有一个公共点时,直接写出k的取值范围.26.(2019•西城区二模)已知关于x的一元二次方程x2﹣(k+5)x+3k+6=0.(1)求证:此方程总有两个实数根;(2)若此方程有一个根大于﹣2且小于0,k为整数,求k的值.27.(2019•顺义区二模)如图,在平面直角坐标系xOy中,直线y=kx+k与双曲线y(x>0)交于点A (1,a).(1)求a,k的值;(2)已知直线l过点D(2,0)且平行于直线y=kx+k,点P(m,n)(m>3)是直线l上一动点,过点P分别作x轴、y轴的平行线,交双曲线y(x>0)于点M、N,双曲线在点M、N之间的部分与线段PM、PN所围成的区域(不含边界)记为W.横、纵坐标都是整数的点叫做整点.①当m=4时,直接写出区域W内的整点个数;②若区域W内的整点个数不超过8个,结合图象,求m的取值范围.28.(2019•门头沟区二模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)顶点为P,且该抛物线与x轴交于A,B两点(点A在点B的左侧).我们规定:抛物线与x轴围成的封闭区域称为“G区域”(不包含边界);横、纵坐标都是整数的点称为整点.(1)求抛物线y=ax2﹣2ax﹣3a顶点P的坐标(用含a的代数式表示);(2)如果抛物线y=ax2﹣2ax﹣3a经过(1,3).①求a的值;②在①的条件下,直接写出“G区域”内整点的个数.(3)如果抛物线y=ax2﹣2ax﹣3a在“G区域”内有4个整点,直接写出a的取值范围.29.(2019•丰台区二模)在平面直角坐标系xOy中,直线l:y=kx+b(k≠0)与反比例函数y的图象的一个交点为M(1,m).(1)求m的值;(2)直线l与x轴交于点A,与y轴交于点B,连接OM,设△AOB的面积为S1,△MOB的面积为S2,若S1≥3S2,求k的取值范围.30.(2019•海淀区二模)如图,在平面直角坐标系xOy中,直线y=x+b与x轴、y轴分别交于点A,B,与双曲线y的交点为M,N.(1)当点M的横坐标为1时,求b的值;(2)若MN≤3AB,结合函数图象,直接写出b的取值范围.31.(2019•海淀区二模)在平面直角坐标系xOy中,抛物线C:y=ax2﹣2ax+3与直线l:y=kx+b交于A,B两点,且点A在y轴上,点B在x轴的正半轴上.(1)求点A的坐标;(2)若a=﹣1,求直线l的解析式;(3)若﹣3<k<﹣1,求a的取值范围.32.(2019•怀柔区二模)如图,在平面直角坐标系xOy中,直线y=﹣x+1与函数y的图象交于A(﹣2,a),B两点.(1)求a,k的值;(2)已知点P(0,m),过点P作平行于x轴的直线l,交函数y的图象于点C(x1,y1),交直线y=﹣x+1的图象于点D(x2,y2),若|x1|>|x2|,结合函数图象,直接写出m的取值范围.33.(2019•西城区二模)在平面直角坐标系xOy中,直线l:y=ax+b与双曲线y交于点A(1,m)和B (﹣2,﹣1).点A关于x轴的对称点为点C.(1)①求k的值和点C的坐标;②求直线l的表达式;(2)过点B作y轴的垂线与直线AC交于点D,经过点C的直线与直线BD交于点E.若30°≤∠CED ≤45°,直接写出点E的横坐标t的取值范围.34.(2019•怀柔区二模)在平面直角坐标系xOy中,直线y=x与抛物线y=ax2﹣(3+a)x+3(a≠0)交于A,B两点,并且OA<OB.(1)当a=1时,求抛物线与x轴的交点坐标;(2)当2时,求a的取值范围.35.(2019•平谷区二模)已知:二次函数C1:y1=ax2+2ax+a﹣1(a≠0)(1)把二次函数C1的表达式化成y=a(x﹣h)2+b(a≠0)的形式,并写出顶点坐标;(2)已知二次函数C1的图象经过点A(﹣3,1).①求a的值;②点B在二次函数C1的图象上,点A,B关于对称轴对称,连接AB.二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,求k的取值范围.36.(2019•朝阳区一模)如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y的图象有公共点,直接写出a的取值范围.37.(2019•平谷区二模)如图,一次函数y=kx+b(k≠0)和反比例函数y(x>0)经过点A(4,m).(1)求点A的坐标;(2)用等式表示k,b之间的关系(用含k的代数式表示b);(3)连接OA,一次函数y=kx+b(k≠0)与x轴交于点B,当△OAB是等腰三角形时,直接写出点B 的坐标.38.(2019•石景山区二模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2mx+m2﹣1(1)求抛物线的对称轴(用含m的式子去表示);(2)若点(m﹣2,y1),(m,y2),(m+3,y3)都在抛物线y=x2﹣2mx+m2﹣1上,则y1、y2、y3的大小关系为;(3)直线y=﹣x+b与x轴交于点A(3,0),与y轴交于点B,过点B作垂直于y轴的直线l与抛物线y=x2﹣2mx+m2﹣1有两个交点,在抛物线对称轴右侧的点记为P,当△OAP为钝角三角形时,求m的取值范围.39.(2019•石景山区二模)在平面直角坐标系xOy中,A(﹣3,2),B(0,1),将线段AB沿x轴的正方向平移n(n>0)个单位,得到线段A′,B′恰好都落在反比例函数y(m≠0)的图象上.(1)用含n的代数式表示点A′,B′的坐标;(2)求n的值和反比例函数y(m≠0)的表达式;(3)点C为反比例函数y(m≠0)图象上的一个动点,直线CA′与x轴交于点D,若CD=2A′D,请直接写出点C的坐标.40.(2019•怀柔区一模)在平面直角坐标系xOy中,直线y=kx+b(k<0),经过点(6,0),且与坐标轴围成的三角形的面积是9,与函数y(x>0)的图象G交于A,B两点.(1)求直线的表达式;(2)横、纵坐标都是整数的点叫作整点.记图象G在点A、B之间的部分与线段AB围成的区域(不含边界)为W.①当m=2时,直接写出区域W内的整点的坐标;②若区域W内恰有3个整数点,结合函数图象,求m的取值范围.41.(2019•朝阳区一模)在平面直角坐标系xOy中,抛物线y=x2﹣2x+a﹣3,当a=0时,抛物线与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)求点B的坐标;(2)将抛物线在直线y=a上方的部分沿直线y=a翻折,图象的其他部分保持不变,得到一个新的图象,记为图形M,若图形M与线段AB恰有两个公共点,结合函数的图象,求a的取值范围.42.(2019•大兴区一模)如图,在平面直角坐标系xOy中,直线y=x与函数y(x<0)的图象交于点A (,m).(1)求m,k的值;(2)点P(x P,y P)为直线y=x上任意一点,将直线y=x沿y轴向上平移两个单位得到直线l,过点P 作x轴的垂线交直线l于点C,交函数y(x<0)的图象于点D.①当x P=﹣1时,判断PC与PD的数量关系,并说明理由;②若PC+PD≤4时,结合函数图象,直接写出x P的取值范围.43.(2019•大兴区一模)在平面直角坐标系中xOy中,抛物线y=ax2﹣4ax+1(1)求抛物线的对称轴;(2)若抛物线过点A(﹣1,6),求二次函数的表达式;(3)将点A(﹣1,6)沿x轴向右平移7个单位得到点B,若抛物线与线段AB始终有两个公共点,结合函数的图象,求a的取值范围.44.(2019•丰台区一模)如图,在平面直角坐标系xOy中,直线l:y=x+1与y轴交于点A,与函数y(x >0)的图象交于点B(2,a).(1)求a,k的值;(2)点M是函数y(x>0)图象上的一点,过点M作平行于y轴的直线,交直线l于点P,过点A作平行于x轴的直线交MP于点N,已知点M的横坐标为m.①当m时,求MP的长;②若MP≥PN,结合函数的图象,直接写出m的取值范围.45.(2019•丰台区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c过原点和点A(﹣2,0).(1)求抛物线的对称轴;(2)横、纵坐标都是整数的点叫做整点.已知点,.记抛物线与直线AB围成的封闭区域(不含边界)为W.①当a=1时,求出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,直接写出a的取值范围.46.(2019•怀柔区一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣2ax+a2+2的顶点C,过点B(0,t)作与y轴垂直的直线l,分别交抛物线于E,F两点,设点E(x1,y1),点F(x2,y2)(x1<x2).(1)求抛物线顶点C的坐标;(2)当点C到直线l的距离为2时,求线段EF的长;(3)若存在实数m,使得x1≥m﹣1且x2≤m+5成立,直接写出t的取值范围.47.(2019•海淀区一模)对于平面直角坐标系xOy中的直线l和图形M,给出如下定义:P1、P2、……、P n﹣1、P n是图形M上n(n≥3)个不同的点,记这些点到直线l的距离分别为d1、d2、……、d n﹣1、d n,若这n个点满足d1+d2+……+d n﹣1=d n,则称这n个点为图形M关于直线l的一个基准点列,其中d n为该基准点列的基准距离.(1)当直线l是x轴,图形M上有三点A(﹣1,1)、B(1,﹣1)、C(0,2)时,判断A、B、C是否为图形M关于直线l的一个基准点列?如果是,求出它的基准距离;如果不是,请说明理由;(2)已知直线l是函数y x+3的图象,图形M是圆心在y轴上,半径为1的⊙T,P1、P2、……、P n﹣1、P n是⊙T关于直线l的一个基准点列.①若T为原点,求该基准点列的基准距离d n的最大值;②若n的最大值等于6,直接写出圆心T的纵坐标t的取值范围.48.(2019•西城区一模)在平面直角坐标系xOy中,直线l:y=x+b与x轴交于点A(﹣2,0),与y轴交于点B.双曲线y与直线l交于P,Q两点,其中点P的纵坐标大于点Q的纵坐标(1)求点B的坐标;(2)当点P的横坐标为2时,求k的值;(3)连接PO,记△POB的面积为S.若<<,结合函数图象,直接写出k的取值范围.49.(2019•海淀区一模)在平面直角坐标系xOy中,直线y=2x+b经过点A(1,m)、B(﹣1,﹣1).(1)求b和m的值;(2)将点B向右平移到y轴上,得到点C,设点B关于原点的对称点为D,记线段BC与AD组成的图形为G.①直接写出点C、D的坐标;②若双曲线y与图形G恰有一个公共点,结合函数图象,求k的取值范围.50.(2019•东城区一模)在平面直角坐标系xOy中,抛物线y=mx2﹣6mx+9m+1(m≠0).(1)求抛物线的顶点坐标;(2)若抛物线与x轴的两个交点分别为A和B点(点A在点B的左侧),且AB=4,求m的值.(3)已知四个点C(2,2)、D(2,0)、E(5,﹣2)、F(5,6),若抛物线与线段CD和线段EF都没有公共点,请直接写出m的取值范围.51.(2019•海淀区一模)在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)经过点A(0,﹣3)和B (3,0).(1)求c的值及a、b满足的关系式;(2)若抛物线在A、B两点间从左到右上升,求a的取值范围;(3)结合函数图象判断,抛物线能否同时经过点M(﹣1+m,n)、N(4﹣m,n)?若能,写出一个符合要求的抛物线的表达式和n的值,若不能,请说明理由.52.(2019•顺义区一模)在平面直角坐标系xOy中,直线y=2x﹣6与双曲线(k≠0)的一个交点为A (m,2),与x轴交于点B,与y轴交于点C.(1)求点B的坐标及k的值;(2)若点P在x轴上,且△APC的面积为16,求点P的坐标.53.(2019•石景山区一模)如图,在平面直角坐标系xOy中,函数<的图象经过点A(﹣1,6),直线y=mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数<的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.54.(2019•顺义区一模)有这样一个问题:探究函数y x的图象与性质.小亮根据学习函数的经验,对函数y x的图象与性质进行了探究.下面是小亮的探究过程,请补充完整:(1)函数y x中自变量x的取值范围是;(2)下表是y与x的几组对应值.求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象是中心对称图形,对称中心的坐标是;②该函数的图象与过点(2,0)且平行于y轴的直线越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.55.(2019•顺义区一模)在平面直角坐标系xOy中,抛物线y=mx2+(m﹣3)x﹣3(m>0)与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,AB=4,点D为抛物线的顶点.(1)求点A和顶点D的坐标;(2)将点D向左平移4个单位长度,得到点E,求直线BE的表达式;(3)若抛物线y=ax2﹣6与线段DE恰有一个公共点,结合函数图象,求a的取值范围.56.(2019•西城区一模)在平面直角坐标系xOy中,已知抛物线y=x2﹣mx+n.(1)当m=2时,①求抛物线的对称轴,并用含n的式子表示顶点的纵坐标;②若点A(﹣2,y1),B(x2,y2)都在抛物线上,且y2>y1,则x2的取值范围是;(2)已知点P(﹣1,2),将点P向右平移4个单位长度,得到点Q.当n=3时,若抛物线与线段PQ 恰有一个公共点,结合函数图象,求m的取值范围.57.(2019•东城区一模)在平面直角坐标系xOy中,直线y=kx(k≠0)与双曲线y(x>0)交于点A(2,n).(1)求n及k的值;(2)点B是y轴正半轴上的一点,且△OAB是等腰三角形,请直接写出所有符合条件的点B的坐标.58.(2019•石景山区一模)在平面直角坐标系xOy中,直线y=kx+1(k≠0)经过点A(2,3),与y轴交于点B,与抛物线y=ax2+bx+a的对称轴交于点C(m,2).(1)求m的值;(2)求抛物线的顶点坐标;(3)N(x1,y1)是线段AB上一动点,过点N作垂直于y轴的直线与抛物线交于点P(x2,y2),Q(x3,y3)(点P在点Q的左侧).若x2<x1<x3恒成立,结合函数的图象,求a的取值范围.59.(2019•北京一模)如图,在平面直角坐标系xOy中,直线l:y=kx﹣1(k≠0)与函数y(x>0)的图象交于点A(3,2).(1)求k,m的值;(2)将直线l沿y轴向上平移t个单位后,与y轴交于点C,与函数y(x>0)的图象交于点D.①当t=2时,求线段CD的长;②若CD≤2,结合函数图象,直接写出t的取值范围.60.(2019•北京一模)在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a≠0)的顶点为D,与x轴交于A,B两点(A在B的左侧).(1)当a=1时,求点A,B,D的坐标;(2)横,纵坐标都是整数的点叫做整点.若抛物线在点A,B之间的部分与线段AB所围成的区域内(不含边界)恰有7个整点,结合函数图象,求a的取值范围.61.(2019•平谷区一模)平面直角坐标系xOy中,抛物线y=x2﹣2mx+m2﹣3与y轴交于点A,过A作AB ∥x轴与直线x=4交于B点.(1)抛物线的对称轴为x=(用含m的代数式表示);(2)当抛物线经过点A,B时,求此时抛物线的表达式;(3)记抛物线在线段AB下方的部分图象为G(包含A,B两点),点P(m,0)是x轴上一动点,过P 作PD⊥x轴于P,交图象G于点D,交AB于点C,若CD≤1,求m的取值范围.62.(2019•通州区一模)已知二次函数y=x2﹣ax+b在x=0和x=4时的函数值相等.(1)求二次函数y=x2﹣ax+b的对称轴;(2)过P(0,1)作x轴的平行线与二次函数y=x2﹣ax+b的图象交于不同的两点M、N.①当MN=2时,求b的值;②当PM+PN=4时,请结合函数图象,直接写出b的取值范围.63.(2019•延庆区一模)在平面直角坐标系xOy中,函数y(x>0)的图象经过边长为2的正方形OABC 的顶点B,如图,直线y=mx+m+1与y(x>0)的图象交于点D(点D在直线BC的上方),与x轴交于点E.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点,记y(x>0)的图象在点B、D之间的部分与线段AB、AE、DE围成的区域(不含边界)为W.①当m时,直接写出区域W内的整点个数;②若区域W内恰有3个整点,结合函数图象,求m的取值范围.64.(2019•平谷区一模)如图,在平面直角坐标系xOy中,函数y(x>0)的图象经过点A,作AC⊥x 轴于点C.(1)求k的值;(2)直线AB:y=ax+b(a>0)图象经过点A交x轴于点B.横、纵坐标都是整数的点叫做整点.线段AB,AC,BC围成的区域(不含边界)为W.①直线AB经过(0,1)时,直接写出区域W内的整点个数;②若区域W内恰有1个整点,结合函数图象,求a的取值范围.65.(2019•房山区一模)已知一次函数y=2x的图象与反比例函数(k≠0)在第一象限内的图象交于点A(1,m).(1)求反比例函数的表达式;(2)点B在反比例函数的图象上,且点B的横坐标为2.若在x轴上存在一点M,使MA+MB的值最小,求点M的坐标.。

2022年北京中考数学一模分类汇编——一次函数与反比例函数(学生版)

2022年北京中考数学一模分类汇编——一次函数与反比例函数(学生版)

2022年北京中考数学一模分类汇编——一次函数与反比例函数1.(2022•海淀区一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(﹣2,0).(1)求这个一次函数的解析式;(2)当x>m时,对于x的每一个值,函数y=3x﹣4的值大于一次函数y=kx+b的值,直接写出m的取值范围.2.(2022•西城区一模)在平面直角坐标系xOy中,直线l1:y=kx+b与坐标轴分别交于A (2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x﹣4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有个整点;②若区域W内恰有3个整点,直接写出m的取值范围.3.(2022•东城区一模)在平面直角坐标系xOy中,一次函数y=x﹣2的图象与x轴交于点A,与反比例函数y=(k≠0)的图象交于点B(3,m),点P为反比例函数y=(k ≠0)的图象上一点.(1)求m,k的值;=2时,求点P的坐标.(2)连接OP,AP.当S△OAP4.(2022•丰台区一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b 的值,直接写出m的取值范围.5.(2022•石景山区一模)在平面直角坐标系xOy中,直线l1:y=x+b与直线l2:y=2x 交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.6.(2022•通州区一模)已知一次函数y1=2x+m的图象与反比例函数y2=(k>0)的图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值.7.(2022•房山区一模)一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y轴交于点B,且经过点C(2,m).(1)当m=时,求一次函数的解析式并求出点A的坐标;(2)当x>﹣1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k的取值范围.8.(2022•门头沟区一模)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=的图象上,求m的值;(2)如果点A、B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx﹣1>ax+b始终成立,结合函数图象,直接写出m的取值范围.9.(2022•平谷区一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b (k≠0)的值,直接写出m的取值范围.10.(2022•顺义区一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平行于直线y=x,且经过点A(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx﹣1(m≠0)的值,直接写出m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

反比例综合题
2018西城一模
22.如图、在平面直角坐标系xOy 中、直线y x m =+与x 轴的交点为0()4,A -、与y 轴的交点为B 、线段AB 的中点M 在函数k
y x
=(0k ≠)的图象上 (1)求m 、k 的值;
(2)将线段AB 向左平移n 个单位长度(0n >)得到线段CD 、A 、MB 的对应点分别为C 、
N 、D .
①当点D 落在函数k
y x
=
(0x <)的图象上时、求n 的值. ②当MD MN ≤时、结合函数的图象、直接写出n 的取值范围.
O -1-1
1
1
B
M
A
2018平谷一模
21.如图、在平面直角坐标系xOy 中、函数()0k
y k x
=
≠的图象与直线y =x +1交于点A (1、a ).
(1)求a 、k 的值; (2)连结OA 、点P 是函数()0k
y k x
=
≠上一点、且满足OP=OA 、直接写出点P 的坐标(点A 除外).
2018石景山一模
22.在平面直角坐标系xOy 中、函数a y x
=
(0x >)的图象与直线1l y x b =+:交于
点(3,2)A a -. (1)求a 、b 的值;
(2)直线2l y x m =-+:与x 轴交于点B 、与直线1l 交于点C 、若S △ABC 6≥、 求m 的取值范围.
2018怀柔一模
22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1)、与反比例函数x
m
y =
的图象交于点A(3、-2). (1)求反比例函数的表达式和一次函数表达式;
(2)若点C 是y 轴上一点、且BC=BA 、直接写出点C 的坐标.
2018海淀一模
22.在平面直角坐标系xOy 中、已知点P (2、2)、Q (-1、2)、函数m
y x
=. (1)当函数m
y x
=
的图象经过点P 时、求m 的值并画出直线y x m =+. (2)若P 、Q 两点中恰有一个点的坐标(x 、y )满足不等式组,
m y x
y x m

>⎪⎨⎪<+⎩(m >0)、求m 的取值范围.
2018朝阳一模
22. 如图、在平面直角坐标系xOy 中、直线AB 与x 轴、y 轴分别交于点A 、B 、与反比例函数x
k
y =
的图象在第四象限交于点C 、CD ⊥x 轴于点D 、tan ∠OAB =2、OA =2、OD =1. (1)求该反比例函数的表达式;
(2)点M 是这个反比例函数图象上的点、过点M 作MN ⊥y 轴、垂足为点N 、连接OM 、AN 、如果S △ABN =2S △OMN 、直接写出点M 的坐标.
y
x
P
Q O
2018东城一模
22. 已知函数()3
0y x x
=
>的图象与一次函数()20y ax a =-≠的图象交于点()3,A n . (1)求实数a 的值;
(2)设一次函数()20y ax a =-≠的图象与y 轴交于点B .若点C 在y 轴上、且=2ABC AOB S S △△、求点C 的坐标.
2018丰台一模
22.在平面直角坐标系xOy 中、反比例函数2
y x
=
的图象与一次函数y kx b =+的图象的交点分别为P (m 、2)、Q (-2、n ). (1)求一次函数的表达式;
(2)过点Q 作平行于y 轴的直线、点M 为此直线上的一点、当MQ = PQ 时、直接写出点M 的坐标.
2018房山一模
23. 如图、直线26y x =+与反比例函数()0k
y x x
=>的图象交于点()1,A m 、与x 轴交于
点B 、与y 轴交于点D .
(1)求m 的值和反比例函数的表达式;
(2)在y 轴上有一动点P (0、n )()06n <<、过点P 作平行于x 轴的直线,交反比例函数的图象于点M 、交直线AB 于点N 、连接BM .若1
2
BMN BOD S S ∆∆=、求n 的值.
2018门头沟一模
20. 如图、在平面直角坐标系xOy 中、一次函数y x =与反比例函数k
y x
=(k ≠0)的图象相交于点)A a . (1)求a 、k 的值;
(2)直线x =b (0b >)分别与一次函数y x =、反比例函数k
y x
=的图象相交于点M 、N 、当MN =2时,画出示意图并直接写出b 的值.
2018大兴一模
22.如图、点A 是直线2y x =与反比例函数1
m y x
-=(m 为常数)的图象的交点.过点A 作x 轴的垂线、垂足为B 、且2OB =. (1)求点A 的坐标及m 的值;
(2) 已知点()()0,08P n n <≤、过点P 作平行于x 轴的直线、交直线2y x =于点()11,C x y 、交反比例函数1
m y x
-=
(m 为常数)的图象于点()22,D x y 、交垂线AB 于点()33,E x y .若231x x x <<、结合函数的图象、直接写出123x x x ++的
取值范
围.
2018顺义一模
22.如图、在平面直角坐标系xOy 中、直线24y x =+与双曲线k
y x
=
(k ≠0)相交于 A (-3、a )、B 两点. (1)求k 的值;
(2)过点P (0、m )作直线l 、使直线l 与y 轴垂直、直线l 与直线AB 交于点M 、与双曲线
k
y x
=交于点N 、若点P 在点M 与点N 之间、直接写出m 的取值范围.
2018通州一模
19.如图、一次函数y kx b =+的图象与反比例函数a
y x
=的图象交于点()43A ,、与y 轴的负半轴交于点B 、连接OA 、且OA OB =. (1)求一次函数和反比例函数的表达式;
(2)过点()
0P k ,作平行于y 轴的直线、交一次函数2y x n =+于点M 、交反比例函数
a
y x
=
的图像于点N .若NM NP =、求n 的值.
2018燕山一模
24.如图、在平面直角坐标系中、直线l : y=kx+k (k ≠0)与x 轴,y 轴分别交于A,B 两点、且点B(0,2)、点P 在y 轴正半轴上运动、过点P 作平行于x 轴的直线y=t . (1)求 k 的值和点A 的坐标;
(2)当t=4时、直线y=t 与直线l 交于点M 、反比例函数x
n
y = (n ≠0)的图象经过点M 、求反比例函数的解析式;
(3)当t<4时、若直线y=t 与直线l 和(2)反比例函数的图象分别交于点C 、D 、当CD 间距离大于等于2时、求t 的取值范围.。

相关文档
最新文档