41总复习:数列求和及其综合应用(基础)知识梳理
高三数学考点-数列求和及应用
6.4 数列求和及应用1.数列求和方法 (1)公式法:(Ⅰ)等差数列、等比数列前n 项和公式. (Ⅱ)常见数列的前n 项和:①1+2+3+…+n =;②2+4+6+…+2n =;③1+3+5+…+(2n -1)=;④12+22+32+…+n 2=;⑤13+23+33+…+n 3=⎣⎡⎦⎤n (n +1)22.(2)分组求和:把一个数列分成几个可以直接求和的数列. (3)倒序相加:如等差数列前n 项和公式的推导方法.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.等比数列{a n }前n 项和公式的推导方法就采用了错位相减法.(5)裂项相消:有时把一个数列的通项公式分成二项差的形式,相加消去中间项,只剩有限项再求和. 常见的裂项公式:①1n (n +1)=-1n +1; ②1(2n -1)(2n +1)=⎝⎛⎭⎫12n -1-12n +1;③1n (n +1)(n +2)=⎣⎡⎦⎤1n (n +1)-1(n +1)(n +2);④1a +b=(a -b );⑤n (n +1)!=-1(n +1)!; ⑥C m -1n= ; ⑦n ·n != !-n !; ⑧a n =S n -S n -1(n ≥2). 2.数列应用题常见模型 (1)单利公式利息按单利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = . (2)复利公式利息按复利计算,本金为a 元,每期利率为r ,存期为x ,则本利和y = .(3)产值模型原来产值的基础数为N ,平均增长率为p ,对于时间x ,总产值y = . (4)递推型递推型有a n +1=f (a n )与S n +1=f (S n )两类.(5)数列与其他知识综合,主要有数列与不等式、数列与三角、数列与解析几何等.自查自纠1.(1)①n (n +1)2 ②n 2+n ③n 2 ④n (n +1)(2n +1)6(2)①1n ②12 ③12 ④1a -b ⑤1n !⑥C m n +1-C mn ⑦(n +1) 2.(1)a (1+xr ) (2)a (1+r )x (3)N (1+p )x数列{1+2n -1}的前n 项和为( ) A .1+2n B .2+2n C .n +2n -1 D .n +2+2n 解:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n -1.故选C .若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( ) A .15 B .12 C .-12 D .-15解:记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A . 数列{|2n -7|}的前n 项和T n =( ) A .6n -n 2 B .n 2-6n +18C.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n +18(n >3)D.⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3)n 2-6n (n >3) 解:设a n =2n -7,n ≤3时,a n <0;n >3时,a n >0,a 1=-5,a 2=-3,a 3=-1,且易得{a n }的前n 项和S n=n 2-6n ,所以T n =⎩⎪⎨⎪⎧6n -n 2(1≤n ≤3),n 2-6n +18(n >3).故选C .数列{a n }满足a n =n (n +1)2,则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解:1a n =2⎝⎛⎭⎫1n -1n +1,则数列⎩⎨⎧⎭⎬⎫1a n 的前10项的和S 10=2⎝⎛⎭⎫1-12+12-13+…+110-111=2(1-111)=2011.故填2011. 有一种细菌和一种病毒,每个细菌在每秒杀死一个病毒的同时将自身分裂为2个.现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要________秒. 解: 设至少需要n 秒,则1+2+22+…+2n -1≥100,即1-2n1-2≥100,所以n ≥7.故填7.类型一 基本求和问题(1)设数列1,(1+2),…,(1+2+22+…+2n -1),…的前n 项和为S n ,则S n 等于( ) A .2n B .2n -nC .2n +1-n D .2n +1-n -2(2)求和:1+11+2+11+2+3+…+11+2+…+n ;(3)设f (x )=x 21+x 2,求:f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017); (4)求和:S n =1a +2a 2+3a 3+…+na n .解:(1)解法一:特殊值法,易知S 1=1,S 2=4,只有选项D 适合. 解法二:研究通项a n =1+2+22+…+2n -1=2n -1, 所以S n =(21-1)+(22-1)+…+(2n -1)=(21+22+…+2n )-n =2n +1-n -2.故选D .(2)设数列的通项为a n ,则a n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1,所以S n =a 1+a 2+…+a n =2[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1n +1]=2⎝⎛⎭⎫1-1n +1=2n n +1.(3)因为f (x )=x 21+x 2,所以f (x )+f ⎝⎛⎭⎫1x =1. 令S =f ⎝⎛⎭⎫12 017+f ⎝⎛⎭⎫12 016+…+f (1)+f (2)+…+f (2 017),①则S =f (2 017)+f (2 016)+…+f (1)+f ⎝⎛⎭⎫12+…+f ⎝⎛⎭⎫12 016+f (12 017),② ①+②得:2S =1×4 033=4 033,所以S =4 0332.(4)(Ⅰ)当a =1时,S n =1+2+…+n =n (n +1)2.(Ⅱ)当a ≠1时,S n =1a +2a 2+3a 3+…+na n ,①1a S n =1a 2+2a 3+…+n -1a n +nan +1,② 由①-②得⎝⎛⎭⎫1-1a S n =1a +1a 2+1a 3+…+1a n -n a n +1=1a ⎝⎛⎭⎫1-1a n 1-1a-na n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2.综上所述,S n =⎩⎪⎨⎪⎧n (n +1)2(a =1),a (a n -1)-n (a -1)a n (a -1)2(a ≠1).【点拨】研究通项公式是数列求和的关键.数列求和的常用方法有:公式法、分组求和法、倒序相加法、错位相减法、裂项相消法等,在选择方法前分析数列的通项公式的结构特征,避免盲目套用、错用求和方法.运用等比数列求和公式时,注意对公比是否等于1进行讨论.本例四道题分别主要使用了分组求和法、裂项相消法、倒序相加法、错位相减法.(1)求数列9,99,999,…的前n 项和S n ;(2)求数列122-1,132-1,142-1,…,1(n +1)2-1的前n 项和;(3)求sin 21°+sin 22°+sin 23°+…+sin 289°的值; (4)已知a n =n +12n +1,求{a n }的前n 项和T n .解:(1)S n =9+99+999+…+99…9n 个 =(101-1)+(102-1)+(103-1)+…+(10n -1) =(101+102+103+…+10n )-n=10(1-10n )1-10-n =10n +1-109-n .(2)因为1(n +1)2-1=1n 2+2n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2, 所以122-1+132-1+142-1+…+1(n +1)2-1=12⎝⎛⎭⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝⎛⎭⎫32-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2. (3)令S n =sin 21°+sin 22°+sin 23°+…+sin 289°,① 则S n =sin 289°+sin 288°+sin 287°+…+sin 21° =cos 21°+cos 22°+cos 23°+…+cos 289°.②①与②两边分别相加得2S n =(sin 21°+cos 21°)+(sin 22°+cos 22°)+…+(sin 289°+cos 289°)=89.所以S n =892.(4)T n =222+323+424+…+n +12n +1,①12T n =223+324+425+…+n +12n +2,② ①-②得12T n =222+123+124+125+…+12n +1-n +12n +2 =12+123×⎝⎛⎭⎫1-12n -11-12-n +12n +2=34-12n +1-n +12n +2, 所以T n =32-12n -n +12n +1=32-n +32n +1.类型二 可用数列模型解决的实际问题用分期付款的方式购买一批总价为2 300万元的住房,购买当天首付300万元,以后每月的这一天都交100万元,并加付此前欠款的利息,设月利率为1%.若从首付300万元之后的第一个月开始算分期付款的第一个月,问分期付款的第10个月应付________万元.解:购买时付款300万元,则欠款2000万元,依题意分20次付清,则每次交付欠款的数额依次购成数列{a n },故a 1=100+2 000×0.01=120(万元), a 2=100+(2 000-100)×0.01=119(万元), a 3=100+(2 000-100×2)×0.01=118(万元), a 4=100+(2 000-100×3)×0.01=117(万元), …a n =100+[2 000-100(n -1)]×0.01=121-n (万元) (1≤n ≤20,n ∈N *). 因此{a n }是首项为120,公差为-1的等差数列. 故a 10=121-10=111(万元).故填111.【点拨】将实际问题转化为数列问题的一般步骤是:①审题,②建模,③求解,④检验,⑤作答.增长率模型是比较典型的等比数列模型,实际生活中的银行利率、企业股金、产品利润、人口增长、工作效率、浓度问题等常常利用增长率模型加以解决.某气象学院用3.2万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n +4910元(n ∈N *),使用它直至报废最合算(所谓报废最合算是指使用的这台仪器的平均每天耗资最少)为止,一共使用了( ) A .600天B .800天C .1 000天D .1 200天解:设一共使用了n 天,则使用n 天的平均耗资为32 000+⎝⎛⎭⎫5+n 10+4.9n 2n=32 000n +n 20+4.95,当且仅当32 000n=n20时,取得最小值,此时n =800.故选B . 类型三 数列综合问题(2017·山东)已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n .已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解:(1)设{a n }的公比为q .依题意,a 1(1+q )=6,a 21q =a 1q 2.又a n >0,解得a 1=2,q =2,所以a n =2n .(2)依题意,S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1.又S 2n +1=b n b n +1,b n +1≠0,所以b n =2n +1.令c n =b na n ,则c n =2n +12n .因此T n =c 1+c 2+…+c n =32+522+723+…+2n -12n -1+2n +12n .又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减,得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1=32+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-2n +12n +1=52-2n +52n +1. 所以T n =5-2n +52n .【点拨】错位相减法适用于等差数列与等比数列的积数列的求和,写出“S n ”与“qS n ”的表达式时,应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(2017·全国卷Ⅲ)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n .(1)求{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和.解:(1)因为a 1+3a 2+…+(2n -1)a n =2n ,故当n ≥2时,a 1+3a 2+…+(2n -3)a n -1=2(n -1).两式相减得(2n -1)a n =2,所以a n =22n -1(n ≥2).又由题设可得a 1=2,所以{a n }的通项公式为a n =22n -1.(2)记⎩⎨⎧⎭⎬⎫a n 2n +1的前n 项和为S n .由(1)知a n 2n +1=2(2n +1)(2n -1)=12n -1-12n +1.则S n =11-13+13-15+…+12n -1-12n +1=2n2n +1.1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一.2.对于一般数列的求和问题,应先观察数列通项的结构特征,再对通项公式进行化简变形,改变原数列的形式,尽可能将其转化为等差数列、等比数列等常见数列,从而达到求和的目的. 3.等差或等比数列的求和直接用公式计算,要注意求和的项数,防止疏漏.4.最好能记忆一些常见数列的求和公式,如正整数列、正奇数列、正偶数列、正整数的平方构成的数列等. 5.数列的实际应用题要注意分析题意,将实际问题转化为常用的数列模型.6.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,分q =1或q ≠1)等.1.已知等差数列{a n }的前n 项和为S n ,且满足a 5=4-a 3,则S 7=( ) A .7 B .12 C .14 D .21解:由a 5=4-a 3,得a 5+a 3=4=a 1+a 7,所以S 7=7(a 1+a 7)2=14.故选C .2.(2016·新余三校联考)数列{a n }的通项公式是a n =(-1)n (2n -1),则该数列的前100项之和为( ) A .-200 B .-100 C .200 D .100解:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100.故选D .3.设函数f (x )=x m +ax 的导函数为f ′(x )=2x +1,则数列⎩⎨⎧⎭⎬⎫1f (n )(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1C.nn -1D.n +1n解:由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选A . 4.已知正数组成的等差数列{a n }的前20项的和是100,那么a 6·a 15的最大值是( )A .25B .50C .100D .不存在解:由条件知,a 6+a 15=a 1+a 20=110S 20=110×100=10,a 6>0,a 15>0,所以a 6·a 15≤⎝⎛⎭⎫a 6+a 1522=25,等号在a 6=a 15=5时成立,即当a n =5(n ∈N *)时,a 6·a 15取最大值25.故选A .5.设等比数列{a n }的前n 项和为S n ,若8a 2+a 5=0,则下列式子中数值不能确定的是( ) A.a 5a 3 B.S 5S 3 C.a n +1a n D.S n +1S n解:数列{a n }为等比数列,由8a 2+a 5=0,知8a 2+a 2q 3=0,因为a 2≠0,所以q =-2,a 5a 3=q 2=4;S 5S 3=1-q 51-q 3=113;a n +1a n =q =-2;S n +1S n =1-q n +11-q n ,其值与n 有关.故选D . 6.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n年的累计产量为f (n )=12n (n +1)(2n +1)(单位:t),但如果年产量超过150 t ,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限是( ) A .5年 B .6年 C .7年 D .8年解:由已知可得第n 年的产量a n =f (n )-f (n -1)=3n 2.当n =1时也适合,据题意令a n ≥150⇒n ≥52,即数列从第8项开始超过150,即这条生产线最多生产7年.故选C .7.已知数列{a n }满足a n =1+2+3+…+nn ,则数列⎩⎨⎧⎭⎬⎫1a n a n +1 的前n 项和为________.解:a n =1+2+3+…+n n =n +12,1a n a n +1=4(n +1)(n +2)=4⎝⎛⎭⎫1n +1-1n +2,所求的前n 项和为4(12-13+13-14+…+1n +1-1n +2)=4⎝⎛⎭⎫12-1n +2=2n n +2.故填2nn +2.8.已知数列{a n }的前n 项和为S n ,a 1=1,当n ≥2时,a n +2S n -1=n ,则S 2 017的值为________.解:当n ≥2时,a n +2S n -1=n ,又a n +1+2S n =n +1,两式相减,得a n +1+a n =1(n ≥2).又a 1=1,所以S 2 017=a 1+(a 2+a 3)+…+(a 2 016+a 2 017)=1 009.故填1 009.9.已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解:(1)设d 为等差数列{a n }的公差,且d >0,由a 1=1,a 2=1+d ,a 3=1+2d ,分别加上1,1,3成等比数列,得(2+d )2=2(4+2d ), d >0,所以d =2,所以a n =1+(n -1)×2=2n -1, 又因为a n +2log 2b n =-1,所以log 2b n =-n ,即b n =12n .(2)T n =121+322+523+…+2n -12n ①,12T n =122+323+524+…+2n -12n +1②, ①-②,得12T n =12+2⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. 所以T n =1+1-12n -11-12-2n -12n =3-12n -2-2n -12n =3-2n +32n .10.在数列{a n }中,a 1=8,a 4=2,且满足a n +2+a n =2a n +1. (1)求数列{a n }的通项公式;(2)设S n 是数列{|a n |}的前n 项和,求S n .解:(1)由2a n +1=a n +2+a n 可得{a n }是等差数列,且公差d =a 4-a 14-1=2-83=-2.所以a n =a 1+(n -1)d =-2n +10. (2)令a n ≥0,得n ≤5.即当n ≤5时,a n ≥0,n ≥6时,a n <0. 所以当n ≤5时,S n =|a 1|+|a 2|+…+|a n | =a 1+a 2+…+a n =-n 2+9n ; 当n ≥6时,S n =|a 1|+|a 2|+…+|a n |=a 1+a 2+…+a 5-(a 6+a 7+…+a n ) =-(a 1+a 2+…+a n )+2(a 1+a 2+…+a 5) =-(-n 2+9n )+2×20=n 2-9n +40,所以S n =⎩⎪⎨⎪⎧-n 2+9n ,n ≤5,n 2-9n +40,n ≥6.已知数列{a n }满足a n +2=qa n (q 为实数,且q ≠1),n ∈N *,a 1=1,a 2=2,且a 2+a 3,a 3+a 4,a 4+a 5成等差数列.(1)求q 的值和{a n }的通项公式; (2)设b n =log 2a 2na 2n -1,n ∈N *,求数列{b n }的前n 项和.解:(1)由已知,有(a 3+a 4)-(a 2+a 3)=(a 4+a 5)-(a 3+a 4),即a 4-a 2=a 5-a 3, 所以a 2(q -1)=a 3(q -1),又因为q ≠1,故a 3=a 2=2,由a 3=a 1q ,得q =2, 当n =2k -1(k ∈N *)时,a n =a 2k -1=2k -1=2n -12,当n =2k (k ∈N *)时,a n =a 2k =2k =2n 2,所以{a n }的通项公式为a n =⎩⎪⎨⎪⎧2n -12,n 为奇数,2n 2,n 为偶数.(2)b n =log 2a 2n a 2n -1=n2n -1,设数列{b n }的前n 项和为S n ,则S n =1+221+322+…+n2n -1.所以12S n =121+222+323+…+n 2n .两式相减得12S n =1+121+122+123+…+12n -1-n2n=1-12n1-12-n 2n =2-n +22n .所以S n =4-n +22n -1.1.数列{a n }的通项公式为a n =1n +n +1,若{a n }的前n 项和为24,则n =( )A .25B .576C .624D .625解:a n =n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1,令S n =24得n =624.故选C .2.在等差数列{a n }中,若a 1,a 2 019为方程x 2-10x +16=0的两根,则a 2+a 1 010+a 2 018=( ) A .10 B .15 C .20 D .40解:由题意知,a 1+a 2 019=a 2+a 2 018=2a 1 010=10,所以a 2+a 1 010+a 2 018=3a 1 010=15.故选B . 3.已知数列{a n }中,a 1=2,a n +1-2a n =0,b n =log 2a n ,那么数列{b n }的前10项和等于( ) A .130 B .120 C .55 D .50解:因为a 1=2,a n +1=2a n ,故{a n }是首项、公比均为2的等比数列.故a n =2·2n -1=2n ,b n =log 22n =n .所以b 1+b 2+…+b 10=1+2+3+…+10=1+102×10=55.故选C .4.已知数列{a n }中的前n 项和S n =n (n -9),第k 项满足7<a k <10,则k 等于( ) A .7 B .8 C .9 D .10解:当k ≥2时,a k =S k -S k -1=k 2-9k -(k -1)2+9(k -1)=2k -10,k =1时也适合. 由7<a k <10,得7<2k -10<10,所以172<k <10,所以k =9.故选C .5.设直线nx +(n +1)y =2(n ∈N *)与两坐标轴围成的三角形面积为S n ,则S 1+S 2+…+S 2 018的值为 ( ) A.2 0152 016 B.2 0162 017 C.2 0172 018 D.2 0182 019解:直线与x 轴交于⎝⎛⎭⎫2n ,0,与y 轴交于⎝ ⎛⎭⎪⎫0,2n +1,所以S n =12·2n ·2n +1=1n (n +1)=1n -1n +1.所以原式=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫12 018-12 019 =1-12019=20182019.故选D .6.已知函数f (n )=n 2cos(n π),且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=( ) A .0 B .-100 C .100 D .10 200解:因为a n =f (n )+f (n +1),所以a 1+a 2+a 3+…+a 100=[f (1)+f (2)]+[f (2)+f (3)]+…+[f (100)+f (101)]=(-12+22)+(22-32)+…+(1002-1012)=3+(-5)+7+(-9)+…+199+(-201),共100项,故所求为-2×50=-100.故选B .7.(2017·江苏)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=________.解:当q =1时,显然不符合题意;当q ≠1时,⎩⎪⎨⎪⎧a 1(1-q 3)1-q =74,a 1(1-q 6)1-q=634,解得⎩⎪⎨⎪⎧a 1=14,q =2,则a 8=14×27=32.故填32.8.(2016·全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解:设该等比数列的公比为q ,则q =a 2+a 4a 1+a 3=12,可得a 1+14a 1=10,得a 1=8,所以a n =8·⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -4.所以a 1a 2…a n =⎝⎛⎭⎫12-3-2-1+0+…+(n -4)=⎝⎛⎭⎫12n 2-7n2,易知当n =3或n =4时,12(n 2-7n )取得最小值-6,故a 1a 2…a n 的最大值为⎝⎛⎭⎫12-6=64.故填64.9.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.(1)求a n 与b n ;(2)证明:13≤1S 1+1S 2+…+1S n <23.解:(1)设数列{a n }的公差为d .因为⎩⎪⎨⎪⎧b 2+S 2=12,q =S 2b 2, 所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq .解得q =3或q =-4(舍),d =3.故a n =3+3(n -1)=3n ,b n =3n -1. (2)证明:因为S n =n (3+3n )2,所以1S n =2n (3+3n )=23⎝⎛⎭⎫1n -1n +1.故1S 1+1S 2+…+1S n =23[⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -1n +1]=23⎝⎛⎭⎫1-1n +1.因为n ≥1,所以0<1n +1≤12,所以12≤1-1n +1<1,所以13≤23⎝⎛⎭⎫1-1n +1<23,即13≤1S 1+1S 2+…+1S n <23. 10.(2016·山东)已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1. (1)求数列{b n }的通项公式;(2)令c n =(a n +1)n +1(b n +2)n .求数列{c n }的前n 项和T n .解:(1)因为数列{a n }的前n 项和S n =3n 2+8n ,所以a 1=11,当n ≥2时,a n =S n -S n -1=3n 2+8n -3(n -1)2-8(n -1)=6n +5, 又a n =6n +5对n =1也成立,所以a n =6n +5.又因为{b n }是等差数列,设公差为d ,则a n =b n +b n +1=2b n +d .当n =1时,2b 1=11-d ;当n =2时,2b 2=17-d ,解得d =3,所以数列{b n }的通项公式为b n =a n -d2=3n +1.(2)由c n =(a n +1)n +1(b n +2)n =(6n +6)n +1(3n +3)n =(3n +3)·2n +1, 于是T n =6×22+9×23+12×24+…+(3n +3)×2n +1, 两边同乘以2,得2T n =6×23+9×24+…+(3n )×2n +1+(3n +3)×2n +2, 两式相减,得-T n =6×22+3×23+3×24+…+3×2n +1-(3n +3)×2n +2=3×22+3×22(1-2n )1-2-(3n +3)×2n +2,所以T n =-12+3×22(1-2n )+(3n +3)×2n +2=3n ·2n +2.已知数列{a n }满足a 1=35,a n +1=3a n2a n +1,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1a n -1为等比数列.(2)是否存在互不相等的正整数m ,s ,t ,使m ,s ,t 成等差数列,且a m -1,a s -1,a t -1成等比数列?如果存在,求出所有符合条件的m ,s ,t ;如果不存在,请说明理由.解:(1)证明:因为a n +1=3a n 2a n +1,所以1a n +1=13a n +23,所以1a n +1-1=13⎝⎛⎭⎫1a n -1. 因为a 1=35,所以1a 1-1=23,所以数列⎩⎨⎧⎭⎬⎫1a n -1是首项为23,公比为13的等比数列.(2)由(1)知,1a n -1=23×⎝⎛⎭⎫13n -1=23n ,所以a n =3n 3n +2.假设存在互不相等的正整数m ,s ,t 满足条件,则有⎩⎪⎨⎪⎧m +t =2s ,(a s -1)2=(a m -1)(a t -1).由a n =3n3n +2与(a s -1)2=(a m -1)(a t -1),得⎝⎛⎭⎫3s 3s +2-12=⎝⎛⎭⎫3m 3m +2-1⎝⎛⎭⎫3t 3t +2-1, 即3m +t +2×3m +2×3t =32s +4×3s . 因为m +t =2s ,所以3m +3t =2×3s .又3m +3t ≥23m +t =2×3s ,当且仅当m =t 时,等号成立, 这与m ,s ,t 互不相等矛盾,所以不存在互不相等的正整数m ,s ,t 满足条件.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1 D .6解:由等差数列的性质知a 2,a 4,a 6成等差数列,所以a 2+a 6=2a 4,所以a 6=2a 4-a 2=0.故选B . 2.已知数列{a n }为2,0,2,0,…,则下列各项不可以作为数列{a n }通项公式的是( )A .a n =1+(-1)n +1B .a n =⎩⎪⎨⎪⎧2,n 为奇数,0,n 为偶数C .a n =1-cos n πD .a n =2sinn π2解:若a n =2sin n π2,则a 1=2sin π2=2,a 2=2sinπ=0,a 3=2sin 3π2=-2,不符合题意.故选D .3.在数列{a n }中,“对任意的n ∈N *,a 2n +1=a n a n +2”是“数列{a n }为等比数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解:若a n =0,满足a 2n +1=a n ·a n +2,但{a n }不是等比数列.故选B .4.(2015·全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为a n 的前n 项和,若S 8=4S 4,则a 10=( )A.172B.192C .10D .12 解: 因为公差d =1,S 8=4S 4,所以8a 1+12×8×7=4(4a 1+6),解得a 1=12,所以a 10=a 1+9d =12+9=192.故选B .5.等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( ) A .n (n +1) B .n (n -1)C.n (n +1)2D.n (n -1)2解:因为d =2,a 2,a 4,a 8成等比数列,所以a 24=a 2a 8,即(a 2+2d )2=a 2(a 2+6d ),解得a 2=4,a 1=2.所以利用等差数列的求和公式可求得S n =n (n +1).故选A .6.(2016·江西八校联考)数列{a n }的前n 项和S n =2n 2+3n (n ∈N *),若p -q =5(p ,q ∈N *),则a p -a q =( ) A .10 B .15 C .-5 D .20解:当n ≥2时,a n =S n -S n -1=2n 2+3n -[2(n -1)2+3(n -1)]=4n +1,当n =1时,a 1=S 1=5,符合上式,所以a n =4n +1,所以a p -a q =4(p -q )=20.故选D .7.已知公差不为零的等差数列{a n }与公比为q 的等比数列{b n }有相同的首项,同时满足a 1,a 4,b 3成等比数列,b 1,a 3,b 3成等差数列,则q 2=( ) A.14 B.16 C.19 D.18解:设数列的首项为a ,等差数列{a n }的公差为d ,⎩⎪⎨⎪⎧2a 3=b 1+b 3,a 24=a 1·b 3, 将a ,d ,q 代入得⎩⎪⎨⎪⎧2(a +2d )=a +aq 2, ①(a +3d )2=a ·aq 2, ② 化简得(a +3d )2=a (a +4d ),解得a =-92d (d ≠0),代入①式得q 2=19.故选C .8.执行如图所示的程序框图,如果输入n =3,则输出的S =( )A.37B.67C.89D.49解:第一次循环后S =11×3=13,i =2;第二次循环后S =11×3+13×5=12×⎝⎛⎭⎫1-13+13-15=25,i =3;第三次循环后S =11×3+13×5+15×7=12×(1-13+13-15+15-17)=37,此时i =4>3,退出循环,输出结果S =37.故选A .9.设曲线y =x n +1(n ∈N *)在点(1,1)处的切线与x 轴的交点的横坐标为x n ,令a n =lg x n ,则a 1+a 2+…+a 2 017=( )A .lg2 018B .lg2 017C .-lg2 018D .-lg2 017解:因为y ′=(n +1)x n ,所以曲线y =x n +1在点(1,1)处的切线斜率为n +1,切线方程为y -1=(n +1)(x -1),令y =0,得x n =1-1n +1=n n +1.则a n =lg x n =lg n n +1,所以a 1+a 2+…+a 2 017=lg ⎝⎛⎭⎫12×23×…×2 0172 018=lg 12 018=-lg2 018.故选C .10.已知在数列{a n }中,a n =n 2+λn ,且{a n }是递增数列,则实数λ的取值范围是( ) A .(-2,+∞) B .[-2,+∞) C .(-3,+∞) D .[-3,+∞)解:由题意可知a n +1>a n 对任意正整数n 恒成立,即(n +1)2+λ(n +1)>n 2+λn 对任意正整数n 恒成立,即λ>-2n -1对任意正整数n 恒成立,故λ>-3.另解,由对称轴-λ2<32求解.故选C .11.已知a n =⎝⎛⎭⎫13n ,把数列{a n }的各项排列成如下的三角形形状,a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A (m ,n )表示第m 行的第n 个数,则A (10,12)=( )A.⎝⎛⎭⎫1393B.⎝⎛⎭⎫1392C.⎝⎛⎭⎫1394D.⎝⎛⎭⎫13112解:前9行一共有1+3+5+…+17=81个数,而A (10,12)表示第10行的第12个数,所以n =93,即A (10,12)=a 93=⎝⎛⎭⎫1393.故选A . 12.设a n =1n sin n π25,S n =a 1+a 2+…+a n ,在S 1,S 2,…,S 100中,正数的个数是( )A .25B .50C .75D .100解:当1≤n ≤24时,a n >0,当26≤n ≤49时,a n <0,但其绝对值要小于1≤n ≤24时相应的值,当51≤n ≤74时,a n >0,当76≤n ≤99时,a n <0,但其绝对值要小于51≤n ≤74时相应的值,所以当1≤n ≤100时,均有S n >0.故选D .二、填空题:本题共4小题,每小题5分,共20分.13.(2017·北京)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解:-1+3d =-q 3=8⇒d =3,q =-2⇒a 2b 2=-1+3-1×(-2)=1.故填1.14.(2017·全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________. 解:因为{a n }为等比数列,设公比为q . ⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3, 即⎩⎪⎨⎪⎧a 1+a 1q =-1, ①a 1-a 1q 2=-3, ②显然q ≠1,a 1≠0, ②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.故填-8.15.(2015·武汉调研)《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加________尺.解:设每天增加的数量为x 尺,则5×30+30×(30-1)x 2=390,所以x =1629.故填1629.16.设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=2S n +n +1(n ∈N *),则数列{a n }的通项公式a n =________. 解:因为S n +1=2S n +n +1, 当n ≥2时,S n =2S n -1+n ,两式相减得,a n +1=2a n +1,所以a n +1+1=2(a n +1),即a n +1+1a n +1=2.又S 2=2S 1+1+1,a 1=S 1=1,所以a 2=3,所以a 2+1a 1+1=2,所以a n +1=2×2n -1=2n , 所以a n =2n -1.故填2n -1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)数列{a n }的前n 项和为S n ,且满足S n =4a n -3(n ∈N *),求a n . 解:S n =4a n -3,则S n -1=4a n -1-3,两式相减,得a n a n -1=43.又a 1=4a 1-3,所以a 1=1,所以a n =⎝⎛⎭⎫43n -1.18.(12分)已知等比数列{a n }中,a 1=13,公比q =13.(1)S n 为{a n }的前n 项和,证明:S n =1-a n2;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.解:(1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2,所以S n =1-a n 2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.所以{b n }的通项公式为b n =-n (n +1)2.19.(12分)(2016·北京)已知{a n }是等差数列,{b n }是等比数列,且b 2=3,b 3=9,a 1=b 1,a 14=b 4. (1)求{a n }的通项公式;(2)设c n = a n + b n ,求数列{c n }的前n 项和.解:(1)等比数列{b n }的公比q =b 3b 2=93=3,所以b 1=b 2q =1,b 4=b 3q =27.设等差数列{a n }的公差为d . 因为a 1=b 1=1,a 14=b 4=27,所以1+13d =27,即d =2.所以a n =2n -1. (2)由(1)知,a n =2n -1,b n =3n -1. 因此c n =a n +b n =2n -1+3n -1. 从而数列{c n }的前n 项和S n =1+3+…+()2n -1+1+3+…+3n -1 =n ()1+2n -12+1-3n 1-3=n 2+3n -12.20.(12分)已知数列{a n }与{b n },若a 1=3且对任意正整数n 满足a n +1-a n =2,数列{b n }的前n 项和S n =n 2+a n .(1)求数列{a n },{b n }的通项公式; (2)求数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n .解:(1)由题意知{a n }是以3为首项,2为公差的等差数列. 所以a n =2n +1. 当n =1时,b 1=S 1=4;当n ≥2时,b n =S n -S n -1=(n 2+2n +1)-[(n -1)2+2(n -1)+1]=2n +1,对b 1=4不成立.所以数列{b n }的通项公式为b n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.(2)由(1)知当n =1时,T 1=1b 1b 2=120.当n ≥2时, 1b n b n +1=1(2n +1)(2n +3)=12⎝⎛⎭⎫12n +1-12n +3, 所以T n =120+12[⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+(12n +1-12n +3)]=120+12⎝⎛⎭⎫15-12n +3=120+n -110n +15=6n -120(2n +3). 当n =1时仍成立,所以T n =6n -120(2n +3).21.(12分)(2017·天津)已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n -1}的前n 项和(n ∈N *).解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q . 由已知b 2+b 3=12,得b 1(q +q 2)=12, 而b 1=2,所以q 2+q -6=0. 又因为q >0,解得q =2.所以b n =2n . 由b 3=a 4-2a 1,可得3d -a 1=8.① 由S 11=11b 4,可得a 1+5d =16,②联立①②,解得a 1=1,d =3,由此可得a n =3n -2.所以,数列{a n }的通项公式为a n =3n -2,数列{b n }的通项公式为b n =2n . (2)设数列{a 2n b 2n -1}的前n 项和为T n ,由a 2n =6n -2,b 2n -1=2×4n -1,有a 2n b 2n -1=(3n -1)×4n , 故T n =2×4+5×42+8×43+…+(3n -1)×4n ,4T n =2×42+5×43+8×44+…+(3n -4)×4n +(3n -1)×4n +1, 上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n -(3n -1)×4n +1 =12×(1-4n )1-4-4-(3n -1)×4n +1=-(3n -2)×4n +1-8.得T n =3n -23×4n +1+83.所以,数列{a 2n b 2n -1}的前n 项和为3n -23×4n +1+83.22.(12分)(2017·山东)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3-x 2=2.(1)求数列{x n }的通项公式;(2)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1, 1),P 2(x 2, 2),…,P n +1(x n +1, n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y =0,x =x 1,x =x n +1所围成的区域的面积T n .解:(1)设数列{x n }的公比为q ,由已知q >0.由题意得⎩⎪⎨⎪⎧x 1+x 1q =3,x 1q 2-x 1q =2, 所以3q 2-5q -2=0,因为q >0,所以q =2,x 1=1, 因此数列{x n }的通项公式为x n =2n -1.(2)过P 1,P 2,P 3,…,P n +1向x 轴作垂线,垂足分别为Q 1,Q 2,Q 3,…,Q n +1, 由(1)得x n +1-x n =2n -2n -1=2n -1.记梯形P n P n +1Q n +1Q n 的面积为b n . 由题意b n =(n +n +1)2×2n -1=(2n +1)×2n -2,所以T n =b 1+b 2+b 3+…+b n=3×2-1+5×20+7×21+…+(2n -1)×2n -3+(2n +1)×2n -2① 又2T n =3×20+5×21+7×22+…+(2n -1)×2n -2+(2n +1)×2n -1,② ①-②得-T n =3×2-1+(2+22+…+2n -1)-(2n +1)×2n -1=32+2(1-2n -1)1-2-(2n +1)×2n -1. 所以T n =(2n -1)×2n +12.。
高二数列求和知识点归纳总结
高二数列求和知识点归纳总结数列是数学中常见的概念,它是按照一定规律排列的数的集合。
在高二数学学习中,我们经常会遇到数列求和的问题,对此我们需要掌握一些与数列求和相关的知识点。
本文将对高二数列求和的知识进行归纳总结。
一、等差数列求和公式等差数列是指数列中相邻两项之差都相等的数列,常用的求和公式如下:1. 等差数列前n项和公式:Sn = (a1 + an) * n / 2其中,Sn表示前n项和,a1表示首项,an表示末项,n表示项数。
2. 等差数列常用的性质公式:Sn = (a1 + an) * n / 2an = a1 + (n-1) * d其中,d表示公差。
二、等比数列求和公式等比数列是指数列中相邻两项之比都相等的数列,常用的求和公式如下:1. 等比数列前n项和公式(当公比不等于1时):Sn = a1 * (1 - r^n) / (1 - r)其中,Sn表示前n项和,a1表示首项,r表示公比,n表示项数。
2. 等比数列前n项和公式(当公比等于1时):Sn = a1 * n三、特殊数列求和公式除了等差数列和等比数列外,还存在一些特殊的数列求和公式,包括以下几种常见情况:1. 平方数列求和公式:Sn = (2n^3 + 3n^2 + n) / 62. 立方数列求和公式:Sn = (n^2 * (n + 1)^2) / 43. 斐波那契数列求和公式:Sn = F(n+2) - 1其中,F(n)表示第n项斐波那契数。
四、应用案例分析在实际应用中,数列求和常常结合实际问题进行分析和求解。
以下是两个典型的应用案例:案例一:小明每天读书,第一天读了1页,第二天读了2页,第三天读了3页,以此类推,第n天读了n页。
求小明连续读了10天后的总页数。
解析:根据题目中的描述,我们可以知道该题是等差数列,且首项a1=1,公差d=1,项数n=10。
利用等差数列求和公式,可以得到:Sn = (a1 + an) * n / 2= (1 + 10) * 10 / 2= 55因此,小明连续读了10天后的总页数是55页。
年高考数学(理)总复习:数列的求和及综合应用(解析版)
所以
fn
′
(2=)
1+
2
×2+
…
+
(n-
n
1)2
-2+
n·2n
-1
,①
则 2fn′ (2=) 2+2×22+ … + (n- 1)2n-1+ n·2n,② 由①-②得,- fn′ (2=) 1+ 2+ 22+ … +2n-1- n·2n
n
= 1- 2 - n·2n=(1 -n)2n- 1, 1- 2
n
22
1
(2)[ 证明 ]
因为 fn(0) =- 1< 0,fn 2 3
3
=
1
3 2
n
2
- 1= 1-2× 2
2
≥1- 2×
>
3
3
3
2 0,所以 fn(x) 在 0, 内至少存在一个零点,又
3
f′n (x)= 1+ 2x+… + nxn-1> 0,所以 fn(x)在
0, 2 内单调递增,因此 f n(x)在 0, 2 内有且仅有一个零点
【解析】
n, n为偶数, (1) ∵数列 { bn} 的通项公式 bn=
(n∈N * ),∴ b5= 6, b4= 4,
n+ 1,n为奇数
设各项为正数的等比数列 { an} 的公比为 q,q>0 , ∵ S3= b5+ 1=7,∴ a1+ a1q+a1q2=7,① ∵ b4 是 a2 和 a4 的等比中项,
an= f(n+ 1)- f(n)的形式,然
后通过累加抵消中间若干项的求和方法.
形如 c (其中 { an} 是各项均不为 0 的等差数列, anan 1
c 为常数 )的数列等.
(3)错位相减法:形如 { an·bn}( 其中 { an} 为等差数列, { bn} 为等比数列 )的数列求和,一般 分三步:①巧拆分;②构差式;③求和.
数列求和、数列的综合应用(讲解部分)
+…+tan
θn<
5 3
的最大整数n的值为
.
解析
由题意可得An
n,n
1 2
n
+
n
1 +
1
,∵O为坐标原点,∴
OAn
=
n,n
1 2
n
+
n
1 +
1
,∵向量
OAn
与向量i=(1,0)的夹角为θn,∴cos
θn=
n
.
n2 +
∴sin ∴tan
n
θn=
θn=
1 n 2
n2 1 2
-1
W9 =1×
10
+29×
10
19+03×2
+190…3+n·
两式相减得
110W=-n·
9 10
n+1+
9+
10
9 10
2+
9 10
3+…+
9 10
n-1=-n·
9 10
n+
1-
9 10
n
1- 9
10
=-n·
9 10
n
+10-10·
9 10
n
,
则W=-10n·
9 10
n+100-100·
题,弄清该数列的特征以及要求什么;
(3)求解——求出该问题的数学解;
(4)还原——将所求结果还原到实际问题中.
2.数列应用题常见模型
(1)等差模型:如果增加(或减少)的量是一个固定值,那么该模型是等差模
(完整)高考数学二轮复习名师知识点总结:数列求和及数列的综合应用,推荐文档
1 1 1 1 1数列求和及数列的综合应用【高考考情解读】 高考对本节知识主要以解答题的形式考查以下两个问题:1.以递推公式或图、表形式给出条件, 求通项公式,考查学生用等差、等比数列知识分析问题和探究创新的能力,属中档题.2.通过分组、错位相减等转化为等差或等比数列的求和问题,考查等差、等比数列求和公式及转化与化归思想的应用,属中档题.1. 数列求和的方法技巧(1) 分组转化法有些数列,既不是等差数列,也不是等比数列,若将数列通项拆开或变形,可转化为几个等差、等比数列或常见的数列,即先分别求和,然后再合并.(2) 错位相减法这是在推导等比数列的前 n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前 n 项和,其中{a n },{b n }分别是等差数列和等比数列.(3) 倒序相加法这是在推导等差数列前 n 项和公式时所用的方法,也就是将一个数列倒过来排列(反序),当它与原数列相加时若有公式可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和.(4) 裂项相消法利用通项变形,将通项分裂成两项或 n 项的差,通过相加过程中的相互抵消,最后只剩下有限项的和.这种方法,anan +1anan +1 d (a n - )适用于求通项为 常见的拆项公式: 1 1 1①n (n +1)=n -n +1;1 1 1 1的数列的前 n 项和,其中{a n }若为等差数列,则 = an +1 .②n (n +k )=k (n -n +k );1 1 1 1③(2n -1)(2n +1)=2(2n -1-2n +1);1 1④ n + n +k =k ( n +k - n ). 2. 数列应用题的模型(1) 等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差. (2) 等比模型:如果后一个量与前一个量的比是一个固定的数时,该模型是等比模型,这个固定的数就是公比. (3) 混合模型:在一个问题中同时涉及等差数列和等比数列的模型.(4) 生长模型:如果某一个量,每一期以一个固定的百分数增加(或减少),同时又以一个固定的具体量增加(或减少)时,我们称该模型为生长模型.如分期付款问题,树木的生长与砍伐问题等.(5) 递推模型:如果容易找到该数列任意一项 a n 与它的前一项 a n -1(或前 n 项)间的递推关系式,我们可以用递推数列的知识来解决问题.π1 π考点一 分组转化求和法例 1 等比数列{a n }中,a 1,a 2,a 3 分别是下表第一、二、三行中的某一个数,且 a 1,a 2,a 3 中的任何两个数不在下表的同一列.第一列第二列 第三列 第一行 3 2 10 第二行 6 4 14 第三行9818(1) 求数列{a n }的通项公式;(2) 若数列{b n }满足:b n =a n +(-1)n ln a n ,求数列{b n }的前 n 项和 S n .解 (1)当 a 1=3 时,不合题意;当 a 1=2 时,当且仅当 a 2=6,a 3=18 时,符合题意; 当 a 1=10 时,不合题意.因此 a 1=2,a 2=6,a 3=18.所以公比 q =3. 故 a n =2·3n -1 (n ∈N *). (2)因为 b n =a n +(-1)n ln a n =2·3n -1+(-1)n ln(2·3n -1)=2·3n -1+(-1)n [ln 2+(n -1)ln 3] =2·3n -1+(-1)n (ln 2-ln 3)+(-1)n n ln 3,所以 S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n ]·(ln 2-ln 3)+[-1+2-3+…+(-1)n n ]ln 3. 1-3n n n当 n 为偶数时,S n =2× 1-3 +2ln 3=3n +2ln 3-1;1-3n n -1 n -1(-n)当 n 为奇数时,S n =2× 1-3 -(ln 2-ln 3)+ 2 ln 3=3n - 2 ln 3-ln 2-1.综上所述,S n =Error!在处理一般数列求和时,一定要注意使用转化思想.把一般的数列求和转化为等差数列或等比数列进行求和,在求和时要分析清楚哪些项构成等差数列,哪些项构成等比数列,清晰正确地求解.在利用分组求和法求和时,由于数列的各项是正负交替的,所以一般需要对项数 n 进行讨论,最后再验证是否可以合并为一个公式.(2013·安徽)设数列{a n }满足 a 1=2,a 2+a 4=8,且对任意 n ∈N *,函数 f (x )=(a n -a n +1+a n +2)x +a n +1cos x -a n +2sin x 满足 f ′(2)=0. (1)求数列{a n }的通项公式;(an +)(2)若 b n =2 2an ,求数列{b n }的前 n 项和 S n .解 (1)由题设可得 f ′(x )=(a n -a n +1+a n +2)-a n +1sin x -a n +2cos x ,又 f ′(2)=0,则 a n +a n +2-2a n +1=0,即 2a n +1=a n +a n +2,因此数列{a n }为等差数列,设等差数列{a n }的公差为 d , 由已知条件Error!,解得 Error!a n =a 1+(n -1)d =n +1.( 1 ) 1n+1+(2)b n=2 2n+1 =2(n+1)+2n,1 1S n=b1+b2+…+b n=(n+3)n+1-2n=n2+3n+1-2n.考点二错位相减求和法例2 (2013·山东)设等差数列{a n}的前n 项和为S n,且S4=4S2,a2n=2a n+1.(1)求数列{a n}的通项公式;b1 b2 bn 1(2)若数列{b n}满足a1+a2+…+an=1-2n,n∈N*,求{b n}的前n 项和T n.解(1)设等差数列{a n}的首项为a1,公差为d,由Error!得a1=1,d=2,所以a n=2n-1(n∈N*).b1 b2 bn 1(2)由已知a1+a2+…+an=1-2n,n∈N*,①b1 b2 bn-1 1当n≥2 时,a1+a2+…+an-1=1-2n-1,②bn 1 b1 1①-②得:an=2n,又当n=1 时,a1=2也符合上式,bn 1 2n-1所以an=2n(n∈N*),所以b n=2n (n∈N*).1 3 5 2n-1所以T n=b1+b2+b3+…+b n=2+22+23+…+2n .1 1 3 2n-3 2n-12T n=22+23+…+2n +2n+1.1 1 (2 2 2 )2n-13 1 2n-1 2n+3++…+两式相减得:2T n=2+22 23 2n -2n+1=2-2n-1-2n+1. 所以T=3-2n .n错位相减法求数列的前n 项和是一类重要方法.在应用这种方法时,一定要抓住数列的特征,即数列的项可以看作是由一个等差数列和一个等比数列对应项相乘所得数列的求和问题.设数列{a n}满足a1=2,a n+1-a n=3·22n-1.(1)求数列{a n}的通项公式;(2)令b n=na n,求数列{b n}的前n 项和S n.解(1) 由已知,得当n≥1 时,a n+1=[(a n+1-a n)+(a n-a n-1)+…+(a2-a1)]+a1=3(22n-1+22n-3+…+2)+2=22(n+1)-1. 而a1=2,符合上式,所以数列{a n}的通项公式为a n=22n-1.(2)由b n=na n=n·22n-1 知S n=1·2+2·23+3·25+…+n·22n-1. ①f (x )+ - - (f (x )从而 22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1, 1即 S n =9[(3n -1)22n +1+2]. 考点三 裂项相消求和法例 3 (2013·广东)设各项均为正数的数列{a n }的前 n 项和为 S n ,满足 4S n =a n +2 1-4n -1,n ∈N *, 且 a 2,a 5,a 14 构成等比数列.(1) 证明:a 2= 4a 1+5; (2) 求数列{a n }的通项公式;1111(3) 证明:对一切正整数 n ,有a 1a 2+a 2a 3+…+anan +1<2.(1)证明 当 n =1 时,4a 1=a 2-5,a 2=4a 1+5,又 a n >0,∴a 2= (2) 解 当 n ≥2 时 ,4S n -1=a n -4(n -1)-1,4a 1+5.∴4a n =4S n -4S n -1=a n +2 1-a 2-4,即 a n +2 1=a n +4a n +4=(a n +2)2,又 a n >0,∴a n +1=a n +2, ∴当 n ≥2 时,{a n }是公差为 2 的等差数列.又 a 2,a 5,a 14 成等比数列.∴a 2=a 2·a 14,即(a 2+6)2=a 2·(a 2+24),解得 a 2=3.由(1)知 a 1=1.又 a 2-a 1=3-1=2,∴数列{a n }是首项 a 1=1,公差 d =2 的等差数列.∴a n =2n -1. 1 1 1 1 1 11 (3)证明 a 1a 2+a 2a 3+…+anan +1=1 × 3+3 × 5+5 × 7+…+(2n -1)(2n +1) 1[( 1) (1 1) 1 1)] 1(1 )1 =23 3 5 2n -1 2n +1 =2 2n +1 <2. 数列求和的方法:(1)一般地,数列求和应从通项入手,若无通项,就先求通项,然后通过对通项变形,转化为与特殊数列有关或具备适用某种特殊方法的形式,从而选择合适的方法求和得解.(2)已知数列前 n 项和 S n 或者前 n 项和 S n 与通项公式 a n 的关系式,求通项通常利用 a n =Error!.已知数列递推式求通项,主要掌握“先猜后证法”“化归法”“累加(乘)法”等.(2013·西安模拟)已知x , 2 , 3(x ≥0)成等差数列.又数列{a n }(a n >0)中,a 1=3,此数列的前 n 项和为 S n ,对于所有大于 1 的正整数 n 都有 S n =f (S n -1).(1) 求数列{a n }的第 n +1 项;1 1(2) 若 bn 是an +1,an 的等比中项,且 T n 为{b n }的前 n 项和,求 T n .解 (1)因为 x , 2 , 3(x ≥0)成等差数列,所 以 2× 2 = x + 3,整理,得 f (x )=( x + 3)2.因为 S n =f (S n -1)(n ≥2),所以 S n =( Sn -1+ 3)2,f (x )1- +…+ 1-()1 1 1 1 (3 3 3n( )( ) - - + )] 18 + 18n +9 1 3因为 a 1=3,所以 S 1=a 1=3,所以 Sn = S 1+(n -1) 3= 3+ 3n - 3= 3n . 所以 S n =3n 2(n ∈N *). 所以 a n +1=S n +1-S n =3(n +1)2-3n 2=6n +3. 1 1 1 1(2)因为 bn 是an +1与an 的等比中项, 所以( bn )2=an +1·an , 1111 1 - 1 所 以 b n =an +1·an =3(2n +1) × 3(2n -1)=18× 2n -1 2n +1 , [(1- )+( ) (- 1 1 (1- 1 )n T n =b 1+b 2+…+b n = 考点四 数列的实际应用3 3 5 2n 1 2n 1 = 2n 1 = .例 4 (2012·湖南)某公司一下属企业从事某种高科技产品的生产.该企业第一年年初有资金 2 000 万元,将其投入生产,到当年年底资金增长了 50%,预计以后每年资金年增长率与第一年的相同.公司要求企业从第一年开始,每年年底上缴资金 d 万元,并将剩余资金全部投入下一年生产.设第 n 年年底企业上缴资金后的剩余资金为 a n 万元.(1) 用 d 表示 a 1,a 2,并写出 a n +1 与 a n 的关系式;(2) 若公司希望经过 m (m ≥3)年使企业的剩余资金为 4 000 万元,试确定企业每年上缴资金 d 的值(用 m 表示).(1) 由第 n 年和第(n +1)年的资金变化情况得出 a n 与 a n +1 的递推关系;(2) 由 a n +1 与 a n 之间的关系,可求通项公式,问题便可求解.3 5解 (1)由题意得 a 1=2 000(1+50%)-d =3 000-d ,a 2=a 1(1+50%)-d =2a 1-d =4 500-2d . 3a n +1=a n (1+50%)-d =2a n -d .3 3 3) ( ) (3)[ ( )( ) ]2 (2)由(1)得 a = an -2-d -d =2 2 -d = 22a 2 2 n -1 1+ + - d -d =…= a -d 2 2 2+…+ 2 n -2 . n a n -1 n -2 13 3 3整理得 a =(2)n -1(3 000-d )-2d[(2)n -1-1]=(2)n -1(3 000-3d )+2d .3由题意,知 a m =4 000,即 2 m -1(3 000-3d )+2d =4 000, 3[(2)m -2] × 1 000 3 m -1 1 000(3m -2m +1)解得 d = 2 = 3m -2m .1 000(3m -2m +1)故该企业每年上缴资金 d 的值为3m -2m时,经过 m (m ≥3)年企业的剩余资金为 4 000 万元.用数列知识解相关的实际问题,关键是合理建立数学模型——数列模型,弄清所构造的数列的首项是什么,项数是多少,然后转化为解数列问题.求解时,要明确目标,即搞清是求和,还是求通项,还是解递推关所 以 Sn = Sn -1+ 3, 即 Sn - Sn -1= 3,所以{ Sn }是以 3为公差的等差数列.18+…+ 3系问题,所求结论对应的是解方程问题,还是解不等式问题,还是最值问题,然后进行合理推算,得出实际问题 的结果.某产品在不做广告宣传且每千克获利 a 元的前提下,可卖出 b 千克.若做广告宣传,广告费为b n (n ∈N *)千元时比广告费为(n -1)千元时多卖出2n 千克.(1) 当广告费分别为 1 千元和 2 千元时,用 b 表示销售量 S ; (2) 试写出销售量 S 与 n 的函数关系式;(3) 当 a =50,b =200 时,要使厂家获利最大,销售量 S 和广告费 n 分别应为多少?b 3b b b 7b解 (1)当广告费为 1 千元时,销售量 S =b +2= 2 .当广告费为 2 千元时,销售量 S =b +2+22= 4 . b(2)设 S n (n ∈N )表示广告费为 n 千元时的销售量,由题意得 S 1-S 0=2,bS 2-S 1=22, …… bS n -S n -1=2n .b b b b以上 n 个等式相加得,S n -S 0=2+22+23+…+2n ,1b [1-( )n +1]2b b b b 1 1即 S =S n =b +2+22+23+…+2n = 1-2 =b (2-2n ).1 10(3)当 a =50,b =200 时,设获利为 T n ,则有 T n =Sa -1 000n =10 000×(2-2n )-1 000n =1 000×(20-2n -n ),1010105设 b n =20-2n -n ,则 b n +1-b n =20-2n +1-n -1-20+2n +n =2n -1, 当 n ≤2 时,b n +1-b n >0;当 n ≥3 时,b n +1-b n <0.所以当 n =3 时,b n 取得最大值,即 T n 取得最大值,此时 S =375, 即该厂家获利最大时,销售量和广告费分别为 375 千克和 3 千元.1. 数列综合问题一般先求数列的通项公式,这是做好该类题的关键.若是等差数列或等比数列,则直接运用公式求解,否则常用下列方法求解:(1) a n =Error!.(2) 递推关系形如 a n +1-a n =f (n ),常用累加法求通项.an+1(3)递推关系形如an =f(n),常用累乘法求通项.(4)递推关系形如“a n+1=pa n+q(p、q 是常数,且p≠1,q≠0)”的数列求通项,此类通项问题,常用待定系数法.可设a n+1+λ=p(a n+λ),经过比较,求得λ,则数列{a n+λ}是一个等比数列.(5)递推关系形如“a n+1=pa n+q n(q,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n+1 转为用迭加法求解.2.数列求和中应用转化与化归思想的常见类型:(1)错位相减法求和时将问题转化为等比数列的求和问题求解.(2)并项求和时,将问题转化为等差数列求和.(3)分组求和时,将问题转化为能用公式法或错位相减法或裂项相消法或并项法求和的几个数列的和求解.提醒:运用错位相减法求和时,相减后,要注意右边的n+1 项中的前n 项,哪些项构成等比数列,以及两边需除以代数式时注意要讨论代数式是否为零.3.数列应用题主要考查应用所学知识分析和解析问题的能力.其中,建立数列模型是解决这类问题的核心,在试题中主要有:一是,构造等差数列或等比数列模型,然后用相应的通项公式与求和公式求解;二是,通过归纳得到结论,再用数列知识求解.( )( ) 1-1. 在一个数列中, 如果∀n ∈N *,都有 a n a n +1a n +2=k (k 为常数),那么称这个数列为等积数列,称 k 为这个数列的公积.已知数列{a n }是等积数列,且 a 1=1,a 2=2,公积为 8,则 a 1+a 2+a 3+…+a 12= .答 案 28解析 依题意得数列{a n }是周期为 3 的数列,且 a 1=1,a 2=2,a 3=4, 因此 a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.2. 秋末冬初,流感盛行,特别是甲型 H1N1 流感.某医院近 30 天每天入院治疗甲流的人数依次构成数列{a n },已知a 1=1,a 2=2,且 a n +2-a n =1+(-1)n (n ∈N *),则该医院 30 天入院治疗甲流的人数共有 .答案 255 解析 由于 a n +2-a n =1+(-1)n ,所以 a 1=a 3=…=a 29=1,15 × 14a 2,a 4,…,a 30 构成公差为 2 的等差数列,所以 a 1+a 2+…+a 29+a 30=15+15×2+ 23. 已知公差大于零的等差数列{a n }的前 n 项和 S n ,且满足:a 2·a 4=65,a 1+a 5=18.(1)若 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,求 i 的值;n×2=255.(2)设 b n =(2n +1)Sn ,是否存在一个最小的常数 m 使得 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立,若存在, 求出常数 m ;若不存在,请说明理由.解 (1){a n }为等差数列,∵a 1+a 5=a 2+a 4=18,又 a 2·a 4=65,∴a 2,a 4 是方程 x 2-18x +65=0 的两个根, 又公差 d >0,∴a 2<a 4,∴a 2=5,a 4=13. ∴Error!∴a 1=1,d =4.∴a n =4n -3.由于 1<i <21,a 1,a i ,a 21 是某等比数列的连续三项,∴a 1·a 21=a 2i ,即 1·81=(4i -3)2,解得 i =3. n (n -1) 1 1(1 -1)(2)由(1)知,S n =n ·1+ 2 ·4=2n 2-n ,所以 b n =(2n -1)(2n +1)=2 2n -1 2n +1 ,1 1 1 1 1 1 n 1- + - +…+ - b 1+b 2+…+b n =23 3 5 2n -1 2n +1 =2n +1, n 1 1 1 1因为2n +1=2-2(2n +1)<2,所以存在 m =2使 b 1+b 2+…+b n <m 对于任意的正整数 n 均成立.(推荐时间:60 分钟)一、选择题1 1 1 11. 已知数列 12,34,58,716,…,则其前 n 项和 S n 为()1A .n 2+1-2n1B .n 2+2-2n1C .n 2+1-2n -11- 1 ·1 2n 21D .n 2+2-2n -11 1+2n -11 1 答案 A 解析 因为 a n =2n -1+2n ,则 S n =2n +2 =n 2+1-2n .S12 S102.在等差数列{a n}中,a1=-2 013,其前n 项和为S n,若12 -10 =2,则S2013的值等于( ) A.-2 011 B.-2 012 C.-2 010 D.-2 013答案DSn S1 解析根据等差数列的性质,得数列{ n }也是等差数列,根据已知可得这个数列的首项1 =a1=-2 013,S2 013公差d=1,故2 013 =-2 013+(2 013-1)×1=-1,所以S2013=-2 013.3.对于数列{a n},a1=4,a n+1=f(a n),n=1,2,…,则a2013等于( )A.2 B.3 C.4答案C解析由表格可得a1=4,a2=f(a1)=f(4)=1,a3=f(a2)=f(1)=5,a4=f(a3)=2,a5=f(2)=4,可知其周期为4,∴a2013=a1=4.S1 S2 S154.在等差数列{a n}中,其前n 项和是S n,若S15>0,S16<0,则在a1,a2,…,a15中最大的是( )S1 S8 S9 S15A.a1答案BB.a8C.a9D.a1515(a1+a15)16(a1+a16)解析由于S15= 2 =15a8>0,S16= 2 =8(a8+a9)<0,可得a8>0,a9<0.S1 S2 S8 S9 S10 S15这样a1>0,a2>0,…,a8>0,a9<0,a10<0,…,a15<0,而S1<S2<…<S8,a1>a2>…>a8,S1 S2 S15 S8所以在a1,a2,…,a15中最大的是a8.故选B.1 1 1 15.数列{a n}满足a1=1,且对任意的m,n∈N*都有a m+n=a m+a n+mn,则a1+a2+a3+…+a2 012等于( )4 024A.2 013 答案A4 018B.2 0122 010C.2 0112 009D.2 010解析令m=1 得a n+1=a n+n+1,即a n+1-a n=n+1,于是a2-a1=2,a3-a2=3,…,a n-a n-1=n,上述n-1 个式子相加得a n-a1=2+3+…+n,n(n+1) 1 2 1-1 )所以a n=1+2+3+…+n= 2 ,因此an=n(n+1)=2 n n+1 ,() ()(1 1 1 11 1 1 1 11 4 0241- + - +…+- 1-所以a 1+a 2+a 3+…+a 2 012=22 23 2 012 2 013=22 013 =2 013.6. 已知函数 f (n )=Error!且 a n =f (n )+f (n +1),则 a 1+a 2+a 3+…+a 2 012 等于()A .-2 012B .-2 011C .2 012D .2 011答 案 C解析 当 n 为奇数时,a n =f (n )+f (n +1)=n 2-(n +1)2=-(2n +1); 当 n 为偶数时,a n =f (n )+f (n +1)=-n 2+(n +1)2=2n +1.所以 a 1+a 2+a 3+…+a 2 012=2(-1+2-3+4+…-2 011+2 012)=2 012. 二、填空题7. 数列{a n }中,已知对任意 n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则 a 2+a 2+a 3+…+a n =.1答 案 2(9n -1)解析 ∵a 1+a 2+a 3+…+a n =3n -1,∴a 1+a 2+a 3+…+a n -1=3n -1-1(n ≥2). 则 n ≥2 时,两式相减得,a n =2·3n -1. 当 n =1 时,a 1=3-1=2,适合上式,∴a n =2·3n -1(n ∈N *).∴a n =4·9n -1,4(1-9n ) 1则数列{a 2}是首项为 4,公比为 9 的等比数列.∴a 2+a 2+a 2+…+a n = 1-9 =2(9n -1).8. 设数列{a n }的前 n 项和为 S n ,且 a n 为复数 isin 答 案 1n π2 +cos n π2 (n ∈N *)的虚部,则 S 2 013=.解析 由已知得:a n =sin n π2 (n ∈N *),∴a 1=1,a 2=0,a 3=-1,a 4=0, 故{a n }是以 4 为周期的周期数列,∴S 2 013=S 503×4+1=S 1=a 1=1.19.已知数列{a n }满足 3a n +1+a n =4(n ≥1)且 a 1=9,其前 n 项之和为 S n ,则满足不等式|S n -n -6|<125的最小整数 n 是 .答 案 71解析 由递推式变形得 3(a n +1-1)=-(a n -1),∴{a n -1}是公比为-3的等比数列. 11则 a n -1=8·(-3)n -1,即 a n =8·(-3)n -1+1.18[1-(- )n ]3 1 1 1 1-(- )于是 S n = 3 +n =6[1-(-3)n ]+n =6-6·(-3)n +n1 1 1因此|S n-n-6|=|6×(-3)n|=6×(3)n<125,3n-1>250,∴满足条件的最小n=7.10.气象学院用3.2 万元买了一台天文观测仪,已知这台观测仪从启用的第一天起连续使用,第n 天的维修保养费为n+4910 (n∈N*)元,使用它直至报废最合算(所谓报废最合算是指使用这台仪器的平均耗资最少),一共使用了天.答案8001解析由题意得,每天的维修保养费是以5 为首项,10为公差的等差数列.设一共使用了n 天,则使用n 天的平(5+n+49)n 103.2 ×104+ 2 n 99993.2 × 104均耗资为n3.2 × 104 n=n +20+20≥20,当且仅当n =20时取得最小值,此时n=800.三、解答题11.已知等差数列{a n}满足:a5=9,a2+a6=14.(1)求数列{a n}的通项公式;(2)若b n=a n+qa n(q>0),求数列{b n}的前n 项和S n.解(1)设数列{a n}的公差为d,则由a5=9,a2+a6=14,得Error!,解得Error!.所以数列{a n}的通项公式为a n=2n-1.(2)由a n=2n-1 得b n=2n-1+q2n-1.当q>0 且q≠1 时,S n=[1+3+5+…+(2n-1)]+(q1+q3+q5+…+q2n-1)=n2+当q=1 时,b n=2n,则S n=n(n+1).所以数列{b n}的前n 项和S n=Error!. q(1-q2n) 1-q2 ;12.将函数f(x)=sin(n∈N*).14x·sin14(x+2π)·sin12(x+3π)在区间(0,+∞)内的全部极值点按从小到大的顺序排成数列{an}(1)求数列{a n}的通项公式;(2)设b n=2n a n,数列{b n}的前n 项和为T n,求T n的表达式.1 1 1 1 π解(1)化简f(x)=sin 4x·sin 4(x+2π)·sin 2(x+3π)=-4sin x,其极值点为x=kπ+2(k∈Z),πππ它在(0,+∞)内的全部极值点构成以2为首项,π为公差的等差数列,故a n=2+(n-1)π=nπ-2.π(2)b n=2n a n=2(2n-1)·2n,π∴T n=2[1·2+3·22+…+(2n-3)·2n-1+(2n-1)·2n],π则2T n=2[1·22+3·23+…+(2n-3)·2n+(2n-1)·2n+1]两式相减,得π∴-T n=2[1·2+2·22+2·23+…+2·2n-(2n-1)·2n+1],∴T n=π[(2n-3)·2n+3].1 113.在等比数列{a n}中,a2=4,a3·a6=512.设b n=log2a22·log2a n+2 12,T n为数列{b n}的前n 项和.(1)求a n和T n;(2)若对任意的n∈N*,不等式λT n<n-2(-1)n 恒成立,求实数λ的取值范围.1 1 1解(1)设{a n}的公比为q,由a3a6=a2·q5=16q5=512得q=2,1∴a n=a2·q n-2=(2)n.1 1 1 1 1 1b n=log2a n2·log2a n+2 12=log(2)2n-12·log(2)2n+12=(2n-1)(2n+1)=2(2n-1-2n+1),1 1 1 1 1 1 1 1 n∴T n=2(1-3+3-5+…+2n-1-2n+1)=2(1-2n+1)=2n+1.(n-2)(2n+1) 2 2(2)①当n 为偶数时,由λT n<n-2 恒成立得,λ< n2 2=2n-n-3 恒成立,即λ<(2n-n-3)min,而2n-n-3 随n 的增大而增大,∴n=2 时(2n-n-3)min=0,∴λ<0.(n+2)(2n+1) 2②当n 为奇数时,由λT n<n+2 恒成立得,λ< n =2n+n+5 恒成立,2 2即λ<(2n+n+5)min而2n+n+5≥25=9,当且仅当2n=n,即n=1 时等号成立,∴λ<9.综上,实数λ 的取值范围为(-∞,0).“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
数列数列求和数列的综合应用课件
量子力学
数列在量子力学中用于描述微 观粒子的波函数和能量级。
数列在计算机科学中的应用
数据结构
数列是计算机科学中常见的数 据结构之一,用于存储有序的
元素集合。
算法设计
数列在算法设计中用于实现排 序、搜索和图算法等。
加密技术
数列在加密技术中用于生成加 密密钥和实现加密算法。
积的数列。
02
数列的求和
数列求和的定义
数列求和是对数列中所有项进行加法运算的过程。
数列求和是数学中一个重要的概念,它是对数列中所有项进行加法运算的过程。 通过数列求和,我们可以得到数列的和,从而了解数列的整体性质和特点。
等差数列的求和
等差数列是一种常见的数列,其求和 方法有多种。
等差数列是一种常见的数列,其特点 是每项与前一项的差是一个常数。等 差数列的求和方法有多种,其中最常 用的是利用等差数列的通项公式和项 数进行计算。
等比数列的应用实例解析
总结词
等比数列在金融、经济、生物等领域中有着 广泛的应用,如复利计算、人口增长等。
详细描述
等比数列是一种常见的数列,其相邻两项之 间的比是一个常数。在金融和经济领域中, 很多问题需要用到等比数列的知识,例如复 利计算、股票价格等。通过等比数列的应用 ,我们可以更好地理解这些问题的本质,从 而更好地进行决策。
本质,从而更好地进行预测和建模。
THANKS
谢谢您的观看
等比数列的求和
等比数列是一种常见的数列,其求和方法有多种。
等比数列是一种常见的数列,其特点是每项与前一项的比值是一个常数。等比数列的求和方法有多种,其中最常用的是利用 等比数列的通项公式和项数进行计算。
幂数列的求和
数列求和与数列的综合应用
3.若数列{an}的通项公式为 an=2n+2n-1,则数列{an}的前 n 项 和为( )
A.2n+n2-1 B.2n+1+n2-1 C.2n+1+n2-2 D.2n+n-2
答案:C
解析:Sn=a1+a2+a3+…+an =(21+2×1-1)+(22+2×2-1)+(23+2×3-1)+…+(2n+2n
-
1)
=
(2
+
22
+
23
+
…
+
2n)
+
2(1
+
2
+
3
+
…
+
n)
-
n
=
21-2n 1-2
+
nn2+1×2-n=2n+1+n2-2.
类题通法 (1)分组转化法求和的常见类型 ①若 an=bn±cn,且{bn},{cn}为等差或等比数列,可采用分组求 和法求{an}的前 n 项和.
②通项公式为 an=bcnn,,nn为为偶奇数数, 的数列,其中数列{bn},{cn}
=11a6=11(a1+5d)=11b4=11×24,
即 a1+5d=16,可得ad1==31 ,∴an=a1+(n-1)d=3n-2, 所以{an}的通项公式为 an=3n-2,{bn}的通项公式为 bn=2n.
(2)由(1)得 anbn=(3n-2)an=(3n-2)·2n 所以 Tn=a1b1+a2b2+a3b3+…+an-1bn-1+anbn =1×2+4×22+7×23+…+(3n-5)·2n-1+(3n-2)×2n,① 2Tn=1×22+4×23+7×24+…+(3n-5)·2n+(3n-2)×2n+1,② ①-②得-Tn=2+3(22+23+…+2n)-(3n-2)2n+1 =2+3×221--22n·2-(3n-2)·2n+1
41总复习:数列求和及其综合应用(基础)知识梳理
有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征, 考察数列的极限存在与否等等.
有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列 有关知识解答此类应用题.
公式法
数列前n项和
分组求和 错位相减
倒序相加
裂项相消
综合应用
与函数、方程、不等式等 与几何、实际问题等
【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、
复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用, 如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外, 还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.
(2) y 4sin2 x 4 1 cos 2 x 2 2 cos 2 x 的最小正周期为 T 2 1
2
2
b1 1 q 3 bn 3n1 an bn 2n 3n1
Sn
2 30
4 31
2n 3 n1
2 2n n 1 3n n2 n 1 1 3n
a1
, a2
2 3
3, a3
4 9
4
由 a22 a1 a3 得 9 0 ,显然矛盾,
即不存在实数 使得数列{an}是等比数列。
(Ⅱ)根据等比数列的定义:
bn1 bn
(1)n1[an1 3(n 1) 21]
高考数学第一轮知识点总复习 第四节 数列求和
后再合并,形如:
①{a n bn},,其中 an 等差数列; bn是等比数列;
②
f n, n 2k 1 an gn, n 2k
k N *
典例分析
题型一 利用常用公式求和
【例1】已知
log3
x
1 l,og求2 3
Sn x x的2 值x.3 ... xn
分析 由已知条件可求得x的值,再代入求 S的n 值.
分析(1)由已知条件利用等比数列的定义证明,即从a n 1
得到
1 a n1
-1与 1 an
-1
的等式关系.
(2)充分利用(1)的结论得出 项
1 an
1 2n
1
.欲求数列 ann
2a n a n 1
的前n
Sn
和
可先求出的值
Tn
1 2
2 22
3 23
n 2n
.
解(1)
a n1
2an , 1 an 1 an1
解析:由已知f(x)对任意实数m、n都有f(m)+f(n)=f(m+n),得 f(1 005)+f(1 005)=f(2 010)=2+2=4; f(0)+f(2010)=f(2010)=4; f(2)+f(2 008)=f(2 010)=4; … f(1 004)+f(1 006)=4. 令S=f(0)+f(2)+f(4)+f(6)+…+f(2 008)+f(2010), 则S= f(2010)+ f(2 008)+f(2 006)+…+f(2)+f(0). 于是2S=[f(0)+f(2010)]+[f(2)+f(2 008)]+[f(4)+f(2 006)] +…+[f(2 008)+f(2)]+[f(2010)+f(0)]
数列求和及其综合应用__概述说明以及解释
数列求和及其综合应用概述说明以及解释1. 引言1.1 概述在数学中,数列求和是一个重要的概念,它涉及到对一系列数字的总和进行计算。
通过对数列求和的研究,我们可以更好地理解数学中的序列和级数,并应用到实际问题中。
本文将深入探讨数列求和的基本概念、常见公式以及在实际生活中的广泛应用。
1.2 研究背景数列作为代数结构中的基础概念,在各个领域都有着广泛的应用。
通过对数列求和进行研究,不仅可以提升学生们对代数运算的理解能力,也能帮助科研工作者在金融、工程、经济管理等领域中解决实际问题。
1.3 研究意义深入研究数列求和不仅可以加深我们对代数结构的认识,还能够拓展我们在实际生活中解决问题的思维方式。
同时,深刻理解数列求和在各个领域中的应用案例,有助于我们更好地理解世界并提高自身问题解决能力。
2. 数列求和的基本概念数列是按照一定规律排列的一组数,其中每个数称为数列的项。
而数列求和则是将数列中所有项相加得到一个结果的运算。
在数学中,我们常常会遇到各种不同类型的数列,如等差数列、等比数列等,对这些不同类型的数列进行求和有着不同的方法和公式。
2.1 数列与数列求和的概念在数学中,一个数列表示为{a₁, a₂, a₃, ...},其中a₁, a₂, a₃代表该数列中的第1、2、3个项。
而对于一个有限项的数组合来说,则可以表示为S = a₁+ a₂+ a₃+ ... + an。
2.2 常见数列求和公式对于等差数列来说,其首项为a₁,公差为d,则前n项的和可以用下面这个公式来表示:Sn = n/2 * [2a₁+ (n-1)d]。
而对于等比数列来说,其首项为a₁,公比为q,则前n项和计算公式可表示为:Sn = a₁* (1 - qⁿ)/(1 - q)。
2.3 数学归纳法在数列求和中的应用在证明关于某一种特定类型的常见公式时,经常会用到归纳法。
通过归纳法可以证明这一类或者说更广泛范围内此性质具备普遍性。
在应用到具体题目时候都是根据题目构造不断拓宽范围。
数列的通项公式与求和知识点及题型归纳总结
数列的通项公式与求和知识点及题型归纳总结知识点精讲一、基本概念(1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.(2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列的通项公式.注:①并非所有的数列都有通项公式;②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式.题型归纳及思路提示题型1 数列通项公式的求解 思路提示常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a②叠乘法:形如1()nn a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a③构造辅助数列:通过变换递推公式,将非等差(等比)数列构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法.利用n S 与n a 的关系求解 形如1(,)()n n n f S S g a -=的关系,求其通项公式,可依据1*1(1)(2,)n n n S n a S S n n N -=⎧=⎨-≥∈⎩,求出n a 观察法观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n-或者1(1)n -- 部分.②考虑各项的变化规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2n 、{}2n与(1)n-有关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式:(1)325374,,,,,,;751381911---L(2)2,22,222,L ,222L ;(3)数列{}n a 中各项为:12,1122,111222,L,{111222n n L L 123个个,L 分析:通过观察,找出所给数列的特征,求出其通项.解析:(1)①原数列中的数的符号一正一负,故摆动数列乘以(1)n-;②绝对值后分子分母无明显的规律,但通过对偶数各项分子分母同乘以2,可使分子出现规律为3,4,5,6,L ,则2(1)34nn n a n +=-+. 解法一:1212021021022(101010)1(110)22(101)1109n n n n n n n a ----=⨯+⨯++=+++-==--L L g g 解法二:原数列⇔2229,99,999999n ⨯⨯⨯L L 123个,即2=(10-1)9nn a (3)121=(10-1)10+(10-1)=(10-1)(10+2)999n n n n n n a g 变式1 将全体正整数排成一个三角形数阵,如下所示,则第n 行(3n ≥)从左到右的第3个数为__________ 12 34 5 67 8 9 10L L L L L L L L L 变式2 观察下列等式:211122ni i n n ==+∑,2321111326ni i n n n ==++∑34321111424ni i n n n ==++∑45431111152330ni i n n n n ==++-∑5654211151621212ni i n n n n ==++-∑67653111111722642ni in n n n n ==++-+∑ L L L L1111101nk k k k k k k i i a n a n a n a n a +-+-==+++++∑L ,可以推测,当*2()k k N ≥∈时,111k a k +=+,12k a =,1_____k a -=,2_____k a -=利用递推公式求通项公式叠加法 数列有形如1()n n a a f n +=+的递推公式,且(1)(2)()f f f n +++L 的和可求,则变形为1()n n a a f n +-=,利用叠加法求和例6.21 已知数列{}n a 满足132n n a a n +=++ *()n N ∈,且12a =,求数列{}n a 的通项公式.分析:式子132n n a a n +=++ *()n N ∈是形如1()n n a a f n +=+的形式,故利用叠加法求和. 解析:132n n a a n +-=+ *()n N ∈可得131n n a a n --=-,(2n ≥) 1234n n a a n ---=-,L L L215a a -=相加可得:232n n n a +=(2n ≥),且12a =也满足上式,故232n n na +=*()n N ∈ 变式1 已知数列{}n a 中,12a =,12n n na a +-=*()n N ∈,求数列{}n a 的通项公式变式2 已知数列{}n a 中,12a =,11ln(1)n n a a n+=++ *()n N ∈,则n a =____A 、2ln n +B 、2(1)ln n n +-C 、2ln n n +D 、1ln n n ++ 变式3 已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-,(2n ≥,0q ≠)(1)设1n n n b a a +=-*()n N ∈,证明:{}n b 是等比数列. (2)求数列{}n a 的通项公式 变式4 数列{}n a 中,12a =,1n n a a cn +=+(c 为常数)*()n N ∈,且123,,a a a 成公比不为1的等比数列.(1)求c 的值;(2)求数列{}n a 的通项公式2、叠乘法 数列有形如1()nn a f n a -=g 的递推公式,且(1)(2)()f f f n g g L g 的积可求,则将递推公式变形为1()nn a f n a -=,利用叠乘法求出通项公式n a 例6.22 已知数列{}n a 中,11a =,12(1)n n na n a +=+,则数列{}n a 的通项公式为( ) A 、2n n B 、12n n - C 、21n n - D 、12n n +分析:数列的递推公式是形如1()nn a f n a -=的形式,故可以利用叠乘法求解. 解析:由12(1)n n na n a +=+变形得112n n a n a n ++=,从而 12(1)n n a na n -=-,L , 2122a a =,故1132112211132()212212n n n n n n a a a a n n na a a a n n ------==--g g L g g g g g L g g (2n ≥) 即112n n a n a -=(2n ≥),所以12n n n a -=(2n ≥,*n N ∈),且11a =满足上式,故12n n na -=(*n N ∈),选B变式1 已知数列{}n a 中,11a =,12n n a n a n++=,求数列{}n a 的通项公式 3、构造辅助数列法 (1)待定系数法形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠)的递推式,可构造1()n n a p a λλ++=+,转化为等比数列求解.也可以与类比式1n n a pa q -=+作差,由11()n n n n a a p a a +--=-,构造{}1n n a a +-为等比数列,然后利用叠加法求通项.例6.23 已知数列{}n a 中,11a =,1112n n a a +=+,求{}n a 的通项公式. 分析:式子1112n n a a +=+形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠),故利用构造法转化. 解析:解法一、设1112n n a a +=+等价于11()2n n a a λλ++=+,得到11122n n a a λ+=-,对应1112n n a a +=+,得到2λ=-故原递推式等价于112(2)2n n a a +-=-,因此数列{}2n a -为首项为1-,公比为12的等比数列,所以112()2n n a --=-,故112()2n n a -=- 解法二、由1112n n a a +=+得 1112n n a a -=+(2n ≥,*n N ∈), 因此111()2n n n n a a a a +--=-(2n ≥,*n N ∈),所以数列{}1n n a a -- 是首项为2112a a -=,公比为12的等比数列.2112111()()()22n n n n a a a a ----=-=2121()2n n n a a ----=L L L L1211()2a a -= 叠加得到:211111()111122()()1()1222212n n n n a a ----=+++==--L 故112()2n n a -=- (*n N ∈)变式1 已知11a =,132n n a a -=+(2n ≥,*n N ∈),求{}n a 的通项公式.例6.24 在数列{}n a 中,12a =,1431n n a a n +=-+ (*n N ∈),求数列{}n a 的通项公式.分析:将原递推公式转化为1(1)4()n n a a n a an λλ++++=++,即1433n n a a an a λ+=++-,比较1431n n a a n +=-+,得1a =-,0λ=,所以数列{}n a n -是首项为1,公比为4的等比数列,故14n n a n --=,即14n n a n -=+ (*n N ∈)2、同除以指数形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的递推式,当p d =时,两边同除以1n d +转化为关于n n a d ⎧⎫⎨⎬⎩⎭的等差数列;当p d ≠时,两边人可以同除以1n d +得111n n n n a a p d d d d ++=+g ,转化为11n np b b d d+=+g ,同类型(1).例6.25 已知数列{}n a 中,11a =-,1132n n n a a --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式.解析:解法一、将1132n n n a a --=+两边同除以3n得11112()3333n n n nn a a ---=+⨯, 则1111121212()()()33333333n n nna a -=+⨯++⨯=-L ,则132n nn a -=- 解法二、将1132n n n a a --=+两边同除以2n得11312222n n n n a a --=+g ,令2nnna b =,得13122n n b b -=+,构造13()2n n b b λλ-+=+,得1λ=,因此数列{}1n b +为等比数列,且111331(1)()22n n n n b b --+=+=,则1312n n n b -=- (*n N ∈), 故13122n n n n a -=-,进而得到132n nn a -=- 评注:一般地,对于形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的数列求通项公式,两边同除以1n d +转化为待定系数法求解;两边同除以1n p+转化为叠加法求解.变式1 在数列{}n a 中,11a =,122nn n a a +=+(1)设12nnn a b -=,试证明:数列{}n b 是等差数列. (2)求数列{}n a 的前n 项的和n S取倒数法 对于1(0)n n n aa a ac b ca +=≠+,取倒数得111n n n n b ca b ca aa a a a++==+g .当a b =时,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;当a b ≠时,令1nnb a =,则1n n b c b b a a+=+g ,可用待定系数法求解. 例6.26 在数列{}n a 中,11a =,122nn na a a +=+,求数列{}n a 的通项公式. 分析:式中含有形如1n a +和n a 的分式形式,故考虑利用倒数变换求其通项公式. 解析:因为1121122n n n n a a a a ++==+,所以11112n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,11111(1)22n n n n a a ++=+-=,故21n a n =+(*n N ∈) 变式1 已知数列{}n a 中首项135a =,1312n n n a a a +=+(*n N ∈),求数列{}n a 的通项公式.变式2 已知数列{}n a 中首项11a =,前n 项的和为n S ,且满足1112n n n S S S --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式. 取对数法 形如1(0,0)k n n n a ca c a +=>>的递推公式,则常常两边取对数转化为等比数列求解.例6.27 已知数列{}n a 中首项13a =,且31n na a += (*n N ∈),则数列的通项n a =_______ 分析:取对数时,常用以1a 为底的对数,便于计算. 解析:因为13a =,所以对31n na a +=两边取以3为底的对数,得到313log 2log n n a a +=,故{}3log n a 是以1为首项,2为公比的等比数列,所以13log 2n n a -=,所以123n na -=(*n N ∈)变式1 已知数列{}n a 中首项110a =,且2110n na a +=g (*n N ∈),求数列的通项n a 已知通项公式n a 与前n 项的和n S 关系求通项问题对于给出关于n a 与n S 的关系式的问题,解决方法包括两个转化方向,在应用时要合理选择.一个方向是转化n S 为n a 的形式,手段是使用类比作差法,使nS 1n S --=n a (2n ≥,*n N ∈),故得到数列{}n a 的相关结论,这种方法适用于数列的前n 项的和的形式相对独立的情形;另一个方向是将n a 转化为n S 1n S --(2n ≥,*n N ∈),先考虑n S 与1n S -的关系式,继而得到数列{}n S 的相关结论,然后使用代入法或者其他方法求解{}n a 的问题,这种情形的解决方法称为转化法,适用于数列的前n 项和的形式不够独立的情况.简而言之,求解n a 与n S 的问题,方法有二,其一称为类比作差法,实质是转化n S 的形式为n a 的形式,适用于n S 的形式独立的情形,如已知142nn S a -=+(2n ≥,*n N ∈);其二称为转化法,实质是转化n a 的形式为n S 的形式,适用于n S 的形式不够独立的情形,如已知2221n n n S a S =-(2n ≥,*n N ∈);不管使用什么方法,都应该注意解题过程中对n 的范围加以跟踪和注意,一般建议在相关步骤后及时加注n 的范围.例6.28 已知正项数列{}n a 中,前n 项的和n S,且满足1n a =+,求数列{}n a 的通项公式.解析:由已知,可得24(1)n n S a =+ ①类比得到2114(1)n n S a --=+(2n ≥,*n N ∈)②式①-式②得 221114422n n n n n n S S a a a a ----=-+-即1112()()()n n n n n n a a a a a a ---+=+-所以11()(2)0n n n n a a a a --+--=,又因为10n n a a -+>,故120n n a a ---=(2n ≥,*n N ∈),因此数列{}n a 为等差数列,且首项为1,公比为2 故21na n =- (*n N ∈)评注:本题是关于n a 与n S 的关系式问题中第一个方向的典型题目,本题的闪光点是未给出n S 的直接形式,需要考生稍加变形,转化为24(1)nn S a =+后,才可使求解方向变得更为明朗.变式1 已知数列{}n a 的前n 项的和n S ,11a =,142n n S a +=+(*n N ∈)(1)设12n n n b a a +=-,求n b ;(2)设112nn nc a a +=-,求数列{}n c 的前n 项和n T ;(3)设2n nna d =,求2010d例6.29 已知数列{}n a 中,0n a >,且对于任意正整数n 有11()2n n nS a a =+,求数列{}n a 的通项公式分析:已知n a 与n S 的关系,求数列的通项公式利用n a =n S 1n S --(2n ≥,*n N ∈)求解,将试题右边的含n a 的式子换成n S 1n S --来处理.解析:当1n =时,111111()2S a a a ==+,及0n a >,解得 11a =当2n ≥时,由11()2n n n S a a =+得1111()2n n n n n S S S S S --=-+-,变形整理得2211n n S S --=,数列{}2n S 是等差数列,首项为1, 公差为1 故21(1)1nS n n =+-⨯=,所以n S =1n =适合上式,故n S =(*n N ∈)故当2n ≥时,n a =n S 1n S --= 1n =适合上式,故na =*n N ∈)变式1 已知数列{}n a 中,0n a ≠(1)n ≥,112a =,前n 项和n S 满足2221n n n S a S =-(2n ≥,*n N ∈)(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的通项公式变式2 设数列{}n a是正数组成的数列,且有*2)n a n N +=∈,求数列{}n a 的通项公式.例6.30 设数列{}n a 的前n 项的和为n S ,已知111,42n n a S a +==+. (1)设12n n n b a a +=-,证明:数列{}n b 是等比数列. (2)求数列{}n a 的通项公式.解析 (1)在142n n S a +=+中,令1n =,得2142S a =+,即12142a a a +=+,故25a =,由142n n S a +=+知2142n n S a ++=+,两式相减得2144n n n a a a ++=-,即211224n n n n a a a a +++-=-,故12n n b b +=,且121230b a a =-=≠,即{}n b 是以2为公比的等比数列.(2)由2142S a =+且11a =知26S =,故2215a S a =-=,所以212523a a -=-=,即有111232n n n b b --==g g ,所以11232n n n a a -+-=g ,于是113224n n n n a a ++-=,因此数列{}2n na 是首项为12,公差为34的等差数列.所以1331(1)22444n na n n =+-⨯=-,故2(31)2n n a n -=-g . 变式1 已知数列{}n a 的前n 项之和为n S ,且*585()n n S n a n N =--∈. (1)证明:数列{1}n a -是等比数列;(2)求数列{}n S 的通项公式,请指出n 为何值时,n S 取得最小值,并说明理由.变式2 已知数列{}n a 的前n 项和为n S ,且满足2*24()n n S a n n n N =+-∈. (1)写出数列{}n a 的前3项123,,a a a ; (2)求证:数列{21}n a n -+为等比数列; (3)求n S .变式3 设数列{}n a 的前n 项和为n S .已知2*112121,()33n n S a a n n n N n +==---∈. (1)求2a 的值;(2)求数列{}n a 的通项公式.题型2 数列的求和 思路提示求数列前n 项和的常见方法如下: (1)通项分析法.(2)公式法:对于等差、等比数列,直接利用前n 项和公式.(3)错位相减法:数列的通项公式为n n a b g 或n nab 的形式,其中{}n a 为等差数列,{}n b 为等比数列.(4)分组求和法:数列的通项公式为n n a b +的形式,其中{}n a 和{}n b 满足不同的求和公式.常见于{}n a 为等差数列,{}n b 为等比数列或者{}n a 与{}n b 分别是数列的奇数项和偶数项,并满足不同的规律. (5)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. (6)倒序相加:应用于等差数列或转化为等差数列的数列求和. 一、通项分析法例6.31 求数列2211,12,122,,1222,n -+++++++L L L 的前n 项的和. 解析 数列的通项21122221n n n a -=++++=-L ,即*21()n n a n N =-∈, 所以数列的前n 项的和为121212(12)(21)(21)(21)(222)2212n nnn n S n n n +-=-+-++-=+++-=-=---L L即1*22()n n S n n N +=--∈.评注 先分析数列通项的特点,再选择合适的方法求和是求数列的前n 项和问题应该强化的意识. 变式1 求数列9,99,999,L ,999nL 123的前n 项和. 二、公式法利用等差、等比数列的前n 项和公式求和.例6.32 已知等差数列{}n a 中,259,21,2n a n a a b ===,求数列{}n b 的前n 项和n S .分析 根据数列{}n a 为等差数列,259,21a a ==,求出数列{}n a 的通项, 从而知数列{}n b 为等比数列,利用等比数列的求和公式求n S .解析 设等差数列{}n a 的首项为1a ,公差为d ,依题意得119421a d a d +=⎧⎨+=⎩,解得154a d =⎧⎨=⎩.数列{}n a 的通项公式为41n a n =+,由2na nb =得412n n b +=,因为454141222n n n n b b +++==,所以数列{}n b 是首项为512b =,公比为42q =的等比数列.于是得数列{}n b 的前n 项和54442[1(2)]32(21)1215n n n S --==-. 评注 针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解.变式1 如图6-4所示,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在点1Q 处的切线与x 轴交于点2P .再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1122,;,;;,n n P Q P Q P Q L ,记点k P 的坐标为(,0)(1,2,,)k x k n =L .(1)试求k x 与1k x -的关系(2)k n ≤≤; (2)求1122||||||n n PQ P Q P Q +++L .三、错位相减法 求数列{n n a b g }和{nna b }的前n 项和,数列{}n a , {}n b 分别为等差与等比数列.求和时,在已知求和式的两边乘以等比数列公比q 后,与原数列的和作差,即n n S qS -,然后求n S 即可.例6.33 已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(1)求数列{}n a , {}n b 的通项公式;(2)设n n n c a b =g ,数列{}n c 的前n 项和为n T ,求n T . 解析 (1)22n n S a =-,*1122(2,)n n S a n n N --=-≥∈上两式相减得1122n n n n S S a a ---=-,得122n n n a a a -=-,故12n n a a -=, 令1*11111,22,2,2()n n n n a a a a a q n N -==-===∈.点1(,)n n P b b +在直线20x y -+=上,则120n n b b +-+=,12n n b b +=+, 则{}n b 是首项为1,公差为2的等差数列,*1(1)221()n b b n n n N =+-⨯=-∈.(2)(21)2n n n n c a b n ==-gg , 121232(21)2(1)n n T n =⨯+⨯++-⨯L 23`21232(21)2(2)n n T n +=⨯+⨯++-⨯L由(1)-(2)得112118(12)22222(21)22(21)212n nn n n T n n -++--=+⨯++⨯--⨯=+--⨯-L12(32)6n n +=--,故1(23)26n n T n +=-+.评注 由于结果的复杂性,自己可以通过代入1,2n =等验证,111222,T a b T a b ==等以确保所求结果的准确性. 变式1 已知数列{}n a 的前n 项和21(*)2n S n kn k N =-+∈,且n S 的最大值为8.(1)确定常数k ,并求n a ; (2)求数列92{}2nna -的前n 项和n T . 变式2已知{}n a 是等差数列,其前n 项和为n S ,{}nb 是等比数列,且1144442,27,10a b a b S b ==+=-=. (1)求数列{}n a 与{}n b 的通项公式;(2)记1121(*)n n n n T a b a b a b n N -=+++∈L ,证明:12210(*)n n n T a b n N +=-+∈.四、分组求和法对于既非等差又非等比数列的一类数列,若将数列的项进行适当地拆分,可分成等差、等比或常数列,然后求和.例6.34 在数列{}n a 中11111,(1)2n n n n a a a n ++==++.(1)设nn a b n=,证明1{}n n b b +-为等比数列; (2)求数列{}n a 的前n 项和n S . 解析 (1)由已知得1111(1)12112n nn n n n n a a a n b n n n +++++===+++,即112n n nb b +=+, 故112n n nb b +-=,且111(2,*)2n n n n b b n n N b b +--=≥∈-,因此1{}n n b b +-是公比为12的等比数列. (2)由(1)知当2n ≥时,1121111,,22n n n b b b b ---=-=L ,叠加得 11122111122n n n n n b b b b b b -----+-++-=++L L , 所以111112211212n n n b b ---==--,得11112n n b b -=+-,1n =时也成立,又111b a ==,所以112(*)2n n b n N -=-∈,得12(*)2n nn na nb n n N -==-∈. 12123(21)(4)(6)(2)24223(2462)(1)222n n n nS n nn --=-+-+-++-=++++-++++L L L令21231222n n nT -=++++L , 23111231222222n n n n nT --=+++++L , 故2111(1)11112212(1)2122222222212n n n n n n n nT nn n n --+=++++-=-=--=--g L ,故1242n n nT -+=-,又2462(1)n n n ++++=+L , 所以12(1)42n n nS n n -+=++-. 变式 1 已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k k x k x k -++=g 的两个根,且212(1,2,3,)k k a a k -≤=L .(1)求1357,,,a a a a ;(2)求数列{}n a 的前2n 项和2n S .变式2 等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表6-1的同一列.表6-1第1列 第2列 第3列 第1行 3 2 10 第2行 6 4 14 第3行 9 8 18(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .五、裂项相消法将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. 常用的裂项相消变换有: 1.分式裂项1111()()n n p p n n p=-++;1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.2.根式裂项1p=.3.对数式裂项lg lg()lgn pn p nn+=+-.4.指数式裂项1()(1)1n n naaq q q qq+=-≠-;11111()(1)(1)(1)111nn n n nqqq q q q q++=-≠-----.使用裂项法,要注意正负项相消时消去了哪些项,保留了哪些项;应注意到,由于数列{}na中每一项na均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样的多,切不可漏写未被消去的项.未被消去的项有前后对称的特点,即经过裂项后有“对称剩项”的特征.另外从实质上看,正负项相消是裂项法的根源和目的.例6.35 求数列1111,,,,,132435(2)n n⨯⨯⨯+L L的前n项和nS.解析先分析通项公式1111()(2)22nan n n n==-++,所以1111111111311[(1)()()](1)(*)23242221242224 nS n Nn n n n n n=-+-++-=+--=--∈+++++L评注如果数列的通项公式可以写成()()f n p f n+-的形式,常采用裂项求和的方法.特别地,当数列形如11{}n na a+,其中{}na是等差数列时,可尝试使用此法.变式1 已知数列1111,,,,,12123123n+++++++L LL,求它的前n项和nS.例6.36已知等差数列{}na满足3577,26a a a=+=,{}na的前n项和nS.(1)求na及nS;(2)令21(*)1nnb n Na=∈-,求数列{}nb的前n项和nT.解析(1)设{}na的首项为1a,公差为d,由已知可得111273210262a d aa d d+==⎧⎧⇒⎨⎨+==⎩⎩.所以1(1)21(*)na a n d n n N=+-=+∈,1()(2)(*)2nna a nS n n n N+==+∈.(2)因为21na n=+,所以214(1)na n n-=+,因此1111()4(1)41nbn n n n==-++,故1211111111(1)(1)(*)42231414(1)n n nT b b b n N n n n n =+++=-+-++-=-=∈+++L L .故数列{}n b 的前n 项和4(1)n nT n =+.评注 采用裂项相消法求解数列的前n 项和,消项时要注意相消的规律,可将前几项和表示出来,归纳规律.一般来说,先注意项数,如果是每两项作为一组相消,则最终剩余项数为偶数项;再看大小,若前面保留的是分母最小的若干项,则最后必会保留分母最大的若干项. 变式1 设正项数列{}n a 前n 项和n S 满足21(1)4n n S a =+.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=g ,求数列{}n b 的前n 项和n T .变式2 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =≥. (1)求数列{}n a 的通项公式;(2)设1tan tan n n n b a a +=g 求数列{}n b 的前n 项和n S .六、倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法).例6.37设()f x (7)(6)(5)(0)(8)f f f f f -+-+-++++L L 的值.解析因为1()(1)22x xf x f x +-==+=+x =+==所以(7)(6)(5)(0)(8)8f f f f f -+-+-++++==L L . 变式1 函数121()(0),,4xf x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1)求m 的值;(2)已知数列{}n a 满足121(0)()()()(1)n n a f f f f f n n n-=+++++L ,求n a ;(3)若12n n S a a a =+++L ,求n S .变式2 已知函数()f x 对任意x R ∈都有1()(1)2f x f x +-=.(1)求1()2f 的值;(2)若数列{}n a 满足121(0)()()()()(*)n n na f f f f f n N n n n n-=+++++∈L ,数列{}n a 是等差数列吗?试证明之;(3)设4(*)41n n b n N a =∈-,1n n n c b b +=,求数列{}n c 的前n 项和n T .变式3 已知数列{}n a 是首项为1,公差为2的等差数列,求0121231n n nn n n n S C a C a C a C a +=++++L .最有效训练题1.L ,则 )A .第18项B .第19项C .第17项D .第20项2.已知各项均不为零的数列{}n a ,定义向量1(,),(,1),*n n n n c a a b n n n N +==+∈u u r u u r,则下列命题为真命题的是( )A .若对任意的*n N ∈,总有//n n c b u u r u u r 成立,则数列{}n a 是等差数列B .若对任意的*n N ∈,总有//n n c b u u r u u r成立,则数列{}n a 是等比数列 C .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等差数列 D .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等比数列3.设{}n a 是单调递减的等差数列,前3项的和是15,前3项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .74.已知数列{}n a 满足111n n a a +=-,若112a =,则2011a =( )A .12B .2C .-1D .1 5.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S ,若对*n N ∀∈,有23n n S S <,则q 的取值范围是( )A .(0,1]B .(0,2)C .[1,2)D .(0)6.对于数列{}n a ,如果*k N ∃∈及12,,,k R λλλ∈L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L 成立,其中*n N ∈,则称{}n a 为k 阶递推数列,给出下列三个结论: ①若{}n a 为等比数列,则是1阶递推数列; ②若{}n a 为等差数列,则是2阶递推数列;③若数列{}n a 的通项公式为2n a n =,则是3阶递推数列. 其中正确结论的个数是( )A .0B .1C .2D .37.根据数列的前几项,写出数列的一个通项公式: (1)-1,7,-13,19,L ,n a =_____________; (2)0.8,0.88,0.888,L ,n a =_____________; (3)115132961,,,,,,248163264--L ,n a =_____________;(4)0,1,0,1,L ,n a =_____________. 8.若数列{}n a 满足111n n d a a +-=(*n N ∈,d 为常数),则称{}n a 为调和数列.已知数列1{}nx 为调和数列,且1220200x x x +++=L ,则56x x +=__________.9.在数列{}n a 中,121,2a a ==,且21(1)(*)n n n a a n N +-=+-∈,则100S =__________. 10.根据下列条件,确定数列{}n a 的通项公式. (1)已知数列{}n a 的前n 项和2231n S n n =-+; (2)已知数列{}n a 的满足132n n n a a +=++,且12a =; (3)1111,(2,*)n n n a a a n n N n--==≥∈; (4)在数列{}n a 中,111,2(*)n n n a a a n N +==+∈; (5)在数列{}n a 中,113,21(*)n n a a a n N +==+∈;(6)在数列{}n a 中,2111,2(*)n nn a a a a n N +==+∈. 11.设数列{}n a 的前n 项和为n S ,点(,)(*)nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n mT <对所有*n N ∈都成立的最小正整数m .12. 已知数列{}n a 的首项1122,(*)31n n n a a a n N a +==∈+(1)证明:数列1{1}na -是等比数列; (2)求数列{}nna 的前n 项和n S .。
数列复习知识点总结
数列复习知识点总结数列是数学中的一个重要概念,是指按照一定规律顺序排列的一组数的集合。
数列的研究对于深入理解数学和应用数学至关重要,在中学阶段更是数学学习的重要内容之一、数列的研究主要涉及到数列的定义、性质、求和以及数列应用等方面。
下面将介绍数列的相关知识点并进行总结。
一、数列的定义:数列由一系列按照一定规律排列的数构成,可以视为数之间的有序集合。
数列可以用以下三种形式进行表示:1.显式表达式:通过给出每一项的计算公式来表示数列。
例如,a_n=2n+1就是一个显式表达式。
2.递推公式:通过给出项与前一项或前几项的关系式来表示数列。
例如,a_n=a_(n-1)+2,就是一个递推公式。
3.方程表示:通过给出满足特定条件的数列的性质来表示数列。
例如,满足a_n+2=a_n+1+a_n的数列可以表示为a_(n+2)=a_(n+1)+a_n。
二、数列的分类:数列按照数之间的关系可以分为等差数列、等比数列和其他特殊数列。
1.等差数列:数列中每一项与前一项之差都相等。
等差数列的递推公式为a_n=a_1+(n-1)d,其中a_n表示第n项,a_1表示第一项,d表示公差。
2.等比数列:数列中每一项与前一项之比都相等。
等比数列的递推公式为a_n=a_1*r^(n-1),其中a_n表示第n项,a_1表示第一项,r表示公比。
3.其他特殊数列:如斐波那契数列、调和数列等。
三、数列的性质:数列的性质包括有界性、单调性以及周期性等。
1.有界性:数列如果存在上界或下界,则称为有界数列;如果既不上界也不下界,则称为无界数列。
2.单调性:数列如果单调递增,则称为递增数列;如果单调递减,则称为递减数列;如果既递增又递减,则称为摆动数列。
3.周期性:数列如果存在周期,则称为周期数列。
四、数列的求和:数列的求和是数列研究中的重要内容,常用的求和方法包括部分和、前n项和以及无穷和。
1.部分和:数列的部分和是指数列中从第一项开始到第n项的和。
初中数列求和知识点归纳总结
初中数列求和知识点归纳总结数列与求和是初中数学中重要的知识点之一,它们在数学运算、代数方程和数学模型等方面都具有广泛的应用。
本文将对初中数列求和的相关知识点进行归纳总结,帮助大家对数列求和有更深入的理解。
1. 数列的定义与分类数列由一系列有序的数字组成,根据规律不同可以分为等差数列和等比数列两种。
- 等差数列:等差数列指的是数列中的每个数与它前面的数之差都相等,这个差值称为公差,用d表示。
等差数列的通项公式为an = a1 + (n-1)d,其中a1为首项,n为项数。
- 等比数列:等比数列指的是数列中的每个数与它前面的数之比都相等,这个比值称为公比,用q表示。
等比数列的通项公式为an = a1 * q^(n-1),其中a1为首项,n为项数。
2. 数列求和的方法与公式数列求和是指将数列中的所有数相加的操作,求和的结果称为数列的和。
常见的数列求和方法有以下几种。
- 等差数列的求和:对于等差数列,可以利用求和公式S = n * (a1 + an) / 2来计算数列的和,其中n为项数,a1为首项,an为末项。
- 等比数列的求和:对于等比数列,可以利用求和公式S = a1 * (q^n - 1) / (q - 1)来计算数列的和,其中a1为首项,q为公比,n为项数。
3. 求解实际问题中的数列求和数列求和在实际问题中有广泛的应用,通过将问题转化为数列的求和可以简化计算。
以下是一些常见的实际问题求解示例。
- 等差数列求和:小明从家到学校,每天都按照相同的速度骑自行车,第一天骑行10分钟,之后每天骑行时间比前一天增加5分钟。
问小明连续骑行30天后的总共骑行时间是多少分钟?解答:首先确定此问题可以通过等差数列求和来解决,其中首项a1为10,公差d为5,项数n为30,代入求和公式S = n * (a1 + an) / 2,可以得出小明连续骑行30天后的总共骑行时间。
- 等比数列求和:小明投资了一笔基金,每年的回报率为5%,该基金的投资期限为5年,问小明最终能够获得多少钱?解答:首先确定此问题可以通过等比数列求和来解决,其中首项a1为投资金额,公比q为1 + 5% = 1.05,项数n为5,代入求和公式S = a1 * (q^n - 1) / (q - 1),可以得出小明最终能够获得的金额。
42总复习:数列求和及其综合应用(提高)知识梳理
数列前n项和
分组求和 错位相减
倒序相加
裂项相消
综合应用
与函数、方程、不等式等 与几何、实际问题等
【考点梳理】 纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、
复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用, 如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外, 还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.
数列求和与综合应用
【考纲要求】 1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项 an 与前 n 项和 Sn 之间的关系式 3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟
练掌握求数列的前 n 项和的几种常用方法;
4.能解决简单的实际问题. 【知识网络】
数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】
类型一:数列与函数的综合应用
例 1.对于数列{an} ,规定数列{an} 为数列{an} 的一阶差分数列,其中 an an1 an (n N *) ;
一般地,规定{k an} 为{an} 的 k 阶差分数列,其中 k an k 1an1 k 1an 且 k∈N*,k≥2。
1
(1)已知数列{an} 的通项公式
an
5 2
n2
13 n 2
(n
N *)
。试证明{an} 是等差数列;
(2)若数列{an} 的首项
a1=―13,且满足 2an
an1
an
新高考数学总复习专题七数列求和、数列的综合课件
考法一 错位相减法求和 1.当{an}是等差数列,{bn}是等比数列时,求数列{an·bn}的前n项和常采用错 位相减法. 2.用错位相减法求和时,应注意: 1)要善于辨认题目类型,特别是等比数列的公比为负数的情形. 2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”, 以便于下一步准确地写出“Sn-qSn”的表达式. 3)应用等比数列求和公式必须注意公比q是否等于1,如果q=1,那么应用公 式Sn=na1.
3
9
9
考法二 裂项相消法求和 1.对于裂项后明显有能够相消的项的一类数列,在求和时常用“裂项 法”,分式型数列的求和多用此法. 2.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后 一项,也有可能前面剩两项,后面也剩两项.将通项裂项后,有时需要调整 前面的系数,使裂开的两项之差和系数之积与原通项相等.
例2 (202X届校际联考,18)已知数列{an}满足an+2=2an(n∈N*),a1=1,a2=2. (1)求数列{an}的前30项和S30;
(2)设bn=
log4a2n
1 log4a2n2
(n∈N*),求数列{bn}的前n项和Tn.
解析 (1)由已知a1=1,a2=2,得a3=2,a4=4,a5=4,a6=8,……,
2.数列与不等式的综合问题 1)判断数列问题中的不等关系时,可以利用数列的单调性,或者借助数列 对应函数的单调性、作差或作商比较大小; 2)以数列为载体,考查不等式的恒成立问题时,可转化为数列的最值问题, 可利用数列单调性或数列对应函数的单调性; 3)解决与数列有关的不等式的证明问题时,可构造函数证明,或利用放缩 法证明.
是等比模型,这个固定的数就是公比.其一般情势是 an1 =q(q为常数,且q≠0).
(新人教A版)2020版高考数学大一轮复习第五章数列第4节数列求和及数列的综合应用讲义理
考试要求 1.熟练掌握等差、等比数列的前n 项和公式;2.掌握非等差数列、非等比数列求和的几种常见方法;3.了解数列是一种特殊的函数;4.能在具体问题情境中,发现等差、等比关系,并解决相应的问题.知 识 梳 理1.特殊数列的求和公式 (1)等差数列的前n 项和公式: S n =n (a 1+a n )2=na 1+n (n -1)2d .(2)等比数列的前n 项和公式: S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q =a 1(1-q n )1-q ,q ≠1.2.数列求和的几种常用方法 (1)分组转化法把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法求解. (4)倒序相加法如果一个数列{a n }的前n 项中与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解. 3.数列应用题常见模型(1)等差模型:如果后一个量比前一个量增加(或减少)的是同一个固定值,该模型是等差模型,增加(或减少)的量就是公差.(2)等比模型:如果后一个量与前一个量的比是同一个固定的非零常数,该模型是等比模型,这个固定的数就是公比.(3)递推数列模型:如果题目中给出的前后两项之间的关系不固定,随项的变化而变化,应考虑a n 与a n +1(或者相邻三项等)之间的递推关系,或者S n 与S n +1(或者相邻三项等)之间的递推关系. [微点提醒]1.1+2+3+4+…+n =n (n +1)2.2.12+22+…+n 2=n (n +1)(2n +1)6.3.裂项求和常用的三种变形 (1)1n (n +1)=1n -1n +1. (2)1(2n -1)(2n +1)=12⎝⎛⎭⎫12n -1-12n +1.(3)1n +n +1=n +1-n .基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)若数列{a n }为等比数列,且公比不等于1,则其前n 项和S n =a 1-a n +11-q .( )(2)当n ≥2时,1n 2-1=12(1n -1-1n +1).( )(3)求S n =a +2a 2+3a 3+…+na n 时只要把上式等号两边同时乘以a 即可根据错位相减法求得.( ) (4)若数列a 1,a 2-a 1,…,a n -a n -1是首项为1,公比为3的等比数列,则数列{a n }的通项公式是a n =3n -12.( ) 解析 (3)要分a =0或a =1或a ≠0且a ≠1讨论求解. 答案 (1)√ (2)√ (3)× (4)√2.(必修5P47B4改编)数列{a n }中,a n =1n (n +1),若{a n }的前n 项和为2 0192 020,则项数n 为( )A.2 018B.2 019C.2 020D.2 021解析 a n =1n (n +1)=1n -1n +1,S n =1-12+12-13+…+1n -1n +1=1-1n +1=n n +1=2 0192 020,所以n =2019.答案 B3.(必修5P56例1改编)等比数列{a n }中,若a 1=27,a 9=1243,q >0,S n 是其前n 项和,则S 6=________. 解析 由a 1=27,a 9=1243知,1243=27·q 8,又由q >0,解得q =13,所以S 6=27⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫1361-13=3649.答案36494.(2018·东北三省四校二模)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( ) A.9B.15C.18D.30解析 由题意知{a n }是以2为公差的等差数列,又a 1=-5,所以|a 1|+|a 2|+…+|a 6|=|-5|+|-3|+|-1|+1+3+5=5+3+1+1+3+5=18. 答案 C5.(2019·北京朝阳区质检)已知数列{a n },{b n }的前n 项和分别为S n ,T n ,b n -a n =2n +1,且S n +T n =2n +1+n 2-2,则2T n =________________.解析 由题意知T n -S n =b 1-a 1+b 2-a 2+…+b n -a n =n +2n +1-2,又S n +T n =2n +1+n 2-2,所以2T n =T n -S n +S n +T n =2n +2+n (n +1)-4.答案 2n +2+n (n +1)-46.(2019·河北“五个一”名校质检)若f (x )+f (1-x )=4,a n =f (0)+f ⎝⎛⎭⎫1n +…+f ⎝⎛⎭⎫n -1n +f (1)(n ∈N *),则数列{a n }的通项公式为________.解析 由f (x )+f (1-x )=4,可得f (0)+f (1)=4,…,f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n =4,所以2a n=[f (0)+f (1)]+⎣⎡⎦⎤f ⎝⎛⎭⎫1n +f ⎝⎛⎭⎫n -1n +…+[f (1)+f (0)]=4(n +1),即a n =2(n +1). 答案 a n =2(n +1)考点一 分组转化法求和【例1】 (2019·济南质检)已知在等比数列{a n }中,a 1=1,且a 1,a 2,a 3-1成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =2n -1+a n (n ∈N *),数列{b n }的前n 项和为S n ,试比较S n 与n 2+2n 的大小. 解 (1)设等比数列{a n }的公比为q , ∵a 1,a 2,a 3-1成等差数列, ∴2a 2=a 1+(a 3-1)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n -1(n ∈N *).(2)由(1)知b n =2n -1+a n =2n -1+2n -1,∴S n =(1+1)+(3+2)+(5+22)+…+(2n -1+2n -1)=[1+3+5+…+(2n -1)]+(1+2+22+…+2n -1)=1+(2n -1)2·n +1-2n 1-2=n 2+2n -1.∵S n -(n 2+2n )=-1<0,∴S n <n 2+2n .规律方法 1.若数列{c n }的通项公式为c n =a n ±b n ,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列{c n }的通项公式为c n =⎩⎪⎨⎪⎧a n ,n 为奇数,b n,n 为偶数,其中数列{a n },{b n }是等比数列或等差数列,可采用分组求和法求{a n }的前n 项和.【训练1】 已知等差数列{a n }的前n 项和为S n ,且a 1=1,S 3+S 4=S 5. (1)求数列{a n }的通项公式;(2)令b n =(-1)n -1a n ,求数列{b n }的前2n 项和T 2n .解 (1)设等差数列{a n }的公差为d ,由S 3+S 4=S 5可得a 1+a 2+a 3=a 5,即3a 2=a 5, ∴3(1+d )=1+4d ,解得d =2. ∴a n =1+(n -1)×2=2n -1. (2)由(1)可得b n =(-1)n -1·(2n -1).∴T 2n =1-3+5-7+…+(2n -3)-(2n -1)=(-2)×n =-2n . 考点二 裂项相消法求和【例2】 (2019·郑州模拟)已知数列{a n }的前n 项和为S n ,且a 2=8,S n =a n +12-n -1.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和T n . 解 (1)∵a 2=8,S n =a n +12-n -1,∴a 1=S 1=a 22-2=2,当n ≥2时,a n =S n -S n -1=a n +12-n -1-⎝⎛⎭⎫a n 2-n , 即a n +1=3a n +2,又a 2=8=3a 1+2, ∴a n +1=3a n +2,n ∈N *,∴a n +1+1=3(a n +1),∴数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3, ∴a n +1=3×3n -1=3n ,∴a n =3n -1.(2)∵2×3n a n a n +1=2×3n (3n -1)(3n +1-1)=13n -1-13n +1-1. ∴数列⎩⎨⎧⎭⎬⎫2×3n a n a n +1的前n 项和 T n =⎝⎛⎭⎫13-1-132-1+⎝⎛⎭⎫132-1-133-1+…+⎝⎛⎭⎫13n -1-13n +1-1=12-13n +1-1. 规律方法 1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.2.将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项公式相等. 【训练2】 设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,求数列{b n }的前n 项和T n .解 (1)设数列{a n }的公差为d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,(a 1+7d )-2(a 1+2d )=3,解得a 1=3,d =2, ∴a n =a 1+(n -1)d =2n +1.(2)由(1)得S n =na 1+n (n -1)2d =n (n +2),∴b n =1n (n +2)=12⎝⎛⎭⎫1n -1n +2.∴T n =b 1+b 2+…+b n -1+b n=12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2 =34-12⎝⎛⎭⎫1n +1+1n +2.考点三 错位相减法求和【例3】 已知{a n }是各项均为正数的等比数列,且a 1+a 2=6,a 1a 2=a 3. (1)求数列{a n }的通项公式;(2){b n }为各项非零的等差数列,其前n 项和为S n ,已知S 2n +1=b n b n +1,求数列⎩⎨⎧⎭⎬⎫b n a n 的前n 项和T n .解 (1)设{a n }的公比为q ,由题意知⎩⎪⎨⎪⎧a 1(1+q )=6,a 21q =a 1q 2, 又a n >0,解得⎩⎪⎨⎪⎧a 1=2,q =2,所以a n =2n .(2)由题意知:S 2n +1=(2n +1)(b 1+b 2n +1)2=(2n +1)b n +1,又S 2n +1=b n b n +1,b n +1≠0, 所以b n =2n +1.令c n =b na n ,则c n =2n +12n ,因此T n =c 1+c 2+…+c n=32+522+723+…+2n -12n -1+2n +12n , 又12T n =322+523+724+…+2n -12n +2n +12n +1, 两式相减得12T n =32+⎝⎛⎭⎫12+122+…+12n -1-2n +12n +1,所以T n =5-2n +52n .规律方法 1.一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法.2.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n -qS n ”的表达式.【训练3】 已知等差数列{a n }满足:a n +1>a n (n ∈N *),a 1=1,该数列的前三项分别加上1,1,3后成等比数列,a n +2log 2b n =-1.(1)分别求数列{a n },{b n }的通项公式; (2)求数列{a n ·b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,则d >0,由a 1=1,a 2=1+d ,a 3=1+2d 分别加上1,1,3后成等比数列,得(2+d )2=2(4+2d ),解得d =2(舍负),所以a n =1+(n -1)×2=2n -1. 又因为a n +2log 2b n =-1,所以log 2b n =-n ,则b n =12n .(2)由(1)知a n ·b n =(2n -1)·12n ,则T n =121+322+523+…+2n -12n ,①12T n =122+323+524+…+2n -12n +1,② 由①-②,得12T n =12+2×⎝⎛⎭⎫122+123+124+…+12n -2n -12n +1. ∴12T n =12+2×14⎝⎛⎭⎫1-12n -11-12-2n -12n +1, ∴T n =1+2-22n -1-2n -12n =3-4+2n -12n=3-3+2n 2n . 考点四 数列的综合应用【例4】 某同学利用暑假时间到一家商场勤工俭学.该商场向他提供了三种付酬方案:第一种,每天支付38元;第二种,第一天付4元,第二天付8元,第三天付12元,依此类推;第三种,第一天付0.4元,以后每天比前一天翻一番(即增加1倍).他应该选择哪种方式领取报酬呢?解 设该学生工作n 天,每天领工资a n 元,共领工资S n 元,则第一种方案a n (1)=38,S n (1)=38n ; 第二种方案a n (2)=4n ,S n (2)=4(1+2+3+…+n )=2n 2+2n ; 第三种方案a n (3)=0.4×2n -1,S n (3)=0.4(1-2n )1-2=0.4(2n -1).令S n (1)≥S n (2),即38n ≥2n 2+2n ,解得n ≤18,即小于或等于18天时,第一种方案比第二种方案报酬高(18天时一样高).令S n (1)≥S n (3),即38n ≥0.4×(2n -1),利用计算器计算得小于或等于9天时,第一种方案报酬高, 所以少于10天时,选择第一种方案.比较第二、第三种方案,S 10(2)=220,S 10(3)=409.2,S 10(3)>S 10(2),…,S n (3)>S n (2). 所以等于或多于10天时,选择第三种方案. 规律方法 数列的综合应用常考查以下几个方面: (1)数列在实际问题中的应用; (2)数列与不等式的综合应用; (3)数列与函数的综合应用.解答数列综合题和应用题既要有坚实的基础知识,又要有良好的逻辑思维能力和分析、解决问题的能力.解答应用性问题,应充分运用观察、归纳、猜想的手段建立出有关等差(比)数列、递推数列模型,再结合其他相关知识来解决问题.【训练4】 已知二次函数y =f (x )的图象经过坐标原点,其导函数为f ′(x )=6x -2,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上. (1)求数列{a n }的通项公式;(2)设b n =3a n a n +1,试求数列{b n }的前n 项和T n .解 (1)设二次函数f (x )=ax 2+bx (a ≠0), 则f ′(x )=2ax +b .由于f ′(x )=6x -2,得a =3,b =-2, 所以f (x )=3x 2-2x .又因为点(n ,S n )(n ∈N *)均在函数y =f (x )的图象上, 所以S n =3n 2-2n .当n ≥2时,a n =S n -S n -1=3n 2-2n -[3(n -1)2-2(n -1)]=6n -5; 当n =1时,a 1=S 1=3×12-2×1=6×1-5,也适合上式, 所以a n =6n -5(n ∈N *).(2)由(1)得b n =3a n a n +1=3(6n -5)[6(n +1)-5]=12·⎝⎛⎭⎫16n -5-16n +1,故T n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫1-17+⎝⎛⎭⎫17-113+…+⎝⎛⎭⎫16n -5-16n +1=12⎝⎛⎭⎫1-16n +1=3n 6n +1.[思维升华]1.非等差、等比数列的一般数列求和,主要有两种思想(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成;(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和. 2.解答数列应用题的步骤(1)审题——仔细阅读材料,认真理解题意.(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求的是什么.(3)求解——求出该问题的数学解.(4)还原——将所求结果还原到实际问题中. [易错防范]1.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,要注意观察未合并项的正负号.3.解等差数列、等比数列应用题时,审题至关重要,深刻理解问题的实际背景,理清蕴含在语言中的数学关系,把应用问题抽象为数学中的等差数列、等比数列问题,使关系明朗化、标准化,然后用等差数列、等比数列知识求解.基础巩固题组 (建议用时:40分钟)一、选择题1.(2017·全国Ⅲ卷)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( ) A.-24B.-3C.3D.8解析 设{a n }的公差为d ,根据题意得a 23=a 2·a 6, 即(a 1+2d )2=(a 1+d )(a 1+5d ),解得d =-2,所以数列{a n }的前6项和为S 6=6a 1+6×52d =1×6+6×52×(-2)=-24.答案 A2.数列{a n }的通项公式为a n =(-1)n -1·(4n -3),则它的前100项之和S 100等于( )A.200B.-200C.400D.-400解析 S 100=(4×1-3)-(4×2-3)+(4×3-3)-…-(4×100-3)=4×[(1-2)+(3-4)+…+(99-100)]=4×(-50)=-200. 答案 B3.数列{a n }的通项公式是a n =1n +n +1,前n 项和为9,则n 等于( )A.9B.99C.10D.100解析 因为a n =1n +n +1=n +1-n ,所以S n =a 1+a 2+…+a n =(n +1-n )+(n -n -1)+…+(3-2)+(2-1)=n +1-1, 令n +1-1=9,得n =99. 答案 B4.(2019·德州调研)已知T n 为数列⎩⎨⎧⎭⎬⎫2n+12n 的前n 项和,若m >T 10+1 013恒成立,则整数m 的最小值为( )A.1 026B.1 025C.1 024D.1 023解析 ∵2n+12n =1+⎝⎛⎭⎫12n,∴T n=n +1-12n , ∴T 10+1 013=11-1210+1 013=1 024-1210,又m >T 10+1 013恒成立, ∴整数m 的最小值为1 024. 答案 C5.(2019·厦门质检)已知数列{a n }满足a n +1+(-1)n +1a n =2,则其前100项和为( )A.250B.200C.150D.100解析 当n =2k (k ∈N *)时,a 2k +1-a 2k =2,当n =2k -1(k ∈N *)时,a 2k +a 2k -1=2,当n =2k +1(k ∈N *)时,a 2k +2+a 2k +1=2,∴a 2k +1+a 2k -1=4,a 2k +2+a 2k =0,∴{a n }的前100项和=(a 1+a 3)+…+(a 97+a 99)+(a 2+a 4)+…+(a 98+a 100)=25×4+25×0=100. 答案 D 二、填空题6.已知正项数列{a n }满足a 2n +1-6a 2n =a n +1a n .若a 1=2,则数列{a n }的前n 项和S n =________. 解析 由a 2n +1-6a 2n =a n +1a n ,得(a n +1-3a n )(a n +1+2a n )=0, 又a n >0,所以a n +1=3a n ,又a 1=2,所以{a n }是首项为2,公比为3的等比数列, 故S n =2(1-3n )1-3=3n -1.答案 3n -17.(2019·武汉质检)设数列{(n 2+n )a n }是等比数列,且a 1=16,a 2=154,则数列{3n a n }的前15项和为________.解析 等比数列{(n 2+n )a n }的首项为2a 1=13,第二项为6a 2=19,故公比为13,所以(n 2+n )a n =13·⎝⎛⎭⎫13n -1=13n,所以a n =13n (n 2+n ),则3n a n =1n 2+n =1n -1n +1,其前n 项和为1-1n +1,n =15时,为1-116=1516.答案15168.某棵果树前n 年的总产量S n 与n 之间的关系如图所示,从目前记录的结果看,前m 年的年平均产量最高,m 的值为________.解析 由于平均产量类似于图形过P 1(1,S 1),P n (n ,S n )两点直线的斜率,斜率大平均产量就高,由图可知n =9时割线P 1P 9斜率最大,则m 的值为9.答案 9三、解答题9.求和S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2(x ≠0). 解 当x ≠±1时,S n =⎝⎛⎭⎫x +1x 2+⎝⎛⎭⎫x 2+1x 22+…+⎝⎛⎭⎫x n +1x n 2=⎝⎛⎭⎫x 2+2+1x 2+⎝⎛⎭⎫x 4+2+1x 4+…+⎝⎛⎭⎫x 2n +2+1x 2n =(x 2+x 4+…+x 2n )+2n +⎝⎛⎭⎫1x 2+1x 4+…+1x 2n =x 2(x 2n -1)x 2-1+x -2(1-x -2n )1-x -2+2n =(x 2n -1)(x 2n +2+1)x 2n (x 2-1)+2n . 当x =±1时,S n =4n .10.设数列{a n }的前n 项和为S n ,a 1=2,a n +1=2+S n (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1+log 2(a n )2,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n <16. (1)解 因为a n +1=2+S n (n ∈N *),所以a n =2+S n -1(n ≥2),所以a n +1-a n =S n -S n -1=a n ,所以a n +1=2a n (n ≥2).又因为a 2=2+a 1=4,a 1=2,所以a 2=2a 1,所以数列{a n }是以2为首项,2为公比的等比数列,则a n =2·2n -1=2n (n ∈N *). (2)证明 因b n =1+log 2(a n )2,则b n =2n +1.则1b n b n +1=12⎝⎛⎭⎫12n +1-12n +3,所以T n =12⎝⎛⎭⎫13-15+15-17+…+12n +1-12n +3 =12⎝⎛⎭⎫13-12n +3=16-12(2n +3)<16. 能力提升题组(建议用时:20分钟)11.(2019·广州模拟)已知数列{a n }满足a 1=1,a n +1-a n ≥2(n ∈N *),且S n 为{a n }的前n 项和,则( )A.a n ≥2n +1B.S n ≥n 2C.a n ≥2n -1D.S n ≥2n -1 解析 由题意得a 2-a 1≥2,a 3-a 2≥2,a 4-a 3≥2,…,a n -a n -1≥2,∴a 2-a 1+a 3-a 2+a 4-a 3+…+a n -a n -1≥2(n -1),∴a n -a 1≥2(n -1),∴a n ≥2n -1,∴a 1≥1,a 2≥3,a 3≥5,…,a n ≥2n -1,∴a 1+a 2+a 3+…+a n ≥1+3+5+…+2n -1,∴S n ≥n (1+2n -1)2=n 2. 答案 B12.某厂2019年投资和利润逐月增加,投入资金逐月增长的百分率相同,利润逐月增加值相同.已知1月份的投资额与利润值相等,12月份投资额与利润值相等,则全年的总利润ω与总投资N 的大小关系是( )A.ω>NB.ω<NC.ω=ND.不确定解析 投入资金逐月值构成等比数列{b n },利润逐月值构成等差数列{a n },等比数列{b n }可以看成关于n 的指数式函数,它是凹函数,等差数列{a n }可以看成关于n 的一次式函数.由于a 1=b 1,a 12=b 12,相当于图象有两个交点,且两交点间指数式函数图象在一次函数图象下方,所以全年的总利润ω=a 1+a 2+…+a 12比总投资N =b 1+b 2+…+b 12大,故选A.答案 A13.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析 由已知得b 1=a 2=-3,q =-4,∴b n =(-3)×(-4)n -1,∴|b n |=3×4n -1, 即{|b n |}是以3为首项,4为公比的等比数列,∴|b 1|+|b 2|+…+|b n |=3(1-4n )1-4=4n -1.答案 4n -114.(2019·潍坊调研)已知数列{a n }的前n 项和为S n ,a 1=5,nS n +1-(n +1)S n =n 2+n .(1)求证:数列⎩⎨⎧⎭⎬⎫S n n 为等差数列; (2)令b n =2n a n ,求数列{b n }的前n 项和T n .(1)证明 由nS n +1-(n +1)S n =n 2+n 得S n +1n +1-S n n=1, 又S 11=5,所以数列⎩⎨⎧⎭⎬⎫S n n 是首项为5,公差为1的等差数列. (2)解 由(1)可知S n n=5+(n -1)=n +4, 所以S n =n 2+4n .当n ≥2时,a n =S n -S n -1=n 2+4n -(n -1)2-4(n -1)=2n +3.又a 1=5也符合上式,所以a n =2n +3(n ∈N *),所以b n =(2n +3)2n ,所以T n =5×2+7×22+9×23+…+(2n +3)2n ,①2T n =5×22+7×23+9×24+…+(2n +1)2n +(2n +3)2n +1,② 所以②-①得T n =(2n +3)2n +1-10-(23+24+…+2n +1) =(2n +3)2n +1-10-23(1-2n -1)1-2 =(2n +3)2n +1-10-(2n +2-8) =(2n +1)2n +1-2.新高考创新预测15.(多填题)已知公差不为零的等差数列{a n }中,a 1=1,且a 2,a 5,a 14成等比数列,{a n }的前n 项和为S n ,b n =(-1)n S n ,则a n =________,数列{b n }的前n 项和T n =________.解析 设等差数列{a n }的公差为d (d ≠0),则由a 2,a 5,a 14成等比数列得a 25=a 2·a 14,即(1+4d )2=(1+d )(1+13d ),解得d =2,则a n =a 1+(n -1)d =2n -1,S n =na 1+n (n -1)2d =n 2,当n 为偶数时,T n =-S 1+S 2-S 3+S 4-…-S n -1+S n =-12+22-32+42-…-(n -1)2+n 2=3+7+…+(2n -1)=n (n +1)2;当n 为大于1的奇数时,T n =-S 1+S 2-S 3+S 4-…+S n -1-S n =-12+22-32+42-…-(n -2)2+(n -1)2-n 2=3+7+…+(2n -3)-n 2=-n (n +1)2,当n =1时,也符合上式.综上所述,T n =(-1)n n (n +1)2.答案 2n -1(-1)n n (n +1)2。
高考人教数学(理)课件第五章第四节数列求和及综合应用
考点三 裂项相消法求和[创新贯通]
命题点1
形如an=n+Acn+B型的求和
[例2]
n
等差数列{an}的前n项和为Sn,a3=3,S4=10,则
k=1
1 Sk
=
________.
解析:设公差为d,则a41a+1+2d6= d=3,10, ∴ad1==11,, ∴an=n. ∴前n项和Sn=1+2+…+n=nn2+1, ∴S1n=nn2+1=2n1-n+1 1,
4.(知识点2)1+2x+3x2+…+nxn-1=________.(x≠0且x≠1)
⇐ 源自必修五P61A组T4 解析:设Sn=1+2x+3x2+…+nxn-1,① 则xSn=x+2x2+3x3+…+nxn,② ①-②得
(1-x)Sn=1+x+x2+…+xn-1-nxn=11--xxn-nxn, ∴Sn=11--xxn2-1n-xnx. 答案:11--xxn2-1n-xnx
n
∴
k=1
S1k=21-12+12-31+…+n1-n+1 1
=21-n+1 1=2·n+n 1=n2+n1. 答案:n2+n1
命题点2
形如an=n+n+Acn·+2nB型的求和
[例3] (2018·天津卷)设{an}是等比数列,公比大于0,其前n项和为 Sn(n∈N*),{bn}是等差数列.已知a1=1,a3=a2+2,a4=b3+b5,a5= b4+2b6.
(1)求{an}和{bn}的通项公式; (2)设数列{Sn}的前n项和为Tn(n∈N*). (ⅰ)求Tn;
n
(ⅱ)证明
k=1
kT+k+1bkk++2b2k=n2+n+22-2(n∈N*).
解:(1)设等比数列{an}的公比为q.由a1=1,a3=a2+2,可得q2-q -2=0.因为q>0,可得q=2,故an=2n-1.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和与综合应用【考纲要求】1.熟练掌握等差数列和等比数列的求和公式; 2. 掌握数列的通项a n 与前n 项和S n 之间的关系式3.注意观察数列的特点和规律,在分析通项的基础上分解为基本数列求和或转化为基本数列求和,熟练掌握求数列的前n 项和的几种常用方法;4.能解决简单的实际问题. 【知识网络】【考点梳理】纵观近几年的高考,在解答题中,有关数列的试题出现的频率较高,不仅可与函数、方程、不等式、复数相联系,而且还与三角、立体几何密切相关;数列作为特殊的函数,在实际问题中有着广泛的应用,如增长率、银行信贷、浓度匹配、养老保险、圆钢堆垒等问题.这就要求同学们除熟练运用有关概念式外,还要善于观察题设的特征,联想有关数学知识和方法,迅速确定解题的方向,以提高解数列题的速度.与计算有关的问题主要有:求数列的某项,确定数列的通项公式,求有穷数列或无穷数列之和,计算数列的极限,将数列与方程,与不等式,与某些几何问题等联系起来,从而解决有关问题.有关定性问题的论证问题主要有:考察或论证数列的单调性,将数列分类定性,考察数列的图像特征,考察数列的极限存在与否等等.有关实际应用问题:某些与非零自然数有关的实际应用题,可用数列的各项与之对应,然后利用数列有关知识解答此类应用题.数列的函数属性:因数列是函数的特例,故解答有关问题时,常与函数知识联系起来考虑. 【典型例题】类型一:数列与函数的综合应用例1.(2015 菏泽一模)已知数列{}n a 的前n 项和为n S ,且()()*1n S n n n N=+∈.综合应用与函数、方程、不等式等 与几何、实际问题等数列前n 项和公式法 错位相减 倒序相加 裂项相消分组求和(1)求数列{}n a 的通项公式. (2)若数列{}n b 满足:3122331313131n n n b b b ba =+++⋅⋅⋅+++++,求数列{}nb 的通项公式; (3)令()*4n nn a b c n N =∈,求数列{}n c 的前n 项和n T . 【解析】(1)当1n =时,112a S ==当2n ≥时,()()1112n n n a S S n n n n n -=-=+--= 知12a =满足该式∴数列{}n a 的通项公式为2n a n =(2)3122331313131n n n b b b ba =+++⋅⋅⋅+++++① 311212313131313131n nn n n b b b b ba +++∴=+++⋅⋅⋅+++++++② ②-①得111231n n n n b a a +++-==+即()11231n n b ++=⋅+ ()()*231n n b n N ∴=⋅+∈(3)()3134n n n nn a b c n n n ==+=⋅+ ()23123132333312n n n T c c c c n n ∴=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+⨯+++⋅⋅⋅+令231323333nn H n =⨯+⨯+⨯+⋅⋅⋅+⨯① 则234+131323333n n H n =⨯+⨯+⨯+⋅⋅⋅+⨯②①-②得:()2311313233333313n n n n n H n n ++--=+++⋅⋅⋅+-⨯=-⨯-()121334n nn H +-⨯+∴=∴数列{}n c 的前n 项和为()()()1*2133142n nn n n T n N +-⨯++=+∈举一反三:【高清课堂:函数的极值和最值388566 典型例题三】【变式1】已知数列{}n a 和{}n b 满足:1a λ=,1243n n a a n +=+-,()(1)321n n n b a n =--+其中λ为实数,n 为正整数.(Ⅰ)对任意实数λ,证明数列{}n a 不是等比数列; (Ⅱ)试判断数列{}n b 是否为等比数列,并证明你的结论;解析:(Ⅰ)假设存在实数λ,使得数列{}n a 是等比数列,则1a ,2a ,3a 必然满足2213a a a =⋅12324,3,439a a a λλλ==-=-由2213a a a =⋅得90=,显然矛盾,即不存在实数λ使得数列{}n a 是等比数列。
(Ⅱ)根据等比数列的定义:()()()()()111(1)[3(1)21](1)3212[43(1)21]33212[214]33213212233213n n n n n n n n n n n n b a n b a n a n n a n a n a n a n a n +++--++=--+-+--++=-+--+=-+-+=-⋅=--+即123n n b b +=- 又()11321(18)b a λ=--+=-+所以当18λ=-时,数列{}n b 不是等比数列;当18λ≠-时,数列{}n b 是等比数列.【变式2】(2015 遵义校级模拟)设{}n a 是公差大于零的等差数列,已知12a =,23210a a =-(1)求{}n a 的通项公式.(2)设{}n b 是以函数24sin y x π=的最小正周期为首项,以3为公比的等比数列,求数列{}n n a b -的前n项和n S .【解析】(1)设数列{}n a 的公差为d 则:()12112210a a d a d =⎧⎪⎨+=+-⎪⎩解得2d =或4d =-(舍去) ()2212n a n n =+-=(2)21cos 24sin 422cos 22x y x x πππ-==⨯=-的最小正周期为212T ππ==11b ∴=3q =13n n b -∴=123n n n a b n -∴-=-()()()()0112221311234323321322n n n n n n S n n n -+-∴=-+++⋅⋅⋅+-=-=++-⋅- 类型二:数列与不等式例2. (2016 天津高考)已知{}n a 是各项均为正数的等差数列,公差为d ,对任意的,b n n N ∈*是n a 和1n a +的等比中项.(Ⅰ)设22*1,n n n c b b n N +=-∈,求证:{}n c 是等差数列;(Ⅱ)设()22*11,1,nkn k k a d T b n N ===-∈∑,求证:2111.2nk kT d =<∑【解析】⑴22112112n n n n n n n n c b b a a a a d a +++++=-=-=•21212()2n n n n c c d a a d +++-=-=为定值.∴{}n c 为等差数列 ⑵()221311nkn k k T b c c ==-=++∑2n-1…+c =2211(1)42(n 1)(*)2n n nc d nc d n -+•=+-由已知22212123122122()4c b b a a a a da d a d d =-=-==+= 将214c d =代入(*)式得22(1)n T d n n =+∴222211111111111111(1)(1)2(1)22231212nnk k kT d k k d n n d n d ====-+-+-=-<+++∑∑…+,得证 举一反三:【变式1】在数列{a n }中,a 1=2,a n+1=4a n -3n+1,*N n ∈. (1)证明数列{a n -n}是等比数列; (2)求数列{a n }的前n 项和S n ;(3)证明不等式n n S S 41≤+,对任意*N n ∈皆成立.解析: (1)证明:由已知1341+-=+n a a n n , ∴)(4)1(1n a n a n n -=+-+ *N n ∈ 又a 1-1=1,∴数列{a n -n}是首项为1,公比为4的等比数列(2)解:由(1)可知a n -n=4n-1,∴ a n =4n-1+n∴S n =a 1+a 2+…+a n =(40+1)+(41+2) +…+(4n-1+n)=2)1(3142)1(4141++-=++--n n n n n n(3)证明:对任意*N n ∈2)2)(1(314411+++-=-++n n S S n n n -41(1)432n n n ⎡⎤-+⋅+⎢⎥⎣⎦ =)43)(1(21)43(212+--=-+-n n n n ∵n ≥1,∴ n-1≥0,3n+4>0 ∴114(1)(34)02n n S S n n +-=--+≤ 即S n+1≤4S n【变式2】已知{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列. (Ⅰ)求q 的值;(Ⅱ)设{b n }是以2为首项,q 为公差的等差数列,其前n 项和为S n ,当n ≥2时,比较S n 与b n 的大小,并说明理由.解析:(Ⅰ)由题设2a 3=a 1+a 2,即2a 1q 2=a 1+a 1q,∵a 1≠0,∴2q 2-q-1=0,∴1q =或12q =-, (Ⅱ)若q=1,则.2312)1(22nn n n n S n +=⋅-+= 当n ≥2时,.b S 02)2)(1(n n 1>>+-==--,故n n S b S n n n若21(-1)1-92(-)2224n n n n nq S n +=-=+=,则当n ≥2时,-1(1)(10)4n n n n n S b S ---==-故对于n ∈N +,当2≤n ≤9时,S n >b n ;当n=10时,S n =b n ;当n ≥11时,S n <b n .【变式3】设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N . (Ⅰ)设3nn n b S =-,求数列{}n b 的通项公式;(Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.解析:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123nn n S S +=+,由此得1132(3)n n n n S S ++-=-.因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N ,于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-2232[123]2n n a --=⨯+-(),当2n ≥时,21312()302n n n a a a -+⇔⨯+-≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,.。