第25讲 随机抽样
高考数学一轮复习专题训练—随机抽样
随机抽样考纲要求1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.知识梳理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =Nn (否则,先剔除一些个体);③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),……,依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()答案(1)×(2)√(3)×(4)×2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案 A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.答案nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x =nmN.4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下: 2635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 A .3 B .16 C .38 D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2021·郑州调研)某校有高中生1 500人,现采用系统抽样法抽取50人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、490人、515人)按1,2,3,…, 1 500编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为( ) A .15 B .16 C .17 D .18答案 C解析 采用系统抽样法从1 500人中抽取50人,所以将1 500人平均分成50组,每组30人,并且在第一组抽取的号码为23,所以第n 组抽取的号码为a n =23+(n -1)×30=30n -7,而高二学生的编号为496到985,所以496≤30n -7≤985,又n ∈N *,所以17≤n ≤33,则共有17人,故选C.6.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 答案 分层抽样解析 因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一 简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验 答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A.110,110 B .310,15C.15,310 D .310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(2021·南昌一模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案 D解析从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二系统抽样及其应用【例1】(1)(2021·太原调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A.15 B.18 C.21 D.22(2)(2019·全国Ⅰ卷)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生(3)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.答案 (1)C (2)C (3)2 10解析 (1)由已知得间隔数为k =244=6,则抽取的最大编号为3+(4-1)×6=21.(2)根据题意,系统抽样是等距抽样, 所以抽样间隔为1 000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C. (3)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.感悟升华 1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn ,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是nN .2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【训练1】 (1)(2021·衡水调研)衡水中学高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. (2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 (1)45 (2)4解析 (1)分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人. 考点三 分层抽样及其应用角度1 求某层入样的个体数【例2】 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有 20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( ) A .25,25,25,25 B .48,72,64,16 C .20,40,30,10 D .24,36,32,8答案 D解析 法一 因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.法二 最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2 求总体或样本容量【例3】 (1)(2021·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A .12B .18C .24D .36(2)(2020·西安调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)D (2)1 800解析 (1)根据分层抽样方法知n 960+480=24960,解得n =36.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x 件,则x60=50,∴x =3 000.故乙设备生产的产品总数为4 800-3 000=1 800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练2】 (1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )A .240,18B .200,20C .240,20D .200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________. 答案 (1)A (2)6解析 (1)样本容量n =(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A 级 基础巩固一、选择题1.(2020·兰州二模)某学校为响应“平安出行”号召,拟从2 019名学生中选取50名学生加入“交通志愿者”,若采用以下方法选取:先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率( ) A .不全相等 B .均不相等C .都相等,且为140D .都相等,且为502 019答案 D解析 先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率相等,且为p =502 019,故选D. 2.(2021·永州模拟)现从已编号(1~50)的50位同学中随机抽取5位以了解他们的数学学习状况,用选取的号码间隔一样的系统抽样方法确定所选取的5位同学的编号可能是( ) A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,10,18,26,34答案 B解析 抽样间隔为505=10,只有选项B 符合题意.3.(2020·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( ) A .①简单随机抽样,②系统抽样 B .①分层抽样,②简单随机抽样 C .①系统抽样,②分层抽样 D .①②都用分层抽样 答案 B4.在一个容量为N 的总体中抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3 答案 D解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D. 5. (2021·襄阳联考)如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为( )A .16B .32C .24D .8答案 C解析 由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取( )A .40人B .200人C .20人D .10人答案 C解析 由图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20答案 C解析 由系统抽样的定义知,分段间隔为1 00040=25.8.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双答案 C解析 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的13,即为1 200双皮靴. 二、填空题9.某单位在岗职工共620人,为了调查工人用于上班途中的时间,决定抽取62名工人进行调查,若采用系统抽样方法将全体工人编号等距分成62段,再用简单随机抽样法得到第1段的起始编号为4,则第40段应抽取的个体编号为________. 答案 394解析 将620人的编号分成62段,每段10个编号,按系统抽样,所抽取工人编号成等差数列,因此第40段的编号为4+(40-1)×10=394.10.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).答案 068解析 由随机数表知,前4个样本的个体编号分别是331,572,455,068.11.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件. 答案 800解析 设样本容量为x ,则x3 000×1 300=130,∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +y +10=170,∴y =80. ∴C 产品的数量为3 000300×80=800(件).12.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________. 答案 3解析 系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人C .112人D .120人答案 B解析 由题意知,抽样比为 3008 100+7 488+6 912=175,所以北乡遣175×8 100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,在采用系统抽样时,需要在总体中先剔除2个个体,则n =________. 答案 18解析 总体容量为6+12+18=36,当样本容量为n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组(k≥2)中抽取的号码个位数字与m+k的个位数字相同,若m=8,则k的值为________,在第8组中抽取的号码是________.答案876解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.。
随机抽样方法
随机抽样方法
随机抽样方法是一种常用的统计学方法,它通过随机抽取样本来代表整体总体,从而进行统计分析和推断。
在实际应用中,随机抽样方法被广泛运用于调查研究、市场调研、医学实验等领域。
本文将介绍随机抽样方法的定义、特点、常见类型以及应用注意事项。
首先,随机抽样方法是指在总体中,每个个体被抽取为样本的概率是相等的,
且相互独立。
这意味着每个个体都有被抽取为样本的机会,从而能够代表整体总体。
随机抽样方法的特点是能够减小抽样误差,提高样本的代表性和可靠性。
随机抽样方法有多种类型,常见的包括简单随机抽样、分层随机抽样、整群随
机抽样等。
简单随机抽样是指从总体中随机抽取样本,每个个体被抽到的概率相等,相互独立。
分层随机抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样。
整群随机抽样是将总体按照某种特征分成若干群,然后随机抽取若干群作为样本。
不同类型的随机抽样方法适用于不同的研究对象和目的,研究者需要根据实际情况选择合适的抽样方法。
在应用随机抽样方法时,需要注意一些事项。
首先,抽样前需要对总体进行充
分的了解,包括总体特征、分布规律等。
其次,抽样时需要保证样本的代表性和随机性,避免抽样偏差。
最后,对于不同类型的随机抽样方法,需要根据实际情况进行灵活运用,选择最适合的抽样方法。
总之,随机抽样方法是一种重要的统计学方法,它能够有效地代表总体,提高
统计分析的准确性和可靠性。
在实际应用中,研究者需要根据实际情况选择合适的抽样方法,并注意抽样过程中的各项细节,以确保研究结果的科学性和可信度。
中级经济师经济基础习题讲解 (25)
第二十五章抽样调查【单项选择】北京市旅游管理部门要通过抽样调查了解2015年北京市常驻居民出境旅游总消费金额,该抽样调查的总体参数是2015年北京市()。
A.所有常住居民旅游总消费金额B.被调查的常住居民出境旅游总消费金额C.被调查的每一位常驻居民出境旅游消费金额D.所有常住居民出境旅游总消费金额『正确答案』D『答案解析』本题考查抽样调查基本概念。
总体参数是我们所关心变量的数字特征,它是根据总体中所有单位的数值计算的。
对于不放回简单随机抽样,所有可能的样本均值取值的平均值总是等于总体均值。
这就是样本均值估计量的()。
A.无偏性B.有效性C.一致性D.渐进性『正确答案』A『答案解析』本题考查估计量的性质。
对于不放回简单随机抽样,所有可能的样本均值取值的平均值总是等于总体均值,这就是样本均值估计量的无偏性。
在街边或居民小区拦住行人进行调查的抽样方法属于()。
A.判断抽样B.自愿抽样C.配额抽样D.方便抽样『正确答案』D『答案解析』本题考查概率抽样与非概率抽样。
方便抽样指在抽取样本时,依据方便原则,以达到最大限度降低调查成本的目的。
比如“拦截式”调查,在街边或居民小区拦住行人进行调查。
在某市随机抽取2000家企业进行问卷调查,并据此调查有对外合作意向的企业,该抽样调查中的总体是()。
A.该市所有企业B.该市所有对外合作意向的企业C.抽中的2000家企业D.抽中的2000家企业中有对外合作意向的企业『正确答案』A『答案解析』本题考查抽样调查的基本概念。
总体即调查对象的全体,要抽取2000家企业进行问卷调查,所以总体是该市所有企业。
影响样本量的因素不包括()。
A.调查的难度B.总体的离散程度C.无回答情况D.总体的规模『正确答案』A『答案解析』影响样本量的因素有以下几个:调查的精度、总体的离散程度、总体的规模、无回答情况和经费的制约。
下列抽样方法中,属于非概率抽样的是()。
A.分层抽样B.整群抽样C.判断抽样D.等距抽样『正确答案』C『答案解析』选项ABD属于概率抽样。
人教版高中数学必修三 2.1《随机抽样》知识梳理+跟踪检测
人教版高中数学必修三 第二章 统计2.1《随机抽样》知识梳理知识点一:简单随机抽样1.简单随机抽样的定义设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.简单随机抽样的分类简单随机抽样⎩⎨⎧随机数法抽签法 3.简单随机抽样的优点及适用类型简单随机抽样有操作简便易行的优点,在总体个体数不多的情况下是行之有效的.知识点二:系统抽样1.系统抽样的概念先将总体中的个体逐一编号,然后按号码顺序以一定的间隔k 进行抽取,先从第一个间隔中随机地抽取一个号码,然后按此间隔依次抽取即得到所求样本.2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本,步骤为:(1)先将总体的N 个个体编号.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等.(2)确定分段间隔k ,对编号进行分段.当N n(n 是样本容量)是整数时,取k =N n; (3)在第1段用简单随机抽样确定第一个个体编号l(l ≤k);(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(l +k),再加k 得到第3个个体编号(l +2k),依次进行下去,直到获取整个样本.知识点三:简单随机抽样1.分层抽样的概念 在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.2.分层抽样的适用条件分层抽样尽量利用事先所掌握的各种信息,并充分考虑保持样本结构与总体结构的一致性,这对提高样本的代表性非常重要.当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.人教版高中数学必修三第二章统计2.1《随机抽样》跟踪检测一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是1 5B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .126.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,87.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A. 22,100x s +B. 22100,100x s ++C. 2,x sD. 2100,x s +9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A.①②③B.①②④C.①③④D.①②③④10.下列抽样实验中,最适宜用系统抽样的是()A.某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B.某厂生产的2 000个电子元件中随机抽取5个入样C.从某厂生产的2 000个电子元件中随机抽取200个入样D.从某厂生产的20个电子元件中随机抽取5个入样11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.16712.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为()A.2个B.3个C.5个D.13个13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,614.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,5315.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,916.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. 18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.人.三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:60人进行更为详细的调查,应当怎样进行抽样?23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?2.1《随机抽样》跟踪检测解答一、选择题1.下列哪种工作不能使用抽样方法进行()A.测定一批炮弹的射程B.测定海洋水域的某种微生物的含量C.高考结束后,国家高考命题中心计算数学试卷中每个题目的难度D.检测某学校全体高三学生的身高和体重的情况[答案] D2.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量[答案] C3.某工厂质检员每隔10分钟从传送带某一位置取一件产品进行检测,这种抽样方法是()A.分层抽样B.简单随机抽样C.系统抽样D.以上都不对[答案] C[解析]按照一定的规律进行抽取为系统抽样.4.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本:①采用随机抽样法,将零件编号为00,01,02,,99,抽出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个;③采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个.则()A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是15B.①②两种抽样方法,这100个零件中每个被抽到的概率都是15,③并非如此 C.①③两种抽样方法,这100个零件中每个被抽到的概率都是15,②并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同[答案] A[解析] 无论采用哪种抽样,每个个体被抽到的概率相等.5.一个田径队,有男运动员56人,女运动员42人,比赛后,立即用分层抽样的方法,从全体队员中抽出一个容量为28的样本进行尿样兴奋剂检查,其中男运动员应抽的人数为( )A .16B .14C .28D .12[答案] A[解析] 运动员共计98人,抽取比例为2898=27,因此男运动员56人中抽取16人.6.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y 的值分别为( )A. 2,5B. 5,5C. 5,8D. 8,8[答案] C[解析] 由题意得x =15,16.8=51(9+15+10+y +18+24) y =8,选C. 7.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是( )A .简单随机抽样法B .抽签法C .随机数法D .分层抽样法[答案] D[解析] 由分层抽样的定义可知,该抽样为按比例的抽样.8.某公司10位员工的月工资(单位:元)为1210,,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ) A. 22,100x s + B. 22100,100x s ++ C. 2,x s D. 2100,x s +[答案] D[解析] 设增加工资后10位员工下月工资均值为'x ,方差为2's , 则平均数()()()12101'10010010010x x x x =++++⋅⋅⋅++⎡⎤⎣⎦ ()1210110010010x x x x =++++=+; ()()()222212101'100'100'100'10s x x x x x x ⎡⎤=+-++-+⋅⋅⋅++-⎣⎦ ()()()22221210110x x x x x x s ⎡⎤=-+-+⋅⋅⋅+-=⎣⎦.故选D . 9.对于简单随机抽样,下列说法中正确的命题为( )①它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概念进行分析;②它是从总体中逐个进行抽取,以便在抽样实践中进行操作;③它是一种不放回抽样;④它是一种等可能抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.A .①②③B .①②④C .①③④D .①②③④[答案] D10.下列抽样实验中,最适宜用系统抽样的是( )A .某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样B .某厂生产的2 000个电子元件中随机抽取5个入样C .从某厂生产的2 000个电子元件中随机抽取200个入样D .从某厂生产的20个电子元件中随机抽取5个入样[答案] C[解析] A 中总体有明显层次,不适用系统抽样法;B 中样本容量很小,适宜用简单随机抽样法中的随机数法;D 中总体数很小,故适宜用抽签法,只有C 比较适用系统抽样法.11.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A.93B.123C.137D.167[答案] C[解析] 由图可知该校女教师的人数为()11070%150160%7760137⨯+⨯-=+= 故选C12.一段高速公路有300个太阳能标志灯,其中进口的有30个,联合研制的有75个,国产的有195个,为了掌握每个标志灯的使用情况,要从中抽取一个容量为20的样本,若采用分层抽样的方法,抽取的进口的标志灯的数量为( )A .2个B .3个C .5个D .13个[答案] A[考点]分层抽样方法[分析]由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x ,即可得出结论.解:由题意,设抽取的进口的标志灯的数量为x 个,则30030=20x , ∴x=2,故选A .[点评]本题考查分层抽样,抽样过程中每个个体被抽到的可能性相同,这是解决抽样问题的依据,样本容量、总体个数、每个个体被抽到的概率,这三者可以做到知二求一.13.一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A.12,24,15,9 B.9,12,12,7C.8,15,12,5 D.8,16,10,6[答案] D[解析]由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×4 20=8,40×820=16,40×520=10,40×320=6.14.对某商店一个月(30天)内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是( )A.46,45,56B.46,45,53C.47,45,56D.45,47,53[答案] A[解析]样本中共有30个数据,中位数为4547462+=;显然样本中数据出现次数最多的为45,故众数为45;极差为68-12=56,故选A.15.某单位有职工100人,不到35岁的有45人,35岁到49岁的25人,剩下的为50岁以上的人,现在用分层抽样法抽取20人,则各年龄段人数分别是()A.7,4,6 B.9,5,6 C.6,4,9 D.4,5,9[答案] B[解析]各年龄段所选分别为20100×45=9,20100×25=5,20100×30=6.16.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为()A.9 B.18 C.27 D.36[答案] B[解析]设该单位老年职工有x人,从中抽取y人.则160+3x=430⇒x=90,即老年职工有90人,则90160=y32⇒y=18.故选B.二、填空题17.在学生人数比例为2∶3∶5的A,B,C三所学校中,用分层抽样的方法招募n名志愿者,若在A学校恰好选出了6名志愿者,那么n=________. [答案]30[解析]由题意,知22+3+5×n=6,∴n=30.18.博才实验中学共有学生1 600名,为了调查学生的身体健康状况,采用分层抽样法抽取一个容量为200的样本.已知样本容量中女生比男生少10人,则该校的女生人数是________人.[答案]760[解析]设该校女生人数为x,则男生人数为(1 600-x).由已知,2001 600×(1 600-x)-2001 600·x=10,解得x=760.故该校的女生人数是760人.19.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户,从普通家庭中以简单随机抽样方法抽取990户,从高收入家庭中以简单随机抽样方法抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是________.[答案] 5.7%[解析]∵990∶99 000=1∶100,∴普通家庭中拥有3套或3套以上住房的大约为50×100=5 000(户).又∵100∶1 000=1∶10,∴高收入家庭中拥有3套或3套以上住房的大约为70×10=700(户).∴3套或3套以上住房的家庭约有5 000+700=5 700(户).故5 700100 000=5.7%.20.某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是__________.若用分层抽样方法,则40岁以下年龄段应抽取________人.[答案]3720[解析]由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20(人).21.从某地区15 000位老人中随机抽取500人,其生活能否自理的情况如下表所示.生活能否自理人数性别男女能178 278不能23 21人.[答案]60[解析]由表知500人中生活不能自理的男性比女性多2人,所以该地区15 000位老人生活不能自理的男性比女性多2×15 000500=60(人).三、解答题22.某电台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如下表:很喜爱喜爱一般不喜爱2 435 4 5673 926 1 07260人进行更为详细的调查,应当怎样进行抽样?解:可用分层抽样方法,其总体容量为12 000.“很喜爱”占2 43512 000,应取60×2 43512 000≈12(人);“喜爱”占4 56712 000,应取60×4 56712 000≈23(人);“一般”占3 92612 000,应取60×3 92612 000≈20(人);“不喜爱”占1 07212 000,应取60×1 07212 000≈5(人).因此采用分层抽样在“很喜爱”、“喜爱”、“一般”和“不喜爱”的2 435人、4 567人、3 926人和1 072人中分别抽取12人、23人、20人和5人.23.某单位在岗职工共624人,为了调查工人用于上班途中的时间,该单位工会决定抽取10%的工人进行调查,请问如何采用系统抽样法完成这一抽样?解:(1)将624名职工用随机方式编号由000至623.(2)利用随机数法从总体中剔除4人.(3)将剩下的620名职工重新编号由000至619.(4)分段,取间隔k=62062=10,将总体分成62组,每组含10人.(5)从第一段,即为000到009号随机抽取一个号l.(6)按编号将l,10+l,20+l,…,610+l,共62个号码选出,这62个号码所对应的职工组成样本.24.为调查小区平均每户居民的月用水量,下面是3名学生设计的调查方案:学生A:我把这个用水量调查表放在互联网上,只要登录网址的人就可以看到这张表,他们填表的信息可以很快地反馈到我的电脑中.这样,我就可以很快估计出小区平均每户居民的月用水量.学生B:我给我们居民小区的每一个住户发一个用水量调查表,只要一两天就可以统计出小区平均每户居民的月用水量.学生C:我在小区的电话号码本上随机地选出一定数量的电话号码,然后逐个给他们打电话,问一下他们的月用水量,然后就可以估计出小区平均每户居民的月用水量.请问:对上述3种学生设计的调查方案能够获得平均每户居民的月用水量吗?为什么?你有什么建议?解:学生A的方法得到的样本不能够反映不上网的居民情况,是一种方便样本,所得的结果代表性差,不能很准确地获得平均每户居民的月用水量;学生B 的方法实际上是普查,花费的人力物力要多一些,但是如果统计过程不出错,可以准确地得到平均每户居民的月用水量;在小区的每户居民都装有电话的情况下,学生C的方法是一种随机抽样方法,所得的样本具有代表性,可以比较准确地获得平均每户居民的月用水量.在小区的每户居民都装有电话的情况下,建议用随机抽样的方法获取数据,即用学生C的方法,以节省人力物力,并且可以得到比较精确的结果.5、已知变量x 与y 正相关,且由观测数据算得样本平均数3x =, 3.5y =,则由该观测数据算得的线性回归方程可能为( )A. 0.4.3ˆ2yx =+ B. 2 2.4ˆy x =- C. 9ˆ2.5yx =-+ D. 0.3 4.4ˆy x =-+ [答案] A[解析] 变量x 与y 正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.∵变量x 与y 正相关,∴可以排除C,D;样本平均数3x =, 3.5y =,代入A 符合,B 不符合,故选A.。
9.1.1简单随机抽样第1课时课件(人教版)
学习目标
新课讲授
课堂总结
1.正确理解总体、个体、样本、普查、抽样调查的概念
2.理解简单随机抽样的概念,掌握抽签法和随机数法的 一般步骤
学习目标
新课讲授
课堂总结
知识点1:统计的相关概念及抽样的必要性
在现实生活中,我们经常会接触到各种统计数据.
统计学是通过收集数据和分析数据来认识未知现象的一门科学. 为解决问题奠定基础
说明:如果生成的随机数有重复,即同一编号多次被抽到,可以剔除重 复的编号并重新产生随机数,直到产生不同的编号个数等于样本数.
学习目标
新课讲授
课堂总结
随机数的产生
1.用随机实验生成随机数
准备10个大小质地一样的小球,小球上分别写上数字0,1,2,…9,放 在不透明的盒子中, 当编号是三位的时候,有放回抽取3次,抽前充分搅拌,第一、二、三 次号作摸到数字分别作为百、十、个位数.
如果抽取是放回的,叫做放回简单随机抽样; 如果抽取是不放回的,称为不放回简单随机抽样. 效率更高
通过简单随机抽样获得的样本称为简单随机样本. 如没特殊说明,本章所称简单随机抽样指不放回简单随机抽样.
学习目标
新课讲授
课堂总结
例1 下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取20个个体作为样本;× 总体的个数不是有限的 (2)从50台冰箱中一次性抽取5台冰箱进行质量检查;× 不是逐个抽取 (3)某班有40名同学,指定个子最高的5名同学参加学校组织的篮 球赛; × 不是等可能抽样 (4)一彩民选号,从装有36个大小、形状都相同的号签的盒子中无 放回地抽出6个号签. √
问题:一家家具厂要为树人中学高一年级制作课桌椅,他们事先想了解全体高 一年级学生的平均身高,以便设定可调节课桌椅的标准高度.已知树人中学高一 年级有712名学生,如果要通过简单随机抽样的方法调查高一年级学生的平均 身高,应该怎样抽取样本?
随机抽样
随即抽样【知识梳理】1. 简单随机抽样(1)定义:设一个总体含有N个个体,从中抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:和.2. 系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体;(2)确定,对编号进行,当Nn是整数时,取k=Nn(3)在第1段用确定第1个个体编号l(l≤k);(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号,再加k得到第3个个体编号,依次进行下去,直到获取整个样本.3. 分层抽样(1)定义:在抽样时,将总体的层,然后按照,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.1. (教材改编题)在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,则分层抽样、简单随机抽样、系统抽样中,为不放回抽样的有()A.1个B. 2个C. 3个D. 0个2. (教材改编题)为了解1 200名学生对学校某项教学实验的意见,打算从中抽取一个容量为30的样本,考虑采用系统抽样,则分段的间隔k为()A.40B. 30C. 20D. 123. (原创题)某养猪场养有四大名猪:大白猪、长白猪、杜洛克猪、汉普夏猪,其中大白猪有200头,长白猪250头,杜洛克猪180头、汉普夏猪230头,估计产量时,应采用的抽样方法是()A. 分层抽样B. 随机抽样C. 系统抽样D. 以上三种方法都可以4. (2010·四川)一个单位有职工800人,其中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A. 12,24,15,9B. 9,12,12,7C. 8,15,12,5D. 8,16,10,6【互动探究】【例1】用随机数表进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字,这些步骤的先后顺序应为()A.①②③B.①③②C.③②①D.③①②【例2】(2010·湖北,6)将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为()A.25,17,8 B.25,16,9 C.26,16,8 D.24,17,9练习:将参加数学竞赛的1000名学生编号如下:0001,0002,0003,…,1000,从中抽取一个容量为50的样本,考虑采取系统抽样,则分段的间隔K为________.【例3】(2008·广东)某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()A.24B.18C.16D.12练习:某校有高一、高二、高三三个年级的学生,其相应人数之比为3∶3∶2,现用分层抽样方法抽出一个容量为n的样本,样本中高三有16人,那么,此样本的容量n=________.【当堂检测】1. 下列说法正确的个数是( )①总体的个体数不多时宜采用简单随机抽样法;②在总体均分后的每一部分进行抽样时,可以采用简单随机抽样;③百货商场的抓奖活动是抽签法;④系统抽样过程中,每个个体被抽取的可能性相等(有剔除时例外).A. 1B. 2C. 3D. 42.(2008·重庆高考)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是()A.简单随机抽样法B.抽签法C.随机数表法D.分层抽样法3.(2009·惠州二模)甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,40人D.30人,50人,10人4.要从已编号(1~50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射的试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是()A.5,10,15,20,25 B.1,2,3,4,5C.2,4,8,16,22 D.3,13,23,33,435. (2009·广东)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是.若用分层抽样方法,则40岁以下年龄段应抽取人.6.(2011·惠州二模)为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一学生抽取的人数是________.7.(2009·深圳一模)某大型超市销售的乳类商品有四种:纯奶、酸奶、婴幼儿奶粉、成人奶粉,且纯奶、酸奶、婴幼儿奶粉、成人奶粉分别有30种、10种、35种、25种不同的品牌.现采用分层抽样的方法从中抽取一个容量为n的样本进行三聚氰胺安全检测,若抽取的婴幼儿奶粉的品牌是7种,则样本容量n为________.8. 某中学有学生1 002名,现要利用系统抽样的方法抽取一个容量为50的样本,则学生甲被抽到的机会是.。
随机抽样1简单随机抽样
2.简单随机抽样的分类 简单随机抽样抽 随签 机法 数法
3.随机数法的类型 随机数表法
随机数法随机数骰子 计算机产生的随机数
思考讨论 有同学认为:“随机数表只有一张,并且读数时只能按 照从左向右的顺序读取,否则产生的随机样本就不同了,对 总体的估计就不准确了”,你认为正确吗?
2.使用随机抽样方法抽取样本应注意的几个问题 (1)目标要准确. 必须清楚地知道要收集的数据是什么.例如,在食品质
量检验中,为了了解一批袋装牛奶(总体)的细菌超标情况, 从中随机抽取了 n 袋,并测出了每一袋的细菌含量 ai(i= 1,2,…,n),这里 ai(i=1,2,…,n)就是我们要收集的数据.
例 4 一个学生在一次竞赛中要回答的 8 道题是这样产 生的:从 15 道物理题中随机抽取 3 道;从 20 道化学题中随 机抽取 3 道;从 12 道生物题中随机抽取 2 道.请选用合适 的方法确定这个学生所要回答的三门学科的题的序号(物理 题的编号为 1~15,化学题的编号为 16~35,生物题的编号 为 36~47).
变式训练 2
某大学为了选拔世博会志愿者,现从报名的 18 名同学 中选取 6 人组成志愿小组,请用抽签法确定志愿小组成员.
[解] 第一步,将 18 名同学编号,号码是 01,02,…,18; 第二步,将号码分别写在一张纸条上,揉成团,制成号签; 第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀; 第四步,从袋子中依次抽取 6 个号签,并记录上面的编号; 第五步,所得号码对应的同学就是志愿小组的成员.
[解法二] 随机数表法
第一步,将物理题的编号对应地改成 01,02,…,15, 其余两门学科的题的编号不变;
第二步,在随机数表中任选一个数作为开始,任选一个 方向作为读数方向,例如选出第 10 行第 2 列的数 7,向右读;
简单随机抽样-课件
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,如2,11,26,19,45;对应编号的同 学去开会;
随机数表法的步骤如下:
第一步:将50件产品编号,可以编为00,01,02,……49;
例:利用抽签法从15名学生中抽取5名同学去开会。
抽签的步骤如下:
第一步:给15名同学编号,号码为1,2,……15;
第二步:将15名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
二、选择题
1、简单随机抽样的结果: D
A、由抽样方式决定
B、由随机性决定
C、由人为因素决定
D、由计算方法决定
2、从10个篮球中任意取一个检验其质量,则抽样为:A
A、简单随机抽样
B、系统抽样
C、分层抽样
D、有放回抽样
三、填空题
1、从65名同学中抽出20人考察他们的学习成绩, 在这次抽样中样本为( 20名同学 ),样 本容量为( 20 );
演练反馈:从20名学生中抽取5名同学去开会。
抽签法的步骤如下:
第一步:给20名同学编号,号码为1,2,……20;
第二步:将20名同学的编号分别写在一张小纸条上, 并揉成小球,制成号签;
第三步:将得到的号签放在一个不透明的容器中,搅 拌均匀;
第四步:从容器中逐个抽取5个号签,并记录上面的 编号,对应编号的同学去开会;
15 65 85 58 96 90 60 24 52 52 57 56 68 42 66 85 87 47 70 01 25 45 35 20 14 01 25 45 86 93 57 48 56 35 87 45 32 56 82 54 56 68 97 80 12 01 02 50 80 95
简单随机抽样与描述统计
简单随机抽样与描述统计简单随机抽样的概念简单随机抽样是一种常用的抽样方法,用于从总体中选取样本。
在简单随机抽样中,每个个体被选中的概率是相等的且相互独立的。
简单随机抽样的主要目的是通过样本对总体进行估计和推断。
简单随机抽样的步骤如下:1.定义总体:明确研究的总体是什么,例如某一国家的人口总体。
2.确定样本容量:确定需要多少个样本。
3.给每个个体分配一个编号:给总体中的个体编上号码。
4.随机选择样本:使用随机抽样方法,从总体中选择样本。
5.收集样本数据:对样本进行调查或者实验,收集所需的数据。
6.进行统计分析:使用描述统计方法对样本数据进行分析。
描述统计的概念描述统计是统计学的一个分支,主要用于对数据进行整理、总结和表达,以便更好地理解数据的特征和模式。
描述统计可以帮助我们对数据的中心趋势、离散程度和分布进行描述和分析。
描述统计主要包括以下几个指标:•均值:均值是一组数据的平均值,可以用来描述数据的中心。
•中位数:中位数是一组数据中的中间值,可以用来描述数据的集中程度。
•众数:众数是一组数据中出现最频繁的值,可以用来描述数据的分布模式。
•方差:方差是一组数据离均值的平方差的平均值,可以用来描述数据的离散程度。
•标准差:标准差是方差的平方根,可以用来描述数据的离散程度。
简单随机抽样与描述统计的应用简单随机抽样和描述统计在实际应用中扮演着重要的角色。
它们可以被广泛应用于各个领域,例如市场调研、民意调查、医学研究等。
在市场调研中,研究人员经常使用简单随机抽样方法来选取样本,然后使用描述统计方法对收集到的数据进行分析。
通过分析样本数据,可以了解产品或服务在目标市场中的消费者偏好和需求,进而制定市场营销策略。
在医学研究中,研究人员需要从大量的患者中选取一部分样本进行实验或观察。
使用简单随机抽样方法可以确保选取的样本具有代表性,然后使用描述统计方法对样本数据进行分析。
通过分析样本数据,可以得出关于某种疾病的患病率、症状表现等信息,进而指导医学实践和健康政策制定。
简单随机抽样高中数学教案
简单随机抽样高中数学教案
教学内容:随机抽样
教学目标:
1. 了解什么是随机抽样以及其重要性;
2. 掌握常见的随机抽样方法;
3. 能够应用随机抽样方法解决实际问题。
教学过程:
一、导入:引入随机抽样的概念,并讨论其在生活中的应用。
二、讲解:介绍常见的随机抽样方法,包括简单随机抽样、分层抽样、系统抽样等。
三、练习:让学生通过实例练习不同的随机抽样方法,并分析结果的可靠性。
四、应用:讨论随机抽样在统计调查和科学研究中的应用,以及如何避免抽样偏差。
五、总结:总结本节课的重点内容,并布置相关的练习作业。
教学工具:黑板、教科书、抽样工具(如抽奖箱、骰子等)
教学评估:通过练习和课堂讨论来评估学生对随机抽样的理解和应用能力。
教学延伸:引导学生深入了解随机抽样的原理和方法,以及在实际研究中的应用。
教学反思:及时收集学生的反馈意见,不断改进教学方法,提高教学效果。
25、抽样调查测试题及答案
中级经济师基础知识第 1题:多选题(本题2分)在城乡住户收支调查中,非抽样误差的可能来源有( )。
A、抽样框遗漏掉部分城乡住户B、部分高收入住户拒绝接受调查C、调查人员有意作弊D、被调查住户提供虚假数据E、抽样的随机性【正确答案】:ABCD【答案解析】:非抽样误差是指除抽样误差以外,由其他原因引起的样本统计量和总体真值之间的差异。
本题可采用排除法,排除“随机性”即可选择。
第 2题:单选题(本题1分)下列关于简单随机抽样的表述正确的是( )。
A、总体的每个单位入样概率不相同B、是最基本的随机抽样方法C、利用了抽样框更多的辅助信息D、适用个体之间差异较大的调查【正确答案】:B【答案解析】:简单随机抽样需要重点掌握:(1)它是最基本的随机抽样方法, 每个单位的入样概率相同 (2)不放回简单随机抽样每个单位最多只能被抽中一次,比放回抽样有更低的抽样误差。
(3)适用条件: 抽样框中没有更多可以利用的辅助信息;调查对象分布的范围不广阔;个体之间的差异不是很大第 3题:多选题(本题2分)抽样统计中,估计量的性质包括( )。
A、一致性B、相关性C、无偏性D、有效性E、密集性【正确答案】:ACD第 4题:单选题(本题1分)在调查某城市小学教师亚健康状况时,从该城市的200所小学中随机抽取40所,每个被抽取小学中的所有教师都参与调查,这样抽样方法属于( )。
A、简单随机抽样B、整群抽样C、分层抽样D、等距抽样【正确答案】:B【答案解析】:抽样调查中的抽样方法。
整群抽样是先将总体划分为互不重叠的群,抽样时直接抽取群,对抽中的群调查其全部的基本单位。
第 5题:单选题(本题1分)以下各项中不属于抽样调查的特点的是( )。
A、时效性差B、经济性好C、适应面广D、准确性高【正确答案】:A【答案解析】:抽样调查可以迅速、及时的获取所需要的信息。
由于工作量小,调查的准备时间、调查时间、数据处理时间等都可以大大缩减,从而提高数据的时效性。
随机系统抽样
PPT文档演模板
随机系统抽样
例:从某厂生产的802辆轿车中随机抽取80辆测试 某项功能,请合理选择抽样方法,并写出过程。
第一步:将802辆轿车编号,号码是001,002,…,802;
第二步:用随机数表法随机抽取2个号码,如016,378, 将编号为016,378的2辆轿车剔除;
第三步:将剩下的800辆轿车重新编号,号码为1,2, …, 800,并分成80段,间隔为10;
随机、系统抽样
PPT文档演模板
2021/1/6
随机系统抽样
1.抽签法
例:某单位对口支援西部开发,现从报名的18名 志愿者中选取6人组成志愿小组到西藏工作3年, 请用抽签法设计抽样方案。
第一步:将18名志愿者编号,号码是01,02,…,18;
第二步:将号码分别写在一张纸上,制成号签;
第三步:将得到的号签放入一个容器中,并充分搅匀;
这个间隔定为10,即将编号按顺序每10个为一段, 分成10段; ③在第一段号码1~10中用简单随机抽样法抽出一个 作为起始号码,如6;
④然后从“6”开始,每隔10个号码抽取一个,得到 6,16,26,36,…,496,这样我们就得到一个 容量为50的样本。
PPT文档演模板
随机系统抽样
系统抽样的步骤:
第三步:从数“7”开始,向右读,得到一个三位数785, 由于785<799,说明号码785在总体编号内,将它取出;继 续向右读,得到916,由于916>799,将它去掉,按照这种 方法继续向右读,又取出567,199,507, …,依次下去, 直到样本的60个号码全部取出;
第四步:以上号码对应的60袋牛奶就是要抽取的对象。
共同特点:均为不放回抽样,在抽样过程中每一个个体 被抽取的机会是相等的。
初中随机抽样教案
初中随机抽样教案教学目标:1. 理解随机抽样的概念和意义;2. 学会使用简单随机抽样的方法进行数据收集;3. 能够运用随机抽样方法解决实际问题。
教学重点:1. 随机抽样的概念和意义;2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际应用。
教学准备:1. 教师准备一些小物品,如糖果、笔等,作为抽样样本;2. 准备一些实际问题,让学生进行随机抽样解决。
教学过程:一、导入(5分钟)1. 教师向学生介绍随机抽样的概念,引导学生思考随机抽样在实际生活中的应用;2. 学生分享生活中遇到的需要进行随机抽样的情况。
二、学习随机抽样(10分钟)1. 教师讲解简单随机抽样的方法,如抽签法、随机数表法等;2. 学生通过小组讨论,理解并掌握简单随机抽样的步骤和注意事项;3. 教师进行示范,使用小物品进行简单随机抽样,并让学生参与其中,加深理解。
三、实践操作(10分钟)1. 教师提出一些实际问题,如调查班级同学最喜欢的科目等,让学生使用随机抽样方法进行数据收集;2. 学生分组进行随机抽样,记录数据,并总结抽样结果;3. 各组学生分享自己的抽样结果,讨论抽样结果的可靠性和代表性。
四、总结与拓展(10分钟)1. 教师引导学生总结随机抽样的优点和局限性;2. 学生思考如何改进随机抽样方法,提高抽样的准确性和效率;3. 教师提出一些拓展问题,引导学生思考随机抽样在其他领域的应用。
五、课堂小结(5分钟)1. 教师回顾本节课所学内容,强调随机抽样的概念和意义;2. 学生分享自己对随机抽样的理解和体会。
教学反思:本节课通过讲解和实践活动,让学生掌握了随机抽样的方法和步骤,能够运用随机抽样解决实际问题。
在实践操作环节,学生积极参与,通过小组合作,锻炼了团队合作能力和解决问题的能力。
在总结与拓展环节,学生思考了随机抽样的优点和局限性,并提出了一些改进意见,拓展了随机抽样在其他领域的应用。
整体来看,本节课达到了预期的教学目标,学生对随机抽样有了更深入的理解和掌握。
初中简单随机抽样教案
教案:初中简单随机抽样教学目标:1. 让学生理解随机抽样的概念,知道随机抽样的意义和作用。
2. 学会使用简单随机抽样的方法进行数据收集和分析。
3. 培养学生的观察能力、思考能力和动手能力。
教学重点:1. 随机抽样的概念和意义。
2. 简单随机抽样的方法。
教学难点:1. 随机抽样的实际操作。
教学准备:1. PPT课件。
2. 学生分组,每组准备一些小物品,如糖果、小球等。
教学过程:一、导入(5分钟)1. 利用PPT课件,展示一些生活中的随机抽样现象,如彩票抽奖、糖果包装上的随机颜色等。
2. 引导学生思考:这些现象有什么共同特点?它们的意义和作用是什么?二、自主学习(10分钟)1. 让学生阅读教材,了解随机抽样的概念和意义。
2. 学生分享学习心得,教师点评并总结。
三、课堂讲解(15分钟)1. 讲解简单随机抽样的方法,如抽签法、随机数表法等。
2. 举例说明如何使用这些方法进行数据收集和分析。
四、实践操作(15分钟)1. 学生分组,每组选择一种物品进行随机抽样。
2. 教师巡回指导,解答学生在操作过程中遇到的问题。
3. 各组汇报抽样结果,教师点评并总结。
五、课堂小结(5分钟)1. 让学生回顾本节课所学内容,总结随机抽样的概念、意义和作用。
2. 强调随机抽样在实际生活中的应用价值。
六、课后作业(课后自主完成)1. 结合教材,思考生活中还有哪些随机抽样的现象?它们是如何实现的?2. 尝试使用简单随机抽样的方法,对身边的物品进行数据收集和分析。
教学反思:本节课通过引导学生观察生活中的随机抽样现象,让学生了解随机抽样的概念和意义。
通过课堂讲解和实践操作,让学生学会使用简单随机抽样的方法进行数据收集和分析。
在教学过程中,要注意关注学生的学习情况,及时解答学生的问题,确保学生能够掌握所学知识。
同时,要注重培养学生的观察能力、思考能力和动手能力,提高学生的学习兴趣和积极性。
随机抽样
方法二:由题意可知,做 C 卷的人是从编号在[751,960]内 抽取的样本. 11 7 由 751≤(n-1)×30+9≤960,解得 25+15≤n≤32+10, 又 n∈Z,所以 26≤n≤32,即样本是从第 26 组到第 32 组中 选取,故该区间内选取的样本容量为 32-26+1=7. 【 答案】 A
【 解析】 由题设知,若 m=6,则在第 7 组中抽取的号码个 位数字与 13 的个位数字相同,而第 7 组中数字编号顺次为 60, 61,62,63,„,69,故在第 7 组中抽取的号码是 63. 【 答案】 63
随 机 抽 样
1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本. 3.了解分层抽样和系统抽样方法.
课前自助餐
简单随机抽样 (1)定义: 设一个总体含有 N 个个体, 从中逐个抽取 n 个个体 作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机 会相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数表法.
授人以渔
题型一 简单随机抽样 例1 (1)用简单随机抽样的方法从含有 100 个个体的总体中 )
抽取一个容量为 5 的样本,则个体 M 被抽到的概率为( 1 A.100 1 C.20 1 B.99 1 D.50
【思路】
在简单随机抽样中,总体中的每个个体被抽到的
概率都是一样的,可以看作 5 次抽取,从而求得概率. 【 解析】 一个总体含有 100 个个体,某个个体被抽到的概率 1 为 , 用简单随机抽样方式从该总体中抽取容量为 5 的样本. 则 100 1 1 每个个体被抽到的概率为100×5=20. 【 答案】 C
【 解析】 因为学段层次差异较大,所以在不同学段中抽取宜 用分层抽样. 【 答案】 C
简单随机抽样(三种抽样方法).ppt
笑一笑,十年少
一天,爸爸叫儿子去买一盒火柴,临出 门前,爸爸嘱咐儿子要买能划燃的火柴,儿 子拿着钱出门了,过了好一会儿,儿子才回 到家。
“火柴能划燃吗?”爸爸问。 “都能划燃。” “你这么肯定?” 儿子递过一盒划过的火柴,兴奋地说: “我每根都试过啦。”
问:这则笑话中,儿子采用的是什么调查方式? 这其中的全体是什么?这种调查方式好不好?
一个著名的案例1936年美国总统选举前,一份颇有名气的杂志 的工作人员做了一次民意测验,调查兰顿(时任堪萨斯州州长) 和罗斯福(时任总统)中谁将当选下一任总统。为了解公众意向, 调查者通过电话和车辆登记薄上的名单给一大批人发了调查表 (注意1936年电话和汽车只有少数富人拥有)。通过分析收回的 调查表,显示兰顿非常受欢迎,于是杂志预测兰顿将获胜。
实际选举结果正好相反,罗斯福在选举中获胜!
你认为预测结果出错的原因是什么?
那么,怎样从总体中抽取样本呢?如何表示样本数 据?如何从样本数据中提取基本信息(样本分布、样本 数字特征等),来推断总体的情况呢?这些正是本章要 解决的问题。
抽样方法 2.1.1简单随机抽样
要了解全国高中生的视力情况,在全国抽取了 15所中学的全部高中生15000人进行视力测试。
谈谈你的看法:
统计的基本思想:
用样本估计总体,即通常不直接去研究总 体,而是通过从总体中抽取一个样本,根据 样本的情况去估计总体的相应情况。
妈妈:“儿子,帮妈妈买盒火柴去。” 妈妈:“这次注意点,上次你买的火柴好多划不着。” ……… 儿子高兴地跑回来。 孩子:“妈妈,这次的火柴全划得着,我每根都试过了。”
N
简单随机抽样法之一——抽签法
步骤: 1、把总体中的N个个体编号;
2、 把号码写在号签上,将号签放在一个容器中 搅拌均匀;
随机抽样方法
随机抽样方法
随机抽样是一种常用的统计方法,用于从总体中选择样本,以便对总体进行推断。
在实际应用中,随机抽样方法被广泛应用于市场调研、社会调查、医学研究等领域。
本文将介绍随机抽样方法的基本原理、常见的抽样技术和注意事项。
首先,随机抽样的基本原理是通过随机的方式从总体中选择样本,以保证样本的代表性和独立性。
这意味着每个个体都有被选中的机会,同时每个个体被选中的概率相等。
这样可以避免抽样偏差,使得样本能够准确地反映总体的特征。
常见的随机抽样技术包括简单随机抽样、分层抽样、整群抽样和多阶段抽样。
简单随机抽样是最基本的抽样技术,即从总体中随机地选择样本。
分层抽样是将总体按照某种特征分成若干层,然后在每一层中进行简单随机抽样。
整群抽样是将总体分成若干群,然后随机选择若干群作为样本。
多阶段抽样是将抽样过程分成若干阶段,每一阶段进行一次抽样。
这些抽样技术可以根据实际情况进行选择,以满足研究的需要。
在进行随机抽样时,需要注意一些事项。
首先,需要确定抽样的总体和样本大小。
总体的确定要准确,样本大小的确定要考虑到研究的目的、资源的限制和统计的要求。
其次,需要设计抽样框架,即确定如何进行抽样和如何获得样本。
最后,需要进行实际的抽样过程,并对样本进行统计分析。
在整个抽样过程中,需要保证随机性和代表性,以确保研究的可靠性和有效性。
总之,随机抽样是一种重要的统计方法,通过随机的方式选择样本,以保证样本的代表性和独立性。
在实际应用中,可以根据研究的需要选择合适的抽样技术,并注意抽样过程中的一些事项,以确保研究的可靠性和有效性。
中级经济师 经济基础 第四部分 统计 第25章 抽样调查
第四部分 统计 第25章抽样调查一、抽样调查的概念1、抽样调查定义:抽样调查:是指按照某种原则和程序,从整体抽取部分单位进行调查,根据部分调查的数据了解总体情况或估计有关参数抽样调查是使用频率的最高的一种调查形式。
总体:调查对象的全体样本:是总体的一部分,按照一定原则或程序抽出的单位组成——小团队抽样调查中的调查的具体实施是针对样本而言的。
总体参数:是通过调查想要了解的,是一个未知数,是我们关心的变量的数字特征,根据总体中所有单位的数值进行计算,不受样本的抽选结果影响。
常用的总体参数:总体总量、总体均值、总体比例、总体方差等样本统计量:是对总体参数的估计,是一个随机变量,,取决于样本设计和正好被选入样本的单元特定组合根据样本中各单位的数值计算的。
常用的样本统计量:样本均值、样本比例、样本方差等抽样框:是供抽样所用的所有抽样单元的名单,是抽样总体的具体表现。
对抽样框中的每一个单位进行编号,可以按一定随机化程序进行抽样。
常用抽样框形式:名录框如企业名录电话簿人员名册,一种地图或其他适当形式抽样框特点:抽样框中的单位必须是有序的,便于编号高质量的抽样框应当提供被调查单位更多的信息,并且没有重复和遗漏。
2、抽样调查的分类:(1)概率抽样:也称为随机抽样,是指根据随机原则,按照某种事先设定的程序,从总体中抽取部分单位的方法概率抽样的特点:按照一定的概率以随机原则抽取样本总体中共每个单位被抽中的概率是已知的、可计算的当估计总体参数时,要考虑每个单位苯抽中的概率每个单位被抽入样本的概率相同,称为等概率抽样每个单位被抽入样本的概率不同,称为不等概率抽样(2)非概率抽样:也称为非随机抽样,是调查者根据自己方便或主观判断抽取样本的方法非概率抽样的主要特点:抽样不依据随机原则。
非概率抽样的主要方法:① 判断抽样:依据调查目的及对调查对象的了解,人为确认样本② 方便抽样:依据方便原则,最大限度降低调查成本③ 自愿样本:不经过抽取,自愿接受调查的单位组成样本④ 配额样本:总体按照一定标准划分若干类型,样本配额分配到各类型中,各类型抽取样本的方法没有严格限制,一般使用方便抽样方法抽取样本单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24讲 随机抽样
课标要求:
1.能从现实生活或其他学科中提出具有一定价值的统计问题; 2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;
3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;
4.能通过试验、查阅资料、设计调查问卷等方法收集数据。
要点精讲
三种常用抽样方法:
1.简单随机抽样:设一个总体的个数为N 。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法。
(1)抽签法 制签:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;
抽签:抽签时,每次从中抽出1个号签,连续抽取n 次; 成样:对应号签就得到一个容量为n 的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法。
(2)随机数表法
编号:对总体进行编号,保证位数一致;
数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n 的样本。
结论:
① 用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为
N
1;在整个抽样过程中各个个体被抽到的概率为
N
n ;
② 基于此,简单随机抽样体现了抽样的客观性与公平性;
③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样)。
系统抽样的步骤可概括为:
(1)将总体中的个体编号。
采用随机的方式将总体中的个体编号;
(2)将整个的编号进行分段。
为将整个的编号进行分段,要确定分段的间隔k .当
n
N 是整数时,
n
N k =
;当
n
N 不是整数时,通过从总体中剔除一些个体使剩下的个体数N ´能被n 整除,这时n
N k '=;
(3)确定起始的个体编号。
在第1段用简单随机抽样确定起始的个体边号l ;
(4)抽取样本。
按照先确定的规则(常将l 加上间隔k )抽取样本:k n l k l k l l )1(,,2,,-+⋅⋅⋅++。
3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫做层。
结论:
(1)分层抽样是等概率抽样,它也是公平的。
用分层抽样从个体数为N 的总体中抽取一个容量为n 的样本时,在整个抽样过程中每个个体被抽到的概率相等,都等于
N
n ;
(2)分层抽样是建立在简单随机抽样或系统抽样的基础上的,由于它充分利用了已知信息,因此利
用它获取的样本更具有代表性,在实践的应用更为广泛。
思维总结
常用的抽样方法及它们之间的联系和区别:
不放回抽样和放回抽样:在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样。
随机抽样、系统抽样、分层抽样都是不放回抽样。
典例解析
题型1:统计概念及简单随机抽样
题1.为调查参加运动会的1000名运动员的年龄情况,从中抽查了100名运动员的年龄,就这个问题来说,下列说法正确的是()
A.1000名运动员是总体B.每个运动员是个体
C.抽取的100名运动员是样本D.样本容量是100
题2.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本。
问:①总体中的某一个体a在第一次抽取时被抽到的概率是多少?②个体a不是在第1次未被抽到,而是在第2次被抽到的概率是多少?③在整个抽样过程中,个体a被抽到的概率是多少?
题型2:系统抽样
题3.为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本。
题4.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k小组中抽取的号码个位数字与m+k的个位数字相同.若m=6,则在第7组中抽取的号码是___________.
题型3:分层抽样
题5.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加了其中一组。
在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%。
登山组的职工占参加活动总人数的
4
1,且该组中,青年人占50%,中年人占40%,老年人占10%。
为了了解各组不同的年龄层次的职
工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本。
试确定
(Ⅰ)游泳组中,青年人、中年人、老年人分别所占的比例; (Ⅱ)游泳组中,青年人、中年人、老年人分别应抽取的人数。
题6.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生( ) A .30人,30人,30人 B .30人,45人,15人 C .20人,30人,10人 D .30人,50人,10人
题型4:综合问题
题7.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是
A .分层抽样法,系统抽样法
B .分层抽样法,简单随机抽样法
C .系统抽样法,分层抽样法
D .简单随机抽样法,分层抽样法
题8. 某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况: ①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270; 关于上述样本的下列结论中,正确的是 ( )
A .②、③都不能为系统抽样
B .②、④都不能为分层抽样
C .①、④都可能为系统抽样
D .①、③都可能为分层抽样。