普通高等学校2018届高三招生全国统一考试模拟试题(三)数学(理)试题
2018届普通高等学校招生全国统一考试高三数学仿真卷(三)理
理科数学(三)
本试题卷共 2 页,23 题(含选考题)。全卷满分 150 分。考试用时 120 分钟。
注意事项:
★祝考试顺利★
1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形 码粘贴在答题卡上的指定位置。用 2B 铅笔将答题卡上试卷类型 A 后的方框涂黑。
A.x | 1 x 1
B.x | 1 x 2
C.x | 0 x 2
D.x | 0 x 1
2.设复数 z 1 2i (是虚数单位),则在复平面内,复数 z2 对应的点的坐标为( )
A. 3, 4
B. 5, 4
C. 3, 2
D. 3, 4
3. 2 x2x 16 的展开式中 x4 的系数为( )
的体积的最大值为 4 ,则球 O 的表面积为__________. 3
三、解答题:解答应写出文字说明、证明过程或演算步骤。
17.已知数列an 是等差数列, a1 t 2 t , a2 4 , a3 t2 t . (1)求数列an 的通项公式;
(2)若数列an 为递增数列,数列bn 满足 log2bn an ,求数列 an 1 bn 的前项和 Sn .
A.-160
B.320
C.480
4.某几何体的三视图如图所示,则该几何体的表面积为(
D.640 )
A. 5 2
B. 4 2
C. 4 4
D. 5 4
5.过双曲线
x2 9
y2 16
1的右支上一点
P
,分别向圆 C1 : x
52
y2
4 和圆C2 : x
52
y2
r2
( r 0 )作切线,切点分别为 M , N ,若 PM 2 PN 2 的最小值为 58 ,则 r ( )欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,
2018年全国(三卷)高考数学(理)试题及答案(可编辑修改word版)
绝密★启用前2018 年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题5 分,共60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A ={x | x - 1≥ 0},B ={0 ,1,2},则A B =A.{0} B.{1} C.{1,2} D.{0 ,1,2}2.(1 + i)(2 - i)=A.-3 -iB.-3 +iC. 3 -iD. 3 +i3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若sin=1,则cos 2= 3A.89B.79C.-79D.-895.⎛x2+ 2 ⎫5的展开式中x4 的系数为 x ⎪⎝⎭A.10 B.20 C.40 D.806.直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP 面积的取值范围是A.[2 ,6] B.[4 ,8] C.⎡ 2 ,3 2 ⎤ D.⎡2 2 ,3 2 ⎤⎣⎦⎣⎦7.函数y =-x4+x2+ 2 的图像大致为38. 某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互独立,设 X 为该群体的 10 位成员中使用移动支付的人数, DX = 2.4 , P ( X = 4) < P ( X = 6) ,则 p =A .0.7B .0.6C .0.4D .0.39. △ABC 的内角 A ,B ,C 的对边分别为 a , b , c ,若△ABC的面积为C =a 2 +b 2 -c 2,则4A.π 2B.π3C.π4D.π610. 设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ABC 为等边三角形且其面积为9 ,则三棱锥D - ABC 体积的最大值为A .12B .18C . 24D .54 3 3 3 35 3 = x 211. 设 F 1 ,F 2 是双曲线C : 2 - y 22 1( a > 0 ,b > 0 )的左,右焦点, O 是坐标原点.过 F 2a b作C 的一条渐近线的垂线,垂足为 P .若 PF 1 =OP ,则C 的离心率为A.B .2C .D .12.设 a = log 0.2 0.3 , b = log 2 0.3 ,则A .a +b < ab < 0 B .ab < a + b < 0C .a +b < 0 < ab D .ab < 0 < a + b二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
普通高等学校2018届高三招生全国统一考试仿真卷(三)数学(理)试题 Word版含答案
2018年普通高等学校招生全国统一考试仿真卷理科数学(三)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若集合{}|11A x x =-<<,{}|02B x x =<<,则A B = ( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x <<D .{}|01x x <<2.设复数12i z =+(是虚数单位),则在复平面内,复数2z 对应的点的坐标为( ) A .()3,4- B .()5,4C .()3,2-D .()3,43.()()6221x x -+的展开式中4x 的系数为( ) A .-160B .320C .480D .6404.某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+5.过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .B C D .班级 姓名 准考证号 考场号 座位号6()f x 的最小正周期大于,则ω的取值范围为( )A .1,12⎛⎫ ⎪⎝⎭ B .()0,2 C .()1,2 D .[)1,27.在ABC △中,内角A ,B ,C 的对边分别为,,,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 8.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )(参考数据:sin150.2588≈ ,sin7.50.1305≈ )A .12B .20C .24D .489.设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件10.欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )ABC .19D11.已知()cos23,cos67AB =︒︒ ,()2cos68,2cos22BC =︒︒,则ABC △的面积为( ) A .2BC .1D12.已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞B .()e,+∞C .(),1-∞D .()1,+∞第Ⅱ卷本卷包括必考题和选考题两部分。
2018年全国卷3理科数学试题及参考答案-
绝密★启用前试题类型:新课标Ⅲ2018年普通高等学校招生全国统一考试理科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上.2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ( ) A .{}0 B .{}1 C .{}1,2 D .{}0,1,2 【答案】C【解析】:1A x ≥,{}1,2A B ∴= 【考点】交集2.()()12i i +-=( )A .3i --B .3i -+C .3i -D .3i + 【答案】D【解析】()()21223i i i i i +-=+-=+【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B 答案能看见小长方体的上面和左面,C 答案至少能看见小长方体的左面和前面,D 答案本身就不对,外围轮廓不可能有缺失 【考点】三视图 4.若1sin 3α=,则cos 2α=( ) A .89 B .79 C .79- D .89- 【答案】B【解析】27cos 212sin 9αα=-= 【考点】余弦的二倍角公式5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80 【答案】C【解析】522x x ⎛⎫+ ⎪⎝⎭的第1r +项为:()521035522rr r r r r C x C x x --⎛⎫= ⎪⎝⎭,故令2r =,则10345240r r r C x x -=【考点】二项式定理俯视方向D.C. B.A.6.直线20x y ++=分别与x 轴、y 轴交于点,A B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是( )A .[]2,6B .[]4,8 C. D.⎡⎣【答案】A【解析】()()2,0,0,2A B --,AB ∴=,可设()2,P θθ+,则4P ABd πθ-⎛⎫==+∈ ⎪⎝⎭[]12,62ABP P AB P AB S AB d ∆--∴=⋅=∈ 注:P AB d -的范围也可以这样求:设圆心为O ,则()2,0O,故P AB O AB O AB d d d ---⎡∈+⎣,而O AB d -==,P AB d -∴∈ 【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 7.422y x x =-++的图像大致为( )【答案】DxxxxyyyyD.C.B.A.OO11OO111111【解析】()12f =,排除A 、B ;()32'42212y x x x x =-+=-,故函数在0,2⎛⎫⎪ ⎪⎝⎭单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10为成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =( )A .0.7B .0.6C .0.4D .0.3 【答案】B【解析】由题意得X 服从二项分布,即()~10,X p ,由二项分布性质可得()101 2.4DX p p =-=,故0.4p =或0.6,而()()()()64446610104161P x C p p P x C p p ==-<==-即()221p p -<,故0.5p >0.6p ∴=【考点】二项分布及其方差公式9.ABC ∆的内角,,A B C 的对边分别为,,a b c ,若ABC ∆的面积为2224a b c+-,则C =( )A .2πB .3πC .4πD .6π【答案】C 【解析】2221sin 24ABCa b c S ab C ∆+-==,而222cos 2a b c C ab+-= 故12cos 1sin cos 242ab C ab C ab C ==,4C π∴= 【考点】三角形面积公式、余弦定理10.设,,,A B C D 是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为D ABC -的体积最大值为( )A .B .C .D .【答案】B【解析】如图,O为球心,F为等边ABC∆的重心,易知OF⊥底面ABC,当,,D O F三点共线,即DF⊥底面ABC时,三棱锥D ABC-的高最大,体积也最大. 此时:6ABCABCABS∆∆⎫⎪⇒==等边,在等边ABC∆中,233BF BE AB===,在Rt OFB∆中,易知2OF=,6DF∴=,故()max163D ABCV-=⨯=【考点】外接球、椎体体积最值11.设12,F F是双曲线()2222:10,0x yC a ba b-=>>的左,右焦点,O是坐标原点,过2F作C的一条渐近线的垂线,垂足为P.若1PF=,则C的离心率为( )AB.2CD【答案】C【解析】渐近线OP的方程为:by xa=,利用点到直线的距离公式可求得2PF b=,(此结论可作为二级结论来记忆),在Rt ABC∆中,易得OP a=,1PF∴=,在1POF∆中,由余弦定理可得:22216cos2a c aPOFac+-∠=,又2cosaPOFc∠= 22262a c a aac c+-∴+=,故cea==【考点】双曲线几何性质、余弦定理解三角形OF ECBAD12. 设0.2log 0.3a =,2log 0.3b =,则( )A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 【答案】B【解析】首先由0.2log y x =单调递减可知0.20.20.20log 1log 0.3log 0.21a =<=<=,同理可知21b -<<-,0,0a b ab ∴+<<,排除C 、D 其次:利用作商法:0.30.30.311log 0.2log 2log 0.41a b ab a b+=+=+=<(注意到0ab <) a b ab ∴+>【考点】利用对数函数单调性确定对数范围、作商法比较大小 二、填空题:本大题共4小题,每小题5分,共20分13. 已知向量()1,2a = ,()2,2b =- ,()1,c λ=. 若()//2c a b + ,则_______.λ= 【答案】12【解析】()24,2a b +=,故24λ=【考点】向量平行的坐标运算14. 曲线()1xy ax e =+在点()0,1处的切线斜率为2-,则______.a =【答案】3-【解析】()'1x xy ae ax e =++,12k a ∴=+=-【考点】切线斜率的计算方法15.函数()cos 36f x x π⎛⎫=+ ⎪⎝⎭在[]0,π的零点个数为_________.【答案】3【解析】[]0,x π∈,3,3666t x ππππ⎡⎤=+∈+⎢⎥⎣⎦,由cos y t =图像可知,当35,,222t πππ=时cos 0t =,即()f x 有三个零点 或者:令362x k πππ+=+,则93k x ππ=+,当0,1,2k =时,[]0,x π∈,故3个零点【考点】换元法(整体法)、余弦函数的图像与性质16. 已知点()1,1M -和抛物线2:4C y x =,过C 的焦点且斜率为k 的直线与抛物线交于,A B 两点,若90AMB ∠= ,则_______.k =【答案】2 【解析】(1) 常规解法:设直线方程为1x my =+,联立214x my y x=+⎧⎨=⎩可求121244y y m y y +=⎧⎨=-⎩,由()()12121212110MB MA y y y y x x x x ⋅=-++++++= ,可得12m =,故2k =(2) 二级结论:以焦点弦为直径的圆与准线相切设AB 中点为N ,则由二级结论可知NM ⊥准线,1N M y y ∴==,故22A B N y y y +==,由点差法可得,42A B k y y ==+ 进一步可得二级结论:AB M k y p ⋅=【考点】直线与抛物线联立(二级结论、点差法)三.解答题:共70分. 解答应写出文字说明,证明过程或演算步骤.. 第17~21题为必考题,每个试题考生必须作答. 第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17. (12分)等比数列{}n a 中,1531,4a a a ==. (1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和. 若63m S =,求m . 【答案】(1)12n n a -=或()12n n a -=-;(2)6m =【解析】(1)25334a a a q ==,2q ∴=±,∴12n n a -=或()12n n a -=-(2) 当2q =时,()()112631mmS -==-,解得6m =当2q =-时,()()112633mm S --==,得()2188m-=-无解综上:6m =【考点】等比数列通项公式与前n 项和公式 18. (12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式. 为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8655689 9 7 627012234 5 6 6 89 8 7 7 6 5 4 3 3281445 2 11 009(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:超过m不超过m第一种生产方式 第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥ 0.0500.010 0.001k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在80min~90min 之间,故可估计第二组的数据平均值要小于第一组数据平均值,事实上168727677798283838485868787888990909191928420E +++++++++++++++++++==同理274.7E =,21E E < ,故第二组生产方式效率更高 (2)由茎叶图可知,中位数7981802m +==,且列联表为:超过m 不超过m第一种生产方式15 5 第二种生产方式515(3)由(2)可知()22224015510 6.63520202020K -==>⨯⨯⨯,故有99%的把握认为两种生产方式的效率有差异 【考点】茎叶图、均值及其意义、中位数、独立性检验 19.(12分)如图,边长为2的正方形ABCD 所在的平面与半圆弧 CD所在的平面垂直,M 是CD 上异于,C D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积的最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析; 【解析】(1)ABCD CDM BC DCM BC DM DM BMC ADN BMC BC CD MC DM ⎫⊥⎫⇒⊥⇒⊥⎬⎪⇒⊥⇒⊥⊥⎬⎭⎪⊥⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)ABC S ∆ 恒定,故要使M ABC V -最大,则M ABC d -最大,结合图象可知M 为弧 CD中点时,M ABC V -最大. 此时取CD 的中点O ,则MO DC ⊥,故MO ⊥面ABCD ,故可建立如图所示空间直角坐标系 则:()0,0,1M ,()2,1,0A -,()2,1,0B ,()0,1,0C ,()0,1,0D -MBCDA()()0,2,0,2,1,1AB MA ==--,∴平面MAB 的法向量为()11,0,2n = ,易知平面MCD 的法向量为()21,0,0n =,故12cos ,5n n <>== , ∴面MAB 与面MCD【考点】面面垂直的判定、三棱锥体积最值、二面角的求法 20. (12分)已知斜率为k 的直线l 与椭圆22:143x y C +=交于,A B 两点,线段AB 的中点为()()1,0M m m >.(1)证明:12k <-; (2)设F 为C 的右焦点,P 为C 上一点,且0FP FA FB ++=. 证明,,FA FP FB 成等差数列,并求该数列的公差. 【答案】(1)见解析;(2)28d =±【解析】(1) 点差法:设()()1122,,,A x y B x y ,则22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩相减化简可得: 1212121234y y y y x x x x -+⋅=--+,34OM AB k k ⋅=-(此公式可以作为点差法的二级结论在选填题中直接用),34m k ∴=-,易知中点M 在椭圆内,21143m +<,代入可得12k <-或12k >,又0m >,0k ∴<,综上12k <-联立法:设直线方程为y kx n =+,且()()1122,,,A x y B x y ,联立22143x y y kx n⎧⎪+=⎨⎪=+⎩可得,()2224384120k x knx n +++-=,则122212284341243kn x x k n x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩,()121226243ny y k x x n k +=++=+224143343M M kn x k n y m k -⎧==⎪⎪+∴⎨⎪==⎪+⎩,两式相除可得34m k =-,后续过程和点差法一样(如果用∆算的话比较麻烦)(2) 0FP FA FB ++= ,20FP FM ∴+= ,即()1,2P m -,214143m ∴+=,()304m m ∴=>∴71,4k n m k =-=-=,由(1)得联立后方程为2171404x x -+=,1,2114x ∴=±, ()22121223c a c a cFA FB x x a x x a c a c a ⎛⎫⎛⎫∴+=-+-=-+= ⎪ ⎪⎝⎭⎝⎭(此处用了椭圆的第二定义,否则需要硬算,计算量太大)而32FP =2FA FB FP ∴+=故,,FA FP FB成等差数列.221212214c a c a c d FA FB x x x x a c a c a ⎛⎫⎛⎫=±-=±---=±-=± ⎪ ⎪⎝⎭⎝⎭28d ∴=±【考点】点差法、直线与椭圆联立求解、等差数列、椭圆的第二定义21. (12分)已知函数()()()22ln 12f x x ax x x =+++-.(1)若0a =,证明:当10x -<<时,()0f x <;当0x >,()0f x >; (2)若0x =是()f x 的极大值点,求a . 【答案】(1)见解析;(2)16a =-【解析】(1)常规方法:当0a =时,()()()()2ln 121f x x x x x =++->-,()()1'ln 111f x x x∴=++-+ ()()2''1xf x x ∴=+,当10x -<<时,()''0f x <;当0x >时,()''0f x >()'f x ∴在()1,0-上单调递减,在()0,+∞上单调递增,而()'00f =, ∴()'0f x ≥恒成立,()f x ∴单调递增,又()00f = ∴当10x -<<时,()0f x <;当0x >,()0f x >改进方法:若0a =,则()()()()()22ln 122ln 12x f x x x x x x x ⎡⎤=++-=++-⎢⎥+⎣⎦令()()2ln 12x g x x x =+-+,则()()()()22214'01212x g x x x x x =-=>++++ 所以()g x 在()0,+∞单增,又因为()00g = 故当10x -<<时,()()00g x g <=,即()0f x <; 当0x >时,()()00g x g >=,即()0f x >;方法对比:若直接求导,那么完全处理掉对数经常需要二次求导,而方法二提出()2x +之后对数单独存在,一次求导就可消掉对数(2) 方法一:极大值点的第二充要条件:已知函数y =()f x 在0x x =处各阶导数都存在且连续,0x x =是函数的极大值点的一个充要条件为前21n -阶导数等于0,第2n 阶导数小于0()()()22ln 12f x x ax x x =+++-()()()21'21ln 111ax f x ax x x +∴=+++-+,()'00f ∴=()()()2234''2ln 11ax ax xf x a x x ++∴=+++,()''00f ∴=()()232661'''1ax ax x a f x x +-++∴=+0x =是()f x 的极大值点,()'''0610f a ∴=+=,16a ∴=-,下证:当16a =-时,0x =是()f x 的极大值点,()()()3163'''1x x f x x -+=+,所以()''f x 在()1,0-单增,在()0,+∞单减 进而有()()''''00f x f ≤=,从而()'f x 在()1,-+∞单减,当()1,0x ∈-时,()()''00f x f >=,当()0,x ∈+∞时,()()''00f x f <= 从而()f x 在()1,0-单增,在()0,+∞单减,所以0x =是()f x 的极大值点.方法二: 0x =是()f x 的极大值点,所以存在0δ>,使得在()(),00,δδ- ,()()00f x f <=,即()()22ln 120x ax x x +++-<当()0,x δ∈时,()ln 10x +>,故()()()()2222ln 122ln 1ln 1xx x x x x a x x x +--+-++<=+,当(),0x δ∈-时,()ln 10x +<,故()()()222ln 1ln 1x x x a x x -++>+即()()()()()()()()()()()22000022ln 11ln 1limlimln 121ln 11ln 111lim lim 42642ln 144ln 141x x x x x x x x x x a x x x x x x x x x x x x x x →→→→-++-++==++++--++===-++++++++(洛必达法则,极限思想)【考点】导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22. 选修44-:坐标系与参数方程(10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于,A B 两点.(1) 求α的取值范围;(2) 求AB 中点P 的轨迹的参数方程.【答案】(1)3,44ππα⎛⎫∈ ⎪⎝⎭;(2)23,,44222x y αππαα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=-⎪⎩【解析】(1)当2πα=时,直线:0l x =,符合题意;当2πα≠时,设直线:l y kx =-1d =<,即()(),11,k ∈-∞-+∞ ,又tan k α=,3,,4224ππππα⎛⎫⎛⎫∴∈ ⎪ ⎪⎝⎭⎝⎭综上,3,44ππα⎛⎫∈ ⎪⎝⎭(2)可设直线参数方程为cos 3,44sin x t y t αππαα=⎧⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪=+⎝⎭⎪⎝⎭⎩,代入圆的方程可得:2sin 10t α-+=122P t t t α+∴==cos 3,44sin x y ααππααα⎧=⎛⎫⎪⎛⎫∈⎨ ⎪ ⎪⎝⎭⎝⎭=+⎪⎩即点P的轨迹的参数方程为23sin 2,,244x y ππααα⎧⎛⎫=⎪⎛⎫∈⎨⎪ ⎪⎝⎭⎝⎭⎪=⎩(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况) 【考点】参数方程、直线的斜率,轨迹方程23. 选修45-:不等式选讲(10分)已知函数()211f x x x =++-. (1)画出()y f x =的图像;(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值. 【答案】(1)见解析;(2)5【解析】(1)()13,212,123,1x x f x x x x x ⎧-<-⎪⎪⎪=+-≤≤⎨⎪>⎪⎪⎩,图象如下(2)由题意得,当0x ≥时,ax b +的图象始终在()f x 图象的上方,结合(1)中图象可知,3,2a b ≥≥,当3,2a b ==时,a b +最小,最小值为5, 【考点】零点分段求解析式、用函数图象解决恒成立问题xy21.531-0.5O。
2018 年全国 III 卷数学(理)答案及解析
− x + x + 2 的图像大致为( 7.函数 y =
4 2
)
A.
B.
C.
D.பைடு நூலகம்
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
p ,各成员的支付方式相互独立。设 X 为该群
,
P( x = 4) < p( x = 6) ,则 p =(
D.0.3
)
C.0.4
DX = np(1 − p) =10 × p(1 − p) = 2.4 , 解 得
= p1 0.6 = , p2 0.4 .
因为 P(X=4)<P(X=6),即
4 6 C10 p 4 (1 − p )6 < C10 p 6 (1 − p ) 4 ,所以 p 取 0.6。故答案选 B.
2 7 = 9 9 ,故答案选 B.
2 ( x 2 + )5 x 的展开式中 5、
A.10 【答案】C 【考点】二项式定理 【难易程度】基础题 B.20
的系数为( D.80
)
C.40
2 ( x 2 + )5 x 的展开式中的第 r+1 项为 【解析】
,题目中需要求解 ,故答案选 C
的系
4 ,则 r = 2 ,∴ 数,需使 2 × (5 − r ) − r =
是带卯眼的木构件的俯视图可以是(
)
A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
(完整版)2018全国Ⅲ卷理科数学高考真题
88 792018年普通高等学校招生全国统一考试理科数学注意事项:1 •答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2•回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如 需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3 •考试结束后,将本试卷和答题卡一并交回。
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 项是符合题目要求的。
1.已知集合A x|x 1 > 0 ,B 0,1,2,则 AI BA •B• 1C .1 , 2D . 0,1,22. 1 i 2 iA•3 iB •3 iC 3 iD . 3 i3•中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图 中木构件右边的小长方体是榫头•若如图摆放的木构件与某一带卯眼的木构件咬合成长 方体,则咬合时带卯眼的木构件的俯视图可以是14•若 sin § ,则 cos2C .55. x 2 - 的展开式中x 4的系数为x△ ABP 面积的取值范围是7•函数yx 4 x 2 2的图像大致为A . 0.7B . 0.6C . 0.4D . 0.39. △ ABC 的内角A ,B ,C 的对边分别为 2 2 2a ,b ,c ,若△ ABC 的面积为-一b -,则C4AnA .-2B.-3 C . n D .- 610.设A , B , C , D 是同一个半径为 4的球的球面上四点,△ ABC 为等边三角形且其面积A . 10B . 20C . 40D . 80 6 .直线x y 20分别与x 轴,y 轴交于A , B 两点,点P 在圆xy 2 2上,则A . 2,6B . 4, 8C . 2 ,3.2D . 2 2 , 3. 2为9・・3,则三棱锥D ABC体积的最大值为A. 12 3B. 18 3C. 24. 3D. 54.32 2X y11. 设F i , F2是双曲线C: —j —1 ( a 0 , b 0 )的左,右焦点,O是坐标原点.过F2a b作C的一条渐近线的垂线,垂足为p.若PF J 「-;6 0P,则C的离心率为A. 5B. 2C. .3D. 212. 设a log 0.2 0.3 , b log 2 0.3,则A. a b ab 0B. ab a b 0C . a b 0 abD . ab 0 a b二、填空题:本题共4小题,每小题5分,共20分。
2018年全国高考模拟卷+理科数学(三)
绝密★ 启用前2018年全国高考模拟卷理科数学(三)本试题卷共2页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·乌鲁木齐质检]若集合{}|11A x x =-<<,{}|02B x x =<<,则A B =( ) A .{}|11x x -<< B .{}|12x x -<< C .{}|02x x << D .{}|01x x <<【答案】D【解析】根据集合的交集的概念得到{} |01A B x x =<< ,故答案为:D . 2.[2018·海南期末]设复数12i z =+(i 是虚数单位),则在复平面内,复数2z 对应姓名准考证号 考场号 座位号此卷只装订不密封的点的坐标为( ) A .()3,4- B .()5,4 C .()3,2- D .()3,4【答案】A【解析】()2212i 12i 144i 34i z z =+⇒=+=-+=-+,所以复数2z 对应的点为()3,4-,故选A .3.[2018·赣州期末]()()6221x x -+的展开式中4x 的系数为( ) A .-160 B .320 C .480 D .640【答案】B【解析】()()6622121x x x +-+,展开通项()666166C 21C 2kk k kk k k T x x ---+==⨯⨯,所以2k =时,2462C 2480⨯⨯=;3k =时,336C 2160⨯=,所以4x 的系数为480160320-=,故选B .4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为( )A .52π+B .42π+C .44π+D .54π+【答案】C【解析】由三视图可知该几何体为1个圆柱和14个球的组合体,其表面积为C . 5.[2018·滁州期末]过双曲线221916x y -=的右支上一点P ,分别向圆1C :()2254x y ++=和圆2C :()2225x y r -+=(0r >)作切线,切点分别为M ,N ,若22PM PN -的最小值为58,则r =( )A .1BCD .2【答案】B【解析】设1F ,2F 是双曲线的左、右焦点,也是题中圆的圆心,所以()22222124PM PN PF PF r -=---()()()22121212464PF PF PFPF r PF PF r =-++-=++-,显然其最小值为()26254r ⨯⨯+-58=,r =B .6.[2018·天津期末]其图象的一条对称轴在()f x 的最小正周期大于π,则ω的取值范围为( )A .1,12⎛⎫ ⎪⎝⎭B .()0,2C .()1,2D .[)1,2【答案】C【解析】k ∈Z k ∈Z ,k ∈Z ,∴3162k k ω+<<+,k ∈Z . 又()f x 的最小正周期大于π,∴02ω<<. ∴ω的取值范围为()1,2.选C .7.[2018·渭南质检]在ABC △中,内角A ,B ,C 的对边分别为a ,b ,c ,若函数()()3222113f x x bx a c ac x =+++-+无极值点,则角B 的最大值是( )A B C D 【答案】C【解析】函数()()3222113f x x bx a c ac x =+++-+无极值点,则导函数无变号零点,()2222f x x bx a c ac +++'=-()0,B ∈π,0,3B π⎛⎤∴∈ ⎥⎝⎦C .8.[2018·荆州中学]公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n 的值为( ) (参考数据:sin150.2588≈ ,sin7.50.1305≈ )A .12B .20C .24D .48【答案】C【解析】模拟执行程序,可得:6n =,3sin 60S == 不满足条件 3.10S ≥,12n =,6sin 303S =⨯= ;不满足条件 3.10S ≥,24n =,12sin15120.2588 3.1056S =⨯=⨯= ; 满足条件 3.10S ≥,退出循环,输出n 的值为24.故选C . 9.[2018·昌平期末]设π02x <<,则“2cos x x <”是“cos x x <”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件【答案】A【解析】作图cos y x =,2y x =,y x =,0,2x π⎛⎫∈ ⎪⎝⎭,可得2cos x x <cos x x <A .10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm 的圆面,中间有边长为1cm 的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为( )A B C .19D 【答案】B【解析】如图所示,1S = 正,23924S π⎛⎫=π= ⎪⎝⎭圆B .11.[2018·闽侯六中]已知()cos23,cos67AB =,()2cos68,2cos22BC = ,则ABC△的面积为( )A .2BC .1D 【答案】D【解析】根据题意,()cos23,cos67AB =,则()cos23,sin23BA =-︒︒ ,有|AB |=1,由于,()2cos68,2cos22BC =︒︒ ()=2cos68,sin 68,则|BC |=2,则()2cos 23cos 68sin 23sin 682cos 45BA BC ⋅=-⋅+⋅=-⨯=可得:cos 2BA BC B BA BC⋅∠==-, 则135B ∠= ,则11sin 122222ABCS BA BC B =∠=⨯⨯⨯= △,故选:D . 12.[2018·晋城一模]已知定义在R 上的可导函数()f x 的导函数为()f x ',对任意实数x 均有()()()10x f x xf x '-+>成立,且()1e y f x =+-是奇函数,则不等式()e 0x xf x ->的解集是( ) A .(),e -∞ B .()e,+∞C .(),1-∞D .()1,+∞【答案】D【解析】()'g x =()g x ∴在R 上是增函数,又()1e y f x =+- 是奇函数,()1e f ∴=,()11g ∴=,原不等式为()()1g x g >,∴解集为()1,+∞,故选D .第Ⅱ卷本卷包括必考题和选考题两部分。
2018年普通高等学校招生全国统一考试理科数学高考第三套(含答案)
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦,7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为 A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A .5B .2C .3D .212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
陕西省普通高等学校2018届高三招生全国统一考试模拟试题(三)数学理
3
2.已知集合 A= x x 1 , B= x ax 1 0 ,若 B x
A ,则实数 a 的取值集合为
A . 0,1
B . 1,0
C. 1,1
D. 1,0,1
3.已知某科研小组的技术人员由 7 名男性和 4 名女性组成, 其中 3 名年龄在 50 岁以上且均为男性. 现 从中选出两人完成一项工作,记事件 A 为选出的两人均为男性,记事件 B 为选出的两人的年龄都在
3.考试结束后,将本试卷和答题纸一并交回. 一、选择题:本题共 12 小题。每小题 5 分。共 60 分.在每小题给出的四个选项中。只有一项是符 合题目要求的.
1.已知 i 为虚数单位,则下列运算结果为纯虚数是 1i
A. 1 i i i B. 1 i i i C. 1 i i i
1i D. 1 i i
50 岁以上,则 P B A 的值为
1
A.
7
3
B.74C.来自75D.
7
4.运行如图所示的程序框图,当输入的 m=1 时,输出的 m 的结果为 16,则判断框中可以填入
A . m 15?
B . m 16?
C. m 15?
D. m 16?
x2 5.已知双曲线 a2
y2 b2
1a
0, b
0 ,F1, F2 是双曲线的左、右焦点,
10.如图,在所有棱长均为 a 的直三棱柱 ABC-A 1B 1C1 中, D, E 分别为 BB 1,A 1C1 的中点,则异面
直线 AD , CE 所成角的余弦值为
1
A.
2
3
B.
2
1
C.
5
4
D.
5
11.如图,由抛物线 y2
2018学年度高三第三次模拟考试理科数学试题及答案 精
2018-2018学年度高三第三次模拟考试(理科)数学试题本试卷共4页,20小题,满分150分.考试用时120分钟 注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.2.必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.一.选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.) 1. 已知i z +=1,则2)(z =( )A .2B .2-C .i 2D .i 2- 2. 设全集U=Z ,集合M=}{2,1,P=}{2,1,0,1,2--,则P CuM ⋂=( ) A .}{0 B .}{1 C .}{0,2,1-- D .Φ 3. 一枚硬币连掷2次,只有一次出现正面的概率为( )A .32B .41C .31D .214. 已知直线a 、b 、c 和平面M ,则a//b 的一个充分条件是( ).A .a//M ,b//MB . a ⊥c ,b ⊥cC .a 、b 与平面M 成等角D .a ⊥M ,b ⊥M .5. 已知实数x y 、满足约束条件⎪⎩⎪⎨⎧≤+≥≥622y x y x ,则24z x y =+的最大值为( ).A .24B .20C .16D .12 6.已知向量12||,10||==,且60-=⋅,则向量与的夹角为( )A .060B .0120C .0135D .0150 7.下列命题错误的是( )A .命题“若0m >,则方程20x x m +-=有实根”的逆否命题为:“若方程20x x m +-=无实根,则0m ≤”。
B .“1x =”是“2320x x -+=”的充分不必要条件。
13题C .命题“若0xy =,则,x y 中至少有一个为零”的否定是:“若0xy ≠,则,x y 都不为零”。
2018年高考真题全国3卷理科数学(附答案解析)
A.0.7
B.0.6
C.0.4
D.0.3
9.△ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c ,若△ABC 的面积为 a2 + b2 − c2 , 4
则C =
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, VABC 为等边三角形且
,
uuuv FP
,
uuuv FB 成等差数列,并求该数列的公差.
21.已知函数 f ( x) = (2 + x + ax2 )ln (1 + x) − 2x .
(1)若 a = 0 ,证明:当 −1 < x < 0 时, f ( x) < 0 ;当 x > 0 时, f ( x) > 0 ;
(2)若 x = 0 是 f ( x) 的极大值点,求 a .
点以及 x → 0+ , x → 0− , x → +∞, x → −∞ 时函数图象的变化趋势,利用排除法,将不合题
意的选项一一排除. 8.B 【解析】
分析:判断出为二项分布,利用公式 D (= X) np (1− p) 进行计算即可.
Q D(= X) np(1− p)
∴p =0.4 或 p = 0.6
v b=
(
2,
−2)
,
cv=
(1,
λ
)
.若
cv
P
2av+bv
,则 λ
= ________.
14.曲线=y (ax +1) ex 在点 (0,1) 处的切线的斜率为 −2 ,则 a = ________.
2018届全国高考模拟试卷(三)数学(理科)试题
2018届全国高考模拟试卷(三)数 学(理科)本试题卷共10页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项符合题目要求.(1)已知集合{|12}M x x =-≤≤,{|2}xN y y ==,则MN =( )A .(0,2]B .(0,2)C .[0,2]D .[2,)+∞(2)已知a 是实数,i1i-+a 是纯虚数,则a =( )A. 1B. - D.(3)从0,1,2,3,4中任选两个不同的数字组成一个两位数,其中偶数的个数是( ) A .6 B .8C .10D .12(4)已知定义域为R 的偶函数()f x 在(,0]-∞上是减函数,且(1)2f =,则不等式2(log )2f x >的解集为( )A. (2,)+∞ B . 1(0,)(2,)2+∞ C . (0,)(2,)2+∞ D. )+∞ (5)点()y x P ,为不等式组⎪⎩⎪⎨⎧≥-+≤-+≥--012083022y x y x y x 所表示的平面区域上的动点,则x y 最小值为( )A .21- B . 2- C . 3- D . 31-(6)设命题p :若定义域为R 的函数()f x 不是偶函数,则x R ∀∈,()()f x f x -≠. 命题q :()||f x x x =在(,0)-∞上是减函数,在(0,)+∞上是增函数.则下列判断错误..的是( )A .p 为假B .q 为真C .p ∨q 为真 D. p ∧q 为假(7) 已知函数()3cos()(0)3f x x πωω=+>和()2sin(2)1g x x ϕ=++的图象的对称轴完全相同,若[0,]3∈x π,则()f x 的取值范围是( )A.[3,3]-B.3[,3]2-C.[-D.3[3,]2-(8)一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )(9)三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用⨯2勾⨯股+()2勾—股⨯=4朱实+黄实=弦实,化简得:勾+股=弦.设勾股形中勾股比为3:1,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )()732.13≈A .866B .500C .300D .134(10)已知函数()x f y =的定义域为R ,且满足下列三个条件: ① 对任意的[]84,21,∈x x ,当21x x <时,都有()()02121>--x x x f x f 恒成立;② ()()x f x f -=+4; ③ ()4+=x f y 是偶函数;若()()()2017116f c f b f a ===,,,则c b a ,,的大小关系正确的是( ) A. c b a << B. c a b << C. b c a << D. a b c <<(11)已知三棱锥S ABC -,ABC ∆是直角三角形,其斜边8,AB SC =⊥平面,6ABC SC =,则三棱锥的外接球的表面积为( )A . 64πB .68π C. 72π D .100π(12)已知12,F F 分别是双曲线22221(,0)y x a b a b-=>的两个焦点,过其中一个焦点与双曲线的一条渐近线平行的直线交双曲线另一条渐近线于点M ,若点M 在以线段12F F 为直径的圆内,则双曲线离心率的取值范围是( )A .(1, 2)B .(2, +∞)C .D .)+∞第Ⅱ卷本卷包括必考题和选考题两部分。
完整版)2018年高考理科数学全国三卷试题及答案解析
完整版)2018年高考理科数学全国三卷试题及答案解析2018年高考理科全国三卷1.已知集合 A={1,2,3,4}。
B={2,3,4}。
C={3,4}。
D={4},则(A∩B)∪(C∩D) 的元素个数是多少?2.已知函数 f(x)=x^2-2x+1,g(x)=2x-1,则 f(g(x)) 的值为多少?3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼。
图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是哪一个?4.若 a,b,c 是正整数,且 a^2+b^2=c^2,则 a+b+c 的值是多少?5.将 (2x-y+3z)^4 展开后,x^2y^2z^2 的系数是多少?6.平面直角坐标系中,直线与 x 轴交于 A,与 y 轴交于B,直线与 x 轴交于 C,与 y 轴交于 D。
点 P 在圆 x^2+y^2=1 上,且线段 AP 与线段 CD 相交于点 O。
则△AOD 的面积的取值范围是什么?7.已知函数 f(x)=x^3-3x,则 f(x+2)-f(x-2) 的图像大致是什么?8.某群体中的每位成员使用移动支付的概率为 p,各成员的支付方式相互独立。
设 N 为该群体的成员数,X 为使用移动支付的人数,则 P(X=k) 的值是多少?9.△ABC 中,∠A=60°,BC=2,AD 是 BC 的中线,点 E 在 AB 上,使得 AE=AD。
若△ADE 为等边三角形且其面积为 1/3,则△ABC 的面积是多少?10.设 V 是半径为 R 的球的球面上四点 A,B,C,D 所构成的四面体的体积,V 的最大值是多少?11.双曲线 H 的左、右焦点分别为 F1(-c,0)、F2(c,0),坐标原点为 O,过 F1 作 H 的一条渐近线,垂足为 P。
若 OP=2c,则 H 的离心率是多少?12.设函数 f(x)=x^3-ax^2+bx-1,若 f(x) 在点 x=1 处的切线的斜率为 3,在 x=2 和抛物线 y=x^2+cx+d 的零点个数为 2,过点 (2,0) 的直线 y=kx+m 与 y=f(x) 的交点为 (3,4),则 a,b,c,d 的值分别是多少?13.已知向量 a=3i+2j,b=-2i+5j,则 a·b 的值是多少?14.曲线 y=2x^3-3x^2+6x-1 的切线在点 (1,4) 处的斜率是多少?15.函数 f(x)=x^2-2x+3 在区间 [-1,3] 上的最小值是多少?16.已知点 A(1,0,0),B(0,1,0),C(0,0,1),D(1,1,1),且 AD 与平面 BCD 垂直,AD 的长度为 2.则 BD 的长度是多少?17.等比数列 {an} 的首项为 a1=2,公比为 q=1/2.求 S10 的值和 a10 的值。
2018年全国(三卷)高考数学(理)试题及答案
绝密★启用前2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎣D .2232⎡⎣ 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为A B .2 C D12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
2018年普通高等学校招生全国统一考试押题卷 理科数学(三)解析版(含答案)
绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷理 科 数 学(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1,2,3A =,{}34xB x =>,则AB =( )A .{1,2}B .{2,3}C .{1,3}D .{1,2,3}【答案】B【解析】{}1,2,3A =,{}34xB x =>()3log 4,=+∞,{}2,3AB ∴=,选B .2.在ABC △中,“0AB BC ⋅>”是“ABC △是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若0AB BC ⋅>,则B ∠为钝角,故ABC △为钝角三角形;若ABC △为钝角三角形,则B ∠可能为锐角,此时0AB BC ⋅<,故选A .3.已知实数a ,b 满足:122ab<<,则( ) A .11a b< B .22log log a b <C>D .cos cos a b >【答案】B【解析】函数2xy =为增函数,故0b a >>.而对数函数2log y x =为增函数,所以22log log a b <,故选B . 4.已知函数()()sin f x x ωϕ=+(0ω>,π2ϕ<()y f x =y 轴对称,那么函数()y f x =的图象( )ABCD【答案】A【解析】πT ∴=,22T ωπ==,因为函数()y f x =图象关于yy2ϕπ<,6ϕπ∴=-A .5.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足10n n S S +<⋅的正整数n 的值为( ) A .10 B .11C .12D .13【答案】C【解析】∵675S S S >>,∴111657654675222a d a d a d ⨯⨯⨯+>+>+,∴70a <,670a a +>,∴()113137131302a a S a +==<,()()112126712602a a S a a +==+>,∴满足10n n S S +<⋅的正整数n 的值为12,故选C . 6.将函数πsin 6y x ⎛⎫=-⎪⎝⎭的图象上所有的点向右平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A .5πsin 212y x ⎛⎫=-⎪⎝⎭B .πsin 212x y ⎛⎫=+⎪⎝⎭ C .5πsin 212x y ⎛⎫=- ⎪⎝⎭ D .5πsin 224x y ⎛⎫=-⎪⎝⎭ 【答案】C【解析】向右平移π4个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变)班级 姓 准考证号 考场 座位号得到5πsin 212x y ⎛⎫=-⎪⎝⎭,故选C . 7.某几何体的三视图如图所示,则该几何体的体积是( )ABCD【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为B . 8.函数()()22cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .【答案】D【解析】因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <;当352x π⎛⎫∈ ⎪⎝⎭,时,()0f x >.所以选D .9.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n =,则p 的值可以是( )(参考数据:sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A .2.6B .3C .3.1D .3.14【答案】C【解析】模拟执行程序,可得:6n =,,不满足条件S p ≥,12n =,6sin303S =⨯︒=,不满足条件S p ≥,24n =,12sin15120.2588 3.1056S =⨯︒=⨯=,满足条件S p ≥,退出循环,输出n 的值为24.故 3.1p =.故选C .10.已知点()0,1A -是抛物线22x py =的准线上一点,F 为抛物线的焦点,P 为抛物线上的点,且PF m PA =,若双曲线C 中心在原点,F 是它的一个焦点,且过P 点,当m 取最小值时,双曲线C 的离心率为( ) ABC1D1【答案】C【解析】由于A 在抛物线准线上,故2p =,故抛物线方程为24x y =,焦点坐标为()0,1.当直线PA 和抛物线相切时,m 取得最小值,设直线PA 的方程为1y kx =-,代入抛物线方程得2440x kx -+=,判别式216160k ∆=-=,解得1k =±,不妨设1k =,由2440x x -+=,解得2x =,即()2,1P .设双曲线方程为22221y x a b -=,将P 点坐标代入得22141a b-=,即222240b a a b --=,而双曲线1c =,故221a b =+,221b a =-,所以()22221410a a a a ----=,解得1a =,故离心率为1ca ==,故选C . 11.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥,SB BC =,SA AC =,12AB SC =,且三棱锥S ABC -,则该三棱锥的外接球半径是( )A .1B .2C .3D .4【答案】C【解析】取SC 中点O ,则OA OB OC OS ===,即O 为三棱锥的外接球球心,设半径为r,则3r ∴=,选C . 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x x =∈R ,()2eln h x x =,有下列命题: ①()()()F x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; ②()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;③()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是](40 -,; ④()f x 和()h x 之间存在唯一的“隔离直线其中真命题的个数有( ) A .1个 B .2个C .3个D .4个【答案】C【解析】①()F x f =x ⎛⎫∈ ⎪⎝⎭,()2120F x x x '∴=+>,()()()F x f x g x ∴=-,在x ⎛⎫∈ ⎪⎝⎭内单调递增,故①正确;②,③设()(),f x g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 成立,即有10∆≤,240k b +≤,又1kx b x≤+对一切0x <成立,则210kx bx +-≤,即20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,40k -≤≤,同理421664b k b ≤≤-,可得40b -≤≤,故②正确,③错误,④函数()f x 和()h x()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k,当x ∈R恒成立,则时,()0G x'=;当0x <<时,()'0G x <;当x >()'0G x >;当x =时,()G x '取到极小值,极小值是0,也∴函数()f x 和()h x 存在唯一的隔离直线C .第Ⅱ卷本卷包括必考题和选考题两部分。
(完整)2018年高考理科数学全国3卷(附答案)
(2)求 中点 的轨迹的参数方程.
23.[选修4—5:不等式选讲](10分)
设函数 .
(1)画出 的图像;
(2)当 , ,求 的最小值.
绝密★启用前
2018年普通高等学校招生全国统一考试
理科数学试题参考答案
一、选择题
1
2
3
4
5
6
7
8
9
10
11
12
C
D
A
B
C
A
D
B
C
B
C
B
二、填空题
三、解答题:共70分。解答题应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)
等比数列 中, .
(1)求 的通项公式;
(2)记 为 的前 项和.若 ,求 .
18.(12分)
某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知 .
列联表如下:
超过
不超过
第一种生产方式
15
5
第二种生产方式
5
15
(3)由于 ,所以有99%的把握认为两种生产方式的效率有差异.
19.解:
(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC 平面ABCD,所以BC⊥平面CMD,故BC⊥DM.
2018年普通高等学校招生全国统一考试高三数学仿真卷理三20180428110
2018 年普通高等学校招生全国统一考试高三数学仿真卷理(三)本试题卷共14 页,23 题(含选考题)。
全卷满分150 分。
考试用时120 分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.[2018·乌鲁木齐质检]若集合A x| 1 x 1 ,B x|0 x 2 ,则A B ()A. x| 1 x 1 B. x| 1 x 2C. x|0 x 2 D. x|0 x 1【答案】D【解析】根据集合的交集的概念得到A B x|0 x 1 ,故答案为:D.2.[2018·海南期末]设复数z 1 2i(i是虚数单位),则在复平面内,复数z2对应的点的坐标为()A. 3,4 B. 5,4 C. 3,2 D. 3,4【答案】A- 1 -【解析】z z 2 ,所以复数z2对应的点为 3, 4 ,12i12i144i34i2故选A.3.[2018·赣州期末] 62 x2x 1的展开式中x4的系数为()A.-160 B.320 C.480 D.640【答案】B【解析】2 2x 1 6 x 2x 1 6,展开通项T x x1 C621 C62 ,6 k66 k k k kkk所以k 2时,2 C2 24 480;k 3时,C3 23 160,所以x4的系数为66480 160 320,故选B.4.[2018·晋城一模]某几何体的三视图如图所示,则该几何体的表面积为()A.5 2B.4 2C.4 4D.5 4【答案】C11【解析】由三视图可知该几何体为个圆柱和个球的组合体,其表面积为2 41114 1 1 2 2 1 2 2 2 4 4,故选C.224225.[2018·滁州期末]过双曲线x y 的右支上一点P,分别向圆221x 5 y4C:C:221916C: x y r(r 0)作切线,切点分别为M,N,若222和圆52PM PN的最22小值为58,则r ()A.1B.2C.3D.2【答案】B- 2 -【 解 析 】 设 F 1 ,F 2 是 双 曲 线 的 左 、 右 焦 点 , 也 是 题 中 圆 的 圆 心 , 所 以2 2222PM PN PF 1 4 PF 2 r12122 4 6 1 22 4,PF PF PF PFr PF PF r显然其最小值为26 2 5 r 4 58 , r 2 ,故选 B .6.[2018·天津期末]设函数 f x 3sin x cos x 0 ,其图象的一条对称轴在区间,6 3内,且 f x 的最小正周期大于 ,则 的取值范围为()1 A .,1 2B . 0, 2C . 1, 2D . 1, 2【答案】Cf xx x x【解析】由题意3sin cos 2sin 06.令 x k, k Z ,得6 2xk , k Z ,3∵函数图象的一条对称轴在区间 ,6 3内, k ∴, k Z ,∴3k 1 6k 2 , k Z .6 3 3又f x 的最小正周期大于 ,∴2,解得0 2.∴ 的取值范围为 1,2 .选C.7.[2018·渭南质检]在△ABC中,内角A,B,C的对边分别为a,b,c,若函数1f x x bx a c ac x 1无极值点,则角B的最大值是()32223A.B.C.D.6432【答案】C1【解析】函数f x x3 bx2 a2 c2 ac x 无极值点,则导函数无变号零点,13222a c b1222f x x2 2bx a2 c2 ac,2ac2b ac ac≤0 cos B ≥- 3 -B , B 0,0, 3故最大值为: 3.故答案为:C .8.[2018·荆州中学]公元 263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增 加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”,刘徽得到了圆 周率精确到小数点后两位的近似值 3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆 术”思想设计的一个程序框图,则输出 n 的值为()(参考数据:sin15 0.2588,sin7.5 0.1305 )A .12B .20C .24D .48【答案】C3 3 【解析】模拟执行程序,可得: n 6 , S 3sin 60;2不满足条件 S ≥3.10 , n 12 , S 6 sin 30 3;不满足条件 S ≥3.10 , n 24 , S 12 sin15 12 0.2588 3.1056; 满足条件 S ≥3.10 ,退出循环,输出 n 的值为 24.故选 C . 9.[2018·昌平期末]设π ,则“cos x x 2”是“cos x <x ”的()x2A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】作图y cos x,y x2 ,y x,0,x ,可得cos x x2 解集为,m,22- 4 -cos x x解集为,n2,因为m,2n,2,因此选A.10.[2018·济南期末]欧阳修的《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆盖其口,徐以杓酌油沥之,自钱孔入,而钱不湿”,可见“行行出状元”,卖油翁的技艺让人叹为观止.若铜钱是直径为3cm的圆面,中间有边长为1cm的正方形孔.现随机向铜钱上滴一滴油(油滴的大小忽略不计),则油滴落入孔中的概率为()A.14B.49C.19D.58【答案】B【解析】如图所示, S 1正,3 92SS圆,圆,正24S圆49,则油(油滴的大小忽略不计)正好落入孔中的概率为49,故选B.- 5 -11. [2018·闽 侯 六 中 ]已 知AB cos23 ,cos67 , BC 2cos68 , 2cos22,则△ABC 的面积为( )A .2B . 2C .1D .22【答案】D【解析】根据题意,AB cos23 ,cos67 ,则 BA cos23 ,sin23 ,有|AB |=1, 由于,BC 2cos68 , 2cos22 =2 cos68 , s in68,则|BC |=2, 则 BA BC 2cos 23 cos 68 sin 23 sin 68 2 cos 452,BA BC2可得:cosB,2BA BC则 B 135 ,1 12 2 SBA BC sin B 1 2则△,故选:D .ABC2 2 2 212.[2018·晋城一模]已知定义在 R 上的可导函数 f x 的导函数为 f x ,对任意实数 x 均有1 x f x xf x 0 成立,且 y f x 1 e 是奇函数,则不等式 xfx e x 0的解集是()A. ,e B. e, C. ,1 D. 1, 【答案】D- 6 -【解析】原不等式等价于xf xe x 1, xf x 令g x ,g ' xe xxx1' 0ee x2x在 R 上是增函数,又 y f x 1 e 是奇函数, f 1 e , g 1 1,原不等 g x式为 g x g 1 , 解集为 1, ,故选 D .第Ⅱ卷本卷包括必考题和选考题两部分。
高考最新-2018年普通高等学校招生全国统一考试仿真试卷数学理(三)(附答案) 精品
普通高等学校招生全国统一考试仿真试卷数 学 理工农医类(三)本试卷分第Ⅰ卷(选择题 共60分)和第Ⅱ卷(非选择题 共90分),考试时间为120分钟,满分为150分.第Ⅰ卷 (选择题共 60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.参考公式:如果事件A 、B 互斥,那么P(A +B)=P(A)+P(B) 如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是p ,那么n 次独立重复试验中恰好发生k 次的概率k n k k n n )p 1(p C )k (P --= 球的表面积公式S =4πR 2,其中R 表示球的半径 球的体积公式V =34πR 3,其中R 表示球的半径 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.准线方程为x =3的抛物线的标准方程为A .y 2=-6x B.y 2=-12xC.y 2=6xD.y 2=12x 2.函数y =sin2x 是A.最小正周期为π的奇函数B.最小正周期为π的偶函数C.最小正周期为2π的奇函数D.最小正周期为2π的偶函数3.函数y =x 2+1(x ≤0)的反函数是 A.y =-1x +(x ≥1) B.y =-1x +(x ≥-1) C.y =1x -(x ≥1)D.y =-1x -(x ≥1)4.已知向量a =(2,1),b =(x,-2),且a +b 与2a -b 平行,则x 等于 A.-6 B.6 C.-4 D.45.a =-1是直线ax +(2a -1)y +1=0和直线3x +ay +3=0垂直的 A.充分而不必要条件 B.必要而不充分条件C.充要条件D.既不充分又不必要条件 6.已知直线a 、b 与平面a ,给出下列四个命题:①若a ∥b ,b ⊂α,则a ∥α ②若a ∥α,b ⊂α,则a ∥b ③若a ∥α,b ∥α,则a ∥b ④a ⊥α,b ∥α,则a ⊥b. 其中正确命题的个数是 A.1 B.2 C.3 D.4 7.函数y =sinx +cosx,x ∈R 的单调递增区间是 A.[43k 2,4k 2π+ππ-π](k ∈Z )B.[4k 2,43k 2π+ππ-π](k ∈Z ) C.[2k 2,2k 2π+ππ-π](k ∈Z ) D.[8k ,83k π+ππ-π](k ∈Z ) 8.设集合{}{}R x ,1x y |y N ,R x ,2y |y M 2x ∈+==∈==,则M ∩N 是 A.øB.有限集C.MD.N9.已知函数f(x)满足2f(x)-f(x 1)|x |1=,则f(x)的最小值是 A.32B.2C.322 D.2210.若双曲线x 2-y 2=1的左支上一点P(a,b)的直线y =x 的距离为2,则a +b 的值为 A.-21 B.21 C.-2 D.211.若一个四面体由长度为1、2、3的三种棱构成,则这样的四面体的个数是 A.2 B.4 C.6 D.812.某债券市场常年发行三种债券,A 种面值为1000元,一年到期本息和为1180元;B 种贴水债券面值为1000元,但买入价为960元,一年到期本息和为1000元;C 种面值为1000元,半年到期本息和为1180元.设这三种债券的年收益率分别为a 、b 、c ,则a 、b 、c 的大小关系是A.a =c 且a <bB.a <b <cC.a <c <bD.c <a <b普通高等学校招生全国统一考试仿真试卷数 学 理工农医类(三)第Ⅱ卷 (非选择题 共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷上.2.答卷前将密封线内的项目填写清楚.二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中横线上)13.已知f(x +1)=3x +4,则f -1(x +1)=___________.14.在一个棱长为65cm 的正四面体内有一点P ,它到三个面的距离分别是1cm ,2cm ,3cm ,则它到第四个面的距离为___________cm. 15.设等比数列{qn -1}(q >1)的前n 项和为S n ,前n +1项的和为S n +1,则∞→n l i m1S S n n+=__________________. 16.抛物线y =x 2和圆x 2+(y -3)2=1上最近两点的距离是_____________.三、解答题(本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分12分)如图,用A 、B 、C 、D 四类不同的元件连接成系统N ,当元件A 正常工作且元件B 、C 都正常工作,或当元件A 正常工作且元件D 正常工作时,系统N 正常工作.已知元件A 、B 、C 、D 正常工作的概率依次为54,43,43,32. (1)求元件A 不正常工作的概率;(2)求元件A 、B 、C 都正常工作的概率;(3)求系统N 正常工作的概率.18.(本小题满分12分)设a 、b 是两个不共线的非零向量(t ∈R ). (1)若a 与b 起点相同,t 为何值时,a 、tb 、31(a +b)三向量的终点在一直线上?(2)若|a|=|b|且a 与b 夹角为60°,那么t 为何值时,|a -tb|的值最小?19.(本小题满分12分)已知数列{a n }中,a 1=1,a 2=2,数列{a n ·a n +1}是公比为q(q >0)的等比数列.(1)求使a n ·a n +1+a n +1·a n +2>a n +2·a n +3(n ∈N *)成立的q 的取值范围;(2)若b n =a 2n -1+a 2n (n ∈N *),求b n 的表达方式;(3)若S n =b 1+b 2+…+b n ,求S n ,并求∞→n lim nS 1.20.(本小题满分12分) 如图,已知四棱锥P -ABCD 的底面为直角梯形,AD ∥BC ,∠BCD =90°,PA =PB ,BC =PD.(1)证明:CD 与平面PAD 不重直;(2)证明:平面PAB ⊥平面ABCD ;(3)如果CD =AD +BC ,二面角P -BC -A 等于60°,求二面角P -CD -A 的大小.21.(本小题满分为12分) 已知函数f(x)=1x cbx ++的图象过原点,且关于点(-1,1)成中心对称. (1)求函数f(x)的解析式;(2)若数列{a n }(n ∈N *)满足:a n >0,a 1=1,a n +1=[f(n a )]2,求a 2、a 3、a 4的值,猜想数列{a n }的通项公式a n ,并证明你的结论;(3)若数列{a n }的前n 项和为S n ,判断S n 与2的大小关系,并证明你的结论.22.(本小题满分14分)已知双曲线=-2222by a x 1(a >0,b >0)的两准线间的距离为3,右焦点到直线x +y -1=0的距离为22. (1)求双曲线方程;(2)设直线y =kx +m(k ≠0,m ≠0),与双曲线交于不同的两点C 、D ,若A 的坐标为(0,-b),且|AC|=|AD|,求k 的取值范围.仿真试题(三)一、选择题 1.B 2.A3.D 注意反函数与原函数的定义域、值域之间的关系即知选D.4.C5.A a =0时两直线也垂直,故所给条件非必要.6.B 只要①④是正确的.7.B8.D M =(0,+∞),N =[1,+∞],选D.9.C 以x 1代x ,得2f(x 1)-f(x)=|x|,与已知的等式联立解得f(x)=)|x |2|x (|31+,用基本不等式得C.10.A 由图可知符合题意的点在第二象限,由⎪⎩⎪⎨⎧-=-,22a b ,1b a 22两式相除得A.11.B12.C a =0.18,b ≈0.1816,c =0.1818. 二、填空题13.x 31 先求得f(x)=3x+1,再求得f -1(x)=31x -,再代入x+1得. 14.4 用体积法,整体体积等于各部分体积之和.15.q 116.11121- 用参数法,设抛物线上的点为(t ,t 2),研究抛物线上的点与圆心(0,3)的最短距离. 三、填空题17.解:(1)元件A 正常工作的概率P(A)=32, 它不正常工作的概率P(A )=1-P(A)2分 =31.3分(2)元件A 、B 、C 都正常工作的概率 P(A ·B ·C)=P(A)P(B)P(C) 5分 83434332==∙∙. 6分(3)系统N 正常工作可分为A 、B 、C 都正常工作和A 、D 正常但B 、C 不正常工作两种情况,前者概率为83,7分后者的概率为P(A ·B ·C ·D)+P(A ·B ·C ·D)+P(A ·B ·C ·D)544141325441433254434132∙∙∙∙∙∙∙∙∙++=10分 =307. 11分所以系统N 正常工作的概率是1207330783=+. 12分18.解:(1)由题意可设a-tb =m[a-31(a+b)](m ∈R),化简得(3m 2-1)a =(3m-t)b. 2分∵a 与b 不共线,∴⎪⎩⎪⎨⎧=-=-0t 3m 013m2 ⎪⎩⎪⎨⎧==.21t ,23m ∴t =21时,a 、tb 、31(a+b)终点在一直线上. 6分(2)|a-tb|2=(a-tb)2=|a|2+t 2|b|-2t|a| |b|cos60°=(1+t 2-t)|a|2, 9分 ∴t =21时,|a-tb|有最小值23|a|. 12分19.解:(1)由题意a n ·a n+1=2q n-1,故a n ·a n+1+a n+1·a n+2>a n+2·a n+3可化为2q n-1+2q n >2q n+1,又q >0, ∴q 2-q-1<0.∴0<q <251+. 4分(2)由a n ·a n+1=2q n-1,a n-1·a n =2q n-2,∴.q a a 1n 1n =-+∴{a n }的奇数项依次成等比数列,∴a 2n-1=q n-1;{a n }的偶数项依次成等比数列,∴a 2n =2q n-1.∴b n =3q n-1.8分(3)①当q =1时,S n =3n ,n 31S 1n =, 此时0Sn1limn =∞→. 10分②q ≠1时,q 1)q 1(3S 2n --=,)q 1(3q1S 1n n --=, 若0<q <1,则 3q1Sn 1lim n -=∞→, 若q >1,则 0Sn1limn =∞→. 12分 20.(1)证明:若CD ⊥平面PAD , 1分 则CD ⊥PD ,2分 由已知PC =PD ,得∠PCD =∠PDC <90°,这与CD ⊥PD 矛盾,所以CD 与平面PAD 不垂直.3分 (2)证明:取AB 、CD 的中点E 、F ,连接PE 、PF 、EF , 由PA =PB ,PC =PD ,得PE ⊥AB ,PF ⊥CD. 5分∴EF 为直角梯形的中位线. ∴EF ⊥CD ,又PF ∩EF =F. ∴CD ⊥平面PEF.6分 由PE ⊂平面PEF ,得CD ⊥PE ,又AB ⊥PE 且梯形两腰AB 、CD 必相交,∴PE ⊥平面ABCD. 7分 又PE ⊂平面PAB ,∴平面PAB ⊥平面ABCD.8分 (3)解:由(2)及二面角的定义知∠PFE 为二面角P —CD —A 的平面角,9分作EG ⊥BC 于G ,连PG ,由三垂线定理得BC ⊥PG , 故∠PGE 为二面角P —BC —A 的平面角. 10分即∠PGE =60°,由已知,得EF =21(AD+BC)=21CD. 又EG =CF =21CD , ∴EF =EG ,易证得Rt △PEF ≌Rt △PEG.11分∴∠PEF =∠PGE =60°即为所求. 12分21.(1)解:∵函数f(x)=1x c bx ++的图象过原点,即f(0)=0,∴c =0,∴1x bx)x (f +=.2分又函数1x b b 1x bx )x (f +-=+=的图象关于点(-1,1)成中心对称,∴b =1.∴1x x )x (f +=. 4分(2)解:由题意有2n n 1n ]1a a [a +=+,即1a a a n n1n +=+, 即1a 1a 1n1n +=+,∴1a 1a 1n1n =-+.∴数列{na 1}是以1为首项,1为公差的等差数列.6分∴n )1n (1a 1n=-+=,即n 1a n =.∴2n n1a =. ∴a 2=41,a 3=91,a 4=161,a n =2n1. 8分 (3)证明:当n ≥2时,a n =n11n 1)1n (n 1n 12--=-<. 10分∴S n =a 1+a 2+a 3+…+a n <1+(1-21)+(3121-)+(4131-)+…+(n 11n 1--)=2-n1<2. 故S n <2.12分22.解:(1)设双曲线的右焦点为(c ,0)(c >0),则222|1c |=-. 2分求得c =2,又c a 22=3.∴a 2=3,b 2=1.∴所求双曲线方程为1y 3x 22=-.6分 (2)联立⎪⎩⎪⎨⎧=-+=1y 3x m kx y 22消去y ,得(3k 2-1)x 2+6kmx+(3m 2+3)=0, 8分当3k 2-1≠0即k ≠±33时, ①△=(6km)2-12(3k 2-1)(m 2+1)=12(m 2-3k 2+1),②令△>0得m 2-3k 2+1>0,设C(x 1,y 1)、D(x 2,y 2),CD 的中点P(x 3,y 3), ∵|AC|=|AD|,∴AP ⊥CD. x 1+x 2=1k 3km 62--,x 3=1k 3km 32x x 221--=+. y 3=kx 3+m =1k 3mk 322--+m =1k 3m 2--.则km 31m k 3km 31k 31k 31k 3m x x y y k 2222Ap A p AP ---=----+-=--=∙. 由AP ⊥CD ,得k 1km 31m k 32-=---(k ≠0,m ≠0),化简得3k 2=4m+1,m =41k 32-,③把③代入②得(41k 32-)2-3k 2+1>0,即(3k 2-1)(3k 2-17)>0,10分∴⎩⎨⎧>->-017k 3,01k 322或⎩⎨⎧<-<-.017k 3,01k 322∴3k 2>17或3k 2<1. 解得k >351,或k <-315,或33-<k <33. ④又已知k ≠0,∴由①、④得k 的取值范围为k <-351,或33-<k <0,或0<k <33,或k >351. 14分。
2018全国高考3理科卷
2018年普通高等学校招生全国Ⅲ考试理科数学1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10 B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP =,则C 的离心率为AB .2CD12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+13.已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=________.14.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 15.函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 16.已知点()11M -,和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB =︒∠,则k =________.17.等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .18.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x3 x1+i普通高等学校招生全国统一考试模拟试题理科数学(三)本试卷满分150 分,考试时间。
120 分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题纸上.2.回答选择题时,选出每小题答案后,用铅笔把答题纸上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题纸上,写在本试卷上无效.3.考试结束后,将本试卷和答题纸一并交回.一、选择题:本题共12 小题。
每小题5 分。
共60 分.在每小题给出的四个选项中。
只有一项是符合题目要求的.1.已知i 为虚数单位,则下列运算结果为纯虚数是A.(1+i )i -iB.(1-i)i -i⎪⎧⎫⎪ C.(1+i )i +D.(1-i)i +i1+ii2.已知集合A= ⎨x⎩ = 1⎬,B= {x ax -1 = 0},若B ⊆A ,则实数a 的取值集合为⎪⎭A.{0,1} B.{-1, 0} C.{-1,1} D.{-1, 0,1}3.已知某科研小组的技术人员由7 名男性和4 名女性组成,其中3 名年龄在50 岁以上且均为男性.现从中选出两人完成一项工作,记事件A 为选出的两人均为男性,记事件B 为选出的两人的年龄都在50 岁以上,则P (B A)的值为1 3 4 5A.B.C.D.7 7 7 74.运行如图所示的程序框图,当输入的m=1 时,输出的m 的结果为16,则判断框中可以填入A.m < 15? B.m <16 ?C.m > 15? D.m > 16 ?-1 223bπ⎪⎩(x25.已知双曲线222= 1(a > 0, b > 0 ),F1,F2是双曲线的左、右焦点,A(a ,0),Pa b为双曲线上的任意一点,若SPF A= 2SPF A,则该双曲线的离心率为A.B.2 C.D.36.若a>1>b>0,-1<c<0,则下列不等式成立的是A.2b < 2-aB.logab < logb (-c) C.a2 <b2 D.c2 < log a7.已知等差数列{a }的前n 项和为S ,且a +a =10,若点P (a ,S)在函数y =mx2 的n n 2 4 3 5图像上。
则过点P(a3,S5)的切线方程为A.x -y + 20 = 0 B.x +y - 30 = 0⎧x ≤tC.10x -y - 25 = 0 D.10x +y - 75 = 08.已知实数x, y 满足不等式组⎨x +y ≥ 2⎪x - 2 y + 2 ≥ 0,其中t=2⎰0sin xdx,则x2 +y2 的最大值是20A.5 B.25 C.20 D.99.我国古代数学名著《数书九章》中有“天池盆测雨”题,题中描绘的器具的三视图如图所示(单位:寸).若在某天某地下雨天时利用该器具接的雨水的深度为6 寸,则这天该地的降雨量约为(精确到0.01寸)(注:平地降雨量等于器具中积水体积除以器具口面积.参考公式:台体的体积V =1S3 上+S下+ ,其中S上,S 下分别表示上、下底面的面积,h 为高)A.1.56 寸B.1.66 寸C.1.76 寸D.1.86 寸yS上S下33 10. 如图,在所有棱长均为 a 的直三棱柱 ABC-A 1B 1C 1 中,D ,E 分别为 BB 1,A 1C 1 的中点,则异面直线 AD ,CE 所成角的余弦值为 1 1 4 A .B .C .D .225511. 如图,由抛物线y 2= 8x 与圆 E :( x - 2)2+ y 2 = 9 的实线部分构成图形Ω ,过点 P (2,0)的直线始终与图形Ω 中的抛物线部分及圆部分有交点,则 AB 的取值范围为 A .[2,3]B .[3,4]C .[4,5]D .[5,6]12.已知函数 f ( x ) = sin (ωx +ϕ)⎛ω> 0, ϕ < π⎫ 2 ⎪ 的图像与 x 轴的两个相邻交点分别为⎝ ⎭O 1,O 2(其中 O 2 在 O 1 的右边),曲线 f ( x ) 上任意一点 A ( x 0 , y 0 ) 关于点 O 1,O 2 的对称点 π1分别为 A 1 ( x 1 , y 1 ), A 2 (x 2 , y 2 ) ,且 x 2 - x 1 = π,且当 x 0 =时,有 y 0 = .记函数 f ( x )62的导函数为 f '( x ) ,则当 f '(α) - 2 f (α) = 1 时, cos 2α的值为 1 1 A.B .431 C .D .12二、填空题:本题共 4 小题.每小题 5 分.共 20 分.13.在△ABC 中,D 为 BC 边上的一点, BD = 2DC ,若 AD = λAB + μAC (λ,μ∈ R ) ,则λ+ μ=.14.已知正项等比数列{a } 的前 n 项和为 S ,且a = 1, a =4a,若对任意 n ∈ N *,不n n 1 53等式 S n + a n - k ≥ 0 (k ∈ Z ) 恒成立,则实数 k 的最大值为.15 . 已 知 函 数 f ( x ) 是 定 义 域 为 R 的 偶 函 数 , 对 于 任 意 的 实 数 x , 都 有f ( x ) - f (2) = f (4 - x ) , 且 当 0 ≤ x < 2 时 , f ( x ) = ( x - 2)2, 则 方 程f ( x ) - log 2 x = 0 的解的个数为.16.甲、乙、丙、丁四人进行选择题解题比赛,已知每个选择题选择正确得 5 分,否则得 0 分.其测试结果如下:甲解题正确的个数小于乙解题正确的个数,乙解题正确的个数小于丙解题正确的个数,丙解题正确的个数小于丁解题正确的个数;且丁解题正确的2 ∑ ∑ 1 2 个数的 2 倍小于甲解题正确的个数的3 倍,则这四人测试总得分的最少分数为 . 三、解答题:共 70 分.解答应写出文字说明、证明过程或演算步骤.第 17~21 题为必考题.每个试题考生都必须作答.第 22,23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(12 分)在△ABC 中,角 A ,B ,C 所对的边分别为 a ,b , c , m = (cos A + sin A , c os C ), n = (-sin C ,cos A -sin A ), m ⋅ n = - .(1) 求角 B 的大小;π(2) 若C =3,b = 2,求S ∆ABC .18.(12 分)某科研单位在改进某种材料配方的过程中,为了解其稳定性,需监控配制生产过程中的数据变化,检验员每天从实验记录的数据中随机抽取 10 个数据,并认为数据在正常状态下服从正态分布 N (μ,σ2)(1) 假设实验状态正常,记 X 为一天内抽取的 10 个数据在(μ- 3σ,μ+ 3σ) 外的实验次数,求 P ( X ≥ 1) 及 X 的数学期望.(2) 一天内抽检的数据中,如果出现了数据在(μ- 3σ,μ+ 3σ) 外的实验,就认为该实验存在问题,需对当天的实验配方进行调整. (i) 试说明上述监控实验过程方法的合理性.(ii) 下面是检验员在一天内抽取的 10 个实验的数据:2.953.12 2.96 3.01 2.98 2.91 3.13 3.02 2.22 2.04经计算得 x = 1 10 x i = 2.834,s = ⎛ 10 x i - 10x 2 ⎫ ⎪ ≈ 0.36 ,其中 10 i =1x i 为抽取的第 i 次实验数据, i = 1, 2,⋅⋅⋅,10 .10 ⎝ i =1 ⎭用样本平均数 x 作为μ的估计值μ ,用样本标准差 s 作为σ的估计值σ ,利用估计值判 断是否需对当天的实验配方进行调整(精确到 0.01).10 1∑ (10 x i - x i =1)22 1 2 3⎪ 附:若随机变量 Z 服从正态分布 N (μ,σ2),则P (μ- 3σ < Z < μ+ 3σ) ≈ 0.997 30.997 310 ≈ 0.973 .19.(12 分)如图①,在四边形 PBCD 中,PB ∥CD ,∠PBC = 45,点 A 在边 PB 上,且满足 2PA=3AB ,AB=2CD ,AB= 如图②所示.BC ,O 为 AC 的中点.现将△PAD 沿 AD 翻折,使平面 P AD ⊥平面 ABCD , (1) 证明:BC ⊥PO .9(2) 点 E 在线段 BC 上,则是否存在点 E ,使二面角 G-PO-E 的余弦值为?若存在,求233出点 E 的位置;若不存在,请说明理由.20.(12 分)x 2 y 2 已知椭圆 C : + = 1(a > b > 0),四点P (1,1),P (2, 0 ), P ⎛-1, 3 ⎫ ⎛ ⎪, P 4 1,3 ⎫ 中恰 a b有三点在椭圆 C 上. (1) 求椭圆 C 的标准方程.⎝2 ⎭⎝ 2 ⎭(2) 已知动直线 l 过椭圆 C 的右焦点 F ,且与椭圆 C 交于 A ,B 两点,则在 x 轴上是否存在定点 Q ,使得OA ⋅QB = - 由.135 64恒成立?若存在,求出点 Q 的坐标;若不存在,请说明理 2 21a 221.(12 分)已知函数 f ( x ) = ln (ax +1) +1(a > 0 ) .2x(1) 当 a = 1 时,求函数 f( x ) 的单调区间;1(2) 设 g( x ) = x +,若∃x 0 ∈ [1,e ],使得f 2x(x 0 )> g (x 0 ) 成立,求实数 a 的取值范围.(二)选考题:共 10 分.请考生在第 22,23 题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修 4-4:坐标系与参数方程](10 分)⎧⎪x = a + 在平面直角坐标系 xOy 中,直线 l 的参数方程为⎨⎪ y = a - ⎩2 t , 2 2 t 2(t 为参数).以坐标原点 O 为极点,x 轴的正半轴为极轴建立极坐标系,圆 C 的极坐标方程为ρ= 2 cos θ.(1) 写出直线 l 的普通方程和圆 C 的参数方程; (2) 若直线 l 与圆 C 相切于点 P ,求点 P 的直角坐标.23.[选修 4-5:不等式选讲](10 分) 已知函数 f ( x ) = 2x +1 + x - 2 .(1)当 x ∈[-2,3] 时,求函数 f ( x ) 的值域 M.(2) 若 a > 0 ,证明: x + 2a + x -≥ 3 .11。