07-08第二学期概率论与数理统计A

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

广州大学2007至2008学年第二学期概率论与数理统计期末考试试题A

广州大学2007至2008学年第二学期概率论与数理统计期末考试试题A

广州大学2007至2008学年第二学期概率论与数理统计期末考试试题A学院领导审批并签名A 卷广州大学2007-2008学年第二学期考试卷课程:概率论与数理统计考试形式:闭卷考试题次一二三四五六七八总分分数15 15 12 10 16 12 1010100得分评卷人一、选择题(在各小题四个备选答案中选出一个正确答案,填在题末的括号中,本大题共5个小题,每小题3分,总计15分)1 对于任意两个事件A与B,必有P(A-B)=( C )A. P(A)-P(B) BP(A)-P(B)+P(AB) C P(A)-P(AB) D P(A)+P(B)2.某种动物活到25岁以上的概率为0.8,活到30岁的概率为0.4,则现年25岁的这种动物活到30岁以上的概率是( D )。

A. 0.76B. 0.4C.0.32 D. 0.53.设F(x)和f(x)分别为某随机变量的分布函数和概率密度,则必有( C )A f(x)单调不减 B C D4.设随机变量与相互独立,且,服从于参数为9的泊松分布,则(C )。

A. –14B. –13C.40 D. 416.设二维随机变量(X,Y)的联合分布列为若X与Y独立,则( A )二、填空题(本大题共5小题,每小题3分,总计15分)(1)设A、B为互不相容的随机事件则(0.9)(2)三个人独立地破译密码,他们能译出的概率分别为、、,此密码能被译出的概率为(3/5)。

(3)已知随机变量,且,则(3)。

(4)设和是相互独立的两个随机变量,且服从(-1,2)上的均匀分布,,则(1/2),(19/4)。

(5)设随机变量和相互独立,,,令,则(),(),的概率密度函数为()。

三、(本大题共2小题,每小题6分,总计12分)1.袋子内放有两个伍分、三个贰分和伍个壹分的硬币,从中任取五个,求钱额总和超过一角的概率。

解法1:。

6分解法2:。

6分2. 甲、乙是位于某省的二个城市,考察这二城市六月份下雨的情况,以A,B分别表示甲,乙二城市出现雨天这一事件,根据以往的气象纪录知, ,求和.解: 。

山东建筑大学2007-2008(1)概率论与数理统计试题(A卷)解答

山东建筑大学2007-2008(1)概率论与数理统计试题(A卷)解答

1 3
(B)
2 5
(C)
1 5
( D)
4 15
二.填空题(每小题 3 分,共 15 分) 1. 一个均匀骰子,掷一次,朝上那面点数不小于 2 的概率是___5/6_____. 2. 射击两次,事件 Ai 表示第 i 次命中目标(i=1,2) ,则事件“至多命中一次”可表示为
A1 A2
.
3. 设 P ( A) 0.5, P ( B ) 0.6, P ( A B ) 0.9 , 则 P(B-A)=___0.4_______. 4. 设随机变量 X~N(0,1) ,φ(x)为其分布函数,则φ(x)+φ(-x)=___1____. 5. 设 X 与 Y 相互独立,且 D(X)=3,D(Y)=5,则 D(2X-Y+1)=_17___. 三.解答下列各题(每小题 6 分,共 30 分) 1. 一口袋装有 4 只白球, 5 只红球. 从袋中任取一只球后, 放回去, 再从中任取一只球. 求下列事 件的概率: 1) 取出两只都是红球; 2) 取出的是一只白球, 一只红球. 解:以 A 表示事件“取出两只都是红球” ,以 B 表示“取出的是一只白球, 一只红球” 。 由于是有放回取球,因而样本点总数 n=9×9=81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分 有利于事件 A 的样本点数 k1=5×5=25 事件 A 发生的概率为 P(A)=k1/n=25/81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分 有利于事件 B 的样本点数 k2=2×4×5=40 事件 B 发生的概率为 P(B)=k1/n=40/81。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分 2. 有两个口袋,甲袋中盛有 2 个白球,1 个黑球;乙袋中盛有 1 个白球,2 个黑球。由甲袋中任 取一球放入乙袋,再从乙袋任取一球,求从乙袋中取得白球的概率。 解:以 A 表示 “从乙袋中取得白球” ,以 B1、B2 分别表示从甲袋中取得白球、黑球。 由于 B1∪B2=Ω, 可用全概率公式 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。2 分 P(A)=P(B1)×P(A|B1)+P(B2)×P(A|B2) =2/3×2/4+1/3×1/4 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。4 分 =5/12 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。6 分

东南大学概率论与数理统计07-08(2)试卷

东南大学概率论与数理统计07-08(2)试卷






卷 ( A 卷)
得 分 120 分钟
课 程 名 称 概率统计与随机过程 考 试 学 期 07—08(二) 适用专业 全校 考试形式 闭
考试时间长度
题号 得分








备用数据: (1.645) 0.05 ; (0.5792) 0.7188 ;
(1) 0.8413 (2) 0.9772
2
已知参数, X 度为: (A) 9 得分
1 5 1 5 X ,则 Xi X i 2 [ 5 i 1 i 1
(B) 8


2
X i ] 服从 2 分布,其自由
2 i 6
10
(C) 7
(D) 10
二、填充题(每题 3 分,共 15 分) 1、设随机变量 X、Y 独立分别服从正态分布 N (1,1) , N (2, 2) ,则:
姓名
2 P( 24 12.401) 0.975; 2 22.465) 0.95; P( 35

2 23.269) 0.95; P( 36 2 117.4069) 0.1 ; P ( 99
Tn ~ t (n):
P(T15 1.3406) 0.10; P(T16 1.3368) 0.10; P(T24 2.0639) 0.025; P(T25 2.0595) 0.025; P(T35 2.0301) 0.025; P(T99 2.0281) 0.02;
4 、 设 X 1 , X 2 , , X n , 是 独 立 同 在 区 间 [-1,1] 上 均 匀 分 布 的 随 机 变 量 序 列 , 则

概率论与数理统计试卷(A)

概率论与数理统计试卷(A)

贵州大学2010-2011学年第二学期考试试卷(A)概率论与数理统计注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。

2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。

3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。

4. 满分100分,考试时间为120分钟。

一、选择题(10个小题,每小题2分,共20分)1.已知(5,4)XN ,其均值与标准差分别为( ).①5,2 ②4,5 ③5,4④2,5 2.若假设检验为0H ,则下列说法正确的是( ).①0H 为真时拒绝0H 是犯第二类错误 ②0H 为假时接受0H 是犯第一类错误 ③0H 为真时拒绝0H 是犯第一类错误 ④以上说法都不对3.设随机变量X 与Y 独立且()(0),()4E X a a E XY =≠=,则()E Y =( ). ①4a ②4a③4a ④4a - 4.设两个相互独立随机变量ξ和η的方差分别为4和2,则32ξη-的方差为( ). ① 8 ② 16 ③ 28 ④ 44 5.已知1,2,,n X X X 是来自正态总体2(,)N μσ的样本,其中μ已知,0σ>未知,则下列关于1,2,,n X X X 的函数中,( )不能作为统计量.①211n i i X n =∑②12max{,,}n X X X ③2211ni i X σ=∑④12min{,,}n X X X6.“事件发生的频率趋于事件发生的概率”的是( ).① 切比雪夫不等式②贝努利大数定律③中心极限定理④贝叶斯公式7.设总体X 服从正态分布2(,)N μσ,123,,X X X 为取自X 的容量为3的样本,则μ的三个估计量1123111333X X X μ=++, 2123255X X μ=+, 3123111236X X X μ=++ ①三个都不是μ的无偏估计②三个都是μ的无偏估计,1μ最有效③三个都是μ的无偏估计,2μ最有效④三个都是μ的无偏估计,3μ最有效 8.若A 与自身独立,则( ).①()0P A =②()1P A =③0()1P A <<④()0()1P A P A ==或 9.已知X 服从泊松分布,则()D X 与()E X 的关系为( ). ①()()D X E X >②()()D X E X <③()()D X E X =④以上都不是 10.下列说法错误的是 ( ).①,X Y 相互独立, 则,X Y 一定不相关 ②,X Y 不相关,则,X Y 不一定相互独立 ③对正态分布而言, 不相关和独立性是一致的 ④,X Y 不相关,则,X Y 一定相互独立二、填空题(10小题,每小题2分,共20分)1. 假设检验可分为两类,它们是( )和().2. 若检验的观察值落入拒绝域内,则应().3.出勤率和缺勤率之和等于(). 4.随机变量主要分为()和().5. 设随机变量ξ服从泊松分布,且(1)(2)P P ξξ===,则 (6)()P ξ==.6.某车床一天生产的零件中所含次品数ξ的概率分布如下表所示,则平均每天生产的次品数为().(题6表格)7.设ξ服从0-1分布,且(1)P ξ=是(0)P ξ=的三分之一,则(1)P ξ==(). 8. 已知()0.3P A =,()0.5P B =,则当A 与B 互不相容时,则()P A B ⋃=().9.已知()0.4P A =,()0.6P B A =,则()P AB =(). 10.设随机事件A 、B 满足关系B A ⊂,则()P A B ⋃=( ).三、简答题(5个小题,每小题4分,共20分)1.请写出贝努利大数定律的意义.2. 计算连续型随机变量的数学期望,它的密度函数为 (请写出详细过程),1,10()1,010x x f x x x +-≤≤⎧⎪=-<<⎨⎪⎩其它3.已知2,01()0.y y Yf y <<⎧=⎨⎩其它 ,求().F y4.随机事件的定义域与值域分别是什么?5.设总体X 的概率分布为X 1 2 3k P 2θ2(1)θθ-2(1)θ-其中θ为未知参数.现抽得一个样本1231,2,1X X X ===,求θ的极大似然估计量.四、计算题(3个小题,每小题10分,共30分)1.设随机变量X 满足22[(1)]10,[(2)]6E X E X -=-=。

概率论与数理统计A第6章

概率论与数理统计A第6章

几个常见统计量
样本平均值
样本方差
它反映了总体 方差的信息
X
1 n
n i1
Xi
它反映了 总体均值 的信息
S2n11in1(Xi X)2
n1 1i n1Xi2nX2
样本标准差 S n1 1i n1(Xi X)2
样本k阶原点矩
Ak
1 n
n i1
Xik
k=1,2,…
样本k阶中心矩
Mk
1 n n i1
(1)
(n1)S2
2
~2(n1)
(2) X与S2独立 .
n取不同值时 (n 1)S 2
2
的分布
推论1 (样本均值的分布)
设X1,X2,…,Xn是取自正态总体 N(,2)
的样本, X和S2 分别为样本均值和样本方差,
则有
X ~t(n1)
Sn
证由定 1、 2理 t,分布的定义可得
X~N(0,1), n
X ~ N(,2) n
即 X~N(0,1) n
X ~ N(,2) X ~ N(0,1) n n
请注意 : 在已知总体,2时, 可用本定理计算样 本均值X.
n取不同值时样本
均值 X 的分布
定理 5 (样本方差的分布)
设X1,X2,…,Xn是来自正态总体 N(,2)的样本,
X和S2分别为样本均值和样本方差, 则有
的 点 t ( n ) 为 t ( n ) 分 布 的 上 分 位 数 。 如 图 所 示 .
t ( n )
t分布的上分位点的性质: t1(n)t(n)
t分 布 的 左 侧 分 位 点 t(n)可 查 表 求 得 , 例 t0.975(15)6.262.
当n45时,对于常 的 用值 的,可用正态近

概率论与数理统计(A)期末复习资料

概率论与数理统计(A)期末复习资料

《概率论与数理统计(A )》期末复习资料一、选择题:1.设A ,B 为两个任意事件,那么与事件B A B A B A ++相等的事件是().(A) AB (B) B A + (C) A (D) B2.设B A ,为两个随机事件,若0)(=AB P ,则( ).(A)A 和B 两事件互不相容(互斥); (B)AB 是不可能事件; (C)AB 未必是不可能事件; (D)0)(=A P 或0)(=B P . 3.如果0)(=AB P ,则( ).(A))()(A P B A P =-; (B)A 与B 不相容; (C)A 与B 不相容; (D))()()(B P A P B A P -=-. 4.如果1)()(=+B P A P ,则( ).(A)1)(=⋃B A P ; (B)0)(=⋂B A P ; (C))()(B A P B A P ⋂=⋂; (D))()(B A P B A P ⋃=⋂. 5.设A 和B 相互独立,则下列结论错误的是( ).(A)B ,A 独立; (B)B ,A 独立; (C))()()(B P A P B A P =; (D)φ=AB .6.设B A ⊂且相互独立,则( ).(A)0)(=A P ; (B)1)(0)(==B P A P 或; (C)1)(=A P ; (D)上述都不对. 7.设随机变量~(2,)X B p ,若()159X P ≥=,则p =( ). (A)32; (B)21; (C)31; (D)2719.8.设随机变量X 概率分布为,,2,1)1()( =+==k k k ak X P ,则a 为( ).(A)0; (B)1; (C)2; (D)3.9.设随机变量X 服从泊松分布,且(1)(2)P X P X ===,则λ=( ). (A)2; (B)1; (C)4; (D)0.5.10.若)(x f 与)(x F 分别为连续型随机变量X 的密度函数与分布函数,则等式( )成立.(A) X a P <(≤⎰∞+∞-=x x F b d )() (B) X a P <(≤⎰=bax x F b d )()(C) X a P <(≤⎰=b ax x f b d )() (D) X a P <(≤⎰∞+∞-=x x f b d )()11.设随机变量),(~2σμN X ,且022=++X x x 无实根的概率为0.5,=μ( ). (A)-1; (B)0; (C)1; (D)2.12.随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<=其他,0,20,20,),(y x cx y x f ,则c 为( ).(A)0.25; (B)1; (C)2; (D)4.13.设随机变量Y X ,相互独立,它们的密度函数分别为⎩⎨⎧≤>=-000x ,;x ,e )x (f x X ,⎩⎨⎧≤>=-00022y ,;y ,e )y (f y Y ,则=>)Y X (P ( ).(A)31; (B)21; (C)32; (D)43.14.设X ~)4,2(N 且b aX +~)1,0(N ,则( ). (A)22-==b a ,; (B)12-=-=b a ,; (C)121==b a ,; (D)121-==b a ,.15.设)1(~P X ,)2(~P Y ,且X 与Y 相互独立,则~Y X +( ). (A) (1,2)b (B) (3)P (C) (1.5)P(D) (2,1)b16.设随机变量)6.0,20(~b X ,)6.0,10(~b Y ,且X 与Y 相互独立,则~Y X +( ). (A) (10,0.6)b (B) (20,0.6)b (C) b(30,0.6) (D) (18)P17.设),(~p n b X 且6 3.6EX DX ==,,则有()(A) 100.6n p ==, (B) 200.3n p ==,(C) 150.4n p ==, (D) 120.5n p ==, 18.设12,,n X X X 是取自正态总体X ~)1,0(N 的样本,2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)X ~)1,0(N ; (B)X n ~)1,0(N ; (C)S X /~)1(-n t ; (D)∑=ni i X 12~)(2n χ.19.设n X X X 21,是取自正态总体X ~),(2σμN 的样本(2>n ), 2,S X 分别是样本均值和样本方差,则下列结论正确的是( ).(A)1--n SX μ~)1(-n t ; (B)22)(S X n μ-~)1,1(-n F ; (C)22σS ~)1(2-n χ; (D)122X X -~),(2σμN .20.设12,,,n X X X 为来自正态总体2(,)N μσ的一个样本,2211(())1ni i S X X n ==--∑ X 分别为样本方差和样本均值,则下面结论中不正确的是( ). (A)2~(,)X N n σμ ;(B)22()E S σ=; (C)22()1nE S n σ=-; (D)222(1)/~(1)n S n σχ--. 21.已知随机变量X 与Y 相互独立,且2~(40)X χ,2~(80)Y χ,则~/2Y X ().(A)2(40)χ (B) (20,40)F (C) (40,80)F (D) 2(80)χ22.设n X X X ,,,21 是来自正态总体N (,)μσ2的样本,则( )是μ无偏估计.(A) 321X X X ++ (B) 321525252X X X ++ (C) 321515151X X X ++ (D) 321535151X X X ++23.对正态总体),(2σμN 的假设检验问题中,Z 检验解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值(C) 已知均值,检验方差 (D) 未知均值,检验方差24.对来自正态总体X N ~(,)μσ2(μ未知)的一个样本X X X 123,,,则下列各式中( )不是统计量.(A)1X (B) μ+X(C)221σX (D)1X μ25.设n X X X ,,,21 是正态总体),(~2σμN X (2σ已知)的一个样本,按给定的显著性水平α检验0H :0μμ=(已知);1H :0μμ≠时,判断是否接受0H 与( )有关.(A) 样本值,显著水平α (B) 样本值,样本容量(C) 样本容量n ,显著水平α (D) 样本值,样本容量n ,显著水平α 26.在对单正态总体N (,)μσ2的假设检验问题中,T 检验法解决的问题是( ). (A) 已知方差,检验均值 (B) 未知方差,检验均值 (C) 已知均值,检验方差 (D) 未知均值,检验方差 27.假设检验时,若增大样本容量,则犯两类错误的概率( ). (A) 有可能都增大 (B) 有可能都减小(C) 有可能都不变 (D) 一定一个增大,一个减小二、填空题:1.设B A ,是两个事件,且=)(B A P 1,则=-)(A B P .2.设()0.7P A =,()0.3P A B -=,则()AB P = ,()B A P = .3.设事件B A ,和B A ⋃的概率分别为0.2,0.3和0.4,则=)(A B P _______.4.设B A ,是两个随机事件,()0.4()0.3P A P B ==,,若B A ,相互独立,则()P A B ⋃= ,则()P B A = .5.三个人独立地向一架飞机射击,每个人击中飞机的概率都是0.4,则飞机被击中的概率为 .6.设甲、乙两人投篮命中率分别为0.7和0.8,每人投篮3次,则有人投中的概率为 .7.从0,1,2,,9这10个数字中任意选出3个不同的数字,则3个数字中不含0或5的概率为 .8.某工厂一个班组共有男工9人,女工5人,现在要选出3个代表,则选的3 个代表中至少有1个女工的概率为 .9.设随机变量X 服从参数为λ的泊松分布,且()2D X =,则(1)p X ==________. 10.设随机变量),(N ~X 42,则~X Y 22-=. 11.设随机变量Y 在]5,0[上服从均匀分布,则关于x 的一元二次方程02442=+++Y xY x 有实根的概率为 .12.设)(1x F 与)(2x F 分别是任意两个随机变量分布函数,令=)(x F)()(21x bF x aF +,则下列各组数中使)(x F 为某随机变量的分布函数的有 =a , =b .13.已知连续随机变量X 的分布函数为1,0()0,0x e x F x x λ--≥=<⎧⎨⎩,0λ>,则其密度函数为 ,(2)P x ≤= ;已知随机变量X 的密度函数⎩⎨⎧≤≤=其它 , 010,2)(x x x f 则:)5.15.0(<<X p = .14.设随机变量X 分布律为令,12+=X Y 则随机变量X 分布律为 ;=)(Y E _________.15.若二维随机变量(,)X Y 具有分布律:则(21)P Y X ===________. 16.设随机变量X 分布列如下表则E (X )=________,D (X )=________.17.两独立随机变量X Y 和都服从正态分布,且()()~3,4~2,9X N Y N ,,则()D X Y +=________;又两个相互独立的随机变量~(3),V ~P(2)U E ,则(22)D U V ++=________.18.设X 服从[-1,2]上的均匀分布,令⎩⎨⎧<-≥=,01,01X X Y ,,则=)(Y E ,=)(Y D .19.设相互独立的随机变量X ,Y 均服从参数为5的指数分布,则当0,0x y >>时,(,)X Y 的概率密度(,)f x y =________.20.设总体)1,0(~N X ,1210,,,X X X 是来自总体X 的样本,则~X .21.设总体2~(0,)X N σ,921,X X X 为总体的一个样本,则)(9196521X X X X X X ++++++= 分布为 .22.设),(21n X X X 是取自参数为λ泊松分布的样本,则统计量i ni X Y ∑==1服从分布.23.设12n X X X ,,,为来自总体X 的样本,且~(0,1)X N ,则统计量21~nii X=∑ .24.设12,,,n X X X 是来自总体)1,0(~N X 的简单随机样本,则21()ni i X X =-∑服从的分布为 .25.设n X X X 21,是来自正态总体X ~N (μ,2σ)的样本,即它们是独立同分布,则~X ,~)1(22σS n - .26.在单边假设检验中,原假设为0H :μ≤0μ,则其备择假设为1H :_______________.27.设总体X 服从正态分布2(,)N μσ,其中2σ未知,12,,n X X X 为其样本.若假设检验问题为0010:,:,H H μμμμ=≠则采用的检验统计量表达式应为_______________.三、计算题1.一个袋内装有大小相同的7个球,其中4个是白球,3个是黑球,从中一次抽取3个,计算至少有两个是白球的概率.2.有甲、乙两批种子,发芽率分别为0.8和0.7,在两批种子中各随机取一粒,求: (1)两粒都发芽的概率;(2)至少有一粒发芽的概率;(3)恰有一粒发芽的概率.3.某地某天下雪的概率为0.3,下雨的概率为0.5,既下雪又下雨的概率为0.1,求: (1)在下雨条件下下雪的概率;(2)这天下雨或下雪的概率.4.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半).5.某工厂生产的产品中96%是合格品,检查产品时,一个合格品被误认为是次品的概率为0.02,一个次品被误认为是合格品的概率为0.05,求在被检查后认为是合格品产品确是合格品的概率.6.甲、乙、丙三人独立地向同一飞机射击,设击中的概率分别是0.4,0.5,0.7,若只有一人击中,则飞机被击落的概率为0.2;若有两人击中,则飞机被击落的概率为0.6;若三人都击中,则飞机一定被击落,求:飞机被击落的概率.7.有一繁忙的汽车站,每天有大量汽车通过,设每辆车在一天的某时段出事故的概率为0.0001,在某天的该时段内有1000辆汽车通过,问出事故的次数不小于2的概率是多少(利用泊松定理)?8.有2500名同一年龄和同社会阶层的人参加了保险公司的人寿保险.在一年中每个人死亡的概率为0.002,每个参加保险的人在1月1日须交12元保险费,而在死亡时家属可从保险公司领取2000元赔偿金.求: (1)保险公司亏本的概率;(2)保险公司获利分别不少于10000元、20000元的概率.9.设某种仪器内装有三只同样的电子管,电子管使用寿命X 的密度函数为f (x )=⎪⎩⎪⎨⎧<≥.100,0,100,1002x x x求:(1)在开始150小时内没有电子管损坏的概率;(2)在这段时间内有一只电子管损坏的概率; (3)F (x ).10.某教科书出版了2000册,因装订等原因造成错误的概率为0.001,试求在这2000册书中恰有5册错误的概率.11.由某机器生产的螺栓长度(cm )~(10.05,0.062)X N ,规定长度在10.050.12±内为合格品,求一螺栓为不合格品的概率..12.设一工厂生产的电子管寿命X (小时)服从正态分布),160(2δN ,若要求{}8.0200120≥≤<X P ,允许δ最大不超过多少?13.设X ~N (3,22),(1)求P {2<X ≤5},P {4<X ≤10},P {|X |>2},P {X >3}; (2)确定c 使P {X >c }=P {X ≤c }.14.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.(2)求(X ,Y )的边缘分布律; (3)求W =X +Y 的分布律.16.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<--=.,0,42,20),6(,其他y x y x k y x f (1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5}; (4)求P {X +Y ≤4}.17.设二维随机变量(X ,Y )的联合分布函数为()⎩⎨⎧>>--=--.,0,0,0),e 1)(e 1(,24其他y x y x F y x求(X ,Y )的联合分布密度.18.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤-+=.,0,10 ,1,01 ,1其他x x x x x f求)()(X D X E ,.19.设随机变量X 的概率密度为()⎪⎩⎪⎨⎧≤≤-<≤=.,0,21,2,10,其他x x x x x f求)()(X D X E ,.20.设随机变量(X ,Y )的概率密度为()⎩⎨⎧<<<<=.,0,0,10,,其他x y x k y x f 试确定常数k ,并求)(XY E .21.设X ,Y 是相互独立的随机变量,其概率密度分别为()⎩⎨⎧≤≤=;,0,10,2其他x x x f X ()(5)e ,5,0,.y Y y f y --⎧>=⎨⎩其他 求E (XY ).22.设总体X 服从二项分布b (n ,p ),n 已知,X 1,X 2,…,X n 为来自X 的样本,求参数p 的矩估计.23.设总体X 的密度函数()2(x )2,,f x e x R μμ--=∈X 1,X 2,…,X n 为其样本,试求参数μ的矩估计. 24.设12,,,n x x x 为来自正态总体2~N(,)X μδ的一个样本的X1,X2, (X)观测值,试求总体未知参数2,μδ的极大似然估计.25.设总体X 的密度函数为⎩⎨⎧<<=-.,0,10,),(1其他x x x f θθθn X X X 21,为其样本,求θ 的极大似然估计.26.某车间生产的螺钉,其直径2~N(,)X μδ,由过去的经验知道2δ=0.06,今随机抽取6枚,测得其长度(单位mm )如下:14.7 15.0 14.8 14.9 15.1 15.2 求μ的置信概率为0.95的置信区间.27.来自正态总体2~N(,)X μδ的一个样本为X 1,X 2,…,X n ,并且2μδ未知,已知,求μ的置信概率为1α-的置信区间.28.在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差2s =0.1(2g ).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).。

第二学期概率论与数理统计试卷 参考答案

第二学期概率论与数理统计试卷 参考答案

重庆大学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年 第 二 学期开课学院: 数统学院 课程号:10029830 考试日期:考试方式:开卷闭卷 其他 考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =一、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ⋃= 0.25 。

从一副扑克牌(52张)中任取3张(不重复),则取出的3张牌中至少有2张花色相同的概率为 0.602 。

从1到9的9个整数中有放回地随机取3次,每次取一个数,则取出的3个数之积能被10整除的概率为 0.214 。

4.一个有5个选项的考题,其中只有一个选择是正确的。

假定应 考人知道正确答案的概率为p 。

如果他最后选对了,则他确实知道答案的概率为541pp +。

5.重复抛一颗骰子5次得到点数为 6 的次数记为X ,则(3)P X > = 13/3888 。

6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。

7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的面积Y的密度函数为1//4()0 ,Y y f y elseπ⎧<<⎪=⎨⎪⎩。

8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Zf --(z )。

9.设总体2(,)X N μσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453n i i P X X n σσ=⎧⎫≤-≤⎨⎬⎩⎭∑= 0.97。

10.设1,210,,X X X 是来自总体2(0,)XN σ的样本,则Y =服从 t(8) 。

08级本科《概率论与数理统计》A卷答案(教考分离)

08级本科《概率论与数理统计》A卷答案(教考分离)

上海立信会计学院2009~2010学年第二学期2008级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.对于事件设B A ,,下列命题正确的是 ( ) A .若B A ,互不相容,则A 与B 也互不相容 B .若B A ,相容,则A 与B 也相容C .若B A ,互不相容,且概率都大于零,则A 与B 也相互独立D .若B A ,相互独立,则A 与B 也相互独立2.将一枚骰子掷两次,记21X X 、分别第一、第二掷出的点数。

记:}10{21=+=X X A ,}{21X X B <=。

则=)|(A B P ( )A .31 B .41 C .52 D .65 3.设随机变量X 与Y 均服从正态分布,)2,(~2μN X ,)5,(~2μN Y ,记}2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( )A .对任何实数μ,都有21p p =B .对任何实数μ,都有21p p <C .只对μ的个别值才有21p p =D .对任何实数μ,都有21p p > 4.设随机变量21,X X 独立,且21}1{}0{====i i X P X P (2,1=i ),那么下列结论正确的是 ( )A .21X X =B .1}{21==X X PC .21}{21==X X P D .以上都不正确 5.设21,X X 取自正态总体)2,(μN 的容量为2的样本,下列四个无偏估计中较优的是( )A .2114341ˆX X +=μB .2122121ˆX X +=μC .21332ˆX X +=μD .2147374ˆX X +=μ 二、填空题(每题2分,共10分)1.设B A ,为随机事件,5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(B A P2.设离散型随机变量X 的分布列为kA k X P )2/1(}{==( ,2,1=k ),则常数=A3.设X 的概率密度为21)(x ex f -=π,则=)(X D4.已知随机变量X 的密度为⎩⎨⎧<<=其它010)(x x a x f ,则=a5.设随机变量X 和Y 相互独立且都服从正态分布)3,0(2N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量292191YY X X U ++++=服从 分布。

第2学期《概率论与数理统计》期末考试试题A卷(公共课)参考答案及评分标准

第2学期《概率论与数理统计》期末考试试题A卷(公共课)参考答案及评分标准

中南财经政法大学2006–2007学年第二学期期末考试试卷《概率论与数理统计》参考答案(A 卷)一 选择题 (每题2分,共10分)1.D2.C3.B4.D5.C二 填空题 (每题2分,共12分)1.272.()!1!!k n k n -+3.354.05.25126.()0.49,0.49X X σσ-+三 判断说明题(每题5分,共20分,判断2分,说明理由3分) 1.错。

()()A B A B AB BA ++=+≠Φ2.对。

()()()()()()0,00P A P A B P A P AB P AB P AB =≤-=-=-=则,所以3.对。

()(),D X Y D X Y +=-得()cov ,0,0XY X Y ρ==即,所以R E =(单位矩阵)4.错。

2212123125122933955525D X X D X X X σσ⎛⎫⎛⎫+=>++= ⎪ ⎪⎝⎭⎝⎭四 简答题1.不能。

()()2223221,441,,4a axdx a a a a f x +=+-=+==-⎰若即得则不能非负。

--(4分) 2. 不能成为分布函数。

12()()2F F +∞++∞= -----------------------------------------(4分)3. (,)X Y 的联合分布律为(2分) 588551,(),cov(,)333339EX EY E XY X Y ====-⨯=- ---------------------(5分)4.()22,(),(),x X f x x h y y h y σμσ-'===+=------------------------- (3分)则,()()22y Y f y σμ+-=-------------------------------------------(5分) 五 解答题(共34分) 1. (8分)解 用12,A A 分别表示事件“产品是由甲厂生产”,“产品是乙厂生产”,B 表示取到的产品是次品。

07级《概率论与数理统计》期末考试A卷答案与评分标准

07级《概率论与数理统计》期末考试A卷答案与评分标准

07级《概率论与数理统计》期末考试A卷答案与评分标准海南师范大学物理、电子、自动化、地理、城规、计算机专业《概率论与数理统计》2008—2009学年度第一学期期末考试(A )卷答案与评分标准注意事项:1. 考前请将密封线内填写清楚 2. 所有答案请直接答在试卷上 3.考试形式:闭卷4. 本试卷共五大题,满分100分,考试时间100分钟一、单项选择题(本题共6小题,每小题3分,共18分)在每小题列出的四个选项中只有一个是符合题目要求的,请将其代码填在题后的括号内。

错选或未选均无分。

1、设A,B 为随机事件,若P(A ∪B)=P(A)+P(B),且P(A)>P(B)>0,则( D ); A: A,B 互不相容; B: A,B 非互不相容; C: A,B 相互独立; D: A,B 相互不独立;2、设随机变量X 只能取3,4,5, …,17这15个值, 且取每个值的概率均相同, 则概率P{0<="" 2A :1514; B :157; C :152; D : 154 ;3、己知二维随机向量(X,Y)具有联合密度:),,(,)1)(1(1),(22+∞<<-∞+∞<<-∞++=y x y x C y x f 则常数C=( D )A:1 ; B:π ; C:2π D: π2 4、己知随机变量X 服从二项分布B(5,0.2), 则D(X)/E(X)=( B ); A :1 ; B 0.8; C: 0.2; D: 1.25; 5、己知随机变量X 的期望E(X)=20, 方差D(X)=8, 则( A );; A: P(|X-20|≥6)≤2/9 ; B: P(|X-20|≤6)≥2/9 ; C: P(|X-20|≤6)≤2/9 ; D: P(|X-20|≥6)≥2/9 ;6、设4321,,,X X X X 是来自正总体N(μ,σ2)的简单随机样本,下列四个μ的无偏估计量中, 最有效的是( B );A: )(313211X X X ++=μ; B: )(4143212X X X X +++=μ;C: 13X =μ,; D: 6233214X XX ++=μ;二、填空题(本题共6小题,每小题 3分,共18分。

概率论与数理统计a综合练习答案

概率论与数理统计a综合练习答案

综合练习一一、单项选择题1.设A 与B 为两个随机事件,则表示A 与B 不都发生是【 】.(A )A B (B )AB (C )AB (D )AB2.设A 、B 、C 为三个随机事件,则表示A 与B 都不发生,但C 发生的是【】. (A )A BC (B )()A B C + (C )ABC (D )A B C +3.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为【】. (A )甲种产品滞销,乙种产品畅销 (B )甲、乙两种产品均畅销 (C )甲种产品滞销 (D )甲种产品滞销或乙种产品畅销4.对于任意两个事件A 与B ,均有=-)(B A P 【】. (A) )()(B P A P - (B) )()()(AB P B P A P +- (C) )()(AB P A P - (D) )()()(AB P B P A P -+5.已知事件A 与B 互斥,8.0)(=+B A P ,5.0)(=B P ,则=)(A P 【】. (A) 0.3 (B) 0.7 (C) 0.5 (D) 0.6 6.若21)(=A P ,31)(=B P ,61)(=AB P ,则A 与B 的关系为【】. (A) 互斥事件 (B) 对立事件 (C) 独立事件 (D) A B ⊃7.已知事件A 与B 相互独立,8.0)(=+B A P ,5.0)(=B P ,则()P A =【】. (A) 0.3 (B) 0.2 (C) 0.5 (D) 0.6 8.若事件A 与B 相互独立,0)(>A P ,0)(>B P ,则错误的是【 】. (A) A 与B 独立 (B) A 与B 独立 (C) )()()(B P A P B A P = (D) A 与B 一定互斥 9. 设事件A 与事件B 互不相容,则【 】.(A )()0P AB = (B )()()()P AB P A P B = (C )()1()P A P B =- (D )()1P AB =10. 设A 、B 为任意两个事件,且,()0A B P B ⊂>, 则下列选项必然成立的是【】. C A D C B C D D D B(A )()()P A P A B < (B ) ()()P A P A B ≤ (C )()()P A P A B > (D )()()P A P A B ≥二、填空题11.设C B A ,,为三个事件,试用C B A ,,表示下列事件:(1)C B A ,,中至少有一个发生 ; (2)C B A ,,中恰好有一个发生 ;(3)C B A ,,三个事件都发生 ; (4)C B A ,,三个事件都不发生 ;(5)B A ,都发生而C 不发生 ; (6)A 发生而C B ,都不发生 ;12. 某人向目标射击三次,事件=i A {第i 次击中},3,2,1=i ,用事件的运算关系表示下列各事件,(1)只击中第一枪 ; (2)只击中一枪 ___________; (3)三枪都未击中 ; (4)至少击中一枪 ; (5)目标被击中 ; (6)三次都击中 ;(7)至少有两次击中 _______________________________; (8)三次恰有两次击中 _____________. 13. 已知事件A 与B 相互对立,则AB = ,A B += ,()P AB = ,()P A B += .14. 已知3.0) (=B A P ,则=+)(B A P .15. 已知事件B A ⊂,9.0)(=+B A P ,3.0)(=AB P ,则=-)(A B P. 16. 设A 与B 为两个事件,且7.0)(=A P ,3.0)(=-B A P ,则=)(AB P .17. 已知事件A 与B 相互独立,4.0)(=A P ,3.0)(=B P ,则=+)(B A P. 18. 设,,A B C 是三个相互独立事件,且5.0)(=A P ,6.0)(=B P ,7.0)(=C P ,则()P A B C ++=. 19. 一张考卷上有5道选择题,每道题列出4个可能答案,其中有1个答案是正确的.某学生靠猜测能答对4道题的概率是 . 20. 已知在3次独立重复试验中,事件A 至少发生一次的概率为2726,则事件A 在一次试验中A B C ++ABC ABC ABC ++ABC ABC ABC ABC 123A A A 123123123A A A A A A A A A ++123A A A 123A A A ++123A A A ++123A A A 123123123123A A A A A A A A A A A A +++123123123A A A A A A A A A ++∅U 01.07.06.06.058.094()()44151344C21. 设A 与B 相互独立,()0.5,()0.8P A P A B =+=,则()P B =,()P AB = . 22. 若112(),(),(),233P A P B P B A === 则()P A B = .23.投掷两个均匀骰子,出现点数之和为6*24. 设两个相互独立的事件A 和B 都不发生的概率为1/9,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则)(A P三、计算题24. 设4.0)(=A P ,3.0)(=B P ,6.0)(=+B A P ,求(1))(AB P ;(2)) (B A P ;(3)) (B A P ;(4))(B A P +.25. 已知7.0)(=A P ,()0.9P B =,()0.7P A B =,求()P A B +.四、解答题26. 某城市中发行2种报纸A 与B , 经调查, 在全市人中, 订阅A 报的有45%,订阅B 报的有35%, 同时订阅2种报纸A , B 的有10%. 求只订一种报纸的概率..06.021解:()由()()()()1P A B P A P B P AB +=+-得()()()()P AB P A P B P A B =+-+....;04030601=+-=()()()2P AB P A B =-()()P A P AB =-...;040103=-=()()()31P AB P A B =-+..;10604=-=()()()4P A B P AB +=()1P AB =-...10109=-=解:()()(|)P AB P B P A B =...,0907063=⨯=()()()()P A B P A P B P AB +=+-...0709063=+-..097=解:由题意得().,().,().,04503501P A P B P AB ===()()()P AB AB P AB P AB ∴+=+()()P A B P B A =-+-()()()()P A P AB P B P AB =-+-....0450103501=-+-..06=答:只订一种报纸的概率为..0627. 袋中有10个球,其中7个白球,3个红球,从中任取三个,求(1)全是白球的概率; (2)恰有两个白球的概率;(3)至少一个白球的概率.28. 一副扑克牌52张,每次抽一张,共抽取2次,分两种方式抽取, 求两张都是A 的概率. (1)取后不放回; (2)取后放回.*29.(配对问题)三个学生证混放在一起,现将其随意发给三名学生,试求事件A ={学生都没有拿到自己的学生证}的概率.解:()(全是白球)373101C P C =;724=()(恰有个白球)217331022C C P C =;2140=()(至少有个白球)(全是红球)311P P =-333101C C =-11120=-.119120=解:()(张都是)43125251P A =⨯;1221=()(张都是)44225252P A =⨯.1169=解:()2111323P A =⨯⨯=综合练习二一、单项选择题1. 已知离散型随机变量X 的概率分布表为:则下列计算结果中正确是【 】. (A) {3}0P X == (B) {0}0P X== (C) {1}1P X >-= (D) {4}1P X <= 2. 设随机变量X 的分布列如下,则c =【 】.(A) 0.1 (B) 0.2 (C) 1 (D) 2*3. 设随机变量X 的分布函数()F x ,在下列概率中可表示为}{)(a X P a F <-的是【 】.(A )}{a X P ≤ (B )}{a X P > (C )}{a X P ≥ (D )}{a X P =4. 设随机变量X 的概率密度为:(),020,cx x f x ≤≤⎧=⎨⎩其它 ,则c =【 】.(A) 1 (B) 2 (C)12 (D) 145. 设随机变量X 的概率密度为:()1,080,x x cf x ⎧≤≤⎪=⎨⎪⎩其它 ,则c =【 】.(A) 1 (B) 2 (C) 3 (D) 46. 设随机变量~(3,4)X N -,则随机变量=Y 【】~(0,1)N . (A)43-X (B) 43+X (C) 23-X (D) 23+X 7.设随机变量2~(10,)X N σ,且3.0}2010{=<<X P ,则=<<}100{X P 【】. (A) 0.3 (B) 0.2 (C) 0.1 (D) 0.58. 设随机变量X 服从泊松分布,且已知{}{}02P X P X ===,则参数λ=【 】.(A)12 (B) 2A A C D D A D D9. 设随机变量X 的概率分布律为⎪⎪⎭⎫⎝⎛1.03.06.0210,则E X =()【 】. (A) 1 (B)13(C) 0 (D) 05. 10. 有一批钢球,重量为10克、15克、20克的钢球分别占55%、20%、25%,现从中任取一个钢球,重量X 的期望为【 】. (A )12.1克 (B )13.5克 (C )14.8克 (D )17.6克11. 设随机变量~(,)X B n p ,则下列等式中【】恒成立. (A )12(-X E np 2)=(B )14)12(-=-np X E (C )1)1(4)12(--=-p np X D(D ))1(4)12(p np X D -=-12. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且0E X =(),则【 】. (A) 6,4a b =-= (B) 1,1a b =-= (C) 6,1a b == (D) 1,5a b ==13. 设随机变量~(2,16)X N ,则下列等式中不成立的是【 】.(A )()2E X =(B )()4D X =(C ){16}0P X == (D ) {2}0.5P X ≤=14. 设随机变量X ,且10)10(=X D ,则=)(X D 【 】.(A )101(B ) 1 (C ) 10 (D )100 二、填空题15. 某射手射击目标的命中率为8.0=p ,他向目标射击3枪,用X 表示命中的枪数,则随机变量2=X 的概率为___________.16. 设随机变量~(2,)X B p ,若9{1}25P X ≥=,则p ={2}P X = 17. 设随机变量X 服从泊松分布,且{1}{2}P X P X ===,则参数λ= ,{0}P X == ;{2}P X == ;{4}P X == . 18. 设X 服从()0,5上的均匀分布,则==}5{X P ____,=≤≤}42{X P ______,=≤≤}64{X P. D B D A B A .038422e -223e -0.02.0422e -19. 设每次试验失败的概率为(01)p p <<, 则在3次重复独立试验中成功2次的概率为________________.20. 设随机变量X ,4)13(=+-X E ,则=)(X E .21. 设随机变量)21,100(~B X ,则=)(X E _________; =+)32(X E _________. 22. 已知随机变量X ,且9)3(=X E ,4)2(=X D ,则=)(2X E . 23. 设X 和Y 相互独立,4)(=X D ,2)(=Y D ,则(32)D X Y -= .24. 设X 服从参数为λ的泊松分布,4)(=X D ,则=)(X E ,=λ .25. 设),(~b a U X ,3)(=X E ,3)(=X D ,则=a ,=b .26. 设X 服从指数分布,4)4(=X D ,则=)(X E .27. 设)4,2(~N X ,则=)(X E ,()D X = ,=)(2X E .三、计算题28. 6个零件中有4个正品2个次品,从中任取 3个零件,用X 表示所取出的 3 个零件中正品的个数, 求随机变量X 的概率分布.29.设随机变量X 在[2,5]上服从均匀分布,现对X 进行三次独立观测。

07级本科《概率论与数理统计》A卷

07级本科《概率论与数理统计》A卷

上海立信会计学院2008~2009学年第二学期2007级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.设B A ,为两个事件,且A B ⊂,则 ( ) A .)()()(B P A P B A P += B .)(1)(A P B A P -= C .)()()(B P A P B A P += D .1)(=-A B P2.某学习小组有4名男生2名女生共6个同学,从中任选2人作为学习小组长,设随机变A B C D3.下列各函数可作为随机变量分布函数的是 ( )A .⎩⎨⎧≤≤=其他0102)(1x x x F B .⎪⎩⎪⎨⎧≥<≤<=111000)(2x x x x x F C .⎪⎩⎪⎨⎧≥<≤--<-=111111)(3x x x x x F D .⎪⎩⎪⎨⎧≥<≤<=1210200)(4x x x x x F4.下列结论不一定正确的是 ( ) A .总体未知参数的估计量一定是统计量B .无论总体服从什么分布,∑==ni i X n X 11是总体均值的无偏估计量C .无论总体服从什么分布,∑=--=n i i X X n S 122)(11(2≥n )是总体方差的无偏估计量 D .若21ˆ,ˆθθ是θ的两个估计量,如果)ˆ()ˆ(21θθD D <,则1ˆθ比2ˆθ有效 5.假设检验是根据样本统计量的观测值是否落入0H 的否定域而对原假设0H 作出拒绝或接受的推断,因此推断结论 ( )A .只可能犯第Ⅰ类(弃真)错误B .只可能犯第Ⅱ类(取伪)错误C .两类错误均可能犯D .不可能犯错误二、填空题(每题2分,共10分)1.已知随机变量X 服从参数为λ的泊松分布)(λπ,1}0{-==e X P ,则=λ2.设随机变量X 的密度函数为⎪⎩⎪⎨⎧<<--=其他0111)(2x x Cx f ,则常数=C3.设)21,10(~b X ,)10,2(~N Y ,又14)(=XY E ,则X 与Y 的相关系数=XY ρ4.设),(Y X 的联合密度函数为⎪⎩⎪⎨⎧<<<<--=其他042,20,)6(81),(y x y x y x f ,且区域=D {}3|),(≤+y x y x ,则概率=∈}),{(D Y X P 5.设总体X 服从]2,0[θ上的均匀分布(未知参数0>θ),),,,(21n X X X 为取自总体X的样本,则θ的矩估计=θˆ 三、计算题(共5题,共44分,解答各题必须写出必要步骤)1.(本题6分)为了解甲、乙两种报纸在青年学生中的影响,经调查,某校学生中订阅甲报的有30﹪,订阅乙报的有25﹪,同时订阅两种报纸的有10﹪,记事件{1=A 学生订阅甲报},{2=A 学生订阅乙报}。

概率论与数理统计(A)卷参考答案

概率论与数理统计(A)卷参考答案

商学院课程考核试卷参考答案与评分标准 (A )卷课程名称: 概率论与数理统计 学 分: 4 考核班级: 本部二年级各本科专业 考核学期:一. 填空题(每小题3分,共30分)1.0.7;2.0.38;3.0,1,2,3;4.0.6915;5.2;6.0;7.⎩⎨⎧>>--=--其他00,0)1)(1(),(y x e e y x F y x ;8.23π; 9. 11)(-=∏θθni i nx ; 10.0.4。

二. 选择题(每小题3分,共15分)1.B ;2.D ;3.C ;4.A ;5.C 。

三. 计算题(第1题10分,其余5小题每题9分,共55分)1. 设321,,A A A 分别表示取到第一、二、三个箱子,B 表示取到白球, 则321,,A A A 是一个完备事件组,且:31)()()(321===A P A P A P , 52)|(53)|(51)|(321===A B P A B P A B P ,, 2分(1)由全概率公式:)|()()|()()|()(P(B)332211A B P A P A B P A P A B P A P ++=52523153315131=⨯+⨯+⨯= 6分(2)由贝叶斯公式:31)()|()()|(333==B P A B P A P B A P 10分2.(1)122)(222====⎰⎰∞+∞-λλλxxdx dx x f X ,21=λ; 3分 (2)21400()()02;12xX x F x f t dt xx x -∞<⎧⎪==≤<⎨⎪≥⎩⎰6分 (3) {}1313(3)(1)144P X F F <<=-=-=。

9分3. (1)该设备的平均寿命是41=λ年(设备寿命服从41=λ的指数分布) 2分(2)设Y 是工厂出售一台设备的赢利,则⎩⎨⎧≤->=12001100X X Y 4分)1(200)1(100)(≤->=X P X P Y E ⎰⎰-∞+--=104144120041100dx e dx e xx 8分64.3330020041=-=-e万元 9分4. (1)14),(==⎰⎰+∞∞-+∞∞-cdxdy y x f ,所以,4=c 3分 (2)324)(1012==⎰⎰ydy dx x X E ;324)(10210==⎰⎰dy y xdx Y E944)(10212==⎰⎰dy y dx x XY E 6分 (3)0)()()(),(=-=Y E X E XY E Y X Cov 9分5. 解:令第i 次轰炸命中目标的炸弹数为X i ,100次轰炸中命中目标炸弹数X =∑=1001i iX,应用定理5.5,X 渐近服从正态分布,期望值为200,方差为169,标准差为13. 2分所以P {180≤X ≤220}=P {|X -200|≤20} 4分=⎭⎬⎫⎩⎨⎧≤-132013200X P ≈2Φ(1.54)-1=0.8764. 9分 6.222)1(σχS n -=~2χ(n-1),对05.0=α, 2分查表知:535.17)8(,18.2)8(2025.02975.0==χχ 4分使得2σ置信度为0.95的置信区间为:22220.0250.975(1)(1),(8)(8)n S n S χχ⎛⎫-- ⎪⎝⎭ 计算可得:)8(82025.02χS =12.77,)8(82975.02χS =102.75;(12.77, 102.75)即为总体方差2σ置信度为0.95的置信区间. 9分。

第二学期概率论与数理统计试卷参考答案

第二学期概率论与数理统计试卷参考答案

第⼆学期概率论与数理统计试卷参考答案重庆⼤学概率论与数理统计课程试卷A卷B卷2012 ~2013 学年第⼆学期开课学院:数统学院课程号:10029830 考试⽇期:考试⽅式:开卷闭卷其他考试时间: 120分钟分位数:220.0050.975(39)20,(39)58.12χχ==,0.975 1.96u =,(2.68)0.9963,(1.79)0.9633Φ=Φ=,0.025(35) 2.0301t =⼀、填空题(每空3分,共42分)1.已知()0.3P A =,()0.4P B =,()0.5P AB =,则()P B A B ?= 0.25 。

从⼀副扑克牌(52张)中任取3张(不重复),则取出的3张牌中⾄少有2张花⾊相同的概率为 0.602 。

从1到9的9个整数中有放回地随机取3次,每次取⼀个数,则取出的3个数之积能被10整除的概率为 0.214 。

4.⼀个有5个选项的考题,其中只有⼀个选择是正确的。

假定应考⼈知道正确答案的概率为p 。

如果他最后选对了,则他确实知道答案的概率为541pp +。

5.重复抛⼀颗骰⼦5次得到点数为 6 的次数记为X ,则(3)P X > = 13/3888 。

6.设X 服从泊松分布,且(1)(2)P X P X ===,则(4)P X ==0.0902 。

7.设圆的直径X 服从区间(0,1)上的均匀分布,则圆的⾯积Y的密度函数为1//4()0 ,Y y f y elseπ?<。

8.已知(,)(1,9;0,16;0.5) ,32X YX Y N Z -=+且,则Z 的密度函数21()36z Zf --(z )。

9.设总体2(,)X N µσ,其中2σ已知,从该总体中抽取容量为40n =的样本1,240,,X X X ,则()222110.5 1.453n i i P X X n σσ=??≤-≤∑= 0.97。

10.设1,210,,X X X 是来⾃总体2(0,)XN σ的样本,则Y =服从 t(8) 。

[VIP专享]2007—2008(2)概率论与数理统计II(A)试卷(电子)

[VIP专享]2007—2008(2)概率论与数理统计II(A)试卷(电子)

P 0.2 0.3 0.1 0.4
1) B2Ak+22+1=2+15+c51mc+=m5=21c11+m++12+2+1++=212=2+1+2+1+2+2+22+32k+1+2
X -1 0 1 2
设随机变量 X 其概率分布为
(A) 0.6;
(2)
(D) 0.18.
(C) 0.5;
(B) 0.3;
题 号 一 二 三 四 五 六 七 八 九 十 十一 十二 总成绩 得分
(7)
(D) X 与 Y 互不相容
(C) X 与 Y 相互独立
(B) D( X Y ) DX DY
(A) D( XY ) DX DY

(6)对于任意的两个随机变量 X 和Y ,若 E( XY ) EX EY ,则(
(D) 21.
(C) 17 ;
(A) 25 ; (B) 13 ;
cov ( X, Y ) 2 , 则 D ( 2X Y ) 等于 ( ) .
三、(7 分) 由 A、B、C、D 四个元件组成一个系统,其连接方式如图所示,并用
事件 A、B、C、D 分别表示元件 A、B、C、D 正常工作;元件之间是否正常 工作是相互独立的。已知 P( A) 0.9, P(B) 0.95, P(C) P(D) 0.8 ,试 求 这个系统的能正常工作的概率(即系统的可靠性)。
共 8 页第 1 页
(4)
设随机变量 X ~ N ( 3 , 1), Y ~ N ( 2, 1), 且 X 与 Y 相互独 立 , 令 Z X 2 Y 7 , 则 Z ~ ( ). (A) N ( 0, 5); (B) N ( 0, 3); (C) N (0 , 46 ); (D) N ( 0 , 54).

A-A09-10第二学期概率论与数理统计A级A试题

A-A09-10第二学期概率论与数理统计A级A试题

吉林财经大学2021-2021学年第二学期期末考试概率论与数理统计A 级试卷(A)使用对象:2021级 模块名称:普通共同课 学分:4 考试形式:闭卷共30分)1. ,6.0)(,4.0)(=⋃=B A P A P 假设事件A 与B 互斥,那么=)(B P .2. 设B A ,为二事件,4.0)(=A P ,7.0)(=+B A P ,那么当B A ,独立时,=)(B P .3. ,)(,)(9.0|3.0==B A P AB P 那么=)(B P .4. 随机变量X 服从参数为3的指数分布,那么=EX .5. 设X 服从参数为λ的泊松分布,且}2{}1{===X P X P ,那么=λ .6. 随机变量)1.0,100(~B X ,那么=+)52(X D .7. 某种电子元件的寿命在1000小时以上的概率为8.0,那么3个这种元件使用1000小时后,最多只坏了一个的概率 .8. 随机变量X 服从参数为3的泊松分布,),4,2(~N Y 且X 与Y 独立, 那么=)(XY E .9.. 设(),~10,N X ),3(~2χY Y X ,相互独立,令3/Y X Z =,那么~Z .10. 设总体X 的概率密度为⎩⎨⎧>=--其它,0,),()(θθθx e x f x ,而n X X X ,,,21 是来自总体X 的简单随机样本,那么未知参数θ的矩估计量为 . 二、计算题(此题10分)放入乙袋,再从乙袋中任取1球,求该球为.红球的概率.三、计算题(此题10分)连续型随机变量X 的概率密度函数为||)(x Ae x f -=, 确定A 并计算}1|{|≤X P.四、计算题(此题10分)五、应用题(此题10分)绝对值小于1%的概率.〔9616.0)77.1(=Φ〕六、综合题(此题12分)X 表示两次中取到的红球数目,Y 表示取到的黑球数目,求),(Y X Cov .七、计算题(此题10分)⎩⎨⎧≤>=-0,00,),(x x e x f x λλλ,其中0>λ,是未知参数.n X X X ,,,21 是总体X 的一组样本,n x x x ,,,21 是一组样本值,求参数λ的最大似然估计量. 八、综合题(此题8分).. 20%,今在其中任选5000粒, 计算其良种率与20%之差的一个袋中装有1个红球、2个黑球、3个白球,不放回地抽取两次,每次一个,记甲袋中装4红球,2个白球;乙袋中装有2个红球,4个白球,现从甲袋任取1球 设总体X 服从指数分布,其概率密度为设随机变量X 和Y 相互独立,且概率密度分别为⎪⎩⎪⎨⎧+∞<<=-.,0,0,2)(2其他x e x f x X π,⎪⎩⎪⎨⎧+∞<<=-.,0,0,2)(2其他y e y f y Y π求随机变量22Y X Z +=的概率密度)(z f Z .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一.填空题(每空3分,共30分)
1)一批产品有合格品也有废品,从中有放回的抽取三件产品,以(1,2,3)i A i =表示第i 次抽到废品,试以事件的集合表示下列情况:至少有一次抽取到废品 ;第三次才取到废品 。

2)设A ,B 为随机事件,已知()0.5,()0.3,()0.1P A P B P AB ===,则(/)P A A B ⋃= 。

3)春季植树,小树的存活率为0.7,现植下同样的树苗10棵,那么在这10棵树苗中存活的棵数的概率分布律为(写出概率通项表达式及随机变量的取值范围) ,这10棵小树的平均存活棵树是 。

4)设随机变量X 服从(2,1)N ,则(26)P X <<= ,(0.5)P X == 。

(请用实数表示)
5)设12n X ,X ,...,X 是来自总体X 的样本,则总体X 的样本方差2
S 是 。

8)设()1,()2,()1,()4E X E Y D X D Y ====,且随机变量X 与Y 相互独立,则 (23)E X Y -+= ,(23)D X Y -+= 。

二.某宾馆一楼有3部电梯,今有5人要乘坐电梯,假定个人选哪部电梯是随机的,求每部电梯中至少有一人的概率。

(8分)
三.某卡车运送“赈灾”用品下乡,顶层装10个纸箱,其中5箱为医用口罩,3箱为消毒药水,2箱为消毒棉花。

到目的地时发现丢失一箱,不知丢失哪一箱。

现从剩下9箱中任意打开1箱,结果是消毒药水, 问丢失一箱是消毒棉花的概率。

(8分)
四.设(0,1)X N ,求X Y e =的概率密度函数()Y f y 。

(12分)
五.设二维随机变量(X ,Y )的密度函数为
42,1(,)0,
ax y x y f x y ⎧≤≤=⎨⎩其它 试求:(1)常数a 的值;(4分)
(2)X 和Y 的边缘密度函数;(8分)
(3)判断X 与Y 的独立性。

(2分)
求出E (X -
七.设随机变量X 的概率密度为
2(1),01(,)0,
x x f x λλλ-⎧-≤≤=⎨⎩其它 其中1λ>为未知参数。

设12n X ,X ,.......,X 是总体的一组样本,求参数λ的矩估计量,若从总体中抽出的一组样本值为0.2,0.5,0.7,0.2,求相应的矩估计值。

(8分)
八.某钢筋的抗拉强度2~(,)X N μσ,2
,μσ均未知,今从一批钢筋中随机抽出10根,测得样本标准差30,140s kg x kg ==。

按标准当抗拉强度120kg ≥时为合格,试检验该批钢筋是否合格?显著性检验水平0.05α=。

(10分)
查表:0.0250.0250.050.05(9) 2.2622,(10) 2.2281,(9) 1.8331,(10) 1.8125t t t t ====。

相关文档
最新文档