2020年贵州省贵阳市中考数学试卷
2020年贵州省贵阳市中考数学试题卷及参考答案(word解析版)
2020年贵州省贵阳市初中毕业生学业水平(升学)考试数学试题卷(满分150分,考试时间120分钟。
考试形式闭卷)一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共30分.1.计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°5.当x=1时,下列分式没有意义的是()A.B.C.D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.328.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2b C.a+1<b+1 D.ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.210.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)0 1 2 3 4 5 6 7 8 9 9~15人数y(人)0 170 320 450 560 650 720 770 800 810 810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.答案与解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,每小题3分,共30分.1.计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.6【知识考点】有理数的乘法.【思路分析】原式利用乘法法则计算即可求出值.【解题过程】解:原式=﹣3×2=﹣6.故选:A.【总结归纳】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【知识考点】可能性的大小.【思路分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.【解题过程】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.【总结归纳】本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【知识考点】调查收集数据的过程与方法.【思路分析】直接利用调查数据的方法分析得出答案.【解题过程】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.【总结归纳】此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【知识考点】对顶角、邻补角.【思路分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.【解题过程】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.【总结归纳】本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.当x=1时,下列分式没有意义的是()A.B.C.D.【知识考点】分式有意义的条件.【思路分析】直接利用分式有意义的条件分析得出答案.【解题过程】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.【总结归纳】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【知识考点】平行投影.【思路分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.【解题过程】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【总结归纳】本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.32【知识考点】菱形的性质.【思路分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.【解题过程】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.【总结归纳】本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2b C.a+1<b+1 D.ma>mb【知识考点】不等式的性质.【思路分析】根据不等式的基本性质进行判断.【解题过程】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.【总结归纳】此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.2【知识考点】垂线段最短;角平分线的性质;作图—基本作图.【思路分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.【解题过程】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.【总结归纳】本题考查作图﹣基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4【知识考点】根的判别式;二次函数图象上点的坐标特征;抛物线与x轴的交点.【思路分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.【解题过程】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.【总结归纳】本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是.【知识考点】单项式乘多项式.【思路分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.【解题过程】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.【总结归纳】本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.【知识考点】反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.【思路分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.【解题过程】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.【总结归纳】本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k ≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【知识考点】认识立体图形;利用频率估计概率.【思路分析】随着试验次数的增多,变化趋势接近于理论上的概率.【解题过程】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.【总结归纳】本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.【知识考点】等边三角形的性质;圆心角、弧、弦的关系;三角形的外接圆与外心.【思路分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解题过程】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.【总结归纳】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.【知识考点】等腰三角形的判定与性质;勾股定理.【思路分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.【解题过程】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4【总结归纳】本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.三、解答题:本大题10小题,共100分.16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【知识考点】无理数;勾股定理;勾股定理的逆定理;作图—应用与设计作图.【思路分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.【解题过程】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【总结归纳】本题考查作图﹣应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4 (1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.【知识考点】扇形统计图;中位数;众数.【思路分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).【解题过程】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).【总结归纳】本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【知识考点】平行四边形的判定与性质;矩形的性质;相似三角形的判定与性质.【思路分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解题过程】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.【总结归纳】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【知识考点】反比例函数与一次函数的交点问题.【思路分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.【解题过程】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).【总结归纳】本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.【知识考点】概率公式;列表法与树状图法.【思路分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.【解题过程】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【总结归纳】本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【知识考点】轴对称图形;解直角三角形的应用﹣仰角俯角问题.【思路分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.【解题过程】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【总结归纳】本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:。
2020年贵州省中考数学试卷(含答案解析)
2020年贵州省贵阳市中考数学试卷副标题题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算(−3)×2的结果是()A. −6B. −1C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A. 150°B. 120°C. 60°D. 30°5.当x=1时,下列分式没有意义的是()A. x+1x B. xx−1C. x−1xD. xx+16.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A. B.C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A. 5B. 20C. 24D. 328.已知a<b,下列式子不一定成立的是()A. a−1<b−1B. −2a>−2bC. 12a+1<12b+1 D. ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于12DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A. 无法确定B. 12C. 1D. 210.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+ n=0(0<n<m)有两个整数根,这两个整数根是()A. −2或0B. −4或2C. −5或3D. −6或4二、填空题(本大题共5小题,共20.0分)11.化简x(x−1)+x的结果是______.12.如图,点A是反比例函数y=3x图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为______.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是______度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为______.三、解答题(本大题共10小题,共100.0分)16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/ℎ 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为______,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=k的图象相交,其中一个交点的x横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=k图象的交点坐标;x(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=k的图象没有公共x点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,,那么应添加多少张《消任意抽出一张,使得抽到《消防知识手册》卡片的概率为57防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF//CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,√3≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是______,位置关系是______;(2)问题探究:如图②,△AO′E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO′的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO′E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO′,点P,Q分别为CE,BO′的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.答案和解析1.【答案】A【解析】解:原式=−3×2=−6.故选:A.原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.【答案】D【解析】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.【答案】C【解析】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.直接利用调查数据的方法分析得出答案.此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.【答案】A【解析】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°−∠1=180°−30°=150°.故选:A.根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.【答案】B,当x=1时,分式有意义不合题意;【解析】解:A、x+1xB、x,当x=1时,x−1=0,分式无意义符合题意;x−1C、x−1,当x=1时,分式有意义不合题意;xD、x,当x=1时,分式有意义不合题意;x+1故选:B.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键. 6.【答案】C【解析】解:A 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B 选项错误;C 、在同一时刻阳光下,树高与影子成正比,所以C 选项正确.D 、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D 选项错误;故选:C .根据平行投影得特点,利用两小树的影子的方向相反可对A 、B 进行判断;利用在同一时刻阳光下,树高与影子成正比可对C 、D 进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影. 7.【答案】B【解析】解:如图所示:∵四边形ABCD 是菱形,AC =8,BD =6,∴AB =BC =CD =AD ,OA =12AC =4,OB =12BD =3,AC ⊥BD ,∴AB =√OA 2+OB 2=√42+32=5, ∴此菱形的周长=4×5=20; 故选:B .根据题意画出图形,由菱形的性质求得OA =4,OB =3,再由勾股定理求得边长,继而求得此菱形的周长.本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键. 8.【答案】D【解析】解:A 、在不等式a <b 的两边同时减去1,不等号的方向不变,即a −1<b −1,原变形正确,故此选项不符合题意;B 、在不等式a <b 的两边同时乘以−2,不等号方向改变,即−2a >−2b ,原变形正确,故此选项不符合题意;C 、在不等式a <b 的两边同时乘以12,不等号的方向不变,即12a <12b ,不等式12a <12b的两边同时加上1,不等号的方向不变,即12a +1<12b +1,原变形正确,故此选项不符合题意;D 、在不等式a <b 的两边同时乘以m ,不等式不一定成立,即ma >mb ,或ma <mb ,或ma =mb ,原变形不正确,故此选项符合题意. 故选:D .根据不等式的基本性质进行判断.此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变. (2)不等式两边乘(或除以)同一个正数,不等号的方向不变. (3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.【答案】C【解析】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.本题考查作图−基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为−3和1,函数y=ax2+bx+c的对称轴是直线x=−1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为−5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,∴这两个整数根是−4或2,故选:B.根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0(0<n<m)的两个整数根,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.11.【答案】x2【解析】解:x(x−1)+x=x2−x+x=x2,故答案为:x2.先根据单项式乘以多项式法则算乘法,再合并同类项即可.本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.【答案】3【解析】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.根据反比例函数y=3x的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.本题考查了反比例函数y=kx (k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.【答案】16【解析】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是16.故答案为:16.随着试验次数的增多,变化趋势接近于理论上的概率.本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.【答案】120【解析】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.【答案】4√5【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH//AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH−BD=AC−BD=3,∴HF=HC=8−3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC=√82+42=4√5,故答案为:4√5延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.16.【答案】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【解析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2√2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2√2,√2,√10的直角三角形即可.本题考查作图−应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】50 22 3.5ℎ 3.5ℎ【解析】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5ℎ,∴中位数是3.5ℎ;∵3.5ℎ出现了22次,出现的次数最多,∴众数是3.5ℎ,故答案为:3.5ℎ,3.5ℎ;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】(1)证明:∵∠四边形ABCD是矩形,∴AD//BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE=√42+22=2√5,∵AD//BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD=2√5×2√52=10,∴四边形AEFD的面积=AB×AD=2×10=20.【解析】(1)先根据矩形的性质得到AD//BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2√5,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.【答案】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=6x①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x−1②,联立①②并解得:{x=−2y=−3或{x=3y=2,故交点坐标为(−2,−3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x−6−0,∵两个函数没有公共点,故△=25+24k<0,解得:k<−2524,故可以取k=−2(答案不唯一),故一次函数表达式为:y=−2x+5(答案不唯一).【解析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x−1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x−6−0,则△=25+24k<0,解得:k<−2524,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.【答案】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为26=13;(2)设应添加x张《消防知识手册》卡片,由题意得:1+x3+x =57,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【解析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF//BC,∴AG⊥EF,EG=12∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=AGEG,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=EHDH,∴DH=xtan60∘,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=EHCH,∴CH=xtan35∘,∵CH−DH=CD=8,∴xtan35∘−xtan60=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【解析】(1)根据题意得到AG⊥EF,EG=12∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100−x)支,根据题意,得:6x+10(100−x)=1300−378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100−x)+a=1300−378,整理,得:x=14a+392,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20−78=2;当a=21时,a=4×21−78=6,所以笔记本的单价可能是2元或6元.【解析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100−x)支,根据总共的费用为(1300−378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300−378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.【答案】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF =AE ,DF =DE ,∵AB =4,BF =5,∴AF =√BF 2−AB 2=3,∴AE =AF =3,∵S △ABF =12AB ⋅AF =12BF ⋅AD ,∴AD =AB⋅AF BF =4×35=125,∴DE =√AE 2−AD 2=√32−(245)2=95,∴BE =BF −2DE =75,∵∠AED =∠BED ,∠ADE =∠BCE =90°,∴△BEC∽△AED ,∴BE AE =BC AD ,∴BC =BE⋅AD AE =2825,∴sin∠BAC =BC AB =725,∵∠BDC =∠BAC ,∴sin∠BDC =725.【解析】(1)根据圆周角定理得∠ABD =∠ACD ,进而得∠ACD =∠CAD ,便可由等腰三角形判定定理得AD =CD ;(2)证明△ADF≌△ADE ,得AE =AF ,DE =DF ,由勾股定理求得AF ,由三角形面积公式求得AD ,进而求得DE ,BE ,再证明△BEC∽△AED ,得BC ,进而求得sin∠BAC 便可.本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.【答案】解:(1)由表格中数据的变化趋势可知,①当0≤x ≤9时,y 是x 的二次函数,∵当x =0时,y =0,∴二次函数的关系式可设为:y =ax 2+bx ,由题意可得:{170=a +b 450=9a +3b, 解得:{a =−10b =180, ∴二次函数关系式为:y =−10x 2+180x ,②当9<x ≤15时,y =180,∴y 与x 之间的函数关系式为:y ={−10x 2+180x(0≤x ≤9)180(9<x ≤15); (2)设第x 分钟时的排队人数为w 人,由题意可得:w =y −40x ={−10x 2+140x(0≤x ≤9)810−40x(9<x ≤15), ①当0≤x ≤9时,w =−10x 2+140x =−10(x −7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810−40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810−40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,,解得m≥118∵m是整数,∴m≥11的最小整数是2,8∴一开始就应该至少增加2个检测点.【解析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.BO PQ⊥BO25.【答案】PQ=12【解析】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,OC,∴PQ//OC,PQ=12BO;∴PQ⊥BO,PQ=12BO,PQ⊥BO.故答案为:PQ=12(2)△PQB的形状是等腰直角三角形.理由如下:连接O′P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO′E,∴△AO′E是等腰直角三角形,O′E//BC,O′E=O′A,∴∠O′EP=∠FCP,∠PO′E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O′PE≌△FPC(AAS),∴O′E=FC=O′A,O′P=FP,∴AB−O′A=CB−FC,∴BO′=BF,∴△O′BF为等腰直角三角形.∴BP⊥O′F,O′P=BP,∴△BPO′也为等腰直角三角形.又∵点Q为O′B的中点,∴PQ⊥O′B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O′E交BC边于点G,连接PG,O′P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O′ABG是矩形,∴O′G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O′GP≌△BCP(SAS),∴∠O′PG=∠BPC,O′P=BP,∴∠O′PG−∠GPB=∠BPC−∠GPB=90°,∴∠O′PB =90°,∴△O′PB 为等腰直角三角形,∵点Q 是O′B 的中点,∴PQ =12O′B =BQ ,PQ ⊥O′B ,∵AB =1,∴O′A =√22, ∴O′B =√O′A 2+AB 2=(√22)=√62, ∴BQ =√64. ∴S △PQB =12BQ ⋅PQ =12×√64×√64=316.(1)由正方形的性质得出BO ⊥AC ,BO =CO ,由中位线定理得出PQ//OC ,PQ =12OC ,则可得出结论;(2)连接O′P 并延长交BC 于点F ,由旋转的性质得出△AO′E 是等腰直角三角形,O′E//BC ,O′E =O′A ,证得∠O′EP =∠FCP ,∠PO′E =∠PFC ,△O′PE≌△FPC(AAS),则O′E =FC =O′A ,O′P =FP ,证得△O′BF 为等腰直角三角形.同理△BPO′也为等腰直角三角形,则可得出结论;(3)延长O′E 交BC 边于点G ,连接PG ,O′P.证明△O′GP≌△BCP(SAS),得出∠O′PG =∠BPC ,O′P =BP ,得出∠O′PB =90°,则△O′PB 为等腰直角三角形,由直角三角形的性质和勾股定理可求出O′A 和O′B ,求出BQ ,由三角形面积公式即可得出答案.本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
贵州省贵阳市2020中考试卷数学试题(原卷版)
贵州省贵阳市2020中考试卷数学试题一、选择题:以下每小题均有A 、B 、C 、四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A. 6-B. 1-C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( ) A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A. 150︒B. 120︒C. 60︒D. 305.当1x =时,下列分式没有意义的是( ) A. 1x x + B. 1x x - C. 1x x - D. 1x x + 6.在下列四幅图形中,能表示两棵小树在同一时刻阳光下影子的图形的可能是( )A. B. C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A. 5B. 20C. 24D. 328.已知a b <,下列式子不一定成立的是( )A. 11a b -<-B. 22a b ->-C. 111122a b +<+D. ma mb >9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 为长的半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G ,若1CG =,P 为AB 上一动点,则GP 的最小值为( )A. 无法确定B. 12C. 1D. 210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A. 2-或0B. 4-或2C. 5-或3D. 6-或4二、填空题:每小题4分,共20分.11.化简(1)x x x -+的结果是_____.12.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.13.在“抛掷正六面体”试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.14.如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.15.如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为_____.三、解答题:本大题10小题,共100分.16.如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表 时间/h 1.52 2.53 3.54 人数/人 26 610m 4 部分初三学生每天听空中黔课时间的人数统计图(1)本次共调查的学生人数为_____,在表格中,m =___; (2)统计的这组数据中,每天听空中黔课时间的中位数是____,众数是_____; (3)请就疫情期间如何学习的问题写出一条你的看法. 18.如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.19.如图,一次函数1y x =+的图象与反比例函数k y x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x =图象的交点坐标; (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数k y x=的图象没有公共点. 20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动.规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由. 21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线.为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,3 1.7≈)(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1m ).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(1)求证:AD CD =;(2)若4,5AB BF ==,求sin BDC ∠的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9-15表示915x <≤) 时间x (分钟) 0 1 2 3 4 5 6 7 8 9 9~15 人数y (人) 0170 320 450 560 650 720 770 800 810 810(1)根据这15分钟内考生进入考点累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO 的数量关系是_____,位置关系是____;(2)问题探究:如图②,AO E ∆'是将图①中的AOB ∆绕点A 按顺时针方向旋转45︒得到的三角形,连接CE ,点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .判断PQB ∆的形状,并证明你的结论; (3)拓展延伸:如图③,AO E ∆'是将图①中的AOB ∆绕点A 按逆时针方向旋转45︒得到的三角形,连接BO ',点P ,Q 分别为CE ,BO '的中点,连接PQ ,PB .若正方形ABCD 的边长为1,求PQB ∆的面积.。
2020年贵州省贵阳市中考数学试卷附答案
2020年贵州省贵阳市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算(-3)×2的结果是( )A. -6B. -1C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是( )A. 150°B. 120°C. 60°D. 30°5.当x=1时,下列分式没有意义的是( )A. B. C. D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A. 5B. 20C. 24D. 328.已知a<b,下列式子不一定成立的是( )A. a-1<b-1B. -2a>-2bC. a+1<b+1D. ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为( )A. 无法确定B.C. 1D. 210.已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是( )A. -2或0B. -4或2C. -5或3D. -6或4二、填空题(本大题共5小题,共20.0分)11.化简x(x-1)+x的结果是______.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为______.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是______度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为______.三、解答题(本大题共10小题,共100.0分)16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为______,在表格中,m=______;(2)统计的这组数据中,每天听空中黔课时间的中位数是______,众数是______;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C 点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G (点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ 与BO的数量关系是______,位置关系是______;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.答案和解析1.【答案】A【解析】解:原式=-3×2=-6.故选:A.原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.2.【答案】D【解析】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.本题主要考查可能性的大小,解题的关键是掌握随机事件发生的可能性(概率)的计算方法.3.【答案】C【解析】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.直接利用调查数据的方法分析得出答案.此题主要考查了调查收集数据的过程与方法,正确掌握基本调查方法是解题关键.4.【答案】A【解析】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°-∠1=180°-30°=150°.故选:A.根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.本题考查了对顶角相等的性质,邻补角的定义,是基础题,熟记概念与性质并准确识图是解题的关键.5.【答案】B【解析】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x-1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.直接利用分式有意义的条件分析得出答案.此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.6.【答案】C【解析】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.本题考查了平行投影:由平行光线形成的投影是平行投影,如物体在太阳光的照射下形成的影子就是平行投影.7.【答案】B【解析】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.本题考查了菱形的性质以及勾股定理;熟练掌握菱形的性质,由勾股定理求出菱形的边长是解题的关键.8.【答案】D【解析】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a-1<b-1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以-2,不等号方向改变,即-2a>-2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.根据不等式的基本性质进行判断.此题主要考查了不等式的基本性质,不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.9.【答案】C【解析】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.本题考查作图-基本作图,垂线段最短,角平分线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【答案】B【解析】解:∵二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为-3和1,函数y=ax2+bx+c的对称轴是直线x=-1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为-5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是-4或2,故选:B.根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.本题考查抛物线与x轴的交点、二次函数与一元二次方程的关系,解答本题的关键是明确题意,利用二次函数的关系解答.11.【答案】x2【解析】解:x(x-1)+x=x2-x+x=x2,故答案为:x2.先根据单项式乘以多项式法则算乘法,再合并同类项即可.本题考查了单项式乘以多项式和合并同类项法则,能灵活运用法则进行计算是解此题的关键.12.【答案】3【解析】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP的面积.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.13.【答案】【解析】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.随着试验次数的增多,变化趋势接近于理论上的概率.本题考查了利用频率估计概率.大量反复试验下频率稳定值即概率.14.【答案】120【解析】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.15.【答案】4【解析】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH-BD=AC-BD=3,∴HF=HC=8-3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.本题考查勾股定理,解题的关键是熟练运用等腰三角形的性质与判定,本题属于中等题型.16.【答案】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.【解析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.本题考查作图-应用与设计,无理数,勾股定理,勾股定理的逆定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.【答案】50 22 3.5h 3.5h【解析】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).本题考查扇形统计图、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.18.【答案】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.【解析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了平行四边形的判定和矩形的性质.19.【答案】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x-1②,联立①②并解得:,故交点坐标为(-2,-3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x-6-0,∵两个函数没有公共点,故△=25+24k<0,解得:k<-,故可以取k=-2(答案不唯一),故一次函数表达式为:y=-2x+5(答案不唯一).【解析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x-1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x-6-0,则△=25+24k<0,解得:k<-,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.20.【答案】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.【解析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.本题考查了列表法或画树状图法以及概率公式;列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.21.【答案】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH-DH=CD=8,∴-=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.【解析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.本题考查了解直角三角形的应用,轴对称图形,解题的关键是借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.22.【答案】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100-x )支,根据题意,得:6x+10(100-x)=1300-378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100-x)+a=1300-378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20-78=2;当a=21时,a=4×21-78=6,所以笔记本的单价可能是2元或6元.【解析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100-x)支,根据总共的费用为(1300-378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300-378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.本题考查了一元一次方程解实际问题的运用,一次函数的运用,理清题意,找出相应的等量关系是解答本题的关键.23.【答案】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF-2DE=,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.【解析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.本题主要考查了圆的切线的性质,圆周角定理,相似三角形的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形的应用,勾股定理,关键是证明三角形全等与相似.24.【答案】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=-10x2+180x,②当9<x≤15时,y=180,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y-40x=,①当0≤x≤9时,w=-10x2+140x=-10(x-7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810-40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810-40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.【解析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x=7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.本题考查了二次函数的应用,二次函数的性质,一次函数的性质,一元一次不等式的应用,理解题意,求出y与x之间的函数关系式是本题的关键.25.【答案】PQ=BO PQ⊥BO【解析】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB-O'A=CB-FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG-∠GPB=∠BPC-∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=.(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG=∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.本题是四边形综合题,考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,中位线定理,矩形的判定与性质,勾股定理,三角形的面积等知识,熟练掌握正方形的性质及全等三角形的判定与性质是解题的关键.。
2020年贵州贵阳中考数学试卷(解析版)
2020年贵州贵阳中考数学试卷(解析版)一、选择题(本大题共10小题,每小题3分,共30分)A.B.C.D.1.计算的结果是( ).A.个红球个白球B.个红球个白球C.个红球个白球D.个红球个白球2.下列个袋子中,装有除颜色外完全相同的个小球,任意摸出一个球,摸到红球可能性最大的是().A.直接观察B.实验C.调查D.测量3.年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫.一志愿者得到某栋楼岁以上人的年龄(单位:岁)数据如下:,,,,,,,,,获得这组数据的方法是( ).A. B. C. D.4.如图,直线,相交于点,如果,那么是( ).5.当时,下列分式没有意义的是( ).A.B.C.D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( ).A.B.C.D.7.菱形的两条对角线长分别是和,则此菱形的周长是( ).A.B.C.D.8.已知,下列式子不一定成立的是( ).A.B.C.D.9.如图,中,,利用尺规在,上分别截取,,使;分别以,为圆心、以大于的长为半径作弧,两弧在内交于点;作射线交于点.若,为上一动点,则的最小值为( ).A.无法确定B.C.D.10.已知二次函数的图象经过与两点,关于的方程有两个根,其中一个根是.则关于的方程有两个整数根,这两个整数根是( ).A.或B.或C.或D.或二、填空题(本大题共5小题,每小题4分,共20分)11.化简的结果是 .12.如图,点是反比例函数图象上任意一点,过点分别作轴,轴的垂线,垂足为,,则四边形的面积为 .13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“”“”“”“”“”“”,在试验次数很大时,数字“”朝上的频率的变化趋势接近的值是 .14.如图,是⊙的内接正三角形,点是圆心,点,分别在边,上,若,则的度数是 度.15.如图,中,点在边上,,,垂直于的延长线于点,,,则边的长为 .三、解答题(本大题共10小题,共100分)(1)(2)(3)16.如图,在的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.在图①中,画一个直角三角形,使它的三边长都是有理数.图在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数.图在图③中,画一个直角三角形,使它的三边长都是无理数.图(1)(2)(3)17.年月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生,根据调查结果,绘制出了如下统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表部分初三学生每天听空中黔课时间的人数统计图时间人数人本次共调查的学生人数为 ,在表格中, .统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 .请就疫情期间如何学习的问题写出一条你的看法.(1)(2)18.如图,四边形是矩形,是边上一点,点在的延长线上,且.求证:四边形是平行四边形.连接,若,,,求四边形的面积.19.如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是.(1)(2)(3)xy求反比例函数的表达式.将一次函数的图象向下平移个单位,求平移后的图象与反比例函数图象的交点坐标.直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.(1)(2)20.“第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动规则是:准备张大小一样,背面完全相同的卡片,张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到张卡片都是《辞海》的概率.再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.(1)21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高所在的直线.为了测量房屋的高度,在地面上点测得屋顶的仰角为,此时地面上点、屋檐上点、屋顶上点三点恰好共线,继续向房屋方向走到达点时,又测得屋檐点的仰角为,房屋的顶层横梁,,交于点(点,,在同一水平线上).(参考数据:,,,)图图求屋顶到横梁的距离.(2)求房屋的高(结果精确到).(1)(2)22.第个国际禁毒日到来之际,贵阳市策划了以“健康人生,绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了.学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于元的整数,那么笔记本的单价可能是多少元?(1)(2)23.如图,为⊙的直径,四边形内接于⊙,对角线,交于点,⊙的切线交的延长线于点,切点为,且.求证:.若,,求的值.24.年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数(人)与时间(分钟)的变化(1)(2)(3)情况,数据如下表:(表中表示).时间(分钟)人数(人)根据这分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出与之间的函数关系式.如果考生一进考点就开始测量体温,体温检测点有个,每个检测点每分钟检测人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?在()的条件下,如果要在分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?(1)(2)(3)25.如图,四边形是正方形,点为对角线的中点.问题解决:如图①,连接,分别取,的中点,,连接,则与的数量关系是 ,位置关系是 .图问题探究:如图②,是将图①中的绕点按顺时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,,判断的形状,并证明你的结论.图拓展延伸:如图③,是将图①中的绕点按逆时针方向旋转得到的三角形,连接,点,分别为,的中点,连接,.若正方形的边长为,求【答案】解析:,故选.解析:选项:摸到红球的概率为;选项:摸到红球的概率是;选项:摸到红球的概率是;选项:摸到红球的概率是.摸到红球可能性最大的选项.故选:.解析:由题意可知,志愿者得到某栋楼岁以上人的年龄,获得这组数据的方法是实地调查.故选.的面积.图A 1.D 2.C 3.解析:因为与是对顶角,即,又因为,所以可得,又因为,故,故选.解析:当时,,故分式没有意义,其余分式都有意义.故选.解析:∵菱形的对角线为和,∵菱形的对角线互相垂直平分,∴由勾股定理可得菱形的边长为:,∴菱形的周长为:.故选.解析:由题意可知,平分.∵,,∴点到的距离为,A 4.B 5.C 6.B 7.D 8.C 9.∴点到的距离也为,∴当且仅当时,取得最小值为.故选.解析:∵抛物线的图象与轴交点坐标为,,∴抛物线对称轴为直线,∴关于的方程,其中一根为,∴根据对称性可知方程的另一根为,∵关于的方程有两个整数根,分别为、,∴,,故这两个整数根为或.故选.解析:原式.故答案为:.解析:根据题意可知:四边形为矩形,设点坐标为,则,,,∴矩形的面积.解析:抛掷一次,出现数字“”的概率是,当实验次数很大时,数字“”朝上的频率变化趋势是更加接近概率,即接近的值是.故答案为:.B 10.11.12.13.14.解析:连接、,∵为等边三角形且为外接圆圆心,∴平分,∴,∴平分,∴,∵,∴,又∵,,∴≌(),∴,∵,,∴,∵为等边三角形,∴,∴即.故答案为:.15.解析:延长至,使,连结,过作交于,∵,,∴,∴,∵,∴,∵,∴,∴,∴,∴,∵,∴,∵,∴,∵,∴,∵,∴,在中,,∴在中,,故的长为.故答案为:.(1)(2)(3)(1)解析:如图,当三边长分别为,,时满足题意.(答案不唯一)图如图,当三边长分别为,,时满足题意.(答案不唯一)图如图,当三边长分别为,,时满足题意.(答案不唯一)图解析:∵的学生有人,占总调查人数的,∴所以共调查的学生人数人;∵的人数占总调查人数的,∴.(1)画图见解析.(2)画图见解析.(3)画图见解析.16.(1) ; (2);(3)认真听课,独立思考(答案不唯一).17.(2)(3)(1)(2)故答案为:;.将个调查数据从小到大排列,中位数是第和个数据的平均数,第和个数都是,所以中位数是;调查的个人中,的人数最多,所以众数是.故答案为:;.认真听课,独立思考(答案不唯一).解析:∵四边形是矩形,∴,,∵,∴,即,∴,∴四边形是平行四边形.如图,连接,∵四边形是矩形,∴,在中,,,∴由勾股定理得,,即,∵,∴,∵,∴,∴即,解得,由()得四边形是平行四边形,又∵,高,(1)证明见解析.(2).18.(1)(2)(3)(1)∴.解析:∵一次函数的图象与反比例函数的图象的一个交点的横坐标是,∴当时,,∴其中一个交点是,∴,∴反比例函数的表达式是.∵一次函数的图象向下平移个单位,∴平移后的表达式是.由及,可得一元二次方程,解得,.∴平移后的图象与反比例函数图象的交点坐标为,.当时,,所以函数经过点,,,,所以反比例函数与没有交点且经过点,满足题意.(答案不唯一)解析:先将《消防知识手册》《辞海》《辞海》分别记作,,,然后再列下表.平行四边形(1).(2),.(3).(答案不唯一)19.(1),画图见解析.(2)张,证明见解析.20.(2)(1)(2)第次第次总共有种结果,每种结果出现的可能性相同,而张卡片都是《辞海》的有种:,,所以,(张卡都是《辞海》).设添加张和原一样的《消防知识手册》卡片,由题意得:,解得:,经检验,是原方程的根,且符合题意.答:应添加张《消防知识手册》卡片.解析:∵房屋的侧面示意图是轴对称图形,所在直线是对称轴,,∴,,.在中,,,∵,,,∴(米).答:屋顶到横梁的距离约是米.过点作于点,设,图在中,,,∵,(1)约是米.(2)约是米.21.(1)(2)∴,在中,,,∵,∴,∵,∴,∵,,解得.∴(米),答:房屋的高约是米.解析:设单价为元的钢笔买了支,则单价为元的钢笔买了支,根据题意,得,解得.因为钢笔的数量不可能是小数,所以学习委员搞错了.设笔记本的单价为元,根据题意,得,整理,得,因为,随的增大而增大,所以,∵取整数,∴,.当时,,当时,,所以笔记本的单价可能是元或者元.解析:(1)因为钢笔的数量不可能是小数,所以学习委员搞错了.(2)元或元.22.(1)证明见解析.(2).23.(1)(2)在中,∵与都是所对的圆周角,∴,∵,∴,∴.如图,∵是的切线,是的直径,∴,∵,,∴,又∵,∴,∵,∴≌,∴,,在中,∵,,∴,即,,∴,在中,,∴,∵,且,∴,∴,(1)(2)即,∵与都是所对的圆周角,∴,在中,,∴,即.解析:根据表中数据的变化趋势可知:①当时,是的二次函数.∵当时,,∴二次函数的关系式可设为.当时,;当时,,将它们分别代入关系式得,解得,∴二次函数的关系式为,将表格内的其他各组对应值代入此关系式,均满足;②当时,,∴与的关系式为.设第分钟时的排队人数是,根据题意,得,①当时,,∴当时,,②当时,,随的增大而减小,∴,∴排队人数最多时是人.要全部考生都完成体温检测,根据题意,得(1).(2)排队人数最多时是人,全部考生都完成体温检测需要分钟.(3).24.,最大(3)(1)(2),解得,∴排队人数最多时是人,全部考生都完成体温检测需要分钟.设从一开始就应该增加个检测点,根据题意,得,解得,∵是整数,∴的最小整数是.∴开始就应该至少增加个检测点.解析:∵四边形是正方形,∴,.∵,分别是,的中点,∴,,∴,.连接并延长交于点,图由正方形的性质及旋转可得:,,是等腰直角三角形,,,∴,.又∵点是的中点,(1); (2)的形状是等腰直角三角形;证明见解析.(3).25.(3)∴,∴≌,∴,,∴,∴,∴为等腰直角三角形,∴,,∴也为等腰直角三角形.又∵点为的中点,∴,且,∴的形状是等腰三角形.延长交边于点,连接,,图∵四边形是正方形,是对角线,∴.由旋转得,四边形是矩形,∴,,∴为等腰直角三角形.∵点是的中点,∴,,,∴≌,∴,,∴,∴,∴为等腰直角三角形.∵是的中点,∴,.∵,∴,,∴,∴.。
2020年贵州省贵阳市中考数学试卷(含答案)
贵州省贵阳市2020年中考数学试卷题序一二三四五六七八总分得分一、单项选择题(共10小题,每小题3分,共30分)1.(3分)(2020•贵阳)2的相反数是()B.C.2D.﹣2A.﹣考点:相反数.分析:根据相反数的概念作答即可.解答:解:根据相反数的定义可知:2的相反数是﹣2.故选:D.点评:此题主要考查了相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(3分)(2020•贵阳)如图,直线a,b相交于点O,若∠1等于50°,则∠2等于()A.50°B.40°C.140°D.130°考点:对顶角、邻补角.分析:根据对顶角相等即可求解.解答:解:∵∠2与∠1是对顶角,∴∠2=∠1=50°.故答案选A.点评:本题考查了对顶角的识别与对顶角的性质,牢固掌握对顶角相等的性质是解题的关键.3.(3分)(2020•贵阳)贵阳市中小学幼儿园“爱心助残工程”第九届助残活动于2020年5月在贵阳市盲聋哑学校举行,活动当天,贵阳市盲聋哑学校获得捐赠的善款约为150000元.150000这个数用科学记数法表示为()A.1.5×104B.1.5×105C.1.5×106D.15×104考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:150000=1.5×105,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2020•贵阳)一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是()A.中B.功C.考D.祝考点:专题:正方体相对两个面上的文字.分析:利用正方体及其表面展开图的特点解题.解答:解:这是一个正方体的平面展开图,共有六个面,其中面“成”与面“功”相对,面“预”与面“祝”相对,“中”与面“考”相对.故选B.点评:本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.5.(3分)(2020•贵阳)在班级组织的“贵阳市创建国家环保模范城市”知识竞赛中,小悦所在小组8名同学的成绩分别为(单位:分)95,94,94,98,94,90,94,90,则这8名同学成绩的众数是()A.98分B.95分C.94分D.90分考点:众数.分析:根据众数的定义先找出这组数据中出现次数最多的数,即可得出答案.解答:解:∵94出现了4次,出现的次数最多,∴则这8名同学成绩的众数是94分;故选C.点评:此题考查了众数,掌握众数的定义是本题的关键;众数是一组数据中出现次数最多的数.6.(3分)(2020•贵阳)在Rt△ABC中,∠C=90°,AC=12,BC=5,则sinA的值为()A.B.C.D.考点:锐角三角函数的定义;勾股定理.分析:首先画出图形,进而求出AB的长,再利用锐角三角函数求出即可.解答:解:如图所示:∵∠C=90°,AC=12,BC=5,∴AB===13,则sinA==.故选:D.点评:此题主要考查了锐角三角函数关系以及勾股定理等知识,正确记忆锐角三角函数关系是解题关键.7.(3分)(2020•贵阳)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为()A.P1B.P2C.P3D.P4考点:相似三角形的判定.专题:网格型.分析:由于∠BAC=∠PED=90°,而=,则当=时,可根据两组对应边的比相等且夹角对应相等的两个三角形相似判断△ABC∽△EPD,然后利用DE=4,所以EP=6,则易得点P落在P3处.解答:解:∵∠BAC=∠PED,而=,∴=时,△ABC∽△EPD,∵DE=4,∴EP=6,∴点P落在P3处.故选C.点评:本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似.8.(3分)(2020•贵阳)有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.若将这5张牌背面朝上洗匀后,从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是()A.B.C.D.考点:概率公式.分析:由有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.其中偶数为:4,6,8,直接利用概率公式求解即可求得答案.解答:解:∵有5张大小、背面都相同的扑克牌,正面上的数字分别是4,5,6,7,8.其中偶数为:4,6,8,∴从中任意抽取1张,那么这张牌正面上的数字为偶数的概率是:.故选B.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2020•贵阳)如图,三棱柱的体积为10,其侧棱AB 上有一个点P从点A开始运动到点B停止,过P点作与底面平行的平面将这个三棱柱截成两个部分,它们的体积分别为x、y,则下列能表示y与x之间函数关系的大致图象是()A.B.C.D.考点:动点问题的函数图象.分析:根据截成的两个部分的体积之和等于三棱柱的体积列式表示出y与x的函数关系式,再根据一次函数的图象解答.解答:解:∵过P点作与底面平行的平面将这个三棱柱截成两个部分的体积分别为x、y,∴x+y=10,∴y=﹣x+10(0≤x≤10),纵观各选项,只有A选项图象符合.故选A.点评:本题考查了动点问题的函数图象,比较简单,理解分成两个部分的体积的和等于三棱柱的体积是解题的关键.10.(3分)(2020•贵阳)如图,A点的坐标为(﹣4,0),直线y=x+n与坐标轴交于点B,C,连接AC,如果∠ACD=90°,则n的值为()A.﹣2 B.﹣C.﹣D.﹣考点:一次函数图象上点的坐标特征;解直角三角形.分析:由直线y=x+n与坐标轴交于点B,C,得B点的坐标为(﹣n,0),C点的坐标为(0,n),由A点的坐标为(﹣4,0),∠ACD=90°,用勾股定理列出方程求出n 的值.解答:解:∵直线y=x+n与坐标轴交于点B,C,∴B点的坐标为(﹣n,0),C点的坐标为(0,n),∵A点的坐标为(﹣4,0),∠ACD=90°,∴AB2=AC2+BC2,∵AC2=AO2+OC2,BC2=0B2+0C2,∴AB2=AO2+OC2+0B2+0C2,即(﹣n+4)2=42+n2+(﹣n)2+n2解得n=﹣,n=0(舍去),故选:C.点评:本题主要考查了一次函数图象上点的坐标特征及解直角三角形,解题的关键是利用勾股定理列出方程求n.二、填空题(每小题4分,满分20分)11.(4分)(2020•贵阳)若m+n=0,则2m+2n+1=1.考点:代数式求值.分析:把所求代数式转化成已知条件的形式,然后整体代入进行计算即可得解.解答:解:∵m+n=0,∴2m+2n+1=2(m+n)+1,=2×0+1,=0+1,=1.故答案为:1.点评:本题考查了代数式求值,整体思想的利用是解题的关键.12.(4分)(2020•贵阳)“六•一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;…多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是200个.考点:利用频率估计概率.分析:因为摸到黑球的频率在0.7附近波动,所以摸出黑球的概率为0.7,再设出黑球的个数,根据概率公式列方程解答即可.解答:解:设红球的个数为x,∵红球的频率在0.2附近波动,∴摸出红球的概率为0.2,即=0.2,解得x=200.所以可以估计红球的个数为200.故答案为:200.点评:本题考查了利用频率估计概率,大量反复试验时,某事件发生的频率会稳定在某个常数的附近,这个常数就叫做事件概率的估计值.关键是根据黑球的频率得到相应的等量关系.13.(4分)(2020•贵阳)如图,AB是⊙O的直径,点D在⊙O上,∠BOD=130°,AC∥OD 交⊙O于点C,连接BC,则∠B=40度.考点:圆周角定理;平行线的性质.分析:先求出∠AOD,利用平行线的性质得出∠A,再由圆周角定理求出∠B的度数即可.解答:解:∵∠BOD=130°,∴∠AOD=50°,又∵AC∥OD,∴∠A=∠AOD=50°,∵AB是⊙O的直径,∴∠C=90°,∴∠B=90°﹣50°=40°.故答案为:40.点评:本题考查了圆周角定理,熟练掌握圆周角定理的内容是解题关键.14.(4分)(2020•贵阳)若反比例函数的图象在其每个象限内,y随x的增大而增大,则k的值可以是﹣1(答案不唯一).(写出一个k的值)考点:反比例函数的性质.专题:开放型.分析:根据它在每个象限内,y随x增大而增大判断出k的符号,选取合适的k的值即可.解答:解:∵它在每个象限内,y随x增大而增大,∴k<0,∴符合条件的k的值可以是﹣1,故答案为:﹣1(答案不唯一).点评:本题考查的是反比例函数的性质,此题属开放性题目,答案不唯一,只要写出的反比例函数的解析式符合条件即可.15.(4分)(2020•贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC 边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=6秒时,S1=2S2.考点:一元二次方程的应用;等腰直角三角形;矩形的性质.专题:几何动点问题.分析:利用三角形的面积公式以及矩形的面积公式,表示出S1和S2,然后根据S1=2S2,即可列方程求解.解答:解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8﹣t=2(8﹣t)•t,解得:t=6.故答案是:6.点评:本题考查了一元二次方程的应用,以及等腰直角三角形的性质,正确表示出S1和S2是关键.三、解答题(本题8分)16.(8分)(2020•贵阳)化简:×,然后选择一个使分式有意义的数代入求值.考点:分式的化简求值.专题:计算题.分析:原式约分得到最简结果,将x=0代入计算即可求出值.解答:解:原式=•=,当x=0时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.(10分)(2020•贵阳)2020年巴西世界杯足球赛正在如火如荼的进行,小明和喜爱足球的伙伴们一起预测“巴西队”能否获得本届杯赛的冠军,他们分别在3月、4月、5月、6月进行了四次预测,并且每次参加预测的人数相同,小明根据四次预测结果绘制成如下两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)每次有50人参加预测;(2)计算6月份预测“巴西队”夺冠的人数;(3)补全条形统计图和折线统计图.考点:条形统计图;扇形统计图.分析:(1)用4月支持人数除以支持率30%就是每次参加预测的人数.(2)用参加预测的人数乘6月份的支持率60%就是6月份预测“巴西队”夺冠的人数,(3)求出4月份支持率为40%,6月份预测“巴西队”夺冠的人数30人,再补全条形统计图和折线统计图.解答:解:(1)每次参加预测的人数为:15÷30%=50人,故答案为:50.(2)6月份预测“巴西队”夺冠的人数为:50×60%=30人.(3)4月份支持率为:20÷50=40%,6月份预测“巴西队”夺冠的人数30人,如图,点评:本题考查读条形图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.(10分)(2020•贵阳)如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.考点:菱形的判定与性质;旋转的性质.分析:(1)根据旋转可得AE=CE,DE=EF,可判定四边形ADCF是平行四边形,然后证明DF⊥AC,可得四边形ADCF是菱形;(2)首先利用勾股定理可得AB长,再根据中点定义可得AD=5,根据菱形的性质可得AF=FC=AD=5,进而可得答案.解答:(1)证明:∵将△ADE绕点E旋转180°得到△CFE,∴AE=CE,DE=EF,∴四边形ADCF是平行四边形,∵D、E分别为AB,AC边上的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,∴∠AED=90°,∴DF⊥AC,∴四边形ADCF是菱形;(2)解:在Rt△ABC中,BC=8,AC=6,∴AB=10,∵D是AB边上的中点,∴AD=5,∵四边形ADCF是菱形,∴AF=FC=AD=5,∴四边形ABCF的周长为8+10+5+5=28.点评:此题主要考查了菱形的判定与性质,关键是掌握菱形四边相等,对角线互相垂直的平行四边形是菱形.19.(8分)(2020•贵阳)2020年12月26日,西南真正意义上的第一条高铁﹣贵阳至广州高速铁路将开始试运行,从贵阳到广州,乘特快列车的行程约为1800km,高铁开通后,高铁列车的行驶约为860km,运行时间比特快列车所用的时间减少了16h.若高铁列车的平均速度是特快列车平均速度的2.5倍,求特快列车的平均速度.考点:分式方程的应用.分析:首先设特快列车的平均速度为xkm/h,则高铁列车的平均速度为2.5xkm/h,根据题意可得等量关系:乘特快列车的行程约为1800km的时间=高铁列车的行驶约为860km 的时间+16小时,根据等量关系,列出方程,解方程即可.解答:解:设特快列车的平均速度为xkm/h,由题意得:=+16,解得:x=91,经检验:x=91是分式方程的解.答:特快列车的平均速度为91km/h.点评:此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出分式方程,注意要检验.20.(10分)(2020•贵阳)如图,为了知道空中一静止的广告气球A的高度,小宇在B处测得气球A的仰角为18°,他向前走了20m到达C处后,再次测得气球A的仰角为45°,已知小宇的眼睛距地面1.6m,求此时气球A距地面的高度(结果精确到0.1m).考点:解直角三角形的应用-仰角俯角问题.分析:作AD⊥BC于点D,交FG于点E,则△AGE是等腰直角三角形,设AE长是xm,在直角△AFE中,利用三角函数即可列方程求得AE的长,则AD即可求得.解答:解:作AD⊥BC于点D,交FG于点E.∵∠AGE=45°,∴AE=CE,在直角△AFE中,设AE长是xm,则tan∠AFE=,即tan18°=,解得:x≈9.6.则ED=FB≈1.6.∴AD=9.6+1.6=11.2m.答:此时气球A距地面的高度是11.2m.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.21.(10分)(2020•贵阳)如图,一条直线上有两只蚂蚁,甲蚂蚁在点A处,乙蚂蚁在点B 处,假设两只蚂蚁同时出发,爬行方向只能沿直线AB在“向左”或“向右”中随机选择,并且甲蚂蚁爬行的速度比乙蚂蚁快.(1)甲蚂蚁选择“向左”爬行的概率为;(2)利用列表或画树状图的方法求两只蚂蚁开始爬行后会“触碰到”的概率.考点:列表法与树状图法.分析:(1)由爬行方向只能沿直线AB在“向左”或“向右”中随机选择,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两只蚂蚁开始爬行后会“触碰到”的情况,再利用概率公式即可求得答案.解答:解:(1)∵爬行方向只能沿直线AB在“向左”或“向右”中随机选择,∴甲蚂蚁选择“向左”爬行的概率为:;故答案为:;(2)画树状图得:∵共有4种情况,两只蚂蚁开始爬行后会“触碰到”的2种情况,∴两只蚂蚁开始爬行后会“触碰到”的概率为:=.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.(10分)(2020•贵阳)如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC 的边OA,OC分别在轴和轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB于点E.(1)k的值为9;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.分析:(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点D,E在函数的图象上,可得出S△OCD=S△OAE,再由点D为BC的中点,可得出S△OCD=S△OBD,即可得出结论.解答:解:∵OA=6,OC=3,点D为BC的中点,∴D(3,3).∴k=3×3=9,故答案为9;(2)S△OCD=S△OBE,理由是:∵点D,E在函数的图象上,∴S△OCD=S△OAE=,∵点D为BC的中点,∴S△OCD=S△OBD,即S△OBE=,∴S△OCD=S△OBE.点评:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.23.(10分)(2020•贵阳)如图,PA,PB分别与⊙O相切于点A,B,∠APB=60°,连接AO,BO.(1)所对的圆心角∠AOB=120°;(2)求证:PA=PB;(3)若OA=3,求阴影部分的面积.考点:切线的性质;扇形面积的计算.分析:(1)根据切线的性质可以证得∠OAP=∠OBP=90°,根据四边形内角和定理求解;(2)证明直角△OAP≌直角△OBP,根据全等三角形的对应边相等,即可证得;(3)首先求得△OPA的面积,即求得四边形OAPB的面积,然后求得扇形OAB的面积,即可求得阴影部分的面积.解答:(1)解:∵PA,PB分别与⊙O相切于点A,B,∴∠OAP=∠OBP=90°,∴∠AOB=180°﹣90°﹣90°﹣60°=120°;(2)证明:连接OP.在Rt△OAP和Rt△OBP中,,∴Rt△OAP≌Rt△OBP,∴PA=PB;(3)解:∵Rt△OAP≌Rt△OBP,∴∠OPA=OPB=∠APB=30°,在Rt△OAP中,OA=3,∴AP=3,∴S△OPA=×3×3=,∴S阴影=2×﹣=9﹣3π.点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.24.(12分)(2020•贵阳)如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.25.(12分)(2020•贵阳)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B (﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.考点:二次函数综合题.分析:(1)根据已知点的坐标代入已知的函数的解析式即可利用待定系数法确定二次函数的解析式;(2)首先根据平移确定平移后的函数的解析式,然后确定点P的坐标,然后求得点C的坐标,从而利用待定系数法确定直线AC的解析式,然后确定m的取值范围即可;(3)求出AB中点,过此点且垂直于AB的直线在x=1的交点应该为顶点P的临界点,顶点P继续向上移动,不存在Q点,向下存在两个点P.解答:解:(1)将A(0,﹣6),B(﹣2,0)代入y=x2+bx+c,得:,解得:,∴y=x2﹣2x﹣6,∴顶点坐标为(2,﹣8);(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1=(x﹣2+1)2﹣8+m,∴P(1,﹣8+m),在抛物线y=x2﹣2x﹣6中易得C(6,0),∴直线AC为y2=x﹣6,当x=1时,y2=﹣5,∴﹣5<﹣8+m<0,解得:3<m<8;(3)∵A(0,﹣6),B(﹣2,0),∴线段AB的中点坐标为(﹣1,﹣3),直线AB的解析式为y=﹣3x﹣6,∴过AB的中点且与AB垂直的直线的解析式为:y=x﹣,∴直线y=x﹣与x=1的交点坐标为(1,﹣),∴此时的点P的坐标为(1,﹣),∴此时向上平移了8﹣=个单位,∴①当3<m<时,存在两个Q点,可作出两个等腰三角形;②当m=时,存在一个点Q,可作出一个等腰三角形;③当<m<8时,Q点不存在,不能作出等腰三角形.点评:本题考查了二次函数的综合知识,题目中还渗透了分类讨论的数学思想,这也是中考中常常出现的重要的数学思想,应加强此类题目的训练.友情提示:一、认真对待每一次考试。
2020年贵州省贵阳市中考数学试卷附答案
2020年贵州省贵阳市中考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.计算(-3)×2的结果是( )A. -6B. -1C. 1D. 62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A. B. C. D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A. 直接观察B. 实验C. 调查D. 测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是( )A. 150°B. 120°C. 60°D. 30°5.当x=1时,下列分式没有意义的是( )A. B. C. D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A. B.C. D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A. 5B. 20C. 24D. 328.已知a<b,下列式子不一定成立的是( )A. a-1<b-1B. -2a>-2bC. a+1<b+1D. ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为( )A. 无法确定B.C. 1D. 210.已知二次函数y=ax2+bx+c的图象经过(-3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是( )A. -2或0B. -4或2C. -5或3D. -6或4二、填空题(本大题共5小题,共20.0分)11.化简x(x-1)+x的结果是______.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为______.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是______.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是______度.。
2020年贵州省贵阳市中考数学试卷附详细答案解析
2020年贵州省贵阳市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣22.(3分)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°3.(3分)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×1044.(3分)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.5.(3分)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A .B .C .D .6.(3分)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.87.(3分)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7(m3)2 2 4 1 1家庭数(个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和48.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.249.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④10.(3分)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48二、填空题(每小题4分,共20分)11.(4分)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为.12.(4分)方程(x﹣3)(x﹣9)=0的根是.13.(4分)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.14.(4分)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有个.15.(4分)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是.三、解答题(本大题共10小题,共100分)16.(8分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.17.(10分)2020年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= ,b= ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.18.(10分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.19.(10分)2020年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的 5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.20.(8分)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的 B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).21.(10分)“2020年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的 1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.22.(10分)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).23.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n <6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?24.(12分)(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E 是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.25.(12分)我们知道,经过原点的抛物线可以用y=ax2+bx(a≠0)表示,对于这样的抛物线:(1)当抛物线经过点(﹣2,0)和(﹣1,3)时,求抛物线的表达式;(2)当抛物线的顶点在直线y=﹣2x上时,求b的值;(3)如图,现有一组这样的抛物线,它们的顶点A1、A2、…,A n在直线y=﹣2x上,横坐标依次为﹣1,﹣2,﹣3,…,﹣n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1、B2,…,B n,以线段A n B n为边向左作正方形A n B n C n D n,如果这组抛物线中的某一条经过点D n,求此时满足条件的正方形A n B n C n D n的边长.2020年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2020•贵阳)在1、﹣1、3、﹣2这四个数中,互为相反数的是()A.1与﹣1 B.1与﹣2 C.3与﹣2 D.﹣1与﹣2【分析】根据相反数的概念解答即可.【解答】解:1与﹣1互为相反数,故选A.【点评】本题考查了相反数的概念:只有符号不同的两个数叫做互为相反数.2.(3分)(2020•贵阳)如图,a∥b,∠1=70°,则∠2等于()A.20°B.35°C.70°D.110°【分析】先根据平行线的性质得出∠3的度数,再根据对顶角相等求解.【解答】解:∵a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=∠1=70°,故选:C.【点评】本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同位角相等.3.(3分)(2020•贵阳)生态文明贵阳国际论坛作为我国目前唯一以生态文明为主题的国家级国际性论坛,现已被纳入国家“一带一路”总体规划,持续四届的成功举办,已相继吸引近7000名各国政要及嘉宾出席,7000这个数用科学记数法可表示为()A.70×102B.7×103C.0.7×104D.7×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于7000有4位,所以可以确定n=4﹣1=3.【解答】解:7000=7×103.故选:B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.4.(3分)(2020•贵阳)如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图解答即可.【解答】解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个矩形,故选:D.【点评】本题考查的是几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.5.(3分)(2020•贵阳)某学校在进行防溺水安全教育活动中,将以下几种在游泳时的注意事项写在纸条上并折好,内容分别是:①互相关心;②互相提醒;③不要相互嬉水;④相互比潜水深度;⑤选择水流湍急的水域;⑥选择有人看护的游泳池,小颖从这6张纸条中随机抽出一张,抽到内容描述正确的纸条的概率是()A.B.C.D.【分析】先找出正确的纸条,再根据概率公式即可得出答案.【解答】解:∵共有6张纸条,其中正确的有①互相关心;②互相提醒;③不要相互嬉水;⑥选择有人看护的游泳池,共4张,∴抽到内容描述正确的纸条的概率是=;故选C.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.6.(3分)(2020•贵阳)若直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),则a﹣b的值为()A.2 B.4 C.6 D.8【分析】把(2,8)代入y=﹣x+a和y=x+b,即可求出a、b,即可求出答案.【解答】解:∵直线y=﹣x+a与直线y=x+b的交点坐标为(2,8),∴8=﹣2+a,8=2+b,解得:a=10,b=6,∴a﹣b=4,故选B.【点评】本题考查了两直线的交点问题,能求出a、b的值是解此题的关键.7.(3分)(2020•贵阳)贵阳市“阳光小区”开展“节约用水,从我做起”的活动,一个月后,社区居委会从小区住户中抽取10个家庭与他们上月的用水量进行比较,统计出节水情况如下表:节水量0.3 0.4 0.5 0.6 0.7(m3)2 2 4 1 1家庭数(个)那么这10个家庭的节水量(m3)的平均数和中位数分别是()A.0.47和0.5 B.0.5和0.5 C.0.47和4 D.0.5和4【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:这10个数据的平均数为=0.47,中位数为=0.5,故选:A【点评】本题考查了中位数的定义:把一组数据按从小到大(或从大到小)排列,最中间那个数(或最中间两个数的平均数)叫这组数据的中位数.8.(3分)(2020•贵阳)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.24【分析】由平行四边形的性质得出DC=AB,AD=BC,由线段垂直平分线的性质得出AE=CE,得出△CDE的周长=AD+DC,即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴DC=AB,AD=BC,∵AC的垂直平分线交AD于点E,∴AE=CE,∴△CDE的周长=DE+CE+DC=DE+AE+DC=AD+DC=6,∴▱ABCD的周长=2×6=12;故选:B.【点评】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.9.(3分)(2020•贵阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,以下四个结论:①a>0;②c>0;③b2﹣4ac>0;④﹣<0,正确的是()A.①②B.②④C.①③D.③④【分析】①由抛物线开口向上可得出a>0,结论①正确;②由抛物线与y轴的交点在y轴负半轴可得出c<0,结论②错误;③由抛物线与x轴有两个交点,可得出△=b2﹣4ac>0,结论③正确;④由抛物线的对称轴在y轴右侧,可得出﹣>0,结论④错误.综上即可得出结论.【解答】解:①∵抛物线开口向上,∴a>0,结论①正确;②∵抛物线与y轴的交点在y轴负半轴,∴c<0,结论②错误;③∵抛物线与x轴有两个交点,∴△=b2﹣4ac>0,结论③正确;④∵抛物线的对称轴在y轴右侧,∴﹣>0,结论④错误.故选C.【点评】本题考查了二次函数图象与系数的关系以及抛物线与x轴的交点,观察函数图象逐一分析四条结论的正误是解题的关键.10.(3分)(2020•贵阳)如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,则S2的值为()A.12 B.18 C.24 D.48【分析】根据已知条件得到AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=3,由已知条件得到∠BAE=90°,根据勾股定理得到BE==2,于是得到结论.【解答】解:∵S1=3,S3=9,∴AB=,CD=3,过A作AE∥CD交BC于E,则∠AEB=∠DCB,∵AD∥BC,∴四边形AECD是平行四边形,∴CE=AD,AE=CD=3,∵∠ABC+∠DCB=90°,∴∠AEB+∠ABC=90°,∴∠BAE=90°,∴BE==2,∵BC=2AD,∴BC=2BE=4,∴S2=(4)2=48,故选D.【点评】本题考查了勾股定理,正方形的性质,平行四边形的判定和性质,正确的作出辅助线是解题的关键.二、填空题(每小题4分,共20分)11.(4分)(2020•贵阳)关于x的不等式的解集在数轴上表示如图所示,则该不等式的解集为x≤2 .【分析】观察数轴得到不等式的解集都在2的左侧包括2,根据数轴表示数的方法得到不等式的解集为x≤2.【解答】解:观察数轴可得该不等式的解集为x≤2.故答案为:x≤2.【点评】本题考查了在数轴表示不等式的解集,运用数形结合的思想是解答此题的关键.12.(4分)(2020•贵阳)方程(x﹣3)(x﹣9)=0的根是x1=3,x2=9 .【分析】先把一元二次方程转化成一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.【点评】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.13.(4分)(2020•贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O 的半径为6,则这个正六边形的边心距OM的长为3.【分析】根据正六边形的性质求出∠BOM,利用余弦的定义计算即可.【解答】解:连接OB,∵六边形ABCDEF是⊙O内接正六边形,∴∠BOM==30°,∴OM=OB•cos∠BOM=6×=3;故答案为:3.【点评】本题考查的是正多边形和圆的有关计算,掌握正多边形的中心角的计算公式、熟记余弦的概念是解题的关键.14.(4分)(2020•贵阳)袋子中有红球、白球共10个,这些球除颜色外都相同,将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断重复这一过程,摸了100次后,发现有30次摸到红球,请你估计这个袋中红球约有 3 个.【分析】首先求出摸到红球的频率,用频率去估计概率即可求出袋中红球约有多少个.【解答】解:∵摸了100次后,发现有30次摸到红球,∴摸到红球的频率==0.3,∵袋子中有红球、白球共10个,∴这个袋中红球约有10×0.3=3个,故答案为:3.【点评】此题考查利用频率估计概率.大量反复试验下频率稳定值即概率.同时也考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.15.(4分)(2020•贵阳)如图,在矩形纸片ABCD中,AB=2,AD=3,点E是AB的中点,点F是AD边上的一个动点,将△AEF沿EF所在直线翻折,得到△A′EF,则A′C的长的最小值是﹣1 .【分析】连接CE,根据折叠的性质可知A′E=1,在Rt△BCE中利用勾股定理可求出CE的长度,再利用三角形的三边关系可得出点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1,此题得解.【解答】解:连接CE,如图所示.根据折叠可知:A′E=AE=AB=1.在Rt△BCE中,BE=AB=1,BC=3,∠B=90°,∴CE==.∵CE=,A′E=1,∴点A′在CE上时,A′C取最小值,最小值为CE﹣A′E=﹣1.故答案为:﹣1.【点评】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的三边关系,利用三角形的三边关系可得出点A′在CE上时,A′C 取最小值是解题的关键.三、解答题(本大题共10小题,共100分)16.(8分)(2020•贵阳)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x 第一步=2xy+4x+1 第二步(1)小颖的化简过程从第一步开始出现错误;(2)对此整式进行化简.【分析】(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【解答】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.【点评】本题考查了单项式乘以多项式以及完全平方公式,掌握运算法则是解题的关键.17.(10分)(2020•贵阳)2020年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:(1)a= 14 ,b= 125 ;(结果保留整数)(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议.【分析】(1)根据题意列式计算即可;(2)根据2016年全年总天数为:125+225+14+1+1=366(天),即可得到结论;(3)首先求得2016年贵阳市空气质量优良的优良率为×100%≈95.6%,与今年前5 个月贵阳市空气质量优良率比较即可.【解答】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;故答案为:14,125;(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;(3)2016年贵阳市空气质量优良的优良率为×100%≈95.6%,∵94%<95.6%,∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.18.(10分)(2020•贵阳)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出∠BAC=60°,AC=AB=AE,证出△AEC 是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴∠BAC=60°,AC=AB=AE,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.19.(10分)(2020•贵阳)2020年5月25日,中国国际大数据产业博览会在贵阳会展中心开幕,博览会设了编号为1~6号展厅共6个,小雨一家计划利用两天时间参观其中两个展厅:第一天从6个展厅中随机选择一个,第二天从余下的 5个展厅中再随机选择一个,且每个展厅被选中的机会均等.(1)第一天,1号展厅没有被选中的概率是;(2)利用列表或画树状图的方法求两天中4号展厅被选中的概率.【分析】(1)根据有6个展厅,编号为1~6号,第一天,抽到1号展厅的概率是,从而得出1号展厅没有被选中的概率;(2)根据题意先列出表格,得出所有可能的数和两天中4号展厅被选中的结果数,然后根据概率公式即可得出答案.【解答】解:(1)根据题意得:第一天,1号展厅没有被选中的概率是:1﹣=;故答案为:;(2)根据题意列表如下:1 2 3 4 5 61 (1,2)(1,3)(1,4)(1,5)(1,6)2 (2,1)(2,3)(2,4)(2,5)(2,6)3 (3,1)(3,2)(3,4)(3,5)(3,6)4 (4,1)(4,2)(4,3)(4,5)(4,6)5 (5,1)(5,2)(5,3)(5,4)(5,6)6 (6,1)(6,2)(6,3)(6,4)(6,5)由表格可知,总共有30种可能的结果,每种结果出现的可能性相同,其中,两天中4号展厅被选中的结果有10种,所以,P(4号展厅被选=.中)=【点评】此题考查的是用列表法或树状图法求概率的知识.列表法或树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.20.(8分)(2020•贵阳)贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的 B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).【分析】延长AD交BC所在直线于点E.解Rt△ACE,得出CE=AE•tan60°=15米,解Rt△ABE,由tan∠BAE==,得出∠BAE≈71°.【解答】解:延长AD交BC所在直线于点E.由题意,得BC=17米,AE=15米,∠CAE=60°,∠AEB=90°,在Rt△ACE中,tan∠CAE=,∴CE=AE•tan60°=15米.在Rt△ABE中,tan∠BAE==,∴∠BAE≈71°.答:第二次施救时云梯与水平线的夹角∠BAD约为71°.【点评】本题考查了解直角三角形的应用,首先构造直角三角形,再运用三角函数的定义解题,构造出直角三角形是解题的关键.21.(10分)(2020•贵阳)“2020年张学友演唱会”于6月3日在我市关山湖奥体中心举办,小张去离家2520米的奥体中心看演唱会,到奥体中心后,发现演唱会门票忘带了,此时离演唱会开始还有23分钟,于是他跑步回家,拿到票后立刻找到一辆“共享单车”原路赶回奥体中心,已知小张骑车的时间比跑步的时间少用了4分钟,且骑车的平均速度是跑步的平均速度的 1.5倍.(1)求小张跑步的平均速度;(2)如果小张在家取票和寻找“共享单车”共用了5分钟,他能否在演唱会开始前赶到奥体中心?说明理由.【分析】(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)根据时间=路程÷速度求出小张跑步回家的时间,由骑车与跑步所需时间之间的关系可得出骑车的时间,再加上取票和寻找“共享单车”共用的 5分钟即可求出小张赶回奥体中心所需时间,将其与23进行比较后即可得出结论.【解答】解:(1)设小张跑步的平均速度为x米/分钟,则小张骑车的平均速度为1.5x米/分钟,根据题意得:﹣=4,解得:x=210,经检验,x=210是原方程组的解.答:小张跑步的平均速度为210米/分钟.(2)小张跑步到家所需时间为2520÷210=12(分钟),小张骑车所用时间为12﹣4=8(分钟),小张从开始跑步回家到赶回奥体中心所需时间为12+8+5=25(分钟),∵25>23,∴小张不能在演唱会开始前赶到奥体中心.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据时间=路程÷速度结合小张骑车的时间比跑步的时间少用了4分钟,列出关于x的分式方程;(2)根据数量关系,列式计算.22.(10分)(2020•贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC于点F.(1)求∠AFE的度数;(3)求阴影部分的面积(结果保留π和根号).【分析】(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAB=30°,于是得到结论;(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE=,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×2=π﹣.【点评】本题考查了扇形的面积,等边三角形的判定和性质,正确的作出辅助线是解题的关键.23.(10分)(2020•贵阳)如图,直线y=2x+6与反比例函数y=(k >0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.24.(12分)(2020•贵阳)(1)阅读理解:如图①,在四边形ABCD 中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.AB、AD、DC之间的等量关系为AD=AB+DC ;(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.【分析】(1)延长AE交DC的延长线于点F,证明△AEB≌△FEC,根据全等三角形的性质得到AB=FC,根据等腰三角形的判定得到DF=AD,证明结论;(2)延长AE交DF的延长线于点G,利用同(1)相同的方法证明;(3)延长AE交CF的延长线于点G,根据相似三角形的判定定理得到△AEB∽△GEC,根据相似三角形的性质得到AB=CG,计算即可.【解答】解:(1)如图①,延长AE交DC的延长线于点F,∵AB∥DC,∴∠BAF=∠F,∵E是BC的中点,∴CE=BE,在△AEB和△FEC中,。
2020年贵州省贵阳市中考数学试卷(含解析)
2020年贵州省贵阳市中考数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.计算(﹣3)×2的结果是()A.﹣6 B.﹣1 C.1 D.62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°5.当x=1时,下列分式没有意义的是()A.B.C.D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5 B.20 C.24 D.328.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1 B.﹣2a>﹣2bC.a+1<b+1 D.ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1 D.210.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m >0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0 B.﹣4或2 C.﹣5或3 D.﹣6或4二、填空题(每小题4分,共20分)11.化简x(x﹣1)+x的结果是.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE 的度数是度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC =11,则边BC的长为.三、解答题(本大题10小题,共100分16.(8分)如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.5 2 2.5 3 3.5 4人数/人 2 6 6 10 m 4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(10分)如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.(10分)如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G (点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.(10分)如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟) 0 1 2 3 4 5 6 7 8 9 9~15人数y(人)0 170 320 450 560 650 720 770 800 810 810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.参考答案与试题解析一、选择题1.【解答】解:原式=﹣3×2=﹣6.故选:A.2.【解答】解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.3.【解答】解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.4.【解答】解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.5.【解答】解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.6.【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.7.【解答】解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.8.【解答】解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.9.【解答】解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.10.【解答】解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.二、填空题11.【解答】解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.12.【解答】解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.13.【解答】解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.14.【解答】解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.15.【解答】解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4三、解答题16.【解答】解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.17.【解答】解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).18.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.19.【解答】解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).20.【解答】解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.21.【解答】解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF ∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.22.【解答】解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当x=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.23.【解答】解:(1)证明:∵∠CAD=∠ABD,又∵∠ABD=∠ACD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∵∠BDC=∠BAC,∴.24.【解答】解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=810,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.25.【解答】解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.∵四边形ABCD是正方形,AC是对角线,∴∠ECG=45°,由旋转得,四边形O'ABG是矩形,∴O'G=AB=BC,∠EGC=90°,∴△EGC为等腰直角三角形.∵点P是CE的中点,∴PC=PG=PE,∠CPG=90°,∠EGP=45°,∴△O'GP≌△BCP(SAS),∴∠O'PG=∠BPC,O'P=BP,∴∠O'PG﹣∠GPB=∠BPC﹣∠GPB=90°,∴∠O'PB=90°,∴△O'PB为等腰直角三角形,∵点Q是O'B的中点,∴PQ=O'B=BQ,PQ⊥O'B,∵AB=1,∴O'A=,∴O'B===,∴BQ=.∴S△PQB=BQ•PQ=×=。
2020年贵州省贵阳市中考数学试卷 (解析版)
2020年贵州省贵阳市中考数学试卷一、选择题(共10小题).1.计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°5.当x=1时,下列分式没有意义的是()A.B.C.D.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.328.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2bC.a+1<b+1D.ma>mb9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.210.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是度.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为.三、解答题:本大题10小题,共100分.16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是,位置关系是;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.参考答案一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(﹣3)×2的结果是()A.﹣6B.﹣1C.1D.6【分析】原式利用乘法法则计算即可求出值.解:原式=﹣3×2=﹣6.故选:A.2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.【分析】各选项袋子中分别共有10个小球,若要使摸到红球可能性最大,只需找到红球的个数最多的袋子即可得出答案.解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.4.如图,直线a,b相交于点O,如果∠1+∠2=60°,那么∠3是()A.150°B.120°C.60°D.30°【分析】根据对顶角相等求出∠1,再根据互为邻补角的两个角的和等于180°列式计算即可得解.解:∵∠1+∠2=60°,∠1=∠2(对顶角相等),∴∠1=30°,∵∠1与∠3互为邻补角,∴∠3=180°﹣∠1=180°﹣30°=150°.故选:A.5.当x=1时,下列分式没有意义的是()A.B.C.D.【分析】直接利用分式有意义的条件分析得出答案.解:A、,当x=1时,分式有意义不合题意;B、,当x=1时,x﹣1=0,分式无意义符合题意;C、,当x=1时,分式有意义不合题意;D、,当x=1时,分式有意义不合题意;故选:B.6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【分析】根据平行投影得特点,利用两小树的影子的方向相反可对A、B进行判断;利用在同一时刻阳光下,树高与影子成正比可对C、D进行判断.解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.7.菱形的两条对角线长分别是6和8,则此菱形的周长是()A.5B.20C.24D.32【分析】根据题意画出图形,由菱形的性质求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长.解:如图所示:∵四边形ABCD是菱形,AC=8,BD=6,∴AB=BC=CD=AD,OA=AC=4,OB=BD=3,AC⊥BD,∴AB===5,∴此菱形的周长=4×5=20;故选:B.8.已知a<b,下列式子不一定成立的是()A.a﹣1<b﹣1B.﹣2a>﹣2bC.a+1<b+1D.ma>mb【分析】根据不等式的基本性质进行判断.解:A、在不等式a<b的两边同时减去1,不等号的方向不变,即a﹣1<b﹣1,原变形正确,故此选项不符合题意;B、在不等式a<b的两边同时乘以﹣2,不等号方向改变,即﹣2a>﹣2b,原变形正确,故此选项不符合题意;C、在不等式a<b的两边同时乘以,不等号的方向不变,即a<b,不等式a<b的两边同时加上1,不等号的方向不变,即a+1<b+1,原变形正确,故此选项不符合题意;D、在不等式a<b的两边同时乘以m,不等式不一定成立,即ma>mb,或ma<mb,或ma=mb,原变形不正确,故此选项符合题意.故选:D.9.如图,Rt△ABC中,∠C=90°,利用尺规在BC,BA上分别截取BE,BD,使BE=BD;分别以D,E为圆心、以大于DE的长为半径作弧,两弧在∠CBA内交于点F;作射线BF交AC于点G.若CG=1,P为AB上一动点,则GP的最小值为()A.无法确定B.C.1D.2【分析】如图,过点G作GH⊥AB于H.根据角平分线的性质定理证明GH=GC=1,利用垂线段最短即可解决问题.解:如图,过点G作GH⊥AB于H.由作图可知,GB平分∠ABC,∵GH⊥BA,GC⊥BC,∴GH=GC=1,根据垂线段最短可知,GP的最小值为1,故选:C.10.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个根,其中一个根是3.则关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,这两个整数根是()A.﹣2或0B.﹣4或2C.﹣5或3D.﹣6或4【分析】根据题目中的函数解析式和二次函数与一元二次方程的关系,可以得到关于x 的方程ax2+bx+c+n=0 (0<n<m)的两个整数根,从而可以解答本题.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴当y=0时,0=ax2+bx+c的两个根为﹣3和1,函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴方程ax2+bx+c+m=0(m>0)的另一个根为﹣5,函数y=ax2+bx+c的图象开口向上,∵关于x的方程ax2+bx+c+n=0 (0<n<m)有两个整数根,∴这两个整数根是﹣4或2,故选:B.二、填空题:每小题4分,共20分.11.化简x(x﹣1)+x的结果是x2.【分析】先根据单项式乘以多项式法则算乘法,再合并同类项即可.解:x(x﹣1)+x=x2﹣x+x=x2,故答案为:x2.12.如图,点A是反比例函数y=图象上任意一点,过点A分别作x轴,y轴的垂线,垂足为B,C,则四边形OBAC的面积为3.【分析】根据反比例函数y=的图象上点的坐标性得出|xy|=3,进而得出四边形OQMP 的面积.解:∵过点A分别作x轴,y轴的垂线,垂足为B,C,∴AB×AC=|k|=3,则四边形OBAC的面积为:3.故答案为:3.13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.【分析】随着试验次数的增多,变化趋势接近于理论上的概率.解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是.故答案为:.14.如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.解:连接OA,OB,∵△ABC是⊙O的内接正三角形,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,∵∠CAB=60°,∴∠OAD=30°,∴∠OAD=∠OBE,∵AD=BE,∴△OAD≌△OBE(SAS),∴∠DOA=∠BOE,∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,故答案为:120.15.如图,△ABC中,点E在边AC上,EB=EA,∠A=2∠CBE,CD垂直于BE的延长线于点D,BD=8,AC=11,则边BC的长为4.【分析】延长BD到F,使得DF=BD,根据等腰三角形的性质与判定,勾股定理即可求出答案.解:延长BD到F,使得DF=BD,∵CD⊥BF,∴△BCF是等腰三角形,∴BC=CF,过点C点作CH∥AB,交BF于点H∴∠ABD=∠CHD=2∠CBD=2∠F,∴HF=HC,∵BD=8,AC=11,∴DH=BH﹣BD=AC﹣BD=3,∴HF=HC=8﹣3=5,在Rt△CDH,∴由勾股定理可知:CD=4,在Rt△BCD中,∴BC==4,故答案为:4三、解答题:本大题10小题,共100分.16.如图,在4×4的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.【分析】(1)构造边长3,4,5的直角三角形即可.(2)构造直角边为2,斜边为4的直角三角形即可(答案不唯一).(3)构造三边分别为2,,的直角三角形即可.解:(1)如图①中,△ABC即为所求.(2)如图②中,△ABC即为所求.(3)△ABC即为所求.17.2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为50,在表格中,m=22;(2)统计的这组数据中,每天听空中黔课时间的中位数是 3.5h,众数是 3.5h;(3)请就疫情期间如何学习的问题写出一条你的看法.【分析】(1)根据2小时的人数和所占的百分比求出本次调查的学生人数,进而求得m 的值;(2)根据中位数、众数的定义分别进行求解即可;(3)如:认真听课,独立思考(答案不唯一).解:(1)本次共调查的学生人数为:6÷12%=50(人),m=50×44%=22,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4,∵第25个数和第26个数都是3.5h,∴中位数是3.5h;∵3.5h出现了22次,出现的次数最多,∴众数是3.5h,故答案为:3.5h,3.5h;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一).18.如图,四边形ABCD是矩形,E是BC边上一点,点F在BC的延长线上,且CF=BE.(1)求证:四边形AEFD是平行四边形;(2)连接ED,若∠AED=90°,AB=4,BE=2,求四边形AEFD的面积.【分析】(1)先根据矩形的性质得到AD∥BC,AD=BC,然后证明AD=EF可判断四边形AEFD是平行四边形;(2)连接DE,如图,先利用勾股定理计算出AE=2,再证明△ABE∽△DEA,利用相似比求出AD,然后根据平行四边形的面积公式计算.【解答】(1)证明:∵∠四边形ABCD是矩形,∴AD∥BC,AD=BC,∵BE=CF,∴BE+EC=EC+EF,即BC=EF,∴AD=EF,∴四边形AEFD是平行四边形;(2)解:连接DE,如图,∵四边形ABCD是矩形,∴∠B=90°,在Rt△ABE中,AE==2,∵AD∥BC,∴∠AEB=∠EAD,∵∠B=∠AED=90°,∴△ABE∽△DEA,∴AE:AD=BE:AE,∴AD==10,∴四边形AEFD的面积=AB×AD=2×10=20.19.如图,一次函数y=x+1的图象与反比例函数y=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数y=x+1的图象向下平移2个单位,求平移后的图象与反比例函数y=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数y=的图象没有公共点.【分析】(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式,即可求解;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②即可求解;(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,则△=25+24k<0,解得:k<﹣,即可求解.解:(1)将x=2代入y=x+1=3,故其中交点的坐标为(2,3),将(2,3)代入反比例函数表达式并解得:k=2×3=6,故反比例函数表达式为:y=①;(2)一次函数y=x+1的图象向下平移2个单位得到y=x﹣1②,联立①②并解得:,故交点坐标为(﹣2,﹣3)或(3,2);(3)设一次函数的表达式为:y=kx+5③,联立①③并整理得:kx2+5x﹣6﹣0,∵两个函数没有公共点,故△=25+24k<0,解得:k<﹣,故可以取k=﹣2(答案不唯一),故一次函数表达式为:y=﹣2x+5(答案不唯一).20.“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为,那么应添加多少张《消防知识手册》卡片?请说明理由.【分析】(1)画出树状图,由概率公式即可得出答案;(2)设应添加x张《消防知识手册》卡片,由概率公式得出方程,解方程即可.解:(1)把《消防知识手册》《辞海》《辞海》分别即为A、B、C,画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为=;(2)设应添加x张《消防知识手册》卡片,由题意得:=,解得:x=4,经检验,x=4是原方程的解;答:应添加4张《消防知识手册》卡片.21.脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35°,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E 点的仰角为60°,房屋的顶层横梁EF=12m,EF∥CB,AB交EF于点G(点C,D,B在同一水平线上).(参考数据:sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,≈1.7)(1)求屋顶到横梁的距离AG;(2)求房屋的高AB(结果精确到1m).【分析】(1)根据题意得到AG⊥EF,EG=∠AEG=∠ACB=35°,解直角三角形即可得到结论;(2)过E作EH⊥CB于H,设EH=x,解直角三角形即可得到结论.解:(1)∵房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,EF∥BC,∴AG⊥EF,EG=∠AEG=∠ACB=35°,在Rt△AGE中,∠AGE=90°,∠AEG=35°,∵tan∠AEG=tan35°=,EG=6,∴AG=6×0.7=4.2(米);答:屋顶到横梁的距离AG为4.2米;(2)过E作EH⊥CB于H,设EH=x,在Rt△EDH中,∠EHD=90°,∠EDH=60°,∵tan∠EDH=,∴DH=,在Rt△ECH中,∠EHC=90°,∠ECH=35°,∵tan∠ECH=,∴CH=,∵CH﹣DH=CD=8,∴﹣=8,解得:x≈9.52,∴AB=AG+BG=13.72≈14(米),答:房屋的高AB为14米.22.第33个国际禁毒日到来之际,贵阳市策划了以“健康人生绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?【分析】(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据总共的费用为(1300﹣378)元列方程解答即可;(2)设笔记本的单价为a元,根据总共的费用为(1300﹣378)元列方程解求出方程的解,再根据a的取值范围以及一次函数的性质求出x的值,再把x的值代入方程的解即可求出a的值.解:(1)设单价为6元的钢笔买了x支,则单价为10元的钢笔买了(100﹣x)支,根据题意,得:6x+10(100﹣x)=1300﹣378,解得x=19.5,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a元,根据题意,得:6x+10(100﹣x)+a=1300﹣378,整理,得:x=,因为0<a<10,x随a的增大而增大,所以19.5<x<22,∵x取整数,∴x=20,21.当x=20时,a=4×20﹣78=2;当a=21时,a=4×21﹣78=6,所以笔记本的单价可能是2元或6元.23.如图,AB为⊙O的直径,四边形ABCD内接于⊙O,对角线AC,BD交于点E,⊙O 的切线AF交BD的延长线于点F,切点为A,且∠CAD=∠ABD.(1)求证:AD=CD;(2)若AB=4,BF=5,求sin∠BDC的值.【分析】(1)根据圆周角定理得∠ABD=∠ACD,进而得∠ACD=∠CAD,便可由等腰三角形判定定理得AD=CD;(2)证明△ADF≌△ADE,得AE=AF,DE=DF,由勾股定理求得AF,由三角形面积公式求得AD,进而求得DE,BE,再证明△BEC∽△AED,得BC,进而求得sin∠BAC便可.解:(1)证明:∵∠CAD=∠ABD,∴∠ACD=∠CAD,∴AD=CD;(2)∵AF是⊙O的切线,∴∠FAB=90°,∵AB是⊙O的直径,∴∠ACB=∠ADB=∠ADF=90°,∴∠ABD+∠BAD=∠BAD+∠FAD=90°,∴∠ABD=∠FAD,∵∠ABD=∠CAD,∴∠FAD=∠EAD,∵AD=AD,∴△ADF≌△ADE(ASA),∴AF=AE,DF=DE,∵AB=4,BF=5,∴AF=,∴AE=AF=3,∵,∴,∴DE=,∴BE=BF﹣2DE=,∵∠AED=∠BED,∠ADE=∠BCE=90°,∴△BEC∽△AED,∴,∴,∴,∴.24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示9<x≤15)时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?【分析】(1)分两种情况讨论,利用待定系数法可求解析式;(2)设第x分钟时的排队人数为w人,由二次函数的性质和一次函数的性质可求当x =7时,w的最大值=490,当9<x≤15时,210≤w<450,可得排队人数最多时是490人,由全部考生都完成体温检测时间×每分钟检测的人数=总人数,可求解;(3)设从一开始就应该增加m个检测点,由“在12分钟内让全部考生完成体温检测”,列出不等式,可求解.解:(1)由表格中数据的变化趋势可知,①当0≤x≤9时,y是x的二次函数,∵当x=0时,y=0,∴二次函数的关系式可设为:y=ax2+bx,由题意可得:,解得:,∴二次函数关系式为:y=﹣10x2+180x,②当9<x≤15时,y=180,∴y与x之间的函数关系式为:y=;(2)设第x分钟时的排队人数为w人,由题意可得:w=y﹣40x=,①当0≤x≤9时,w=﹣10x2+140x=﹣10(x﹣7)2+490,∴当x=7时,w的最大值=490,②当9<x≤15时,w=810﹣40x,w随x的增大而减小,∴210≤w<450,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810﹣40x=0,解得:x=20.25,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟;(3)设从一开始就应该增加m个检测点,由题意得:12×20(m+2)≥810,解得m≥,∵m是整数,∴m≥的最小整数是2,∴一开始就应该至少增加2个检测点.25.如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO的数量关系是PQ=BO,位置关系是PQ⊥BO;(2)问题探究:如图②,△AO'E是将图①中的△AOB绕点A按顺时针方向旋转45°得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断△PQB 的形状,并证明你的结论;(3)拓展延伸:如图③,△AO'E是将图①中的△AOB绕点A按逆时针方向旋转45°得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD的边长为1,求△PQB的面积.【分析】(1)由正方形的性质得出BO⊥AC,BO=CO,由中位线定理得出PQ∥OC,PQ=OC,则可得出结论;(2)连接O'P并延长交BC于点F,由旋转的性质得出△AO'E是等腰直角三角形,O'E ∥BC,O'E=O'A,证得∠O'EP=∠FCP,∠PO'E=∠PFC,△O'PE≌△FPC(AAS),则O'E=FC=O'A,O'P=FP,证得△O'BF为等腰直角三角形.同理△BPO'也为等腰直角三角形,则可得出结论;(3)延长O'E交BC边于点G,连接PG,O'P.证明△O'GP≌△BCP(SAS),得出∠O'PG=∠BPC,O'P=BP,得出∠O'PB=90°,则△O'PB为等腰直角三角形,由直角三角形的性质和勾股定理可求出O'A和O'B,求出BQ,由三角形面积公式即可得出答案.解:(1)∵点O为对角线AC的中点,∴BO⊥AC,BO=CO,∵P为BC的中点,Q为BO的中点,∴PQ∥OC,PQ=OC,∴PQ⊥BO,PQ=BO;故答案为:PQ=BO,PQ⊥BO.(2)△PQB的形状是等腰直角三角形.理由如下:连接O'P并延长交BC于点F,∵四边形ABCD是正方形,∴AB=BC,∠ABC=90°,∵将△AOB绕点A按顺时针方向旋转45°得到△AO'E,∴△AO'E是等腰直角三角形,O'E∥BC,O'E=O'A,∴∠O'EP=∠FCP,∠PO'E=∠PFC,又∵点P是CE的中点,∴CP=EP,∴△O'PE≌△FPC(AAS),∴O'E=FC=O'A,O'P=FP,∴AB﹣O'A=CB﹣FC,∴BO'=BF,∴△O'BF为等腰直角三角形.∴BP⊥O'F,O'P=BP,∴△BPO'也为等腰直角三角形.又∵点Q为O'B的中点,∴PQ⊥O'B,且PQ=BQ,∴△PQB的形状是等腰直角三角形;(3)延长O'E交BC边于点G,连接PG,O'P.。
2020年贵州省贵阳市中考数学试卷
部分初三学生每天听空中黔课时间的人数统计表
时间 /h
1.5
2
2.5
3
3.5
4
人数 / 人
2
6
6
10
m
4
(1)本次共调查的学生人数为 ,在表格中, m = ; (2)统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 ; (3)请就疫情期间如何学习的问题写出一条你的看法.
18.(10 分)如图,四边形 ABCD 是矩形, E 是 BC 边上一点,点 F 在 BC 的延长线上,且 CF = BE . (1)求证:四边形 AEFD 是平行四边形; (2)连接 ED ,若 AED = 90 , AB = 4 , BE = 2 ,求四边形 AEFD 的面积.
79,68,85,82,69,70.
获得这组数据的方法是:调查.
第9页(共28页)
故选: C . 4.(3 分)如图,直线 a , b 相交于点 O ,如果 1 + 2 = 60 ,那么 3 是 ( )
A.150
B.120
C. 60
D. 30
【解答】解: 1 + 2 = 60 , 1 = 2 (对顶角相等),
第6页(共28页)
24.(12 分)2020 年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了 解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人 数 y (人 ) 与时间 x (分钟)的变化情况,数据如下表:(表中 9 ~ 15 表示 9 x„ 15) 时间 x (分钟) 0 1 2 3 4 5 6 7 8 9 9 ~ 15
22.(10 分)第 33 个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题 的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委 员对话如下:
2020年贵州省贵阳市中考数学试卷
2020年贵州省贵阳市中考数学试卷一、选择题:以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是( )A .6-B .1-C .1D .62.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A .B .C .D .3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是( )A .直接观察B .实验C .调查D .测量4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A .150︒B .120︒C .60︒D .30︒5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x -D .1x x + 6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A .B .C .D .7.菱形的两条对角线长分别是6和8,则此菱形的周长是( )A .5B .20C .24D .328.已知a b <,下列式子不一定成立的是( )A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF 交AC 于点G .若1CG =,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .210.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++= (0)n m <<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4二、填空题:每小题4分,共20分.11.(4分)化简(1)x x x -+的结果是 . 12.(4分)如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为 .13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .14.(4分)如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是 度.15.(4分)如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为 .三、解答题:本大题10小题,共100分.16.(8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表 时间/h 1.5 2 2.5 3 3.5 4 人数/人 2 6 6 10 m4 (1)本次共调查的学生人数为 ,在表格中,m = ;(2)统计的这组数据中,每天听空中黔课时间的中位数是 ,众数是 ;(3)请就疫情期间如何学习的问题写出一条你的看法.18.(10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.19.(10分)如图,一次函数1y x=+的图象与反比例函数kyx=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x=+的图象向下平移2个单位,求平移后的图象与反比例函数kyx=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数kyx=的图象没有公共点.20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB所在的直线,为了测量房屋的高度,在地面上C点测得屋顶A的仰角为35︒,此时地面上C点、屋檐上E点、屋顶上A点三点恰好共线,继续向房屋方向走8m到达点D时,又测得屋檐E点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,3 1.7)≈(1)求屋顶到横梁的距离AG ;(2)求房屋的高AB (结果精确到1)m .22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元?23.(10分)如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠.(1)求证:AD CD =;(2)若4AB =,5BF =,求sin BDC ∠的值.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y(人)与时间x(分钟)的变化情况,数据如下表:(表中9~15表示915)x<时间x(分钟)01234567899~15人数y(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y与x之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?25.(12分)如图,四边形ABCD是正方形,点O为对角线AC的中点.(1)问题解决:如图①,连接BO,分别取CB,BO的中点P,Q,连接PQ,则PQ与BO 的数量关系是,位置关系是;∆绕点A按顺时针方向旋转45︒得到(2)问题探究:如图②,△AO E'是将图①中的AOB的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断PQB∆的形状,并证明你的结论;∆绕点A按逆时针方向旋转45︒得到(3)拓展延伸:如图③,△AO E'是将图①中的AOB的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD 的边长为1,求PQB∆的面积.2020年贵州省贵阳市中考数学试卷参考答案与试题解析一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.计算(3)2-⨯的结果是()A.6-B.1-C.1D.6=-⨯解:原式32=-.6故选:A.2.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是()A.B.C.D.解:在四个选项中,D选项袋子中红球的个数最多,所以从D选项袋子中任意摸出一个球,摸到红球可能性最大,故选:D.3.2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量解:一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C .4.如图,直线a ,b 相交于点O ,如果1260∠+∠=︒,那么3∠是( )A .150︒B .120︒C .60︒D .30︒ 解:1260∠+∠=︒,12∠=∠(对顶角相等),130∴∠=︒,1∠与3∠互为邻补角,3180118030150∴∠=︒-∠=︒-︒=︒.故选:A .5.当1x =时,下列分式没有意义的是( )A .1x x +B .1x x -C .1x x- D .1x x + 解:A 、1x x+,当1x =时,分式有意义不合题意; B 、1x x -,当1x =时,10x -=,分式无意义符合题意; C 、1x x-,当1x =时,分式有意义不合题意; D 、1x x +,当1x =时,分式有意义不合题意; 故选:B . 6.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )A .B .C .D .解:A 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A 选项错误;B 、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B 选项错误;C 、在同一时刻阳光下,树高与影子成正比,所以C 选项正确.D 、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D 选项错误;故选:C .7.菱形的两条对角线长分别是6和8,则此菱形的周长是( ) A .5 B .20C .24D .32解:如图所示:四边形ABCD 是菱形,8AC =,6BD =,AB BC CD AD ∴===,142OA AC ==,132OB BD ==,AC BD ⊥, 2222435AB OA OB ∴=+=+=, ∴此菱形的周长4520=⨯=;故选:B .8.已知a b <,下列式子不一定成立的是( ) A .11a b -<-B .22a b ->-C .111122a b +<+D .ma mb >解:A 、在不等式a b <的两边同时减去1,不等号的方向不变,即11a b -<-,原变形正确,故此选项不符合题意;B 、在不等式a b <的两边同时乘以2-,不等号方向改变,即22a b ->-,原变形正确,故此选项不符合题意;C 、在不等式a b <的两边同时乘以12,不等号的方向不变,即1122a b <,不等式1122a b <的两边同时加上1,不等号的方向不变,即111122a b +<+,原变形正确,故此选项不符合D 、在不等式a b <的两边同时乘以m ,不等式不一定成立,即ma mb >,或ma mb <,或ma mb =,原变形不正确,故此选项符合题意.故选:D .9.如图,Rt ABC ∆中,90C ∠=︒,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE BD =;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在CBA ∠内交于点F ;作射线BF交AC 于点G .若1CG =,P 为AB 上一动点,则GP 的最小值为( )A .无法确定B .12C .1D .2解:如图,过点G 作GH AB ⊥于H .由作图可知,GB 平分ABC ∠,GH BA ⊥,GC BC ⊥, 1GH GC ∴==,根据垂线段最短可知,GP 的最小值为1, 故选:C .10.已知二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.则关于x 的方程20ax bx c n +++=(0)n m <<有两个整数根,这两个整数根是( )A .2-或0B .4-或2C .5-或3D .6-或4解:二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,∴当0y =时,20ax bx c =++的两个根为3-和1,函数2y ax bx c =++的对称轴是直线又关于x 的方程20(0)ax bx c m m +++=>有两个根,其中一个根是3.∴方程20(0)ax bx c m m +++=>的另一个根为5-,函数2y ax bx c =++的图象开口向上,关于x 的方程20ax bx c n +++= (0)n m <<有两个整数根,∴这两个整数根是4-或2,故选:B .二、填空题:每小题4分,共20分. 11.(4分)化简(1)x x x -+的结果是 2x . 解:(1)x x x -+ 2x x x =-+ 2x =,故答案为:2x .12.(4分)如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为 3 .解:过点A 分别作x 轴,y 轴的垂线,垂足为B ,C , ||3AB AC k ∴⨯==,则四边形OBAC 的面积为:3. 故答案为:3.13.(4分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 16. 解:在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是16.故答案为:16. 14.(4分)如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是 120 度.解:连接OA ,OB ,ABC ∆是O 的内接正三角形, 120AOB ∴∠=︒, OA OB =,30OAB OBA ∴∠=∠=︒, 60CAB ∠=︒, 30OAD ∴∠=︒, OAD OBE ∴∠=∠, AD BE =,()OAD OBE SAS ∴∆≅∆,DOA BOE ∴∠=∠,120DOE DOA AOE AOB AOE BOD ∴∠=∠+∠=∠=∠+∠=︒,故答案为:120.15.(4分)如图,ABC ∆中,点E 在边AC 上,EB EA =,2A CBE ∠=∠,CD 垂直于BE 的延长线于点D ,8BD =,11AC =,则边BC 的长为 45 .解:延长BD到F,使得DF BD=,⊥,CD BF∴∆是等腰三角形,BCF∴=,BC CFCH AB,交BF于点H过点C点作//∴∠=∠=∠=∠,ABD CHD CBD F22∴=,HF HCBD=,11AC=,8∴=-=-=,DH BH BD AC BD3∴==-=,835HF HC∆,在Rt CDH∴由勾股定理可知:4CD=,∆中,在Rt BCD22∴=+=,8445BC故答案为:45三、解答题:本大题10小题,共100分.16.(8分)如图,在44⨯的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图①中,画一个直角三角形,使它的三边长都是有理数;(2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;(3)在图③中,画一个直角三角形,使它的三边长都是无理数.∆即为所求.解:(1)如图①中,ABC∆即为所求.(2)如图②中,ABC∆即为所求.(3)ABC17.(10分)2020年2月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题:部分初三学生每天听空中黔课时间的人数统计表时间/h 1.52 2.53 3.54人数/人26610m4(1)本次共调查的学生人数为50,在表格中,m=;(2)统计的这组数据中,每天听空中黔课时间的中位数是,众数是;(3)请就疫情期间如何学习的问题写出一条你的看法.解:(1)本次共调查的学生人数为:612%50÷=(人),5044%22m =⨯=,故答案为:50,22;(2)由条形统计图得,2个1.5,6个2,6个2.5,10个3,22个3.5,4个4, 第25个数和第26个数都是3.5h ,∴中位数是3.5h ;3.5h 出现了22次,出现的次数最多, ∴众数是3.5h ,故答案为:3.5h ,3.5h ;(3)就疫情期间如何学习的问题,我的看法是:认真听课,独立思考(答案不唯一). 18.(10分)如图,四边形ABCD 是矩形,E 是BC 边上一点,点F 在BC 的延长线上,且CF BE =.(1)求证:四边形AEFD 是平行四边形;(2)连接ED ,若90AED ∠=︒,4AB =,2BE =,求四边形AEFD 的面积.(1)证明:∠四边形ABCD 是矩形,//AD BC ∴,AD BC =, BE CF =,BE EC EC EF ∴+=+,即BC EF =, AD EF ∴=,∴四边形AEFD 是平行四边形;(2)解:连接DE ,如图, 四边形ABCD 是矩形,90B ∴∠=︒,在Rt ABE ∆中,224225AE =+=,//AD BC , AEB EAD ∴∠=∠,90B AED ∠=∠=︒, ABE DEA ∴∆∆∽,::AE AD BE AE ∴=,2525102AD ⨯∴==, ∴四边形AEFD 的面积21020AB AD =⨯=⨯=.19.(10分)如图,一次函数1y x =+的图象与反比例函数ky x=的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数1y x =+的图象向下平移2个单位,求平移后的图象与反比例函数k y x=图象的交点坐标;(3)直接写出一个一次函数,使其过点(0,5),且与反比例函数ky x=的图象没有公共点.解:(1)将2x =代入13y x =+=,故其中交点的坐标为(2,3), 将(2,3)代入反比例函数表达式并解得:236k =⨯=, 故反比例函数表达式为:6y x=①;(2)一次函数1y x =+的图象向下平移2个单位得到1y x =-②, 联立①②并解得:2332x x y y =-=⎧⎧⎨⎨=-=⎩⎩或, 故交点坐标为(2,3)--或(3,2);(3)设一次函数的表达式为:5y kx =+③, 联立①③并整理得:2560kx x +--,两个函数没有公共点,故△25240k =+<,解得:2524k <-, 故可以取2k =-(答案不唯一),故一次函数表达式为:25y x =-+(答案不唯一).20.(10分)“2020第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是:准备3张大小一样,背面完全相同的卡片,3张卡片的正面所写内容分别是《消防知识手册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡片上相应的书籍.(1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一张卡片,请用列表或画树状图的方法,求恰好抽到2张卡片都是《辞海》的概率;(2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任意抽出一张,使得抽到《消防知识手册》卡片的概率为57,那么应添加多少张《消防知识手册》卡片?请说明理由.解:(1)把《消防知识手册》《辞海》《辞海》分别即为A 、B 、C , 画树状图如图:共有6个等可能的结果,恰好抽到2张卡片都是《辞海》的结果有2个,∴恰好抽到2张卡片都是《辞海》的概率为2163=; (2)设应添加x 张《消防知识手册》卡片, 由题意得:1537x x +=+, 解得:4x =,经检验,4x =是原方程的解;答:应添加4张《消防知识手册》卡片.21.(8分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋,如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,为了测量房屋的高度,在地面上C 点测得屋顶A 的仰角为35︒,此时地面上C 点、屋檐上E 点、屋顶上A 点三点恰好共线,继续向房屋方向走8m 到达点D 时,又测得屋檐E 点的仰角为60︒,房屋的顶层横梁12EF m =,//EF CB ,AB 交EF 于点G (点C ,D ,B 在同一水平线上).(参考数据:sin350.6︒≈,cos350.8︒≈,tan350.7︒≈,3 1.7)≈ (1)求屋顶到横梁的距离AG ; (2)求房屋的高AB (结果精确到1)m .解:(1)房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高AB 所在的直线,//EF BC ,AG EF ∴⊥,12EG EF =,35AEG ACB ∠=∠=︒,在Rt AGE ∆中,90AGE ∠=︒,35AEG ∠=︒,tan tan35AGAEG EG∠=︒=,6EG =, 60.7 4.2AG ∴=⨯=(米);答:屋顶到横梁的距离AG 为4.2米; (2)过E 作EH CB ⊥于H , 设EH x =,在Rt EDH ∆中,90EHD ∠=︒,60EDH ∠=︒,tan EHEDH DH∠=, tan 60xDH ∴=︒, 在Rt ECH ∆中,90EHC ∠=︒,35ECH ∠=︒,tan EHECH CH∠=, tan35xCH ∴=︒, 8CH DH CD -==, ∴8tan35tan 60x x-=︒,解得:9.52x ≈,13.7214AB AG BG ∴=+=≈(米),答:房屋的高AB 为14米.22.(10分)第33个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生活委员对话如下:(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了;(2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单价已模糊不清,只能辨认出单价是小于10元的整数,那么笔记本的单价可能是多少元? 解:(1)设单价为6元的钢笔买了x 支,则单价为10元的钢笔买了(100)x -支,根据题意,得:610(100)1300378x x +-=-,解得19.5x =,因为钢笔的数量不可能是小数,所以学习委员搞错了;(2)设笔记本的单价为a 元,根据题意,得: 610(100)1300378x x a +-+=-,整理,得:13942x a =+,因为010a <<,x 随a 的增大而增大,所以19.522x <<,x 取整数,20x ∴=,21.当20x =时,420782a =⨯-=; 当21x =时,421786a =⨯-=, 所以笔记本的单价可能是2元或6元.23.(10分)如图,AB 为O 的直径,四边形ABCD 内接于O ,对角线AC ,BD 交于点E ,O 的切线AF 交BD 的延长线于点F ,切点为A ,且CAD ABD ∠=∠. (1)求证:AD CD =;(2)若4AB =,5BF =,求sin BDC ∠的值.解:(1)证明:CAD ABD ∠=∠, 又ABD ACD ∠=∠,ACD CAD ∴∠=∠, AD CD ∴=;(2)AF 是O 的切线,90FAB ∴∠=︒, AB 是O 的直径,90ACB ADB ADF ∴∠=∠=∠=︒, 90ABD BAD BAD FAD ∴∠+∠=∠+∠=︒, ABD FAD ∴∠=∠,ABD CAD ∠=∠, FAD EAD ∴∠=∠, AD AD =,()ADF ADE ASA ∴∆≅∆,AF AE ∴=,DF DE =, 4AB =,5BF =,223AF BF AB ∴=-=,3AE AF ∴==,1122ABF S AB AF BF AD ∆==, ∴431255AB AF AD BF ⨯===,22222493()55DE AE AD ∴=--=,725BE BF DE ∴=-=,AED BEC ∠=∠,90ADE BCE ∠=∠=︒, BEC AED ∴∆∆∽, ∴BE BCAE AD=, ∴2825BE AD BC AE ==,∴7sin 25BC BAC AB ∠==, BDC BAC ∠=∠, ∴7sin 25BDC ∠=.24.(12分)2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数y (人)与时间x (分钟)的变化情况,数据如下表:(表中9~15表示915)x < 时间x (分钟) 0 1 2 3 4 5 6 7 8 9 9~15人数y (人)170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出y 与x 之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?解:(1)由表格中数据的变化趋势可知, ①当09x 时,y 是x 的二次函数, 当0x =时,0y =,∴二次函数的关系式可设为:2y ax bx =+,由题意可得:17045093a ba b =+⎧⎨=+⎩,解得:10180a b =-⎧⎨=⎩,∴二次函数关系式为:210180y x x =-+,②当915x <时,810y =,y ∴与x 之间的函数关系式为:210180(09)810(915)x x x y x ⎧-+=⎨<⎩; (2)设第x 分钟时的排队人数为w 人,由题意可得:210140(09)4081040(915)x x x w y x x x ⎧-+=-=⎨-<⎩,①当09x 时,221014010(7)490w x x x =-+=--+,∴当7x =时,w 的最大值490=,②当915x <时,81040w x =-,w 随x 的增大而减小,210450w ∴<,∴排队人数最多时是490人,要全部考生都完成体温检测,根据题意得:810400x -=, 解得:20.25x =,答:排队人数最多时有490人,全部考生都完成体温检测需要20.25分钟; (3)设从一开始就应该增加m 个检测点,由题意得:1220(2)810m ⨯+, 解得118m, m 是整数, 118m∴的最小整数是2, ∴一开始就应该至少增加2个检测点.25.(12分)如图,四边形ABCD 是正方形,点O 为对角线AC 的中点.(1)问题解决:如图①,连接BO ,分别取CB ,BO 的中点P ,Q ,连接PQ ,则PQ 与BO的数量关系是12PQ BO=,位置关系是;(2)问题探究:如图②,△AO E'是将图①中的AOB∆绕点A按顺时针方向旋转45︒得到的三角形,连接CE,点P,Q分别为CE,BO'的中点,连接PQ,PB.判断PQB∆的形状,并证明你的结论;(3)拓展延伸:如图③,△AO E'是将图①中的AOB∆绕点A按逆时针方向旋转45︒得到的三角形,连接BO',点P,Q分别为CE,BO'的中点,连接PQ,PB.若正方形ABCD 的边长为1,求PQB∆的面积.解:(1)点O为对角线AC的中点,BO AC∴⊥,BO CO=,P为BC的中点,Q为BO的中点,//PQ OC ∴,12PQ OC=,PQ BO ∴⊥,12PQ BO=;故答案为:12PQ BO=,PQ BO⊥.(2)PQB∆的形状是等腰直角三角形.理由如下:连接O P'并延长交BC于点F,四边形ABCD 是正方形,AB BC ∴=,90ABC ∠=︒,将AOB ∆绕点A 按顺时针方向旋转45︒得到△AO E ',∴△AO E '是等腰直角三角形,//O E BC ',O E O A ''=,O EP FCP '∴∠=∠,PO E PFC '∠=∠,又点P 是CE 的中点,CP EP ∴=,∴△()O PE FPC AAS '≅∆,O E FC O A ''∴==,O P FP '=, AB O A CB FC '∴-=-, BO BF '∴=,∴△O BF '为等腰直角三角形.BP O F '∴⊥,O P BP '=, BPO '∴∆也为等腰直角三角形.又点Q 为O B '的中点, PQ O B '∴⊥,且PQ BQ =, PQB ∴∆的形状是等腰直角三角形;(3)延长O E '交BC 边于点G ,连接PG ,O P '.四边形ABCD 是正方形,AC 是对角线,45ECG ∴∠=︒,由旋转得,四边形O ABG '是矩形,O G AB BC '∴==,90EGC ∠=︒, EGC ∴∆为等腰直角三角形.点P 是CE 的中点,PC PG PE ∴==,90CPG ∠=︒,45EGP ∠=︒, ∴△()O GP BCP SAS '≅∆,O PG BPC '∴∠=∠,O P BP '=,90O PG GPB BPC GPB '∴∠-∠=∠-∠=︒, 90O PB '∴∠=︒,∴△O PB '为等腰直角三角形,点Q 是O B '的中点,12PQ O B BQ '∴==,PQ O B '⊥,1AB =,22O A '∴=, 222226()12O B O A AB ''∴=+=+ 6BQ ∴=116632216PQB S BQ PQ ∆∴==⨯=.。
贵州省贵阳市2020中考试卷数学试题(原卷版)
15.如图, 中,点 在边 上, , , 垂直于 的延长线于点 , , ,则边 的长为_____.
三、解答题:本大题10小题,共100分.
16.如图,在 的正方形网格中,每个小格的顶点叫做格点,以格点为项点分别按下列要求画三角形.
23.如图, 为 的直径,四边形 内接于 ,对角线 , 交于点 , 的切线 交 的延长线于点 ,切点为 ,且 .
(1)求证: ;
(2)若 ,求 的值.
24.2020年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数 (人)与时间 (分钟)的变化情况,数据如下表:(表中9-15表示 )
A. 或0B. 或2C. 或3D. 或4
二、填空题:每小题4分,共20分.
11.化简 的结果是_____.
12.如图,点 是反比例函数 图象上任意一点,过点 分别作 轴, 轴的垂线,垂足为 , ,则四边形 的面积为____.
13.在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是_____.
A. B. C. D.
9.如图, 中, ,利用尺规在 , 上分别截取 , ,使 ;分别以 , 为圆心、以大于 为长的半径作弧,两弧在 内交于点 ;作射线 交 于点 ,若 , 为 上一动点,则 的最小值为()
A.无法确定B. C.1D.2
10.已知二次函数 的图象经过 与 两点,关于 的方程 有两个根,其中一个根是3.则关于 的方程 有两个整数根,这两个整数根是()
2020年贵州省贵阳市中考数学试卷
C.
D.
【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以 A
选项错误;
B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以 B 选项错误;
C、在同一时刻阳光下,树高与影子成正比,所以 C 选项正确.
D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以 D 选项错
22.(10 分)第 33 个国际禁毒日到来之际,贵阳市策划了以“健康人生 绿色无毒”为主题 的禁毒宣传月活动,某班开展了此项活动的知识竞赛.学习委员为班级购买奖品后与生 活委员对话如下:
第 4页(共 19页)
(1)请用方程的知识帮助学习委员计算一下,为什么说学习委员搞错了; (2)学习委员连忙拿出发票,发现的确错了,因为他还买了一本笔记本,但笔记本的单 价已模糊不清,只能辨认出单价是小于 10 元的整数,那么笔记本的单价可能是多少元? 23.(10 分)如图,AB 为⊙O 的直径,四边形 ABCD 内接于⊙O,对角线 AC,BD 交于点 E, ⊙O 的切线 AF 交 BD 的延长线于点 F,切点为 A,且∠CAD=∠ABD. (1)求证:AD=CD; (2)若 AB=4,BF=5,求 sin∠BDC 的值.
第 5页(共 19页)
2020 年贵州省贵阳市中考数学试卷
参考答案与试题解析
一、选择题:以下每小题均有 A、B、C、D 四个选项,其中只有一个选项正确,请用 2B
铅笔在答题卡相应位置作答,每小题 3 分,共 30 分.
1.计算(﹣3)×2 的结果是( )
A.﹣6
B.﹣1
C.1
D.6
【解答】解:原式=﹣3×2
4.如图,直线 a,b 相交于点 O,如果∠1+∠2=60°,那么∠3 是( )
2020学年贵州省贵阳市中考试题数学及答案解析
2020年贵州省贵阳市中考试题数学一、选择题(以下每个小题均有A、B、C、D四个选项.其中只有一个选项正确.请用2B铅笔在答题卡相应位置作答.每题3分.共30分)1.当x=-1时,代数式3x+1的值是( )A.-1B.-2C.4D.-4解析:把x=-1代入3x+1=-3+1=-2.答案:B.2.如图,在△ABC中有四条线段DE,BE,EF,FG,其中有一条线段是△ABC的中线,则该线段是( )A.线段DEB.线段BEC.线段EFD.线段FG解析:根据三角形中线的定义知线段BE是△ABC的中线.答案:B.3.如图是一个几何体的主视图和俯视图,则这个几何体是( )A.三棱柱B.正方体C.三棱锥D.长方体解析:根据三视图得出几何体为三棱柱即可.答案:A.4.在“生命安全”主题教育活动中,为了解甲、乙、丙、丁四所学校学生对生命安全知识掌握情况,小丽制定了如下方案,你认为最合理的是( )A.抽取乙校初二年级学生进行调查B.在丙校随机抽取600名学生进行调查C.随机抽取150名老师进行调查D.在四个学校各随机抽取150名学生进行调査解析:根据抽样调查的具体性和代表性解答即可.答案:D.5.如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD 的周长为( )A.24B.18C.12D.9解析:∵E是AC中点,∵EF∥BC,交AB于点F,∴EF是△ABC的中位线,∴EF=12BC,∴BC=6,∴菱形ABCD的周长是4×6=24.答案:A.6.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )A.-2B.0C.1D.4解析:∵点A、B表示的数互为相反数,∴原点在线段AB的中点处,∴点C对应的数是1.答案:C.7.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为( )A.1 2B.1C.33D.3解析:连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.答案:B.8.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是( )A.112B.110C.16D.25解析:恰好摆放成如图所示位置的概率是42105.答案:D.9.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )A.(-5,3)B.(1,-3)C.(2,2)D.(5,-1)解析:根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.答案:C.10.已知二次函数y=-x2+x+6及一次函数y=-x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数(如图所示),请你在图中画出这个新图象,当直线y=-x+m与新图象有4个交点时,m的取值范围是( )A.-254<m<3B.-254<m<2C.-2<m<3D.-6<m<-2解析:如图,解方程-x2+x+6=0得A(-2,0),B(3,0),再利用折叠的性质求出折叠部分的解析式为y=(x+2)(x-3),即y=x2-x-6(-2≤x≤3),然后求出直线y=-x+m经过点A(-2,0)时m的值和当直线y=-x+m与抛物线y=x2-x-6(-2≤x≤3)有唯一公共点时m的值,从而得到当直线y=-x+m与新图象有4个交点时,m的取值范围.答案:D.二、填空題(每小题4分,共20分)11.某班50名学生在2020年适应性考试中,数学成绩在100~110分这个分数段的频率为0.2,则该班在这个分数段的学生为_____人.解析:∵频数=总数×频率,∴可得此分数段的人数为:50×0.2=10.答案:10.12.如图,过x轴上任意一点P作y轴的平行线,分别与反比例函数y=3x(x>0),y=-6x(x>0)的图象交于A点和B点,若C为y轴任意一点.连接AB、BC,则△ABC的面积为_____.解析:设出点P坐标,分别表示点AB坐标,表示△ABC面积.答案:92.13.如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是_____度.解析:连接OA、OB、OC,∠AOB=3605=72°,∵∠AOB=∠BOC ,OA=OB ,OB=OC , ∴∠OAB=∠OBC , 在△AOM 和△BON 中,OA OB OAM OBN AM BN =⎧⎪∠=∠⎨⎪=⎩∴△AOM ≌△BON , ∴∠BON=∠AOM , ∴∠MON=∠AOB=72°. 答案:72.14.已知关于x 的不等式组5310x a x -≥-⎧⎨-⎩<无解,则a 的取值范围是_____.解析:5310x a x -≥-⎧⎨-⎩<①②,由①得:x ≤2, 由②得:x >a , ∵不等式组无解, ∴a ≥2. 答案:a ≥2.15.如图,在△ABC 中,BC=6,BC 边上的高为4,在△ABC 的内部作一个矩形EFGH ,使EF 在BC 边上,另外两个顶点分别在AB 、AC 边上,则对角线EG 长的最小值为_____.解析:作AQ ⊥BC 于点Q ,交DG 于点P ,设GF=PQ=x ,则AP=4-x ,证△ADG ∽△ABC 得AP DGAQ BC =,据此知EF=DG=32(4-x),由EG=222131614441313EF GF x ⎛⎫ ⎪⎝⎭+=-+.答案:1213.三、解答題(本大題10个小题,共100分)16.在6.26国际禁毒日到来之际,贵阳市教育局为了普及禁毒知识,提高禁毒意识,举办了“关爱生命,拒绝毒品”的知识竞赛.某校初一、初二年级分别有300人,现从中各随机抽取20名同学的测试成绩进行调查分折,成绩如下:(1)根据上述数据,将下列表格补充完成.整理、描述数据:分析数据:样本数据的平均数、中位数、满分率如表:得出结论:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共_____人;(3)你认为哪个年级掌握禁毒知识的总体水平较好,说明理由.解析:(1)根据中位数的定义求解可得;(2)用初一、初二的总人数乘以其满分率之和即可得;(3)根据平均数和中位数的意义解答可得.答案:(1)由题意知初二年级的中位数在90≤x ≤100分数段中,将90≤x ≤100的分数从小到大排列为90、91、94、97、97、98、98、99、99、99、99、100、100、100、100,所以初二年级成绩的中位数为99分, 补全表格如下:(2)估计该校初一、初二年级学生在本次测试成绩中可以得到满分的人数共600×(25%+20%)=270人;(3)初二年级掌握禁毒知识的总体水平较好, ∵初二年级的平均成绩比初一高,说明初二年级平均水平高,且初二年级成绩的中位数比初一大,说明初二年级的得高分人数多于初一, ∴初二年级掌握禁毒知识的总体水平较好.17.如图,将边长为m 的正方形纸板沿虚线剪成两个小正方形和两个矩形,拿掉边长为n 的小正方形纸板后,将剩下的三块拼成新的矩形.(1)用含m 或n 的代数式表示拼成矩形的周长; (2)m=7,n=4,求拼成矩形的面积.解析:(1)根据题意和矩形的性质列出代数式解答即可.(2)把m=7,n=4代入矩形的长与宽中,再利用矩形的面积公式解答即可. 答案:(1)矩形的长为:m-n , 矩形的宽为:m+n , 矩形的周长为:4m ;(2)矩形的面积为(m+n)(m-n),把m=7,n=4代入(m+n)(m-n)=11×3=33.18.如图①,在Rt △ABC 中,以下是小亮探究sin a A 与sin bB 之间关系的方法: ∵sinA=a c ,sinB=bc ∴c=sin a A ,c=sin b B∴sinaA=sinbB根据你掌握的三角函数知识.在图②的锐角△ABC中,探究sinaA、sinbB、sincC之间的关系,并写出探究过程.解析:三式相等,理由为:过A作AD⊥BC,BE⊥AC,在直角三角形ABD中,利用锐角三角函数定义表示出AD,在直角三角形ADC中,利用锐角三角函数定义表示出AD,两者相等即可得证.答案:sin sin sina b cA B C==,理由为:过A作AD⊥BC,BE⊥AC,在Rt△ABD中,sinB=ADc,即AD=csinB,在Rt△ADC中,sinC=ADb,即AD=bsinC,∴csinB=bsinC,即sin sinb cB C=,同理可得sin sina cA C=,则sin sin sina b cA B C==.19.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?解析:(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.答案:(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,依题意有48036010x x=+,解得:x=30.经检验,x=30是原方程的解,x+10=30+10=40.答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元.(2)设他们可购买y棵乙种树苗,依题意有30×(1-10%)(50-y)+40y≤1500,解得y≤71113,∵y为整数,∴y最大为11.答:他们最多可购买11棵乙种树苗.20.如图,在平行四边形ABCD中,AE是BC边上的高,点F是DE的中点,AB与AG关于AE 对称,AE与AF关于AG对称.(1)求证:△AEF是等边三角形;(2)若AB=2,求△AFD的面积.解析:(1)先根据轴对称性质及BC∥AD证△ADE为直角三角形,由F是AD中点知AF=EF,再结合AE与AF关于AG对称知AE=AF,即可得证;(2)由△AEF是等边三角形且AB与AG关于AE对称、AE与AF关于AG对称知∠EAG=30°,据此由AB=2知3AH=32,从而得出答案.答案:(1)∵AB与AG关于AE对称,∴AE⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∴AE⊥AD,即∠DAE=90°,∵点F是DE的中点,即AF是Rt△ADE的中线,∴AF=EF=DF,∵AE与AF关于AG对称,∴AE=AF,则AE=AF=EF,∴△AEF是等边三角形;(2)记AG、EF交点为H,∵△AEF是等边三角形,且AE与AF关于AG对称,∴∠EAG=30°,AG⊥EF,∵AB与AG关于AE对称,∴∠BAE=∠GAE=30°,∠AEB=90°,∵AB=2,∴BE=1、DF=AF=AE=3,则EH=1 2AE=32、AH=32,∴S△ADF=13333224⨯⨯=.21.图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的A点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.(1)达机掷一次骰子,则棋子跳动到点C处的概率是_____.(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点C 处的概率. 解析:(1)和为8时,可以到达点C ,根据概率公式计算即可; (2)利用列表法统计即可;答案:(1)随机掷一次骰子,则棋子跳动到点C 处的概率是14;(2)列表如下:共有16种可能,和为14可以到达点C ,有3种情形,所以棋子最终跳动到点C 处的概率为316.22.六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离y(单位:cm)与滑行时间x(单位:s)之间的关系可以近似的用二次函数来表示.(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约800m ,他需要多少时间才能到达终点?(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.解析:(1)利用待定系数法求出函数解析式,再求出y=80000时x 的值即可得; (2)根据“上加下减,左加右减”的原则进行解答即可. 答案:(1)∵该抛物线过点(0,0),∴设抛物线解析式为y=ax 2+bx , 将(1,4)、(2,12)代入,得:44212a b a b +=⎧⎨+=⎩, 解得:22a b =⎧⎨=⎩,所以抛物线的解析式为y=2x2+2x,当y=80000时,2x2+2x=80000,解得:x=199.500625(负值舍去),即他需要199.500625s才能到达终点;(2)∵y=2x2+2x=2(x+12)2-12,∴向左平移2个单位,再向上平移5个单位后函数解析式我诶y=2(x+2+12)2-12+5=2(x+52)2+92.23.如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.解析:(1)先判断出∠MOP=∠MOC,∠MPO=∠MPE,再用三角形的内角和定理即可得出结论;(2)分两种情况,当点M在扇形BOC和扇形AOC内,先求出∠CMO=135°,进而判断出点M 的轨迹,再求出∠OO'C=90°,最后用弧长公式即可得出结论.答案:(1)∵△OPE的内心为M,∴∠MOP=∠MOC,∠MPO=∠MPE,∴∠PMO=180°-∠MPO-∠MOP=180°-12(∠EOP+∠OPE),∵PE⊥OC,即∠PEO=90°,∴∠PMO=180°-12(∠EOP+∠OPE)=180°-12(180°-90°)=135°,(2)如图,∵OP=OC,OM=OM,而∠MOP=∠MOC,∴△OPM≌△OCM,∴∠CMO=∠PMO=135°,所以点M在以OC为弦,并且所对的圆周角为135°的两段劣弧上(OMC和ONC);点M在扇形BOC内时,过C、M、O三点作⊙O′,连O′C,O′O,在优弧CO取点D,连DA,DO,∵∠CMO=135°,∴∠CDO=180°-135°=45°,∴∠CO′O=90°,而OA=4cm,∴O′O=22OC=22×4=2,∴弧OMC的长=90222ππ⨯=(cm),同理:点M在扇形AOC内时,同①的方法得,弧ONC的长为2πcm,所以内心M所经过的路径长为2×2π=22πcm.24.如图,在矩形ABCD中,AB=2,AD=3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)解析:(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE≌△BCE,得出∠AED=∠BEC,再用锐角三角函数求出∠AED,即可得出结论;(3)先判断出△AEP≌△FBP,即可得出结论.答案:(1)依题意作出图形如图①所示,(2)EB是平分∠AEC,理由:∵四边形ABCD是矩形,∴∠C=∠D=90°,CD=AB=2,3,∵点E是CD的中点,∴DE=CE=12CD=1,在△ADE和△BCE中,90 AD BCC DDE CE=⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE≌△BCE,∴∠AED=∠BEC,在Rt△ADE中,3DE=1,∴tan∠AED=3 ADDE=∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°-∠AED-∠BEC=60°=∠BEC,∴BE平分∠AEC;(3)∵BP=2CP,3,∴CP=33,BP=33,在Rt△CEP中,tan∠CEP=3 CPCE=,∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD∥AB,∴∠F=∠CEP=30°,在Rt△ABP中,tan∠BAP=3 3BPAB=,∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.25.如图,在平面直角坐标系xOy中,点A是反比例函数y=32m mx-(x>0,m>1)图象上一点,点A的横坐标为m,点B(0,-m)是y轴负半轴上的一点,连接AB,AC⊥AB,交y轴于点C,延长CA到点D,使得AD=AC,过点A作AE平行于x轴,过点D作y轴平行线交AE于点E.(1)当m=3时,求点A的坐标;(2)DE=_____,设点D的坐标为(x,y),求y关于x的函数关系式和自变量的取值范围;(3)连接BD,过点A作BD的平行线,与(2)中的函数图象交于点F,当m为何值时,以A、B、D、F为顶点的四边形是平行四边形?解析:(1)根据题意代入m值;(2)利用ED∥y轴,AD=AC构造全等三角形将求DE转化为求FC,再利用三角形相似求出FC;用m表示D点坐标,利用代入消元法得到y与x函数关系.(3)数值上线段中点坐标等于端点坐标的平均数,坐标系中同样可得线段中点横纵坐标分别是端点横纵坐标的平均数,利用此方法表示出F点坐标代入(2)中函数关系式即可.答案:(1)当m=3时,y=27918x x-=∴当x=3时,y=6∴点A坐标为(3,6)(2)如图延长EA交y轴于点F∵DE∥x轴∴∠FCA=∠EDA,∠CFA=∠DEA ∵AD=AC∴△FCA≌△EDA∴DE=CF∵A(m,m2-m),B(0,-m)∴BF=m2-m-(-m)=m2,AF=m∵Rt△CAB中,AF⊥x轴∴△AFC∽△BFA∴AF2=CF·BF∴m2=CF·m2∴CF=1∴DE=1由上面步骤可知点E坐标为(2m,m2-m)∴点D坐标为(2m,m2-m-1)∴x=2my=m2-m-1∴把m=12x代入y=m2-m-1∴y=14x2-12x-1x>2(3)由题意可知,AF∥BD当AD、BF为平行四边形对角线时,由平行四边形对角线互相平分可得A、D和B、F的横坐标、纵坐标之和分别相等设点F坐标为(a,b)∴a+0=m+2mb+(-m)=m2-m+m2-m-1 ∴a=3m,b=2m2-m-1代入y=14x2-12x-12m2-m-1=14×(3m)2-12×3m-1解得m1=2,m2=0(舍去)当FD、AB为平行四边形对角线时,同理设点F坐标为(a,b)则a=-m,b=1-m,则F点在y轴左侧,由(2)可知,点D所在图象不能在y轴左侧∴此情况不存在综上当m=2时,以A、B、D、F为顶点的四边形是平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.
B.
C.
D.
7.(3 分)菱形的两条对角线长分别是 6 和 8,则此菱形的周长是( )
A.5
B.20
C.24
D.32
8.(3 分)已知 a<b,下列式子不一定成立的是( )
A.a﹣1<b﹣1 C.ᗄa+1< ᗄb+1
B.﹣2a>﹣2b D.ma>mb
9.(3 分)如图,Rt△ABC 中,∠C=90°,利用尺规在 BC,BA 上分别截取 BE,BD,使 ᗄ
红球可能性最大的是( )
A.
B.
C.
D.
3.(3 分)2020 年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性
进行防疫,一志愿者得到某栋楼 60 岁以上人的年龄(单位:岁)数据如下:62,63,75,
79,68,85,82,69,70.获得这组数据的方法是( )
A.直接观察
B.实验
2020 年贵州省贵阳市中考数学试卷
一、选择题:以下每小题均有 A、B、C、D 四个选项,其中只有一个选项正确,请用 2B
铅笔在答题卡相应位置作答,每小题 3 分,共 30 分.
1.(3 分)计算(﹣3)×2 的结果是( )
A.﹣6
B.﹣1
C.1
D.6
2.(3 分)下列 4 个袋子中,装有除颜色外完全相同的 10 个小球,任意摸出一个球,摸到
时间/h
1.5
2
2.5
3
3.5
4
人数/人
2
6
6
10
m
4
(1)本次共调查的学生人数为
,在表格中,m=
;
(2)统计的这组数据中,每天听空中黔课时间的中位数是
,众数是
;
(3)请就疫情期间如何学习的问题写出一条你的看法.
18.(10 分)如图,四边形 ABCD 是矩形,E 是 BC 边上一点,点 F 在 BC 的延长线上,且 CF=BE. (1)求证:四边形 AEFD 是平行四边形; (2)连接 ED,若∠AED=90°,AB=4,BE=2,求四边形 AEFD 的面积.
(0<n<m)有两个整数根,这两个整数根是( )
A.﹣2 或 0
B.﹣4 或 2
C.﹣5 或 3
D.﹣6 或 4
二、填空题:每小题 4 分,共 20 分.
第 2页(共 28页)
11.(4 分)化简 x(x﹣1)+x 的结果是
.
12.(4 分)如图,点 A 是反比例函数 y 图象上任意一点,过点 A 分别作 x 轴,y 轴的垂
按下列要求画三角形. (1)在图①中,画一个直角三角形,使它的三边长都是有理数; (2)在图②中,画一个直角三角形,使它的一边长是有理数,另外两边长是无理数;
第 3页(共 28页)
(3)在图③中,画一个直角三角形,使它的三边长都是无理数.
17.(10 分)2020 年 2 月,贵州省积极响应国家“停课不停学”的号召,推出了“空中黔课”.为 了解某中学初三学生每天听空中黔课的时间,随机调查了该校部分初三学生.根据调查 结果,绘制出了如图统计图表(不完整),请根据相关信息,解答下列问题: 部分初三学生每天听空中黔课时间的人数统计表
20.(10 分)“2020 第二届贵阳市应急科普知识大赛”的比赛中有一个抽奖活动,规则是: 准备 3 张大小一样,背面完全相同的卡片,3 张卡片的正面所写内容分别是《消防知识手 册》《辞海》《辞海》,将它们背面朝上洗匀后任意抽出一张,抽到卡片后可以免费领取卡 片上相应的书籍. (1)在上面的活动中,如果从中随机抽出一张卡片,记下内容后不放回,再随机抽出一 张卡片,请用列表或画树状图的方法,求恰好抽到 2 张卡片都是《辞海》的概率; (2)再添加几张和原来一样的《消防知识手册》卡片,将所有卡片背面朝上洗匀后,任 意抽出一张,使得抽到《消防知识手册》卡片的概率为 ,那么应添加多少张《消防知识 手册》卡片?请说明理由.
21.(8 分)脱贫攻坚工作让老百姓过上了幸福的生活.如图①是政府给贫困户新建的房屋, 如图②是房屋的侧面示意图,它是一个轴对称图形,对称轴是房屋的高 AB 所在的直线, 为了测量房屋的高度,在地面上 C 点测得屋顶 A 的仰角为 35°,此时地面上 C 点、屋檐
第 4页(共 28页)
19.(10 分)如图,一次函数 y=x+1 的图象与反比例函数 y 的图象相交,其中一个交点 的横坐标是 2. (1)求反比例函数的表达式; (2)将一次函数 y=x+1 的图象向下平移 2 个单位,求平移后的图象与反比例函数 y 图象的交点坐标; (3)直接写出一个一次函数,使其过点(0,5),且与反比例函数 y 的图象没有公共 点.
C.调查
D.测量
4.(3 分)如图,直线 a,b 相交于点 O,如果∠1+∠2=60°,那么∠3 是( )
A.150°
B.120°
C.60°
5.(3 分)当 x=1 时,下列分式没有意义的是( )
第 1页(共 28页)
D.30°
띈ᗄ A.
B. 琸ᗄ
琸ᗄ C.
D. 띈ᗄ
6.(3 分)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )
线,垂足为 B,C,则四边形 OBAC 的面积为
.
13.(4 分)在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”
“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是
.
14.(4 分)如图,△ABC 是⊙O 的内接正三角形,点 O 是圆心,点 D,E 分别在边 AC,AB
BE=BD;分别以 D,E 为圆心、以大于 DE 的长为半径作弧,两弧在∠CBA 内交于点 F;
作射线 BF 交 AC 于点 G.若 CG=1,P 为 AB 上一动点,则 GP 的最小值为( )A.无法确定ᗄ B.C.1
D.2
10.(3 分)已知二次函数 y=ax2+bx+c 的图象经过(﹣3,0)与(1,0)两点,关于 x 的方 程 ax2+bx+c+m=0(m>0)有两个根,其中一个根是 3.则关于 x 的方程 ax2+bx+c+n=0
上,若 DA=EB,则∠DOE 的度数是
度.
15.(4 分)如图,△ABC 中,点 E 在边 AC 上,EB=EA,∠A=2∠CBE,CD 垂直于 BE
的延长线于点 D,BD=8,AC=11,则边 BC 的长为
.
三、解答题:本大题 10 小题,共 100 分. 16.(8 分)如图,在 4×4 的正方形网格中,每个小格的顶点叫做格点,以格点为顶点分别