山东省2014届高三高考仿真模拟冲刺考试(一)数学(理)试题

合集下载

30.山东省实验中学2014届高三第一次模考(三诊)数学(理)

30.山东省实验中学2014届高三第一次模考(三诊)数学(理)

山东省实验中学2011级高三第一次模拟考试数学试题(理科) (2014.3)第I 卷(选择题 50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知集合{}{}211,log 1,M x x N x x M N =-<<=<⋂则等于 A.{}01x x << B.{}1x x -<<2 C.{}x x -1<<0 D.{}11x x -<<2.设()()()1111201411n n i i f n n Z f i i -++-⎛⎫⎛⎫=+∈= ⎪ ⎪-+⎝⎭⎝⎭,则 A.2 B.2- C.2i D.2i -3.下列函数中既是奇函数,又在区间[]1,1-上单调递减的函数是A.()tan 2f x x =B.()1f x x =-+C.()()1222x x f x -=-D.()22x f x x-=+ 4.下列有关命题的说法正确的是A.命题“若211x x ==,则”的否命题为:“若211x x =≠,则”;B.“1m =”是“直线00x my x my -=+=和直线互相垂直”的充要条件C.命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”;D.命题“已知x,y 为一个三角形的两内角,若x=y ,则sin sin x y =”的逆命题为真命题.5.已知正三棱锥V-ABC 的主视图、俯视图如下图所示,其中4,VA AC ==,则该三棱锥的左视图的面积为A.9B.6C.6.已知x 、y 的取值如下表所示:若y 与x 线性相关,且0.95,y x a a ∧=+=则A.2.2B.2.9C.2.8D.2.67.定义行列式运算()1234sin 2142 3.cos2a a x a a x a a a a f x =-=将函数的图象向右平移()0m m >个单位,所得图象对应的函数为奇函数,则m 的最小值为 A.12π B. 6π C. 3π D. 23π8.已知函数()()()2,l n ,1x f x x g x x x x x =+=+--的零点分别为123123,,,,x x x x x x ,则的大小关系是A.123x x x <<B. 213x x x <<C. 132x x x <<D. 321x x x << 9.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,恰好有三个连续的小球涂红色,则涂法共有A.24种B.30种C.20种D.36种10.若()1,2,3,,i A i n AOB =⋅⋅⋅∆是所在的平面内的点,且i OA OB OA OB ⋅=⋅.给出下列说法: ①12n OA OA OA OA ==⋅⋅⋅==; ②1OA 的最小值一定是OB ;③点A 、i A 在一条直线上;④向量i OA OA OB 及在向量的方向上的投影必相等.其中正确的个数是A.1个B.2个C.3个D.4个二、填空题:本大题共5小题,每小题5分,共25分.11.阅读右面的程序框图,执行相应的程序,则输出k 的结果是_______12.设函数()3f x x x a =+--的图象关于点(1,0)中心对称,则a 的值为_______13.在()60a a x ⎫>⎪⎭的展开式中含常数项的系数是60,则0sin axdx ⎰的值为_______14.已知点(),p x y 满足条件0,,20x y x x y k ≥⎧⎪≤⎨⎪++≤⎩(k 为常数),若3z x y =+的最大值为8,则k=_________.15.双曲线22221x y a b-=的左右焦点为12,F F ,P 是双曲线左支上一点,满足2221122PF F F PF x y a =+=,直线与圆相切,则双曲线的离心率e 为________.三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程.16.(本小题满分12分)已知函数()()22sinsin cos 0,263x f x x x x R ωππωωω⎛⎫⎛⎫=-++-+>∈ ⎪ ⎪⎝⎭⎝⎭,且函数()f x 的最小正周期为π。

山东省2014年高考仿真模拟冲刺卷理科数学模拟1

山东省2014年高考仿真模拟冲刺卷理科数学模拟1

绝密★启用前 试卷类型:A山东省2014年高考仿真模拟冲刺卷(一)理科数学满分150分 考试用时120分钟参考公式:如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知全集UR =,集合{|2A x x =<-或3}x >,2{|340}B x x x =--≤,则集合A B = ( )A .{|24}x x -≤≤B .{|13}x x -≤≤C .{|21}x x -≤≤-D .{|34}x x <≤3.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .-1 4.等差数列{}n a 中,若75913a a =,则139S S =( )A . 1B .139C .913D .25.在△ABC 中,AB=2,AC=3,AB BC= 1则BC =( )A . CD 6.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x的图像关于直线1x =对称,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝7.定义在R 上的奇函数()f x 满足:对任意[)12,0,x x ∈+∞,且12x x ≠,都有1212()[()()]0x x f x f x -->,则 ( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-8.在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( )A .96种B .48种C .24种D .144种9.一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .C .3πD . 10.如果函数2()ln(1)a f x x b =-+的图象在1x =处的切线l 过点1(0,)b-,并且l 与圆C :221x y +=相离,则点(a ,b )与圆C 的位置关系是( )A .在圆内B .在圆外C .在圆上D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分)11.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 . 12.若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= .14.若存在实数1[,2]3x ∈满足22x a x>-,则实数a 的取值范围是 .15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF//BC ,实数x ,y 满足0=++PC y PB x PA 。

山东省2014届高三仿真模拟测试理科数学试题四(word版)(精校)

山东省2014届高三仿真模拟测试理科数学试题四(word版)(精校)

山东省2014届高考仿真模拟测试试题四高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第Ⅰ卷(选择题)一、 选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项. 1. 复数21ii+(i 是虚数单位)的虚部为( ) A .1- B .i C .1 D .22. 已知全集R U =,集合{}2|0A x x x =->,{}|ln 0B x x =≤,则()U C A B =( )A .(0,1]B .(,0)(1,)-∞+∞C .∅D .(0,1)3. 某中学高中一年级有400人,高中二年级有320人,高中三年级有280人,现从中抽取一个容量为200人的样本,则高中二年级被抽取的人数为( )A .28B .32C .40D .64 4. 曲线32y x x =-在(1,1)-处的切线方程为( )A .20x y --=B .20x y -+=C .20x y +-=D .20x y ++= 5. 设a 、b 是两条不同的直线,α、β是两个不同的平面,则下列命题正确的是( ) A .若//,//,a b a α则//b α B .若,//,a αβα⊥则a β⊥ C .若,,a αββ⊥⊥则//a αD .若,,,a b a b αβ⊥⊥⊥则αβ⊥6. 设,z x y =+其中实数,x y 满足2000x y x y y k +≥⎧⎪-≤⎨⎪≤≤⎩,若z 的最大值为12,则z 的最小值为( )A . 3-B .6-C .3D .67. 函数()sin()f x A x ωϕ=+(0,0,)2A πωϕ>><的部分图象如图所示,若12,(,)63x x ππ∈-,且12()()f x f x =,则12()f x x +=( )A . 1B .21 C .22 D .23 8. 在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步,程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有( )A .34种B .48种C .96种D .144种9.函数2()ln(2)f x x =+的图象大致是( )10. 如图,从点0(,4)M x 发出的光线,沿平行于抛物线28y x =的 对称轴方向射向此抛物线上的点P ,经抛物线反射后,穿过焦点射 向抛物线上的点Q ,再经抛物线反射后射向直线:100l x y --= 上的点N ,经直线反射后又回到点M ,则0x 等于( )A .5B .6C .7D .8第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡上. 11.已知向量()2,1a =,()1,b k =-,若⊥,则实数k =______.12.圆22:2440C x y x y +--+=的圆心到直线:3440l x y ++=的距离d = .13.如图是某算法的程序框图,若任意输入[1,19]中的实数x ,则输 出的x 大于49的概率为 .14.已知,x y 均为正实数,且3xy x y =++,则xy 的最小值为__________.15.如果对定义在R 上的函数()f x ,对任意两个不相等的实数12,x x ,都有11221221()()()()x f x x f x x f x x f x +>+,则称函数()f x 为“H 函数”.给出下列函数①31y x x =-++;②32(sin cos )y x x x =--;③1xy e =+;④ln 0()00x x f x x ⎧≠⎪=⎨=⎪⎩.以上函数是“H 函数”的所有序号为 .三、解答题:本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程. 16.(本小题满分12分) 已知向量)sin ,)62(sin(x x m π+=,)sin ,1(x =,21)(-⋅=x f . (Ⅰ)求函数()f x 的单调递减区间;(Ⅱ)在ABC ∆中,c b a ,,分别是角C B A ,,的对边,a =1()22Af =, 若C C A cos 2)sin(3=+,求b 的大小. 17.(本小题满分12分)袋中装有大小相同的黑球和白球共9个,从中任取2个都是白球的概率为512. 现甲、乙两人从袋中轮流摸球,甲先取,乙后取,然后甲再取…,每次摸取1个球,取出的球不放回, 直到其中有一人取到白球时终止.用X 表示取球终止时取球的总次数. (Ⅰ)求袋中原有白球的个数;(Ⅱ)求随机变量X 的概率分布及数学期望()E X .18.(本题满分12分)如图,四棱锥P ABCD -中, PA ⊥面ABCD ,E 、F 分别为BD 、PD 的中点,=1EA EB AB ==,2PA =.(Ⅰ)证明:PB ∥面AEF ;(Ⅱ)求面PBD 与面AEF 所成锐角的余弦值. 19.(本小题满分12分)在数列{}n a )N (*∈n 中,其前n 项和为n S ,满足22n n S n -=. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设⎪⎩⎪⎨⎧=+-=⋅=k n nn k n n b n a n 2,2112,22(k 为正整数),求数列{}n b 的前n 2项和n T 2.20.(本小题满分13分) 已知函数()1x f x e x =--. (Ⅰ)求()f x 的最小值;(Ⅱ)当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.设2()(()1)(1)g x f x x '=+-,试问函数()g x 在(1,)+∞上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由. 21.(本小题满分14分)设1F ,2F 分别是椭圆D :)0(12222>>=+b a b y a x 的左、右焦点,过2F 作倾斜角为3π的直线交椭圆D 于A ,B 两点, 1F 到直线AB 的距离为3,连接椭圆D 的四个顶点得到的菱形面积为4.(Ⅰ)求椭圆D 的方程;(Ⅱ)已知点),(01-M ,设E 是椭圆D 上的一点,过E 、M 两点的直线l 交y 轴于点C ,若CE EM λ=,求λ的取值范围;(Ⅲ)作直线1l 与椭圆D 交于不同的两点P ,Q ,其中P 点的坐标为(2,0)-,若点),0(t N 是线段PQ 垂直平分线上一点,且满足4=⋅NQ NP ,求实数t 的值.山东省2014届高考仿真模拟测试试题高三数学(理科答案)一、 选择题: CADAD BDCDB 二、 填空题:本大题共5小题,每小题5分,共25分. 11. 2 12. 3 13.2314. 9 15. ②③ 三、解答题:17.解:(Ⅰ)设袋中原有n 个白球,则从9个球中任取2个球都是白球的概率为229n C C ………2分由题意知229512n C C =,化简得2300n n --=.解得6n =或5n =-(舍去)……………………5分故袋中原有白球的个数为6……………………6分 (Ⅱ)由题意,X 的可能取值为1,2,3,4.2(1)3P X ==; 361(2)984P X ⨯===⨯; 3261(3)98714P X ⨯⨯===⨯⨯;32161(4)987684P X ⨯⨯⨯===⨯⨯⨯. 所以取球次数X 的概率分布列为:……………10分所求数学期望为211110()12343414847E X =⨯+⨯+⨯+⨯=…………………12分所以1(1,0,0),(0,0,2),(2B D P F E 则133(1,0,2),(0,3,2),(,,0),(0,2PB PD AE AF =-=-==………8分 设1111(,,)n x y z=、2222(,,)n x y z =分别是面PBD 与面AEF 的法向量则11112020x z z -=⎧⎪-=,令1n =又22220102y z x y +=⎨⎪+=⎪⎩,令2(2n =-……11分 所以12121211cos ,19n n n n n n ⋅==……………12分 19.解:(Ⅰ)由题设得:22n n S n -=,所以)2()1(1221≥---=-n n n S n 所以n S S a n n n -=-=-11 )2(≥n ……………2分当1=n 时,011==S a ,数列{}n a 是01=a 为首项、公差为1-的等差数列, 故n a n -=1.……………5分(Ⅱ)由(Ⅰ)知椭圆D 的方程为1422=+y x设11(,)E x y ,),0(m C ,由于CE EM λ=,所以有),1(),(1111y x m y x ---=-λλλλ+=+-=∴1,111my x ……………7分 又E 是椭圆D 上的一点,则1)1(4)1(22=+++-λλλm 所以04)2)(23(2≥++=λλm解得:23λ≥-或2λ≤- ……………9分(Ⅲ)由)0,2(-P , 设),(11y x Q 根据题意可知直线1l 的斜率存在,可设直线斜率为k ,则直线1l 的方程为)2(+=x k y把它代入椭圆D 的方程,消去y ,整理得: 0)416(16)41(2222=-+++k x k x k由韦达定理得22141162k k x +-=+-,则2214182k k x +-=,=+=)2(11x k y 2414k k +所以线段PQ 的中点坐标为,418(22k k +-)4122kk +。

山东省2014届高三仿真模拟测试理科数学试题十二(word版)(精校)

山东省2014届高三仿真模拟测试理科数学试题十二(word版)(精校)

山东省2014届高考仿真模拟测试试题十二高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、 选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.)1.已知集合A={|<5}x Z x ∈ ,B=|20}{x x -≥ ,A∩B 等于( )A. (2, 5)B. [2, 5)C. {2, 3, 4}D. {3, 4, 5} 2.在复平面内,复数12i-(i 是虚数单位)对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.等比数列}{n a 中,63=a ,前三项的和318S =,则公比q 的值为( )A.1B.21-C.1 或21-D.1- 或21-4.阅读右侧程序框图,输出结果i 的值为( )A. 5B. 6C.7D. 95.给出命题p :直线310ax y ++=()2110x a y +++=与直线互相平行的充要条件是3a =-;命题q :若210mx mx --<恒成立,则40m -<<.关于以上两个命题,下列结论正确的是( ) A.命题“p q ∧”为真 B. 命题“p q ∨”为假 C.命题“p q ∧⌝”为真 D. 命题“p q ∨⌝”为真6.设αβγ、、为平面,l n m 、、为直线,以下四组条件,可以作为β⊥m 的一个充分条件的是( ) A .,,l m l αβαβ⊥=⊥B .,,m αγαγβγ=⊥⊥C .,,m αγβγα⊥⊥⊥D .,,n n m αβα⊥⊥⊥7.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( )8.某几何体三视图如下图所示,则该几何体的体积是( ) A. 112π+ B. 16π+C. 13π+D. 1π+ 9.将函数sin()y x θ=+的图象F 向左平移6π个单位长度后得到图象F ',若F '的一个对称中心为(,0)4π,则θ的一个可能取值是( ) A .12π B .6π C .56π D .712π 10.已知离心率为e的椭圆有相同的焦点1F 、2F ,P 是两曲线的一个公共点,若123F PF π∠=,则e 等于( )B.25C.D.3第II 卷(非选择题)二、 填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡上)11.…(,m n 都是正 整数,且,m n 互质),通过推理可推测m 、n 的值,则-m n =. 12.设()0sin cos a x x dx π=+⎰,则二项式6⎛⎝的展开式的常数项是_________.13.已知点)3,3(A , O 为坐标原点,点P (x ,y )的坐标x , y 满足⎪⎪⎩⎪⎪⎨⎧≥≥+-≤-0,02303y y x y x 则APCFE向量OP 在向量A O 方向上的投影的取值范围是_________.14.设区域Ω是由直线0,=1x x y π==±和所围成的平面图形,区域D 是由余弦曲线y=cos x 和直线x=0,x=π和y=1±所围成的平面图形,在区域Ω内随机抛掷一粒豆子,则该豆子落在区域D 的概率是_________.15.对于两个图形12,F F ,我们将图形1F 上的任意一点与图形2F 上的任意一点间的距离中的最小值,叫做图形1F 与图形2F 的距离.若两个函数图像的距离小于1,陈这两个函数互为“可及函数”.给出下列几对函数,其中互为“可及函数”的是_________.(写出所有正确命题的编号) ①()cos ,()2f x x g x ==; ②()x f x e =,()g x x =;③22()log (25)f x x x =-+,()sin2g x x π=; ④2()f x x x=+,()ln 2g xx =+; ⑤()f x =315()44g x x =+.三、解答题(本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程)16.(本小题满分12分)在ABC ∆中, c b a ,,分别是角CB A ,,的对边,且2cos cos (tan tan 1)1A CA C -=. (Ⅰ)求B 的大小; (Ⅱ)若2a c +=,b =求ABC ∆的面积. 17.(本题满分12分)如图,四棱锥ABCD P -的底面ABCD 是平行四边形,1,2==AB AD ,60=∠ABC ,⊥PA 面ABCD ,设E 为PC中点,点F 在线段PD 上且FD PF 2=. (Ⅰ)求证://BE 平面ACF ; (Ⅱ)设二面角D CF A --的大小为θ, 若1442|cos |=θ,求PA 的长. 18.(本小题满分12分)某校高二年级进行社会实践,对[25, 55]岁的人群随机抽取n 个人进行了一次是否开通“微信”,若开通“微信”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1所示统计表,如图2所示各年龄段人数频率分布直方图: 请完成以下问题:(1)补全频率直方图,并求n ,a ,p 的值;(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络“时尚达人”大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为ξ,求ξ的分布列和数学期望E (X ). 19.(本小题满分12分)正项数列{}n a 的前n 项和为n S 满足:221220n n n n S S ++-=. (1)求数列{}n a 的通项公式;(2)令12(1)(1)n n n n b S a -=--,数列{}n b 的前n 项和为n T ,证明:对于任意的*n N ∈,都有2n T <. 20. (本小题满分13分)设函数2()ln(1)f x x b x =++,其中0b ≠. (1)当12b >时,判断函数()f x 在定义域上的单调性; (2)求函数()f x 的极值点;(3)证明对任意的正整数n ,不等式23111ln 1n n n⎛⎫+>- ⎪⎝⎭都成立. 21.(本小题满分14分) 已知椭圆2222:1x y E ab+=(a >b >0)的离心率为212).(Ⅰ)求椭圆E 的方程;(Ⅱ)设直线l:y=kx+t 与圆222:C x y R +=(1<R <2)相切于点A ,且l 与椭圆E 只有一个公共点B . ①求证:22214R k R-=-;②当R 为何值时,AB 取得最大值?并求出最大值.山东省2014届高考仿真模拟测试试题高三数学(理科答案)一、选择题:(51050)''⨯= CACCC DBAD10.C 解析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为2c ,1PF m =,2PF n =,且不妨设m n >,由 12m n a +=,22m n a -=得12m a a =+,12n a a =-.又123F PF π∠=,∴222221243c m n mn a a =+-=+,∴22122234a a c c+=,即234e=,解得e =,选C.二、填空题:本大题共5小题,每小题5分,共25分. 11. 41 12. -160 13. [14.1124π+ 15. ②④ 三、解答题:17.解:(Ⅰ)由1,2==AB AD , 60=∠ABC 得3=AC ,AC AB ⊥.又⊥PA 面ABCD ,所以以AP AC AB ,,分别为z y x ,,图.则),0,3,1(),0,3,0(),0,0,1(),0,0,0(-D C B A 设),0,0(c P )2,23,0(cE .设),,(z y xF ,2=得: )z y x c z y x ----=-,3,1(2),,(. 解得:32-=x ,332=y ,3c z =,所以)3,332,32(c F -. 所以)3,332,32(c AF -=, )0,3,0(=AC ,)2,23,1(cBE -=. 设面ACF 的法向量为),,(z y x n = ,则⎪⎩⎪⎨⎧==++-00333232y z c y x ,取)2,0,(c n =.因为0=+-=⋅c c BE n,且⊄BE 面ACF ,所以//BE 平面ACF .(Ⅱ)设面PCD 法向量为),,(z y x =, 因为),3,0(c -=,),3,1(c --=,所以⎪⎩⎪⎨⎧=-+-=-0303cz y x cz y ,取)3,,0(c m =.由1442|cos |==θ,得1442343222=++c c .044724=-+c c ,2=c ,所以2=PA . 18.解:(Ⅰ)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.30.065=,频率分布直方图如下: 第一组的人数为1202000.6=, 频率为0.04×5=0.2,所以20010000.2=,所以第二组人数为1000×0.3=300,1950.65300p == 第四组的频率为0.03×5=0.15,人数为1000×0.15=150,1500.460a =⨯=.(Ⅱ)因为[40,45)岁与[45,50)岁年龄段的“时尚族”的比值为60:30=2:1,所以分层抽样法抽取18人,[40,45)岁中有12人,[45,50)岁中有6人,随机变量ξ服从超几何分布:()03126318C C 50C 204P ξ===,()12126318C C 151C 68P ξ===,()21126318C C 332C 68P ξ===, ()30126318C C 553C 204P ξ===,所以ξ的分布列为数学期望为()012322046868204E ξ=⨯+⨯+⨯+⨯= 19.解:(1)221220n n n n S S ++-=,122)0n n n n S S +-+=()(,解得2n n S = 当1n =时,112a S ==;当2n ≥时,111222n n n n n n a S S ---=-=-=(1n =不适合),所以12,1,2,2n n n a n -=⎧=⎨≥⎩(2)当1n =时,111211211(1)(1)(21)b S a -===---,1112T b ==<; 当2n ≥时,111211(21)(21)2121n n n n n n b ---==-----, 22311111111()()()212121212121n n n T -=+-+-++------- 12221n=-<- 综上,对于任意的*n N ∈,都有2n T <.即2()220g x x x b =++>在(1)-+∞,上恒成立,∴当(1)x ∈-+∞,时,()0f x '>,∴当12b >时,函数()f x 在定义域(1)-+∞,上单调递增. (2)①由(1)得,当12b >时,函数()f x 无极值点.②12b =时,3122()01x f x x ⎛⎫+ ⎪⎝⎭'==+有两个相同的解12x =-, 112x ⎛⎫∈-- ⎪⎝⎭,时,()0f x '>,12x ⎛⎫∈-+∞ ⎪⎝⎭,时,()0f x '>,12b ∴=时,函数()f x 在(1)-+∞,上无极值点.③当12b <时,()0f x '=有两个不同解,112x -=,212x -+=,0b <时,11x =<-,20x =>,即1(1)x ∈-+∞,,[)21x ∈-+∞,.()f x ',()f x 随x 的变化情况如下表:由此表可知:0b <时,()f x 有惟一极小值点1x =当102b <<时,11x =>-,12(1)x x ∴∈-+∞,, 此时,()f x ',()f x 随x 的变化情况如下表:由此表可知:102b <<时,()f x 有一个极大值1x =和一个极小值点2x =;综上所述:0b <时,()f x 有惟一最小值点x =;102b <<时,()f x 有一个极大值点x =和一个极小值点x =;12b ≥时,()f x 无极值点.(3)当1b =-时,函数2()ln(1)f x x x =-+,令函数332()()ln(1)h x x f x x x x =-=-++,则22213(1)()3211x x h x x x x x +-'=-+=++.∴当[)0x ∈+∞,时,()0f x '>,所以函数()h x 在[)0+∞,上单调递增,又(0)0h =. (0)x ∴∈+∞,时,恒有()(0)0h x h >=,即32ln(1)x x x >-+恒成立.故当(0)x ∈+∞,时,有23ln(1)x x x +>-. 对任意正整数n 取1(0)x n =∈+∞,,则有23111ln 1n n n⎛⎫+>- ⎪⎝⎭.所以结论成立. 21.(Ⅰ) 椭圆E 的方程为2214x y +=. (Ⅱ) ①因为直线l 与圆C : 222(12)x y R R +=<<相切于A ,得R =,即 222(1)t R k =+ ① 又因为l 与椭圆E 只有一个公共点B ,由2214y kx tx y =+⎧⎪⎨+=⎪⎩ ,得 222(14)8440k x ktx t +++-=,且此方程有唯一解. 则2222226416(14)(1)16(41)0,k t k t k t ∆=-+-=-+= 即22410k t -+=.②由①②,得 2221.4R k R -=- ② 设00(,)B x y ,由22214R k R -=-得 22234R t R=-,由韦达定理,222022*********t R x k R --==+,∵00(,)B x y 点在椭圆上, ∴222002141,43R y x R -=-=∴22200245OB x y R =+=-, 在直角三角形OAB 中, 22222224455(),AB OB OA R R R R=-=--=-+2244,R R +≥当且仅当R =(1,2), ∴2max 541, 1.AB AB ≤-=∴=。

数学_2014年山东省高考数学模拟试卷(一)(理科)_(含答案)

数学_2014年山东省高考数学模拟试卷(一)(理科)_(含答案)

2014年山东省高考数学模拟试卷(一)(理科)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设a ,b ∈R ,i 是虚数单位,则“ab =0”是“复数a +bi 为纯虚数”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 2. 已知全集U =R ,集合A ={x|x <−2或x >3},B ={x|x 2−3x −4≤0},则集合A ∩B =( )A {x|−2≤x ≤4}B {x|3<x ≤4}C {x|−2≤x ≤−1}D {x|−1≤x ≤3} 3. 已知变量x ,y 满足约束条件{y ≤2x +y ≥1x −y ≤1,则z =3x +y 的最大值为( )A 12B 11C 3D −14. 等差数列{a n }中,若a 7a 5=913,则S13S 9=( )A 1B 139C 913D 25. 在△ABC 中,AB =2,AC =3,AB →⋅BC →=1,则BC 等于( )A √3B √7C 2√2D √236. 已知命题p :函数y =2−a x+1恒过(1, 2)点;命题q :若函数f(x −1)为偶函数,则f(x)的图象关于直线x =1对称,则下列命题为真命题的是( ) A p ∧q B ¬p ∧¬q C ¬p ∧q D p ∧¬q7. 定义在R 上的偶函数f(x)满足:对∀x 1,x 2∈[0, +∞),且x 1≠x 2,都有(x 1−x 2)[f(x 1)−f(x 2)]>0,则( )A f(3)<f(−2)<f(1)B f(1)<f(−2)<f(3)C f(−2)<f(1)<f(3)D f(3)<f(1)<f(−2)8. 在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( ) A 24种 B 48种 C 96种 D 144种9. 一个几何体的三视图如图所示,其中正视图和侧视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积是( ) A 12π B 4√3π C 3π D 12√3π 10. 如果函数f(x)=−2a bln(x +1)的图象在x =1处的切线l 过点(0,−1b ),并且l 与圆C:x 2+y 2=110相离,则点(a, b)与圆x 2+y 2=10的位置关系是( )A 在圆内B 在圆外C 在圆上D 不能确定二、填空题:(本大题共5小题,每小题5分,共25分)11. 已知函数f(x)的定义域为(−1, 0),则函数f(2x −1)的定义域为________. 12. 若∫(a12x +1x )dx =3+ln2(a >1),则实数a 的值是________.13. 在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c .asinBcosC +csinBcosA =12b ,且a >b ,则∠B =________.14. 若存在实数x ∈[13, 2]满足2x >a −2x,则实数a 的取值范围是________.15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF // BC ,实数x ,y 满足PA →+xPB →+yPC →=0.设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记S1S =λ1,S 2S =λ2,S3S=λ3.则λ2⋅λ3取最大值时,2x +y 的值为________.三、解答题:解答应写出文字说明,证明过程或演算步骤(共6题,共75分)16. 在△ABC 中,a =3,b =2√6,∠B =2∠A . (1)求cosA 的值;(2)求c 的值.17. 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积. (1)记“函数f(x)=x 2+ξ⋅x 为R 上的偶函数”为事件A ,求事件A 的概率; (2)求ξ的分布列和数学期望.18. 如图,在四面体A −BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =2√2.M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC . (1)证明:PQ // 平面BCD ;(2)若二面角C −BM −D 的大小为60∘,求∠BDC 的大小. 19. 在数列{a n }中,已知a 1=14,a n+1a n=14,b n +2=3log 14a n (n ∈N ∗).(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等差数列;(3)设数列{c n}满足c n=a n⋅b n,求{c n}的前n项和S n.20. 椭圆C:x2a2+y2b2=1(a>0,b>0)的左右焦点分别是F1,F2,离心率为√32,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1)求椭圆C的方程;(2)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m, 0),求m的取值范围;(3)在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明1kk1+1kk2为定值,并求出这个定值.21. 已知函数f(x)=lnx+ke x(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1, f(1))处的切线与x轴平行.(1)求k的值;(2)求f(x)的单调区间;(3)设g(x)=(x2+x)f′(x),其中f′(x)是f(x)的导函数.证明:对任意x>0,g(x)< 1+e−2.2014年山东省高考数学模拟试卷(一)(理科)答案1. B2. B3. B4. A5. A6. B7. B8. C9. C10. A11. (0,12)12. 213. 30∘14. (−∞,203)15. 3216. 解:(1)根据题意:利用正弦定理可得asinA =bsinB,即3sinA =2√6sin2A=2√62sinAcosA,解得cosA=√63.(2)由余弦定理可得a2=b2+c2−2bc⋅cosA,即9=(2√6)2+c2−2×2√6×c×√63,即c2−8c+15=0,解方程求得c=5,或c=3.当c=3时,此时a=c=3,根据∠B=2∠A,可得B=90∘,A=C=45∘,则△ABC是等腰直角三角形,但此时不满足a2+c2=b2,故舍去;当c=5时,求得cosB=a 2+c2−b22ac=13,cosA=b2+c2−a22bc=√63,∴ cos2A=2cos2A−1=13=cosB,∴ B=2A,满足条件.综上,c=5.17. 若函数f(x)=x2+ξ⋅x为R上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.∴ P(A)=P(ξ=0)=xyz+(1−x)(1−y)(1−z)=0.4×0.5×0.6+(1−0.4)(1−0.5)(1−0.6)=0.24∴ 事件A的概率为0.24依题意知ξ的取值为0和2由(1)所求可知P(ξ=0)=0.24P(ξ=2)=1−P(ξ=0)=0.76则ξ的分布列为∴ ξ的数学期望为Eξ=0×0.24+2×0.76=1.5218. (1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵ △ACD中,AQ=3QC且DF=3CF,∴ QF // AD且QF=14AD∵ △BDM中,O、P分别为BD、BM的中点∴ OP // DM,且OP=12DM,结合M为AD中点得:OP // AD且OP=14AD∴ OP // QF且OP=QF,可得四边形OPQF是平行四边形∴ PQ // OF∵ PQ⊄平面BCD且OF⊂平面BCD,∴ PQ // 平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH ∵ AD⊥平面BCD,CG⊂平面BCD,∴ AD⊥CG又∵ CG ⊥BD ,AD 、BD 是平面ABD 内的相交直线 ∴ CG ⊥平面ABD ,结合BM ⊂平面ABD ,得CG ⊥BM ∵ GH ⊥BM ,CG 、GH 是平面CGH 内的相交直线 ∴ BM ⊥平面CGH ,可得BM ⊥CH因此,∠CHG 是二面角C −BM −D 的平面角,可得∠CHG =60∘ 设∠BDC =θ,可得Rt △BCD 中,CD =BDcosθ=2√2cosθ,CG =CDsinθ=2√2sinθcosθ,BG =BCsinθ=2√2sin 2θRt △BMD 中,HG =BG⋅DM BM=2√23sin 2θ;Rt △CHG 中,tan∠CHG =CGGH =3cosθsinθ=√3∴ tanθ=√3,可得θ=60∘,即∠BDC =60∘ 19. 解:(1)∵a n+1a n=14∴ 数列{a n }是首项为14,公比为14的等比数列, ∴ a n =(14)n (n ∈N ∗).(2)∵ b n =3log 14a n −2∴ b n =3log 14(14)n −2=3n −2.∴ b 1=1,公差d =3∴ 数列{b n }是首项b 1=1,公差d =3的等差数列. (3)由(1)知,a n =(14)n ,b n =3n −2(n ∈N ∗)∴ c n =(3n −2)×(14)n ,(n ∈N ∗).∴ S n =1×14+4×(14)2+7×(14)3++(3n −5)×(14)n−1+(3n −2)×(14)n , 于是14S n =1×(14)2+4×(14)3+7×(14)4++(3n −5)×(14)n +(3n −2)×(14)n+1两式相减得34S n =14+3[(14)2+(14)3++(14)n ]−(3n −2)×(14)n+1=12−(3n +2)×(14)n+1.∴ S n =23−12n+83×(14)n+1(n ∈N ∗).20. (1)解:把−c 代入椭圆方程得c 2a 2+y 2b 2=1, 解得y =±b 2a .∵ 过F 1且垂直于x 轴的直线被椭圆C 截得的线段长为1, ∴2b 2a=1.又e =ca =√32,联立得{2b2a=1,a2=b2+c2,c a =√32,解得a=2,b =1,c=√3,∴ 椭圆C的方程为x24+y2=1.(2)解:如图所示,设|PF1|=t,|PF2|=n,由角平分线的性质可得tn =|MF1||F2M|=m+√3√3−m,又t+n=2a=4,消去t得到4−nn =√3+m√3−m,化为n=2(√3−m)√3,∵ a−c<n<a+c,即2−√3<n<2+√3,即2−√3<2(√3−m)√3<2+√3,解得−32<m<32,∴ m的取值范围:(−32,32).(3)证明:设P(x0, y0),不妨设y0>0,由椭圆方程x24+y2=1,取y=√1−x24,则y′=−2x 42√1−x 24=−x4√1−x24,∴ k =k l =04√1−024=−x 04y 0.∵ k 1=x +√3,k 2=0x −√3,∴ 1k 1+1k 2=2x 0y 0,∴ 1kk 1+1kk 2=−4y 0x 0×2x 0y 0=−8为定值. 21. (1)解:f′(x)=1x−lnx−k e x,依题意,∵ 曲线y =f(x) 在点(1, f(1))处的切线与x 轴平行, ∴ f′(1)=1−k e=0,∴ k =1为所求.(2)解:k =1时,f′(x)=1x−lnx−1e x(x >0)记ℎ(x)=1x −lnx −1,函数只有一个零点1,且当x >1时,ℎ(x)<0,当0<x <1时,ℎ(x)>0,∴ 当x >1时,f′(x)<0,∴ 原函数在(1, +∞)上为减函数;当0<x <1时,f′(x)>0, ∴ 原函数在(0, 1)上为增函数.∴ 函数f(x)的增区间为(0, 1),减区间为(1, +∞). (3)证明:g(x)=(x 2+x)f′(x)=1+x e x(1−xlnx −x),先研究1−xlnx −x ,再研究1+x e x.①记r(x)=1−xlnx −x ,x >0,∴ r′(x)=−lnx −2,令r′(x)=0,得x =e −2, 当x ∈(0, e −2)时,r′(x)>0,r(x)单增; 当x ∈(e −2, +∞)时,r′(x)<0,r(x)单减.∴ r(x)max =r(e −2)=1+e −2,即1−xlnx −x ≤1+e −2. ②记s(x)=1+x e x ,x >0,∴ s′(x)=−x e x<0,∴ s(x)在(0, +∞)单减,∴ s(x)<s(0)=1,即1+x e x<1.综①、②知,g(x))=1+x e x(1−xlnx −x)≤(1+x e x)(1+e −2)<1+e −2.。

2014高考数学理科模拟试题

2014高考数学理科模拟试题

理科综合本试卷分第I卷和第II卷两部分,共12页。

满分300分。

考试用时150分钟。

第Ⅰ卷(必做,共107分)以下数据可供答题时参考相对原子质量:N 14 O 16 S 32 Fe 56一、选择题(本小题包括13小题,每题5分,每小题只有一个选项符合题意)1.下列有关生物体物质和结构基础的叙述错误的是()A.真核细胞DNA的复制和转录主要在细胞核中完成B.细胞膜的成分有蛋白质、脂质和少量的糖类C.抗体是蛋白质,RNA聚合酶也是蛋白质D.细胞核只具有储存和复制遗传物质的功能2.下列关于实验的叙述正确的是()A.低倍镜观察的视野右上角有一不清晰物象时,应换用高倍物镜并调节细准焦螺旋B.观察细胞有丝分裂时,剪取洋葱根尖2~3mm的原因是其内可找到分生区细胞C.用斐林试剂检验某组织样液,若出现砖红色沉淀则说明其中一定含有葡萄糖D.选取经低温诱导的洋葱根尖制作临时装片,可在显微镜下观察到联会现象3.右图是描述某种生命活动的模型,下列叙述正确的是()A.若A代表兔同化的能量,a代表兔摄入的食物,则b、c可分别代表被下一营养级摄入和排便的能量流动途径所产生的[H]和ATPC.若A为调节中枢,a为渗透压升高,则b、c可分别代表抗利尿激素减少和产生渴觉D.若A代表人体B细胞,a为抗原刺激,则b、c可分别代表浆细胞和记忆细胞的形成4.对下列四幅图所对应的生物活动叙述错误的是()A.(1)图中虚线能正确表示适当升高温度,而其他条件不变时,生成物量变化的曲线B.(2)图中若要抑制肿瘤细胞增殖,则药物作用的时期最可能是在S期C.(3)图表示次级精母细胞时,则该生物体细胞中染色体数最多为4个D.(4)图中①④的基本单位不相同,③约有20种5.果蝇有一种缺刻翅的变异类型,这种变异是由染色体上某个基因缺失引起的,并且有纯合致死效应。

已知在果蝇群体中不存在缺刻翅的雄性个体。

用缺刻翅雌果蝇与正常翅雄果蝇杂交,然后让F 1中雄雌果蝇自由交配得F 2以下分析正确的是 ( )A .缺刻翅变异类型属于基因突变B .控制翅型的基因位于常染色体上C .F 1中雌雄果蝇比例为1:1D .F 2中雄果蝇个体占3/76.右图表示某草场以牧民的定居点为核心统计牧草覆盖率的变化情况,3年中的气候条件基本相同。

山东省2014届高三4月模拟考试数学(理)试题含答案

山东省2014届高三4月模拟考试数学(理)试题含答案

理 科 数 学(根据2014年山东省最新考试说明命制)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必先将自己的姓名,准考证号填写在答题卡上,认真核对条形码上的姓名、准考证号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案的标号,非选择题答案使用0.5毫米及以上黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持答题卡上面清洁,不折叠,不破损.第I 卷(共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数1i z i=-(i 是虚数单位)的共轭复数z 在复平面内对应的点在 A.第一象限B.第二象限C.第三象限D.第四象限 2.设集合{}{}260,2x M x x x N y y M N =+-<==⋂=,则A. ()0,2B. [)0,2C. ()0,3D. [)0,33.已知某篮球运动员2013年度参加了25场比赛,我从中抽取5场,用茎叶图统计该运动员5场 中的得分如图1所示,则该样本的方差为A.25B.24C.18D.164.执行如图2所示的程序框图,输出的Z 值为A.3B.4C.5D.65.在△ABC 中,内角A ,B ,C 的对边分别为,,a b c 已知cos cos sin ,a B b A c C +=222b c a B +-==,则 A. 6π B. 3π C. 2π D. 23π 6.设命题:p 平面=l m l m αββ⋂⊥⊥平面,若,则;命题:q 函数cos 2y x π⎛⎫=-⎪⎝⎭的图象关于直线2x π=对称.则下列判断正确的是 A.p 为真B. q ⌝为假C. ∨p q 为假D. p q ∧为真 7.函数()cos x f x e x =的部分图象是8.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正视图(如图3所示)的面积为8,则该三棱柱外接球的表面积为 A. 163π B. 283π C. 643π D. 24π9.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为12,F F ,以12F F 为直径的圆与双曲线渐近线的一个交点为()4,3,则此双曲线的方程为 A. 22134x y -= B. 22143x y -= C. 221916x y -= D. 221169x y -= 10.已知函数()2,01,0kx x f x nx x +≤⎧=⎨>⎩()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是 A. 2k ≤- B. 21k -≤<-C. 10k -<<D. 2k ≤第II 卷(共100分)二、填空题(本大题共5小题,每小题5分,共25分).11.二项式()62ax +的展开式的第二项的系数为12,则22a x dx -=⎰ . 12.若存在实数x 使13x a x -+-≤成立,则实数a 的取值范围是 .13.数列{}n a 的前n 项和为()11,1,21n n n S a a S n N *+==+∈,则n a = . 14.设变量x ,y 满足约束条件220210380x y x y x y --≥⎧⎪+-≥⎨⎪+-≤⎩,若目标函数y z x =的最大值为a ,最小值为b ,则a —b 的值为 .15.矩形ABCD 中,若()()3,1,2,,AD AB AC k =-=- 则= .三、解答题(本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤)16.(本题满分12分)如图4,在直角坐标系xOy 中,角α的顶点是原点,始边与x 轴正半轴重合,终边交单位圆于点A ,且,32a ππ⎛⎫∈ ⎪⎝⎭.将角α的始边按逆时针方向旋转6π,交单位圆于点B ,记()()1122,,,A x y B x y.(1)若1214x x =求; (2)分别过A ,B 作x 轴的垂线,垂足依次为C 、D ,记.1122,B O D S A O C S S ∆∆=的面积为的面积为若S ,求角α的值.17.(本题满分12分)四棱锥P —ABCD 的底面是平行四边形,平面1ABCD PA=PB=AB=AD BAD=602PAB ︒⊥∠平面,,,E ,F 分别为AD ,PC 的中点.(1)求证:PBD EF ⊥平面;(2)求二面角D —PA —B 的余弦值.18.(本小题满分12分)已知在等比数列{}213121, 1.n a a a a a =+-=中,(1)若数列{}n b 满足()32123n n b b b b a n N n*+++⋅⋅⋅+=∈,求数列{}n b 的通项公式; (2)求数列{}n b 的前n 项和n S .19.(本题满分13分)交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,交通指数取值范围为0~10,分为五个级别,0~2畅通;2~4基本畅通;4~6轻度拥堵;6~8中度拥堵;8~10严重拥堵.晚高峰时段,从某市交通指挥中心随机选取了市区20个交通路段,依据其交通指数数据绘制的直方图如图所示.(1)这20个路段为中度拥堵的有多少个?(2)从这20个路段中随机抽出3个路段,用X 表示抽取的中度拥堵的路段的个数,求X 的分布列及期望.20.(本题满分13分)已知12,F F 分别为椭圆()2212210y x C a b a b+=>>:的上下焦点,其1F 是抛物线22:4C x y =的焦点,点M 是1C 与2C 在第二象限的交点,且15.3MF =(1)试求椭圆1C 的方程;(2)与圆()2211x y ++=相切的直线()():0l y k x t t =+≠交椭圆于A ,B 两点,若椭圆上一点P 满足,OA OB OP λλ+= 求实数的取值范围.21.(本题满分13分)已知函数()()(),.ln x g x f x g x ax x==- (1)求函数()g x 的单调区间;(2)若函数()f x 在()1+∞上是减函数,求实数a 的最小值;(3)若()()21212,,x x e e f x f x a '⎡⎤∃∈≤+⎣⎦,使成立,求实数a 的取值范围.。

2014山东省济南市一模试卷理科数学及答案

2014山东省济南市一模试卷理科数学及答案

2014山东省济南市一模试卷理科数学及答案2014年山东省济南市一模试卷理科数学本试卷分为第I卷和第Ⅱ卷两部分,共4页。

考试时间120分钟,总分150分。

考试结束后,请将本试卷和答题卡一并交回。

注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类写在答题卡和试卷规定的位置上。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上。

如需改动,先划掉原来的答案,然后再写上新的答案。

不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A、B互斥,那么P(A∪B)=P(A)+P(B);如果事件A、B独立,那么P(A∩B)=P(A)×P(B)。

第I卷(共50分)一、选择题:本大题共10个小题,每小题5分,共50分。

每小题给出的四个选项中只有一项是符合题目要求的。

1) 已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数z是A) 1+i (B) -i (C) -1+i (D) -1-i2) 已知集合A={x||x-1|<2},B={x|y=lg(x+x)},设U=R,则A∩(U-B)等于A) [3,+∞) (B) (-1,0) (C) (3,+∞) (D) [-1,0]3) 某几何体三视图如图所示,则该几何体的体积等于A) 2 (B) 4 (C) 8 (D) 124) 函数y=ln((x-sin(x))/(x+sin(x)))的图象大致是A)1B)C)D)5) 执行右面的程序框图,输出的S的值为A) 1 (B) 2 (C) 3 (D) 4sinC/5=3.b^2-a^2=ac,则cosB的值为A)1B)2C)3D)46) 在△ABC中,若sinC/5=3.b^2-a^2=ac,则cosB的值为7) 如图,设抛物线y=-x+1的顶点为A,与x轴正半轴的交点为B,设抛物线与两坐标轴正半轴围成的区域为M,随机往M内投一点P,则点P落在△AOB内的概率是A)2/5B)6/15C)3/5D)4/58) 已知4x^2-5x-2≤0,则x的取值范围是二、填空题:本大题共10个小题,每小题2分,共20分。

2014年山东省济南市高考数学一模试卷(理科)

2014年山东省济南市高考数学一模试卷(理科)

2014年山东省济南市高考数学一模试卷(理科)学校:___________姓名:___________班级:___________考号:___________一、选择题(本大题共10小题,共50.0分)1.已知复数z满足z(1+i)=1(其中i为虚数单位),则z的共轭复数是()A.+iB.-iC.-+iD.--i【答案】A【解析】解:由z(1+i)=1,得,∴=.故选:A.把等式z(1+i)=1两边同时乘以,然后利用复数的除法运算化简复数z,求出z后可得z的共轭复数.本题考查了复数的除法运算,考查了共轭复数的概念,是基础题.2.已知集合A={x丨丨x-1丨<2},B={x丨y=lg(x2+x)},设U=R,则A∩(∁U B)等于()A.[3,+∞)B.(-1,0]C.(3,+∞)D.[-1,0]【答案】B【解析】解:∵集合A={x丨丨x-1丨<2}={x|-1<x<3},B={x丨y=lg(x2+x)}={x|x2+x>0}={x|x<-1或x>0},U=R,∴A∩(∁U B)={x|-1<x<3}∩{x|-1≤x≤0}={x|-1<x≤0}=(-1,0].故选:B.利用绝对值不等式的性质和对数函数的定义域,分别求出集合A和B,由此能求出A∩(∁U B).本题考查集合的交、并、补集的混合运算,是基础题,解题时要注意绝对值不等式和对数函数的性质的灵活运用.3.某几何体三视图如图所示,则该几何几的体积等于()A.2B.4C.8D.12【答案】B【解析】解:由三视图知几何体为四棱锥,且四棱锥的一个侧面垂直于底面,高为4,四棱锥的底面为矩形,矩形的边长分别为3、2,∴几何体的体积V=×3×2×2=4.故选:B.根据三视图判断几何体为四棱锥,且四棱锥的一个侧面垂直于底面,高为4,四棱锥的底面为矩形,矩形的边长分别为3、2,把数据代入棱锥的体积公式计算.本题考查了由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及判断数据所对应的几何量.4.函数y=ln的图象大致是()A. B. C. D.【答案】A【解析】解:∵函数y=ln,∴x+sinx≠0,x≠0,故函数的定义域为{x|x≠0}.再根据y=f(x)的解析式可得f(-x)=ln()=ln()=f(x),故函数f(x)为偶函数,故函数的图象关于y轴对称,故排除B、D.当x∈(0,1)时,∵0<sinx<x<1,∴0<<1,∴函数y=ln<0,故排除C,只有A满足条件,故选:A.由函数的解析式可得函数的定义域关于原点对称,根据f(-x)=f(x),可得函数的图象关于y轴对称,故排除B、D,再根据当x∈(0,1)时,ln<0,从而排除C,从而得到答案.本题主要考查正弦函数的图象特征,函数的奇偶性的判断,属于中档题.5.执行如图所示的程序框图,输出的S的值为()A.1B.2C.3D.4【答案】C【解析】解:由判断框的条件是k<27,∴退出循环体的k值为27,∴输出的S=1••…==log327=3.故选:C.根据判断框的条件是k<27确定退出循环体的k值为27,再根据框图的流程确定算法的功能,利用约分消项法求解.本题考查了循环结构的程序框图,根据框图的流程判断算法的功能是关键.6.在△ABC中,若=3,b2-a2=ac,则cos B的值为()A. B. C. D.【答案】D【解析】解:将=3利用正弦定理化简得:=3,即c=3a,把c=3a代入b2-a2=ac,得:b2-a2=ac=a2,即b2=a2,则cos B===.故选:D.已知第一个等式利用正弦定理化简,得到c =3a ,代入第二个等式变形出b ,利用余弦定理表示出cos B ,将表示出的b 与c 代入即可求出值.此题考查了正弦、余弦定理,熟练掌握定理是解本题的关键.7.如图,设抛物线y =-x 2+1的顶点为A ,与x 轴正半轴的交点为B ,设抛物线与两坐标轴正半轴围成的区域为M ,随机往M 内投一点P ,则点P 落在△AOB 内的概率是( ) A. B. C. D.【答案】 C【解析】 解:由题意可知抛物线y =-x 2+1的顶点为A (0,1),与x 轴正半轴的交点为B (1,0), ∴△AOB 的面积为: =. 抛物线与两坐标轴正半轴围成的区域为M , 面积为:S= = =.随机往M 内投一点P ,则点P 落在△AOB 内的概率满足几何概型; ∴随机往M 内投一点P ,则点P 落在△AOB 内的概率是:=.故选:C .求出直线与坐标轴围成三角形的面积,及抛物线与坐标轴围成的面积,再将它们代入几何概型计算公式计算出概率.本题考查几何概型在求解概率中的应用,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量”N (A ),再求出总的基本事件对应的“几何度量”N ,最后根据P=求解.8.已知g (x )=ax +1,f (x )= , , < ,对∀x 1∈[-2,2],∃x 2∈[-2,2],使g (x 1)=f (x 2)成立,则a 的取值范围是( )A.[-1,+∞)B.[-1,1]C.(0,1]D.(-∞,1] 【答案】 B【解析】解:作出函数f (x )= , , < 的图象如图:则当x ∈[-2,2],f (x )的最大值为f (2)=3,最小值f (-2)=-4,即函数f (x )在[-2,2]上的值域为[-4,3].若a =0,g (x )=1,此时满足∀x 1∈[-2,2],∃x 2∈[0,2],使g (x 1)=f (x 2)成立,若a ≠0,则g (x )=ax +1,则直线g (x )过定点B (0,1), 若a >0,函数在[-2,2]上单调递增,则当x =2时,g (2)=2a+1,当x=-2时,g(-2)=-2a+1,此时函数的值域为[-2a+1,2a+1],要使对∀x1∈[-2,2],∃x2∈[0,2],使g(x1)=f(x2)成立,则[-2a+1,2a+1]⊆[-4,3],即>,即>,解得0<a≤1,若a<0,则函数在[-2,2]上单调递减,则当x=2时,g(2)=2a+1,当x=-2时,g(-2)=-2a+1,此时函数的值域为[2a+1,-2a+1],要使对∀x1∈[-2,2],∃x2∈[0,2],使g(x1)=f(x2)成立,则[2a+1,-2a+1]⊆[-4,3],即<,即<,解得-1≤a<0,综上-1≤a≤1,故选:B.作出函数f(x)的图象,根据数形结合即可得到结论.本题主要考查函数与方程之间的关系,利用数形结合是解决本题的关键,本题综合性较强,有一定的难度.9.已知点M(x,y)是平面区域内的动点,则(x+1)2+(y+1)2的最大值是()A.10B.C.D.13【答案】D【解析】解:作出不等式组对应的平面区域,设z=(x+1)2+(y+1)2,则z的几何意义为区域内的动点P(x,y)到定点C(-1,-1)的距离的平方,则有图象可知,当P位于点A时,|AC|最大,由,解得,即A(1,2),∴z max=(x+1)2+(y+1)2=4+9=13,故选:D.作出不等式组对应的平面区域,设z=(x+1)2+(y+1)2,利用z的几何意义即可得到结论.本题主要考查线性规划的应用,利用z的几何意义是解决本题的关键.10.已知中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,若椭圆与双曲线的离心率分别为e1,e2,则e1•e2的取值范围是()A.(,+∞)B.(,+∞)C.(,+∞)D.(0,+∞)【答案】C解:∵中心在原点、焦点在x轴上的椭圆C1与双曲线C2有共同的焦点,设左右焦点分别为F1,F2,P是C1与C2在第一象限的交点,△PF1F2是以PF1为底边的等腰三角形,∴设椭圆和双曲线的长轴长分别为2a1,2a2,焦距为2c,设|PF1|=x,|PF2|=|F1F2|=y,由题意得,∵椭圆与双曲线的离心率分别为e1,e2,∴e1•e2===,由三角形三边关系得|F1F2|+|PF2|>|PF1|>|PF2|,即2y>x>y,得到1<<2,∴1<()2<4,∴0<()2-1<3,根据复合函数单调性得到e1•e2=>.故选:C.设椭圆和双曲线的长轴长分别为2a1,2a2,焦距为2c,设|PF1|=x,|PF2|=|F1F2|=y,由题意得,则e1•e2===,由此利用三角形三边关系和复合函数单调性能求出结果.本题考查双曲线和椭圆的离心率的乘积的取值范围的求法,是中档题,解题时要认真审题,注意三角形三边关系的合理运用.二、填空题(本大题共5小题,共25.0分)11.某地区对某路段公路上行驶的汽车速度实施监控,从中抽取50辆汽车进行测速分析,得到如图所示的时速的频率分布直方图,根据该图,时速在70km/h以下的汽车有______ 辆.【答案】20【解析】解:根据频率分布直方图,得时速在70km/h以下的汽车有:(0.01+0.03)×10×50=20(辆);故答案为:20由频率分布直方图,求出时速在70km/h以下的汽车的频率,由频率×样本容量即可求出答案.本题考查了频率分布直方图的应用问题,解题时应根据频率分布直方图,找出解答问题的条件是什么,从而得出答案.12.设圆C:(x-3)2+(y-5)2=5,过圆心C作直线l交圆于A,B两点,与y轴交于点P,若A恰好为线段BP的中点,则直线l的方程为______ .y=2x-1或y=-2x+11【解析】解:由题意可得,C(3,5),直线L的斜率存在可设直线L的方程为y-5=k(x-3)令x=0可得y=5-3k即P(0,5-3k),设A(x1,y1),B(x2,y2)联立消去y可得(1+k2)x2-6(1+k2)x+9k2+4=0由方程的根与系数关系可得,x1+x2=6,x1x2=①∵A为PB的中点∴即x2=2x1②把②代入①可得x2=4,x1=2,x1x2==8∴k=±2∴直线l的方程为y-5=±2(x-3)即y=2x-1或y=-2x+11故答案为:y=2x-1或y=-2x+11由题意可设直线L的方程为y-5=k(x-3),P(0,5-3k),设A(x1,y1),B(x2,y2),联立,然后由方程的根与系数关系可得,x1+x2,x1x2,由A为PB的中点可得x2=2x1,联立可求x1,x2,进而可求k,即可求解直线方程本题主要考查直线和圆的位置关系,方程的根与系数关系的应用,体现了方程的数学思想,属于中档题.13.航天员拟在太空授课,准备进行标号为0,1,2,3,4,5的六项实验,向全世界人民普及太空知识,其中0号实验不能放在第一项,最后一项的标号小于它前面相邻一项的标号,则实验顺序的编排方法种数为______ (用数字作答).【答案】300【解析】解:0不能排第一,共有:5x5x4x3x2x1=600种.在以上600种编排方法中,最后一项的标号小于前面相邻一项与大于前面相邻一项种数相等.所以,实验顺序的编排方法种数为:600÷2=300种.故答案为:300.0不能排第一,共有600种,最后一项的标号小于前面相邻一项与大于前面相邻一项种数相等,由此能求出实验顺序的编排方法种数.本题考查实验顺序编排种数的求法,是中档题,解题时要认真审题,注意统筹分析,全面考虑.14.在△ABC中,E为AC上一点,且=4,P为BE上一点,且满足=m+n(m>0,n>0),则取最小值时,向量=(m,n)的模为______ .【答案】【解析】解:∵=4,∴=m+n=m+4n又∵P为BE上一点,∴不妨设=λ(0<λ<1)∴=+=+λ=+λ(-)=(1-λ)+λ∴m+4n=(1-λ)+λ∵,不共线∴m+4n=1-λ+λ=1∴+=(+)×1=(+)×(m+4n)=5+4+≥5+2=9(m>0,n>0)当且仅当=即m=2n时等号成立又∵m+4n=1∴m=,n=∴||==故答案为根据平面向量基本定理求出m,n关系,进而确定+取最小值时m,n的值,代入求的模本题考查平面向量基本定理和基本不等式求最值,难点在于利用向量求m,n的关系和求+的最值15.已知下列命题:①设m为直线,α,β为平面,且m⊥β,则“m∥α”是“α⊥β”的充要条件;②(x3+)5的展开式中含x3的项的系数为60;③设随机变量ξ~N(0,1),若P(ξ≥2)=p,则P(-2<ξ<0)=-p;④若不等式|x+3|+|x-2|≥2m+1恒成立,则m的取值范围是(-∞,2);⑤已知奇函数f(x)满足f(x+π)=-f(x),且0<x<时f(x)=x,则函数g(x)=f(x)-sinx在[-2π,2π]上有5个零点.其中真命题的序号是______ (写出全部真命题的序号).【答案】③【解析】解:①设m为直线,α,β为平面,且m⊥β,则“m∥α”可得“α⊥β”,反过来,“α⊥β”可得“m∥α”或“m⊂α”,故不正确;②(x3+)5的展开式的通项为T r+1=C5r x15-4r,∴含x3的项的系数为C53=10,故不正确;③设随机变量ξ~N(0,1),曲线关于x=0对称,若P(ξ≥2)=p,则P(-2<ξ<0)=-p,正确;④|x+3|+|x-2|表示数轴上的x对应点到-3和2对应点的距离之和,它的最小值等于5,由|x+3|+|x-2|≥2m+1恒成立,知2m+1≤5,则m的取值范围是(-∞,2],不正确;⑤奇函数f(x)满足f(x+π)=-f(x),可得函数f(x)图象关于x=对称,周期为2π,由0<x<时,f(x)=x,则函数g(x)=f(x)-sinx,因为x取不到0,,所以共有0个零点,不正确.故答案为:③.①由m⊥β,则“m∥α”可得“α⊥β”,反过来,“α⊥β”可得“m∥α”或“m⊂α”,;②利用二项展开式的通项公式写出展开式的通项,令x的指数为3,写出展开式中x3的系数,得到结果;③设随机变量ξ~N(0,1),曲线关于x=0对称,若P(ξ≥2)=p,则P(-2<ξ<0)=-p;④|x+3|+|x-2|表示数轴上的x对应点到-3和2对应点的距离之和,它的最小值等于5,由|x+3|+|x-2|≥2m+1恒成立,可求m的取值范围;⑤奇函数f(x)满足f(x+π)=-f(x),可得函数f(x)图象关于x=对称,由0<x <时,f(x)=x,则函数g(x)=f(x)-sinx,因为x取不到0,,所以共有0个零点.本题考查命题的真假判断,考查函数的性质,考查不等式知识,考查学生分析解决问题的能力,属于中档题.三、解答题(本大题共6小题,共65.0分)16.已知函数f(x)=4cosωx•sin(ωx-)+1(ω>0)的最小正周期是π.(Ⅰ)求f(x)的单调递增区间;(Ⅱ)求f(x)在[,]上的最大值和最小值.【答案】解:(Ⅰ)f(x)=4cosωxsin(ωx-)+1=2sinωxcosωx-2cos2ωx+1=sin2ωx-cos2ωx =2sin(2ωx-),∵函数f(x)的最小正周期是π,∴T=,∴ω=1,∴f(x)=2sin(2x-),令-+2kπ≤2x-≤+2kπ,∴-+kπ≤x≤+kπ,∴f(x)的单调递增区间[-+kπ,+kπ],(k∈z);(Ⅱ)∵x∈[,],∴(2x-)∈[,],∴f(x)=2sin(2x-)∈[,2],∴f(x)在[,]上的最大值2,最小值.【解析】(Ⅰ)首先,利用两角差的正弦公式,将sin(ωx-)化简,然后,结合三角恒等变换公式,进行化简,最后,结合周期公式,进一步确定ω的值,从而得到函数的单调区间;(Ⅱ)直接利用三角函数的图象与性质进行求解即可.本题重点考查了两角和与差的三角函数,三角函数的图象与性质等知识,属于中档题.17.如图,四棱锥P-ABCD中,PD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=2,PD=,M为棱PB的中点.(Ⅰ)证明:DM⊥平面PBC;(Ⅱ)求二面角A-DM-C的余弦值.【答案】(Ⅰ)证明:连结BD,取DC的中点G,连结BG,由题意知DG=GC=BG=1,即△DBC是直角三角形,∴BC⊥BD,又PD⊥平面ABCD,∴BC⊥PD,∴BC⊥平面BDP,BC⊥DM,又PD=BD=,PD⊥BD,M为PB的中点,∴DM⊥PB,∵PB∩BC=B,∴DM⊥平面PDC.(Ⅱ)以D为原点,DA为x轴,建立如图所示的空间直角坐标系,则A(1,0,0),B(1,1,0),C(0,2,0),P(0,0,),M(,,),设平面ADM的法向量,,,则,取y=,得,,,同理,设平面ADM的法向量,,,则,取,得=(,,),cos<,>=-,∵二面角A-DM-C的平面角是钝角,∴二面角A-DM-C的余弦值为-.【解析】(Ⅰ)连结BD,取DC的中点G,连结BG,由已知条件推导出BC⊥DM,DM⊥PB,由此能证明DM⊥平面SDC.(Ⅱ)以D为原点,DA为x轴,建立空间直角坐标系,利用向量法能求出二面角A-DM-C 的余弦值.本题考查直线与平面垂直的证明,考查二面角的余弦值的求法,解题时要认真审题,注意向量法的合理运用.18.一个袋中装有形状大小完全相同的球9个,其中红球3个,白球6个,每次随机取1个,直到取出3次红球即停止.(Ⅰ)从袋中不放回地取球,求恰好取4次停止的概率P1;(Ⅱ)从袋中有放回地取球.①求恰好取5次停止的概率P2;②记5次之内(含5次)取到红球的个数为ξ,求随机变量ξ的分布列及数学期望.【答案】解:(Ⅰ)恰好取4次停止的概率:P1=(+)×=.(Ⅱ)①恰好取5次停止的概率P2==.②由题意知随机变量ξ的取值为0,1,2,3,由n次独立重复试验概率公式P n(k)=,得P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,ξ=3这个事件包括了三种情况,第一种取三次取到全是红球,第二种取四次取到三次红球,此时,第四次一定取到红球,前三次两次取到红球,第三种取五次取到三个红球,第五次取到的是红球,前四次取到两次红球,故有P(ξ=3)=++=,∴ξ的分布列为:∴Eξ==.【解析】(Ⅰ)利用古典概型的概率计算公式能求出恰好取4次停止的概率P1.(Ⅱ)①利用n次独立重复试验概率公式能求出恰好取5次停止的概率P2.②由题意知随机变量ξ的取值为0,1,2,3,分别求出相对应的概率,由此能求出随机变量ξ的分布列及数学期望.本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意n次独立重复试验概率公式的灵活运用.19.已知等差数列{a n}的前n项和为S n,S7=49,a4和a8的等差中项为11.(Ⅰ)求a n及S n;(Ⅱ)证明:当n≥2时,有++…+<.【答案】(Ⅰ)解:设等差数列{a n}的公差为d,∵S7=49,a4和a8的等差中项为11,∴,解得a1=1,d=2,∴a n=2n-1,S n=n2.(Ⅱ)证明:由(Ⅰ)知S n=n2,n∈N*,①n=2时,<,∴原不等式也成立.②当n≥3时,∵n2>(n-1)n,∴<,∴+=<1++=1++[()+…+()+()]=1++()=<.【解析】(Ⅰ)由已知条件利用等差数列的通项公式和前n项和公式列出方程组求出a1=1,d=2,由此能求出a n及S n.(Ⅱ)由S n=n2知当n=2时,不等式成立;当n≥3时,<,由此利用裂项法能证明+<.本题考查数列的通项公式和前n项和的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.20.已知椭圆+=1(a>b>0)经过点M(,1),离心率为.(Ⅰ)求椭圆的标准方程;(Ⅱ)已知点P(,0),若A,B为已知椭圆上两动点,且满足•=-2,试问直线AB是否恒过定点,若恒过定点,请给出证明,并求出该定点的坐标;若不过,请说明理由.【答案】解:(Ⅰ)∵椭圆+=1(a>b>0)离心率为,∴,①∵椭圆经过点M(,1),∴,②又a2=b2+c2,③∴由①②③联立方程组解得a2=8,b2=c2=4,∴椭圆方程为.(Ⅱ)①当直线AB与x轴不垂直时,设直线AB方程为y=kx+m,代入,消去y整理,得(2k2+1)x2+4kmx+2m2-8=0,由△>0,得8k2+4-m2>0,(*)设A(x1,y1),B(x2,y2),则,,∵点P(,0),A,B为已知椭圆上两动点,且满足•=-2,∴====-2,∴++8+m2=0,整理,得()2=0,解得m=-,满足(*)∴直线AB的方程为y=k(x-),∴直线AB经过定点(,0).②当直线AB与x轴垂直时,直线方程为x=,此时A(,),B(,-),也有=-2,综上,直线AB一定过定点(,0).【解析】(Ⅰ)由已知条件推导出,,又a2=b2+c2,由此能求出椭圆方程.(Ⅱ)当直线AB与x轴不垂直时,设直线AB方程为y=kx+m,代入,消去y整理,得(2k2+1)x2+4kmx+2m2-8=0,由根的判别式和韦达定理结合已知条件求出直线AB的方程为y=k(x-),从而得到直线AB经过定点(,0).当直线AB与x 轴垂直时,直线方程为x=,也有=-2.由此证明直线AB一定过定点(,0).本题考查椭圆方程的求法,考查直线是否过定点的判断与证明,综合性强,难度大,解题时要认真审题,注意函数与方程思想的合理运用.21.已知函数f(x)=k(x-1)e x+x2.(Ⅰ)当时k=-,求函数f(x)在点(1,1)处的切线方程;(Ⅱ)若在y轴的左侧,函数g(x)=x2+(k+2)x的图象恒在f(x)的导函数f′(x)图象的上方,求k的取值范围;(Ⅲ)当k≤-l时,求函数f(x)在[k,1]上的最小值m.【答案】解:(Ⅰ)k=-时,f(x)=-(x-1)e x+x2,∴f′(x)=x(2-e x-1),∴f′(1)=1,f(1)=1,∴函数f(x)在(1,1)处的切线方程为y=x,(Ⅱ)f′(x)=kx(e x+)<x2+(k+2)x,即:kxe x-x2-kx<0,∵x<0,∴ke x-x-k>0,令h(x)=ke x-x-k,∴h′(x)=ke x-1,当k≤0时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,当0<k≤1时,h(x)在x<0时递减,h(x)>h(0)=0,符合题意,当k>1时,h(x)在(-∞,-lnk)递减,在(-lnk,0)递增,∴h(-lnk)<h(0)=0,不合题意,综上:k≤1.(Ⅲ)f′(x)=kx(e x+),令f′(x)=0,解得:x1=0,x2=ln(-),令g(k)=ln(-)-k,则g′(k)=--1≤0,g(k)在k=-1时取最小值g(-1)=1+ln2>0,∴x2=ln(-)>k,当-2<k≤-1时,x2=ln(-)>0,f(x)的最小值为m=min{f(0),f(1)}=min{-k,1}=1,当k=-2时,函数f(x)在区间[k,1]上递减,m=f(10=1,当k<-2时,f(x)的最小值为m=min{f(x2),f(1)},f(x2)=-2[ln(-)-1]+[ln(-)]2=-2x2+2>1,f(1)=1,此时m=1,综上:m=1.【解析】(Ⅰ)k=-时,f(x)=-(x-1)e x+x2,得f′(x)=x(2-e x-1),从而求出函数f(x)在(1,1)处的切线方程;(Ⅱ)f′(x)=kx(e x+)<x2+(k+2)x,即:kxe x-x2-kx<0,令h(x)=ke x-x-k,讨论当k≤0时,当0<k≤1时,当k>1时,从而综合得出k的范围;(Ⅲ)f′(x)=kx(e x+),令f′(x)=0,得:x1=0,x2=ln(-),令g(k)=ln(-)-k,则g′(k)=--1≤0,得g(k)在k=-1时取最小值g(-1)=1+ln2>0,讨论当-2<k≤-1时,当k=-2时,当k<-2时的情况,从而求出m的值.本题考查了函数的单调性,函数的最值问题,考查参数的取值,导数的应用,是一道综合题.。

【2014临沂三模】山东省临沂市2014届高三三模试卷数学试卷(理)Word版含答案

【2014临沂三模】山东省临沂市2014届高三三模试卷数学试卷(理)Word版含答案

2014年高考模拟试题理科数学第I 卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足34iz i z =+=,则A.1B.2 D.52.已知集合{}{}1012312A B x x =-=-<,,,,,,则R A C B ⋂= A.{}012,, B.{}13-, C.{}12, D.{}103-,, 3.若向量,a b 满足()26a b a b b ==+⋅=,且,则向量a b 与的夹角为A.30°B.45°C.60°D.90°4.已知命题()sin cos p R απαα∃∈-=:,;命题:0q m >是双曲线22221x y m m-=的离心的充分不必要条件.则下面结论正确的是A.()p q ∧⌝是真命题B.()p q ⌝∨是真命题C.p q ∧是假命题D.p q ∨是假命题5.下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数是 A.11221x y =++ B.11221x y =-+ C.11221x y =+- D.11221x y =-- 6.函数()()sin ln 2x f x x =+的图象可能是7.以下四个命题中:①从匀速传递的产品流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③若数据123,,x x x ,…,n x 的方差为1,则1232,2,2,,2n x x x x ⋅⋅⋅的方差为2;④对分类变量X 与Y 的随机变量2k 的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.其中真命题的个数为A.1B.2C.3D.48.一个空间几何体的三视图如图,则该几何体的体积为A.B.9.设点(),a b 是区域240,0,0.x y x y +-≤⎧⎪>⎨⎪>⎩内的随机点,函数()241f x ax bx =-+在区间[)1,+∞上是增函数的概率为 A.12 B.13 C.14 D.1510.设函数()f x 的定义域为D ,若存在非零实数t 使得对于任意()()()x M M D x t D f x t f x ∈⊆+∈+≥,有,且,则称()f x 为M 上的“t 高调函数”. 如果定义域为R 的函数()f x 是奇函数,当()()220,x f x x a a f x ≥=--时,且为R 上的“t 高调函数”,那么实数a 的取值范围是A.⎡⎢⎣ B.[]1,1-C.⎡-⎢⎣D.⎡⎤⎢⎥⎣⎦第II 卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分.把正确答案填写在答题卡给定的横线上.11.某校组织数学竞赛,学生成绩()()()2100,,120,80100N P a P b ξσξξ-≥=<≤=,a b +=则_____________.12.执行如图所示的程序框图,若输入n 的值为12,则输出的S 的值为_________.13.在222sin cos 3cos sin ,ABC a c b A C A C b ∆-===中,已知,且则____.14.若()()201422014012201421x a a x a x a x x R -=+++⋅⋅⋅+∈,则23201423201411112222a a a a a a ++⋅⋅⋅+=___________. 15.已知12,F F 分别是椭圆C 的左右焦点,A 是椭圆C 短轴的一个顶点,B 是直线2AF 与椭圆C 的另一个交点,若12160F AF B ∠=∆,AF的面积为则椭圆C 的方程为________.三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()2sin cos sin sin ,44f x x x x x x x R ππ⎛⎫⎛⎫=+++-∈ ⎪ ⎪⎝⎭⎝⎭. (I )求()f x 的最小正周期和单调增区间;(II )若()0002x x x f x π⎛⎫=≤≤ ⎪⎝⎭为的一个零点,求0cos 2x 的值.17. (本小题满分12分)某高校自主招生考试中,所有去面试的考生全部参加了“语言表达能力”和“竞争与团队意识”两个科目的测试,成绩分别为A 、B 、C 、D 、E 五个等级,某考场考生的两科测试成绩数据统计如图,其中“语言表达能力”成绩等级为B 的考生有10人.(I )求该考场考生中“竞争与团队意识”科目成绩等级为A 的人数;(II )已知等级A 、B 、C 、D 、E 分别对应5分,4分,3分,2分,1分.(i )求该考场学生“语言表达能力”科目的平均分(ii )求该考场共有10人得分大于7分,其中有2人10分,2人9分,6人8分,从这10人中随机抽取2人,求2人成绩之和的分布列和数学期望.18. (本小题满分12分)已知数列{}n a 是公差不为零的等差数列,12482,,a a a a =,且成等比数列.(I )求数列{}n a 的通项;(II )设(){}1n n n b a --是等比数列,且257,71b b ==,求数列{}n b 的前n 项和n T .19. (本小题满分12分)在如图所示的几何体中,ABC ∆是边长为2的正三角形,BCD ∆为等腰直角三角形,且,2,BD CD AE AE ==⊥平面ABC ,平面BCD ⊥平面ABC.(I )求证:AC//平面BDE ;(II )求钝二面角C-DE-B 的余弦值.20. (本小题满分13分)设函数()2ln 2,f x x x ax a R =+-∈. (I )若函数()f x 在定义域内为增函数,求实数a 的取值范围;(II )设()()()()2102F x f x a F m F n =+==,若(其中0m n <<),且02m n x +=, 问:函数()()()00,F x x F x 在处的切线能否平行于x 轴?若能,求出该切线方程;若不能,请说明理由.21. (本小题满分14分)在直角坐标系xoy 中,曲线1C 的点均在圆()222:59C x y +-=外,且对1C 上任意一点M ,M 到直线2y =-的距离等于该点与圆2C 上点的距离的最小值.(I )求曲线1C 的方程;(II )设P 为直线4y =-上的一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点A ,B 和C ,D ,证明:四点A ,B ,C ,D 的横坐标之积为定值.。

山东省济宁市2014届高三第一次模拟考试数学(理)试题及答案

山东省济宁市2014届高三第一次模拟考试数学(理)试题及答案

山东省济宁市2014届高三第一次模拟考试数学(理)试题本试卷分第I 卷和第Ⅱ卷两部分,共5页.满分150分.考试用时120分钟,考试结束 后,将试卷和答题卡一并交回.注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号填写在答题纸上.2.第I 卷每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题纸各题指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.参考公式:如果事件A 、B 互斥,那么P(A+B)=P(A)+P(B)如果事件A 、B 独立,那么P(AB)=P(A)·P(B)第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数211i z i +=+(i 为虚数单位),则复数z 在复平面内对应的点位于 A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知集合{}211,3402x A x B x x x A B ⎧⎫⎪⎪⎛⎫=<=-->⋂⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则等于 A.{}0x x >B. {}0x x x <-1>或C.{}4x x >D. {}4x x -1≤≤3.对某校高一年级8个班参加合唱比赛的得分进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数和平均数分别是 A.88 88 B.90 89C.89 88D.89 904.若点(),P x y 满足线性约束条件20220,40x y x y z x y y -≤⎧⎪-+≥=+⎨⎪≥⎩则的最大值为A.1B.2C.3D.45.给出命题p :直线()3102110ax y x a y ++=+++=与直线互相平行的充要条件是3a =-;命题q :若210mx mx --<恒成立,则40m -<<.关于以上两个命题,下列结论正确的是A.命题“p q ∧”为真B. 命题“p q ∨”为假C.命题“p q ∧⌝”为真D. 命题“p q ∨⌝”为真6.在△ABC 中,角A 、B 、C 的对边分别是a 、b 、c.若sin sin sin sin .a A c C C b B +=则角B 等于 A.56π B.23π C.3π D.6π 7.函数()1ln f x x x ⎛⎫=- ⎪⎝⎭的图象大致是8.已知向量()()11,1,1,2,0,0,//a m n b m n a b m n=-=>>+其中若,则的最小值是A. B.3+ C. D.3+9.设()ln f x x =,若函数()()g x f x ax =-在区间(]0,3上有三个零点,则实数a 的取值范围是 A.10,e ⎛⎫ ⎪⎝⎭ B.ln 3,3e ⎛⎫ ⎪⎝⎭ C.ln 30,3⎛⎤ ⎥⎝⎦ D.ln 31,3e ⎡⎫⎪⎢⎣⎭ 10.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,点P 是该双曲线和圆2222x y a b +=+的一个交点,若1221sin 2sin PF F PF F ∠=∠,则该双曲线的离心率是第II 卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.函数1lg 1y x ⎛⎫=-+ ⎪⎝⎭的定义域是 ▲ .12.阅读如图所示的程序框图,若输出()f x 的范围是2⎤⎦,则输入实数x 的范围应是 ▲ .13.已知在正方体111A B C D A B CD -中,点E 是棱11A B 的中点,则直线AE 与平面11BDD B 所成角的正弦值是 ▲ . 14.若()()()()()234525012345411111x x a a x a x a x a x a x a +=+-+-+-+-+-,则= ▲ .15.设区域Ω是由直线0,=1x x y π==±和所围成的平面图形,区域D 是由余弦曲线y=cosx 和直线x=0,x=π和y=1±所围成的平面图形,在区域Ω内随机抛掷一粒豆子,则该豆子落在区域D 的概率是 ▲ .三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)已知函数()sin cos 3f x x x π⎛⎫=+ ⎪⎝⎭ (I )当,36x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()f x 的值域; (II )将函数()y f x =的图象向右平移3π个单位后,再将得到的图象上各点的横坐标变为原的12倍,纵坐标保持不变,得到函数()y g x =的图象,求函数()g x 的表达式及对称轴方程.17.(本小题满分12分)如图,已知斜三棱柱ABC 111A B C -的底面是正三角形,点M 、N 分别是1111B C A B 和的中点,112,60AA AB BM A AB ===∠=.(I )求证:BN ⊥平面111A B C ;(II )求二面角1A AB M --的余弦值.18.(本小题满分12分)甲、乙、丙三位同学彼此独立地从A 、B 、C 、D 、E 五所高校中,任选2所高校参加自主招生考试(并且只能选2所高校),但同学甲特别喜欢A 高校,他除选A 校外,在B 、C 、D 、E 中再随机选1所;同学乙和丙对5所高校没有偏爱,都在5所高校中随机选2所即可.(I )求甲同学未选中E 高校且乙、丙都选中E 高校的概率;(II )记X 为甲、乙、丙三名同学中未参加E 校自主招生考试的人数,求X 的分布列及数学期望.19.(本小题满分12分)在等比数列{}121342,,n a a a a a a =+中,已知,且成等差数列.(I )求数列{}n a 的通项公式n a ;(II )设数列{}2n n a a -的前n 项和为2,nn n n S b S =记,求数列{}n b 的前n 项和n T . 20.(本小题满分13分) 已知抛物线214x y =的焦点与椭圆()2222:10x y C a b a b+=>>的一个焦点重合,12F F 、是椭圆C 的左、右焦点,Q 是椭圆C 上任意一点,且12QF QF ⋅的最大值是3.(I )求椭圆C 的标准方程;(II )过右焦点2F 作斜率为k 的直线l 与椭圆C 交于M 、N 两点,在x 轴上是否存在点(),0P m ,使得PM 、PN 为邻边的平行四边形是菱形?如果存在,求出m 的取值范围;如果不存在,请说明理由.21.(本小题14分)设函数()()2ln f x ax x a R =--∈.(I )若()()(),f x e f e 在点处的切线为20,x ey e a --=求的值; (II )求()f x 的单调区间;(III )当()0.x x f x ax e >0-+>时,求证:。

山东省2014届高考冲刺提升测试理科数学试题一

山东省2014届高考冲刺提升测试理科数学试题一

山东省2014届高考冲刺提升测试试题一高三数学(理科)本试卷共4页,满分150分,考试时间120分钟第I 卷(选择题)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,选出符合题目要求的一项.)1. 已知集合{|02}A x x =<<,{|(1)(1)0}B x x x =-+>,则A B =( )A .()01,B .()12,C .(,1)(0,)-∞-+∞D .(,1)(1,)-∞-+∞2. 已知i 为虚数单位,则复数23ii-+等于( ) A. 1122i + B. 1122i -+ C. 1122i - D.1122i -- 3. 已知等差数列{}n a 的前n 项和为S n , 若4518a a =-,则S 8=( )A.72B. 68C. 54D. 904. 阅读右侧程序框图,输出结果i 的值为( ) A. 5B. 6C.7D. 95. 已知平面向量a ,b 满足2==a b ,(2)()=2⋅--a +b a b ,则a 与b 的夹角为( ) A.6π B. 3π C.32π D.65π6. 对数函数y=log a x (a >0且a≠1)与二次函数y=(a ﹣1)x 2﹣x 在同一坐标系内的图象可能是( )7. 某班3个男同学和3个女同学站成一排照相,要求任何相邻的两位同学性别不同,且男生甲和女生乙相邻,但甲和乙都不站在两端,则不同的站法种数是( ) A. 8 B. 16C. 20D.248.一个由三个正方体组成几何体的三视图如图所示,则该几何体的体积为( )A.9+ B. 11C. 9.125 D.10+9.己知定义在R 上的函数()y f x =满足)()(4)f x f x =-,且当x≠2时,其导函数'()f x 满足1'()'()2f x xf x >,若(2,3)a ∈,则( ) A. 2(log )(2)(2)a f a f f << B. 2(2)(2)(log )a f f f a << C. 2(2)(log )(2)a f f a f << D.2(2)(log )(2)a f f a f <<10. 设1F 、2F 是双曲线C :12222=-by a x (0>a ,0>b )的两个焦点,P 是C 上一点,若a PF PF 6||||21=+,且△21F PF 最小内角的大小为︒30,则双曲线C 的渐近线方程是( )A .02=±y xB .02=±y xC .02=±y xD .02=±y x第II 卷(非选择题)二、填空题(本大题共5小题,每小题5分,共25分.把答案填在答题卡上)11. 已知f(n)=1+n132+⋅⋅⋅++(n ∈N*),经计算得f (4)>2,f (8)>25,f (16)>3,f (32)>27,……,观察上述结果,则可归纳出一般结论为 .12. 设,x y 满足约束条件434044000x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数z ax by =+(0,0)a b >>的最大值为8,则ab 的最大值为 __________. 13. 直线x y 31=与抛物线2y x x =-所围图形的面积等于 .14. 如图,直线与圆122=+y x 分别在第一和第二象限内交于21,P P 两点,若点1P 的横坐标为35,∠21OP P =3π,则点2P 的横坐标为 .15. ABC ∆中,角C B A 、、所对的边分别为c b a 、、,下列 命题正确的是________(写出正确命题的编号). ①总存在某内角α,使1cos 2α≥; ②若A sin B >B sin A ,则B >A ;③存在某钝角ABC ∆,有0tan tan tan >++C B A ; ④若02=++AB c CA b BC a ,则ABC ∆的最小角小于6π; ⑤若()10≤<<t tb a ,则tB A <.三、解答题(本大题共6小题,共75分.解答应写出文字说明,演算步骤或证明过程)16. (本题满分12分) 已知函数2()2cos cos()sin cos 6f x x x x x x π=-+.A(Ⅰ)求()f x 的单调区间; (Ⅱ)设[,]33x ππ∈-,求()f x 的值域. 17.(本题满分12分)如图,正方形ADEF 与梯形ABCD 所在平面互相垂直,AD ⊥CD ,AB//CD ,AB=AD=221=CD ,点M 在线段EC 上且不与E 、C 重合.(1)当点M 是EC 中点时,求证:BM//平面ADEF ; (2)当平面BDM 与平面ABF 所成锐二面角的余弦值为66时,求三棱锥M —BDE 的体积. 18.(本题满分12分)某中学为丰富教工生活,国庆节举办教工趣味投篮比赛,有A 、B 两个定点投篮位置,在A 点投中一球得2分,在B 点投中一球得3分. 其规则是:按先A 后B 再A 的顺序投篮.教师甲在A 和B 点投中的概率分别是1123和,且在A 、B 两点投中与否相互独立. (Ⅰ)若教师甲投篮三次,试求他投篮得分X 的分布列和数学期望;(Ⅱ)若教师乙与甲在A 、B 点投中的概率相同,两人按规则各投三次,求甲胜乙的概率. 19. (本题满分12分)已知数列{}n a 的前n 项和11()22n n n S a -=--+(n 为正整数).(1)令2n n n b a =,求证数列{}n b 是等差数列,并求数列{}n a 的通项公式; (2)令1n n n c a n+=,12........n n T c c c =+++ ,试求nT 。

山东省高考数学仿真模拟冲刺考试(一)文 新人教A版

山东省高考数学仿真模拟冲刺考试(一)文 新人教A版

山东省2014届高考数学仿真模拟冲刺考试(一) 文 新人教A 版绝密★启用前 试卷类型:A 满分150分 考试用时120分钟 参考公式:如果事件A ,B 互斥,那么P (A+B )=P (A )+P (B ); 如果事件A ,B 独立,那么P (AB )=P (A )·P(B ). 第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分,每小题所给的四个选项中只有一个是正确的)1.设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R U ,则a 的取值范围为 ( )A .(),2-∞B .(],2-∞C .()2,+∞D .[)2,+∞2.复数213)i -=( )A .3iB .3iC 3i +D 3i3.“1k =”是“直线0x y k -+=与圆221x y +=相交”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件4.设01a <<,2log (1)a m a =+,log (1)a n a =+,log (2)a p a =,则,,m n p 的大小关系是 ( ) A . n m p >> B .m p n >> C .m n p >>D .p m n >>5.已知函数3()sin 4(,)f x ax b x a b R =++∈,2(lg(log 10))5f =,则(lg(lg 2))f =( )A .5-B .1-C .3D .46.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面.有下列四个命题: ① 若//αβ,m α⊂,n β⊂,则//m n ; ② 若m α⊥,//m β,则αβ⊥;③ 若n α⊥,n β⊥,m α⊥,则m β⊥; ④ 若αγ⊥,βγ⊥,m α⊥,则m β⊥. 其中错误命题的序号是 ( ) A .①④B .①③C .②③④D .②③7.函数()()112122x x f x ⎡⎤=+--⎣⎦的图象大致为( )8.设抛物线C:y2=4x 的焦点为F,直线L 过F 且与C 交于A ,B 两点.若|AF|=3|BF|,则L 的方程为( )A .y=x-1或y=-x+1B .y=3(X-1)或y=3(x-1)C .3x-1)或y=3x-1)D .y=22(x-1)或y=22-(x-1)9.函数()295y x =--可能成为该数列的公比的数是 ( )A .34B 2C 3D 510.已知π04θ<<,则双曲线1C :22221sin cos x y θθ-=与2C :22221cos sin y x θθ-=的 ( )A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等第Ⅱ卷(非选择题 共100分) 二、填空题(每小题5分,共5分)11.已知向量(1,),(,2)a m b m ==,若a//b ,则实数m 等于 .12.已知实数,x y 满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值是1-,那么此目标函数的最大值是 .13.若某程序框图如图所示,则该程序运行后输出的S 的值是______.14.已知圆2210240x y x +-+=的圆心是双曲线2221(0)9x y a a -=>的一个焦点,则此双曲线的渐近线方程为 .15.观察下列一组等式:①223sin 30+cos 60+sin 30cos60=4o o o o , ②223sin 15+cos 45+sin15cos 45=4o o o o , ③223sin 45+cos 75+sin 45cos75=4o o o o ,……,那么,类比推广上述结果,可以得到的一般结果是: .三、解答题(本大题共6道小题,满分75分,解答须写出文字说明,证明过程和演算步骤) 16.(本题满分12分) 设ABC ∆的内角,,A B C 的对边分别为,,a b c ,()()a b c a b c ac ++-+=. (Ⅰ)求B ;(Ⅱ)若sin sin A C =,求C .2014年山东省第二十三届运动会将在济宁召开,为调查我市某校高中生是否愿意提供志愿(I)用分层抽样的方法在愿意提供志愿者服务的学生中抽取6人,其中男生抽取多少人?(II)在(I)中抽取的6人中任选2人,求恰有一名女生的概率;(III)你能否有99%的把握认为该校高中生是否愿意提供志愿者服务与性别有关?下面的临界值表供参考:独立性检验统计量()()()()(),22dbcadcbabcadnK++++-=其中.dcban+++=设n S 为数列{n a }的前项和,已知01≠a ,2n n S S a a •=-11,∈n N *(Ⅰ)求1a ,2a ,并求数列{n a }的通项公式;(Ⅱ)求数列{n na }的前n 项和.三棱柱111ABC A B C -中,侧棱与底面垂直,90ABC ∠=o,12AB BC BB ===,,M N 分别是AB ,1A C 的中点.(Ⅰ)求证:MN ∥平面11BCC B ; (Ⅱ)求证:MN ⊥平面11A B C ; (Ⅲ)求三棱锥M -11A B C 的体积.已知1F ,2F 分别是椭圆15:22=+y x E 的左、右焦点1F ,2F 关于直线02=-+y x 的对称点是圆C 的一条直径的两个端点. (Ⅰ)求圆C 的方程;(Ⅱ)设过点2F 的直线l 被椭圆E 和圆C 所截得的弦长分别为a ,b .当ab 最大时,求直线l 的方程.已知函数1()ln 1()af x x ax a R x -=-+-∈.(Ⅰ)当1a =-时,求曲线()y f x =在点(2,(2))f 处的切线方程;(Ⅱ)当12a ≤时,讨论()f x 的单调性.山东省2014年高考仿真模拟冲刺卷参考答案 文科数学(一) 题号1 2 3 4 5 6 7 8 9 10 答案 BADDCAACBD二、填空题11.2-或2 12.3 13.1/2 14 .34y x=± 18. (本小题满分12分)解:(Ⅰ) 11111121.S S a a n a S ⋅=-=∴=时,当Θ.1,011=≠⇒a a 11111111222221----=⇒-=---=-=>n n n n n n n n n a a a a S a a S a a s s a n 时,当-.*,221}{11N n a q a a n n n ∈===⇒-的等比数列,公比为时首项为(Ⅱ)n n n n qa n qa qa qa qT a n a a a T ⋅++⋅+⋅+⋅=⇒⋅++⋅+⋅+⋅=ΛΛ321321321321设1432321+⋅++⋅+⋅+⋅=⇒n n a n a a a qT Λ上式左右错位相减:nn n nn n n n na q q a na a a a a T q 21211)1(111321⋅--=---=-++++=-++Λ*,12)1(N n n T n n ∈+⋅-=⇒.19.⑴连结1BC ,1AC ,∵,M N 是AB ,1A C 的中点∴MN ∥1BC .又∵MN ⊄平面11BCC B ,∴MN ∥平面11BCC B . --------------------4分 ⑵∵三棱柱111ABC A B C -中,侧棱与底面垂直,∴四边形11BCC B 是正方形.∴11BC B C ⊥. ∴1MN B C ⊥.连结1,A M CM ,1AMA AMC ∆≅∆.∴1A M CM =,又N 中1A C 的中点,∴ 1MN AC ⊥.∵1B C 与1A C 相交于点C ,∴MN ⊥平面11A B C . --------------9分⑶由⑵知MN 是三棱锥M -11A B C 的高.在直角MNC ∆中,15,23MC A C ==,∴2MN =.又1122A B CS=V .11111433M A B C A B C V MN S -=⋅=V . ---------12分21.解:(1)当1-=a 时,2()ln 1,(0,)f x x x x x =++∈+∞-.2211(x x x f -+='∴), ,22ln )2(+=∴f 1)2(='f ,∴曲线()y f x =在点(2,(2))f 处的切线方程为2ln +=x y . …4分(2)因为11ln )(--+-=x aax x x f ,所以211)('x a a x x f -+-=221x a x ax -+--= ),0(+∞∈x ,令,1)(2a x ax x g -+-=),,0(+∞∈x …………6分 (Ⅰ)当0=a 时,()1, (0,)g x x x =+∈+∞-,所以当(0,1)x ∈时0)(>x g ,此时0)(<'x f ,函数()f x 单调递减,。

【2014菏泽市一模】山东省菏泽市2014届高三3月模拟考试理科数学Word版含答案

【2014菏泽市一模】山东省菏泽市2014届高三3月模拟考试理科数学Word版含答案

保密★启用前 试卷类型:A高三数学试题(理) 2014.3一、选择题(共10道小题,每题5分,共50分)1.设集合{|2sin ,[5,5]}M y y x x ==∈-,2{|log (1)}N x y x ==-,则MN = ( )A .{|15}x x <≤B .{|10}x x -<≤C .{|20}x x -≤≤D .{|12}x x <≤ 2.已知复数21iz =-+,则( )A .||2z =B .z 的实部为1C .z 的虚部为﹣1D .z 的共轭复数为1+i 3.“2a =”是“关于x 的不等式1+2x x a ++<的解集非空”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分又不必要条件4.某几何体的三视图如图1所示,且该几何体的体积是32, 则正视图中的x 的值是 ( ) A . 2 B.92C.32D. 35. 某程序框图如图2所示,现将输出(,)x y 值依次记为:1122(,),(,),,(,),n n x y x y x y 若程序运行中输出的一个数组是 (,10),x -则数组中的x =( )A .32B .24C .18D .16 6.下列四个图中,函数10ln 11x y x +=+的图象可能是( )7.已知函数2()cos f x x x =-,则(0.6),(0),(0.5)f f f -的大小关系是 ()A .(0)(0.6)(0.5)f f f <<-B .(0)(0.5)(0.6)f f f <-<C .(0.6)(0.5)(0)f f f <-<D .(0.5)(0)(0.6)f f f -<<8.以下四个命题中:B C D①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1;③在某项测量中,测量结果ξ服从正态分布N (1,σ2)(σ>0),若ξ在(0,1)内取值的概率为0.4,则ξ在(0,2)内取值的概率为0.8 ;④对分类变量X 与Y 的随机变量k 2的观测值k 来说,k 越小,判断“X 与Y 有关系”的把握程度越大.其中真命题的个数为( )A .4B .3C .2D .19.已知函数2014sin (01)()log (1)x x f x x x π≤≤⎧=⎨>⎩,若a 、b 、c 互不相等,且()()()f a f b f c ==,则a +b +c的取值范围是 ( )A .(1,2014)B .(1,2015)C .(2,2015)D .[2,2015]10.已知点(,0)(0)F c c ->是双曲线22221x y a b-=的左焦点,离心率为e ,过F 且平行于双曲线渐近线的直线与圆222x y c +=交于点P ,且点P 在抛物线24y cx =上,则e 2 =( ) ABCD二、填空题(共5道小题,每题5分,共25分)11.231()x x+的展开式中的常数项为a ,则直线y ax =与曲线2y x =围成图形的面积为 .12.设关于x ,y 的不等式组210,0,0.x y x m y m -+>⎧⎪-<⎨⎪+>⎩表示的平面区域内存在点P (x 0,y 0)满足x 0-2y 0=2,则m 的取值范围是 .13.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c ,已知222a c b -=,且sin cos 3cos sin A C A C =, 则b = .14.如图,A 是半径为5的圆O 上的一个定点,单位向量AB 在A 点处与圆O相切,点P 是圆O 上的一个动点,且点P 与点A 不重合,则AP ·AB 的 取值范围是 .15.函数()f x 的定义域为A ,若12,x x A ∈且12()()f x f x =时总有12x x =,则称()f x 为单函数.例如,函数()1()f x x x =+∈R 是单函数.下列命题:①函数2()2()f x x x x =-∈R 是单函数;②函数2log ,2,()2,x x f x x x ≥⎧=⎨-<2.⎩是单函数;③若()f x 为单函数, 12,x x A ∈且12x x ≠,则12()()f x f x ≠;④若函数()f x 在定义域内某个区间D 上具有单调性,则()f x 一定是单函数.其中真命题是 (写出所有真命题的编号). 三、解答题(本大题共6小题,满分75分) 16.(本小题满分12分)已知函数2()2sin cos f x x x x ωωω=+0ω>)的最小正周期为π. (Ⅰ)求函数()f x 的单调增区间; (Ⅱ)将函数()f x 的图象向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图象;若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.17. (本小题满分12分)如图, 已知四边形ABCD 和BCEG 均为直角梯形,AD ∥BC , CE ∥BG ,且2BCD BCE π∠=∠=,平面ABCD ⊥平面BCEG ,BC =CD =CE =2AD =2BG =2. (Ⅰ)求证:AG //平面BDE ;(Ⅱ)求:二面角G -DE -B 的余弦值. 18.(本小题满分12分)为了倡导健康、低碳、绿色的生活理念,某市建立了公共自行车服务系统鼓励市民租用公共自行车出行,公共自行车按每车每次的租用时间进行收费,具体收费标准如下: ①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,收费1元; ③租用时间为2小时以上且不超过3小时,收费2元;④租用时间超过3小时的时段,按每小时2元收费(不足1小时的部分按1小时计算) 已知甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过1小时的概率分别是0.4和0.5 ,租用时间为1小时以上且不超过2小时的概率分别是0.5和0.3.(Ⅰ)求甲、乙两人所付租车费相同的概率;(Ⅱ)设甲、乙两人所付租车费之和为随机变量ξ,求ξ的分布列和数学期望E ξ 19.(本小题满分12分)已知数列{a n }是等差数列,数列{b n }是等比数列,且对任意的*n N ∈,都有112233a b a b a b ++32n n n a b n ++⋅⋅⋅+=.(Ⅰ)若{b n }的首项为4,公比为2,求数列{a n +b n }的前n 项和S n ;(Ⅱ)若44n a n =+ ,试探究:数列{b n }中是否存在某一项,它可以表示为该数列中其它(,2)r r N r ∈≥项的和?若存在,请求出该项;若不存在,请说明理由.20.(本小题满分13分)已知函数22()e n nxx x af x --=,其中*,n a ∈∈N R ,e 是自然对数的底数.(Ⅰ)求函数12()()()g x f x f x =-的零点;(Ⅱ)若对任意*,()n n f x ∈N 均有两个极值点,一个在区间(1,4)内,另一个在区间[1,4]外,求a 的取值范围;(Ⅲ)已知,*,k m k m ∈<N ,且函数()k f x 在R 上是单调函数,探究函数()m f x 的单调性. 21.(本小题满分14分)如图;.已知椭圆C:22221(0)x y a b a b+=>>的离心率为,以椭圆的左顶点T 为圆心作圆T:2222)(0),x y r r ++=>(设圆T 与椭圆C 交于点M 、N .(Ⅰ)求椭圆C 的方程;(Ⅱ)求TM TN ⋅的最小值,并求此时圆T 的方程;(Ⅲ)设点P 是椭圆C 上异于M ,N 的任意一点,且直线MP ,NP 分别与x 轴交于点R ,S ,O 为坐标原点. 试问;是否存在使POS POR S S ∆∆⋅最大的点P ,若存在求出P 点的坐标,若不存在说明理由.高三数学试题(理)参考答案一、选择题:DCCCA CBCCD 二、填空题: 11.92; 12.2,3⎛⎫+∞ ⎪⎝⎭; 13.4 14.[]5,5- 15.③ 三、解答题16.解:(Ⅰ)由题意得:()f x =22sin cos x x x ωωω+sin 222sin(2)3x x x πωωω==-, …………………………………………2分由周期为π,得1ω=,得()2sin(2)3f x x π=-, ……………………………4分函数的单调增区间为:222232k x k πππππ-≤-≤+,整理得5,1212k x k k Z ππππ-≤≤+∈, 所以函数()f x 的单调增区间是5[,],Z 1212k k k ππππ-+∈.………………………6分 (Ⅱ)将函数()f x 的图象向左平移6π个单位,再向上平移单位,得到2sin 21y x =+的图象,所以()2sin 21g x x =+,…8分 令()0g x =,得712x k ππ=+或11(Z)12x k k ππ=+∈,………………………………10分 所以在[]0,π上恰好有两个零点,若()y g x =在[0,]b 上有10个零点,则b 不小于第10个零点的横坐标即可,即b 的最小值为115941212πππ+=. ……………………………………12分17.(本小题满分12分)解:由平面ABCD BCEG ⊥平面,平面 ABCD BCEG BC =平面,,CE BC CE ⊥⊂平面BCEG , ∴EC ABCD ⊥平面,由平面ABCD BCEG ⊥平面,2BCD BCE π∠=∠=知EC CD ⊥, .………2分根据题意建立如图所示的空间直角坐标系,可得(0,2,0(20,0(002(2,1,0)(0,2,1)B D E A G ),,),,,),……………………………….3分(Ⅰ)设平面BDE 的法向量为(,,)m x y z =,则(0,2,2),(2,0,2)EB ED =-=- 0EB m ED m ∴⋅=⋅=即0y z x z -=⎧⎨-=⎩ , x y z ∴==,∴平面BDE 的一个法向量为(1,1,1)m =,………………………………………………..5分(2,1,1)AG =- 2110AG m ∴⋅=-++=,AG m ∴⊥,AG BDE ⊄平面,∴AG ∥平面BDE . ……………………………………………….7分(Ⅱ)由(1)知(0,2,1)EG =-设平面EDG 的法向量为),,(z y x n=,则00EG n ED n →→⎧⋅=⎪⎨⎪⋅=⎩ 即20220y z x z -=⎧⎨-=⎩ ∴平面EDG 的一个法向量为1(1,,1)2n =……………………………………………..9分又平面BDE 的一个法向量为(1,1,1)m =,,设二面角G DE B --的大小为α,则cos α==, ∴二面角G DE B --. …………………..12分 18.解:(Ⅰ)根据题意,分别记“甲所付租车费0元、1元、2元”为事件A 1,A 2,A 3,它们彼此互斥,且123()0.4,()0.5,()10.40.50.1P A P A P A ==∴=--=,分别记“乙所付租车费0元、1元、2元”为事件B 1,B 2,B 3,它们彼此互斥,且123()0.5,()0.3,()10.50.30.2P B P B P B ==∴=--=. ··································· 2分 由题知,A 1,A 2,A 3与B 1,B 2,B 3相互独立, ······································· 3分 记甲、乙两人所付租车费相同为事件M ,则M =A 1B 1+A 2B 2+A 3B 3, 所以P (M )=P (A 1)P (B 1)+ P (A 2)P (B 2)+ P (A 3)P (B 3)=0.4×0.5+0.5×0.3+0.1×0.2=0.2+0.15+0.02=0.37; ································· 6分 (Ⅱ) 据题意ξ的可能取值为:0,1,2,3,4 , ················································· 7分11(0)()()0.2P P A P B ξ===;1221(1)()()()()0.40.30.50.50.37P P A P B P A P B ξ==+=⨯+⨯=;132231(2)()()()()()()0.40.20.50.30.10.50.28P P A P B P A P B P A P B ξ==++=⨯+⨯+⨯=; 2332(3)()()()()0.50.20.10.30.13P P A P B P A P B ξ==+=⨯+⨯=;33(4)()()0.10.20.02P P A P B ξ===⨯=. ····················································· 10分所以ξ的分布列为:ξ的数学期望,………………………11分答:甲、乙两人所付租车费相同的概率为0.37,ξ的数学期望E ξ=1.4. …………12分 19.解:(Ⅰ)因为31122332n n n a b a b a b a b n ++++⋅⋅⋅+=⋅,所以当2n ≥时,211223311(1)2n n n a b a b a b a b n +--+++⋅⋅⋅+=-⋅,两式相减,得3222(1)2(1)2(2)n n n n n a b n n n n +++=⋅--⋅=+⋅≥,而当n =1时,1116a b =,适合上式,从而2*(1)2()n n n a b n n N +=+⋅∈,……………………3分又因为{b n }是首项为4,公比为2的等比数列,即12n n b +=,所以22n a n =+,…………4分从而数列{a n +b n }的前n 项和22(422)4(12)234212nn n n n S n n +++-=+=++--;………6分(Ⅱ) 因为44n a n =+,2*(1)2()n n n a b n n N +=+⋅∈,所以2n n b =,……………………. 8分假设数列{b n }中第k 项可以表示为该数列中其它(,2)r r N r ∈≥项1212,,,()r t t t r b b b t t t ⋅⋅⋅<<⋅⋅⋅<的和,即12r k t t t b b b b =++⋅⋅⋅+,从而122222rt t t k =++⋅⋅⋅+,易知1r k t ≥+ ,(*) ……………9分又11121232(12)2222222222212rt t r r rrt t t t t k++-=++⋅⋅⋅+≤+++⋅⋅⋅+==-<-,所以1r k t <+,此与(*)矛盾,从而这样的项不存在. …………………………………12分20.解:(I )222122222(2)(e 1)()()()e e e x x x xx x a x x a x x a g x f x f x -------=-=-=, 令g (x )=0, 有e x -1=0,即x =0;或 x 2-2x -a =0;44a ∆=+,①当1a <-时,0,∆<函数()g x 有1个零点 10x =; ……………………1分②当1a =-时,0,∆=函数()g x 有2个零点120,1x x ==;…………………2分 ③当0a =时,0,∆>函数()g x 有两个零点120,2x x ==;……………………3分 ④当1,0a a >-≠时,0,∆>函数()g x 有三个零点:1230,11x x x === ………………………………………………4分(II )222(22)e (2)e 2(1)2().e enx nx n nx nxx n x x a nx n x a n f x -----+++⋅-'==,…5分 设2()2(1)2n g x nx n x a n =-+++⋅-,()n g x 的图像是开口向下的抛物线, 由题意对任意,N n *∈()0n g x =有两个不等实数根12,x x , 且()[]121,4,1,4.x x ∈∉则对任意,N n *∈(1)(4)0n n g g <,即6(1)(8)0n a n a n ⎡⎤⋅+⋅⋅--<⎢⎥⎣⎦,有6(1)[(8)]0a a n +--<,…………………………7分又任意,N n *∈68n-关于n 递增, 68862n -≥-=,故min 61(8)a n-<<-,所以2a -1<<.所以a 的取值范围是()1,2.- ……………………………………………………………9分(III )由(2)知, 存在,R x ∈22(1)2()0ek kxkx k x a k f x -+++⋅-'=<,又函数()k f x 在R 上是单调函数,故函数()k f x 在R 上是单调减函数, ………………………………………………10分 对22(1)20kx k x ak -+++-=来说2224(1)4(2)4(1)0,k k k ka k a k ∆=++-=++≤即21(1).a k ≤-+………………11分 所以对于函数()m f x '来说2222222214()4(1)41(1).m k m m m a m m k k -⎡⎤∆=++≤+-+=⎢⎥⎣⎦由,,,N k m k m *∈<知0.m ∆< ………………………………………………………………12分 即对任意,R x ∈22(1)2()0,e mmxmx m x a m f x -+++-'=<故函数()m f x 在R 上是减函数. …………………………………………………………13分21.解:(I)由题意知2,c a a ⎧=⎪⎨⎪=⎩解之得;2,a c ==,由222c a b =-得b=1,故椭圆C 方程为1422=+y x ;.…………………3分(II )点M 与点N 关于x 轴对称,设1111(,),(,)M x y N x y -,不妨 设10y >, 由于点M 在椭圆C 上,∴221114x y =-,由已知),2(),,2),0,2(1111y x TN y x TM T -+=+=-(则, 22111111(2,)(2,)(2)TM TN x y x y x y ∴⋅=++-=+-2221115812)(1)()4455x x x =+--=+-(,……………………………………………………..6分 由于22,x -<<故当185x =-时,TM TN ⋅取得最小值为15-,当185x =-时135y =,故83(,),55M -又点M 在圆T 上,代入圆的方程得21325r =,故圆T 的方程为:22132)25x y ++=(;……………………………………………………………..8分 (III )假设存在满足条件的点P,设),(00y x P ,则直线MP 的方程为:),(010100x x x x y y y y ---=-令0=y ,得101001y y y x y x x R --=,同理101001y y y x y x x S ++=,故212021202021y y y x y x x x S R --=⋅;…………………………………………………..10分又点M 与点P 在椭圆上,故)1(4),1(421212020y x y x -=-=,得222222100101222201014(1)4(1)4()4R S y y y y y y x x y y y y ----⋅===--,4R S R S OR OS x x x x ∴⋅=⋅=⋅=为定值,……………………………………….12分POS POR S S ∆∆⋅=1122p p OS y OR y ⋅=144⨯⨯2p y =2p y ,由P 为椭圆上的一点,∴要使POS POR S S ∆∆⋅最大,只要2p y 最大,而2p y 的最大值为1,故满足条件的P 点存在其坐标为(0,1)(01P P -和,).……………………………………..14分。

山东省烟台市2014届高三3月模拟理科数学扫描版含答案

山东省烟台市2014届高三3月模拟理科数学扫描版含答案

2014年高三诊断性测试数学答案(理)一、选择题: DCBBA BBDCA二、填空题:11. 3- 12.134 13.2192x - 14. 1515.①②③ 三、解答题:16.解:(1)由0⋅=m n 得22cos cos 0x x x y +-=,………… 2分即22cos cos =cos 221y x x x x x =+++ 2sin 216x π⎛⎫=++ ⎪⎝⎭, 所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭,其最小正周期为π.……………………… 6分 (2)由题意得()32A f =, 所以2)(62A k Z k πππ+∈+=,因为0A π<<,所以3A π=. ……… 8分由正弦定理得b B =,c C =,b c B C +=+2sin()4sin()36B B B ππ=-=+, ……………………… 10分 ⎪⎭⎫ ⎝⎛∈32,0πB ,1sin()( 1]62B π∴+∈,,]4,2(∈+∴c b , 所以b c +的取值范围为(2,4]. ……………………………………… 12分17.解(1) 12n n a S ,,成等差数列,∴122n n a S =+,……………… 1分当1n =时,11122a S =+,112a ∴=,………………………………… 2分 当2n ≥时,122n n S a =-,11122n n S a --=-, 两式相减得:1122n n n n n a S S a a --=-=-,12n n a a -∴=, ………… 4分 所以数列{}n a 是首项为12,公比为2的等比数列, 12122n n n a a --=⨯=. …………………………………………………… 6分(2)2122322123222222log log log log (21)(21)n n n n a a n b n n +-+-++=⨯=⨯=-+111111()212122121n b n n n n =⨯=--+-+…………………… 10分 1231111111111[1+-++)]23352121n b b b b n n ++++=---+()()( =111(1)2212n -<+.…………………………………………… 12分 解:(1)∵ 3,6,15===n M N ,ξ的可能值为0,1,2,3其分布列为315396)(C C C k P k k -⋅==ξ )3 , 2 , 1 , 0(=k ………………… 3分………………… 6分(2)依题意可知,一年中每天空气质量达到一级的概率为52156==p 一年中空气质量达到一级的天数为η则η~⎪⎭⎫ ⎝⎛52,360B , 所以14452360=⨯=ηE (天) ……………………11分 一年中空气质量达到一级的天数为144天 ……………………………… 12分19. 证明:(1)平行四边形ABCD 中,6AB =,10AD =,8BD =, 沿直线BD 将△BCD 翻折成△BC D '可知6CD =,10BC BC '==,8BD =,即222''BC C D BD =+,'C D BD ⊥. ………………………………………………… 2分 ∵平面BC D '⊥平面ABD ,平面BC D '平面ABD =BD ,C D '⊂平面BC D ',∴C D '⊥平面ABD . ……………………………… 5分(2)由(1)知C D '⊥平面ABD ,且CD BD ⊥,如图,以D 为原点,建立空间直角坐标系D xyz -. …………………… 6分 则(0,0,0)D ,(8,6,0)A ,(8,0,0)B ,'(0,0,6)C . ∵E 是线段AD 的中点, ∴(4,3,0)E ,(8,0,0)BD =-.在平面BEC '中,(4,3,0)BE =-,'(8,0,6)BC =-,设平面BEC '法向量为(,,)x y z =n , ∴ 0'0BE BC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即430860x y y z -+=⎧⎨-+=⎩, 令3x =,得4,4y z ==,故(3,4,4)=n .………9分 设直线BD 与平面BEC '所成角为θ,则||3sin |cos ,|||||BD BD BD θ⋅=<>==⋅n n n ……………………………… 11分 ∴ 直线BD 与平面BEC '. …………………… 12分 20.解:(1)设椭圆C的方程为)0(12222>>=+b a b y a x则b =由2221,2c a c b a ==+,得4a =, ∴椭圆C 的方程为2211612x y +=. ………………………………… 5分 (2) 当APQ BPQ ∠=∠时,PA 、PB 的斜率之和为0,设直线PA 的斜率为k , 则PB 的斜率为k -,PA 的直线方程为3(2)y k x -=-,由 ⎪⎩⎪⎨⎧=+-=-11216 )2(322y x x k y 整理得 222(34)8(32)4(32)480k x k kx k ++-+--=, ……………………… 9分 2143)32(82kk k x +-=+ , 同理PB 的直线方程为)2(3--=-x k y ,可得22243)32(843)32(82kk k k k k x ++=+---=+ ∴2121222161248,3434k k x x x x k k--+=-=++ , (12)分214)(3)2(3)2(212121212121=--+=---++-=--=x x k x x k x x x k x k x x y y k AB , 所以AB 的斜率为定值21. …………………………………………… 13分 21.解:(1)222122222(2)(e 1)()()()e e ex x x x x x a x x a x x a g x f x f x -------=-=-=, 设a x x x h --=2)(2, 44a ∆=+①当1a <-时,0,∆<函数()g x 有一个零点:10.x = …………… 1分 ②当1a =-时,0,∆=函数()g x 有两个零点:120, 1.x x == ……… 2分 ③当0a =时,0,∆>函数()g x 有两个零点:120, 2.x x == ………… 3分 ④当1,0a a >-≠时,0,∆>函数()g x 有三个零点:1230,11x x x ===+ ………………………………… 4分(2)222(22)e (2)e 2(1)2().e e nx nx n nx nxx n x x a nx n x a n f x -----+++⋅-'==…… 5分 设2()2(1)2n g x nx n x a n =-+++⋅-,()n g x 的图像是开口向下的抛物线. 由题意对任意,N n *∈()0n g x =有两个不等实数根12,x x ,且()[]121,4,1,4.x x ∈∉则对任意,N n *∈(1)(4)0n n g g <,即6(1)(8)0n a n a n ⎡⎤⋅+⋅⋅--<⎢⎥⎣⎦, ………………………………………… 7分 又任意,N n *∈68n -关于n 递增,681n->-, 故min 61(8),186 2.a a n-<<--<<-=所以a 的取值范围是()1,2.- ……………………………………………… 9分(3)由(2)知, 存在,R x ∈22(1)2()0e k kx kx k x a k f x -+++⋅-'=<,又函数()k f x 在R 上是单调函数,故函数()k f x 在R 上是单调减函数, ………………… 10分从而2224(1)4(2)4(1)0,k k k ka k a k ∆=++-=++≤即21(1).a k ≤-+…11分 所以2222222214()4(1)41(1).m k m m m a m m k k -⎡⎤∆=++≤+-+=⎢⎥⎣⎦ 由,,,N k m k m *∈<知0.m ∆< …………………………………13分即对任意,R x ∈22(1)2()0e k kx kx k x a k f x -+++⋅-'=< 故函数()m f x 在R 上是减函数.……………………………………14分。

山东省济南一中2014届高三数学四月模拟考试试题 理 新人教A版

山东省济南一中2014届高三数学四月模拟考试试题 理 新人教A版

济南一中2014届高三四月模拟考试数学〔理〕试题说明:本试卷总分为150分,试题分为第1卷〔选择题〕和第2卷〔非选择题〕两局部,第1卷为第1页至第2页,第2卷为第3页至第4页。

考试时间120分钟。

第1卷〔选择题,共50分〕一、选择题〔每题5分,共50分〕1. 全集,U R =集合{}{}1,1.M x R y x N y R y x =∈=-=∈=+如此M C N U =(〕 A .∅B.{}01x x ≤< C.{}01x x ≤≤ D. {}11x x -≤<2. 复数2341i i i i++=-(〕A.1122i -- B.1122i -+ C.1122i - D.1122i + 3. ,m n 为两条不同的直线,,αβ为两个不同的平面,如下四个命题中,正确的答案是〔 〕 A .假设n m n m //,//,//则且αα B .假设βαββα//,//,//,,则且上在n m n m C .假设βαβα⊥⊥m m 则上在且,, D .假设ααββα//,,,m m m 则外在⊥⊥4. 命题p :假设1||1||||,>+>+∈b a b a R b a 是,则的充分不必要条件;命题q :函数)23(log 21-=x y 的定义域是]1,(-∞,如此 〔 〕A .“p 或q 〞为假B .“p 且q 〞为真C .p 真q 假D .p 假q 真5. 把边长为1的正方形ABCD 沿对角线BD 折起,形成的三棱锥A BCD - 的正视图与俯视图如下列图,如此其侧视图的面积为〔 〕A .22 B .21C .42 D .416. 将函数)42sin(2)(π+=x x f 的图象向右平移ϕ个单位,再将图象上每一点的横坐标缩短到原来的21倍,所得图象关于直线4π=x 对称,如此ϕ的最小正值为 ( ) A. π81 B. π83 C. π43 D.2π7. 在R 上定义运算).1(:y x y x -=⊗⊗假设不等式1)()(<+⊗-a x a x 对任意实数x 成立,如此〔〕 A .11<<-aB .20<<aC .2321<<-a D .2123<<-a 8. 三角形ABC 中,090C ∠=,2AB =,1AC =,假设32AD AB =,如此CD CB ⋅=〔〕 A .32 B .62 C .32D .929. P 是以F 1、F 2为焦点的椭圆)0(12222>>=+b a by a x 上一点,假设12PF PF ⋅=0, 21tan F PF ∠=2,如此椭圆的离心率为〔 〕A .21B .32C .31D .3510. 当0a >时,函数2()()xf x x ax e =-的图象大致是〔 〕第2卷〔非选择题,共100分〕须知事项:1.第2卷所有题目的答案考生须用黑色签字笔答在答题纸上,考试完毕后上交答题纸。

山东省各地市2014届高三一模数学试题

山东省各地市2014届高三一模数学试题

1.已知集合M={|ln(1)x y x =-},集合N={|,xy y e x =∈R}(e 为自然对数的底数) 则MN=(A ){|1x x <} (B) {|1x x >} (C) {|01x x <<} (D ) ∅2.复数1z i =-,则1z z+ (A ) 1322i + (B) 1322i - (C ) 3322i - (D ) 3122i -3.三棱柱的侧棱与底面垂直,且底面是边长为2的等边三角形,其正(主)视图(如图所示)的面积为8,则侧(左)视图的面积为 (A ) 8 (B ) 4 (C ) 43 (D) 34.函数sin(3)cos()cos(3)cos()3633y x x x x ππππ=+--++的图象的一条对称轴的方程是(A )12x π=(B) 6x π=(C ) 12x π=-(D) 24x π=-5.“22ab>"是“ln ln a b >”的(A)充分不必要条件 (B)必要不充分条件 (C)充要条件 (D )既不充分也不必要条件 6.若P (2,—l)为圆22(1)25x y -+=的弦AB 的中点,则直线AB 的方程是(A ) 30x y --= (B ) 230x y +-= (C) 10x y +-= (D ) 250x y --= 7.从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为(A ) 224 (B ) 112 (C) 56 (D ) 288.现有四个函数①y =x ·sin x ,②y =x ·cos x ,③y =x ·|cos x |,④y =x ·2x 的部分图象如下,但顺序被打乱,则按照图象从左到名,对应的函数序号正确的一组是(A ) ①④②③ (B) ①④③② (C ) ④①②③ (D ) ③④②① 9.已知三点A(2,1),B(1,-2),C(35,15-),动点P (a,b)满足0≤OP OA ≤2,且0≤OP OB ≤2,则点P 到点C 的距离大于14的概率为 (A) 1564π- (B) 564π (C ) 116π- (D ) 16π10.已知定义在R 上的函数()f x 满足:222,[0,1),()2,[1,0),x x f x x x ⎧+∈=⎨-∈-⎩且(2)()f x f x +=,25()2x g x x +=+,则方程()()f x g x =在区间[—5,1]上的所有实根之和为(A ) -5 (B) —6 (C) —7 (D ) —811.若*2()()n x n N x+∈展开式中的第5项为常数,则n 等于 . 12.执行右面的框图,若输出P 的值是24,则输入的正整数N 应为 .13.若双曲线22221(0,0)x y a b a b-=>>的实轴长、虚轴长、焦距成等差数列,则双曲线的离心率为 .14.已知双曲正弦函数2x x e e shx --=和双曲余弦函数2x xe e chx -+=与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正、余弦函数的和角或差角.....公式,写出双曲正弦或双曲余弦函数的一个..类似的正确结论 . 15.若关于x 的不等式(组)2272209(21)9n n x x ≤+-<+对任意*n N ∈恒成立,则所有这样的解x 构成的集合是 .16.已知函数()2sin()sin(),63f x x x x ππ=-+∈R . (I )求函数f (x )的最小正周期; (II)在∆ABC 中,若A=4π,锐角C 满足1()262C f π+=,求BC AB 的值.17.寒假期间,我市某校学生会组织部分同学,用“10分制”随机调查“阳光花园”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):若幸福度分数不低于8.5分,则称该人的幸福度为“幸福”.(I )求从这16人中随机选取3人,至少有2人为“幸福”的概率;(II )以这l6人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示抽到“幸福"的人数,求ξ的分布列及数学期望.18.如图,等腰梯形ABCD ,AD//BC ,P 是平面ABCD 外一点,P 在平面ABCD 的射影O 恰在AD 上,PA=AB=BC=2AO=2,BO=3. (I )证明:PA ⊥BO ;(II)求二面角A-BP-D 的余弦值. 19.己知数列{n a }是首项为114a =,公比14q =的等比数列,设*1423log ()n n b a n N +=∈,数列{n c }满足n n n c a b =.(I )求数列{n c }的前n 项和n S ; (II )若2114n c m m ≤+-对一切正整数n 恒成立,求实数m 的取值范围. 20.已知椭圆C 2的方程为22221y x a b+= (a >b 〉0),离心率为22,且短轴一端点和两焦点构成的三角形面积为1,抛物线C 1的方程为22y px = (p >0),焦点F 与椭圆的一个顶点重合. (I )求椭圆C 2和抛物线C 1的方程;(II)过点F 的直线交抛物线C 1于不同两点A ,B,交y 轴于点N ,已知12,NA AF NB BF λλ==,求12λλ+的值;(III )直线l 交椭圆C 2于不同两点P ,Q ,P ,Q 在x 轴上的射影分别为P ',Q ',满足''10OP OQ OP OQ ++= (O 为原点),若点S 满足OS OP OQ =+,判定点S 是否在椭圆C 2上,并说明理由.21.已知函数(),()ln xxf x e axg x e x =+=(e=2.71828…).(I )设曲线()y f x =在x =1处的切线为l ,点(1,0)到直线l 的距离为22,求a 的值; (II)若对于任意实数x ≥0,f (x )〉0恒成立,试确定实数a 的取值范围;(III )当a =-1时,是否存在实数0x ∈[1,e ],使曲线C :()()y g x f x =-在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值;若不存在,请说明理由.二〇一一级高三模块考试 理科数学答案 2014。

2014淄博一模山东省淄博市2014年高三第一次模拟考试数学理科试题(word版_含答案)-推荐下载

2014淄博一模山东省淄博市2014年高三第一次模拟考试数学理科试题(word版_含答案)-推荐下载


sin
高三数学(理科)试题 第 3 页(共 12 页)
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技写5卷术、重保交电要护底气设装。设备置管备高4动线调、中作敷试电资,设高气料并技中课试3且术资件、卷拒中料管试绝包试调路验动含卷试敷方作线技设案,槽术技以来、术及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前 试卷类型:A山东省2014届高三高考仿真模拟冲刺考试(一)数学(理)试题满分150分 考试用时120分钟参考公式:如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次的概 率:).,,2,1,0()1()(n k p p C k P kn kkn n =-=-第Ⅰ卷(选择题 共50分)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,a b R ∈,i 是虚数单位,则“0ab =”是“复数ba i+为纯虚数”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.已知全集U R =,集合{|2A x x =<-或3}x >,2{|340}B x x x =--≤,则集合A B =( )A .{|24}x x -≤≤B .{|13}x x -≤≤C .{|21}x x -≤≤-D .{|34}x x <≤3.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为( )A .12B .11C .3D .-1 4.等差数列{}n a 中,若75913a a =,则139SS =( )A . 1B .139C .913D .25.在△ABC 中,AB=2,AC=3,AB BC= 1则BC =( )A . CD .6.已知命题p :函数12x y a +=-恒过(1,2)点;命题q :若函数(1)f x -为偶函数,则()f x的图像关于直线1x =对称,则下列命题为真命题的是( )A .p q ∧B .p q ⌝∧⌝C .p q ⌝∧D .p q ∧⌝7.定义在R 上的奇函数()f x 满足:对任意[)12,0,x x ∈+∞,且12x x ≠,都有1212()[()()]0x x f x f x -->,则( )A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-8.在某跳水运动员的一项跳水实验中,先后要完成6个动作,其中动作P 只能出现在第一步或最后一步,动作Q 和R 实施时必须相邻,则动作顺序的编排方法共有( )A .96种B .48种C .24种D .144种9.一个几何体的三视图如图所示,其中主视图和左视图 是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的表面积为( )A .12πB .C .3πD . 10.如果函数2()ln(1)a f x x b =-+的图象在1x =处的切线l 过点1(0,)b-,并且l 与圆C :221x y +=相离,则点(a ,b )与圆C 的位置关系是( )A .在圆内B .在圆外C .在圆上D .不能确定第Ⅱ卷(非选择题 共100分)二、填空题:(本大题共5小题,每小题5分,共25分) 11.已知函数()f x 的定义域为()1,0-,则函数()21f x -的定义域为 .12.若11(2)3ln 2(1)ax dx a x+=+>⎰,则a 的值是13.在ABC ∆,内角,,A B C 所对的边长分别为,,.a b c 1sin cos sin cos ,2a B C c B Ab +=且a b >,则B ∠= .14.若存在实数1[,2]3x ∈满足22x a x>-,则实数a 的取值范围是 .15. 已知点P 是△ABC 的中位线EF 上任意一点,且EF//BC ,实数x ,y 满足0=++y x 。

设△ABC ,△PBC ,△PCA ,△PAB 的面积分别为S ,S 1,S 2,S 3,记32332211·,,,λλλλλ则===S S S S S S 取最大值时,y x +2的值为_____________.三、解答题:解答应写出文字说明,证明过程或演算步骤(共6题,共75分) 16.(本题满分12分)在ABC ∆中,a =3,b ,B ∠=2A ∠.(Ⅰ)求cos A 的值; (Ⅱ)求c 的值.某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响.已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数ξ+=2)(xxf x为R上的偶函数”为事件A,求事件A的概率;(Ⅱ)求ξ的分布列和数学期望.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(Ⅰ)证明://PQ 平面BCD ; (Ⅱ)若二面角D BM C --的大小为060,求BDC ∠的大小.19.(本小题满分12分) 在数列{}n a 中,已知)(log 32,41,41*4111N n a b a a a n n n n ∈=+==+. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求证:数列{}n b 是等差数列;(Ⅲ)设数列{}n c 满足n n n b a c ⋅=,求数列{}n c 的前n 项和n S .椭圆2222:1x y C a b +=(0)a b >>的左、右焦点分别是12,F F ,离心率为,过1F 且垂直于x 轴的直线被椭圆C 截得的线段长为1. (Ⅰ)求椭圆C 的方程;(Ⅱ)点P 是椭圆C 上除长轴端点外的任一点,连接12,PF PF ,设12F PF ∠的角平分线PM交C 的长轴于点(,0)M m ,求m 的取值范围;(Ⅲ)在(Ⅱ)的条件下,过P 点作斜率为k 的直线l ,使得l 与椭圆C 有且只有一个公共点,设直线12,PF PF 的斜率分别为12,k k ,若0k ≠,试证明1211kk kk +为定值,并求出这个定值.已知函数ln ()x x k f x e+=(k 为常数, 2.71828...e =是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 是()f x 的导函数.证明:对任意0x >,2()1g x e -<+.山东省2014年高考仿真模拟冲刺卷参考答案理科数学(一)20,=ξξ∴的数学期望为 。

18.解:((Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////PO QH PQ OH ∴,且OH BCD ⊂,所以//PQ 面BDC ;(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到813BM=+=,设BDC α∠=,所以cos ,sin 22cos ,22cos sin ,22sin ,CD CG CBCD CG BC BD CD BDαααααα===⇒===, 在RT BCG ∆中,2sin 22sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中, 22122sin 3322sin HGHG αα=∴=,所以在RT CHG ∆中222cos sin tan tan 60322sin 3CG CHG HG ααα∠==== tan 3(0,90)6060BDC ααα∴=∴∈∴=∴∠= .19、解:( 1)∵411=+n n a a ,∴数列{n a }是首项为41,公比为41的等比数列,∴)()41(*N n a n n ∈=. (2)∵2log 341-=n n a b ,∴1413log ()2324nn b n =-=-.∴n≥2时,b n —b n-1=3,∴11=b ,公差d=3,∴数列}{n b 是首项11=b ,公差3=d 的等差数列.(3)由(1)、(2)知,n n a )41(=,23-=n b n (n *N ∈)∴)(,)41()23(*N n n c n n ∈⨯-=. ∴n n n n n S )41()23()41()53()41(7)41(4411132⨯-+⨯-+⋯+⨯+⨯+⨯=-, ① 于是1432)41()23()41()53()41(7)41(4)41(141+⨯-+⨯-+⋯+⨯+⨯+⨯=n n n n n S ② 两式①-②相减得132)41()23(])41()41()41[(34143+⨯--+⋯+++=n n n n S =1)41()23(21+⨯+-n n .∴ )()41(381232*1N n n S n n ∈⨯+-=+. 20.解:(Ⅰ)由于222c a b =-,将x c =-代入椭圆方程22221x y a b +=得2b y a =± 由题意知221b a =,即22a b =又c e a ==所以2a =,1b = 所以椭圆方程为2214x y +=1211kk kk +=-。

相关文档
最新文档