河北省张家口市2018届高三上学期期末考试数学(理)试卷(扫描版)

合集下载

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题 理(全国卷1,解析版)

2018年普通高等学校招生全国统一考试数学试题理(全国卷1)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 设,则A. B. C. D.【答案】C【解析】分析:首先根据复数的运算法则,将其化简得到,根据复数模的公式,得到,从而选出正确结果.详解:因为,所以,故选C.点睛:该题考查的是有关复数的运算以及复数模的概念及求解公式,利用复数的除法及加法运算法则求得结果,属于简单题目.2. 已知集合,则A. B.C. D.【答案】B【解析】分析:首先利用一元二次不等式的解法,求出的解集,从而求得集合A,之后根据集合补集中元素的特征,求得结果.详解:解不等式得,所以,所以可以求得,故选B.点睛:该题考查的是有关一元二次不等式的解法以及集合的补集的求解问题,在解题的过程中,需要明确一元二次不等式的解集的形式以及补集中元素的特征,从而求得结果.3. 某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:则下面结论中不正确的是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】分析:首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.详解:设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;故选A.点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.4. 设为等差数列的前项和,若,,则A. B. C. D.【答案】B详解:设该等差数列的公差为,根据题中的条件可得,整理解得,所以,故选B.点睛:该题考查的是有关等差数列的求和公式和通项公式的应用,在解题的过程中,需要利用题中的条件,结合等差数列的求和公式,得到公差的值,之后利用等差数列的通项公式得到与的关系,从而求得结果.5. 设函数,若为奇函数,则曲线在点处的切线方程为A. B. C. D.【答案】D【解析】分析:利用奇函数偶此项系数为零求得,进而得到的解析式,再对求导得出切线的斜率,进而求得切线方程.详解:因为函数是奇函数,所以,解得,所以,,所以,所以曲线在点处的切线方程为,化简可得,故选D.点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.6. 在△中,为边上的中线,为的中点,则A. B.C. D.【答案】A【解析】分析:首先将图画出来,接着应用三角形中线向量的特征,求得,之后应用向量的加法运算法则-------三角形法则,得到,之后将其合并,得到,下一步应用相反向量,求得,从而求得结果.详解:根据向量的运算法则,可得,所以,故选A.点睛:该题考查的是有关平面向量基本定理的有关问题,涉及到的知识点有三角形的中线向量、向量加法的三角形法则、共线向量的表示以及相反向量的问题,在解题的过程中,需要认真对待每一步运算.7. 某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. B.C. D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N 在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.8. 设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=A. 5B. 6C. 7D. 8【答案】D【解析】分析:首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得,最后应用向量数量积坐标公式求得结果.详解:根据题意,过点(–2,0)且斜率为的直线方程为,与抛物线方程联立,消元整理得:,解得,又,所以,从而可以求得,故选D.点睛:该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出,之后借助于抛物线的方程求得,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M、N的坐标,应用韦达定理得到结果.9. 已知函数.若g(x)存在2个零点,则a的取值范围是A. [–1,0)B. [0,+∞)C. [–1,+∞)D. [1,+∞)【答案】C【解析】分析:首先根据g(x)存在2个零点,得到方程有两个解,将其转化为有两个解,即直线与曲线有两个交点,根据题中所给的函数解析式,画出函数的图像(将去掉),再画出直线,并将其上下移动,从图中可以发现,当时,满足与曲线有两个交点,从而求得结果.详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.10. 下图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A详解:设,则有,从而可以求得的面积为,黑色部分的面积为,其余部分的面积为,所以有,根据面积型几何概型的概率公式,可以得到,故选A.点睛:该题考查的是面积型几何概型的有关问题,题中需要解决的是概率的大小,根据面积型几何概型的概率公式,将比较概率的大小问题转化为比较区域的面积的大小,利用相关图形的面积公式求得结果.11. 已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若OMN为直角三角形,则|MN|=A. B. 3 C. D. 4【答案】B【解析】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到,根据直角三角形的条件,可以确定直线的倾斜角为或,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得,利用两点间距离同时求得的值.详解:根据题意,可知其渐近线的斜率为,且右焦点为,从而得到,所以直线的倾斜角为或,根据双曲线的对称性,设其倾斜角为,可以得出直线的方程为,分别与两条渐近线和联立,求得,所以,故选B.点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.12. 已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. B. C. D.【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体中,平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理平面也满足与正方体的每条棱所在的直线所成角都是相等,要求截面面积最大,则截面的位置为夹在两个面与中间的,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.点睛:该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.二、填空题:本题共4小题,每小题5分,共20分。

河北省张家口市综合中学2018-2019学年高三数学理期末试卷含解析

河北省张家口市综合中学2018-2019学年高三数学理期末试卷含解析

河北省张家口市综合中学2018-2019学年高三数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知数列{a n}中,a1=3,a2=6,a n+2=a n+1﹣a n,则a2015=( )A.﹣6 B.6 C.﹣3 D.3参考答案:C【考点】数列递推式.【专题】转化思想;数学模型法;等差数列与等比数列.【分析】利用a1=3,a2=6,a n+2=a n+1﹣a n,可得a n+5=a n.即可得出.【解答】解:∵a1=3,a2=6,a n+2=a n+1﹣a n,∴a3=3,a4=﹣3,a5=﹣6,a5=﹣3,a6=3,a7=6,….∴a n+5=a n.则a2015=a5×403=a5=﹣3.故选:C.【点评】本题考查了递推关系的应用、数列的周期性,考查了推理能力与计算能力,属于中档题.2. “非空集合不是的子集”的充要条件是()A. B.C.,又 D.参考答案:D3. 已知a,b是两个互相垂直的向量,|a|=1,|b|=2,则对任意的正实数t,的最小值是A.2 B.C.4 D.参考答案:A4. 已知某班学生的数学成绩x(单位:分)与物理成绩y(单位:分)具有线性相关关系,在一次考试中,从该班随机抽取5名学生的成绩,经计算:,设其线性回归方程为:.若该班某学生的数学成绩为105,据此估计其物理成绩为()A. 66B. 68C. 70D. 72参考答案:B【分析】由题意求出?,代入线性回归方程求得,再计算x=105时的值.【详解】由题意知,x i475=95,y i320=64,代入线性回归方程0.4x中,得64=0.4×95,解26;所以线性回归方程为0.4x+26,当x=105时,0.4×105+26=68,即该班某学生的数学成绩为105时,估计它的物理成绩为68.故选:B.【点睛】本题主要考查线性回归方程的求解及应用,还考查运算求解的能力,属于基础题.5. 在正n棱锥中,相邻两侧面所成的二面角的取值范围是(A)( π,π) (B)( π,π) (C)(0,) (D)( π,π)参考答案:解:设相邻两侧面所成的二面角为θ,易得θ大于正n边形的一个内角π,当棱锥的高趋于0时,θ趋于π,故选A.6. 已知(1+x)10=a0+ a1(1-x)+ a2(1- x)2+…+ a10(1- x)10,则a8等于A.-5 B.5 C.90 D.180参考答案:D7. =( )A.4 B.2 C.-2 D.-4参考答案:A略8. 若函数的图象关于点对称,则函数的最大值等于()A.1 B.C.2 D.参考答案:B9. 设非零向量,满足,与的夹角为A. 60 B.90 C.120 D 150参考答案:A10. 设数列{a n}的前n项和为S n,点(n,)(n∈N*)均在函数y=x+的图象上,则a2014=()A.2014 B.2013 C.1012 D.1011参考答案:试题分析:点(n,)(n∈N*)均在函数y=x+的图象上,所以,即,考点:数列与函数的综合运用,以及等差数列的通项公式和等差关系的确定二、填空题:本大题共7小题,每小题4分,共28分11. “雾霾治理”“延迟退休”“里约奧运”“量子卫星”“神舟十一号”成为现在社会关注的个热点.小王想利用暑假时间调查一下社会公众对这些热点的关注度.若小王准备按照顺序分别调査其中的个热点,则“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点的种数为______.参考答案:72【分析】根据题意,分2步进行分析:①,由题目的限制条件分析易得“量子卫星”有种安排方法,②,在剩下的4个热点中任选3个,安排在剩下的3个位置,即可得出结果.【详解】解:根据题意,分2步进行分析:①,小王准备把“量子卫星”作为其中的一个调查热点,但不作为第一个调查热点,则“量子卫星”可以安排在后面的三个位置,有3种安排方法,②,在剩下的4个热点中任选3个,安排在剩下的3个位置,有种安排方法,则有种不同的安排方法;故答案为:7212. 设,且,则满足条件的a的值有个.参考答案:13. 执行如图所示的程序框图,输出的S为_________.参考答案:1【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的S的值.【详解】执行程序框图,输入,第一次循环;第二次循环;第三次循环;第四次循环;第五次循环;第六次循环;第七次循环;第八次循环;第九次循环;第十次循环;退出循环输出,故答案为1.【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.14. 设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为________.参考答案:(-1,0)∪(0,1)15. 在“家电下乡”活动中,某厂要将100台洗衣机运往临近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆甲型货车运输费用300元,可装洗衣机10台,若每辆至多只运一次,则该厂所花的最少运输费用为元.参考答案:略16. 已知平面向量,的夹角为,||=2,||=1,则|+|=.参考答案:考点:平面向量数量积的运算.专题:平面向量及应用.分析:运用数量积的定义求解得出=||?||cos,结合向量的运算,与模的运算转化:|+|2=()2=||2+||2+2,代入数据求解即可.解答:解:∵平面向量,的夹角为,||=2,||=1,∴=||?||cos=2×=﹣1,∴|+|2=()2=||2+||2+2=4+1﹣2=3,即|+|=.故答案为:.点评:本题考查了平面向量的数量积的运用,应用求解向量的模,计算简单,属于容易题.17. 若直线平面,直线,则与的位置关系是_____________.参考答案:略三、解答题:本大题共5小题,共72分。

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)

2018年全国高考新课标2卷理科数学考试(解析版)作者:日期:2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3. 考试结束后,将本试卷和答题卡一并交回。

每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要 求的。

434 3 3 4 3 4 A ・ 一 T 一 弓 B * -5 + 5i c ∙ - 5 ' 5i D * - 5 + 5i解析:选D2. 已知集合A={(x,y) ∣χ2+y2≤3,x∈Z,y∈Z },则A 中元素的个数为( ) A. 9B. 8C. 5D ・ 4解析:选A 问题为确定圆面内整点个数 3. 函数f (x)=E 2的图像大致为()-、选择题:本题共12小题, 1.l+2i F r2解析:选B f(x)为奇函数,排除 A,x>0,f (x)>0,排除 D,取 x=2,f (2) = e 2-e^24 力,故选B4. 已知向量 a, b 满足 Ial=1, a ∙ b 二-1,则 a ∙ (2a~b)=( ) A. 4B. 3C. 2D.5.双曲线= I (a>0, b>0)的离心率为\龙,则其渐近线方程为( C. y=±迟X9A. y=±j∖βxB. y 二±ι∖βx=∖β C2 二 3¥ b=∖βa C √5 歹专,BC=I,AC 二 5, B. √30C 3 解析:选 A CoSo2cos 右-I= - ~ 2 5解析:选A e-6-在ΔABC 中,COS 则 AB 二() D. y=±A. 4√2 AB^AO+BC2-2AB ∙ BC ∙ COSC=322√5 AB=4√2 D.7. ................................................... 为计算S=I- 2 + 3 ^ 4 ++^ T∞,设计了右侧的程序框图,则在空白框中应填入()A. i=i+lB. i 二i+2C. i 二i+3D. i 二i+4解析:选B8. 我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数 可以表示为两个素数的和”,如30=7+23.在不超过30的素数中,随机选取两个不同的数,其和等于30的 概率是()3为7+23, 11+19, 13+17,共3种情形,所求概率为P=FF109. 在长方体ABCD-ABc I D I 中,AB=BC=I, AAi=W 则异面直线AD】与DBl 所成角的余弦值为(D.解析:选C 建立空间坐标系,利用向量夹角公式可得。

河北省武邑中学2018届高三上学期期末考试数学(理)试题 Word版含答案

河北省武邑中学2018届高三上学期期末考试数学(理)试题 Word版含答案

河北武邑中学2017—2018学年高三年级上学期期末考试数学试题(理)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A . 1 B . -1 C .12D .-22.设α为锐角,()()sin ,1,1,2a b α==,若a 与b 共线,则角α=( ) A . 15° B . 30° C .45° D .60°3.下列说法正确的是( )A .命题“若2340x x --=,则4x =”的否命题是“若2340x x --=,则4x ≠ ” B .0a >是函数ay x =在定义域上单调递增的充分不必要条件 C .()000,0,34xxx ∃∈-∞<D .若命题:,3500nP n N ∀∈>,则00:,3500nP x N ⌝∃∈≤4. 已知点()()()()1,1,1,2,2,1,3,4A B C D ---,则向量AB 在CD 方向上的投影为( )A .2 B .2 C. 2- D .2- 5. 若双曲线()222210,0x y a b a b-=>>的渐近线与直线1y =-所围成的三角形面积为2,则该双曲线的离心率为( )A 6.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何,下图网格纸中实线部分分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为( )A .3立方丈B .5立方丈 C.6立方丈 D .12立方丈7. 从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于( ) A .57 B .59 C. 27 D .498. 将曲线1:sin 6C y x π⎛⎫=- ⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线()2:C y g x =,则()g x 在[],0π-上的单调递增区间是( ) A .5,66ππ⎡⎤--⎢⎥⎣⎦ B .2,36ππ⎡⎤--⎢⎥⎣⎦ C. 2,03π⎡⎤-⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦ 9.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入,n x 的值分别为4,2,则输出v 的值为( )A . 32B . 64 C. 65 D .13010. 若()()50,2a x y ax y <-+展开式中42x y 的系数为-20,则a 等于( )A . -1B . 32-C. -2 D .52- 11. 已知三棱锥P ABC -的所有顶点都在球O 的球面上,0,,60,2,2,3PA AB PA AC BAC PA AB AC ⊥⊥∠====,则球O 的表面积为( )A .403π B .303π C. 203π D .103π 12.已知函数()213ln 2f x x x a x ⎛⎫=-+- ⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是 ( ) A .1,52⎛⎫-⎪⎝⎭B .111,22⎛⎫- ⎪⎝⎭ C. 111,22⎛⎫ ⎪⎝⎭ D .1,52⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为 .14.已知实数,x y 满足2041x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2y x +的最小值为 .15.已知()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()21xf xg x e x -=++,则函数()()()h x f x g x =+在点()()0,0h 处的切线方程是 .16.已知a b c 、、是ABC ∆的三边,()4,4,6,sin 2sin a b A C =∈=,则c 的取值范围为 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知表1和表2是某年部分日期的天安门广场升旗时刻表: 表1:某年部分日期的天安门广场升旗时刻表表2:某年1月部分日期的天安门广场升旗时刻表 (1)从表1的日期中随机选出一天,试估计这一天的升旗时刻早于7:00的概率; (2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的 分布列和数学期望; (3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为31760),记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为20s ,判断2s 与20s 的大小(只需写出结论).19.如图,直角梯形BDFE 中,//,,EF BD BE BD EF ⊥=ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.20. 已知中心在原点O ,焦点在x 轴上,离心率为3的椭圆过点⎭. (1)求椭圆的方程;(2)设椭圆与y 轴的非负半轴交于点B ,过点B 作互相垂直的两条直线,分别交椭圆于,P Q 两点,连接PQ ,求BPQ ∆的面积的最大值.21. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,直线l 的参数方程是26x ty t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 23.选修4-5:不等式选讲已知函数()12f x x x a =+++. (1)当4a =-时,求()f x 的最小值; (2)若2a >时,()7f x ≥对任意的,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,求a 的取值范围.试卷答案一、选择题1-5:ABDAA 6-10: BCBCA 11、12:AB二、填空题13. 2 14.1515. 20x y +-=16. ( 三、解答题17.解:(1)因为2211n n n n a a a a +-+=-,所以,()()1110n n n n a a a a +++--=,因为10,0n n a a ->>,所以10n n a a -+≠,所以11n n a a --=, 所以{}n a 是以1为首项,1为公差的等差数列,所以n a n =, 当2n ≥时,12n n n b S S n -=-=, 当1n =时,12b =也满足,所以2n b n =; (2)由(1)可知()1111112121n na b n n n n -⎛⎫==- ⎪++⎝⎭,所以()11111111222334121n n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. 18.解:(1)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以()153204P A ==; (2)X 可能的取值为0,1,2,记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00” 则()()()512;11533P B P B P B ===-=;()()()409P X P B P B ===;()1211411339P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭;()()()129P X P B P B ===, 所以X 的分布列为:()44120129993E X =⨯+⨯+⨯=,(注:学生得到12,3X B ⎛⎫⎪⎝⎭,所以()12233E X =⨯=,同样给分);(3)220s s <.19.解:(1)∵平面BDFE ⊥平面ABCD ,BE BD ⊥,平面BDFE 平面ABCD BD =,∴BE ⊥平面ABCD ,又AC ⊂平面ABCD ,∴AC BE ⊥, 又∵AC BD ⊥,且BE BD B =,∴AC ⊥平面BDFE ;(2)设ACBD O =,∵四边形ABCD 为等腰梯形,,242DOC AB CD π∠===,∴OD OC OB OA ====∵//OB FE ,∴四边形BOFE 为平行四边形,∴//OF BE , 又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD , ∴FBO ∠为BF 与平面ABCD 所成的角,∴4FBO π∠=,又∵2FOB π∠=,∴OF OB ==以O 为原点,OA 为x 轴,OB 为y 轴,OF 为z 轴,建立空间直角坐标系,则()()(()(),0,,,,B D F C A ,()()0,2,22,2,DF CD ==,∵AC ⊥平面BDFE ,∴平面BDF 的法向量为()1,0,0, 设平面DFC 的一个法向量为(),,n x y z =,由00DF n CD n ⎧=⎪⎨=⎪⎩得00+==⎪⎩,令2x =得,()2,2,1n =-, 2222cos ,31221n AC ==++,∴二面角B DF C --的余弦值为23. 20.解:(1)由题意可设椭圆方程为()222210x y a b a b +=>>,则2232719c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 故31a b =⎧⎨=⎩,所以,椭圆方程为2219x y +=; (2)由题意可知,直线BP 的斜率存在且不为0,故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >,由221990y kx x y =+⎧⎨+-=⎩,消去y 得()2219180k x kx ++=,则BP=0k >换成1k-,得:BQ =,2222221118118122199211621829APQ k k k S BP BQ k k k k k k ∆++===++⎛⎫==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭⎝⎭设1k t k+=,则2t ≥, 故2162162276496489BPQ t S t t t∆==≤=++,取等条件为649t t =,即83t =, 即183k k +=,解得k =时,BPQ S ∆取得最大值278.21.解:(1)()f x 的定义域为()0,+∞,()22f x x m x'=+-, ()f x 的定义域内单调递增,则()220f x x m x'=+-≥, 即22m x x≤+在()0,+∞上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞; (2)由(1)知()22222x m x f x x m x x -+'=+-=,当1752m <<时()f x 有两个极值点,此时12120,12mx x x x +=>=,∴1201x x <<<, 因为1111725,2m x x ⎛⎫⎛⎫=+∈⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112122ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+, 令()2214ln h x x x x=-+,则()()222210x h x x --'=<,∴()h x 在11,42⎛⎫⎪⎝⎭上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为152554ln 2,16ln 2416⎛⎫--⎪⎝⎭.22.解:(1)由26x ty t =⎧⎨=+⎩,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y -+=,故曲线C的普通方程为(222x y +=;(2)据题意设点)Mθ,则2sin 4x y πθθθ⎛⎫--+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.23.解:(1)当4a =-时,()124f x x x =++-, 当1x ≤-时,()12433f x x x x =---+=-+; 当12x -<<时,()1245f x x x x =+-+=-+; 当2x ≥时,()12433f x x x x =++-=-;即()33,15,1233,2x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩,又因为()f x 在(),1-∞-上单调递减,在()1,2-上单调递减,在()2,+∞上单调递增,如图所示,所以当2x =时,()f x 有最小值3; (2)因为,12a x ⎡⎤∈--⎢⎥⎣⎦,所以10,20x x a +≤+≥,则()()()1217f x x x a x a =-+++=+-≥,可得8a x ≥-+对任意,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,即82a a ⎛⎫≥--+ ⎪⎝⎭,解得16a ≥, 故a 的取值范围为[)16,+∞.。

河北省武邑中学2018届高三上学期期末考试数学(理)试题 Word版含答案

河北省武邑中学2018届高三上学期期末考试数学(理)试题 Word版含答案
(1)求直线 的普通方程与曲线 的直角坐标方程;
(2)设 为曲线 上任意一点,求 的取值范围.
23.选修4-5:不等式选讲
已知函数 .
(1)当 时,求 的最小值;
(2)若 时, 对任意的 恒成立,求 的取值范围.
试卷答案
一、选择题
1-5:ABDAA 6-10: BCBCA 11、12:AB
二、填空题
(2)设 ,∵四边形 为等腰梯形, ,
∴ ,
∵ ,∴四边形 为平行四边形,∴ ,
又∵ 平面 ,∴ 平面 ,
∴ 为 与平面 所成的角,∴ ,
又∵ ,∴ ,
以 为原点, 为 轴, 为 轴, 为 轴,建立空间直角坐标系,
则 , ,
∵ 平面 ,∴平面 的法向量为 ,
设平面 的一个法向量为 ,
由 得 ,令 得, ,
21.解:(1) 的定义域为 , ,
的定义域内单调递增,则 ,
即 在 上恒成立,
由于 ,所以 ,实数 的取值范围是 ;
(2)由(1)知 ,当 时 有两个极值点,此时 ,∴ ,
因为 ,解得 ,
由于 ,于是

令 ,则 ,
∴ 在 上单调递减, ,
即 ,
故 的取值范围为 .
22.解:(1)由 ,得 ,故直线 的普通方程为 ,
13. 2 14. 15. 16.
三、解答题
17.解:(1)因为 ,所以, ,
因为 ,所以 ,所以 ,
所以 是以1为首项,1为公差的等差数列,所以 ,
当 时, ,
当 时, 也满足,所以 ;
(2)由(1)可知 ,
所以 .
18.解:(1)记事件 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以 ;

2018届高三上学期期末联考数学(理)试题有答案-精品

2018届高三上学期期末联考数学(理)试题有答案-精品

2017—2018学年度第一学期期末联考试题高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分全卷满分150分,考试时间120分钟.注意:1. 考生在答题前,请务必将自己的姓名、准考证号等信息填在答题卡上.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,答在试卷上无效.3. 填空题和解答题用0.5毫米黑色墨水签字笔答在答题卡上每题对应的答题区域内.答在试题卷上无效.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡上对应题号后的框内,答在试卷上无效.1.设集合{123}A =,,,{45}B =,,{|}M x x a b a A b B ==+∈∈,,,则M 中的元素个数为A .3B .4C .5D .62.在北京召开的第24届国际数学家大会的会议,会议是根据中国古代数学家赵爽的弦图(如图)设计的,其由四个全等的直角三角形和一个正方形组成,若直角三角形的直角边的边长分别是3和4,在绘图内随机取一点,则此点取自直角三角形部分的概率为 A .125B .925C .1625D .24253.设i 为虚数单位,则下列命题成立的是A .a ∀∈R ,复数3i a --是纯虚数B .在复平面内i(2i)-对应的点位于第三限象C .若复数12i z =--,则存在复数1z ,使得1z z ∈RD .x ∈R ,方程2i 0x x +=无解4.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a =A .19B .19-C .13D .13-5.已知曲线421y x ax =++在点(1(1))f --,处切线的斜率为8,则(1)f -=试卷类型:A天门 仙桃 潜江A .7B .-4C .-7D .4 6.84(1)(1)x y ++的展开式中22x y 的系数是A .56B .84C .112D .1687.已知一个空间几何体的三视图如图,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 A .4cm 3B .5 cm 3C .6 cm 3D .7 cm 38.函数()sin()(0,0)f x A x A ωϕω=+>>的图像如图所示,则(1)(2)(3)(18)f f f f ++++的值等于ABC 2D .19.某算法的程序框图如图所示,其中输入的变量x 在1,2,3…,24 这24个整数中等可能随机产生。

河北省张家口市2018届高三上学期期末考试英语试题

河北省张家口市2018届高三上学期期末考试英语试题

河北省张家口市2018届高三上学期期末考试英语试题第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

1. What does the man mean?A. He doesn’t want cookies.B. He can’t offer any help.C. The cookies are good.2. What’s the matter with the man?A. His tooth makes him nervous.B. He is having a bad toothache.C. He ran away from the dentist’s chair.3. What is the relationship between the two speakers?A. Friends.B. Roommates.C. Strangers.4. How does the man feel?A. Comfortable.B. Hot.C. Cold.5. What are the speakers talking about?A. A concert.B. A rain.C. A job.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

河北省张家口市2018届高三上学期期末考试英语试卷(含答案)

河北省张家口市2018届高三上学期期末考试英语试卷(含答案)

河北省张家口市2018届高三上学期期末考试英语试题第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。

录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。

第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话,每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。

1. What does the man mean?A. He doesn’t want cookies.B. He can’t offer any help.C. The cookies are good.2. What’s the matter with the man?A. His tooth makes him nervous.B. He is having a bad toothache.C. He ran away from the dentist’s chair.3. What is the relationship between the two speakers?A. Friends.B. Roommates.C. Strangers.4. How does the man feel?A. Comfortable.B. Hot.C. Cold.5. What are the speakers talking about?A. A concert.B. A rain.C. A job.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项。

听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

河北省张家口市2018学年高一上学期期末考试数学试题

河北省张家口市2018学年高一上学期期末考试数学试题
(1)若 ,求实数 的取值范围;
(2)若 ,求实数 的取值范围.
18.已知 ,且 .
(1)求 的值;
(2)求 的值.
19.设函数 ,其中向量 .
(1)求函数 的最小正周期及单调增区间;
(2)求函数 在区间 上的最大值和最小值.
20.在 中, .
(1)求 与 的面积之比;
(2)若 为 中点, 与 交于点 且 ,求 的值.
21.某网店经营的一种商品进价是每件 元,根据一周的销售数据得出周销量 (件)与单价 (元)之间的关系如图折线所示,该网店与这种商品有关的周开支均为 元.
(1)根据周销量图写出周销量 (件)与单价 (元)之间的函数关系式;
(2)写出周利润 (元)与单价 (元)之间的函数关系式;当该商品的销售价格为多少元时,周利润最大?并求出最大周利润.
13.若幂函数 的图象不经过原点,则 的值是.
14.若函数 的零点 ,且 ,则 .
15.已知 ,且满足 ,则 .
16.已知 是平面单位向量,且 ,若平面向量 满足 ,则 .
三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.设函数 的定义域为集合 ,函数 的定义域为集合 .
(1)若 ,则 ,即 ,故实数 的取值范围是 .
(2)若 ,则 ,故实数 的取值范围是 .
18.解:(1)由 ,两边平方,得 ,因为 ,所以 ,所以 ,故 .
(2) .
19.解:由题意,得 .
(1) 的最小正周期 ,由 ,得 ,
故 单调增区间是 .
(2)由(1)可知,函数 在区间 上单调递增,所以 ,
22.已知 且 .
(1)当 时,解不等式 ;
(2) 在 恒成立,求实数 的取值范围.

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(理)试题

河北省张家口市第一中学2018-2019学年高二上学期期末考试数学(理)试题

2018-2019学上学期高二期末考试数学(理)试题一,选择题:本大题共12个小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1.已知集合{}220A x x x =--<,{}2,1,0,1,2B =--,则A B = ( )A.{}2,1,0-- B.{}1,0,1- C.{}0,1 D.{}0,1,22.若复数z 满足121zi i+=+,其中i 为虚数单位,z 表示复数z 地共轭复数,则z =( )A.3i-- B.3i - C.3i + D.3i-+3.如图所示地长方形地长为2,宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子地总数为m 粒,其中落在飞鸟图案中地豆子有n 粒,据此请你估计图中飞鸟图案地面积约为( )A.n mB.2n mC.m nD.2m n4. 按照程序框图(如右图)执行,第4个输出地数是( )A .4 B .5 C .6 D .75.设()0,90a ΰ°,若()3sin 7525a +=-°,则()()sin 15sin 75a a +×-=°°( )A.110C.110-D.-6.在三棱柱111ABC A B C -中,若AB a = ,AC b = ,1AA c = ,则1(C B = )A .a b c +-B .a b c --C .a b c -+-D .a b c--+ 7.已知三棱锥A BCD -中,ABD △与BCD △是边长为2地等边三角形且二面角A BD C --为直二面角,则三棱锥A BCD -地外接球地表面积为( )A.103p B.5p C.6p D.203p 8.执行如图所示地程序框图(其中mod10b c =表示b 等于c 除以10地余数),则输出地b 为( )A.2B.4C.6D.89.某几何体是由一个三棱柱和一个三棱锥构成地,其三视图如图所示,则该几何体地体积为( )A.43B.32C.53D.11610.已知双曲线224x y -=,1F 是左焦点,1P ,2P 是右支上两个动点,则111212F P F P PP +-地最小值是( )A.4B.6C.8D.1611.已知0x >,0y >,且3622x y +=.若247x y m m +>-恒成立,则m 地取值范围为( )A .(3,4)B .(4,3)- C.(,3)(4,)-∞+∞ D .(,4)(3,)-∞--+∞ 12.已知0a >且1a ¹,若当1x ³时,不等式x a ax ³恒成立,则a 地最小值是( )A.eB.1eeC.2D.ln 2二,填空题(每题5分,满分20分,将结果填在答题纸上)13.正三角形ABC 地边长为1,G 是其重心,则AB AG ×=.14.14.命题“当0c >时,若a b >,则ac bc >.”地逆命题是 .15.已知椭圆()222210x y a b a b+=>>,1F 和2F 是椭圆地左,右焦点,过1F 地直线交椭圆于()11,A x y ,()22,B x y 两点,若2ABF △地内切圆半径为1,122F F =,123y y -=,则椭圆离心率为.16.如图,在三棱锥P ABC -,ABC ∆为等边三角形,PAC ∆为等腰直角三角形,4PA PC ==,平面PAC ⊥平面ABC ,D 为AB 地中点,则异面直线AC 与PD 所成角地余弦值为 .三,解答题 (本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.) 17.已知数列{}n a 是等差数列,21a t t =-,24a =,23a t t =+.(1)求数列{}n a 地通项公式。

河北省张家口市第一中学2018年高三数学理上学期期末试题

河北省张家口市第一中学2018年高三数学理上学期期末试题

河北省张家口市第一中学2018年高三数学理上学期期末试题一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知函数f(x)=x1,x2,x3,x4,x5是方程f(x)=m的五个不等的实数根,则x1+x2+x3+x4+x5的取值范围是()A.(0,π)B.(-π,π)C.(lg π,1) D.(π,10)参考答案:D略2. 已知集合,且A中的至多有一个偶数,则这样的集合A共有()A.3个B.4个C.5个D.6个参考答案:D3. 函数,,若在区间是单调函数,且,则的值为()(A) (B) 1 (C) 2或 (D) 或2参考答案:D因为在单调,所以,即,而;若,则;若,则是的一条对称轴,是其相邻的对称中心,所以,所以.4. 如图是函数的部分图像,若|AB|=4,则()A. -1B. 1C.D.参考答案:D【分析】由图可设A(a,),则B(a,),可得(,),利用向量模的坐标运算,求得T4,从而可得ω的值,代入x=-1计算可得结果.【详解】设A(a,),函数f(x)sin(ωx+)的周期为T,则B(a,),∴(,),∵|AB|212=16,∴T2=16,∴T4,解得:ω.∴f(x)sin(x+),∴f(-1),故选:D.【点睛】本题考查函数y=A sin(ωx+φ)的图象解析式的确定及应用,涉及向量模的坐标运算及其应用,属于中档题.5. 设函数是区间上的增函数,则实数t的取值范围是()A.B.C.D.参考答案:D6. 平面坐标系中,0为坐标原点,点A(3,1),点B(-1,3),若点C满足,其中且=1,则点C的轨迹方程为()A.2x+y=l B.x+2y=5 C.x+y=5 D.x—y=1参考答案:B7. 如果对于任意实数x,[x]表示不超过x的最大整数.例如[3.27]=3,[0.6]=0.那么“[x]=[y]”是“|x﹣y|<1”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件参考答案:A【考点】充要条件.【专题】阅读型.【分析】先根据[x]的定义可知,[x]=[y]?|x﹣y|<1,而取x=1.9,y=2.1,此时满足|x﹣y|=0.2<1,但[x]≠[y],根据若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件进行判定即可.【解答】解:[x]=[y]?﹣1<x﹣y<1即|x﹣y|<1而取x=1.9,y=2.1,此时|x﹣y|=0.2<1,而[x]=1,[y]=2,[x]≠[y]∴“[x]=[y]”是“|x﹣y|<1”的充分而不必要条件故选A【点评】判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.8. 已知集合A={0,1,2,3,4},B={x|x2﹣2x>0},则A∩B=()A.(2,4] B.[2,4] C.{0,3,4} D.{3,4}参考答案:D【考点】交集及其运算.【分析】求出B中不等式的解集确定出B,找出A与B的交集即可.【解答】解:由B中不等式变形得:x(x﹣2)>0,解得:x<0或x>2,即B=(﹣∞,0)∪(2,+∞),∵A={0,1,2,3,4},∴A∩B={3,4},故选:D.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.9. 从装有除颜色外完全相同的2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ).A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球 D.至少有1个白球,都是红球参考答案:C略10. 若程序框图如右图所示,则该程序运行后输出的值是( )A. 5B. 6C. 7D. 8参考答案:A二、填空题:本大题共7小题,每小题4分,共28分11. 已知∈(,),sin=,则tan。

河北省张家口市2018届高三上学期期末考试物理试题 含

河北省张家口市2018届高三上学期期末考试物理试题 含

河北省张家口市2018届高三上学期期末考试物理试题一、选择题:本题共12小题,每小题4分,在每小题给出的四个选项中,第1~8题只有一项符合题目要求,第9~12题有多项符合题目要求。

全部选对得4分,选对但不全得2分,有选错的得0分1. 第谷、开普勒等人对行星运动的研究漫长而曲折,牛顿在他们研究的基础上,得出了科学史上最伟大的定律之一---万有引力定律,下列说法正确的是A. 开普勒通过研究、观测和记录发现行星绕太阳做匀速圆周运动B. 太阳雨行星之间引力的规律并不适用于行星与它的卫星C. 库仑利用实验较为准确地测出了引力常量G的数值D. 牛顿在发现万有定律的过程中应用了牛顿第三定律的知识【答案】D【解析】开普勒通过研究观测记录发现了行星运动定律,根据开普勒第一定律可知,所有行星绕太阳的运动都是椭圆,故A错误;太阳与行星间的引力就是万有引力,万有引力适用于一切天体之间,故B错误;卡文迪许利用实验较为准确地测出了引力常量G的数值,故C错误;在发现万有引力定律的过程中,牛顿应用了牛顿第二定律、第三定律以及开普勒定律的知识,故D正确。

所以D正确,ABC错误。

2. 下列说法正确的是A. 处于n=3激发态的一个氢原子回到基态时一定会辐射三种频率的光子B. α射线的穿透能力比γ射线强C. β衰变中的电子来自原子的内层电子D. 放射性元素的半衰期与压力、温度无关【答案】D【解析】处于n=3的一个氢原子回到基态时可能会辐射一种频率的光子,或两种不同频率的光子,处于n=3的“一群”氢原子回到基态时会辐射三种频率的光子,故A错误;α射线的穿透能力最弱,电离本领最强,故B错误;β衰变中的电子来自原子内部的中子转化为质子同时释放出一个电子.故D错误;放射性元素的半衰期与压力、温度无关,故D正确。

所以D正确,ABC错误。

3. 如图所示,有一质量不计的杆AO,长为R,可绕A点自由转动,用绳在O点悬挂一个重为G的物体,另一根绳一端系在O点,另一端系在圆弧形墙壁上的C点,当点C由图示位置逐渐沿向上沿圆弧CB移动过程中(保持OA与地面夹角θ不变),OC绳所受拉力的大小变化情况是()A. 逐渐减小B. 逐渐增大C. 先减小后增大D. 先增大后减小【答案】C【解析】试题分析:对G分析,G受力平衡,则拉力等于重力;故竖直绳的拉力不变;再对O 点分析,O受绳子的拉力OA的支持力及OC的拉力而处于平衡;受力分析如图所示;将F和OC绳上的拉力合力,其合力与G大小相等,方向相反,则在OC上移的过程中,平行四边形的对角线保持不变,平行四边形发生图中所示变化,则由图可知OC的拉力先减小后增大,图中D点时力最小;故选C。

河北省武邑中学2018届高三上学期期末考试数学(理)试题word版有答案AlHnHw

河北省武邑中学2018届高三上学期期末考试数学(理)试题word版有答案AlHnHw

河北武邑中学2017—2018学年高三年级上学期期末考试数学试题(理)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设i 是虚数单位,复数1a ii-+为纯虚数,则实数a 的值为( ) A . 1 B . -1 C .12D .-2 2.设α为锐角,()()sin ,1,1,2a b α==r r,若a r 与b r 共线,则角α=( )A . 15°B . 30°C .45°D .60° 3.下列说法正确的是( )A .命题“若2340x x --=,则4x =”的否命题是“若2340x x --=,则4x ≠ ”B .0a >是函数ay x =在定义域上单调递增的充分不必要条件 C .()000,0,34xx x ∃∈-∞<D .若命题:,3500n P n N ∀∈>,则00:,3500nP x N ⌝∃∈≤4. 已知点()()()()1,1,1,2,2,1,3,4A B C D ---,则向量AB u u u r 在CD uuur 方向上的投影为( )A .322 B .3152 C. 322- D .3152- 5. 若双曲线()222210,0x y a b a b-=>>的渐近线与直线1y =-所围成的三角形面积为2,则该双曲线的离心率为( ) A .52B .2 C. 3 D .5 6.《九章算术》卷五商功中有如下问题:今有刍甍(底面为矩形的屋脊的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何,下图网格纸中实线部分分为此刍甍的三视图,设网格纸上每个小正方形的边长为1丈,那么此刍甍的体积为( )A .3立方丈B .5立方丈 C.6立方丈 D .12立方丈7. 从1,2,3,…,9这个9个数中任取5个不同的数,则这5个数的中位数是5的概率等于( ) A .57 B .59 C. 27 D .498. 将曲线1:sin 6C y x π⎛⎫=-⎪⎝⎭上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移2π个单位长度,得到曲线()2:C y g x =,则()g x 在[],0π-上的单调递增区间是( ) A .5,66ππ⎡⎤--⎢⎥⎣⎦ B .2,36ππ⎡⎤--⎢⎥⎣⎦ C. 2,03π⎡⎤-⎢⎥⎣⎦D .,6ππ⎡⎤--⎢⎥⎣⎦ 9.秦九韶是我国南宋时期的数学家,在他所著的《数书九章》中提出的多项式求值的“秦九韶算法”,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入,n x 的值分别为4,2,则输出v 的值为( )A . 32B . 64 C. 65 D .13010. 若()()50,2a x y ax y <-+展开式中42x y 的系数为-20,则a 等于( )A . -1B . 32-C. -2 D .52- 11. 已知三棱锥P ABC -的所有顶点都在球O 的球面上,0,,60,2,2,3PA AB PA AC BAC PA AB AC ⊥⊥∠====,则球O 的表面积为( )A .403π B .303π C. 203π D .103π 12.已知函数()213ln 2f x x x a x ⎛⎫=-+-⎪⎝⎭在区间()1,3上有最大值,则实数a 的取值范围是 ( )A .1,52⎛⎫-⎪⎝⎭B .111,22⎛⎫- ⎪⎝⎭ C. 111,22⎛⎫ ⎪⎝⎭ D .1,52⎛⎫⎪⎝⎭第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分,将答案填在答题纸上13.已知抛物线()220y px p =>的准线与圆()22316x y -+=相切,则p 的值为 .14.已知实数,x y 满足2041x y x y y -≥⎧⎪+≤⎨⎪≥⎩,则2y x +的最小值为 .15.已知()(),f x g x 分别是定义在R 上的偶函数和奇函数,且()()21xf xg x e x -=++,则函数()()()h x f x g x =+在点()()0,0h 处的切线方程是 .16.已知a b c 、、是ABC ∆的三边,()4,4,6,sin 2sin a b A C =∈=,则c 的取值范围为 .三、解答题 :本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知正项数列{}n a 满足221111,n n n n a a a a a ++=+=-,数列{}n b 的前n 项和n S 满足2n n S n a =+.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列11n n a b +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知表1和表2是某年部分日期的天安门广场升旗时刻表: 表1:某年部分日期的天安门广场升旗时刻表2月9日 7:15 2月19日 7:02 2月28日 6:49(2)甲、乙二人各自从表2的日期中随机选择一天观看升旗,且两人的选择相互独立,记X 为这两人中观看升旗的时刻早于7:00的人数,求X 的 分布列和数学期望; (3)将表1和表2的升旗时刻化为分数后作为样本数据(如7:31化为31760),记表2中所有升旗时刻对应数据的方差为2s ,表1和表2中所有升旗时刻对应数据的方差为20s ,判断2s 与20s 的大小(只需写出结论). 19.如图,直角梯形BDFE 中,//,,22EF BD BE BD EF ⊥=,等腰梯形ABCD 中,//,,24AB CD AC BD AB CD ⊥==,且平面BDFE ⊥平面ABCD .(1)求证:AC ⊥平面BDFE ; (2)若BF 与平面ABCD 所成角为4π,求二面角B DF C --的余弦值.20. 已知中心在原点O ,焦点在x 轴上,离心率为23的椭圆过点72,3⎭. (1)求椭圆的方程;(2)设椭圆与y 轴的非负半轴交于点B ,过点B 作互相垂直的两条直线,分别交椭圆于,P Q 两点,连接PQ ,求BPQ ∆的面积的最大值.21. 已知函数()()22ln f x x x mx m R =+-∈.(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若1752m <<,且()f x 有两个极值点()1212,x x x x <,求()()12f x f x -的取值范围. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知在平面直角坐标系xOy 中,直线l 的参数方程是26x ty t =⎧⎨=+⎩(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C 的极坐标方程为2ρθ=. (1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围.23.选修4-5:不等式选讲已知函数()12f x x x a =+++. (1)当4a =-时,求()f x 的最小值; (2)若2a >时,()7f x ≥对任意的,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,求a 的取值范围.试卷答案一、选择题1-5:ABDAA 6-10: BCBCA 11、12:AB二、填空题13. 2 14.1515. 20x y +-=16. ( 三、解答题17.解:(1)因为2211n n n n a a a a +-+=-,所以,()()1110n n n n a a a a +++--=,因为10,0n n a a ->>,所以10n n a a -+≠,所以11n n a a --=, 所以{}n a 是以1为首项,1为公差的等差数列,所以n a n =, 当2n ≥时,12n n n b S S n -=-=, 当1n =时,12b =也满足,所以2n b n =; (2)由(1)可知()1111112121n na b n n n n -⎛⎫==- ⎪++⎝⎭,所以()11111111222334121n n n T n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-= ⎪ ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦L . 18.解:(1)记事件A 为“从表1的日期中随机选出一天,这一天的升旗时刻早于7:00”,在表1的20个日期中,有15个日期的升旗时刻早于7:00,所以()153204P A ==; (2)X 可能的取值为0,1,2,记事件B 为“从表2的日期中随机选出一天,这一天的升旗时刻早于7:00” 则()()()512;11533P B P B P B ===-=;()()()409P X P B P B ===g ;()1211411339P X C ⎛⎫⎛⎫==-= ⎪⎪⎝⎭⎝⎭;()()()129P X P B P B ===g , 所以X 的分布列为:P494919()4120129993E X=⨯+⨯+⨯=,(注:学生得到12,3X B⎛⎫⎪⎝⎭:,所以()12233E X=⨯=,同样给分);(3)22s s<.19.解:(1)∵平面BDFE⊥平面ABCD,BE BD⊥,平面BDFE I平面ABCD BD=,∴BE⊥平面ABCD,又AC⊂平面ABCD,∴AC BE⊥,又∵AC BD⊥,且BE BD B=I,∴AC⊥平面BDFE;(2)设AC BD O=I,∵四边形ABCD为等腰梯形,,242DOC AB CDπ∠===,∴2,22OD OC OB OA====,∵//OBFE,∴四边形BOFE为平行四边形,∴//OF BE,又∵BE⊥平面ABCD,∴OF⊥平面ABCD,∴FBO∠为BF与平面ABCD所成的角,∴4FBOπ∠=,又∵2FOBπ∠=,∴22OF OB==,以O为原点,OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,则()()(()()0,22,0,0,2,0,0,0,22,2,0,0,22,0,0B D FC A--,()2,22,2,2,0DF CD==-u u u r u u u r,∵AC⊥平面BDFE,∴平面BDF的法向量为()1,0,0,设平面DFC的一个法向量为(),,n x y z=r,由DF nCD n⎧=⎪⎨=⎪⎩u u u r rgu u u r rg得2220220zx+==⎪⎩,令2x=得,()2,2,1n=-r,2222cos,31221n AC==++r u u u rg,∴二面角B DF C--的余弦值为23.20.解:(1)由题意可设椭圆方程为()222210x y a b a b +=>>,则2232719c a a b ⎧=⎪⎪⎨⎪+=⎪⎩, 故31a b =⎧⎨=⎩,所以,椭圆方程为2219x y +=; (2)由题意可知,直线BP 的斜率存在且不为0,故可设直线BP 的方程为1y kx =+,由对称性,不妨设0k >, 由221990y kx x y =+⎧⎨+-=⎩,消去y 得()2219180k x kx ++=,则BP =0k >换成1k-,得:29BQ k =+,222211182219911621829APQS BP BQ k k k k k k ∆===++⎛⎫==+ ⎪⎛⎫⎝⎭++ ⎪⎝⎭⎝⎭g g设1k t k+=,则2t ≥,故2162162276496489BPQ t S t t t∆==≤=++,取等条件为649t t =,即83t =, 即183k k +=,解得k =时,BPQ S ∆取得最大值278. 21.解:(1)()f x 的定义域为()0,+∞,()22f x x m x'=+-, ()f x 的定义域内单调递增,则()220f x x m x'=+-≥, 即22m x x≤+在()0,+∞上恒成立, 由于224x x+≥,所以4m ≤,实数m 的取值范围是(],4-∞; (2)由(1)知()22222x mx f x x m x x -+'=+-=,当1752m <<时()f x 有两个极值点,此时12120,12mx x x x +=>=,∴1201x x <<<,因为1111725,2m x x ⎛⎫⎛⎫=+∈ ⎪ ⎪⎝⎭⎝⎭,解得11142x <<,由于211x x =,于是()()()()22121112122ln 2ln f x f x x mx x x mx x -=-+--+ ()()()222121212112112ln ln 4ln x x m x x x x x x x =---+-=-+, 令()2214ln h x x x x=-+,则()()222210x h x x--'=<,∴()h x 在11,42⎛⎫⎪⎝⎭上单调递减,()1124h h x h ⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭, 即()()()()121141ln 2161ln 2416f x f x --<-<--, 故()()12f x f x -的取值范围为152554ln 2,16ln 2416⎛⎫--⎪⎝⎭.22.解:(1)由26x ty t =⎧⎨=+⎩,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y -+=,故曲线C的普通方程为(222x y +=;(2)据题意设点)Mθ,则2sin 4x y πθθθ⎛⎫-+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.23.解:(1)当4a =-时,()124f x x x =++-, 当1x ≤-时,()12433f x x x x =---+=-+; 当12x -<<时,()1245f x x x x =+-+=-+; 当2x ≥时,()12433f x x x x =++-=-;即()33,15,1233,2x x f x x x x x -+≤-⎧⎪=-+-<<⎨⎪-≥⎩,又因为()f x 在(),1-∞-上单调递减,在()1,2-上单调递减,在()2,+∞上单调递增,如图所示,所以当2x =时,()f x 有最小值3;(2)因为,12a x ⎡⎤∈--⎢⎥⎣⎦,所以10,20x x a +≤+≥,则()()()1217f x x x a x a =-+++=+-≥,可得8a x ≥-+对任意,12a x ⎡⎤∈--⎢⎥⎣⎦恒成立,即82a a ⎛⎫≥--+ ⎪⎝⎭,解得16a ≥, 故a 的取值范围为[)16,+∞.。

河北省张家口市2019届高三上学期期末考试数学(理)试题(解析版)

河北省张家口市2019届高三上学期期末考试数学(理)试题(解析版)
, . 是 的中点, 与 相交于点 .
(1)求证:平面 平面 ;
(2)求二面角 的余弦值.
【答案】(1)见证明;(2)
【解析】
14.已知数列 的前 项积为 , , , , ,则 ___.
【答案】
【解析】
【分析】
由已知得数列 为等比数列,利用通项即可求得首项和公比,从而求得 .
【详解】由已知 可得数列 为等比数列,设等比数列公比为q,
即9= ,解得q=3,则 ,
前 项积
故答案为:1
【点睛】本题考查等比数列通项的应用,考查学生计算能力,属于基础题.
7.某几何体的三视图如图所示,其正视图是斜边长为 的等腰直角三角形,则该几何体的体积是()
A. B. C. D.
【答案】B
【解析】
【分析】
由三视图可知,该几何体是等边圆柱斜削一半,求出圆柱体积的一半即可.
【详解】由三视图可知,该几何体是等边圆柱斜削一半,由正视图是斜边长为 的等腰直角三角形可知底面圆的半径为1,圆柱的高为2,所求几何体的体积为 .
15.若 ,则 ___.
【答案】
【解析】
【分析】
在已知等式中分别取x=1与x=﹣1,然后作和求得a0+a2+a4+a6,再求出a6,则答案可求
【详解】在 中,
取x=1,得a0+a1+a2+a3+a4+a5=80,
取x=﹣1,得a0﹣a1+a2﹣a3+a4﹣a5=﹣242,
∴两式子相加得2(a0+a2+a4)=﹣162,即a0+a2+a4=﹣81,
故选:B.
【点睛】本题考查三视图,考查圆柱的体积公式,其中由三视图推出几何体的形状是关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档