常见数列求和
数列求和的九种方法
数列求和的九种方法数列求和是数学中的一项基本技巧,在解题过程中经常会遇到。
为了求和一个数列,我们需要确定数列的通项公式,即根据数列中的规律找到一个表示该数列的函数。
在数列求和的过程中,有许多不同的方法可以使用。
下面将介绍九种常见的数列求和方法:逐项相加法、换元法、望眼法、边缘和法、归纳法、递推法、辅助行法、减法求和法和计算机辅助法。
1.逐项相加法逐项相加法是最基本的数列求和方法,即将数列中的每一项相加得到总和。
这种方法适用于数列的项数较少且没有明显的规律的情况。
2.换元法换元法是将数列中的每一项用一个新的变量表示,从而简化数列求和。
通过代入和逆代(将通项公式反解为原始项)两种方法,将数列求和转化为变量求和,从而计算出数列的总和。
3.望眼法望眼法是通过观察数列中的规律,寻找数列中的重复子列来简化求和。
通过找到重复子列后可以将数列分解为几个相同的子列求和,从而简化计算。
4.边缘和法边缘和法是将数列中的每一项的和用前面项的和表示,从而将数列求和转化为前缀和的计算。
该方法适用于数列中的每一项与前面的项之间有明显的关系的情况。
5.归纳法归纳法是通过数学归纳法的思想,利用数列的递推关系来计算数列的总和。
通过假设前n-1项的和为Sn-1,并推导得到前n项的和Sn的表达式,从而计算数列的总和。
6.递推法递推法是通过数列的递推关系来计算数列的总和。
通过将数列中的每一项与前面的项之间的关系列出,从而将数列的求和转化为递推关系的计算。
7.辅助行法辅助行法是将数列构造成一个表格的形式,通过辅助行的计算来求解数列的总和。
通过辅助行的计算,可以将原本复杂的数列求和转化为简单的表格求和。
8.减法求和法减法求和法是通过将数列求和转化为数列的差的求和来计算数列的总和。
通过将数列中相邻项之间的差进行求和,从而求解数列的总和。
9.计算机辅助法计算机辅助法是利用计算机的计算能力来求解复杂的数列求和问题。
通过编写计算机程序来实现数列求和,从而计算出数列的总和。
数列求和公式七个方法
数列求和公式七个方法数列求和是数学中的一个重要概念,常用于计算数列中各项之和。
数列求和公式有多种方法,下面将介绍七种常见的求和公式方法。
方法一:等差数列求和公式等差数列是指数列中每一项与前一项之差都相等的数列。
等差数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等差数列求和公式为Sn=n(a1+an)/2,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法二:等比数列求和公式等比数列是指数列中每一项与前一项之比都相等的数列。
等比数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
等比数列求和公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法三:斐波那契数列求和公式斐波那契数列是指数列中每一项都是前两项之和的数列。
斐波那契数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
斐波那契数列求和公式为Sn=f(n+2)-1,其中Sn表示数列的和,f表示斐波那契数列。
方法四:调和数列求和公式调和数列是指数列中每一项的倒数是一个调和级数的一项。
调和数列求和公式是通过将数列项数n代入公式中,计算数列中各项之和Sn。
调和数列求和公式为Sn=1+1/2+1/3+...+1/n,即Sn=Hn,其中Hn表示调和级数的n项和。
方法五:等差数列求和差分公式通过差分公式,我们可以得到等差数列的求和公式。
差分公式是指数列中相邻两项之差等于同一个常数d。
等差数列求和差分公式为Sn=[(a1+an)/2]n,其中Sn表示数列的和,a1表示首项,an表示末项,n表示项数。
方法六:等比数列求和差分公式通过差分公式,我们可以得到等比数列的求和公式。
差分公式是指数列中相邻两项之比等于同一个常数q。
等比数列求和差分公式为Sn=a1(1-q^n)/(1-q),其中Sn表示数列的和,a1表示首项,q表示公比,n表示项数。
方法七:等差数列求和公式(倍差法)倍差法是一种基于等差数列的求和方法。
数列求和七种方法技巧
数列求和的七种方法技巧包括:
1. 公式法:适用于等差数列、等比数列等基本数列的求和,可以直接使用求和公式进行计算。
2. 倒序相加法:将数列倒序排列,然后与原数列相加,得到一个常数列,再除以2得到原数列的和。
3. 错位相减法:适用于一个等差数列和一个等比数列相乘的形式,通过错位相减的方式将原数列转化为等比数列,再利用等比数列的求和公式进行计算。
4. 裂项相消法:将数列中的每一项都拆分成两个部分,使得中间项相互抵消,从而求得数列的和。
5. 分组法:将数列中的项进行分组,然后分别求和,最后得到整个数列的和。
6. 乘公因式法:适用于具有公因式的数列,将公因式提取出来,然后进行求和。
7. 构造法:通过构造新的数列或方程,将原数列的求和问题转化为其他形式的问题进行求解。
以上是数列求和的七种方法技巧,可以根据具体情况选择适合的方法进行计算。
数列求和常见的7种方法
数列求和的基本方法和技巧一、总论:数列求和7种方法:利用等差、等比数列求和公式错位相减法求和反序相加法求和分组相加法求和裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
数列是高中代数的重要内容,又是学习高等数学的基础.在高考和各种数学竞赛中都占有重要的地位数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法小 n⑻ a n) n(n 1),1、等差数列求和公式:S n - — na i d2 22、等比数列求和公式:S nna1a1(1 q n)1 qn 13S n k 丁5 1)k 12n31 2 5S n k [匚1)]k 1 2[例1]已知log3 x(q 1)a1 a.q1 q(q 1)4、S nnk2k 11—n(n 1)(2 n 1)6解:由log3 x1 亠2 3,求XX x log 23x n的前n项和. log 2 3log 3 x log 322由等比数列求和公式得2S n x x (利用常用公式)[例2]设S n= 1+2+3+ …+n, n€ N*,求f(n) 解:由等差数列求和公式得S nS n"f(门)(n 32)S n 11""c, 64n 34 -n x(1 x n)1 x丄)卍=1 -丄1 1 2n2S n(n 32)S n 112n(n 1),nn234n 6450 的最大值. S n50•••当n 8,即8 时,f (n).8 max 50二、错位相减法求和这种方法是在推导等比数列的前n项和公式时所用的方法,项和,其中{ a n }、{ b n }分别是等差数列和等比数列[例3]求和:S n 1 3x 5x 7x (2n 1)x n 1解:由题可知, {(2n 1)x n1}的通项是等差数列设xS n1x 3x2 5x3 7x4(2n①一②得(1 x)S n 1 2x 2x22x3再利用等比数列的求和公式得:(1x)S n1-(n 1)( n 2)2(利用常用公式)这种方法主要用于求数列{a n •b n}的前n{2n —1}的通项与等比数列{x n1}的通项之积1)x n2x4n 1S (2n 1)x (2n S n 2(1 x)(设制错位)2x n 1(2nn 12^ (2n1)x n (1 x) 1)x nn1)x(错位相减)2 4 6 [例4]求数列一,-y,亍,2 2 2解:由题可知,{£n2 畫前n项的和.n}的通项是等差数列{2n}的通项与等比数列{步}的通项之积三、反序相加法求和数列相加,就可以得到 n 个(a , a n ).[例 5]求证:C 0 3C n 5C ;(2n 1)C : (n 1)2n①+②得2S (sin 21cos 21 ) (sin 2 2 cos 2 2 )S = 44.5设S n1 S n24尹4①一②得(1 1)S n2S n2歹1尹n 2 2* i2n列 .........2n刘………2 2 T3 T4 2 2 2n尹2n(设制错位)(错位相减)证明:设S nC3C 1 5C 2(2n 1)c n ............................................. ……•①把①式右边倒转过来得S n(2n 1)C:(2n 1)c n 13c nC 0C n(反序)又由 mC nC :m 可得S n(2n 1)C 0 (2n 1)c n 3C ;1C n.............C n..……②①+②得2S n (2n2)(C 0 C :n 1C nC n n ) 2(n1) 2n(反序相加)S n(n 1) 2n2求 sin 1 sin 22 sin 2 3sin 2 88・2 “sin 89 的值解:设S sin21sin 22 ・2 sin > 3sin 2 88sin 2 89 ••….... ①将①式右边反序得S sin 289・2sin 88sin 23sin 22.2 .sin 1 ••….... •② (反序)22这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序) ,再把它与原(反序相加)2 2(sin 89 cos 89 ) = 89题 1 已知函数1)证明:(2)求的值.解:( 1 )先利用指数的相关性质对函数化简,后证明左边=右边2)利用第(1 )小题已经证明的结论可知,两式相加得:所以练习、求值: 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或 常见的数列,然后分别求和,再将其合并即可 1 4, —2 a (2 a 1 [例7]求数列的前n 项和:1 1,— a1 解:设 S n (1 1) ( 4) a将其每一项拆开再重新组合得1 1 1S n (1 2F) (1a aa当a = 1时,S n n 匹卫=27,7) (丄 n 1 a (3n 1)n23n 2) 3n 2)(分组) (分组求和)11 1 1 11丄当 a 1 时,& 丄(3n 1)n1 - a [例8]求数列{n(n+1)(2n+1)}的前n 项和. (3n 1)n 2解:设 a k k(k 1)(2k 1) 2k 3 3k 2n S n k(k 1)(2k k 11)n(2 k 313k 2 k)将其每一项拆开再重新组合得 n3S n = 2kk 1k 2(分组)=2(13 23 n 3) 3( 12 22 n 2) (1 2 n)n 2(n 1 1)22 n(n 1)(2 n 1)n(n 2 1)(分组求和)n(n 1)2(n2)五、裂项法求和这是分解与组合思想在数列求和中的具体应用 .裂项法的实质是将数列中的每项(通项)分解,然后 重新组合,使之能消去一些项,最终达到求和的目的 .通项分解 (裂项)如: (1) a n f(n 1) f(n) (2) sin1 cos n cos(n 1)tan(n 1) tan n (3) a n1 n(n 1)(4) a n(2n)2 (2n 1)(2 n 1)1 112(2n 1 1 2n 1)(5)a nn(n 1)(n 2) 2 n(n 1) (n a nn 21n(n 1) 2n2(n 1) n n(n 1)1 2n1 n 2n 11 (n 1)2n,则S " 1(n 1)2"(7)a n(An B)(A n C)C B (An BAn C )(8) a n一 ------- I n 1 m n 、n 11 1[例9]求数列 -------1 - 的前n 项和..2 .2.3. n 、n 1 [例 10] [例 11] 解: :设a n则S n..n(裂项)(裂项求和)在数列{a n }中, 解:a n(,3、2)1 一 n),又b n-—,求数列{b n }的前n 项的和.1 2n 1 n2 n n 1 2 2• 数列{b n }的前n 项和1 1 -)(22a nb nS n8[(1 =8(11 3)8nn 1 1 (3 1 4)1 11 cos0 cos1cos1 cos2cos88 c os891 11 cos0 cos1cos1 cos2cos88 c os89si n1tan(n 1) tan n)sn cos(n 1)1 1 1cos0 cos1 cos1 cos2 cos88 cos89 1 {(ta n 1 tan 0 ) (tan 2tan1 ) (tan 3n求证:设S••• Stan 2 ) [tan 89 tan 88 ]}sin 111)=cos1 sin 211(tan 89 sin 1tan 0 )=—sin 1cot1 =害 sin 21原等式成立(裂项)(裂项求和)(裂项) (裂项求和)答案:六、分段求和法(合并法求和)针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n.[例12] 求cos1° + cos2° + cos3° + •…+ cos178° + cos179° 的值.解:设S n= cosl° + cos2° + cos3° + ••• + cos178° + cos179°••• cosn cos(180 n )(找特殊性质项)二S n= (cosl ° + cos179 ) + ( cos2° + cos178 ) + ( cos3° + cos177 °) + • • •+ ( cos89°+cos91 °)+ cos90°(合并求和)=013]数列{a n}: a1 1,a2 3,a3 2,a n 2 a n 1 a n ,求S2002.解:设S2002= a1 a2 a3 a2002由a1 1, a2 3, a3 2, a n 2 a n 1 a n 可得a4 1, a5 3, a6 2,a7 1, a8 3, a 9 2, a10 1, a11 3, a12 2,a6k 1 1, a6k 2 3, a6k 3 2, a6k 4 1, a6k 5 3, a6k 6 2a6k 1 a6k 2 a6k 3 a6k 4 a6k 5a6k 6 0(找特殊性质项)S2002 = a1a2a3 a2002 (合并求和)=(a i a 2 a 3a 6) (a 7a 8a i2)@6k 1a 6k 2 a 6k 6 )(a i993 a i994a i998 )a i999a 2oooa 2ooi a 2oo2=a i999a 2oooa 2ooia 2oo2=a 6k ia 6k 2a 6k 3a 6k 4=5由等比数列的性质 m n p qa m a n a p a q和对数的运算性质 log a M log a N log a M N 得=io七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来 求数列的前n 项和,是一个重要的方法.[例 I5]求i ii iii iii i 之和.n 个i解:由于iii ii -9999!(io ki)(找通项及特征)k 个 i9k 个i9••• i ii iiiiii in 个ii i =-(io i) 9 i— (io i) 9^(io 3i) 9^(io n i) 9(分组求和)i I 2=-(io io io 3n、io )丄(i iii)99n 个i[例14]在各项均为正数的等比数列中,若a 5a 69,求 log 3a ilog 3 a 2 log 3 a io 的值.解:设 S n log 3 a 1 log 3 a 2log 3 a io (找特殊性质项)S n (log 3 a i log 3 a io ) (log 3 a 2 log 3 a g ) (log 3 a 5 log 3 a 6)(合并求和)=(log 3a i a io ) (log 3 a 2 a g ) (log 3 a 5 a 6)=log 3 9log 3 9log 3 91 10(10n 1) n9 10 1 9=丄(10n1 10 9n)81[例16]已知数列{a n}: a n ,求(n 1)(a n a n 1)的值•(n 1)(n 3) n1解:T (n 1)(a n a n 1) 8(n 1)[-13) 1] (找通项及特征)(n 1)(n (n 2)(n 4)=8 [- 1(设制分组)(n 2)(n 4) (n 3)(n 4)1 1 1 1=4 (——-)8(——-) (裂项)n2n4 n3n41 1 1 1(n 1)(a n a n1) 4 ( ) 8 ( ) (分组、裂项求和)n 1 n 1 n 2 n 4 n 1 n 3 n 41 1 1=4 (- -) 83 4 413提高练习:1.已知数列a n中,S n是其前n项和,并且S n 1 4a n 2(n 1,2,L ),a1⑴设数列b n a n 1 2a n(n 1,2, ),求证:数列b n 是等比数列;a⑵设数列C n n,(n 1,2, ),求证:数列C n是等差数列;22 、2.设二次方程a n x - a n+1X+1=0(n € N)有两根a 和B,且满足6 a -2 a3 +6 3 =3 .⑴试用a n表示a n 1;2⑵求证;数列他-亍}是等比数列F7⑶当的二—时、求数列%}的通项公式.3.数列a n 中,a1 8,a4 2 且满足a n 2 2a n 1 a n n N ⑴求数列a n 的通项公式;⑵设Sn | a1 | | a2 | | a n |,求S n ;。
数列的常见求和方法
数列的常见求和方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。
2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。
3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。
4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。
5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。
运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。
7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。
数列求和的几种常见方法
A
1
一、等差数列的前n项和:
Sn
n(a1 2
an
)
Sn na1n(n21)dபைடு நூலகம்
A
2
二、等比数列的前n项和:
Sn
a1(1qn) 1q
(q1)
Sn
a1anq 1q
(q1)
A
3
习题:
1、计算 1 + 2 + 2 2+ 2 3+ L + 2 n的和
2n1 1
11 1
1
2、计算
+ 2 22
所以 Tn=32-21n-n2+n+11=32-n2+n+13.
A
8
习题:
3、数列{an}的通项式为 an =n3n
求数列{an}的前 n 项和 Sn.
Sn
(2n1)3n1 4
3
A
9
四、裂项相消法:
例 3、数列{an}的通项式为
an
=
1 n(n +
2)
求数列{an}的前
n
项
和 Sn.
3 2n3 4 2(n1)(n2)
+ 23
+L+ 2n-1
的和
1
1
2 n1
A
4
三、错位相减法求和: 例1、计算 12+222 +233 +L+2nn 的和
2
1 2n1
n 2n
A
5
错位相减法:
若数列{an}的通项公式形如an=bncn, 而{bn}是等差数列,{cn}是等比数列, 则可采用此法。
A
6
例 2、数列{bn}的通项式为 bn =
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
常用的一些求和公式
常用的一些求和公式在数学中,求和公式是指通过特定的公式或者规律来表示一系列数的和。
求和公式在数学证明、数列运算、级数计算等方面有着广泛的应用。
下面是一些常用的求和公式:1.等差数列求和公式:对于一个等差数列,其前n项和可以通过以下公式求得:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项,an表示第n项。
2.等差数列通项公式:等差数列的通项公式为:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。
3.等比数列求和公式:对于一个等比数列,其前n项和可以通过以下公式求得(当公比r不等于1时):Sn=a1*(1-r^n)/(1-r)其中,Sn表示前n项和,a1表示首项,r表示公比。
4.等比数列通项公式:等比数列的通项公式为:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。
5.二项式定理:二项式定理是一个关于幂的展开公式,它可以用来求解任意整数幂的展开式。
二项式定理的公式如下:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n 其中,C(n,k)表示从n个元素中选择k个元素的组合数。
6.等差数列前n项和的立方:对于一个等差数列的前n项和的立方,可以利用以下公式进行求解:(Sn)^3 = (n^2 * (a1 + an)^2) / 47.平方数和公式:平方数和公式用来求解1到n的所有平方数的和。
平方数和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/68.立方数和公式:立方数和公式用来求解1到n的所有立方数的和。
立方数和公式为:1^3+2^3+3^3+...+n^3=((n*(n+1))/2)^29.等差数列平方和公式:等差数列平方和公式用来求解一个等差数列的前n项平方的和。
等差数列平方和公式为:1^2+2^2+3^2+...+n^2=(n*(n+1)*(2n+1))/610.等差数列立方和公式:等差数列立方和公式用来求解一个等差数列的前n项立方的和。
数列求和公式七个方法
数列求和公式七个方法数列求和是数学中常见的问题之一、下面将介绍七种常用的数列求和方法,包括等差数列求和、等比数列求和、等差数列二次项求和、递归数列求和、斐波那契数列求和、等差数列部分项求和、正弦数列求和。
一、等差数列求和:等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,d为公差,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn = (n/2)(a1 + an)其中,n为项数,a1为首项,an为末项,Sn为和。
二、等比数列求和:等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,q为公比,n为项数。
从首项到第n项的和Sn可以通过以下公式计算:Sn=a1(q^n-1)/(q-1)其中,n为项数,a1为首项,q为公比,Sn为和。
三、等差数列二次项求和:对于等差数列的二次项和,可以通过对等差数列求和公式进行二次求和得到。
Sn=(n/6)*(2a1+(n-1)d)(a1+(n-1)d+d)其中,n为项数,a1为首项,d为公差,Sn为和。
四、递归数列求和:递归数列是一种特殊的数列,其中每一项都是前一项的函数。
递归数列的求和可以通过编写一个递归函数来实现。
例如,对于斐波那契数列:F(n)=F(n-1)+F(n-2),其中F(1)=1,F(2)=1可以编写一个递归函数,将前两个项相加,并递归调用函数来求和。
五、斐波那契数列求和:斐波那契数列是一种特殊的递归数列,其中前两个项为1,从第三项开始每一项都是前两项的和。
斐波那契数列求和可以通过编写一个循环来实现,累加每一项的值。
六、等差数列部分项求和:对于等差数列的部分项求和,可以通过求解两个和的差来实现。
设Sn为从第m项到第n项的和,Sm为从第1项到第m-1项的和,Sn 可以通过以下公式计算:Sn = Sn - Sm = (n-m+1)(a1 + an) / 2其中,m和n为项数,a1为首项,an为末项。
七、正弦数列求和:正弦数列是一种特殊的数列,其中每一项的值由正弦函数确定。
数列求和常用方法
Sn a1 a2 a3 an Sn an an1 an2 a1
两式相加得: S n
n(a1 an ) 2
4.裂项相消法: 适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即 an=f(n+ 常用公式:
数列求和常用方法
1.公式法: 等差数列求和公式: S n
n(a1 an ) d 2 d n (a1 )n 2 2 2
举例:1+2+3+4+5+6+7+8+9=(1+9)×9÷ 2=45 等比数列求和公式:
S n n a1 (q 1) 1 q n a1 an q S n a1 (q 1) 1 q 1 q
2.错位相减法: 适用题型:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘) { an }、{ bn }分别是等差数列和等比数列: Sn a1b1 a2b2 a3b3 anbn
3.倒序相加法: 这是推导等差数列的前 n 项和公式时所用的方法,就是将一个数列倒过来排列(反序), 再把它与原数列相加,就可以得到 n 个(a1+an)
1 1 1 n(n 1) n n 1 1 1 1 1 ( ) (2n 1)(2n 1) 2 2n 1 2n 1 1 1 1 1 n(n 1)(n 2) 2 n(n 1) (n 1)(n 2) 1 a b ( a b) a b a b
数列求和的8种常用方法
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
数列求和公式七个方法
数列求和公式七个方法求和公式是数列中常用的一个工具,用于计算数列中一定数量的项的和。
在数学中,有七种不同的方法可以使用求和公式。
1.求等差数列的和:等差数列的求和公式是:Sn = (a1 + an) * n / 2,其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
这个公式的核心思想是将数列分成两部分,每部分的和都是数列的首项和末项之和的一半。
2.求等比数列的和:等比数列的求和公式是:Sn=a1*(1-r^n)/(1-r),其中Sn是数列前n 项和,a1是数列的首项,r是数列的公比,n是数列的项数。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
3.求等差数列的和差:等差数列的和差公式是:Sa=Sn-S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式的思想是将数列分成两部分,分别计算它们的和,然后将后一部分的和减去前一部分的和,即可得到和差。
4.求等比数列的和差:等比数列的和差公式是:Sa=Sn/S(n-1),其中Sa是数列从第n-1项到第n项的和差,Sn是数列前n项和,S(n-1)是数列前n-1项和。
这个公式利用了等比数列的特性,即每一项都是前一项乘以公比。
5.求调和数列的和:调和数列的求和公式是:Sn = n / (1/a1 + 1/a2 + ... + 1/an),其中Sn是数列前n项和,a1,a2,...,an是数列的各项。
这个公式的思想是将数列的各项的倒数相加,然后再取它们的倒数。
6.求幂和数列的和:幂和数列的求和公式是:Sn=(a^(n+1)-1)/(a-1),其中Sn是数列前n项和,a是数列的公比,n是数列的项数。
这个公式利用了幂和数列的特性,即每一项都是公比的幂次。
7.求有限项数列的和:有限项数列的求和公式是:Sn = (n / 2) * (a1 + an),其中Sn是数列前n项和,a1是数列的首项,an是数列的末项,n是数列的项数。
数列专题:数列求和的6种常用方法(原卷版)
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
一般数列求和的常用方法
一般数列求和的常用方法
数列求和的七种方法:倒序相加法、分组求和法、错位相减法、裂项相消法、乘公比错项相减(等差×等比)、公式法、迭加法。
1、倒序相加法
倒序相乘法如果一个数列{an}满足用户与首末两项等“距离”的两项的和成正比(或等同于同一常数),那么谋这个数列的前n项和,需用倒序相乘法。
2、分组求和法
分组议和法一个数列的通项公式就是由几个等差或等比或可以议和的数列的通项公式共同组成,议和时需用分组议和法,分别议和而后相乘。
3、错位相减法
错位二者加法如果一个数列的各项就是由一个等差数列和一个等比数列的对应项之积形成的,那么这个数列的前n项和需用此法xi,例如等比数列的前n项和公式就是用此法推论的。
4、裂项相消法
裂项二者消法把数列的通项切割成两项之差,在议和时中间的一些项可以相互抵销,从而求出其和。
5、乘公比错项相减(等差×等比)
这种方法就是在推论等比数列的'前n项和公式时所用的方法,这种方法主要用作谋数列{an×bn}的前n项和,其中{an},{bn}分别就是等差数列和等比数列。
6、公式法
对等差数列、等比数列,求前n项和sn可以轻易用等差、等比数列的前n项和公式展开解。
运用公式解的注意事项:首先必须特别注意公式的应用领域范围,确认公式适用于于这个数列之后,再排序。
7、迭加法
主要应用于数列{an}满足用户an+1=an+f(n),其中f(n)就是等差数列或等比数列的条件下,可以把这个式子变为an+1-an=f(n),代入各项,获得一系列式子,把所有的式子提至一起,经过整理,纡出来an,从而算出sn。
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和公式七个方法
数列求和公式七个方法
由普通的等差数列和等比数列求和公式,到利用递推关系求和,以及利用数列的性质等多种方法,这些都可以用来研究数列求和的问题。
在此,我们将详细介绍七种常用的数列求和方法。
一、等差数列求和法。
当数列符合等差数列的特性(即每两项之间的差值是一个常数)时,可以使用公式S=n/2*(a1+an)来求和。
其中,n是项数,a1是首项,
an是末项。
二、等比数列求和法。
在数列成等比数列(即每两项之间的比值是一个常数)时,可以利用公式S=a1*(1-q^n)/(1-q)(没有公比为1)或S=n*a1(公比为1)求和。
其中,n是项数,a1是首项,q是公比。
三、高斯求和法。
这是一种巧妙的求和方法,是德国数学家高斯在少年时期首创的。
基本的思想是将数列“对折”后相加,然后对结果进行二分。
四、递推关系求和法。
通过对数列中的关系进行递推,可以获得新的数列,然后通过求和公式或其他方法求和。
五、利用公式变换法。
将数列通过某种变换,转换成为我们能够处理的形式,然后再进行求和。
六、分部求和法。
将一个复杂的数列,通过适当的方法,拆分成若干个简单的数列,然后分别求和,再将结果进行合并。
七、利用数列的性质求和。
诸如奇偶性、交错性、单调性等数列的性质,都可以在特定的情况下用于求和。
此外,还可以对称求和、循环求和等方法。
以上就是数列求和的七种方法,掌握这些方法能让我们更灵活地解决数列求和问题。
当然,这些方法并不是孤立存在的,而是需要根据具体的数列,灵活运用和组合,才能解决实际问题。
数列求和的方法(8种)
数列求和的方法(共8种)1.公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比数列的数列;4)常用公式:(1)1n k k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222216123(1)(21)n n n n ++++=++;(3)31n k k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n1)-(2n ...531=++++2.分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。
3.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
如:等差数列的前n 项和即是用此法推导的。
4.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
如:1)11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)可裂项为:111111(n nn n a a da a ++=-⋅;2)1d =。
(根式在分母上时可考虑利用分母有理化,因式相消求和)常见裂项公式:(1)111(1)1n n n n ++=-;(2)1111()()n n k k n n k ++=-;(3)1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;(4)11(1)!!(1)!nn n n++=-(5)常见放缩公式:=<=.5.错位相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修5 NO:12使用时间:2015.3.编制:蔡润国 审核: 学科组长 : 班级: 姓名: 小组: 组内编号: 教师评价:
常见数列求和
一、教学目标
(1)能熟练地应用等差数列、等比数列前n 项和公式解决有关关应用问题; (2)掌握非等差数列、等比数列求和的几种常用方法
二、教学重点、难点
重点:重点是分组求和法、错位相减法、裂项相消法 难点:难点是能根据通项选择合适的方法求和。
三、知识回顾
1.①等差数列的前n 项和公式S n =__________=_________________ ②等比数列的前n 项和公式S n =__________________________
2.常用数列的前n 项和:=++++n 321 .
=-++++)12(531n . 了解:=
++++2
2
2
2
321n 6
)
12()1(+⋅+⋅n n n .
2
3333]2
)1([321+=++++n n n
四、合作探究
1.公式法(直接求和)
例1.(2010年高考陕西卷)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列.(1)求数列{a n }的通项; (2)求数列{2a n }的前n 项和Sn.
2. 分组转化求和:若数列{}n c 的通项公式为n n n c a b =+,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般利用分组求和法.
例2.求数列112,214,318,…,(n +1
2n ),…的前n 项和.
3.倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.
4.裂项相消法求和 常见的拆项公式有: ①()11111
n n n n =-
++; ②)1
1(1)(1k n n k k n n +-=+; ③
()()1
111212122121n n n n ⎛⎫
=- ⎪
-+-+⎝⎭; ④ )(11b a b
a b a --=+; ⑤()()()()()21111
12211n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦
.
例4.已知等差数列{an}满足:a3=7,a5+a7=26,{an}的前n 项和为Sn.
(1)求an 及Sn ;(2)令b n =1
a 2n -1(n ∈N *),求数列{
b n }的前n 项和T n .
1
(),()(1)22
(5)(4)(0)(5)(6).例3.若函数计算的值,并求x f x f n f n T f f f f f =-+++=-+-+⋅⋅⋅++⋅⋅⋅++例
3
高一数学必修5 NO:12使用时间:2015.3.编制:蔡润国 审核: 学科组长 : 班级: 姓名: 小组: 组内编号: 教师评价:
5.错位相减法求和:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫错位相减法 例5.(2010年高考课标全国卷改编)设数列{an}满足a 1=2,a 4=512. (1)求数列{an}的通项公式;
(2)令bn =na n ,求数列{bn}的前n 项和Sn.
6.并项求和法
一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例6.Sn=12
-22+32- 42 +…+(-1)n-1·n 2
五、同步练习 (A 表示基础题,B 表示简单应用,C 表示知识点运用,D 表示能力提高)
A1.数列
{}n a 的前n 项的和2231n S n n =-+,则45610a a a a ++++ 等于 ( )
A.171
B.161
C.21
D.10
B2.(2012·临沂模拟)数列112,314,518,71
16
,…的前n 项和S n 为 ( )
A .n 2+1-12n
B .n 2+2-12n
C .n 2+1-12n -1
D .n 2+2-1
2
n -1
C3.设f (x )=4x 4x +2
,若S =f (12 015)+f (22 015)+…+f (2 014
2 015),则S =________.
C4.数列 111
1,
,,,1212312n
++++++ 的前n 项和为 ( ) A.
221n n + B. 21n n + C.21n n ++ D. 21
n n +
B5.数列{
n n
)1(-}的前2 012项和S
2012
为________.
六、拓展拔高
D1.[文](2012·莱芜模拟)已知{a n }是公差不为零的等差数列,a 1=1,且a 2,a 5,a 14成等比数列. (1)求数列{a n }的通项公式; (2)求数列{1a n a n +1}的前n 项和S n .
七、课后反思:(本节课你学到了什么,遇到了哪些问题,应该怎么解决这些问题)。